aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPeter Carbonetto2017-05-27 16:07:07 -0500
committerPeter Carbonetto2017-05-27 16:07:07 -0500
commit338bf7b7db8805515597d9e2d4b5dcbe2e40dfd1 (patch)
treeee0956354916c7795a5c2b656c4ff5405f09271f
parent94b4437dba1bd0e2767a73d0b79c5da9f393a1e3 (diff)
downloadpangemma-338bf7b7db8805515597d9e2d4b5dcbe2e40dfd1.tar.gz
Removed src/Eigen; instead, Eigen C++ library is downloaded separately. See Issue #42 for tests performed.
-rw-r--r--README.md10
-rw-r--r--example/demo.txt4
-rw-r--r--src/Eigen/Array11
-rw-r--r--src/Eigen/CMakeLists.txt19
-rw-r--r--src/Eigen/Cholesky32
-rw-r--r--src/Eigen/CholmodSupport45
-rw-r--r--src/Eigen/Core376
-rw-r--r--src/Eigen/Dense7
-rw-r--r--src/Eigen/Eigen2
-rw-r--r--src/Eigen/Eigen2Support95
-rw-r--r--src/Eigen/Eigenvalues48
-rw-r--r--src/Eigen/Geometry63
-rw-r--r--src/Eigen/Householder23
-rw-r--r--src/Eigen/IterativeLinearSolvers40
-rw-r--r--src/Eigen/Jacobi26
-rw-r--r--src/Eigen/LU41
-rw-r--r--src/Eigen/LeastSquares32
-rw-r--r--src/Eigen/MetisSupport28
-rw-r--r--src/Eigen/OrderingMethods66
-rw-r--r--src/Eigen/PaStiXSupport46
-rw-r--r--src/Eigen/PardisoSupport30
-rw-r--r--src/Eigen/QR45
-rw-r--r--src/Eigen/QtAlignedMalloc34
-rw-r--r--src/Eigen/SPQRSupport29
-rw-r--r--src/Eigen/SVD37
-rw-r--r--src/Eigen/Sparse27
-rw-r--r--src/Eigen/SparseCholesky47
-rw-r--r--src/Eigen/SparseCore64
-rw-r--r--src/Eigen/SparseLU49
-rw-r--r--src/Eigen/SparseQR33
-rw-r--r--src/Eigen/StdDeque27
-rw-r--r--src/Eigen/StdList26
-rw-r--r--src/Eigen/StdVector27
-rw-r--r--src/Eigen/SuperLUSupport59
-rw-r--r--src/Eigen/UmfPackSupport36
-rw-r--r--src/Eigen/src/CMakeLists.txt7
-rw-r--r--src/Eigen/src/Cholesky/CMakeLists.txt6
-rw-r--r--src/Eigen/src/Cholesky/LDLT.h604
-rw-r--r--src/Eigen/src/Cholesky/LLT.h490
-rw-r--r--src/Eigen/src/Cholesky/LLT_MKL.h102
-rw-r--r--src/Eigen/src/CholmodSupport/CMakeLists.txt6
-rw-r--r--src/Eigen/src/CholmodSupport/CholmodSupport.h607
-rw-r--r--src/Eigen/src/Core/Array.h308
-rw-r--r--src/Eigen/src/Core/ArrayBase.h228
-rw-r--r--src/Eigen/src/Core/ArrayWrapper.h254
-rw-r--r--src/Eigen/src/Core/Assign.h583
-rw-r--r--src/Eigen/src/Core/Assign_MKL.h224
-rw-r--r--src/Eigen/src/Core/BandMatrix.h334
-rw-r--r--src/Eigen/src/Core/Block.h405
-rw-r--r--src/Eigen/src/Core/BooleanRedux.h154
-rw-r--r--src/Eigen/src/Core/CMakeLists.txt10
-rw-r--r--src/Eigen/src/Core/CommaInitializer.h154
-rw-r--r--src/Eigen/src/Core/CoreIterators.h61
-rw-r--r--src/Eigen/src/Core/CwiseBinaryOp.h229
-rw-r--r--src/Eigen/src/Core/CwiseNullaryOp.h864
-rw-r--r--src/Eigen/src/Core/CwiseUnaryOp.h126
-rw-r--r--src/Eigen/src/Core/CwiseUnaryView.h139
-rw-r--r--src/Eigen/src/Core/DenseBase.h521
-rw-r--r--src/Eigen/src/Core/DenseCoeffsBase.h754
-rw-r--r--src/Eigen/src/Core/DenseStorage.h339
-rw-r--r--src/Eigen/src/Core/Diagonal.h237
-rw-r--r--src/Eigen/src/Core/DiagonalMatrix.h313
-rw-r--r--src/Eigen/src/Core/DiagonalProduct.h130
-rw-r--r--src/Eigen/src/Core/Dot.h263
-rw-r--r--src/Eigen/src/Core/EigenBase.h131
-rw-r--r--src/Eigen/src/Core/Flagged.h140
-rw-r--r--src/Eigen/src/Core/ForceAlignedAccess.h146
-rw-r--r--src/Eigen/src/Core/Functors.h985
-rw-r--r--src/Eigen/src/Core/Fuzzy.h150
-rw-r--r--src/Eigen/src/Core/GeneralProduct.h635
-rw-r--r--src/Eigen/src/Core/GenericPacketMath.h350
-rw-r--r--src/Eigen/src/Core/GlobalFunctions.h92
-rw-r--r--src/Eigen/src/Core/IO.h250
-rw-r--r--src/Eigen/src/Core/Map.h192
-rw-r--r--src/Eigen/src/Core/MapBase.h244
-rw-r--r--src/Eigen/src/Core/MathFunctions.h768
-rw-r--r--src/Eigen/src/Core/Matrix.h405
-rw-r--r--src/Eigen/src/Core/MatrixBase.h560
-rw-r--r--src/Eigen/src/Core/NestByValue.h111
-rw-r--r--src/Eigen/src/Core/NoAlias.h134
-rw-r--r--src/Eigen/src/Core/NumTraits.h150
-rw-r--r--src/Eigen/src/Core/PermutationMatrix.h689
-rw-r--r--src/Eigen/src/Core/PlainObjectBase.h790
-rw-r--r--src/Eigen/src/Core/ProductBase.h278
-rw-r--r--src/Eigen/src/Core/Random.h152
-rw-r--r--src/Eigen/src/Core/Redux.h408
-rw-r--r--src/Eigen/src/Core/Ref.h260
-rw-r--r--src/Eigen/src/Core/Replicate.h177
-rw-r--r--src/Eigen/src/Core/ReturnByValue.h88
-rw-r--r--src/Eigen/src/Core/Reverse.h224
-rw-r--r--src/Eigen/src/Core/Select.h162
-rw-r--r--src/Eigen/src/Core/SelfAdjointView.h314
-rw-r--r--src/Eigen/src/Core/SelfCwiseBinaryOp.h197
-rw-r--r--src/Eigen/src/Core/SolveTriangular.h260
-rw-r--r--src/Eigen/src/Core/StableNorm.h203
-rw-r--r--src/Eigen/src/Core/Stride.h108
-rw-r--r--src/Eigen/src/Core/Swap.h126
-rw-r--r--src/Eigen/src/Core/Transpose.h419
-rw-r--r--src/Eigen/src/Core/Transpositions.h436
-rw-r--r--src/Eigen/src/Core/TriangularMatrix.h830
-rw-r--r--src/Eigen/src/Core/VectorBlock.h95
-rw-r--r--src/Eigen/src/Core/VectorwiseOp.h642
-rw-r--r--src/Eigen/src/Core/Visitor.h237
-rw-r--r--src/Eigen/src/Core/arch/AltiVec/CMakeLists.txt6
-rw-r--r--src/Eigen/src/Core/arch/AltiVec/Complex.h217
-rw-r--r--src/Eigen/src/Core/arch/AltiVec/PacketMath.h501
-rw-r--r--src/Eigen/src/Core/arch/CMakeLists.txt4
-rw-r--r--src/Eigen/src/Core/arch/Default/CMakeLists.txt6
-rw-r--r--src/Eigen/src/Core/arch/Default/Settings.h49
-rw-r--r--src/Eigen/src/Core/arch/NEON/CMakeLists.txt6
-rw-r--r--src/Eigen/src/Core/arch/NEON/Complex.h253
-rw-r--r--src/Eigen/src/Core/arch/NEON/PacketMath.h410
-rw-r--r--src/Eigen/src/Core/arch/SSE/CMakeLists.txt6
-rw-r--r--src/Eigen/src/Core/arch/SSE/Complex.h442
-rw-r--r--src/Eigen/src/Core/arch/SSE/MathFunctions.h475
-rw-r--r--src/Eigen/src/Core/arch/SSE/PacketMath.h649
-rw-r--r--src/Eigen/src/Core/products/CMakeLists.txt6
-rw-r--r--src/Eigen/src/Core/products/CoeffBasedProduct.h441
-rw-r--r--src/Eigen/src/Core/products/GeneralBlockPanelKernel.h1341
-rw-r--r--src/Eigen/src/Core/products/GeneralMatrixMatrix.h427
-rw-r--r--src/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h278
-rw-r--r--src/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_MKL.h146
-rw-r--r--src/Eigen/src/Core/products/GeneralMatrixMatrix_MKL.h118
-rw-r--r--src/Eigen/src/Core/products/GeneralMatrixVector.h566
-rw-r--r--src/Eigen/src/Core/products/GeneralMatrixVector_MKL.h131
-rw-r--r--src/Eigen/src/Core/products/Parallelizer.h159
-rw-r--r--src/Eigen/src/Core/products/SelfadjointMatrixMatrix.h436
-rw-r--r--src/Eigen/src/Core/products/SelfadjointMatrixMatrix_MKL.h295
-rw-r--r--src/Eigen/src/Core/products/SelfadjointMatrixVector.h281
-rw-r--r--src/Eigen/src/Core/products/SelfadjointMatrixVector_MKL.h114
-rw-r--r--src/Eigen/src/Core/products/SelfadjointProduct.h123
-rw-r--r--src/Eigen/src/Core/products/SelfadjointRank2Update.h93
-rw-r--r--src/Eigen/src/Core/products/TriangularMatrixMatrix.h427
-rw-r--r--src/Eigen/src/Core/products/TriangularMatrixMatrix_MKL.h309
-rw-r--r--src/Eigen/src/Core/products/TriangularMatrixVector.h348
-rw-r--r--src/Eigen/src/Core/products/TriangularMatrixVector_MKL.h247
-rw-r--r--src/Eigen/src/Core/products/TriangularSolverMatrix.h329
-rw-r--r--src/Eigen/src/Core/products/TriangularSolverMatrix_MKL.h155
-rw-r--r--src/Eigen/src/Core/products/TriangularSolverVector.h139
-rw-r--r--src/Eigen/src/Core/util/BlasUtil.h264
-rw-r--r--src/Eigen/src/Core/util/CMakeLists.txt6
-rw-r--r--src/Eigen/src/Core/util/Constants.h438
-rw-r--r--src/Eigen/src/Core/util/DisableStupidWarnings.h40
-rw-r--r--src/Eigen/src/Core/util/ForwardDeclarations.h299
-rw-r--r--src/Eigen/src/Core/util/MKL_support.h126
-rw-r--r--src/Eigen/src/Core/util/Macros.h424
-rw-r--r--src/Eigen/src/Core/util/Memory.h977
-rw-r--r--src/Eigen/src/Core/util/Meta.h243
-rw-r--r--src/Eigen/src/Core/util/NonMPL2.h3
-rw-r--r--src/Eigen/src/Core/util/ReenableStupidWarnings.h14
-rw-r--r--src/Eigen/src/Core/util/StaticAssert.h206
-rw-r--r--src/Eigen/src/Core/util/XprHelper.h469
-rw-r--r--src/Eigen/src/Eigen2Support/Block.h126
-rw-r--r--src/Eigen/src/Eigen2Support/CMakeLists.txt8
-rw-r--r--src/Eigen/src/Eigen2Support/Cwise.h192
-rw-r--r--src/Eigen/src/Eigen2Support/CwiseOperators.h298
-rw-r--r--src/Eigen/src/Eigen2Support/Geometry/AlignedBox.h159
-rw-r--r--src/Eigen/src/Eigen2Support/Geometry/All.h115
-rw-r--r--src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h214
-rw-r--r--src/Eigen/src/Eigen2Support/Geometry/CMakeLists.txt6
-rw-r--r--src/Eigen/src/Eigen2Support/Geometry/Hyperplane.h254
-rw-r--r--src/Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h141
-rw-r--r--src/Eigen/src/Eigen2Support/Geometry/Quaternion.h495
-rw-r--r--src/Eigen/src/Eigen2Support/Geometry/Rotation2D.h145
-rw-r--r--src/Eigen/src/Eigen2Support/Geometry/RotationBase.h123
-rw-r--r--src/Eigen/src/Eigen2Support/Geometry/Scaling.h167
-rw-r--r--src/Eigen/src/Eigen2Support/Geometry/Transform.h786
-rw-r--r--src/Eigen/src/Eigen2Support/Geometry/Translation.h184
-rw-r--r--src/Eigen/src/Eigen2Support/LU.h120
-rw-r--r--src/Eigen/src/Eigen2Support/Lazy.h71
-rw-r--r--src/Eigen/src/Eigen2Support/LeastSquares.h170
-rw-r--r--src/Eigen/src/Eigen2Support/Macros.h20
-rw-r--r--src/Eigen/src/Eigen2Support/MathFunctions.h57
-rw-r--r--src/Eigen/src/Eigen2Support/Memory.h45
-rw-r--r--src/Eigen/src/Eigen2Support/Meta.h75
-rw-r--r--src/Eigen/src/Eigen2Support/Minor.h117
-rw-r--r--src/Eigen/src/Eigen2Support/QR.h67
-rw-r--r--src/Eigen/src/Eigen2Support/SVD.h637
-rw-r--r--src/Eigen/src/Eigen2Support/TriangularSolver.h42
-rw-r--r--src/Eigen/src/Eigen2Support/VectorBlock.h94
-rw-r--r--src/Eigen/src/Eigenvalues/CMakeLists.txt6
-rw-r--r--src/Eigen/src/Eigenvalues/ComplexEigenSolver.h333
-rw-r--r--src/Eigen/src/Eigenvalues/ComplexSchur.h456
-rw-r--r--src/Eigen/src/Eigenvalues/ComplexSchur_MKL.h94
-rw-r--r--src/Eigen/src/Eigenvalues/EigenSolver.h598
-rw-r--r--src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h341
-rw-r--r--src/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h227
-rw-r--r--src/Eigen/src/Eigenvalues/HessenbergDecomposition.h373
-rw-r--r--src/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h160
-rw-r--r--src/Eigen/src/Eigenvalues/RealQZ.h624
-rw-r--r--src/Eigen/src/Eigenvalues/RealSchur.h529
-rw-r--r--src/Eigen/src/Eigenvalues/RealSchur_MKL.h83
-rw-r--r--src/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h802
-rw-r--r--src/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_MKL.h92
-rw-r--r--src/Eigen/src/Eigenvalues/Tridiagonalization.h557
-rw-r--r--src/Eigen/src/Geometry/AlignedBox.h375
-rw-r--r--src/Eigen/src/Geometry/AngleAxis.h233
-rw-r--r--src/Eigen/src/Geometry/CMakeLists.txt8
-rw-r--r--src/Eigen/src/Geometry/EulerAngles.h104
-rw-r--r--src/Eigen/src/Geometry/Homogeneous.h307
-rw-r--r--src/Eigen/src/Geometry/Hyperplane.h270
-rw-r--r--src/Eigen/src/Geometry/OrthoMethods.h218
-rw-r--r--src/Eigen/src/Geometry/ParametrizedLine.h195
-rw-r--r--src/Eigen/src/Geometry/Quaternion.h778
-rw-r--r--src/Eigen/src/Geometry/Rotation2D.h157
-rw-r--r--src/Eigen/src/Geometry/RotationBase.h206
-rw-r--r--src/Eigen/src/Geometry/Scaling.h166
-rw-r--r--src/Eigen/src/Geometry/Transform.h1440
-rw-r--r--src/Eigen/src/Geometry/Translation.h206
-rw-r--r--src/Eigen/src/Geometry/Umeyama.h177
-rw-r--r--src/Eigen/src/Geometry/arch/CMakeLists.txt6
-rw-r--r--src/Eigen/src/Geometry/arch/Geometry_SSE.h115
-rw-r--r--src/Eigen/src/Householder/BlockHouseholder.h68
-rw-r--r--src/Eigen/src/Householder/CMakeLists.txt6
-rw-r--r--src/Eigen/src/Householder/Householder.h171
-rw-r--r--src/Eigen/src/Householder/HouseholderSequence.h441
-rw-r--r--src/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h149
-rw-r--r--src/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h276
-rw-r--r--src/Eigen/src/IterativeLinearSolvers/CMakeLists.txt6
-rw-r--r--src/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h265
-rw-r--r--src/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h467
-rw-r--r--src/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h254
-rw-r--r--src/Eigen/src/Jacobi/CMakeLists.txt6
-rw-r--r--src/Eigen/src/Jacobi/Jacobi.h433
-rw-r--r--src/Eigen/src/LU/CMakeLists.txt8
-rw-r--r--src/Eigen/src/LU/Determinant.h101
-rw-r--r--src/Eigen/src/LU/FullPivLU.h743
-rw-r--r--src/Eigen/src/LU/Inverse.h400
-rw-r--r--src/Eigen/src/LU/PartialPivLU.h501
-rw-r--r--src/Eigen/src/LU/PartialPivLU_MKL.h85
-rw-r--r--src/Eigen/src/LU/arch/CMakeLists.txt6
-rw-r--r--src/Eigen/src/LU/arch/Inverse_SSE.h329
-rw-r--r--src/Eigen/src/MetisSupport/CMakeLists.txt6
-rw-r--r--src/Eigen/src/MetisSupport/MetisSupport.h137
-rw-r--r--src/Eigen/src/OrderingMethods/Amd.h435
-rw-r--r--src/Eigen/src/OrderingMethods/CMakeLists.txt6
-rw-r--r--src/Eigen/src/OrderingMethods/Eigen_Colamd.h1850
-rw-r--r--src/Eigen/src/OrderingMethods/Ordering.h154
-rw-r--r--src/Eigen/src/PaStiXSupport/CMakeLists.txt6
-rw-r--r--src/Eigen/src/PaStiXSupport/PaStiXSupport.h721
-rw-r--r--src/Eigen/src/PardisoSupport/CMakeLists.txt6
-rw-r--r--src/Eigen/src/PardisoSupport/PardisoSupport.h592
-rw-r--r--src/Eigen/src/QR/CMakeLists.txt6
-rw-r--r--src/Eigen/src/QR/ColPivHouseholderQR.h580
-rw-r--r--src/Eigen/src/QR/ColPivHouseholderQR_MKL.h99
-rw-r--r--src/Eigen/src/QR/FullPivHouseholderQR.h614
-rw-r--r--src/Eigen/src/QR/HouseholderQR.h374
-rw-r--r--src/Eigen/src/QR/HouseholderQR_MKL.h69
-rw-r--r--src/Eigen/src/SPQRSupport/CMakeLists.txt6
-rw-r--r--src/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h314
-rw-r--r--src/Eigen/src/SVD/CMakeLists.txt6
-rw-r--r--src/Eigen/src/SVD/JacobiSVD.h961
-rw-r--r--src/Eigen/src/SVD/JacobiSVD_MKL.h92
-rw-r--r--src/Eigen/src/SVD/UpperBidiagonalization.h148
-rw-r--r--src/Eigen/src/SparseCholesky/CMakeLists.txt6
-rw-r--r--src/Eigen/src/SparseCholesky/SimplicialCholesky.h671
-rw-r--r--src/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h199
-rw-r--r--src/Eigen/src/SparseCore/AmbiVector.h373
-rw-r--r--src/Eigen/src/SparseCore/CMakeLists.txt6
-rw-r--r--src/Eigen/src/SparseCore/CompressedStorage.h233
-rw-r--r--src/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h245
-rw-r--r--src/Eigen/src/SparseCore/MappedSparseMatrix.h181
-rw-r--r--src/Eigen/src/SparseCore/SparseBlock.h409
-rw-r--r--src/Eigen/src/SparseCore/SparseColEtree.h206
-rw-r--r--src/Eigen/src/SparseCore/SparseCwiseBinaryOp.h325
-rw-r--r--src/Eigen/src/SparseCore/SparseCwiseUnaryOp.h163
-rw-r--r--src/Eigen/src/SparseCore/SparseDenseProduct.h320
-rw-r--r--src/Eigen/src/SparseCore/SparseDiagonalProduct.h196
-rw-r--r--src/Eigen/src/SparseCore/SparseDot.h101
-rw-r--r--src/Eigen/src/SparseCore/SparseFuzzy.h26
-rw-r--r--src/Eigen/src/SparseCore/SparseMatrix.h1259
-rw-r--r--src/Eigen/src/SparseCore/SparseMatrixBase.h451
-rw-r--r--src/Eigen/src/SparseCore/SparsePermutation.h148
-rw-r--r--src/Eigen/src/SparseCore/SparseProduct.h188
-rw-r--r--src/Eigen/src/SparseCore/SparseRedux.h45
-rw-r--r--src/Eigen/src/SparseCore/SparseSelfAdjointView.h507
-rw-r--r--src/Eigen/src/SparseCore/SparseSparseProductWithPruning.h150
-rw-r--r--src/Eigen/src/SparseCore/SparseTranspose.h63
-rw-r--r--src/Eigen/src/SparseCore/SparseTriangularView.h179
-rw-r--r--src/Eigen/src/SparseCore/SparseUtil.h173
-rw-r--r--src/Eigen/src/SparseCore/SparseVector.h447
-rw-r--r--src/Eigen/src/SparseCore/SparseView.h99
-rw-r--r--src/Eigen/src/SparseCore/TriangularSolver.h334
-rw-r--r--src/Eigen/src/SparseLU/CMakeLists.txt6
-rw-r--r--src/Eigen/src/SparseLU/SparseLU.h758
-rw-r--r--src/Eigen/src/SparseLU/SparseLUImpl.h64
-rw-r--r--src/Eigen/src/SparseLU/SparseLU_Memory.h227
-rw-r--r--src/Eigen/src/SparseLU/SparseLU_Structs.h111
-rw-r--r--src/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h298
-rw-r--r--src/Eigen/src/SparseLU/SparseLU_Utils.h80
-rw-r--r--src/Eigen/src/SparseLU/SparseLU_column_bmod.h180
-rw-r--r--src/Eigen/src/SparseLU/SparseLU_column_dfs.h177
-rw-r--r--src/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h106
-rw-r--r--src/Eigen/src/SparseLU/SparseLU_gemm_kernel.h279
-rw-r--r--src/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h127
-rw-r--r--src/Eigen/src/SparseLU/SparseLU_kernel_bmod.h130
-rw-r--r--src/Eigen/src/SparseLU/SparseLU_panel_bmod.h223
-rw-r--r--src/Eigen/src/SparseLU/SparseLU_panel_dfs.h258
-rw-r--r--src/Eigen/src/SparseLU/SparseLU_pivotL.h134
-rw-r--r--src/Eigen/src/SparseLU/SparseLU_pruneL.h135
-rw-r--r--src/Eigen/src/SparseLU/SparseLU_relax_snode.h83
-rw-r--r--src/Eigen/src/SparseQR/CMakeLists.txt6
-rw-r--r--src/Eigen/src/SparseQR/SparseQR.h685
-rw-r--r--src/Eigen/src/StlSupport/CMakeLists.txt6
-rw-r--r--src/Eigen/src/StlSupport/StdDeque.h134
-rw-r--r--src/Eigen/src/StlSupport/StdList.h114
-rw-r--r--src/Eigen/src/StlSupport/StdVector.h126
-rw-r--r--src/Eigen/src/StlSupport/details.h84
-rw-r--r--src/Eigen/src/SuperLUSupport/CMakeLists.txt6
-rw-r--r--src/Eigen/src/SuperLUSupport/SuperLUSupport.h1026
-rw-r--r--src/Eigen/src/UmfPackSupport/CMakeLists.txt6
-rw-r--r--src/Eigen/src/UmfPackSupport/UmfPackSupport.h432
-rw-r--r--src/Eigen/src/misc/CMakeLists.txt6
-rw-r--r--src/Eigen/src/misc/Image.h84
-rw-r--r--src/Eigen/src/misc/Kernel.h81
-rw-r--r--src/Eigen/src/misc/Solve.h76
-rw-r--r--src/Eigen/src/misc/SparseSolve.h128
-rw-r--r--src/Eigen/src/misc/blas.h658
-rw-r--r--src/Eigen/src/plugins/ArrayCwiseBinaryOps.h211
-rw-r--r--src/Eigen/src/plugins/ArrayCwiseUnaryOps.h203
-rw-r--r--src/Eigen/src/plugins/BlockMethods.h935
-rw-r--r--src/Eigen/src/plugins/CMakeLists.txt6
-rw-r--r--src/Eigen/src/plugins/CommonCwiseBinaryOps.h46
-rw-r--r--src/Eigen/src/plugins/CommonCwiseUnaryOps.h172
-rw-r--r--src/Eigen/src/plugins/MatrixCwiseBinaryOps.h126
-rw-r--r--src/Eigen/src/plugins/MatrixCwiseUnaryOps.h67
326 files changed, 11 insertions, 79569 deletions
diff --git a/README.md b/README.md
index f73731f..19f66a5 100644
--- a/README.md
+++ b/README.md
@@ -112,10 +112,11 @@ This is the current structure of the GEMMA source repository:
├── doc
├── example
└── src
- └── Eigen
```
-*Explain here what is in each of the subfolders.*
+*Write a paragraph here briefly explaining what is in each of the
+subfolders; see Wilson et al "Good Enough Practices" paper for example
+of this.*
## Setup
@@ -173,6 +174,11 @@ You will need a standard C/C++ compiler such as GNU gcc, as well as
[LAPACK](http://www.netlib.org/lapack) libraries. You will need to
change the library paths in the Makefile accordingly.
+*Revise this step:* You will need to download the
+[Eigen C++ library](http://eigen.tuxfamily.org), and copy the `Eigen`
+subdirectory into the `src` directory of the GEMMA repository. (It was
+last tested using Eigen version 3.3.3.)
+
## Credits
The *GEMMA* software was developed by:
diff --git a/example/demo.txt b/example/demo.txt
index 3231ddc..80c5c95 100644
--- a/example/demo.txt
+++ b/example/demo.txt
@@ -23,7 +23,9 @@
## To perform association tests with a univariate linear mixed model:
-../bin/gemma -g mouse_hs1940.geno.txt.gz -p mouse_hs1940.pheno.txt -n 1 -a mouse_hs1940.anno.txt -k ./output/mouse_hs1940.cXX.txt -lmm -o mouse_hs1940_CD8_lmm
+../bin/gemma -g mouse_hs1940.geno.txt.gz -p mouse_hs1940.pheno.txt -n 1 \
+ -a mouse_hs1940.anno.txt -k ./output/mouse_hs1940.cXX.txt -lmm \
+ -o mouse_hs1940_CD8_lmm
# The result for top 5 SNPs should look like this:
chr rs ps n_miss allele1 allele0 af beta se l_remle p_wald
diff --git a/src/Eigen/Array b/src/Eigen/Array
deleted file mode 100644
index 3d004fb..0000000
--- a/src/Eigen/Array
+++ /dev/null
@@ -1,11 +0,0 @@
-#ifndef EIGEN_ARRAY_MODULE_H
-#define EIGEN_ARRAY_MODULE_H
-
-// include Core first to handle Eigen2 support macros
-#include "Core"
-
-#ifndef EIGEN2_SUPPORT
- #error The Eigen/Array header does no longer exist in Eigen3. All that functionality has moved to Eigen/Core.
-#endif
-
-#endif // EIGEN_ARRAY_MODULE_H
diff --git a/src/Eigen/CMakeLists.txt b/src/Eigen/CMakeLists.txt
deleted file mode 100644
index a92dd6f..0000000
--- a/src/Eigen/CMakeLists.txt
+++ /dev/null
@@ -1,19 +0,0 @@
-include(RegexUtils)
-test_escape_string_as_regex()
-
-file(GLOB Eigen_directory_files "*")
-
-escape_string_as_regex(ESCAPED_CMAKE_CURRENT_SOURCE_DIR "${CMAKE_CURRENT_SOURCE_DIR}")
-
-foreach(f ${Eigen_directory_files})
- if(NOT f MATCHES "\\.txt" AND NOT f MATCHES "${ESCAPED_CMAKE_CURRENT_SOURCE_DIR}/[.].+" AND NOT f MATCHES "${ESCAPED_CMAKE_CURRENT_SOURCE_DIR}/src")
- list(APPEND Eigen_directory_files_to_install ${f})
- endif()
-endforeach(f ${Eigen_directory_files})
-
-install(FILES
- ${Eigen_directory_files_to_install}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen COMPONENT Devel
- )
-
-add_subdirectory(src)
diff --git a/src/Eigen/Cholesky b/src/Eigen/Cholesky
deleted file mode 100644
index f727f5d..0000000
--- a/src/Eigen/Cholesky
+++ /dev/null
@@ -1,32 +0,0 @@
-#ifndef EIGEN_CHOLESKY_MODULE_H
-#define EIGEN_CHOLESKY_MODULE_H
-
-#include "Core"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-/** \defgroup Cholesky_Module Cholesky module
- *
- *
- *
- * This module provides two variants of the Cholesky decomposition for selfadjoint (hermitian) matrices.
- * Those decompositions are accessible via the following MatrixBase methods:
- * - MatrixBase::llt(),
- * - MatrixBase::ldlt()
- *
- * \code
- * #include <Eigen/Cholesky>
- * \endcode
- */
-
-#include "src/misc/Solve.h"
-#include "src/Cholesky/LLT.h"
-#include "src/Cholesky/LDLT.h"
-#ifdef EIGEN_USE_LAPACKE
-#include "src/Cholesky/LLT_MKL.h"
-#endif
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_CHOLESKY_MODULE_H
-/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/src/Eigen/CholmodSupport b/src/Eigen/CholmodSupport
deleted file mode 100644
index 745b884..0000000
--- a/src/Eigen/CholmodSupport
+++ /dev/null
@@ -1,45 +0,0 @@
-#ifndef EIGEN_CHOLMODSUPPORT_MODULE_H
-#define EIGEN_CHOLMODSUPPORT_MODULE_H
-
-#include "SparseCore"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-extern "C" {
- #include <cholmod.h>
-}
-
-/** \ingroup Support_modules
- * \defgroup CholmodSupport_Module CholmodSupport module
- *
- * This module provides an interface to the Cholmod library which is part of the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">suitesparse</a> package.
- * It provides the two following main factorization classes:
- * - class CholmodSupernodalLLT: a supernodal LLT Cholesky factorization.
- * - class CholmodDecomposiiton: a general L(D)LT Cholesky factorization with automatic or explicit runtime selection of the underlying factorization method (supernodal or simplicial).
- *
- * For the sake of completeness, this module also propose the two following classes:
- * - class CholmodSimplicialLLT
- * - class CholmodSimplicialLDLT
- * Note that these classes does not bring any particular advantage compared to the built-in
- * SimplicialLLT and SimplicialLDLT factorization classes.
- *
- * \code
- * #include <Eigen/CholmodSupport>
- * \endcode
- *
- * In order to use this module, the cholmod headers must be accessible from the include paths, and your binary must be linked to the cholmod library and its dependencies.
- * The dependencies depend on how cholmod has been compiled.
- * For a cmake based project, you can use our FindCholmod.cmake module to help you in this task.
- *
- */
-
-#include "src/misc/Solve.h"
-#include "src/misc/SparseSolve.h"
-
-#include "src/CholmodSupport/CholmodSupport.h"
-
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_CHOLMODSUPPORT_MODULE_H
-
diff --git a/src/Eigen/Core b/src/Eigen/Core
deleted file mode 100644
index c87f99d..0000000
--- a/src/Eigen/Core
+++ /dev/null
@@ -1,376 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2007-2011 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CORE_H
-#define EIGEN_CORE_H
-
-// first thing Eigen does: stop the compiler from committing suicide
-#include "src/Core/util/DisableStupidWarnings.h"
-
-// then include this file where all our macros are defined. It's really important to do it first because
-// it's where we do all the alignment settings (platform detection and honoring the user's will if he
-// defined e.g. EIGEN_DONT_ALIGN) so it needs to be done before we do anything with vectorization.
-#include "src/Core/util/Macros.h"
-
-// Disable the ipa-cp-clone optimization flag with MinGW 6.x or newer (enabled by default with -O3)
-// See http://eigen.tuxfamily.org/bz/show_bug.cgi?id=556 for details.
-#if defined(__MINGW32__) && EIGEN_GNUC_AT_LEAST(4,6)
- #pragma GCC optimize ("-fno-ipa-cp-clone")
-#endif
-
-#include <complex>
-
-// this include file manages BLAS and MKL related macros
-// and inclusion of their respective header files
-#include "src/Core/util/MKL_support.h"
-
-// if alignment is disabled, then disable vectorization. Note: EIGEN_ALIGN is the proper check, it takes into
-// account both the user's will (EIGEN_DONT_ALIGN) and our own platform checks
-#if !EIGEN_ALIGN
- #ifndef EIGEN_DONT_VECTORIZE
- #define EIGEN_DONT_VECTORIZE
- #endif
-#endif
-
-#ifdef _MSC_VER
- #include <malloc.h> // for _aligned_malloc -- need it regardless of whether vectorization is enabled
- #if (_MSC_VER >= 1500) // 2008 or later
- // Remember that usage of defined() in a #define is undefined by the standard.
- // a user reported that in 64-bit mode, MSVC doesn't care to define _M_IX86_FP.
- #if (defined(_M_IX86_FP) && (_M_IX86_FP >= 2)) || defined(_M_X64)
- #define EIGEN_SSE2_ON_MSVC_2008_OR_LATER
- #endif
- #endif
-#else
- // Remember that usage of defined() in a #define is undefined by the standard
- #if (defined __SSE2__) && ( (!defined __GNUC__) || (defined __INTEL_COMPILER) || EIGEN_GNUC_AT_LEAST(4,2) )
- #define EIGEN_SSE2_ON_NON_MSVC_BUT_NOT_OLD_GCC
- #endif
-#endif
-
-#ifndef EIGEN_DONT_VECTORIZE
-
- #if defined (EIGEN_SSE2_ON_NON_MSVC_BUT_NOT_OLD_GCC) || defined(EIGEN_SSE2_ON_MSVC_2008_OR_LATER)
-
- // Defines symbols for compile-time detection of which instructions are
- // used.
- // EIGEN_VECTORIZE_YY is defined if and only if the instruction set YY is used
- #define EIGEN_VECTORIZE
- #define EIGEN_VECTORIZE_SSE
- #define EIGEN_VECTORIZE_SSE2
-
- // Detect sse3/ssse3/sse4:
- // gcc and icc defines __SSE3__, ...
- // there is no way to know about this on msvc. You can define EIGEN_VECTORIZE_SSE* if you
- // want to force the use of those instructions with msvc.
- #ifdef __SSE3__
- #define EIGEN_VECTORIZE_SSE3
- #endif
- #ifdef __SSSE3__
- #define EIGEN_VECTORIZE_SSSE3
- #endif
- #ifdef __SSE4_1__
- #define EIGEN_VECTORIZE_SSE4_1
- #endif
- #ifdef __SSE4_2__
- #define EIGEN_VECTORIZE_SSE4_2
- #endif
-
- // include files
-
- // This extern "C" works around a MINGW-w64 compilation issue
- // https://sourceforge.net/tracker/index.php?func=detail&aid=3018394&group_id=202880&atid=983354
- // In essence, intrin.h is included by windows.h and also declares intrinsics (just as emmintrin.h etc. below do).
- // However, intrin.h uses an extern "C" declaration, and g++ thus complains of duplicate declarations
- // with conflicting linkage. The linkage for intrinsics doesn't matter, but at that stage the compiler doesn't know;
- // so, to avoid compile errors when windows.h is included after Eigen/Core, ensure intrinsics are extern "C" here too.
- // notice that since these are C headers, the extern "C" is theoretically needed anyways.
- extern "C" {
- // In theory we should only include immintrin.h and not the other *mmintrin.h header files directly.
- // Doing so triggers some issues with ICC. However old gcc versions seems to not have this file, thus:
- #if defined(__INTEL_COMPILER) && __INTEL_COMPILER >= 1110
- #include <immintrin.h>
- #else
- #include <emmintrin.h>
- #include <xmmintrin.h>
- #ifdef EIGEN_VECTORIZE_SSE3
- #include <pmmintrin.h>
- #endif
- #ifdef EIGEN_VECTORIZE_SSSE3
- #include <tmmintrin.h>
- #endif
- #ifdef EIGEN_VECTORIZE_SSE4_1
- #include <smmintrin.h>
- #endif
- #ifdef EIGEN_VECTORIZE_SSE4_2
- #include <nmmintrin.h>
- #endif
- #endif
- } // end extern "C"
- #elif defined __ALTIVEC__
- #define EIGEN_VECTORIZE
- #define EIGEN_VECTORIZE_ALTIVEC
- #include <altivec.h>
- // We need to #undef all these ugly tokens defined in <altivec.h>
- // => use __vector instead of vector
- #undef bool
- #undef vector
- #undef pixel
- #elif defined __ARM_NEON__
- #define EIGEN_VECTORIZE
- #define EIGEN_VECTORIZE_NEON
- #include <arm_neon.h>
- #endif
-#endif
-
-#if (defined _OPENMP) && (!defined EIGEN_DONT_PARALLELIZE)
- #define EIGEN_HAS_OPENMP
-#endif
-
-#ifdef EIGEN_HAS_OPENMP
-#include <omp.h>
-#endif
-
-// MSVC for windows mobile does not have the errno.h file
-#if !(defined(_MSC_VER) && defined(_WIN32_WCE)) && !defined(__ARMCC_VERSION)
-#define EIGEN_HAS_ERRNO
-#endif
-
-#ifdef EIGEN_HAS_ERRNO
-#include <cerrno>
-#endif
-#include <cstddef>
-#include <cstdlib>
-#include <cmath>
-#include <cassert>
-#include <functional>
-#include <iosfwd>
-#include <cstring>
-#include <string>
-#include <limits>
-#include <climits> // for CHAR_BIT
-// for min/max:
-#include <algorithm>
-
-// for outputting debug info
-#ifdef EIGEN_DEBUG_ASSIGN
-#include <iostream>
-#endif
-
-// required for __cpuid, needs to be included after cmath
-#if defined(_MSC_VER) && (defined(_M_IX86)||defined(_M_X64)) && (!defined(_WIN32_WCE))
- #include <intrin.h>
-#endif
-
-#if defined(_CPPUNWIND) || defined(__EXCEPTIONS)
- #define EIGEN_EXCEPTIONS
-#endif
-
-#ifdef EIGEN_EXCEPTIONS
- #include <new>
-#endif
-
-/** \brief Namespace containing all symbols from the %Eigen library. */
-namespace Eigen {
-
-inline static const char *SimdInstructionSetsInUse(void) {
-#if defined(EIGEN_VECTORIZE_SSE4_2)
- return "SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2";
-#elif defined(EIGEN_VECTORIZE_SSE4_1)
- return "SSE, SSE2, SSE3, SSSE3, SSE4.1";
-#elif defined(EIGEN_VECTORIZE_SSSE3)
- return "SSE, SSE2, SSE3, SSSE3";
-#elif defined(EIGEN_VECTORIZE_SSE3)
- return "SSE, SSE2, SSE3";
-#elif defined(EIGEN_VECTORIZE_SSE2)
- return "SSE, SSE2";
-#elif defined(EIGEN_VECTORIZE_ALTIVEC)
- return "AltiVec";
-#elif defined(EIGEN_VECTORIZE_NEON)
- return "ARM NEON";
-#else
- return "None";
-#endif
-}
-
-} // end namespace Eigen
-
-#define STAGE10_FULL_EIGEN2_API 10
-#define STAGE20_RESOLVE_API_CONFLICTS 20
-#define STAGE30_FULL_EIGEN3_API 30
-#define STAGE40_FULL_EIGEN3_STRICTNESS 40
-#define STAGE99_NO_EIGEN2_SUPPORT 99
-
-#if defined EIGEN2_SUPPORT_STAGE40_FULL_EIGEN3_STRICTNESS
- #define EIGEN2_SUPPORT
- #define EIGEN2_SUPPORT_STAGE STAGE40_FULL_EIGEN3_STRICTNESS
-#elif defined EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API
- #define EIGEN2_SUPPORT
- #define EIGEN2_SUPPORT_STAGE STAGE30_FULL_EIGEN3_API
-#elif defined EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS
- #define EIGEN2_SUPPORT
- #define EIGEN2_SUPPORT_STAGE STAGE20_RESOLVE_API_CONFLICTS
-#elif defined EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API
- #define EIGEN2_SUPPORT
- #define EIGEN2_SUPPORT_STAGE STAGE10_FULL_EIGEN2_API
-#elif defined EIGEN2_SUPPORT
- // default to stage 3, that's what it's always meant
- #define EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API
- #define EIGEN2_SUPPORT_STAGE STAGE30_FULL_EIGEN3_API
-#else
- #define EIGEN2_SUPPORT_STAGE STAGE99_NO_EIGEN2_SUPPORT
-#endif
-
-#ifdef EIGEN2_SUPPORT
-#undef minor
-#endif
-
-// we use size_t frequently and we'll never remember to prepend it with std:: everytime just to
-// ensure QNX/QCC support
-using std::size_t;
-// gcc 4.6.0 wants std:: for ptrdiff_t
-using std::ptrdiff_t;
-
-/** \defgroup Core_Module Core module
- * This is the main module of Eigen providing dense matrix and vector support
- * (both fixed and dynamic size) with all the features corresponding to a BLAS library
- * and much more...
- *
- * \code
- * #include <Eigen/Core>
- * \endcode
- */
-
-#include "src/Core/util/Constants.h"
-#include "src/Core/util/ForwardDeclarations.h"
-#include "src/Core/util/Meta.h"
-#include "src/Core/util/StaticAssert.h"
-#include "src/Core/util/XprHelper.h"
-#include "src/Core/util/Memory.h"
-
-#include "src/Core/NumTraits.h"
-#include "src/Core/MathFunctions.h"
-#include "src/Core/GenericPacketMath.h"
-
-#if defined EIGEN_VECTORIZE_SSE
- #include "src/Core/arch/SSE/PacketMath.h"
- #include "src/Core/arch/SSE/MathFunctions.h"
- #include "src/Core/arch/SSE/Complex.h"
-#elif defined EIGEN_VECTORIZE_ALTIVEC
- #include "src/Core/arch/AltiVec/PacketMath.h"
- #include "src/Core/arch/AltiVec/Complex.h"
-#elif defined EIGEN_VECTORIZE_NEON
- #include "src/Core/arch/NEON/PacketMath.h"
- #include "src/Core/arch/NEON/Complex.h"
-#endif
-
-#include "src/Core/arch/Default/Settings.h"
-
-#include "src/Core/Functors.h"
-#include "src/Core/DenseCoeffsBase.h"
-#include "src/Core/DenseBase.h"
-#include "src/Core/MatrixBase.h"
-#include "src/Core/EigenBase.h"
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN // work around Doxygen bug triggered by Assign.h r814874
- // at least confirmed with Doxygen 1.5.5 and 1.5.6
- #include "src/Core/Assign.h"
-#endif
-
-#include "src/Core/util/BlasUtil.h"
-#include "src/Core/DenseStorage.h"
-#include "src/Core/NestByValue.h"
-#include "src/Core/ForceAlignedAccess.h"
-#include "src/Core/ReturnByValue.h"
-#include "src/Core/NoAlias.h"
-#include "src/Core/PlainObjectBase.h"
-#include "src/Core/Matrix.h"
-#include "src/Core/Array.h"
-#include "src/Core/CwiseBinaryOp.h"
-#include "src/Core/CwiseUnaryOp.h"
-#include "src/Core/CwiseNullaryOp.h"
-#include "src/Core/CwiseUnaryView.h"
-#include "src/Core/SelfCwiseBinaryOp.h"
-#include "src/Core/Dot.h"
-#include "src/Core/StableNorm.h"
-#include "src/Core/MapBase.h"
-#include "src/Core/Stride.h"
-#include "src/Core/Map.h"
-#include "src/Core/Block.h"
-#include "src/Core/VectorBlock.h"
-#include "src/Core/Ref.h"
-#include "src/Core/Transpose.h"
-#include "src/Core/DiagonalMatrix.h"
-#include "src/Core/Diagonal.h"
-#include "src/Core/DiagonalProduct.h"
-#include "src/Core/PermutationMatrix.h"
-#include "src/Core/Transpositions.h"
-#include "src/Core/Redux.h"
-#include "src/Core/Visitor.h"
-#include "src/Core/Fuzzy.h"
-#include "src/Core/IO.h"
-#include "src/Core/Swap.h"
-#include "src/Core/CommaInitializer.h"
-#include "src/Core/Flagged.h"
-#include "src/Core/ProductBase.h"
-#include "src/Core/GeneralProduct.h"
-#include "src/Core/TriangularMatrix.h"
-#include "src/Core/SelfAdjointView.h"
-#include "src/Core/products/GeneralBlockPanelKernel.h"
-#include "src/Core/products/Parallelizer.h"
-#include "src/Core/products/CoeffBasedProduct.h"
-#include "src/Core/products/GeneralMatrixVector.h"
-#include "src/Core/products/GeneralMatrixMatrix.h"
-#include "src/Core/SolveTriangular.h"
-#include "src/Core/products/GeneralMatrixMatrixTriangular.h"
-#include "src/Core/products/SelfadjointMatrixVector.h"
-#include "src/Core/products/SelfadjointMatrixMatrix.h"
-#include "src/Core/products/SelfadjointProduct.h"
-#include "src/Core/products/SelfadjointRank2Update.h"
-#include "src/Core/products/TriangularMatrixVector.h"
-#include "src/Core/products/TriangularMatrixMatrix.h"
-#include "src/Core/products/TriangularSolverMatrix.h"
-#include "src/Core/products/TriangularSolverVector.h"
-#include "src/Core/BandMatrix.h"
-#include "src/Core/CoreIterators.h"
-
-#include "src/Core/BooleanRedux.h"
-#include "src/Core/Select.h"
-#include "src/Core/VectorwiseOp.h"
-#include "src/Core/Random.h"
-#include "src/Core/Replicate.h"
-#include "src/Core/Reverse.h"
-#include "src/Core/ArrayBase.h"
-#include "src/Core/ArrayWrapper.h"
-
-#ifdef EIGEN_USE_BLAS
-#include "src/Core/products/GeneralMatrixMatrix_MKL.h"
-#include "src/Core/products/GeneralMatrixVector_MKL.h"
-#include "src/Core/products/GeneralMatrixMatrixTriangular_MKL.h"
-#include "src/Core/products/SelfadjointMatrixMatrix_MKL.h"
-#include "src/Core/products/SelfadjointMatrixVector_MKL.h"
-#include "src/Core/products/TriangularMatrixMatrix_MKL.h"
-#include "src/Core/products/TriangularMatrixVector_MKL.h"
-#include "src/Core/products/TriangularSolverMatrix_MKL.h"
-#endif // EIGEN_USE_BLAS
-
-#ifdef EIGEN_USE_MKL_VML
-#include "src/Core/Assign_MKL.h"
-#endif
-
-#include "src/Core/GlobalFunctions.h"
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#ifdef EIGEN2_SUPPORT
-#include "Eigen2Support"
-#endif
-
-#endif // EIGEN_CORE_H
diff --git a/src/Eigen/Dense b/src/Eigen/Dense
deleted file mode 100644
index 5768910..0000000
--- a/src/Eigen/Dense
+++ /dev/null
@@ -1,7 +0,0 @@
-#include "Core"
-#include "LU"
-#include "Cholesky"
-#include "QR"
-#include "SVD"
-#include "Geometry"
-#include "Eigenvalues"
diff --git a/src/Eigen/Eigen b/src/Eigen/Eigen
deleted file mode 100644
index 19b40ea..0000000
--- a/src/Eigen/Eigen
+++ /dev/null
@@ -1,2 +0,0 @@
-#include "Dense"
-//#include "Sparse"
diff --git a/src/Eigen/Eigen2Support b/src/Eigen/Eigen2Support
deleted file mode 100644
index 6aa009d..0000000
--- a/src/Eigen/Eigen2Support
+++ /dev/null
@@ -1,95 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2SUPPORT_H
-#define EIGEN2SUPPORT_H
-
-#if (!defined(EIGEN2_SUPPORT)) || (!defined(EIGEN_CORE_H))
-#error Eigen2 support must be enabled by defining EIGEN2_SUPPORT before including any Eigen header
-#endif
-
-#ifndef EIGEN_NO_EIGEN2_DEPRECATED_WARNING
-
-#if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__clang__)
-#warning "Eigen2 support is deprecated in Eigen 3.2.x and it will be removed in Eigen 3.3. (Define EIGEN_NO_EIGEN2_DEPRECATED_WARNING to disable this warning)"
-#else
-#pragma message ("Eigen2 support is deprecated in Eigen 3.2.x and it will be removed in Eigen 3.3. (Define EIGEN_NO_EIGEN2_DEPRECATED_WARNING to disable this warning)")
-#endif
-
-#endif // EIGEN_NO_EIGEN2_DEPRECATED_WARNING
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-/** \ingroup Support_modules
- * \defgroup Eigen2Support_Module Eigen2 support module
- *
- * \warning Eigen2 support is deprecated in Eigen 3.2.x and it will be removed in Eigen 3.3.
- *
- * This module provides a couple of deprecated functions improving the compatibility with Eigen2.
- *
- * To use it, define EIGEN2_SUPPORT before including any Eigen header
- * \code
- * #define EIGEN2_SUPPORT
- * \endcode
- *
- */
-
-#include "src/Eigen2Support/Macros.h"
-#include "src/Eigen2Support/Memory.h"
-#include "src/Eigen2Support/Meta.h"
-#include "src/Eigen2Support/Lazy.h"
-#include "src/Eigen2Support/Cwise.h"
-#include "src/Eigen2Support/CwiseOperators.h"
-#include "src/Eigen2Support/TriangularSolver.h"
-#include "src/Eigen2Support/Block.h"
-#include "src/Eigen2Support/VectorBlock.h"
-#include "src/Eigen2Support/Minor.h"
-#include "src/Eigen2Support/MathFunctions.h"
-
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-// Eigen2 used to include iostream
-#include<iostream>
-
-#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
-using Eigen::Matrix##SizeSuffix##TypeSuffix; \
-using Eigen::Vector##SizeSuffix##TypeSuffix; \
-using Eigen::RowVector##SizeSuffix##TypeSuffix;
-
-#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(TypeSuffix) \
-EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
-EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
-EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
-EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
-
-#define EIGEN_USING_MATRIX_TYPEDEFS \
-EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(i) \
-EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(f) \
-EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(d) \
-EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cf) \
-EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cd)
-
-#define USING_PART_OF_NAMESPACE_EIGEN \
-EIGEN_USING_MATRIX_TYPEDEFS \
-using Eigen::Matrix; \
-using Eigen::MatrixBase; \
-using Eigen::ei_random; \
-using Eigen::ei_real; \
-using Eigen::ei_imag; \
-using Eigen::ei_conj; \
-using Eigen::ei_abs; \
-using Eigen::ei_abs2; \
-using Eigen::ei_sqrt; \
-using Eigen::ei_exp; \
-using Eigen::ei_log; \
-using Eigen::ei_sin; \
-using Eigen::ei_cos;
-
-#endif // EIGEN2SUPPORT_H
diff --git a/src/Eigen/Eigenvalues b/src/Eigen/Eigenvalues
deleted file mode 100644
index 53c5a73..0000000
--- a/src/Eigen/Eigenvalues
+++ /dev/null
@@ -1,48 +0,0 @@
-#ifndef EIGEN_EIGENVALUES_MODULE_H
-#define EIGEN_EIGENVALUES_MODULE_H
-
-#include "Core"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-#include "Cholesky"
-#include "Jacobi"
-#include "Householder"
-#include "LU"
-#include "Geometry"
-
-/** \defgroup Eigenvalues_Module Eigenvalues module
- *
- *
- *
- * This module mainly provides various eigenvalue solvers.
- * This module also provides some MatrixBase methods, including:
- * - MatrixBase::eigenvalues(),
- * - MatrixBase::operatorNorm()
- *
- * \code
- * #include <Eigen/Eigenvalues>
- * \endcode
- */
-
-#include "src/Eigenvalues/Tridiagonalization.h"
-#include "src/Eigenvalues/RealSchur.h"
-#include "src/Eigenvalues/EigenSolver.h"
-#include "src/Eigenvalues/SelfAdjointEigenSolver.h"
-#include "src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h"
-#include "src/Eigenvalues/HessenbergDecomposition.h"
-#include "src/Eigenvalues/ComplexSchur.h"
-#include "src/Eigenvalues/ComplexEigenSolver.h"
-#include "src/Eigenvalues/RealQZ.h"
-#include "src/Eigenvalues/GeneralizedEigenSolver.h"
-#include "src/Eigenvalues/MatrixBaseEigenvalues.h"
-#ifdef EIGEN_USE_LAPACKE
-#include "src/Eigenvalues/RealSchur_MKL.h"
-#include "src/Eigenvalues/ComplexSchur_MKL.h"
-#include "src/Eigenvalues/SelfAdjointEigenSolver_MKL.h"
-#endif
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_EIGENVALUES_MODULE_H
-/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/src/Eigen/Geometry b/src/Eigen/Geometry
deleted file mode 100644
index efd9d45..0000000
--- a/src/Eigen/Geometry
+++ /dev/null
@@ -1,63 +0,0 @@
-#ifndef EIGEN_GEOMETRY_MODULE_H
-#define EIGEN_GEOMETRY_MODULE_H
-
-#include "Core"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-#include "SVD"
-#include "LU"
-#include <limits>
-
-#ifndef M_PI
-#define M_PI 3.14159265358979323846
-#endif
-
-/** \defgroup Geometry_Module Geometry module
- *
- *
- *
- * This module provides support for:
- * - fixed-size homogeneous transformations
- * - translation, scaling, 2D and 3D rotations
- * - quaternions
- * - \ref MatrixBase::cross() "cross product"
- * - \ref MatrixBase::unitOrthogonal() "orthognal vector generation"
- * - some linear components: parametrized-lines and hyperplanes
- *
- * \code
- * #include <Eigen/Geometry>
- * \endcode
- */
-
-#include "src/Geometry/OrthoMethods.h"
-#include "src/Geometry/EulerAngles.h"
-
-#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
- #include "src/Geometry/Homogeneous.h"
- #include "src/Geometry/RotationBase.h"
- #include "src/Geometry/Rotation2D.h"
- #include "src/Geometry/Quaternion.h"
- #include "src/Geometry/AngleAxis.h"
- #include "src/Geometry/Transform.h"
- #include "src/Geometry/Translation.h"
- #include "src/Geometry/Scaling.h"
- #include "src/Geometry/Hyperplane.h"
- #include "src/Geometry/ParametrizedLine.h"
- #include "src/Geometry/AlignedBox.h"
- #include "src/Geometry/Umeyama.h"
-
- #if defined EIGEN_VECTORIZE_SSE
- #include "src/Geometry/arch/Geometry_SSE.h"
- #endif
-#endif
-
-#ifdef EIGEN2_SUPPORT
-#include "src/Eigen2Support/Geometry/All.h"
-#endif
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_GEOMETRY_MODULE_H
-/* vim: set filetype=cpp et sw=2 ts=2 ai: */
-
diff --git a/src/Eigen/Householder b/src/Eigen/Householder
deleted file mode 100644
index 6e348db..0000000
--- a/src/Eigen/Householder
+++ /dev/null
@@ -1,23 +0,0 @@
-#ifndef EIGEN_HOUSEHOLDER_MODULE_H
-#define EIGEN_HOUSEHOLDER_MODULE_H
-
-#include "Core"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-/** \defgroup Householder_Module Householder module
- * This module provides Householder transformations.
- *
- * \code
- * #include <Eigen/Householder>
- * \endcode
- */
-
-#include "src/Householder/Householder.h"
-#include "src/Householder/HouseholderSequence.h"
-#include "src/Householder/BlockHouseholder.h"
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_HOUSEHOLDER_MODULE_H
-/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/src/Eigen/IterativeLinearSolvers b/src/Eigen/IterativeLinearSolvers
deleted file mode 100644
index 0f4159d..0000000
--- a/src/Eigen/IterativeLinearSolvers
+++ /dev/null
@@ -1,40 +0,0 @@
-#ifndef EIGEN_ITERATIVELINEARSOLVERS_MODULE_H
-#define EIGEN_ITERATIVELINEARSOLVERS_MODULE_H
-
-#include "SparseCore"
-#include "OrderingMethods"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-/**
- * \defgroup IterativeLinearSolvers_Module IterativeLinearSolvers module
- *
- * This module currently provides iterative methods to solve problems of the form \c A \c x = \c b, where \c A is a squared matrix, usually very large and sparse.
- * Those solvers are accessible via the following classes:
- * - ConjugateGradient for selfadjoint (hermitian) matrices,
- * - BiCGSTAB for general square matrices.
- *
- * These iterative solvers are associated with some preconditioners:
- * - IdentityPreconditioner - not really useful
- * - DiagonalPreconditioner - also called JAcobi preconditioner, work very well on diagonal dominant matrices.
- * - IncompleteILUT - incomplete LU factorization with dual thresholding
- *
- * Such problems can also be solved using the direct sparse decomposition modules: SparseCholesky, CholmodSupport, UmfPackSupport, SuperLUSupport.
- *
- * \code
- * #include <Eigen/IterativeLinearSolvers>
- * \endcode
- */
-
-#include "src/misc/Solve.h"
-#include "src/misc/SparseSolve.h"
-
-#include "src/IterativeLinearSolvers/IterativeSolverBase.h"
-#include "src/IterativeLinearSolvers/BasicPreconditioners.h"
-#include "src/IterativeLinearSolvers/ConjugateGradient.h"
-#include "src/IterativeLinearSolvers/BiCGSTAB.h"
-#include "src/IterativeLinearSolvers/IncompleteLUT.h"
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_ITERATIVELINEARSOLVERS_MODULE_H
diff --git a/src/Eigen/Jacobi b/src/Eigen/Jacobi
deleted file mode 100644
index ba8a4dc..0000000
--- a/src/Eigen/Jacobi
+++ /dev/null
@@ -1,26 +0,0 @@
-#ifndef EIGEN_JACOBI_MODULE_H
-#define EIGEN_JACOBI_MODULE_H
-
-#include "Core"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-/** \defgroup Jacobi_Module Jacobi module
- * This module provides Jacobi and Givens rotations.
- *
- * \code
- * #include <Eigen/Jacobi>
- * \endcode
- *
- * In addition to listed classes, it defines the two following MatrixBase methods to apply a Jacobi or Givens rotation:
- * - MatrixBase::applyOnTheLeft()
- * - MatrixBase::applyOnTheRight().
- */
-
-#include "src/Jacobi/Jacobi.h"
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_JACOBI_MODULE_H
-/* vim: set filetype=cpp et sw=2 ts=2 ai: */
-
diff --git a/src/Eigen/LU b/src/Eigen/LU
deleted file mode 100644
index db57955..0000000
--- a/src/Eigen/LU
+++ /dev/null
@@ -1,41 +0,0 @@
-#ifndef EIGEN_LU_MODULE_H
-#define EIGEN_LU_MODULE_H
-
-#include "Core"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-/** \defgroup LU_Module LU module
- * This module includes %LU decomposition and related notions such as matrix inversion and determinant.
- * This module defines the following MatrixBase methods:
- * - MatrixBase::inverse()
- * - MatrixBase::determinant()
- *
- * \code
- * #include <Eigen/LU>
- * \endcode
- */
-
-#include "src/misc/Solve.h"
-#include "src/misc/Kernel.h"
-#include "src/misc/Image.h"
-#include "src/LU/FullPivLU.h"
-#include "src/LU/PartialPivLU.h"
-#ifdef EIGEN_USE_LAPACKE
-#include "src/LU/PartialPivLU_MKL.h"
-#endif
-#include "src/LU/Determinant.h"
-#include "src/LU/Inverse.h"
-
-#if defined EIGEN_VECTORIZE_SSE
- #include "src/LU/arch/Inverse_SSE.h"
-#endif
-
-#ifdef EIGEN2_SUPPORT
- #include "src/Eigen2Support/LU.h"
-#endif
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_LU_MODULE_H
-/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/src/Eigen/LeastSquares b/src/Eigen/LeastSquares
deleted file mode 100644
index 35137c2..0000000
--- a/src/Eigen/LeastSquares
+++ /dev/null
@@ -1,32 +0,0 @@
-#ifndef EIGEN_REGRESSION_MODULE_H
-#define EIGEN_REGRESSION_MODULE_H
-
-#ifndef EIGEN2_SUPPORT
-#error LeastSquares is only available in Eigen2 support mode (define EIGEN2_SUPPORT)
-#endif
-
-// exclude from normal eigen3-only documentation
-#ifdef EIGEN2_SUPPORT
-
-#include "Core"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-#include "Eigenvalues"
-#include "Geometry"
-
-/** \defgroup LeastSquares_Module LeastSquares module
- * This module provides linear regression and related features.
- *
- * \code
- * #include <Eigen/LeastSquares>
- * \endcode
- */
-
-#include "src/Eigen2Support/LeastSquares.h"
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN2_SUPPORT
-
-#endif // EIGEN_REGRESSION_MODULE_H
diff --git a/src/Eigen/MetisSupport b/src/Eigen/MetisSupport
deleted file mode 100644
index 6a113f7..0000000
--- a/src/Eigen/MetisSupport
+++ /dev/null
@@ -1,28 +0,0 @@
-#ifndef EIGEN_METISSUPPORT_MODULE_H
-#define EIGEN_METISSUPPORT_MODULE_H
-
-#include "SparseCore"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-extern "C" {
-#include <metis.h>
-}
-
-
-/** \ingroup Support_modules
- * \defgroup MetisSupport_Module MetisSupport module
- *
- * \code
- * #include <Eigen/MetisSupport>
- * \endcode
- * This module defines an interface to the METIS reordering package (http://glaros.dtc.umn.edu/gkhome/views/metis).
- * It can be used just as any other built-in method as explained in \link OrderingMethods_Module here. \endlink
- */
-
-
-#include "src/MetisSupport/MetisSupport.h"
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_METISSUPPORT_MODULE_H
diff --git a/src/Eigen/OrderingMethods b/src/Eigen/OrderingMethods
deleted file mode 100644
index 7c0f1ff..0000000
--- a/src/Eigen/OrderingMethods
+++ /dev/null
@@ -1,66 +0,0 @@
-#ifndef EIGEN_ORDERINGMETHODS_MODULE_H
-#define EIGEN_ORDERINGMETHODS_MODULE_H
-
-#include "SparseCore"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-/**
- * \defgroup OrderingMethods_Module OrderingMethods module
- *
- * This module is currently for internal use only
- *
- * It defines various built-in and external ordering methods for sparse matrices.
- * They are typically used to reduce the number of elements during
- * the sparse matrix decomposition (LLT, LU, QR).
- * Precisely, in a preprocessing step, a permutation matrix P is computed using
- * those ordering methods and applied to the columns of the matrix.
- * Using for instance the sparse Cholesky decomposition, it is expected that
- * the nonzeros elements in LLT(A*P) will be much smaller than that in LLT(A).
- *
- *
- * Usage :
- * \code
- * #include <Eigen/OrderingMethods>
- * \endcode
- *
- * A simple usage is as a template parameter in the sparse decomposition classes :
- *
- * \code
- * SparseLU<MatrixType, COLAMDOrdering<int> > solver;
- * \endcode
- *
- * \code
- * SparseQR<MatrixType, COLAMDOrdering<int> > solver;
- * \endcode
- *
- * It is possible as well to call directly a particular ordering method for your own purpose,
- * \code
- * AMDOrdering<int> ordering;
- * PermutationMatrix<Dynamic, Dynamic, int> perm;
- * SparseMatrix<double> A;
- * //Fill the matrix ...
- *
- * ordering(A, perm); // Call AMD
- * \endcode
- *
- * \note Some of these methods (like AMD or METIS), need the sparsity pattern
- * of the input matrix to be symmetric. When the matrix is structurally unsymmetric,
- * Eigen computes internally the pattern of \f$A^T*A\f$ before calling the method.
- * If your matrix is already symmetric (at leat in structure), you can avoid that
- * by calling the method with a SelfAdjointView type.
- *
- * \code
- * // Call the ordering on the pattern of the lower triangular matrix A
- * ordering(A.selfadjointView<Lower>(), perm);
- * \endcode
- */
-
-#ifndef EIGEN_MPL2_ONLY
-#include "src/OrderingMethods/Amd.h"
-#endif
-
-#include "src/OrderingMethods/Ordering.h"
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_ORDERINGMETHODS_MODULE_H
diff --git a/src/Eigen/PaStiXSupport b/src/Eigen/PaStiXSupport
deleted file mode 100644
index 7c616ee..0000000
--- a/src/Eigen/PaStiXSupport
+++ /dev/null
@@ -1,46 +0,0 @@
-#ifndef EIGEN_PASTIXSUPPORT_MODULE_H
-#define EIGEN_PASTIXSUPPORT_MODULE_H
-
-#include "SparseCore"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-#include <complex.h>
-extern "C" {
-#include <pastix_nompi.h>
-#include <pastix.h>
-}
-
-#ifdef complex
-#undef complex
-#endif
-
-/** \ingroup Support_modules
- * \defgroup PaStiXSupport_Module PaStiXSupport module
- *
- * This module provides an interface to the <a href="http://pastix.gforge.inria.fr/">PaSTiX</a> library.
- * PaSTiX is a general \b supernodal, \b parallel and \b opensource sparse solver.
- * It provides the two following main factorization classes:
- * - class PastixLLT : a supernodal, parallel LLt Cholesky factorization.
- * - class PastixLDLT: a supernodal, parallel LDLt Cholesky factorization.
- * - class PastixLU : a supernodal, parallel LU factorization (optimized for a symmetric pattern).
- *
- * \code
- * #include <Eigen/PaStiXSupport>
- * \endcode
- *
- * In order to use this module, the PaSTiX headers must be accessible from the include paths, and your binary must be linked to the PaSTiX library and its dependencies.
- * The dependencies depend on how PaSTiX has been compiled.
- * For a cmake based project, you can use our FindPaSTiX.cmake module to help you in this task.
- *
- */
-
-#include "src/misc/Solve.h"
-#include "src/misc/SparseSolve.h"
-
-#include "src/PaStiXSupport/PaStiXSupport.h"
-
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_PASTIXSUPPORT_MODULE_H
diff --git a/src/Eigen/PardisoSupport b/src/Eigen/PardisoSupport
deleted file mode 100644
index 99330ce..0000000
--- a/src/Eigen/PardisoSupport
+++ /dev/null
@@ -1,30 +0,0 @@
-#ifndef EIGEN_PARDISOSUPPORT_MODULE_H
-#define EIGEN_PARDISOSUPPORT_MODULE_H
-
-#include "SparseCore"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-#include <mkl_pardiso.h>
-
-#include <unsupported/Eigen/SparseExtra>
-
-/** \ingroup Support_modules
- * \defgroup PardisoSupport_Module PardisoSupport module
- *
- * This module brings support for the Intel(R) MKL PARDISO direct sparse solvers.
- *
- * \code
- * #include <Eigen/PardisoSupport>
- * \endcode
- *
- * In order to use this module, the MKL headers must be accessible from the include paths, and your binary must be linked to the MKL library and its dependencies.
- * See this \ref TopicUsingIntelMKL "page" for more information on MKL-Eigen integration.
- *
- */
-
-#include "src/PardisoSupport/PardisoSupport.h"
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_PARDISOSUPPORT_MODULE_H
diff --git a/src/Eigen/QR b/src/Eigen/QR
deleted file mode 100644
index ac5b026..0000000
--- a/src/Eigen/QR
+++ /dev/null
@@ -1,45 +0,0 @@
-#ifndef EIGEN_QR_MODULE_H
-#define EIGEN_QR_MODULE_H
-
-#include "Core"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-#include "Cholesky"
-#include "Jacobi"
-#include "Householder"
-
-/** \defgroup QR_Module QR module
- *
- *
- *
- * This module provides various QR decompositions
- * This module also provides some MatrixBase methods, including:
- * - MatrixBase::qr(),
- *
- * \code
- * #include <Eigen/QR>
- * \endcode
- */
-
-#include "src/misc/Solve.h"
-#include "src/QR/HouseholderQR.h"
-#include "src/QR/FullPivHouseholderQR.h"
-#include "src/QR/ColPivHouseholderQR.h"
-#ifdef EIGEN_USE_LAPACKE
-#include "src/QR/HouseholderQR_MKL.h"
-#include "src/QR/ColPivHouseholderQR_MKL.h"
-#endif
-
-#ifdef EIGEN2_SUPPORT
-#include "src/Eigen2Support/QR.h"
-#endif
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#ifdef EIGEN2_SUPPORT
-#include "Eigenvalues"
-#endif
-
-#endif // EIGEN_QR_MODULE_H
-/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/src/Eigen/QtAlignedMalloc b/src/Eigen/QtAlignedMalloc
deleted file mode 100644
index 46f7d83..0000000
--- a/src/Eigen/QtAlignedMalloc
+++ /dev/null
@@ -1,34 +0,0 @@
-
-#ifndef EIGEN_QTMALLOC_MODULE_H
-#define EIGEN_QTMALLOC_MODULE_H
-
-#include "Core"
-
-#if (!EIGEN_MALLOC_ALREADY_ALIGNED)
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-void *qMalloc(size_t size)
-{
- return Eigen::internal::aligned_malloc(size);
-}
-
-void qFree(void *ptr)
-{
- Eigen::internal::aligned_free(ptr);
-}
-
-void *qRealloc(void *ptr, size_t size)
-{
- void* newPtr = Eigen::internal::aligned_malloc(size);
- memcpy(newPtr, ptr, size);
- Eigen::internal::aligned_free(ptr);
- return newPtr;
-}
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif
-
-#endif // EIGEN_QTMALLOC_MODULE_H
-/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/src/Eigen/SPQRSupport b/src/Eigen/SPQRSupport
deleted file mode 100644
index 7701644..0000000
--- a/src/Eigen/SPQRSupport
+++ /dev/null
@@ -1,29 +0,0 @@
-#ifndef EIGEN_SPQRSUPPORT_MODULE_H
-#define EIGEN_SPQRSUPPORT_MODULE_H
-
-#include "SparseCore"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-#include "SuiteSparseQR.hpp"
-
-/** \ingroup Support_modules
- * \defgroup SPQRSupport_Module SuiteSparseQR module
- *
- * This module provides an interface to the SPQR library, which is part of the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">suitesparse</a> package.
- *
- * \code
- * #include <Eigen/SPQRSupport>
- * \endcode
- *
- * In order to use this module, the SPQR headers must be accessible from the include paths, and your binary must be linked to the SPQR library and its dependencies (Cholmod, AMD, COLAMD,...).
- * For a cmake based project, you can use our FindSPQR.cmake and FindCholmod.Cmake modules
- *
- */
-
-#include "src/misc/Solve.h"
-#include "src/misc/SparseSolve.h"
-#include "src/CholmodSupport/CholmodSupport.h"
-#include "src/SPQRSupport/SuiteSparseQRSupport.h"
-
-#endif
diff --git a/src/Eigen/SVD b/src/Eigen/SVD
deleted file mode 100644
index fd31001..0000000
--- a/src/Eigen/SVD
+++ /dev/null
@@ -1,37 +0,0 @@
-#ifndef EIGEN_SVD_MODULE_H
-#define EIGEN_SVD_MODULE_H
-
-#include "QR"
-#include "Householder"
-#include "Jacobi"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-/** \defgroup SVD_Module SVD module
- *
- *
- *
- * This module provides SVD decomposition for matrices (both real and complex).
- * This decomposition is accessible via the following MatrixBase method:
- * - MatrixBase::jacobiSvd()
- *
- * \code
- * #include <Eigen/SVD>
- * \endcode
- */
-
-#include "src/misc/Solve.h"
-#include "src/SVD/JacobiSVD.h"
-#if defined(EIGEN_USE_LAPACKE) && !defined(EIGEN_USE_LAPACKE_STRICT)
-#include "src/SVD/JacobiSVD_MKL.h"
-#endif
-#include "src/SVD/UpperBidiagonalization.h"
-
-#ifdef EIGEN2_SUPPORT
-#include "src/Eigen2Support/SVD.h"
-#endif
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_SVD_MODULE_H
-/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/src/Eigen/Sparse b/src/Eigen/Sparse
deleted file mode 100644
index 7cc9c09..0000000
--- a/src/Eigen/Sparse
+++ /dev/null
@@ -1,27 +0,0 @@
-#ifndef EIGEN_SPARSE_MODULE_H
-#define EIGEN_SPARSE_MODULE_H
-
-/** \defgroup Sparse_Module Sparse meta-module
- *
- * Meta-module including all related modules:
- * - \ref SparseCore_Module
- * - \ref OrderingMethods_Module
- * - \ref SparseCholesky_Module
- * - \ref SparseLU_Module
- * - \ref SparseQR_Module
- * - \ref IterativeLinearSolvers_Module
- *
- * \code
- * #include <Eigen/Sparse>
- * \endcode
- */
-
-#include "SparseCore"
-#include "OrderingMethods"
-#include "SparseCholesky"
-#include "SparseLU"
-#include "SparseQR"
-#include "IterativeLinearSolvers"
-
-#endif // EIGEN_SPARSE_MODULE_H
-
diff --git a/src/Eigen/SparseCholesky b/src/Eigen/SparseCholesky
deleted file mode 100644
index 9f5056a..0000000
--- a/src/Eigen/SparseCholesky
+++ /dev/null
@@ -1,47 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2013 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSECHOLESKY_MODULE_H
-#define EIGEN_SPARSECHOLESKY_MODULE_H
-
-#include "SparseCore"
-#include "OrderingMethods"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-/**
- * \defgroup SparseCholesky_Module SparseCholesky module
- *
- * This module currently provides two variants of the direct sparse Cholesky decomposition for selfadjoint (hermitian) matrices.
- * Those decompositions are accessible via the following classes:
- * - SimplicialLLt,
- * - SimplicialLDLt
- *
- * Such problems can also be solved using the ConjugateGradient solver from the IterativeLinearSolvers module.
- *
- * \code
- * #include <Eigen/SparseCholesky>
- * \endcode
- */
-
-#ifdef EIGEN_MPL2_ONLY
-#error The SparseCholesky module has nothing to offer in MPL2 only mode
-#endif
-
-#include "src/misc/Solve.h"
-#include "src/misc/SparseSolve.h"
-#include "src/SparseCholesky/SimplicialCholesky.h"
-
-#ifndef EIGEN_MPL2_ONLY
-#include "src/SparseCholesky/SimplicialCholesky_impl.h"
-#endif
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_SPARSECHOLESKY_MODULE_H
diff --git a/src/Eigen/SparseCore b/src/Eigen/SparseCore
deleted file mode 100644
index 9b5be5e..0000000
--- a/src/Eigen/SparseCore
+++ /dev/null
@@ -1,64 +0,0 @@
-#ifndef EIGEN_SPARSECORE_MODULE_H
-#define EIGEN_SPARSECORE_MODULE_H
-
-#include "Core"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-#include <vector>
-#include <map>
-#include <cstdlib>
-#include <cstring>
-#include <algorithm>
-
-/**
- * \defgroup SparseCore_Module SparseCore module
- *
- * This module provides a sparse matrix representation, and basic associatd matrix manipulations
- * and operations.
- *
- * See the \ref TutorialSparse "Sparse tutorial"
- *
- * \code
- * #include <Eigen/SparseCore>
- * \endcode
- *
- * This module depends on: Core.
- */
-
-namespace Eigen {
-
-/** The type used to identify a general sparse storage. */
-struct Sparse {};
-
-}
-
-#include "src/SparseCore/SparseUtil.h"
-#include "src/SparseCore/SparseMatrixBase.h"
-#include "src/SparseCore/CompressedStorage.h"
-#include "src/SparseCore/AmbiVector.h"
-#include "src/SparseCore/SparseMatrix.h"
-#include "src/SparseCore/MappedSparseMatrix.h"
-#include "src/SparseCore/SparseVector.h"
-#include "src/SparseCore/SparseBlock.h"
-#include "src/SparseCore/SparseTranspose.h"
-#include "src/SparseCore/SparseCwiseUnaryOp.h"
-#include "src/SparseCore/SparseCwiseBinaryOp.h"
-#include "src/SparseCore/SparseDot.h"
-#include "src/SparseCore/SparsePermutation.h"
-#include "src/SparseCore/SparseRedux.h"
-#include "src/SparseCore/SparseFuzzy.h"
-#include "src/SparseCore/ConservativeSparseSparseProduct.h"
-#include "src/SparseCore/SparseSparseProductWithPruning.h"
-#include "src/SparseCore/SparseProduct.h"
-#include "src/SparseCore/SparseDenseProduct.h"
-#include "src/SparseCore/SparseDiagonalProduct.h"
-#include "src/SparseCore/SparseTriangularView.h"
-#include "src/SparseCore/SparseSelfAdjointView.h"
-#include "src/SparseCore/TriangularSolver.h"
-#include "src/SparseCore/SparseView.h"
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_SPARSECORE_MODULE_H
-
diff --git a/src/Eigen/SparseLU b/src/Eigen/SparseLU
deleted file mode 100644
index 8527a49..0000000
--- a/src/Eigen/SparseLU
+++ /dev/null
@@ -1,49 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSELU_MODULE_H
-#define EIGEN_SPARSELU_MODULE_H
-
-#include "SparseCore"
-
-/**
- * \defgroup SparseLU_Module SparseLU module
- * This module defines a supernodal factorization of general sparse matrices.
- * The code is fully optimized for supernode-panel updates with specialized kernels.
- * Please, see the documentation of the SparseLU class for more details.
- */
-
-#include "src/misc/Solve.h"
-#include "src/misc/SparseSolve.h"
-
-// Ordering interface
-#include "OrderingMethods"
-
-#include "src/SparseLU/SparseLU_gemm_kernel.h"
-
-#include "src/SparseLU/SparseLU_Structs.h"
-#include "src/SparseLU/SparseLU_SupernodalMatrix.h"
-#include "src/SparseLU/SparseLUImpl.h"
-#include "src/SparseCore/SparseColEtree.h"
-#include "src/SparseLU/SparseLU_Memory.h"
-#include "src/SparseLU/SparseLU_heap_relax_snode.h"
-#include "src/SparseLU/SparseLU_relax_snode.h"
-#include "src/SparseLU/SparseLU_pivotL.h"
-#include "src/SparseLU/SparseLU_panel_dfs.h"
-#include "src/SparseLU/SparseLU_kernel_bmod.h"
-#include "src/SparseLU/SparseLU_panel_bmod.h"
-#include "src/SparseLU/SparseLU_column_dfs.h"
-#include "src/SparseLU/SparseLU_column_bmod.h"
-#include "src/SparseLU/SparseLU_copy_to_ucol.h"
-#include "src/SparseLU/SparseLU_pruneL.h"
-#include "src/SparseLU/SparseLU_Utils.h"
-#include "src/SparseLU/SparseLU.h"
-
-#endif // EIGEN_SPARSELU_MODULE_H
diff --git a/src/Eigen/SparseQR b/src/Eigen/SparseQR
deleted file mode 100644
index 4ee4206..0000000
--- a/src/Eigen/SparseQR
+++ /dev/null
@@ -1,33 +0,0 @@
-#ifndef EIGEN_SPARSEQR_MODULE_H
-#define EIGEN_SPARSEQR_MODULE_H
-
-#include "SparseCore"
-#include "OrderingMethods"
-#include "src/Core/util/DisableStupidWarnings.h"
-
-/** \defgroup SparseQR_Module SparseQR module
- * \brief Provides QR decomposition for sparse matrices
- *
- * This module provides a simplicial version of the left-looking Sparse QR decomposition.
- * The columns of the input matrix should be reordered to limit the fill-in during the
- * decomposition. Built-in methods (COLAMD, AMD) or external methods (METIS) can be used to this end.
- * See the \link OrderingMethods_Module OrderingMethods\endlink module for the list
- * of built-in and external ordering methods.
- *
- * \code
- * #include <Eigen/SparseQR>
- * \endcode
- *
- *
- */
-
-#include "src/misc/Solve.h"
-#include "src/misc/SparseSolve.h"
-
-#include "OrderingMethods"
-#include "src/SparseCore/SparseColEtree.h"
-#include "src/SparseQR/SparseQR.h"
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif
diff --git a/src/Eigen/StdDeque b/src/Eigen/StdDeque
deleted file mode 100644
index f272347..0000000
--- a/src/Eigen/StdDeque
+++ /dev/null
@@ -1,27 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_STDDEQUE_MODULE_H
-#define EIGEN_STDDEQUE_MODULE_H
-
-#include "Core"
-#include <deque>
-
-#if (defined(_MSC_VER) && defined(_WIN64)) /* MSVC auto aligns in 64 bit builds */
-
-#define EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(...)
-
-#else
-
-#include "src/StlSupport/StdDeque.h"
-
-#endif
-
-#endif // EIGEN_STDDEQUE_MODULE_H
diff --git a/src/Eigen/StdList b/src/Eigen/StdList
deleted file mode 100644
index 225c1e1..0000000
--- a/src/Eigen/StdList
+++ /dev/null
@@ -1,26 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_STDLIST_MODULE_H
-#define EIGEN_STDLIST_MODULE_H
-
-#include "Core"
-#include <list>
-
-#if (defined(_MSC_VER) && defined(_WIN64)) /* MSVC auto aligns in 64 bit builds */
-
-#define EIGEN_DEFINE_STL_LIST_SPECIALIZATION(...)
-
-#else
-
-#include "src/StlSupport/StdList.h"
-
-#endif
-
-#endif // EIGEN_STDLIST_MODULE_H
diff --git a/src/Eigen/StdVector b/src/Eigen/StdVector
deleted file mode 100644
index 6b22627..0000000
--- a/src/Eigen/StdVector
+++ /dev/null
@@ -1,27 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_STDVECTOR_MODULE_H
-#define EIGEN_STDVECTOR_MODULE_H
-
-#include "Core"
-#include <vector>
-
-#if (defined(_MSC_VER) && defined(_WIN64)) /* MSVC auto aligns in 64 bit builds */
-
-#define EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(...)
-
-#else
-
-#include "src/StlSupport/StdVector.h"
-
-#endif
-
-#endif // EIGEN_STDVECTOR_MODULE_H
diff --git a/src/Eigen/SuperLUSupport b/src/Eigen/SuperLUSupport
deleted file mode 100644
index 575e14f..0000000
--- a/src/Eigen/SuperLUSupport
+++ /dev/null
@@ -1,59 +0,0 @@
-#ifndef EIGEN_SUPERLUSUPPORT_MODULE_H
-#define EIGEN_SUPERLUSUPPORT_MODULE_H
-
-#include "SparseCore"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-#ifdef EMPTY
-#define EIGEN_EMPTY_WAS_ALREADY_DEFINED
-#endif
-
-typedef int int_t;
-#include <slu_Cnames.h>
-#include <supermatrix.h>
-#include <slu_util.h>
-
-// slu_util.h defines a preprocessor token named EMPTY which is really polluting,
-// so we remove it in favor of a SUPERLU_EMPTY token.
-// If EMPTY was already defined then we don't undef it.
-
-#if defined(EIGEN_EMPTY_WAS_ALREADY_DEFINED)
-# undef EIGEN_EMPTY_WAS_ALREADY_DEFINED
-#elif defined(EMPTY)
-# undef EMPTY
-#endif
-
-#define SUPERLU_EMPTY (-1)
-
-namespace Eigen { struct SluMatrix; }
-
-/** \ingroup Support_modules
- * \defgroup SuperLUSupport_Module SuperLUSupport module
- *
- * This module provides an interface to the <a href="http://crd-legacy.lbl.gov/~xiaoye/SuperLU/">SuperLU</a> library.
- * It provides the following factorization class:
- * - class SuperLU: a supernodal sequential LU factorization.
- * - class SuperILU: a supernodal sequential incomplete LU factorization (to be used as a preconditioner for iterative methods).
- *
- * \warning When including this module, you have to use SUPERLU_EMPTY instead of EMPTY which is no longer defined because it is too polluting.
- *
- * \code
- * #include <Eigen/SuperLUSupport>
- * \endcode
- *
- * In order to use this module, the superlu headers must be accessible from the include paths, and your binary must be linked to the superlu library and its dependencies.
- * The dependencies depend on how superlu has been compiled.
- * For a cmake based project, you can use our FindSuperLU.cmake module to help you in this task.
- *
- */
-
-#include "src/misc/Solve.h"
-#include "src/misc/SparseSolve.h"
-
-#include "src/SuperLUSupport/SuperLUSupport.h"
-
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_SUPERLUSUPPORT_MODULE_H
diff --git a/src/Eigen/UmfPackSupport b/src/Eigen/UmfPackSupport
deleted file mode 100644
index 984f64a..0000000
--- a/src/Eigen/UmfPackSupport
+++ /dev/null
@@ -1,36 +0,0 @@
-#ifndef EIGEN_UMFPACKSUPPORT_MODULE_H
-#define EIGEN_UMFPACKSUPPORT_MODULE_H
-
-#include "SparseCore"
-
-#include "src/Core/util/DisableStupidWarnings.h"
-
-extern "C" {
-#include <umfpack.h>
-}
-
-/** \ingroup Support_modules
- * \defgroup UmfPackSupport_Module UmfPackSupport module
- *
- * This module provides an interface to the UmfPack library which is part of the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">suitesparse</a> package.
- * It provides the following factorization class:
- * - class UmfPackLU: a multifrontal sequential LU factorization.
- *
- * \code
- * #include <Eigen/UmfPackSupport>
- * \endcode
- *
- * In order to use this module, the umfpack headers must be accessible from the include paths, and your binary must be linked to the umfpack library and its dependencies.
- * The dependencies depend on how umfpack has been compiled.
- * For a cmake based project, you can use our FindUmfPack.cmake module to help you in this task.
- *
- */
-
-#include "src/misc/Solve.h"
-#include "src/misc/SparseSolve.h"
-
-#include "src/UmfPackSupport/UmfPackSupport.h"
-
-#include "src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_UMFPACKSUPPORT_MODULE_H
diff --git a/src/Eigen/src/CMakeLists.txt b/src/Eigen/src/CMakeLists.txt
deleted file mode 100644
index c326f37..0000000
--- a/src/Eigen/src/CMakeLists.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-file(GLOB Eigen_src_subdirectories "*")
-escape_string_as_regex(ESCAPED_CMAKE_CURRENT_SOURCE_DIR "${CMAKE_CURRENT_SOURCE_DIR}")
-foreach(f ${Eigen_src_subdirectories})
- if(NOT f MATCHES "\\.txt" AND NOT f MATCHES "${ESCAPED_CMAKE_CURRENT_SOURCE_DIR}/[.].+" )
- add_subdirectory(${f})
- endif()
-endforeach()
diff --git a/src/Eigen/src/Cholesky/CMakeLists.txt b/src/Eigen/src/Cholesky/CMakeLists.txt
deleted file mode 100644
index d01488b..0000000
--- a/src/Eigen/src/Cholesky/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_Cholesky_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Cholesky_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Cholesky COMPONENT Devel
- )
diff --git a/src/Eigen/src/Cholesky/LDLT.h b/src/Eigen/src/Cholesky/LDLT.h
deleted file mode 100644
index c52b7d1..0000000
--- a/src/Eigen/src/Cholesky/LDLT.h
+++ /dev/null
@@ -1,604 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com >
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_LDLT_H
-#define EIGEN_LDLT_H
-
-namespace Eigen {
-
-namespace internal {
- template<typename MatrixType, int UpLo> struct LDLT_Traits;
-
- // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef
- enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite };
-}
-
-/** \ingroup Cholesky_Module
- *
- * \class LDLT
- *
- * \brief Robust Cholesky decomposition of a matrix with pivoting
- *
- * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
- * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
- * The other triangular part won't be read.
- *
- * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
- * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L
- * is lower triangular with a unit diagonal and D is a diagonal matrix.
- *
- * The decomposition uses pivoting to ensure stability, so that L will have
- * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
- * on D also stabilizes the computation.
- *
- * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
- * decomposition to determine whether a system of equations has a solution.
- *
- * \sa MatrixBase::ldlt(), class LLT
- */
-template<typename _MatrixType, int _UpLo> class LDLT
-{
- public:
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here!
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- UpLo = _UpLo
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
- typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType;
-
- typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
- typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
-
- typedef internal::LDLT_Traits<MatrixType,UpLo> Traits;
-
- /** \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via LDLT::compute(const MatrixType&).
- */
- LDLT()
- : m_matrix(),
- m_transpositions(),
- m_sign(internal::ZeroSign),
- m_isInitialized(false)
- {}
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa LDLT()
- */
- LDLT(Index size)
- : m_matrix(size, size),
- m_transpositions(size),
- m_temporary(size),
- m_sign(internal::ZeroSign),
- m_isInitialized(false)
- {}
-
- /** \brief Constructor with decomposition
- *
- * This calculates the decomposition for the input \a matrix.
- * \sa LDLT(Index size)
- */
- LDLT(const MatrixType& matrix)
- : m_matrix(matrix.rows(), matrix.cols()),
- m_transpositions(matrix.rows()),
- m_temporary(matrix.rows()),
- m_sign(internal::ZeroSign),
- m_isInitialized(false)
- {
- compute(matrix);
- }
-
- /** Clear any existing decomposition
- * \sa rankUpdate(w,sigma)
- */
- void setZero()
- {
- m_isInitialized = false;
- }
-
- /** \returns a view of the upper triangular matrix U */
- inline typename Traits::MatrixU matrixU() const
- {
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- return Traits::getU(m_matrix);
- }
-
- /** \returns a view of the lower triangular matrix L */
- inline typename Traits::MatrixL matrixL() const
- {
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- return Traits::getL(m_matrix);
- }
-
- /** \returns the permutation matrix P as a transposition sequence.
- */
- inline const TranspositionType& transpositionsP() const
- {
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- return m_transpositions;
- }
-
- /** \returns the coefficients of the diagonal matrix D */
- inline Diagonal<const MatrixType> vectorD() const
- {
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- return m_matrix.diagonal();
- }
-
- /** \returns true if the matrix is positive (semidefinite) */
- inline bool isPositive() const
- {
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign;
- }
-
- #ifdef EIGEN2_SUPPORT
- inline bool isPositiveDefinite() const
- {
- return isPositive();
- }
- #endif
-
- /** \returns true if the matrix is negative (semidefinite) */
- inline bool isNegative(void) const
- {
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign;
- }
-
- /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> .
- *
- * \note_about_checking_solutions
- *
- * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$
- * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$,
- * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then
- * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the
- * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function
- * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular.
- *
- * \sa MatrixBase::ldlt()
- */
- template<typename Rhs>
- inline const internal::solve_retval<LDLT, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- eigen_assert(m_matrix.rows()==b.rows()
- && "LDLT::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<LDLT, Rhs>(*this, b.derived());
- }
-
- #ifdef EIGEN2_SUPPORT
- template<typename OtherDerived, typename ResultType>
- bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
- {
- *result = this->solve(b);
- return true;
- }
- #endif
-
- template<typename Derived>
- bool solveInPlace(MatrixBase<Derived> &bAndX) const;
-
- LDLT& compute(const MatrixType& matrix);
-
- template <typename Derived>
- LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1);
-
- /** \returns the internal LDLT decomposition matrix
- *
- * TODO: document the storage layout
- */
- inline const MatrixType& matrixLDLT() const
- {
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- return m_matrix;
- }
-
- MatrixType reconstructedMatrix() const;
-
- inline Index rows() const { return m_matrix.rows(); }
- inline Index cols() const { return m_matrix.cols(); }
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful,
- * \c NumericalIssue if the matrix.appears to be negative.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- return Success;
- }
-
- protected:
-
- /** \internal
- * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
- * The strict upper part is used during the decomposition, the strict lower
- * part correspond to the coefficients of L (its diagonal is equal to 1 and
- * is not stored), and the diagonal entries correspond to D.
- */
- MatrixType m_matrix;
- TranspositionType m_transpositions;
- TmpMatrixType m_temporary;
- internal::SignMatrix m_sign;
- bool m_isInitialized;
-};
-
-namespace internal {
-
-template<int UpLo> struct ldlt_inplace;
-
-template<> struct ldlt_inplace<Lower>
-{
- template<typename MatrixType, typename TranspositionType, typename Workspace>
- static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
- {
- using std::abs;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- eigen_assert(mat.rows()==mat.cols());
- const Index size = mat.rows();
-
- if (size <= 1)
- {
- transpositions.setIdentity();
- if (numext::real(mat.coeff(0,0)) > 0) sign = PositiveSemiDef;
- else if (numext::real(mat.coeff(0,0)) < 0) sign = NegativeSemiDef;
- else sign = ZeroSign;
- return true;
- }
-
- for (Index k = 0; k < size; ++k)
- {
- // Find largest diagonal element
- Index index_of_biggest_in_corner;
- mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
- index_of_biggest_in_corner += k;
-
- transpositions.coeffRef(k) = index_of_biggest_in_corner;
- if(k != index_of_biggest_in_corner)
- {
- // apply the transposition while taking care to consider only
- // the lower triangular part
- Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element
- mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
- mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
- std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
- for(int i=k+1;i<index_of_biggest_in_corner;++i)
- {
- Scalar tmp = mat.coeffRef(i,k);
- mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i));
- mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp);
- }
- if(NumTraits<Scalar>::IsComplex)
- mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k));
- }
-
- // partition the matrix:
- // A00 | - | -
- // lu = A10 | A11 | -
- // A20 | A21 | A22
- Index rs = size - k - 1;
- Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
- Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
- Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
-
- if(k>0)
- {
- temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
- mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
- if(rs>0)
- A21.noalias() -= A20 * temp.head(k);
- }
-
- // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
- // was smaller than the cutoff value. However, soince LDLT is not rank-revealing
- // we should only make sure we do not introduce INF or NaN values.
- // LAPACK also uses 0 as the cutoff value.
- RealScalar realAkk = numext::real(mat.coeffRef(k,k));
- if((rs>0) && (abs(realAkk) > RealScalar(0)))
- A21 /= realAkk;
-
- if (sign == PositiveSemiDef) {
- if (realAkk < 0) sign = Indefinite;
- } else if (sign == NegativeSemiDef) {
- if (realAkk > 0) sign = Indefinite;
- } else if (sign == ZeroSign) {
- if (realAkk > 0) sign = PositiveSemiDef;
- else if (realAkk < 0) sign = NegativeSemiDef;
- }
- }
-
- return true;
- }
-
- // Reference for the algorithm: Davis and Hager, "Multiple Rank
- // Modifications of a Sparse Cholesky Factorization" (Algorithm 1)
- // Trivial rearrangements of their computations (Timothy E. Holy)
- // allow their algorithm to work for rank-1 updates even if the
- // original matrix is not of full rank.
- // Here only rank-1 updates are implemented, to reduce the
- // requirement for intermediate storage and improve accuracy
- template<typename MatrixType, typename WDerived>
- static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1)
- {
- using numext::isfinite;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
-
- const Index size = mat.rows();
- eigen_assert(mat.cols() == size && w.size()==size);
-
- RealScalar alpha = 1;
-
- // Apply the update
- for (Index j = 0; j < size; j++)
- {
- // Check for termination due to an original decomposition of low-rank
- if (!(isfinite)(alpha))
- break;
-
- // Update the diagonal terms
- RealScalar dj = numext::real(mat.coeff(j,j));
- Scalar wj = w.coeff(j);
- RealScalar swj2 = sigma*numext::abs2(wj);
- RealScalar gamma = dj*alpha + swj2;
-
- mat.coeffRef(j,j) += swj2/alpha;
- alpha += swj2/dj;
-
-
- // Update the terms of L
- Index rs = size-j-1;
- w.tail(rs) -= wj * mat.col(j).tail(rs);
- if(gamma != 0)
- mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs);
- }
- return true;
- }
-
- template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
- static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1)
- {
- // Apply the permutation to the input w
- tmp = transpositions * w;
-
- return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma);
- }
-};
-
-template<> struct ldlt_inplace<Upper>
-{
- template<typename MatrixType, typename TranspositionType, typename Workspace>
- static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
- {
- Transpose<MatrixType> matt(mat);
- return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
- }
-
- template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
- static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1)
- {
- Transpose<MatrixType> matt(mat);
- return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma);
- }
-};
-
-template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
-{
- typedef const TriangularView<const MatrixType, UnitLower> MatrixL;
- typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
- static inline MatrixL getL(const MatrixType& m) { return m; }
- static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
-};
-
-template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
-{
- typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
- typedef const TriangularView<const MatrixType, UnitUpper> MatrixU;
- static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
- static inline MatrixU getU(const MatrixType& m) { return m; }
-};
-
-} // end namespace internal
-
-/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
- */
-template<typename MatrixType, int _UpLo>
-LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
-{
- eigen_assert(a.rows()==a.cols());
- const Index size = a.rows();
-
- m_matrix = a;
-
- m_transpositions.resize(size);
- m_isInitialized = false;
- m_temporary.resize(size);
-
- internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign);
-
- m_isInitialized = true;
- return *this;
-}
-
-/** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
- * \param w a vector to be incorporated into the decomposition.
- * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
- * \sa setZero()
- */
-template<typename MatrixType, int _UpLo>
-template<typename Derived>
-LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename NumTraits<typename MatrixType::Scalar>::Real& sigma)
-{
- const Index size = w.rows();
- if (m_isInitialized)
- {
- eigen_assert(m_matrix.rows()==size);
- }
- else
- {
- m_matrix.resize(size,size);
- m_matrix.setZero();
- m_transpositions.resize(size);
- for (Index i = 0; i < size; i++)
- m_transpositions.coeffRef(i) = i;
- m_temporary.resize(size);
- m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef;
- m_isInitialized = true;
- }
-
- internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma);
-
- return *this;
-}
-
-namespace internal {
-template<typename _MatrixType, int _UpLo, typename Rhs>
-struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
- : solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs>
-{
- typedef LDLT<_MatrixType,_UpLo> LDLTType;
- EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- eigen_assert(rhs().rows() == dec().matrixLDLT().rows());
- // dst = P b
- dst = dec().transpositionsP() * rhs();
-
- // dst = L^-1 (P b)
- dec().matrixL().solveInPlace(dst);
-
- // dst = D^-1 (L^-1 P b)
- // more precisely, use pseudo-inverse of D (see bug 241)
- using std::abs;
- using std::max;
- typedef typename LDLTType::MatrixType MatrixType;
- typedef typename LDLTType::Scalar Scalar;
- typedef typename LDLTType::RealScalar RealScalar;
- const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD());
- // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
- // as motivated by LAPACK's xGELSS:
- // RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
- // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
- // diagonal element is not well justified and to numerical issues in some cases.
- // Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
- RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
-
- for (Index i = 0; i < vectorD.size(); ++i) {
- if(abs(vectorD(i)) > tolerance)
- dst.row(i) /= vectorD(i);
- else
- dst.row(i).setZero();
- }
-
- // dst = L^-T (D^-1 L^-1 P b)
- dec().matrixU().solveInPlace(dst);
-
- // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
- dst = dec().transpositionsP().transpose() * dst;
- }
-};
-}
-
-/** \internal use x = ldlt_object.solve(x);
- *
- * This is the \em in-place version of solve().
- *
- * \param bAndX represents both the right-hand side matrix b and result x.
- *
- * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
- *
- * This version avoids a copy when the right hand side matrix b is not
- * needed anymore.
- *
- * \sa LDLT::solve(), MatrixBase::ldlt()
- */
-template<typename MatrixType,int _UpLo>
-template<typename Derived>
-bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
-{
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- eigen_assert(m_matrix.rows() == bAndX.rows());
-
- bAndX = this->solve(bAndX);
-
- return true;
-}
-
-/** \returns the matrix represented by the decomposition,
- * i.e., it returns the product: P^T L D L^* P.
- * This function is provided for debug purpose. */
-template<typename MatrixType, int _UpLo>
-MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
-{
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- const Index size = m_matrix.rows();
- MatrixType res(size,size);
-
- // P
- res.setIdentity();
- res = transpositionsP() * res;
- // L^* P
- res = matrixU() * res;
- // D(L^*P)
- res = vectorD().real().asDiagonal() * res;
- // L(DL^*P)
- res = matrixL() * res;
- // P^T (LDL^*P)
- res = transpositionsP().transpose() * res;
-
- return res;
-}
-
-/** \cholesky_module
- * \returns the Cholesky decomposition with full pivoting without square root of \c *this
- */
-template<typename MatrixType, unsigned int UpLo>
-inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
-SelfAdjointView<MatrixType, UpLo>::ldlt() const
-{
- return LDLT<PlainObject,UpLo>(m_matrix);
-}
-
-/** \cholesky_module
- * \returns the Cholesky decomposition with full pivoting without square root of \c *this
- */
-template<typename Derived>
-inline const LDLT<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::ldlt() const
-{
- return LDLT<PlainObject>(derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_LDLT_H
diff --git a/src/Eigen/src/Cholesky/LLT.h b/src/Eigen/src/Cholesky/LLT.h
deleted file mode 100644
index 2e6189f..0000000
--- a/src/Eigen/src/Cholesky/LLT.h
+++ /dev/null
@@ -1,490 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_LLT_H
-#define EIGEN_LLT_H
-
-namespace Eigen {
-
-namespace internal{
-template<typename MatrixType, int UpLo> struct LLT_Traits;
-}
-
-/** \ingroup Cholesky_Module
- *
- * \class LLT
- *
- * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
- *
- * \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
- * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
- * The other triangular part won't be read.
- *
- * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
- * matrix A such that A = LL^* = U^*U, where L is lower triangular.
- *
- * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b,
- * for that purpose, we recommend the Cholesky decomposition without square root which is more stable
- * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
- * situations like generalised eigen problems with hermitian matrices.
- *
- * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices,
- * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
- * has a solution.
- *
- * Example: \include LLT_example.cpp
- * Output: \verbinclude LLT_example.out
- *
- * \sa MatrixBase::llt(), class LDLT
- */
- /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
- * Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
- * the strict lower part does not have to store correct values.
- */
-template<typename _MatrixType, int _UpLo> class LLT
-{
- public:
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
-
- enum {
- PacketSize = internal::packet_traits<Scalar>::size,
- AlignmentMask = int(PacketSize)-1,
- UpLo = _UpLo
- };
-
- typedef internal::LLT_Traits<MatrixType,UpLo> Traits;
-
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via LLT::compute(const MatrixType&).
- */
- LLT() : m_matrix(), m_isInitialized(false) {}
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa LLT()
- */
- LLT(Index size) : m_matrix(size, size),
- m_isInitialized(false) {}
-
- LLT(const MatrixType& matrix)
- : m_matrix(matrix.rows(), matrix.cols()),
- m_isInitialized(false)
- {
- compute(matrix);
- }
-
- /** \returns a view of the upper triangular matrix U */
- inline typename Traits::MatrixU matrixU() const
- {
- eigen_assert(m_isInitialized && "LLT is not initialized.");
- return Traits::getU(m_matrix);
- }
-
- /** \returns a view of the lower triangular matrix L */
- inline typename Traits::MatrixL matrixL() const
- {
- eigen_assert(m_isInitialized && "LLT is not initialized.");
- return Traits::getL(m_matrix);
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * Since this LLT class assumes anyway that the matrix A is invertible, the solution
- * theoretically exists and is unique regardless of b.
- *
- * Example: \include LLT_solve.cpp
- * Output: \verbinclude LLT_solve.out
- *
- * \sa solveInPlace(), MatrixBase::llt()
- */
- template<typename Rhs>
- inline const internal::solve_retval<LLT, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "LLT is not initialized.");
- eigen_assert(m_matrix.rows()==b.rows()
- && "LLT::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<LLT, Rhs>(*this, b.derived());
- }
-
- #ifdef EIGEN2_SUPPORT
- template<typename OtherDerived, typename ResultType>
- bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
- {
- *result = this->solve(b);
- return true;
- }
-
- bool isPositiveDefinite() const { return true; }
- #endif
-
- template<typename Derived>
- void solveInPlace(MatrixBase<Derived> &bAndX) const;
-
- LLT& compute(const MatrixType& matrix);
-
- /** \returns the LLT decomposition matrix
- *
- * TODO: document the storage layout
- */
- inline const MatrixType& matrixLLT() const
- {
- eigen_assert(m_isInitialized && "LLT is not initialized.");
- return m_matrix;
- }
-
- MatrixType reconstructedMatrix() const;
-
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful,
- * \c NumericalIssue if the matrix.appears to be negative.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "LLT is not initialized.");
- return m_info;
- }
-
- inline Index rows() const { return m_matrix.rows(); }
- inline Index cols() const { return m_matrix.cols(); }
-
- template<typename VectorType>
- LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);
-
- protected:
- /** \internal
- * Used to compute and store L
- * The strict upper part is not used and even not initialized.
- */
- MatrixType m_matrix;
- bool m_isInitialized;
- ComputationInfo m_info;
-};
-
-namespace internal {
-
-template<typename Scalar, int UpLo> struct llt_inplace;
-
-template<typename MatrixType, typename VectorType>
-static typename MatrixType::Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma)
-{
- using std::sqrt;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::ColXpr ColXpr;
- typedef typename internal::remove_all<ColXpr>::type ColXprCleaned;
- typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
- typedef Matrix<Scalar,Dynamic,1> TempVectorType;
- typedef typename TempVectorType::SegmentReturnType TempVecSegment;
-
- Index n = mat.cols();
- eigen_assert(mat.rows()==n && vec.size()==n);
-
- TempVectorType temp;
-
- if(sigma>0)
- {
- // This version is based on Givens rotations.
- // It is faster than the other one below, but only works for updates,
- // i.e., for sigma > 0
- temp = sqrt(sigma) * vec;
-
- for(Index i=0; i<n; ++i)
- {
- JacobiRotation<Scalar> g;
- g.makeGivens(mat(i,i), -temp(i), &mat(i,i));
-
- Index rs = n-i-1;
- if(rs>0)
- {
- ColXprSegment x(mat.col(i).tail(rs));
- TempVecSegment y(temp.tail(rs));
- apply_rotation_in_the_plane(x, y, g);
- }
- }
- }
- else
- {
- temp = vec;
- RealScalar beta = 1;
- for(Index j=0; j<n; ++j)
- {
- RealScalar Ljj = numext::real(mat.coeff(j,j));
- RealScalar dj = numext::abs2(Ljj);
- Scalar wj = temp.coeff(j);
- RealScalar swj2 = sigma*numext::abs2(wj);
- RealScalar gamma = dj*beta + swj2;
-
- RealScalar x = dj + swj2/beta;
- if (x<=RealScalar(0))
- return j;
- RealScalar nLjj = sqrt(x);
- mat.coeffRef(j,j) = nLjj;
- beta += swj2/dj;
-
- // Update the terms of L
- Index rs = n-j-1;
- if(rs)
- {
- temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
- if(gamma != 0)
- mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs);
- }
- }
- }
- return -1;
-}
-
-template<typename Scalar> struct llt_inplace<Scalar, Lower>
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- template<typename MatrixType>
- static typename MatrixType::Index unblocked(MatrixType& mat)
- {
- using std::sqrt;
- typedef typename MatrixType::Index Index;
-
- eigen_assert(mat.rows()==mat.cols());
- const Index size = mat.rows();
- for(Index k = 0; k < size; ++k)
- {
- Index rs = size-k-1; // remaining size
-
- Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
- Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
- Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
-
- RealScalar x = numext::real(mat.coeff(k,k));
- if (k>0) x -= A10.squaredNorm();
- if (x<=RealScalar(0))
- return k;
- mat.coeffRef(k,k) = x = sqrt(x);
- if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
- if (rs>0) A21 *= RealScalar(1)/x;
- }
- return -1;
- }
-
- template<typename MatrixType>
- static typename MatrixType::Index blocked(MatrixType& m)
- {
- typedef typename MatrixType::Index Index;
- eigen_assert(m.rows()==m.cols());
- Index size = m.rows();
- if(size<32)
- return unblocked(m);
-
- Index blockSize = size/8;
- blockSize = (blockSize/16)*16;
- blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128));
-
- for (Index k=0; k<size; k+=blockSize)
- {
- // partition the matrix:
- // A00 | - | -
- // lu = A10 | A11 | -
- // A20 | A21 | A22
- Index bs = (std::min)(blockSize, size-k);
- Index rs = size - k - bs;
- Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs);
- Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs);
- Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);
-
- Index ret;
- if((ret=unblocked(A11))>=0) return k+ret;
- if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
- if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1); // bottleneck
- }
- return -1;
- }
-
- template<typename MatrixType, typename VectorType>
- static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
- {
- return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
- }
-};
-
-template<typename Scalar> struct llt_inplace<Scalar, Upper>
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- template<typename MatrixType>
- static EIGEN_STRONG_INLINE typename MatrixType::Index unblocked(MatrixType& mat)
- {
- Transpose<MatrixType> matt(mat);
- return llt_inplace<Scalar, Lower>::unblocked(matt);
- }
- template<typename MatrixType>
- static EIGEN_STRONG_INLINE typename MatrixType::Index blocked(MatrixType& mat)
- {
- Transpose<MatrixType> matt(mat);
- return llt_inplace<Scalar, Lower>::blocked(matt);
- }
- template<typename MatrixType, typename VectorType>
- static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
- {
- Transpose<MatrixType> matt(mat);
- return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma);
- }
-};
-
-template<typename MatrixType> struct LLT_Traits<MatrixType,Lower>
-{
- typedef const TriangularView<const MatrixType, Lower> MatrixL;
- typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU;
- static inline MatrixL getL(const MatrixType& m) { return m; }
- static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
- static bool inplace_decomposition(MatrixType& m)
- { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; }
-};
-
-template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
-{
- typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL;
- typedef const TriangularView<const MatrixType, Upper> MatrixU;
- static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
- static inline MatrixU getU(const MatrixType& m) { return m; }
- static bool inplace_decomposition(MatrixType& m)
- { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; }
-};
-
-} // end namespace internal
-
-/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
- *
- * \returns a reference to *this
- *
- * Example: \include TutorialLinAlgComputeTwice.cpp
- * Output: \verbinclude TutorialLinAlgComputeTwice.out
- */
-template<typename MatrixType, int _UpLo>
-LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a)
-{
- eigen_assert(a.rows()==a.cols());
- const Index size = a.rows();
- m_matrix.resize(size, size);
- m_matrix = a;
-
- m_isInitialized = true;
- bool ok = Traits::inplace_decomposition(m_matrix);
- m_info = ok ? Success : NumericalIssue;
-
- return *this;
-}
-
-/** Performs a rank one update (or dowdate) of the current decomposition.
- * If A = LL^* before the rank one update,
- * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector
- * of same dimension.
- */
-template<typename _MatrixType, int _UpLo>
-template<typename VectorType>
-LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType);
- eigen_assert(v.size()==m_matrix.cols());
- eigen_assert(m_isInitialized);
- if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0)
- m_info = NumericalIssue;
- else
- m_info = Success;
-
- return *this;
-}
-
-namespace internal {
-template<typename _MatrixType, int UpLo, typename Rhs>
-struct solve_retval<LLT<_MatrixType, UpLo>, Rhs>
- : solve_retval_base<LLT<_MatrixType, UpLo>, Rhs>
-{
- typedef LLT<_MatrixType,UpLo> LLTType;
- EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dst = rhs();
- dec().solveInPlace(dst);
- }
-};
-}
-
-/** \internal use x = llt_object.solve(x);
- *
- * This is the \em in-place version of solve().
- *
- * \param bAndX represents both the right-hand side matrix b and result x.
- *
- * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
- *
- * This version avoids a copy when the right hand side matrix b is not
- * needed anymore.
- *
- * \sa LLT::solve(), MatrixBase::llt()
- */
-template<typename MatrixType, int _UpLo>
-template<typename Derived>
-void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
-{
- eigen_assert(m_isInitialized && "LLT is not initialized.");
- eigen_assert(m_matrix.rows()==bAndX.rows());
- matrixL().solveInPlace(bAndX);
- matrixU().solveInPlace(bAndX);
-}
-
-/** \returns the matrix represented by the decomposition,
- * i.e., it returns the product: L L^*.
- * This function is provided for debug purpose. */
-template<typename MatrixType, int _UpLo>
-MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const
-{
- eigen_assert(m_isInitialized && "LLT is not initialized.");
- return matrixL() * matrixL().adjoint().toDenseMatrix();
-}
-
-/** \cholesky_module
- * \returns the LLT decomposition of \c *this
- */
-template<typename Derived>
-inline const LLT<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::llt() const
-{
- return LLT<PlainObject>(derived());
-}
-
-/** \cholesky_module
- * \returns the LLT decomposition of \c *this
- */
-template<typename MatrixType, unsigned int UpLo>
-inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
-SelfAdjointView<MatrixType, UpLo>::llt() const
-{
- return LLT<PlainObject,UpLo>(m_matrix);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_LLT_H
diff --git a/src/Eigen/src/Cholesky/LLT_MKL.h b/src/Eigen/src/Cholesky/LLT_MKL.h
deleted file mode 100644
index 64daa44..0000000
--- a/src/Eigen/src/Cholesky/LLT_MKL.h
+++ /dev/null
@@ -1,102 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * LLt decomposition based on LAPACKE_?potrf function.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_LLT_MKL_H
-#define EIGEN_LLT_MKL_H
-
-#include "Eigen/src/Core/util/MKL_support.h"
-#include <iostream>
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename Scalar> struct mkl_llt;
-
-#define EIGEN_MKL_LLT(EIGTYPE, MKLTYPE, MKLPREFIX) \
-template<> struct mkl_llt<EIGTYPE> \
-{ \
- template<typename MatrixType> \
- static inline typename MatrixType::Index potrf(MatrixType& m, char uplo) \
- { \
- lapack_int matrix_order; \
- lapack_int size, lda, info, StorageOrder; \
- EIGTYPE* a; \
- eigen_assert(m.rows()==m.cols()); \
- /* Set up parameters for ?potrf */ \
- size = m.rows(); \
- StorageOrder = MatrixType::Flags&RowMajorBit?RowMajor:ColMajor; \
- matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \
- a = &(m.coeffRef(0,0)); \
- lda = m.outerStride(); \
-\
- info = LAPACKE_##MKLPREFIX##potrf( matrix_order, uplo, size, (MKLTYPE*)a, lda ); \
- info = (info==0) ? Success : NumericalIssue; \
- return info; \
- } \
-}; \
-template<> struct llt_inplace<EIGTYPE, Lower> \
-{ \
- template<typename MatrixType> \
- static typename MatrixType::Index blocked(MatrixType& m) \
- { \
- return mkl_llt<EIGTYPE>::potrf(m, 'L'); \
- } \
- template<typename MatrixType, typename VectorType> \
- static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \
- { return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); } \
-}; \
-template<> struct llt_inplace<EIGTYPE, Upper> \
-{ \
- template<typename MatrixType> \
- static typename MatrixType::Index blocked(MatrixType& m) \
- { \
- return mkl_llt<EIGTYPE>::potrf(m, 'U'); \
- } \
- template<typename MatrixType, typename VectorType> \
- static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \
- { \
- Transpose<MatrixType> matt(mat); \
- return llt_inplace<EIGTYPE, Lower>::rankUpdate(matt, vec.conjugate(), sigma); \
- } \
-};
-
-EIGEN_MKL_LLT(double, double, d)
-EIGEN_MKL_LLT(float, float, s)
-EIGEN_MKL_LLT(dcomplex, MKL_Complex16, z)
-EIGEN_MKL_LLT(scomplex, MKL_Complex8, c)
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_LLT_MKL_H
diff --git a/src/Eigen/src/CholmodSupport/CMakeLists.txt b/src/Eigen/src/CholmodSupport/CMakeLists.txt
deleted file mode 100644
index 814dfa6..0000000
--- a/src/Eigen/src/CholmodSupport/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_CholmodSupport_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_CholmodSupport_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/CholmodSupport COMPONENT Devel
- )
diff --git a/src/Eigen/src/CholmodSupport/CholmodSupport.h b/src/Eigen/src/CholmodSupport/CholmodSupport.h
deleted file mode 100644
index c449960..0000000
--- a/src/Eigen/src/CholmodSupport/CholmodSupport.h
+++ /dev/null
@@ -1,607 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CHOLMODSUPPORT_H
-#define EIGEN_CHOLMODSUPPORT_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename Scalar, typename CholmodType>
-void cholmod_configure_matrix(CholmodType& mat)
-{
- if (internal::is_same<Scalar,float>::value)
- {
- mat.xtype = CHOLMOD_REAL;
- mat.dtype = CHOLMOD_SINGLE;
- }
- else if (internal::is_same<Scalar,double>::value)
- {
- mat.xtype = CHOLMOD_REAL;
- mat.dtype = CHOLMOD_DOUBLE;
- }
- else if (internal::is_same<Scalar,std::complex<float> >::value)
- {
- mat.xtype = CHOLMOD_COMPLEX;
- mat.dtype = CHOLMOD_SINGLE;
- }
- else if (internal::is_same<Scalar,std::complex<double> >::value)
- {
- mat.xtype = CHOLMOD_COMPLEX;
- mat.dtype = CHOLMOD_DOUBLE;
- }
- else
- {
- eigen_assert(false && "Scalar type not supported by CHOLMOD");
- }
-}
-
-} // namespace internal
-
-/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
- * Note that the data are shared.
- */
-template<typename _Scalar, int _Options, typename _Index>
-cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat)
-{
- cholmod_sparse res;
- res.nzmax = mat.nonZeros();
- res.nrow = mat.rows();;
- res.ncol = mat.cols();
- res.p = mat.outerIndexPtr();
- res.i = mat.innerIndexPtr();
- res.x = mat.valuePtr();
- res.z = 0;
- res.sorted = 1;
- if(mat.isCompressed())
- {
- res.packed = 1;
- res.nz = 0;
- }
- else
- {
- res.packed = 0;
- res.nz = mat.innerNonZeroPtr();
- }
-
- res.dtype = 0;
- res.stype = -1;
-
- if (internal::is_same<_Index,int>::value)
- {
- res.itype = CHOLMOD_INT;
- }
- else if (internal::is_same<_Index,UF_long>::value)
- {
- res.itype = CHOLMOD_LONG;
- }
- else
- {
- eigen_assert(false && "Index type not supported yet");
- }
-
- // setup res.xtype
- internal::cholmod_configure_matrix<_Scalar>(res);
-
- res.stype = 0;
-
- return res;
-}
-
-template<typename _Scalar, int _Options, typename _Index>
-const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat)
-{
- cholmod_sparse res = viewAsCholmod(mat.const_cast_derived());
- return res;
-}
-
-/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
- * The data are not copied but shared. */
-template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
-cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
-{
- cholmod_sparse res = viewAsCholmod(mat.matrix().const_cast_derived());
-
- if(UpLo==Upper) res.stype = 1;
- if(UpLo==Lower) res.stype = -1;
-
- return res;
-}
-
-/** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix.
- * The data are not copied but shared. */
-template<typename Derived>
-cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat)
-{
- EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
- typedef typename Derived::Scalar Scalar;
-
- cholmod_dense res;
- res.nrow = mat.rows();
- res.ncol = mat.cols();
- res.nzmax = res.nrow * res.ncol;
- res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride();
- res.x = (void*)(mat.derived().data());
- res.z = 0;
-
- internal::cholmod_configure_matrix<Scalar>(res);
-
- return res;
-}
-
-/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix.
- * The data are not copied but shared. */
-template<typename Scalar, int Flags, typename Index>
-MappedSparseMatrix<Scalar,Flags,Index> viewAsEigen(cholmod_sparse& cm)
-{
- return MappedSparseMatrix<Scalar,Flags,Index>
- (cm.nrow, cm.ncol, static_cast<Index*>(cm.p)[cm.ncol],
- static_cast<Index*>(cm.p), static_cast<Index*>(cm.i),static_cast<Scalar*>(cm.x) );
-}
-
-enum CholmodMode {
- CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt
-};
-
-
-/** \ingroup CholmodSupport_Module
- * \class CholmodBase
- * \brief The base class for the direct Cholesky factorization of Cholmod
- * \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT
- */
-template<typename _MatrixType, int _UpLo, typename Derived>
-class CholmodBase : internal::noncopyable
-{
- public:
- typedef _MatrixType MatrixType;
- enum { UpLo = _UpLo };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef MatrixType CholMatrixType;
- typedef typename MatrixType::Index Index;
-
- public:
-
- CholmodBase()
- : m_cholmodFactor(0), m_info(Success), m_isInitialized(false)
- {
- m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0);
- cholmod_start(&m_cholmod);
- }
-
- CholmodBase(const MatrixType& matrix)
- : m_cholmodFactor(0), m_info(Success), m_isInitialized(false)
- {
- m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0);
- cholmod_start(&m_cholmod);
- compute(matrix);
- }
-
- ~CholmodBase()
- {
- if(m_cholmodFactor)
- cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
- cholmod_finish(&m_cholmod);
- }
-
- inline Index cols() const { return m_cholmodFactor->n; }
- inline Index rows() const { return m_cholmodFactor->n; }
-
- Derived& derived() { return *static_cast<Derived*>(this); }
- const Derived& derived() const { return *static_cast<const Derived*>(this); }
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful,
- * \c NumericalIssue if the matrix.appears to be negative.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return m_info;
- }
-
- /** Computes the sparse Cholesky decomposition of \a matrix */
- Derived& compute(const MatrixType& matrix)
- {
- analyzePattern(matrix);
- factorize(matrix);
- return derived();
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::solve_retval<CholmodBase, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "LLT is not initialized.");
- eigen_assert(rows()==b.rows()
- && "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<CholmodBase, Rhs>(*this, b.derived());
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::sparse_solve_retval<CholmodBase, Rhs>
- solve(const SparseMatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "LLT is not initialized.");
- eigen_assert(rows()==b.rows()
- && "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b");
- return internal::sparse_solve_retval<CholmodBase, Rhs>(*this, b.derived());
- }
-
- /** Performs a symbolic decomposition on the sparsity pattern of \a matrix.
- *
- * This function is particularly useful when solving for several problems having the same structure.
- *
- * \sa factorize()
- */
- void analyzePattern(const MatrixType& matrix)
- {
- if(m_cholmodFactor)
- {
- cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
- m_cholmodFactor = 0;
- }
- cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
- m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
-
- this->m_isInitialized = true;
- this->m_info = Success;
- m_analysisIsOk = true;
- m_factorizationIsOk = false;
- }
-
- /** Performs a numeric decomposition of \a matrix
- *
- * The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed.
- *
- * \sa analyzePattern()
- */
- void factorize(const MatrixType& matrix)
- {
- eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
- cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
- cholmod_factorize_p(&A, m_shiftOffset, 0, 0, m_cholmodFactor, &m_cholmod);
-
- // If the factorization failed, minor is the column at which it did. On success minor == n.
- this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue);
- m_factorizationIsOk = true;
- }
-
- /** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations.
- * See the Cholmod user guide for details. */
- cholmod_common& cholmod() { return m_cholmod; }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
- {
- eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
- const Index size = m_cholmodFactor->n;
- EIGEN_UNUSED_VARIABLE(size);
- eigen_assert(size==b.rows());
-
- // note: cd stands for Cholmod Dense
- Rhs& b_ref(b.const_cast_derived());
- cholmod_dense b_cd = viewAsCholmod(b_ref);
- cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod);
- if(!x_cd)
- {
- this->m_info = NumericalIssue;
- }
- // TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
- dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols());
- cholmod_free_dense(&x_cd, &m_cholmod);
- }
-
- /** \internal */
- template<typename RhsScalar, int RhsOptions, typename RhsIndex, typename DestScalar, int DestOptions, typename DestIndex>
- void _solve(const SparseMatrix<RhsScalar,RhsOptions,RhsIndex> &b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
- {
- eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
- const Index size = m_cholmodFactor->n;
- EIGEN_UNUSED_VARIABLE(size);
- eigen_assert(size==b.rows());
-
- // note: cs stands for Cholmod Sparse
- cholmod_sparse b_cs = viewAsCholmod(b);
- cholmod_sparse* x_cs = cholmod_spsolve(CHOLMOD_A, m_cholmodFactor, &b_cs, &m_cholmod);
- if(!x_cs)
- {
- this->m_info = NumericalIssue;
- }
- // TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
- dest = viewAsEigen<DestScalar,DestOptions,DestIndex>(*x_cs);
- cholmod_free_sparse(&x_cs, &m_cholmod);
- }
- #endif // EIGEN_PARSED_BY_DOXYGEN
-
-
- /** Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization.
- *
- * During the numerical factorization, an offset term is added to the diagonal coefficients:\n
- * \c d_ii = \a offset + \c d_ii
- *
- * The default is \a offset=0.
- *
- * \returns a reference to \c *this.
- */
- Derived& setShift(const RealScalar& offset)
- {
- m_shiftOffset[0] = offset;
- return derived();
- }
-
- template<typename Stream>
- void dumpMemory(Stream& /*s*/)
- {}
-
- protected:
- mutable cholmod_common m_cholmod;
- cholmod_factor* m_cholmodFactor;
- RealScalar m_shiftOffset[2];
- mutable ComputationInfo m_info;
- bool m_isInitialized;
- int m_factorizationIsOk;
- int m_analysisIsOk;
-};
-
-/** \ingroup CholmodSupport_Module
- * \class CholmodSimplicialLLT
- * \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod
- *
- * This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization
- * using the Cholmod library.
- * This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Therefore, it has little practical interest.
- * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
- * X and B can be either dense or sparse.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
- * or Upper. Default is Lower.
- *
- * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
- *
- * \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLLT
- */
-template<typename _MatrixType, int _UpLo = Lower>
-class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> >
-{
- typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base;
- using Base::m_cholmod;
-
- public:
-
- typedef _MatrixType MatrixType;
-
- CholmodSimplicialLLT() : Base() { init(); }
-
- CholmodSimplicialLLT(const MatrixType& matrix) : Base()
- {
- init();
- compute(matrix);
- }
-
- ~CholmodSimplicialLLT() {}
- protected:
- void init()
- {
- m_cholmod.final_asis = 0;
- m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
- m_cholmod.final_ll = 1;
- }
-};
-
-
-/** \ingroup CholmodSupport_Module
- * \class CholmodSimplicialLDLT
- * \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod
- *
- * This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization
- * using the Cholmod library.
- * This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Therefore, it has little practical interest.
- * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
- * X and B can be either dense or sparse.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
- * or Upper. Default is Lower.
- *
- * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
- *
- * \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLDLT
- */
-template<typename _MatrixType, int _UpLo = Lower>
-class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> >
-{
- typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base;
- using Base::m_cholmod;
-
- public:
-
- typedef _MatrixType MatrixType;
-
- CholmodSimplicialLDLT() : Base() { init(); }
-
- CholmodSimplicialLDLT(const MatrixType& matrix) : Base()
- {
- init();
- compute(matrix);
- }
-
- ~CholmodSimplicialLDLT() {}
- protected:
- void init()
- {
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
- }
-};
-
-/** \ingroup CholmodSupport_Module
- * \class CholmodSupernodalLLT
- * \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod
- *
- * This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization
- * using the Cholmod library.
- * This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM.
- * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
- * X and B can be either dense or sparse.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
- * or Upper. Default is Lower.
- *
- * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
- *
- * \sa \ref TutorialSparseDirectSolvers
- */
-template<typename _MatrixType, int _UpLo = Lower>
-class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> >
-{
- typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base;
- using Base::m_cholmod;
-
- public:
-
- typedef _MatrixType MatrixType;
-
- CholmodSupernodalLLT() : Base() { init(); }
-
- CholmodSupernodalLLT(const MatrixType& matrix) : Base()
- {
- init();
- compute(matrix);
- }
-
- ~CholmodSupernodalLLT() {}
- protected:
- void init()
- {
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
- }
-};
-
-/** \ingroup CholmodSupport_Module
- * \class CholmodDecomposition
- * \brief A general Cholesky factorization and solver based on Cholmod
- *
- * This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
- * using the Cholmod library. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
- * X and B can be either dense or sparse.
- *
- * This variant permits to change the underlying Cholesky method at runtime.
- * On the other hand, it does not provide access to the result of the factorization.
- * The default is to let Cholmod automatically choose between a simplicial and supernodal factorization.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
- * or Upper. Default is Lower.
- *
- * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
- *
- * \sa \ref TutorialSparseDirectSolvers
- */
-template<typename _MatrixType, int _UpLo = Lower>
-class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> >
-{
- typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base;
- using Base::m_cholmod;
-
- public:
-
- typedef _MatrixType MatrixType;
-
- CholmodDecomposition() : Base() { init(); }
-
- CholmodDecomposition(const MatrixType& matrix) : Base()
- {
- init();
- compute(matrix);
- }
-
- ~CholmodDecomposition() {}
-
- void setMode(CholmodMode mode)
- {
- switch(mode)
- {
- case CholmodAuto:
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_AUTO;
- break;
- case CholmodSimplicialLLt:
- m_cholmod.final_asis = 0;
- m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
- m_cholmod.final_ll = 1;
- break;
- case CholmodSupernodalLLt:
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
- break;
- case CholmodLDLt:
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
- break;
- default:
- break;
- }
- }
- protected:
- void init()
- {
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_AUTO;
- }
-};
-
-namespace internal {
-
-template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs>
-struct solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
- : solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
-{
- typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs>
-struct sparse_solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
- : sparse_solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
-{
- typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_CHOLMODSUPPORT_H
diff --git a/src/Eigen/src/Core/Array.h b/src/Eigen/src/Core/Array.h
deleted file mode 100644
index 0ab03ef..0000000
--- a/src/Eigen/src/Core/Array.h
+++ /dev/null
@@ -1,308 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ARRAY_H
-#define EIGEN_ARRAY_H
-
-namespace Eigen {
-
-/** \class Array
- * \ingroup Core_Module
- *
- * \brief General-purpose arrays with easy API for coefficient-wise operations
- *
- * The %Array class is very similar to the Matrix class. It provides
- * general-purpose one- and two-dimensional arrays. The difference between the
- * %Array and the %Matrix class is primarily in the API: the API for the
- * %Array class provides easy access to coefficient-wise operations, while the
- * API for the %Matrix class provides easy access to linear-algebra
- * operations.
- *
- * This class can be extended with the help of the plugin mechanism described on the page
- * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAY_PLUGIN.
- *
- * \sa \ref TutorialArrayClass, \ref TopicClassHierarchy
- */
-namespace internal {
-template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
-struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
-{
- typedef ArrayXpr XprKind;
- typedef ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > XprBase;
-};
-}
-
-template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
-class Array
- : public PlainObjectBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
-{
- public:
-
- typedef PlainObjectBase<Array> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(Array)
-
- enum { Options = _Options };
- typedef typename Base::PlainObject PlainObject;
-
- protected:
- template <typename Derived, typename OtherDerived, bool IsVector>
- friend struct internal::conservative_resize_like_impl;
-
- using Base::m_storage;
-
- public:
-
- using Base::base;
- using Base::coeff;
- using Base::coeffRef;
-
- /**
- * The usage of
- * using Base::operator=;
- * fails on MSVC. Since the code below is working with GCC and MSVC, we skipped
- * the usage of 'using'. This should be done only for operator=.
- */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE Array& operator=(const EigenBase<OtherDerived> &other)
- {
- return Base::operator=(other);
- }
-
- /** Copies the value of the expression \a other into \c *this with automatic resizing.
- *
- * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
- * it will be initialized.
- *
- * Note that copying a row-vector into a vector (and conversely) is allowed.
- * The resizing, if any, is then done in the appropriate way so that row-vectors
- * remain row-vectors and vectors remain vectors.
- */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE Array& operator=(const ArrayBase<OtherDerived>& other)
- {
- return Base::_set(other);
- }
-
- /** This is a special case of the templated operator=. Its purpose is to
- * prevent a default operator= from hiding the templated operator=.
- */
- EIGEN_STRONG_INLINE Array& operator=(const Array& other)
- {
- return Base::_set(other);
- }
-
- /** Default constructor.
- *
- * For fixed-size matrices, does nothing.
- *
- * For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix
- * is called a null matrix. This constructor is the unique way to create null matrices: resizing
- * a matrix to 0 is not supported.
- *
- * \sa resize(Index,Index)
- */
- EIGEN_STRONG_INLINE Array() : Base()
- {
- Base::_check_template_params();
- EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
- }
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- // FIXME is it still needed ??
- /** \internal */
- Array(internal::constructor_without_unaligned_array_assert)
- : Base(internal::constructor_without_unaligned_array_assert())
- {
- Base::_check_template_params();
- EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
- }
-#endif
-
- /** Constructs a vector or row-vector with given dimension. \only_for_vectors
- *
- * Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
- * it is redundant to pass the dimension here, so it makes more sense to use the default
- * constructor Matrix() instead.
- */
- EIGEN_STRONG_INLINE explicit Array(Index dim)
- : Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
- {
- Base::_check_template_params();
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Array)
- eigen_assert(dim >= 0);
- eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
- EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename T0, typename T1>
- EIGEN_STRONG_INLINE Array(const T0& val0, const T1& val1)
- {
- Base::_check_template_params();
- this->template _init2<T0,T1>(val0, val1);
- }
- #else
- /** constructs an uninitialized matrix with \a rows rows and \a cols columns.
- *
- * This is useful for dynamic-size matrices. For fixed-size matrices,
- * it is redundant to pass these parameters, so one should use the default constructor
- * Matrix() instead. */
- Array(Index rows, Index cols);
- /** constructs an initialized 2D vector with given coefficients */
- Array(const Scalar& val0, const Scalar& val1);
- #endif
-
- /** constructs an initialized 3D vector with given coefficients */
- EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2)
- {
- Base::_check_template_params();
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 3)
- m_storage.data()[0] = val0;
- m_storage.data()[1] = val1;
- m_storage.data()[2] = val2;
- }
- /** constructs an initialized 4D vector with given coefficients */
- EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2, const Scalar& val3)
- {
- Base::_check_template_params();
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 4)
- m_storage.data()[0] = val0;
- m_storage.data()[1] = val1;
- m_storage.data()[2] = val2;
- m_storage.data()[3] = val3;
- }
-
- explicit Array(const Scalar *data);
-
- /** Constructor copying the value of the expression \a other */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE Array(const ArrayBase<OtherDerived>& other)
- : Base(other.rows() * other.cols(), other.rows(), other.cols())
- {
- Base::_check_template_params();
- Base::_set_noalias(other);
- }
- /** Copy constructor */
- EIGEN_STRONG_INLINE Array(const Array& other)
- : Base(other.rows() * other.cols(), other.rows(), other.cols())
- {
- Base::_check_template_params();
- Base::_set_noalias(other);
- }
- /** Copy constructor with in-place evaluation */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE Array(const ReturnByValue<OtherDerived>& other)
- {
- Base::_check_template_params();
- Base::resize(other.rows(), other.cols());
- other.evalTo(*this);
- }
-
- /** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE Array(const EigenBase<OtherDerived> &other)
- : Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
- {
- Base::_check_template_params();
- Base::_resize_to_match(other);
- *this = other;
- }
-
- /** Override MatrixBase::swap() since for dynamic-sized matrices of same type it is enough to swap the
- * data pointers.
- */
- template<typename OtherDerived>
- void swap(ArrayBase<OtherDerived> const & other)
- { this->_swap(other.derived()); }
-
- inline Index innerStride() const { return 1; }
- inline Index outerStride() const { return this->innerSize(); }
-
- #ifdef EIGEN_ARRAY_PLUGIN
- #include EIGEN_ARRAY_PLUGIN
- #endif
-
- private:
-
- template<typename MatrixType, typename OtherDerived, bool SwapPointers>
- friend struct internal::matrix_swap_impl;
-};
-
-/** \defgroup arraytypedefs Global array typedefs
- * \ingroup Core_Module
- *
- * Eigen defines several typedef shortcuts for most common 1D and 2D array types.
- *
- * The general patterns are the following:
- *
- * \c ArrayRowsColsType where \c Rows and \c Cols can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
- * and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
- * for complex double.
- *
- * For example, \c Array33d is a fixed-size 3x3 array type of doubles, and \c ArrayXXf is a dynamic-size matrix of floats.
- *
- * There are also \c ArraySizeType which are self-explanatory. For example, \c Array4cf is
- * a fixed-size 1D array of 4 complex floats.
- *
- * \sa class Array
- */
-
-#define EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
-/** \ingroup arraytypedefs */ \
-typedef Array<Type, Size, Size> Array##SizeSuffix##SizeSuffix##TypeSuffix; \
-/** \ingroup arraytypedefs */ \
-typedef Array<Type, Size, 1> Array##SizeSuffix##TypeSuffix;
-
-#define EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \
-/** \ingroup arraytypedefs */ \
-typedef Array<Type, Size, Dynamic> Array##Size##X##TypeSuffix; \
-/** \ingroup arraytypedefs */ \
-typedef Array<Type, Dynamic, Size> Array##X##Size##TypeSuffix;
-
-#define EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
-EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 2, 2) \
-EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 3, 3) \
-EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 4, 4) \
-EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \
-EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \
-EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \
-EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 4)
-
-EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(int, i)
-EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(float, f)
-EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(double, d)
-EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<float>, cf)
-EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
-
-#undef EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES
-#undef EIGEN_MAKE_ARRAY_TYPEDEFS
-
-#undef EIGEN_MAKE_ARRAY_TYPEDEFS_LARGE
-
-#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
-using Eigen::Matrix##SizeSuffix##TypeSuffix; \
-using Eigen::Vector##SizeSuffix##TypeSuffix; \
-using Eigen::RowVector##SizeSuffix##TypeSuffix;
-
-#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(TypeSuffix) \
-EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
-EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
-EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
-EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
-
-#define EIGEN_USING_ARRAY_TYPEDEFS \
-EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(i) \
-EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(f) \
-EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(d) \
-EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cf) \
-EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cd)
-
-} // end namespace Eigen
-
-#endif // EIGEN_ARRAY_H
diff --git a/src/Eigen/src/Core/ArrayBase.h b/src/Eigen/src/Core/ArrayBase.h
deleted file mode 100644
index 3885260..0000000
--- a/src/Eigen/src/Core/ArrayBase.h
+++ /dev/null
@@ -1,228 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ARRAYBASE_H
-#define EIGEN_ARRAYBASE_H
-
-namespace Eigen {
-
-template<typename ExpressionType> class MatrixWrapper;
-
-/** \class ArrayBase
- * \ingroup Core_Module
- *
- * \brief Base class for all 1D and 2D array, and related expressions
- *
- * An array is similar to a dense vector or matrix. While matrices are mathematical
- * objects with well defined linear algebra operators, an array is just a collection
- * of scalar values arranged in a one or two dimensionnal fashion. As the main consequence,
- * all operations applied to an array are performed coefficient wise. Furthermore,
- * arrays support scalar math functions of the c++ standard library (e.g., std::sin(x)), and convenient
- * constructors allowing to easily write generic code working for both scalar values
- * and arrays.
- *
- * This class is the base that is inherited by all array expression types.
- *
- * \tparam Derived is the derived type, e.g., an array or an expression type.
- *
- * This class can be extended with the help of the plugin mechanism described on the page
- * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAYBASE_PLUGIN.
- *
- * \sa class MatrixBase, \ref TopicClassHierarchy
- */
-template<typename Derived> class ArrayBase
- : public DenseBase<Derived>
-{
- public:
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- /** The base class for a given storage type. */
- typedef ArrayBase StorageBaseType;
-
- typedef ArrayBase Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl;
-
- using internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
- typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>::operator*;
-
- typedef typename internal::traits<Derived>::StorageKind StorageKind;
- typedef typename internal::traits<Derived>::Index Index;
- typedef typename internal::traits<Derived>::Scalar Scalar;
- typedef typename internal::packet_traits<Scalar>::type PacketScalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- typedef DenseBase<Derived> Base;
- using Base::RowsAtCompileTime;
- using Base::ColsAtCompileTime;
- using Base::SizeAtCompileTime;
- using Base::MaxRowsAtCompileTime;
- using Base::MaxColsAtCompileTime;
- using Base::MaxSizeAtCompileTime;
- using Base::IsVectorAtCompileTime;
- using Base::Flags;
- using Base::CoeffReadCost;
-
- using Base::derived;
- using Base::const_cast_derived;
- using Base::rows;
- using Base::cols;
- using Base::size;
- using Base::coeff;
- using Base::coeffRef;
- using Base::lazyAssign;
- using Base::operator=;
- using Base::operator+=;
- using Base::operator-=;
- using Base::operator*=;
- using Base::operator/=;
-
- typedef typename Base::CoeffReturnType CoeffReturnType;
-
-#endif // not EIGEN_PARSED_BY_DOXYGEN
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- /** \internal the plain matrix type corresponding to this expression. Note that is not necessarily
- * exactly the return type of eval(): in the case of plain matrices, the return type of eval() is a const
- * reference to a matrix, not a matrix! It is however guaranteed that the return type of eval() is either
- * PlainObject or const PlainObject&.
- */
- typedef Array<typename internal::traits<Derived>::Scalar,
- internal::traits<Derived>::RowsAtCompileTime,
- internal::traits<Derived>::ColsAtCompileTime,
- AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor),
- internal::traits<Derived>::MaxRowsAtCompileTime,
- internal::traits<Derived>::MaxColsAtCompileTime
- > PlainObject;
-
-
- /** \internal Represents a matrix with all coefficients equal to one another*/
- typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType;
-#endif // not EIGEN_PARSED_BY_DOXYGEN
-
-#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::ArrayBase
-# include "../plugins/CommonCwiseUnaryOps.h"
-# include "../plugins/MatrixCwiseUnaryOps.h"
-# include "../plugins/ArrayCwiseUnaryOps.h"
-# include "../plugins/CommonCwiseBinaryOps.h"
-# include "../plugins/MatrixCwiseBinaryOps.h"
-# include "../plugins/ArrayCwiseBinaryOps.h"
-# ifdef EIGEN_ARRAYBASE_PLUGIN
-# include EIGEN_ARRAYBASE_PLUGIN
-# endif
-#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
-
- /** Special case of the template operator=, in order to prevent the compiler
- * from generating a default operator= (issue hit with g++ 4.1)
- */
- Derived& operator=(const ArrayBase& other)
- {
- return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
- }
-
- Derived& operator+=(const Scalar& scalar)
- { return *this = derived() + scalar; }
- Derived& operator-=(const Scalar& scalar)
- { return *this = derived() - scalar; }
-
- template<typename OtherDerived>
- Derived& operator+=(const ArrayBase<OtherDerived>& other);
- template<typename OtherDerived>
- Derived& operator-=(const ArrayBase<OtherDerived>& other);
-
- template<typename OtherDerived>
- Derived& operator*=(const ArrayBase<OtherDerived>& other);
-
- template<typename OtherDerived>
- Derived& operator/=(const ArrayBase<OtherDerived>& other);
-
- public:
- ArrayBase<Derived>& array() { return *this; }
- const ArrayBase<Derived>& array() const { return *this; }
-
- /** \returns an \link Eigen::MatrixBase Matrix \endlink expression of this array
- * \sa MatrixBase::array() */
- MatrixWrapper<Derived> matrix() { return derived(); }
- const MatrixWrapper<const Derived> matrix() const { return derived(); }
-
-// template<typename Dest>
-// inline void evalTo(Dest& dst) const { dst = matrix(); }
-
- protected:
- ArrayBase() : Base() {}
-
- private:
- explicit ArrayBase(Index);
- ArrayBase(Index,Index);
- template<typename OtherDerived> explicit ArrayBase(const ArrayBase<OtherDerived>&);
- protected:
- // mixing arrays and matrices is not legal
- template<typename OtherDerived> Derived& operator+=(const MatrixBase<OtherDerived>& )
- {EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
- // mixing arrays and matrices is not legal
- template<typename OtherDerived> Derived& operator-=(const MatrixBase<OtherDerived>& )
- {EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
-};
-
-/** replaces \c *this by \c *this - \a other.
- *
- * \returns a reference to \c *this
- */
-template<typename Derived>
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE Derived &
-ArrayBase<Derived>::operator-=(const ArrayBase<OtherDerived> &other)
-{
- SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, Derived, OtherDerived> tmp(derived());
- tmp = other.derived();
- return derived();
-}
-
-/** replaces \c *this by \c *this + \a other.
- *
- * \returns a reference to \c *this
- */
-template<typename Derived>
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE Derived &
-ArrayBase<Derived>::operator+=(const ArrayBase<OtherDerived>& other)
-{
- SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, Derived, OtherDerived> tmp(derived());
- tmp = other.derived();
- return derived();
-}
-
-/** replaces \c *this by \c *this * \a other coefficient wise.
- *
- * \returns a reference to \c *this
- */
-template<typename Derived>
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE Derived &
-ArrayBase<Derived>::operator*=(const ArrayBase<OtherDerived>& other)
-{
- SelfCwiseBinaryOp<internal::scalar_product_op<Scalar>, Derived, OtherDerived> tmp(derived());
- tmp = other.derived();
- return derived();
-}
-
-/** replaces \c *this by \c *this / \a other coefficient wise.
- *
- * \returns a reference to \c *this
- */
-template<typename Derived>
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE Derived &
-ArrayBase<Derived>::operator/=(const ArrayBase<OtherDerived>& other)
-{
- SelfCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, Derived, OtherDerived> tmp(derived());
- tmp = other.derived();
- return derived();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_ARRAYBASE_H
diff --git a/src/Eigen/src/Core/ArrayWrapper.h b/src/Eigen/src/Core/ArrayWrapper.h
deleted file mode 100644
index a791bc3..0000000
--- a/src/Eigen/src/Core/ArrayWrapper.h
+++ /dev/null
@@ -1,254 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ARRAYWRAPPER_H
-#define EIGEN_ARRAYWRAPPER_H
-
-namespace Eigen {
-
-/** \class ArrayWrapper
- * \ingroup Core_Module
- *
- * \brief Expression of a mathematical vector or matrix as an array object
- *
- * This class is the return type of MatrixBase::array(), and most of the time
- * this is the only way it is use.
- *
- * \sa MatrixBase::array(), class MatrixWrapper
- */
-
-namespace internal {
-template<typename ExpressionType>
-struct traits<ArrayWrapper<ExpressionType> >
- : public traits<typename remove_all<typename ExpressionType::Nested>::type >
-{
- typedef ArrayXpr XprKind;
-};
-}
-
-template<typename ExpressionType>
-class ArrayWrapper : public ArrayBase<ArrayWrapper<ExpressionType> >
-{
- public:
- typedef ArrayBase<ArrayWrapper> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(ArrayWrapper)
- EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ArrayWrapper)
-
- typedef typename internal::conditional<
- internal::is_lvalue<ExpressionType>::value,
- Scalar,
- const Scalar
- >::type ScalarWithConstIfNotLvalue;
-
- typedef typename internal::nested<ExpressionType>::type NestedExpressionType;
-
- inline ArrayWrapper(ExpressionType& matrix) : m_expression(matrix) {}
-
- inline Index rows() const { return m_expression.rows(); }
- inline Index cols() const { return m_expression.cols(); }
- inline Index outerStride() const { return m_expression.outerStride(); }
- inline Index innerStride() const { return m_expression.innerStride(); }
-
- inline ScalarWithConstIfNotLvalue* data() { return m_expression.const_cast_derived().data(); }
- inline const Scalar* data() const { return m_expression.data(); }
-
- inline CoeffReturnType coeff(Index rowId, Index colId) const
- {
- return m_expression.coeff(rowId, colId);
- }
-
- inline Scalar& coeffRef(Index rowId, Index colId)
- {
- return m_expression.const_cast_derived().coeffRef(rowId, colId);
- }
-
- inline const Scalar& coeffRef(Index rowId, Index colId) const
- {
- return m_expression.const_cast_derived().coeffRef(rowId, colId);
- }
-
- inline CoeffReturnType coeff(Index index) const
- {
- return m_expression.coeff(index);
- }
-
- inline Scalar& coeffRef(Index index)
- {
- return m_expression.const_cast_derived().coeffRef(index);
- }
-
- inline const Scalar& coeffRef(Index index) const
- {
- return m_expression.const_cast_derived().coeffRef(index);
- }
-
- template<int LoadMode>
- inline const PacketScalar packet(Index rowId, Index colId) const
- {
- return m_expression.template packet<LoadMode>(rowId, colId);
- }
-
- template<int LoadMode>
- inline void writePacket(Index rowId, Index colId, const PacketScalar& val)
- {
- m_expression.const_cast_derived().template writePacket<LoadMode>(rowId, colId, val);
- }
-
- template<int LoadMode>
- inline const PacketScalar packet(Index index) const
- {
- return m_expression.template packet<LoadMode>(index);
- }
-
- template<int LoadMode>
- inline void writePacket(Index index, const PacketScalar& val)
- {
- m_expression.const_cast_derived().template writePacket<LoadMode>(index, val);
- }
-
- template<typename Dest>
- inline void evalTo(Dest& dst) const { dst = m_expression; }
-
- const typename internal::remove_all<NestedExpressionType>::type&
- nestedExpression() const
- {
- return m_expression;
- }
-
- /** Forwards the resizing request to the nested expression
- * \sa DenseBase::resize(Index) */
- void resize(Index newSize) { m_expression.const_cast_derived().resize(newSize); }
- /** Forwards the resizing request to the nested expression
- * \sa DenseBase::resize(Index,Index)*/
- void resize(Index nbRows, Index nbCols) { m_expression.const_cast_derived().resize(nbRows,nbCols); }
-
- protected:
- NestedExpressionType m_expression;
-};
-
-/** \class MatrixWrapper
- * \ingroup Core_Module
- *
- * \brief Expression of an array as a mathematical vector or matrix
- *
- * This class is the return type of ArrayBase::matrix(), and most of the time
- * this is the only way it is use.
- *
- * \sa MatrixBase::matrix(), class ArrayWrapper
- */
-
-namespace internal {
-template<typename ExpressionType>
-struct traits<MatrixWrapper<ExpressionType> >
- : public traits<typename remove_all<typename ExpressionType::Nested>::type >
-{
- typedef MatrixXpr XprKind;
-};
-}
-
-template<typename ExpressionType>
-class MatrixWrapper : public MatrixBase<MatrixWrapper<ExpressionType> >
-{
- public:
- typedef MatrixBase<MatrixWrapper<ExpressionType> > Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(MatrixWrapper)
- EIGEN_INHERIT_ASSIGNMENT_OPERATORS(MatrixWrapper)
-
- typedef typename internal::conditional<
- internal::is_lvalue<ExpressionType>::value,
- Scalar,
- const Scalar
- >::type ScalarWithConstIfNotLvalue;
-
- typedef typename internal::nested<ExpressionType>::type NestedExpressionType;
-
- inline MatrixWrapper(ExpressionType& a_matrix) : m_expression(a_matrix) {}
-
- inline Index rows() const { return m_expression.rows(); }
- inline Index cols() const { return m_expression.cols(); }
- inline Index outerStride() const { return m_expression.outerStride(); }
- inline Index innerStride() const { return m_expression.innerStride(); }
-
- inline ScalarWithConstIfNotLvalue* data() { return m_expression.const_cast_derived().data(); }
- inline const Scalar* data() const { return m_expression.data(); }
-
- inline CoeffReturnType coeff(Index rowId, Index colId) const
- {
- return m_expression.coeff(rowId, colId);
- }
-
- inline Scalar& coeffRef(Index rowId, Index colId)
- {
- return m_expression.const_cast_derived().coeffRef(rowId, colId);
- }
-
- inline const Scalar& coeffRef(Index rowId, Index colId) const
- {
- return m_expression.derived().coeffRef(rowId, colId);
- }
-
- inline CoeffReturnType coeff(Index index) const
- {
- return m_expression.coeff(index);
- }
-
- inline Scalar& coeffRef(Index index)
- {
- return m_expression.const_cast_derived().coeffRef(index);
- }
-
- inline const Scalar& coeffRef(Index index) const
- {
- return m_expression.const_cast_derived().coeffRef(index);
- }
-
- template<int LoadMode>
- inline const PacketScalar packet(Index rowId, Index colId) const
- {
- return m_expression.template packet<LoadMode>(rowId, colId);
- }
-
- template<int LoadMode>
- inline void writePacket(Index rowId, Index colId, const PacketScalar& val)
- {
- m_expression.const_cast_derived().template writePacket<LoadMode>(rowId, colId, val);
- }
-
- template<int LoadMode>
- inline const PacketScalar packet(Index index) const
- {
- return m_expression.template packet<LoadMode>(index);
- }
-
- template<int LoadMode>
- inline void writePacket(Index index, const PacketScalar& val)
- {
- m_expression.const_cast_derived().template writePacket<LoadMode>(index, val);
- }
-
- const typename internal::remove_all<NestedExpressionType>::type&
- nestedExpression() const
- {
- return m_expression;
- }
-
- /** Forwards the resizing request to the nested expression
- * \sa DenseBase::resize(Index) */
- void resize(Index newSize) { m_expression.const_cast_derived().resize(newSize); }
- /** Forwards the resizing request to the nested expression
- * \sa DenseBase::resize(Index,Index)*/
- void resize(Index nbRows, Index nbCols) { m_expression.const_cast_derived().resize(nbRows,nbCols); }
-
- protected:
- NestedExpressionType m_expression;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_ARRAYWRAPPER_H
diff --git a/src/Eigen/src/Core/Assign.h b/src/Eigen/src/Core/Assign.h
deleted file mode 100644
index 1dccc2f..0000000
--- a/src/Eigen/src/Core/Assign.h
+++ /dev/null
@@ -1,583 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2007 Michael Olbrich <michael.olbrich@gmx.net>
-// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ASSIGN_H
-#define EIGEN_ASSIGN_H
-
-namespace Eigen {
-
-namespace internal {
-
-/***************************************************************************
-* Part 1 : the logic deciding a strategy for traversal and unrolling *
-***************************************************************************/
-
-template <typename Derived, typename OtherDerived>
-struct assign_traits
-{
-public:
- enum {
- DstIsAligned = Derived::Flags & AlignedBit,
- DstHasDirectAccess = Derived::Flags & DirectAccessBit,
- SrcIsAligned = OtherDerived::Flags & AlignedBit,
- JointAlignment = bool(DstIsAligned) && bool(SrcIsAligned) ? Aligned : Unaligned
- };
-
-private:
- enum {
- InnerSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::SizeAtCompileTime)
- : int(Derived::Flags)&RowMajorBit ? int(Derived::ColsAtCompileTime)
- : int(Derived::RowsAtCompileTime),
- InnerMaxSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::MaxSizeAtCompileTime)
- : int(Derived::Flags)&RowMajorBit ? int(Derived::MaxColsAtCompileTime)
- : int(Derived::MaxRowsAtCompileTime),
- MaxSizeAtCompileTime = Derived::SizeAtCompileTime,
- PacketSize = packet_traits<typename Derived::Scalar>::size
- };
-
- enum {
- StorageOrdersAgree = (int(Derived::IsRowMajor) == int(OtherDerived::IsRowMajor)),
- MightVectorize = StorageOrdersAgree
- && (int(Derived::Flags) & int(OtherDerived::Flags) & ActualPacketAccessBit),
- MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0
- && int(DstIsAligned) && int(SrcIsAligned),
- MayLinearize = StorageOrdersAgree && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit),
- MayLinearVectorize = MightVectorize && MayLinearize && DstHasDirectAccess
- && (DstIsAligned || MaxSizeAtCompileTime == Dynamic),
- /* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
- so it's only good for large enough sizes. */
- MaySliceVectorize = MightVectorize && DstHasDirectAccess
- && (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=3*PacketSize)
- /* slice vectorization can be slow, so we only want it if the slices are big, which is
- indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block
- in a fixed-size matrix */
- };
-
-public:
- enum {
- Traversal = int(MayInnerVectorize) ? int(InnerVectorizedTraversal)
- : int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
- : int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
- : int(MayLinearize) ? int(LinearTraversal)
- : int(DefaultTraversal),
- Vectorized = int(Traversal) == InnerVectorizedTraversal
- || int(Traversal) == LinearVectorizedTraversal
- || int(Traversal) == SliceVectorizedTraversal
- };
-
-private:
- enum {
- UnrollingLimit = EIGEN_UNROLLING_LIMIT * (Vectorized ? int(PacketSize) : 1),
- MayUnrollCompletely = int(Derived::SizeAtCompileTime) != Dynamic
- && int(OtherDerived::CoeffReadCost) != Dynamic
- && int(Derived::SizeAtCompileTime) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit),
- MayUnrollInner = int(InnerSize) != Dynamic
- && int(OtherDerived::CoeffReadCost) != Dynamic
- && int(InnerSize) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit)
- };
-
-public:
- enum {
- Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal))
- ? (
- int(MayUnrollCompletely) ? int(CompleteUnrolling)
- : int(MayUnrollInner) ? int(InnerUnrolling)
- : int(NoUnrolling)
- )
- : int(Traversal) == int(LinearVectorizedTraversal)
- ? ( bool(MayUnrollCompletely) && bool(DstIsAligned) ? int(CompleteUnrolling) : int(NoUnrolling) )
- : int(Traversal) == int(LinearTraversal)
- ? ( bool(MayUnrollCompletely) ? int(CompleteUnrolling) : int(NoUnrolling) )
- : int(NoUnrolling)
- };
-
-#ifdef EIGEN_DEBUG_ASSIGN
- static void debug()
- {
- EIGEN_DEBUG_VAR(DstIsAligned)
- EIGEN_DEBUG_VAR(SrcIsAligned)
- EIGEN_DEBUG_VAR(JointAlignment)
- EIGEN_DEBUG_VAR(InnerSize)
- EIGEN_DEBUG_VAR(InnerMaxSize)
- EIGEN_DEBUG_VAR(PacketSize)
- EIGEN_DEBUG_VAR(StorageOrdersAgree)
- EIGEN_DEBUG_VAR(MightVectorize)
- EIGEN_DEBUG_VAR(MayLinearize)
- EIGEN_DEBUG_VAR(MayInnerVectorize)
- EIGEN_DEBUG_VAR(MayLinearVectorize)
- EIGEN_DEBUG_VAR(MaySliceVectorize)
- EIGEN_DEBUG_VAR(Traversal)
- EIGEN_DEBUG_VAR(UnrollingLimit)
- EIGEN_DEBUG_VAR(MayUnrollCompletely)
- EIGEN_DEBUG_VAR(MayUnrollInner)
- EIGEN_DEBUG_VAR(Unrolling)
- }
-#endif
-};
-
-/***************************************************************************
-* Part 2 : meta-unrollers
-***************************************************************************/
-
-/************************
-*** Default traversal ***
-************************/
-
-template<typename Derived1, typename Derived2, int Index, int Stop>
-struct assign_DefaultTraversal_CompleteUnrolling
-{
- enum {
- outer = Index / Derived1::InnerSizeAtCompileTime,
- inner = Index % Derived1::InnerSizeAtCompileTime
- };
-
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- dst.copyCoeffByOuterInner(outer, inner, src);
- assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Stop>
-struct assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
-{
- static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {}
-};
-
-template<typename Derived1, typename Derived2, int Index, int Stop>
-struct assign_DefaultTraversal_InnerUnrolling
-{
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src, typename Derived1::Index outer)
- {
- dst.copyCoeffByOuterInner(outer, Index, src);
- assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src, outer);
- }
-};
-
-template<typename Derived1, typename Derived2, int Stop>
-struct assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, Stop, Stop>
-{
- static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &, typename Derived1::Index) {}
-};
-
-/***********************
-*** Linear traversal ***
-***********************/
-
-template<typename Derived1, typename Derived2, int Index, int Stop>
-struct assign_LinearTraversal_CompleteUnrolling
-{
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- dst.copyCoeff(Index, src);
- assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Stop>
-struct assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
-{
- static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {}
-};
-
-/**************************
-*** Inner vectorization ***
-**************************/
-
-template<typename Derived1, typename Derived2, int Index, int Stop>
-struct assign_innervec_CompleteUnrolling
-{
- enum {
- outer = Index / Derived1::InnerSizeAtCompileTime,
- inner = Index % Derived1::InnerSizeAtCompileTime,
- JointAlignment = assign_traits<Derived1,Derived2>::JointAlignment
- };
-
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- dst.template copyPacketByOuterInner<Derived2, Aligned, JointAlignment>(outer, inner, src);
- assign_innervec_CompleteUnrolling<Derived1, Derived2,
- Index+packet_traits<typename Derived1::Scalar>::size, Stop>::run(dst, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Stop>
-struct assign_innervec_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
-{
- static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {}
-};
-
-template<typename Derived1, typename Derived2, int Index, int Stop>
-struct assign_innervec_InnerUnrolling
-{
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src, typename Derived1::Index outer)
- {
- dst.template copyPacketByOuterInner<Derived2, Aligned, Aligned>(outer, Index, src);
- assign_innervec_InnerUnrolling<Derived1, Derived2,
- Index+packet_traits<typename Derived1::Scalar>::size, Stop>::run(dst, src, outer);
- }
-};
-
-template<typename Derived1, typename Derived2, int Stop>
-struct assign_innervec_InnerUnrolling<Derived1, Derived2, Stop, Stop>
-{
- static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &, typename Derived1::Index) {}
-};
-
-/***************************************************************************
-* Part 3 : implementation of all cases
-***************************************************************************/
-
-template<typename Derived1, typename Derived2,
- int Traversal = assign_traits<Derived1, Derived2>::Traversal,
- int Unrolling = assign_traits<Derived1, Derived2>::Unrolling,
- int Version = Specialized>
-struct assign_impl;
-
-/************************
-*** Default traversal ***
-************************/
-
-template<typename Derived1, typename Derived2, int Unrolling, int Version>
-struct assign_impl<Derived1, Derived2, InvalidTraversal, Unrolling, Version>
-{
- static inline void run(Derived1 &, const Derived2 &) { }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, DefaultTraversal, NoUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- const Index innerSize = dst.innerSize();
- const Index outerSize = dst.outerSize();
- for(Index outer = 0; outer < outerSize; ++outer)
- for(Index inner = 0; inner < innerSize; ++inner)
- dst.copyCoeffByOuterInner(outer, inner, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, DefaultTraversal, CompleteUnrolling, Version>
-{
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
- ::run(dst, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, DefaultTraversal, InnerUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- const Index outerSize = dst.outerSize();
- for(Index outer = 0; outer < outerSize; ++outer)
- assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, 0, Derived1::InnerSizeAtCompileTime>
- ::run(dst, src, outer);
- }
-};
-
-/***********************
-*** Linear traversal ***
-***********************/
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, LinearTraversal, NoUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- const Index size = dst.size();
- for(Index i = 0; i < size; ++i)
- dst.copyCoeff(i, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, LinearTraversal, CompleteUnrolling, Version>
-{
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
- ::run(dst, src);
- }
-};
-
-/**************************
-*** Inner vectorization ***
-**************************/
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, NoUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- const Index innerSize = dst.innerSize();
- const Index outerSize = dst.outerSize();
- const Index packetSize = packet_traits<typename Derived1::Scalar>::size;
- for(Index outer = 0; outer < outerSize; ++outer)
- for(Index inner = 0; inner < innerSize; inner+=packetSize)
- dst.template copyPacketByOuterInner<Derived2, Aligned, Aligned>(outer, inner, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, CompleteUnrolling, Version>
-{
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- assign_innervec_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
- ::run(dst, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, InnerUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- const Index outerSize = dst.outerSize();
- for(Index outer = 0; outer < outerSize; ++outer)
- assign_innervec_InnerUnrolling<Derived1, Derived2, 0, Derived1::InnerSizeAtCompileTime>
- ::run(dst, src, outer);
- }
-};
-
-/***************************
-*** Linear vectorization ***
-***************************/
-
-template <bool IsAligned = false>
-struct unaligned_assign_impl
-{
- template <typename Derived, typename OtherDerived>
- static EIGEN_STRONG_INLINE void run(const Derived&, OtherDerived&, typename Derived::Index, typename Derived::Index) {}
-};
-
-template <>
-struct unaligned_assign_impl<false>
-{
- // MSVC must not inline this functions. If it does, it fails to optimize the
- // packet access path.
-#ifdef _MSC_VER
- template <typename Derived, typename OtherDerived>
- static EIGEN_DONT_INLINE void run(const Derived& src, OtherDerived& dst, typename Derived::Index start, typename Derived::Index end)
-#else
- template <typename Derived, typename OtherDerived>
- static EIGEN_STRONG_INLINE void run(const Derived& src, OtherDerived& dst, typename Derived::Index start, typename Derived::Index end)
-#endif
- {
- for (typename Derived::Index index = start; index < end; ++index)
- dst.copyCoeff(index, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, LinearVectorizedTraversal, NoUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- const Index size = dst.size();
- typedef packet_traits<typename Derived1::Scalar> PacketTraits;
- enum {
- packetSize = PacketTraits::size,
- dstAlignment = PacketTraits::AlignedOnScalar ? Aligned : int(assign_traits<Derived1,Derived2>::DstIsAligned) ,
- srcAlignment = assign_traits<Derived1,Derived2>::JointAlignment
- };
- const Index alignedStart = assign_traits<Derived1,Derived2>::DstIsAligned ? 0
- : internal::first_aligned(&dst.coeffRef(0), size);
- const Index alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize;
-
- unaligned_assign_impl<assign_traits<Derived1,Derived2>::DstIsAligned!=0>::run(src,dst,0,alignedStart);
-
- for(Index index = alignedStart; index < alignedEnd; index += packetSize)
- {
- dst.template copyPacket<Derived2, dstAlignment, srcAlignment>(index, src);
- }
-
- unaligned_assign_impl<>::run(src,dst,alignedEnd,size);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, LinearVectorizedTraversal, CompleteUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- enum { size = Derived1::SizeAtCompileTime,
- packetSize = packet_traits<typename Derived1::Scalar>::size,
- alignedSize = (size/packetSize)*packetSize };
-
- assign_innervec_CompleteUnrolling<Derived1, Derived2, 0, alignedSize>::run(dst, src);
- assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, alignedSize, size>::run(dst, src);
- }
-};
-
-/**************************
-*** Slice vectorization ***
-***************************/
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, SliceVectorizedTraversal, NoUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- typedef packet_traits<typename Derived1::Scalar> PacketTraits;
- enum {
- packetSize = PacketTraits::size,
- alignable = PacketTraits::AlignedOnScalar,
- dstAlignment = alignable ? Aligned : int(assign_traits<Derived1,Derived2>::DstIsAligned) ,
- srcAlignment = assign_traits<Derived1,Derived2>::JointAlignment
- };
- const Index packetAlignedMask = packetSize - 1;
- const Index innerSize = dst.innerSize();
- const Index outerSize = dst.outerSize();
- const Index alignedStep = alignable ? (packetSize - dst.outerStride() % packetSize) & packetAlignedMask : 0;
- Index alignedStart = ((!alignable) || assign_traits<Derived1,Derived2>::DstIsAligned) ? 0
- : internal::first_aligned(&dst.coeffRef(0,0), innerSize);
-
- for(Index outer = 0; outer < outerSize; ++outer)
- {
- const Index alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask);
- // do the non-vectorizable part of the assignment
- for(Index inner = 0; inner<alignedStart ; ++inner)
- dst.copyCoeffByOuterInner(outer, inner, src);
-
- // do the vectorizable part of the assignment
- for(Index inner = alignedStart; inner<alignedEnd; inner+=packetSize)
- dst.template copyPacketByOuterInner<Derived2, dstAlignment, Unaligned>(outer, inner, src);
-
- // do the non-vectorizable part of the assignment
- for(Index inner = alignedEnd; inner<innerSize ; ++inner)
- dst.copyCoeffByOuterInner(outer, inner, src);
-
- alignedStart = std::min<Index>((alignedStart+alignedStep)%packetSize, innerSize);
- }
- }
-};
-
-} // end namespace internal
-
-/***************************************************************************
-* Part 4 : implementation of DenseBase methods
-***************************************************************************/
-
-template<typename Derived>
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE Derived& DenseBase<Derived>
- ::lazyAssign(const DenseBase<OtherDerived>& other)
-{
- enum{
- SameType = internal::is_same<typename Derived::Scalar,typename OtherDerived::Scalar>::value
- };
-
- EIGEN_STATIC_ASSERT_LVALUE(Derived)
- EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived,OtherDerived)
- EIGEN_STATIC_ASSERT(SameType,YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-
-#ifdef EIGEN_DEBUG_ASSIGN
- internal::assign_traits<Derived, OtherDerived>::debug();
-#endif
- eigen_assert(rows() == other.rows() && cols() == other.cols());
- internal::assign_impl<Derived, OtherDerived, int(SameType) ? int(internal::assign_traits<Derived, OtherDerived>::Traversal)
- : int(InvalidTraversal)>::run(derived(),other.derived());
-#ifndef EIGEN_NO_DEBUG
- checkTransposeAliasing(other.derived());
-#endif
- return derived();
-}
-
-namespace internal {
-
-template<typename Derived, typename OtherDerived,
- bool EvalBeforeAssigning = (int(internal::traits<OtherDerived>::Flags) & EvalBeforeAssigningBit) != 0,
- bool NeedToTranspose = ((int(Derived::RowsAtCompileTime) == 1 && int(OtherDerived::ColsAtCompileTime) == 1)
- | // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
- // revert to || as soon as not needed anymore.
- (int(Derived::ColsAtCompileTime) == 1 && int(OtherDerived::RowsAtCompileTime) == 1))
- && int(Derived::SizeAtCompileTime) != 1>
-struct assign_selector;
-
-template<typename Derived, typename OtherDerived>
-struct assign_selector<Derived,OtherDerived,false,false> {
- static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.derived()); }
- template<typename ActualDerived, typename ActualOtherDerived>
- static EIGEN_STRONG_INLINE Derived& evalTo(ActualDerived& dst, const ActualOtherDerived& other) { other.evalTo(dst); return dst; }
-};
-template<typename Derived, typename OtherDerived>
-struct assign_selector<Derived,OtherDerived,true,false> {
- static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.eval()); }
-};
-template<typename Derived, typename OtherDerived>
-struct assign_selector<Derived,OtherDerived,false,true> {
- static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose()); }
- template<typename ActualDerived, typename ActualOtherDerived>
- static EIGEN_STRONG_INLINE Derived& evalTo(ActualDerived& dst, const ActualOtherDerived& other) { Transpose<ActualDerived> dstTrans(dst); other.evalTo(dstTrans); return dst; }
-};
-template<typename Derived, typename OtherDerived>
-struct assign_selector<Derived,OtherDerived,true,true> {
- static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose().eval()); }
-};
-
-} // end namespace internal
-
-template<typename Derived>
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator=(const DenseBase<OtherDerived>& other)
-{
- return internal::assign_selector<Derived,OtherDerived>::run(derived(), other.derived());
-}
-
-template<typename Derived>
-EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator=(const DenseBase& other)
-{
- return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
-}
-
-template<typename Derived>
-EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const MatrixBase& other)
-{
- return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
-}
-
-template<typename Derived>
-template <typename OtherDerived>
-EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const DenseBase<OtherDerived>& other)
-{
- return internal::assign_selector<Derived,OtherDerived>::run(derived(), other.derived());
-}
-
-template<typename Derived>
-template <typename OtherDerived>
-EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const EigenBase<OtherDerived>& other)
-{
- return internal::assign_selector<Derived,OtherDerived,false>::evalTo(derived(), other.derived());
-}
-
-template<typename Derived>
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
-{
- return internal::assign_selector<Derived,OtherDerived,false>::evalTo(derived(), other.derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_ASSIGN_H
diff --git a/src/Eigen/src/Core/Assign_MKL.h b/src/Eigen/src/Core/Assign_MKL.h
deleted file mode 100644
index 7772951..0000000
--- a/src/Eigen/src/Core/Assign_MKL.h
+++ /dev/null
@@ -1,224 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * MKL VML support for coefficient-wise unary Eigen expressions like a=b.sin()
- ********************************************************************************
-*/
-
-#ifndef EIGEN_ASSIGN_VML_H
-#define EIGEN_ASSIGN_VML_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename Op> struct vml_call
-{ enum { IsSupported = 0 }; };
-
-template<typename Dst, typename Src, typename UnaryOp>
-class vml_assign_traits
-{
- private:
- enum {
- DstHasDirectAccess = Dst::Flags & DirectAccessBit,
- SrcHasDirectAccess = Src::Flags & DirectAccessBit,
-
- StorageOrdersAgree = (int(Dst::IsRowMajor) == int(Src::IsRowMajor)),
- InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime)
- : int(Dst::Flags)&RowMajorBit ? int(Dst::ColsAtCompileTime)
- : int(Dst::RowsAtCompileTime),
- InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime)
- : int(Dst::Flags)&RowMajorBit ? int(Dst::MaxColsAtCompileTime)
- : int(Dst::MaxRowsAtCompileTime),
- MaxSizeAtCompileTime = Dst::SizeAtCompileTime,
-
- MightEnableVml = vml_call<UnaryOp>::IsSupported && StorageOrdersAgree && DstHasDirectAccess && SrcHasDirectAccess
- && Src::InnerStrideAtCompileTime==1 && Dst::InnerStrideAtCompileTime==1,
- MightLinearize = MightEnableVml && (int(Dst::Flags) & int(Src::Flags) & LinearAccessBit),
- VmlSize = MightLinearize ? MaxSizeAtCompileTime : InnerMaxSize,
- LargeEnough = VmlSize==Dynamic || VmlSize>=EIGEN_MKL_VML_THRESHOLD,
- MayEnableVml = MightEnableVml && LargeEnough,
- MayLinearize = MayEnableVml && MightLinearize
- };
- public:
- enum {
- Traversal = MayLinearize ? LinearVectorizedTraversal
- : MayEnableVml ? InnerVectorizedTraversal
- : DefaultTraversal
- };
-};
-
-template<typename Derived1, typename Derived2, typename UnaryOp, int Traversal, int Unrolling,
- int VmlTraversal = vml_assign_traits<Derived1, Derived2, UnaryOp>::Traversal >
-struct vml_assign_impl
- : assign_impl<Derived1, Eigen::CwiseUnaryOp<UnaryOp, Derived2>,Traversal,Unrolling,BuiltIn>
-{
-};
-
-template<typename Derived1, typename Derived2, typename UnaryOp, int Traversal, int Unrolling>
-struct vml_assign_impl<Derived1, Derived2, UnaryOp, Traversal, Unrolling, InnerVectorizedTraversal>
-{
- typedef typename Derived1::Scalar Scalar;
- typedef typename Derived1::Index Index;
- static inline void run(Derived1& dst, const CwiseUnaryOp<UnaryOp, Derived2>& src)
- {
- // in case we want to (or have to) skip VML at runtime we can call:
- // assign_impl<Derived1,Eigen::CwiseUnaryOp<UnaryOp, Derived2>,Traversal,Unrolling,BuiltIn>::run(dst,src);
- const Index innerSize = dst.innerSize();
- const Index outerSize = dst.outerSize();
- for(Index outer = 0; outer < outerSize; ++outer) {
- const Scalar *src_ptr = src.IsRowMajor ? &(src.nestedExpression().coeffRef(outer,0)) :
- &(src.nestedExpression().coeffRef(0, outer));
- Scalar *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer));
- vml_call<UnaryOp>::run(src.functor(), innerSize, src_ptr, dst_ptr );
- }
- }
-};
-
-template<typename Derived1, typename Derived2, typename UnaryOp, int Traversal, int Unrolling>
-struct vml_assign_impl<Derived1, Derived2, UnaryOp, Traversal, Unrolling, LinearVectorizedTraversal>
-{
- static inline void run(Derived1& dst, const CwiseUnaryOp<UnaryOp, Derived2>& src)
- {
- // in case we want to (or have to) skip VML at runtime we can call:
- // assign_impl<Derived1,Eigen::CwiseUnaryOp<UnaryOp, Derived2>,Traversal,Unrolling,BuiltIn>::run(dst,src);
- vml_call<UnaryOp>::run(src.functor(), dst.size(), src.nestedExpression().data(), dst.data() );
- }
-};
-
-// Macroses
-
-#define EIGEN_MKL_VML_SPECIALIZE_ASSIGN(TRAVERSAL,UNROLLING) \
- template<typename Derived1, typename Derived2, typename UnaryOp> \
- struct assign_impl<Derived1, Eigen::CwiseUnaryOp<UnaryOp, Derived2>, TRAVERSAL, UNROLLING, Specialized> { \
- static inline void run(Derived1 &dst, const Eigen::CwiseUnaryOp<UnaryOp, Derived2> &src) { \
- vml_assign_impl<Derived1,Derived2,UnaryOp,TRAVERSAL,UNROLLING>::run(dst, src); \
- } \
- };
-
-EIGEN_MKL_VML_SPECIALIZE_ASSIGN(DefaultTraversal,NoUnrolling)
-EIGEN_MKL_VML_SPECIALIZE_ASSIGN(DefaultTraversal,CompleteUnrolling)
-EIGEN_MKL_VML_SPECIALIZE_ASSIGN(DefaultTraversal,InnerUnrolling)
-EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearTraversal,NoUnrolling)
-EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearTraversal,CompleteUnrolling)
-EIGEN_MKL_VML_SPECIALIZE_ASSIGN(InnerVectorizedTraversal,NoUnrolling)
-EIGEN_MKL_VML_SPECIALIZE_ASSIGN(InnerVectorizedTraversal,CompleteUnrolling)
-EIGEN_MKL_VML_SPECIALIZE_ASSIGN(InnerVectorizedTraversal,InnerUnrolling)
-EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearVectorizedTraversal,CompleteUnrolling)
-EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearVectorizedTraversal,NoUnrolling)
-EIGEN_MKL_VML_SPECIALIZE_ASSIGN(SliceVectorizedTraversal,NoUnrolling)
-
-
-#if !defined (EIGEN_FAST_MATH) || (EIGEN_FAST_MATH != 1)
-#define EIGEN_MKL_VML_MODE VML_HA
-#else
-#define EIGEN_MKL_VML_MODE VML_LA
-#endif
-
-#define EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE) \
- template<> struct vml_call< scalar_##EIGENOP##_op<EIGENTYPE> > { \
- enum { IsSupported = 1 }; \
- static inline void run( const scalar_##EIGENOP##_op<EIGENTYPE>& /*func*/, \
- int size, const EIGENTYPE* src, EIGENTYPE* dst) { \
- VMLOP(size, (const VMLTYPE*)src, (VMLTYPE*)dst); \
- } \
- };
-
-#define EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE) \
- template<> struct vml_call< scalar_##EIGENOP##_op<EIGENTYPE> > { \
- enum { IsSupported = 1 }; \
- static inline void run( const scalar_##EIGENOP##_op<EIGENTYPE>& /*func*/, \
- int size, const EIGENTYPE* src, EIGENTYPE* dst) { \
- MKL_INT64 vmlMode = EIGEN_MKL_VML_MODE; \
- VMLOP(size, (const VMLTYPE*)src, (VMLTYPE*)dst, vmlMode); \
- } \
- };
-
-#define EIGEN_MKL_VML_DECLARE_POW_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE) \
- template<> struct vml_call< scalar_##EIGENOP##_op<EIGENTYPE> > { \
- enum { IsSupported = 1 }; \
- static inline void run( const scalar_##EIGENOP##_op<EIGENTYPE>& func, \
- int size, const EIGENTYPE* src, EIGENTYPE* dst) { \
- EIGENTYPE exponent = func.m_exponent; \
- MKL_INT64 vmlMode = EIGEN_MKL_VML_MODE; \
- VMLOP(&size, (const VMLTYPE*)src, (const VMLTYPE*)&exponent, \
- (VMLTYPE*)dst, &vmlMode); \
- } \
- };
-
-#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP) \
- EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vs##VMLOP, float, float) \
- EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vd##VMLOP, double, double)
-
-#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX(EIGENOP, VMLOP) \
- EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vc##VMLOP, scomplex, MKL_Complex8) \
- EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vz##VMLOP, dcomplex, MKL_Complex16)
-
-#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS(EIGENOP, VMLOP) \
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP) \
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX(EIGENOP, VMLOP)
-
-
-#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL_LA(EIGENOP, VMLOP) \
- EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vms##VMLOP, float, float) \
- EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vmd##VMLOP, double, double)
-
-#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX_LA(EIGENOP, VMLOP) \
- EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vmc##VMLOP, scomplex, MKL_Complex8) \
- EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vmz##VMLOP, dcomplex, MKL_Complex16)
-
-#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(EIGENOP, VMLOP) \
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL_LA(EIGENOP, VMLOP) \
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX_LA(EIGENOP, VMLOP)
-
-
-EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(sin, Sin)
-EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(asin, Asin)
-EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(cos, Cos)
-EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(acos, Acos)
-EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(tan, Tan)
-//EIGEN_MKL_VML_DECLARE_UNARY_CALLS(abs, Abs)
-EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(exp, Exp)
-EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(log, Ln)
-EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(sqrt, Sqrt)
-
-EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(square, Sqr)
-
-// The vm*powx functions are not avaibale in the windows version of MKL.
-#ifndef _WIN32
-EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmspowx_, float, float)
-EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmdpowx_, double, double)
-EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmcpowx_, scomplex, MKL_Complex8)
-EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmzpowx_, dcomplex, MKL_Complex16)
-#endif
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_ASSIGN_VML_H
diff --git a/src/Eigen/src/Core/BandMatrix.h b/src/Eigen/src/Core/BandMatrix.h
deleted file mode 100644
index ffd7fe8..0000000
--- a/src/Eigen/src/Core/BandMatrix.h
+++ /dev/null
@@ -1,334 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_BANDMATRIX_H
-#define EIGEN_BANDMATRIX_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename Derived>
-class BandMatrixBase : public EigenBase<Derived>
-{
- public:
-
- enum {
- Flags = internal::traits<Derived>::Flags,
- CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
- RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
- ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
- MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
- Supers = internal::traits<Derived>::Supers,
- Subs = internal::traits<Derived>::Subs,
- Options = internal::traits<Derived>::Options
- };
- typedef typename internal::traits<Derived>::Scalar Scalar;
- typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime> DenseMatrixType;
- typedef typename DenseMatrixType::Index Index;
- typedef typename internal::traits<Derived>::CoefficientsType CoefficientsType;
- typedef EigenBase<Derived> Base;
-
- protected:
- enum {
- DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic))
- ? 1 + Supers + Subs
- : Dynamic,
- SizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime)
- };
-
- public:
-
- using Base::derived;
- using Base::rows;
- using Base::cols;
-
- /** \returns the number of super diagonals */
- inline Index supers() const { return derived().supers(); }
-
- /** \returns the number of sub diagonals */
- inline Index subs() const { return derived().subs(); }
-
- /** \returns an expression of the underlying coefficient matrix */
- inline const CoefficientsType& coeffs() const { return derived().coeffs(); }
-
- /** \returns an expression of the underlying coefficient matrix */
- inline CoefficientsType& coeffs() { return derived().coeffs(); }
-
- /** \returns a vector expression of the \a i -th column,
- * only the meaningful part is returned.
- * \warning the internal storage must be column major. */
- inline Block<CoefficientsType,Dynamic,1> col(Index i)
- {
- EIGEN_STATIC_ASSERT((Options&RowMajor)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
- Index start = 0;
- Index len = coeffs().rows();
- if (i<=supers())
- {
- start = supers()-i;
- len = (std::min)(rows(),std::max<Index>(0,coeffs().rows() - (supers()-i)));
- }
- else if (i>=rows()-subs())
- len = std::max<Index>(0,coeffs().rows() - (i + 1 - rows() + subs()));
- return Block<CoefficientsType,Dynamic,1>(coeffs(), start, i, len, 1);
- }
-
- /** \returns a vector expression of the main diagonal */
- inline Block<CoefficientsType,1,SizeAtCompileTime> diagonal()
- { return Block<CoefficientsType,1,SizeAtCompileTime>(coeffs(),supers(),0,1,(std::min)(rows(),cols())); }
-
- /** \returns a vector expression of the main diagonal (const version) */
- inline const Block<const CoefficientsType,1,SizeAtCompileTime> diagonal() const
- { return Block<const CoefficientsType,1,SizeAtCompileTime>(coeffs(),supers(),0,1,(std::min)(rows(),cols())); }
-
- template<int Index> struct DiagonalIntReturnType {
- enum {
- ReturnOpposite = (Options&SelfAdjoint) && (((Index)>0 && Supers==0) || ((Index)<0 && Subs==0)),
- Conjugate = ReturnOpposite && NumTraits<Scalar>::IsComplex,
- ActualIndex = ReturnOpposite ? -Index : Index,
- DiagonalSize = (RowsAtCompileTime==Dynamic || ColsAtCompileTime==Dynamic)
- ? Dynamic
- : (ActualIndex<0
- ? EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime, RowsAtCompileTime + ActualIndex)
- : EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime - ActualIndex))
- };
- typedef Block<CoefficientsType,1, DiagonalSize> BuildType;
- typedef typename internal::conditional<Conjugate,
- CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>,BuildType >,
- BuildType>::type Type;
- };
-
- /** \returns a vector expression of the \a N -th sub or super diagonal */
- template<int N> inline typename DiagonalIntReturnType<N>::Type diagonal()
- {
- return typename DiagonalIntReturnType<N>::BuildType(coeffs(), supers()-N, (std::max)(0,N), 1, diagonalLength(N));
- }
-
- /** \returns a vector expression of the \a N -th sub or super diagonal */
- template<int N> inline const typename DiagonalIntReturnType<N>::Type diagonal() const
- {
- return typename DiagonalIntReturnType<N>::BuildType(coeffs(), supers()-N, (std::max)(0,N), 1, diagonalLength(N));
- }
-
- /** \returns a vector expression of the \a i -th sub or super diagonal */
- inline Block<CoefficientsType,1,Dynamic> diagonal(Index i)
- {
- eigen_assert((i<0 && -i<=subs()) || (i>=0 && i<=supers()));
- return Block<CoefficientsType,1,Dynamic>(coeffs(), supers()-i, std::max<Index>(0,i), 1, diagonalLength(i));
- }
-
- /** \returns a vector expression of the \a i -th sub or super diagonal */
- inline const Block<const CoefficientsType,1,Dynamic> diagonal(Index i) const
- {
- eigen_assert((i<0 && -i<=subs()) || (i>=0 && i<=supers()));
- return Block<const CoefficientsType,1,Dynamic>(coeffs(), supers()-i, std::max<Index>(0,i), 1, diagonalLength(i));
- }
-
- template<typename Dest> inline void evalTo(Dest& dst) const
- {
- dst.resize(rows(),cols());
- dst.setZero();
- dst.diagonal() = diagonal();
- for (Index i=1; i<=supers();++i)
- dst.diagonal(i) = diagonal(i);
- for (Index i=1; i<=subs();++i)
- dst.diagonal(-i) = diagonal(-i);
- }
-
- DenseMatrixType toDenseMatrix() const
- {
- DenseMatrixType res(rows(),cols());
- evalTo(res);
- return res;
- }
-
- protected:
-
- inline Index diagonalLength(Index i) const
- { return i<0 ? (std::min)(cols(),rows()+i) : (std::min)(rows(),cols()-i); }
-};
-
-/**
- * \class BandMatrix
- * \ingroup Core_Module
- *
- * \brief Represents a rectangular matrix with a banded storage
- *
- * \param _Scalar Numeric type, i.e. float, double, int
- * \param Rows Number of rows, or \b Dynamic
- * \param Cols Number of columns, or \b Dynamic
- * \param Supers Number of super diagonal
- * \param Subs Number of sub diagonal
- * \param _Options A combination of either \b #RowMajor or \b #ColMajor, and of \b #SelfAdjoint
- * The former controls \ref TopicStorageOrders "storage order", and defaults to
- * column-major. The latter controls whether the matrix represents a selfadjoint
- * matrix in which case either Supers of Subs have to be null.
- *
- * \sa class TridiagonalMatrix
- */
-
-template<typename _Scalar, int _Rows, int _Cols, int _Supers, int _Subs, int _Options>
-struct traits<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
-{
- typedef _Scalar Scalar;
- typedef Dense StorageKind;
- typedef DenseIndex Index;
- enum {
- CoeffReadCost = NumTraits<Scalar>::ReadCost,
- RowsAtCompileTime = _Rows,
- ColsAtCompileTime = _Cols,
- MaxRowsAtCompileTime = _Rows,
- MaxColsAtCompileTime = _Cols,
- Flags = LvalueBit,
- Supers = _Supers,
- Subs = _Subs,
- Options = _Options,
- DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic
- };
- typedef Matrix<Scalar,DataRowsAtCompileTime,ColsAtCompileTime,Options&RowMajor?RowMajor:ColMajor> CoefficientsType;
-};
-
-template<typename _Scalar, int Rows, int Cols, int Supers, int Subs, int Options>
-class BandMatrix : public BandMatrixBase<BandMatrix<_Scalar,Rows,Cols,Supers,Subs,Options> >
-{
- public:
-
- typedef typename internal::traits<BandMatrix>::Scalar Scalar;
- typedef typename internal::traits<BandMatrix>::Index Index;
- typedef typename internal::traits<BandMatrix>::CoefficientsType CoefficientsType;
-
- inline BandMatrix(Index rows=Rows, Index cols=Cols, Index supers=Supers, Index subs=Subs)
- : m_coeffs(1+supers+subs,cols),
- m_rows(rows), m_supers(supers), m_subs(subs)
- {
- }
-
- /** \returns the number of columns */
- inline Index rows() const { return m_rows.value(); }
-
- /** \returns the number of rows */
- inline Index cols() const { return m_coeffs.cols(); }
-
- /** \returns the number of super diagonals */
- inline Index supers() const { return m_supers.value(); }
-
- /** \returns the number of sub diagonals */
- inline Index subs() const { return m_subs.value(); }
-
- inline const CoefficientsType& coeffs() const { return m_coeffs; }
- inline CoefficientsType& coeffs() { return m_coeffs; }
-
- protected:
-
- CoefficientsType m_coeffs;
- internal::variable_if_dynamic<Index, Rows> m_rows;
- internal::variable_if_dynamic<Index, Supers> m_supers;
- internal::variable_if_dynamic<Index, Subs> m_subs;
-};
-
-template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
-class BandMatrixWrapper;
-
-template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
-struct traits<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
-{
- typedef typename _CoefficientsType::Scalar Scalar;
- typedef typename _CoefficientsType::StorageKind StorageKind;
- typedef typename _CoefficientsType::Index Index;
- enum {
- CoeffReadCost = internal::traits<_CoefficientsType>::CoeffReadCost,
- RowsAtCompileTime = _Rows,
- ColsAtCompileTime = _Cols,
- MaxRowsAtCompileTime = _Rows,
- MaxColsAtCompileTime = _Cols,
- Flags = LvalueBit,
- Supers = _Supers,
- Subs = _Subs,
- Options = _Options,
- DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic
- };
- typedef _CoefficientsType CoefficientsType;
-};
-
-template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
-class BandMatrixWrapper : public BandMatrixBase<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
-{
- public:
-
- typedef typename internal::traits<BandMatrixWrapper>::Scalar Scalar;
- typedef typename internal::traits<BandMatrixWrapper>::CoefficientsType CoefficientsType;
- typedef typename internal::traits<BandMatrixWrapper>::Index Index;
-
- inline BandMatrixWrapper(const CoefficientsType& coeffs, Index rows=_Rows, Index cols=_Cols, Index supers=_Supers, Index subs=_Subs)
- : m_coeffs(coeffs),
- m_rows(rows), m_supers(supers), m_subs(subs)
- {
- EIGEN_UNUSED_VARIABLE(cols);
- //internal::assert(coeffs.cols()==cols() && (supers()+subs()+1)==coeffs.rows());
- }
-
- /** \returns the number of columns */
- inline Index rows() const { return m_rows.value(); }
-
- /** \returns the number of rows */
- inline Index cols() const { return m_coeffs.cols(); }
-
- /** \returns the number of super diagonals */
- inline Index supers() const { return m_supers.value(); }
-
- /** \returns the number of sub diagonals */
- inline Index subs() const { return m_subs.value(); }
-
- inline const CoefficientsType& coeffs() const { return m_coeffs; }
-
- protected:
-
- const CoefficientsType& m_coeffs;
- internal::variable_if_dynamic<Index, _Rows> m_rows;
- internal::variable_if_dynamic<Index, _Supers> m_supers;
- internal::variable_if_dynamic<Index, _Subs> m_subs;
-};
-
-/**
- * \class TridiagonalMatrix
- * \ingroup Core_Module
- *
- * \brief Represents a tridiagonal matrix with a compact banded storage
- *
- * \param _Scalar Numeric type, i.e. float, double, int
- * \param Size Number of rows and cols, or \b Dynamic
- * \param _Options Can be 0 or \b SelfAdjoint
- *
- * \sa class BandMatrix
- */
-template<typename Scalar, int Size, int Options>
-class TridiagonalMatrix : public BandMatrix<Scalar,Size,Size,Options&SelfAdjoint?0:1,1,Options|RowMajor>
-{
- typedef BandMatrix<Scalar,Size,Size,Options&SelfAdjoint?0:1,1,Options|RowMajor> Base;
- typedef typename Base::Index Index;
- public:
- TridiagonalMatrix(Index size = Size) : Base(size,size,Options&SelfAdjoint?0:1,1) {}
-
- inline typename Base::template DiagonalIntReturnType<1>::Type super()
- { return Base::template diagonal<1>(); }
- inline const typename Base::template DiagonalIntReturnType<1>::Type super() const
- { return Base::template diagonal<1>(); }
- inline typename Base::template DiagonalIntReturnType<-1>::Type sub()
- { return Base::template diagonal<-1>(); }
- inline const typename Base::template DiagonalIntReturnType<-1>::Type sub() const
- { return Base::template diagonal<-1>(); }
- protected:
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_BANDMATRIX_H
diff --git a/src/Eigen/src/Core/Block.h b/src/Eigen/src/Core/Block.h
deleted file mode 100644
index 87bedfa..0000000
--- a/src/Eigen/src/Core/Block.h
+++ /dev/null
@@ -1,405 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_BLOCK_H
-#define EIGEN_BLOCK_H
-
-namespace Eigen {
-
-/** \class Block
- * \ingroup Core_Module
- *
- * \brief Expression of a fixed-size or dynamic-size block
- *
- * \param XprType the type of the expression in which we are taking a block
- * \param BlockRows the number of rows of the block we are taking at compile time (optional)
- * \param BlockCols the number of columns of the block we are taking at compile time (optional)
- *
- * This class represents an expression of either a fixed-size or dynamic-size block. It is the return
- * type of DenseBase::block(Index,Index,Index,Index) and DenseBase::block<int,int>(Index,Index) and
- * most of the time this is the only way it is used.
- *
- * However, if you want to directly maniputate block expressions,
- * for instance if you want to write a function returning such an expression, you
- * will need to use this class.
- *
- * Here is an example illustrating the dynamic case:
- * \include class_Block.cpp
- * Output: \verbinclude class_Block.out
- *
- * \note Even though this expression has dynamic size, in the case where \a XprType
- * has fixed size, this expression inherits a fixed maximal size which means that evaluating
- * it does not cause a dynamic memory allocation.
- *
- * Here is an example illustrating the fixed-size case:
- * \include class_FixedBlock.cpp
- * Output: \verbinclude class_FixedBlock.out
- *
- * \sa DenseBase::block(Index,Index,Index,Index), DenseBase::block(Index,Index), class VectorBlock
- */
-
-namespace internal {
-template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
-struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel> > : traits<XprType>
-{
- typedef typename traits<XprType>::Scalar Scalar;
- typedef typename traits<XprType>::StorageKind StorageKind;
- typedef typename traits<XprType>::XprKind XprKind;
- typedef typename nested<XprType>::type XprTypeNested;
- typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
- enum{
- MatrixRows = traits<XprType>::RowsAtCompileTime,
- MatrixCols = traits<XprType>::ColsAtCompileTime,
- RowsAtCompileTime = MatrixRows == 0 ? 0 : BlockRows,
- ColsAtCompileTime = MatrixCols == 0 ? 0 : BlockCols,
- MaxRowsAtCompileTime = BlockRows==0 ? 0
- : RowsAtCompileTime != Dynamic ? int(RowsAtCompileTime)
- : int(traits<XprType>::MaxRowsAtCompileTime),
- MaxColsAtCompileTime = BlockCols==0 ? 0
- : ColsAtCompileTime != Dynamic ? int(ColsAtCompileTime)
- : int(traits<XprType>::MaxColsAtCompileTime),
- XprTypeIsRowMajor = (int(traits<XprType>::Flags)&RowMajorBit) != 0,
- IsRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
- : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
- : XprTypeIsRowMajor,
- HasSameStorageOrderAsXprType = (IsRowMajor == XprTypeIsRowMajor),
- InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
- InnerStrideAtCompileTime = HasSameStorageOrderAsXprType
- ? int(inner_stride_at_compile_time<XprType>::ret)
- : int(outer_stride_at_compile_time<XprType>::ret),
- OuterStrideAtCompileTime = HasSameStorageOrderAsXprType
- ? int(outer_stride_at_compile_time<XprType>::ret)
- : int(inner_stride_at_compile_time<XprType>::ret),
- MaskPacketAccessBit = (InnerSize == Dynamic || (InnerSize % packet_traits<Scalar>::size) == 0)
- && (InnerStrideAtCompileTime == 1)
- ? PacketAccessBit : 0,
- MaskAlignedBit = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % 16) == 0)) ? AlignedBit : 0,
- FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (traits<XprType>::Flags&LinearAccessBit))) ? LinearAccessBit : 0,
- FlagsLvalueBit = is_lvalue<XprType>::value ? LvalueBit : 0,
- FlagsRowMajorBit = IsRowMajor ? RowMajorBit : 0,
- Flags0 = traits<XprType>::Flags & ( (HereditaryBits & ~RowMajorBit) |
- DirectAccessBit |
- MaskPacketAccessBit |
- MaskAlignedBit),
- Flags = Flags0 | FlagsLinearAccessBit | FlagsLvalueBit | FlagsRowMajorBit
- };
-};
-
-template<typename XprType, int BlockRows=Dynamic, int BlockCols=Dynamic, bool InnerPanel = false,
- bool HasDirectAccess = internal::has_direct_access<XprType>::ret> class BlockImpl_dense;
-
-} // end namespace internal
-
-template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, typename StorageKind> class BlockImpl;
-
-template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel> class Block
- : public BlockImpl<XprType, BlockRows, BlockCols, InnerPanel, typename internal::traits<XprType>::StorageKind>
-{
- typedef BlockImpl<XprType, BlockRows, BlockCols, InnerPanel, typename internal::traits<XprType>::StorageKind> Impl;
- public:
- //typedef typename Impl::Base Base;
- typedef Impl Base;
- EIGEN_GENERIC_PUBLIC_INTERFACE(Block)
- EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block)
-
- /** Column or Row constructor
- */
- inline Block(XprType& xpr, Index i) : Impl(xpr,i)
- {
- eigen_assert( (i>=0) && (
- ((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && i<xpr.rows())
- ||((BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) && i<xpr.cols())));
- }
-
- /** Fixed-size constructor
- */
- inline Block(XprType& xpr, Index a_startRow, Index a_startCol)
- : Impl(xpr, a_startRow, a_startCol)
- {
- EIGEN_STATIC_ASSERT(RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic,THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE)
- eigen_assert(a_startRow >= 0 && BlockRows >= 1 && a_startRow + BlockRows <= xpr.rows()
- && a_startCol >= 0 && BlockCols >= 1 && a_startCol + BlockCols <= xpr.cols());
- }
-
- /** Dynamic-size constructor
- */
- inline Block(XprType& xpr,
- Index a_startRow, Index a_startCol,
- Index blockRows, Index blockCols)
- : Impl(xpr, a_startRow, a_startCol, blockRows, blockCols)
- {
- eigen_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==blockRows)
- && (ColsAtCompileTime==Dynamic || ColsAtCompileTime==blockCols));
- eigen_assert(a_startRow >= 0 && blockRows >= 0 && a_startRow <= xpr.rows() - blockRows
- && a_startCol >= 0 && blockCols >= 0 && a_startCol <= xpr.cols() - blockCols);
- }
-};
-
-// The generic default implementation for dense block simplu forward to the internal::BlockImpl_dense
-// that must be specialized for direct and non-direct access...
-template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
-class BlockImpl<XprType, BlockRows, BlockCols, InnerPanel, Dense>
- : public internal::BlockImpl_dense<XprType, BlockRows, BlockCols, InnerPanel>
-{
- typedef internal::BlockImpl_dense<XprType, BlockRows, BlockCols, InnerPanel> Impl;
- typedef typename XprType::Index Index;
- public:
- typedef Impl Base;
- EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl)
- inline BlockImpl(XprType& xpr, Index i) : Impl(xpr,i) {}
- inline BlockImpl(XprType& xpr, Index a_startRow, Index a_startCol) : Impl(xpr, a_startRow, a_startCol) {}
- inline BlockImpl(XprType& xpr, Index a_startRow, Index a_startCol, Index blockRows, Index blockCols)
- : Impl(xpr, a_startRow, a_startCol, blockRows, blockCols) {}
-};
-
-namespace internal {
-
-/** \internal Internal implementation of dense Blocks in the general case. */
-template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, bool HasDirectAccess> class BlockImpl_dense
- : public internal::dense_xpr_base<Block<XprType, BlockRows, BlockCols, InnerPanel> >::type
-{
- typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
- public:
-
- typedef typename internal::dense_xpr_base<BlockType>::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(BlockType)
- EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl_dense)
-
- class InnerIterator;
-
- /** Column or Row constructor
- */
- inline BlockImpl_dense(XprType& xpr, Index i)
- : m_xpr(xpr),
- // It is a row if and only if BlockRows==1 and BlockCols==XprType::ColsAtCompileTime,
- // and it is a column if and only if BlockRows==XprType::RowsAtCompileTime and BlockCols==1,
- // all other cases are invalid.
- // The case a 1x1 matrix seems ambiguous, but the result is the same anyway.
- m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0),
- m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0),
- m_blockRows(BlockRows==1 ? 1 : xpr.rows()),
- m_blockCols(BlockCols==1 ? 1 : xpr.cols())
- {}
-
- /** Fixed-size constructor
- */
- inline BlockImpl_dense(XprType& xpr, Index a_startRow, Index a_startCol)
- : m_xpr(xpr), m_startRow(a_startRow), m_startCol(a_startCol),
- m_blockRows(BlockRows), m_blockCols(BlockCols)
- {}
-
- /** Dynamic-size constructor
- */
- inline BlockImpl_dense(XprType& xpr,
- Index a_startRow, Index a_startCol,
- Index blockRows, Index blockCols)
- : m_xpr(xpr), m_startRow(a_startRow), m_startCol(a_startCol),
- m_blockRows(blockRows), m_blockCols(blockCols)
- {}
-
- inline Index rows() const { return m_blockRows.value(); }
- inline Index cols() const { return m_blockCols.value(); }
-
- inline Scalar& coeffRef(Index rowId, Index colId)
- {
- EIGEN_STATIC_ASSERT_LVALUE(XprType)
- return m_xpr.const_cast_derived()
- .coeffRef(rowId + m_startRow.value(), colId + m_startCol.value());
- }
-
- inline const Scalar& coeffRef(Index rowId, Index colId) const
- {
- return m_xpr.derived()
- .coeffRef(rowId + m_startRow.value(), colId + m_startCol.value());
- }
-
- EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index rowId, Index colId) const
- {
- return m_xpr.coeff(rowId + m_startRow.value(), colId + m_startCol.value());
- }
-
- inline Scalar& coeffRef(Index index)
- {
- EIGEN_STATIC_ASSERT_LVALUE(XprType)
- return m_xpr.const_cast_derived()
- .coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
- m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
- }
-
- inline const Scalar& coeffRef(Index index) const
- {
- return m_xpr.const_cast_derived()
- .coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
- m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
- }
-
- inline const CoeffReturnType coeff(Index index) const
- {
- return m_xpr
- .coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
- m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
- }
-
- template<int LoadMode>
- inline PacketScalar packet(Index rowId, Index colId) const
- {
- return m_xpr.template packet<Unaligned>
- (rowId + m_startRow.value(), colId + m_startCol.value());
- }
-
- template<int LoadMode>
- inline void writePacket(Index rowId, Index colId, const PacketScalar& val)
- {
- m_xpr.const_cast_derived().template writePacket<Unaligned>
- (rowId + m_startRow.value(), colId + m_startCol.value(), val);
- }
-
- template<int LoadMode>
- inline PacketScalar packet(Index index) const
- {
- return m_xpr.template packet<Unaligned>
- (m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
- m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
- }
-
- template<int LoadMode>
- inline void writePacket(Index index, const PacketScalar& val)
- {
- m_xpr.const_cast_derived().template writePacket<Unaligned>
- (m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
- m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0), val);
- }
-
- #ifdef EIGEN_PARSED_BY_DOXYGEN
- /** \sa MapBase::data() */
- inline const Scalar* data() const;
- inline Index innerStride() const;
- inline Index outerStride() const;
- #endif
-
- const typename internal::remove_all<typename XprType::Nested>::type& nestedExpression() const
- {
- return m_xpr;
- }
-
- Index startRow() const
- {
- return m_startRow.value();
- }
-
- Index startCol() const
- {
- return m_startCol.value();
- }
-
- protected:
-
- const typename XprType::Nested m_xpr;
- const internal::variable_if_dynamic<Index, XprType::RowsAtCompileTime == 1 ? 0 : Dynamic> m_startRow;
- const internal::variable_if_dynamic<Index, XprType::ColsAtCompileTime == 1 ? 0 : Dynamic> m_startCol;
- const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_blockRows;
- const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_blockCols;
-};
-
-/** \internal Internal implementation of dense Blocks in the direct access case.*/
-template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
-class BlockImpl_dense<XprType,BlockRows,BlockCols, InnerPanel,true>
- : public MapBase<Block<XprType, BlockRows, BlockCols, InnerPanel> >
-{
- typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
- public:
-
- typedef MapBase<BlockType> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(BlockType)
- EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl_dense)
-
- /** Column or Row constructor
- */
- inline BlockImpl_dense(XprType& xpr, Index i)
- : Base(internal::const_cast_ptr(&xpr.coeffRef(
- (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0,
- (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0)),
- BlockRows==1 ? 1 : xpr.rows(),
- BlockCols==1 ? 1 : xpr.cols()),
- m_xpr(xpr)
- {
- init();
- }
-
- /** Fixed-size constructor
- */
- inline BlockImpl_dense(XprType& xpr, Index startRow, Index startCol)
- : Base(internal::const_cast_ptr(&xpr.coeffRef(startRow,startCol))), m_xpr(xpr)
- {
- init();
- }
-
- /** Dynamic-size constructor
- */
- inline BlockImpl_dense(XprType& xpr,
- Index startRow, Index startCol,
- Index blockRows, Index blockCols)
- : Base(internal::const_cast_ptr(&xpr.coeffRef(startRow,startCol)), blockRows, blockCols),
- m_xpr(xpr)
- {
- init();
- }
-
- const typename internal::remove_all<typename XprType::Nested>::type& nestedExpression() const
- {
- return m_xpr;
- }
-
- /** \sa MapBase::innerStride() */
- inline Index innerStride() const
- {
- return internal::traits<BlockType>::HasSameStorageOrderAsXprType
- ? m_xpr.innerStride()
- : m_xpr.outerStride();
- }
-
- /** \sa MapBase::outerStride() */
- inline Index outerStride() const
- {
- return m_outerStride;
- }
-
- #ifndef __SUNPRO_CC
- // FIXME sunstudio is not friendly with the above friend...
- // META-FIXME there is no 'friend' keyword around here. Is this obsolete?
- protected:
- #endif
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** \internal used by allowAligned() */
- inline BlockImpl_dense(XprType& xpr, const Scalar* data, Index blockRows, Index blockCols)
- : Base(data, blockRows, blockCols), m_xpr(xpr)
- {
- init();
- }
- #endif
-
- protected:
- void init()
- {
- m_outerStride = internal::traits<BlockType>::HasSameStorageOrderAsXprType
- ? m_xpr.outerStride()
- : m_xpr.innerStride();
- }
-
- typename XprType::Nested m_xpr;
- Index m_outerStride;
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_BLOCK_H
diff --git a/src/Eigen/src/Core/BooleanRedux.h b/src/Eigen/src/Core/BooleanRedux.h
deleted file mode 100644
index be9f48a..0000000
--- a/src/Eigen/src/Core/BooleanRedux.h
+++ /dev/null
@@ -1,154 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ALLANDANY_H
-#define EIGEN_ALLANDANY_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename Derived, int UnrollCount>
-struct all_unroller
-{
- enum {
- col = (UnrollCount-1) / Derived::RowsAtCompileTime,
- row = (UnrollCount-1) % Derived::RowsAtCompileTime
- };
-
- static inline bool run(const Derived &mat)
- {
- return all_unroller<Derived, UnrollCount-1>::run(mat) && mat.coeff(row, col);
- }
-};
-
-template<typename Derived>
-struct all_unroller<Derived, 0>
-{
- static inline bool run(const Derived &/*mat*/) { return true; }
-};
-
-template<typename Derived>
-struct all_unroller<Derived, Dynamic>
-{
- static inline bool run(const Derived &) { return false; }
-};
-
-template<typename Derived, int UnrollCount>
-struct any_unroller
-{
- enum {
- col = (UnrollCount-1) / Derived::RowsAtCompileTime,
- row = (UnrollCount-1) % Derived::RowsAtCompileTime
- };
-
- static inline bool run(const Derived &mat)
- {
- return any_unroller<Derived, UnrollCount-1>::run(mat) || mat.coeff(row, col);
- }
-};
-
-template<typename Derived>
-struct any_unroller<Derived, 0>
-{
- static inline bool run(const Derived & /*mat*/) { return false; }
-};
-
-template<typename Derived>
-struct any_unroller<Derived, Dynamic>
-{
- static inline bool run(const Derived &) { return false; }
-};
-
-} // end namespace internal
-
-/** \returns true if all coefficients are true
- *
- * Example: \include MatrixBase_all.cpp
- * Output: \verbinclude MatrixBase_all.out
- *
- * \sa any(), Cwise::operator<()
- */
-template<typename Derived>
-inline bool DenseBase<Derived>::all() const
-{
- enum {
- unroll = SizeAtCompileTime != Dynamic
- && CoeffReadCost != Dynamic
- && NumTraits<Scalar>::AddCost != Dynamic
- && SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
- };
- if(unroll)
- return internal::all_unroller<Derived, unroll ? int(SizeAtCompileTime) : Dynamic>::run(derived());
- else
- {
- for(Index j = 0; j < cols(); ++j)
- for(Index i = 0; i < rows(); ++i)
- if (!coeff(i, j)) return false;
- return true;
- }
-}
-
-/** \returns true if at least one coefficient is true
- *
- * \sa all()
- */
-template<typename Derived>
-inline bool DenseBase<Derived>::any() const
-{
- enum {
- unroll = SizeAtCompileTime != Dynamic
- && CoeffReadCost != Dynamic
- && NumTraits<Scalar>::AddCost != Dynamic
- && SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
- };
- if(unroll)
- return internal::any_unroller<Derived, unroll ? int(SizeAtCompileTime) : Dynamic>::run(derived());
- else
- {
- for(Index j = 0; j < cols(); ++j)
- for(Index i = 0; i < rows(); ++i)
- if (coeff(i, j)) return true;
- return false;
- }
-}
-
-/** \returns the number of coefficients which evaluate to true
- *
- * \sa all(), any()
- */
-template<typename Derived>
-inline typename DenseBase<Derived>::Index DenseBase<Derived>::count() const
-{
- return derived().template cast<bool>().template cast<Index>().sum();
-}
-
-/** \returns true is \c *this contains at least one Not A Number (NaN).
- *
- * \sa allFinite()
- */
-template<typename Derived>
-inline bool DenseBase<Derived>::hasNaN() const
-{
- return !((derived().array()==derived().array()).all());
-}
-
-/** \returns true if \c *this contains only finite numbers, i.e., no NaN and no +/-INF values.
- *
- * \sa hasNaN()
- */
-template<typename Derived>
-inline bool DenseBase<Derived>::allFinite() const
-{
- return !((derived()-derived()).hasNaN());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_ALLANDANY_H
diff --git a/src/Eigen/src/Core/CMakeLists.txt b/src/Eigen/src/Core/CMakeLists.txt
deleted file mode 100644
index 2346fc2..0000000
--- a/src/Eigen/src/Core/CMakeLists.txt
+++ /dev/null
@@ -1,10 +0,0 @@
-FILE(GLOB Eigen_Core_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Core_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core COMPONENT Devel
- )
-
-ADD_SUBDIRECTORY(products)
-ADD_SUBDIRECTORY(util)
-ADD_SUBDIRECTORY(arch)
diff --git a/src/Eigen/src/Core/CommaInitializer.h b/src/Eigen/src/Core/CommaInitializer.h
deleted file mode 100644
index a036d8c..0000000
--- a/src/Eigen/src/Core/CommaInitializer.h
+++ /dev/null
@@ -1,154 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COMMAINITIALIZER_H
-#define EIGEN_COMMAINITIALIZER_H
-
-namespace Eigen {
-
-/** \class CommaInitializer
- * \ingroup Core_Module
- *
- * \brief Helper class used by the comma initializer operator
- *
- * This class is internally used to implement the comma initializer feature. It is
- * the return type of MatrixBase::operator<<, and most of the time this is the only
- * way it is used.
- *
- * \sa \ref MatrixBaseCommaInitRef "MatrixBase::operator<<", CommaInitializer::finished()
- */
-template<typename XprType>
-struct CommaInitializer
-{
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::Index Index;
-
- inline CommaInitializer(XprType& xpr, const Scalar& s)
- : m_xpr(xpr), m_row(0), m_col(1), m_currentBlockRows(1)
- {
- m_xpr.coeffRef(0,0) = s;
- }
-
- template<typename OtherDerived>
- inline CommaInitializer(XprType& xpr, const DenseBase<OtherDerived>& other)
- : m_xpr(xpr), m_row(0), m_col(other.cols()), m_currentBlockRows(other.rows())
- {
- m_xpr.block(0, 0, other.rows(), other.cols()) = other;
- }
-
- /* Copy/Move constructor which transfers ownership. This is crucial in
- * absence of return value optimization to avoid assertions during destruction. */
- // FIXME in C++11 mode this could be replaced by a proper RValue constructor
- inline CommaInitializer(const CommaInitializer& o)
- : m_xpr(o.m_xpr), m_row(o.m_row), m_col(o.m_col), m_currentBlockRows(o.m_currentBlockRows) {
- // Mark original object as finished. In absence of R-value references we need to const_cast:
- const_cast<CommaInitializer&>(o).m_row = m_xpr.rows();
- const_cast<CommaInitializer&>(o).m_col = m_xpr.cols();
- const_cast<CommaInitializer&>(o).m_currentBlockRows = 0;
- }
-
- /* inserts a scalar value in the target matrix */
- CommaInitializer& operator,(const Scalar& s)
- {
- if (m_col==m_xpr.cols())
- {
- m_row+=m_currentBlockRows;
- m_col = 0;
- m_currentBlockRows = 1;
- eigen_assert(m_row<m_xpr.rows()
- && "Too many rows passed to comma initializer (operator<<)");
- }
- eigen_assert(m_col<m_xpr.cols()
- && "Too many coefficients passed to comma initializer (operator<<)");
- eigen_assert(m_currentBlockRows==1);
- m_xpr.coeffRef(m_row, m_col++) = s;
- return *this;
- }
-
- /* inserts a matrix expression in the target matrix */
- template<typename OtherDerived>
- CommaInitializer& operator,(const DenseBase<OtherDerived>& other)
- {
- if(other.cols()==0 || other.rows()==0)
- return *this;
- if (m_col==m_xpr.cols())
- {
- m_row+=m_currentBlockRows;
- m_col = 0;
- m_currentBlockRows = other.rows();
- eigen_assert(m_row+m_currentBlockRows<=m_xpr.rows()
- && "Too many rows passed to comma initializer (operator<<)");
- }
- eigen_assert(m_col<m_xpr.cols()
- && "Too many coefficients passed to comma initializer (operator<<)");
- eigen_assert(m_currentBlockRows==other.rows());
- if (OtherDerived::SizeAtCompileTime != Dynamic)
- m_xpr.template block<OtherDerived::RowsAtCompileTime != Dynamic ? OtherDerived::RowsAtCompileTime : 1,
- OtherDerived::ColsAtCompileTime != Dynamic ? OtherDerived::ColsAtCompileTime : 1>
- (m_row, m_col) = other;
- else
- m_xpr.block(m_row, m_col, other.rows(), other.cols()) = other;
- m_col += other.cols();
- return *this;
- }
-
- inline ~CommaInitializer()
- {
- eigen_assert((m_row+m_currentBlockRows) == m_xpr.rows()
- && m_col == m_xpr.cols()
- && "Too few coefficients passed to comma initializer (operator<<)");
- }
-
- /** \returns the built matrix once all its coefficients have been set.
- * Calling finished is 100% optional. Its purpose is to write expressions
- * like this:
- * \code
- * quaternion.fromRotationMatrix((Matrix3f() << axis0, axis1, axis2).finished());
- * \endcode
- */
- inline XprType& finished() { return m_xpr; }
-
- XprType& m_xpr; // target expression
- Index m_row; // current row id
- Index m_col; // current col id
- Index m_currentBlockRows; // current block height
-};
-
-/** \anchor MatrixBaseCommaInitRef
- * Convenient operator to set the coefficients of a matrix.
- *
- * The coefficients must be provided in a row major order and exactly match
- * the size of the matrix. Otherwise an assertion is raised.
- *
- * Example: \include MatrixBase_set.cpp
- * Output: \verbinclude MatrixBase_set.out
- *
- * \note According the c++ standard, the argument expressions of this comma initializer are evaluated in arbitrary order.
- *
- * \sa CommaInitializer::finished(), class CommaInitializer
- */
-template<typename Derived>
-inline CommaInitializer<Derived> DenseBase<Derived>::operator<< (const Scalar& s)
-{
- return CommaInitializer<Derived>(*static_cast<Derived*>(this), s);
-}
-
-/** \sa operator<<(const Scalar&) */
-template<typename Derived>
-template<typename OtherDerived>
-inline CommaInitializer<Derived>
-DenseBase<Derived>::operator<<(const DenseBase<OtherDerived>& other)
-{
- return CommaInitializer<Derived>(*static_cast<Derived *>(this), other);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_COMMAINITIALIZER_H
diff --git a/src/Eigen/src/Core/CoreIterators.h b/src/Eigen/src/Core/CoreIterators.h
deleted file mode 100644
index 6da4683..0000000
--- a/src/Eigen/src/Core/CoreIterators.h
+++ /dev/null
@@ -1,61 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COREITERATORS_H
-#define EIGEN_COREITERATORS_H
-
-namespace Eigen {
-
-/* This file contains the respective InnerIterator definition of the expressions defined in Eigen/Core
- */
-
-/** \ingroup SparseCore_Module
- * \class InnerIterator
- * \brief An InnerIterator allows to loop over the element of a sparse (or dense) matrix or expression
- *
- * todo
- */
-
-// generic version for dense matrix and expressions
-template<typename Derived> class DenseBase<Derived>::InnerIterator
-{
- protected:
- typedef typename Derived::Scalar Scalar;
- typedef typename Derived::Index Index;
-
- enum { IsRowMajor = (Derived::Flags&RowMajorBit)==RowMajorBit };
- public:
- EIGEN_STRONG_INLINE InnerIterator(const Derived& expr, Index outer)
- : m_expression(expr), m_inner(0), m_outer(outer), m_end(expr.innerSize())
- {}
-
- EIGEN_STRONG_INLINE Scalar value() const
- {
- return (IsRowMajor) ? m_expression.coeff(m_outer, m_inner)
- : m_expression.coeff(m_inner, m_outer);
- }
-
- EIGEN_STRONG_INLINE InnerIterator& operator++() { m_inner++; return *this; }
-
- EIGEN_STRONG_INLINE Index index() const { return m_inner; }
- inline Index row() const { return IsRowMajor ? m_outer : index(); }
- inline Index col() const { return IsRowMajor ? index() : m_outer; }
-
- EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; }
-
- protected:
- const Derived& m_expression;
- Index m_inner;
- const Index m_outer;
- const Index m_end;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_COREITERATORS_H
diff --git a/src/Eigen/src/Core/CwiseBinaryOp.h b/src/Eigen/src/Core/CwiseBinaryOp.h
deleted file mode 100644
index 586f77a..0000000
--- a/src/Eigen/src/Core/CwiseBinaryOp.h
+++ /dev/null
@@ -1,229 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CWISE_BINARY_OP_H
-#define EIGEN_CWISE_BINARY_OP_H
-
-namespace Eigen {
-
-/** \class CwiseBinaryOp
- * \ingroup Core_Module
- *
- * \brief Generic expression where a coefficient-wise binary operator is applied to two expressions
- *
- * \param BinaryOp template functor implementing the operator
- * \param Lhs the type of the left-hand side
- * \param Rhs the type of the right-hand side
- *
- * This class represents an expression where a coefficient-wise binary operator is applied to two expressions.
- * It is the return type of binary operators, by which we mean only those binary operators where
- * both the left-hand side and the right-hand side are Eigen expressions.
- * For example, the return type of matrix1+matrix2 is a CwiseBinaryOp.
- *
- * Most of the time, this is the only way that it is used, so you typically don't have to name
- * CwiseBinaryOp types explicitly.
- *
- * \sa MatrixBase::binaryExpr(const MatrixBase<OtherDerived> &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp
- */
-
-namespace internal {
-template<typename BinaryOp, typename Lhs, typename Rhs>
-struct traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
-{
- // we must not inherit from traits<Lhs> since it has
- // the potential to cause problems with MSVC
- typedef typename remove_all<Lhs>::type Ancestor;
- typedef typename traits<Ancestor>::XprKind XprKind;
- enum {
- RowsAtCompileTime = traits<Ancestor>::RowsAtCompileTime,
- ColsAtCompileTime = traits<Ancestor>::ColsAtCompileTime,
- MaxRowsAtCompileTime = traits<Ancestor>::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = traits<Ancestor>::MaxColsAtCompileTime
- };
-
- // even though we require Lhs and Rhs to have the same scalar type (see CwiseBinaryOp constructor),
- // we still want to handle the case when the result type is different.
- typedef typename result_of<
- BinaryOp(
- typename Lhs::Scalar,
- typename Rhs::Scalar
- )
- >::type Scalar;
- typedef typename promote_storage_type<typename traits<Lhs>::StorageKind,
- typename traits<Rhs>::StorageKind>::ret StorageKind;
- typedef typename promote_index_type<typename traits<Lhs>::Index,
- typename traits<Rhs>::Index>::type Index;
- typedef typename Lhs::Nested LhsNested;
- typedef typename Rhs::Nested RhsNested;
- typedef typename remove_reference<LhsNested>::type _LhsNested;
- typedef typename remove_reference<RhsNested>::type _RhsNested;
- enum {
- LhsCoeffReadCost = _LhsNested::CoeffReadCost,
- RhsCoeffReadCost = _RhsNested::CoeffReadCost,
- LhsFlags = _LhsNested::Flags,
- RhsFlags = _RhsNested::Flags,
- SameType = is_same<typename _LhsNested::Scalar,typename _RhsNested::Scalar>::value,
- StorageOrdersAgree = (int(Lhs::Flags)&RowMajorBit)==(int(Rhs::Flags)&RowMajorBit),
- Flags0 = (int(LhsFlags) | int(RhsFlags)) & (
- HereditaryBits
- | (int(LhsFlags) & int(RhsFlags) &
- ( AlignedBit
- | (StorageOrdersAgree ? LinearAccessBit : 0)
- | (functor_traits<BinaryOp>::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0)
- )
- )
- ),
- Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit),
- CoeffReadCost = LhsCoeffReadCost + RhsCoeffReadCost + functor_traits<BinaryOp>::Cost
- };
-};
-} // end namespace internal
-
-// we require Lhs and Rhs to have the same scalar type. Currently there is no example of a binary functor
-// that would take two operands of different types. If there were such an example, then this check should be
-// moved to the BinaryOp functors, on a per-case basis. This would however require a change in the BinaryOp functors, as
-// currently they take only one typename Scalar template parameter.
-// It is tempting to always allow mixing different types but remember that this is often impossible in the vectorized paths.
-// So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to
-// add together a float matrix and a double matrix.
-#define EIGEN_CHECK_BINARY_COMPATIBILIY(BINOP,LHS,RHS) \
- EIGEN_STATIC_ASSERT((internal::functor_is_product_like<BINOP>::ret \
- ? int(internal::scalar_product_traits<LHS, RHS>::Defined) \
- : int(internal::is_same<LHS, RHS>::value)), \
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-
-template<typename BinaryOp, typename Lhs, typename Rhs, typename StorageKind>
-class CwiseBinaryOpImpl;
-
-template<typename BinaryOp, typename Lhs, typename Rhs>
-class CwiseBinaryOp : internal::no_assignment_operator,
- public CwiseBinaryOpImpl<
- BinaryOp, Lhs, Rhs,
- typename internal::promote_storage_type<typename internal::traits<Lhs>::StorageKind,
- typename internal::traits<Rhs>::StorageKind>::ret>
-{
- public:
-
- typedef typename CwiseBinaryOpImpl<
- BinaryOp, Lhs, Rhs,
- typename internal::promote_storage_type<typename internal::traits<Lhs>::StorageKind,
- typename internal::traits<Rhs>::StorageKind>::ret>::Base Base;
- EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseBinaryOp)
-
- typedef typename internal::nested<Lhs>::type LhsNested;
- typedef typename internal::nested<Rhs>::type RhsNested;
- typedef typename internal::remove_reference<LhsNested>::type _LhsNested;
- typedef typename internal::remove_reference<RhsNested>::type _RhsNested;
-
- EIGEN_STRONG_INLINE CwiseBinaryOp(const Lhs& aLhs, const Rhs& aRhs, const BinaryOp& func = BinaryOp())
- : m_lhs(aLhs), m_rhs(aRhs), m_functor(func)
- {
- EIGEN_CHECK_BINARY_COMPATIBILIY(BinaryOp,typename Lhs::Scalar,typename Rhs::Scalar);
- // require the sizes to match
- EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Lhs, Rhs)
- eigen_assert(aLhs.rows() == aRhs.rows() && aLhs.cols() == aRhs.cols());
- }
-
- EIGEN_STRONG_INLINE Index rows() const {
- // return the fixed size type if available to enable compile time optimizations
- if (internal::traits<typename internal::remove_all<LhsNested>::type>::RowsAtCompileTime==Dynamic)
- return m_rhs.rows();
- else
- return m_lhs.rows();
- }
- EIGEN_STRONG_INLINE Index cols() const {
- // return the fixed size type if available to enable compile time optimizations
- if (internal::traits<typename internal::remove_all<LhsNested>::type>::ColsAtCompileTime==Dynamic)
- return m_rhs.cols();
- else
- return m_lhs.cols();
- }
-
- /** \returns the left hand side nested expression */
- const _LhsNested& lhs() const { return m_lhs; }
- /** \returns the right hand side nested expression */
- const _RhsNested& rhs() const { return m_rhs; }
- /** \returns the functor representing the binary operation */
- const BinaryOp& functor() const { return m_functor; }
-
- protected:
- LhsNested m_lhs;
- RhsNested m_rhs;
- const BinaryOp m_functor;
-};
-
-template<typename BinaryOp, typename Lhs, typename Rhs>
-class CwiseBinaryOpImpl<BinaryOp, Lhs, Rhs, Dense>
- : public internal::dense_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type
-{
- typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> Derived;
- public:
-
- typedef typename internal::dense_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE( Derived )
-
- EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const
- {
- return derived().functor()(derived().lhs().coeff(rowId, colId),
- derived().rhs().coeff(rowId, colId));
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const
- {
- return derived().functor().packetOp(derived().lhs().template packet<LoadMode>(rowId, colId),
- derived().rhs().template packet<LoadMode>(rowId, colId));
- }
-
- EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
- {
- return derived().functor()(derived().lhs().coeff(index),
- derived().rhs().coeff(index));
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
- {
- return derived().functor().packetOp(derived().lhs().template packet<LoadMode>(index),
- derived().rhs().template packet<LoadMode>(index));
- }
-};
-
-/** replaces \c *this by \c *this - \a other.
- *
- * \returns a reference to \c *this
- */
-template<typename Derived>
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE Derived &
-MatrixBase<Derived>::operator-=(const MatrixBase<OtherDerived> &other)
-{
- SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, Derived, OtherDerived> tmp(derived());
- tmp = other.derived();
- return derived();
-}
-
-/** replaces \c *this by \c *this + \a other.
- *
- * \returns a reference to \c *this
- */
-template<typename Derived>
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE Derived &
-MatrixBase<Derived>::operator+=(const MatrixBase<OtherDerived>& other)
-{
- SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, Derived, OtherDerived> tmp(derived());
- tmp = other.derived();
- return derived();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_CWISE_BINARY_OP_H
diff --git a/src/Eigen/src/Core/CwiseNullaryOp.h b/src/Eigen/src/Core/CwiseNullaryOp.h
deleted file mode 100644
index a93bab2..0000000
--- a/src/Eigen/src/Core/CwiseNullaryOp.h
+++ /dev/null
@@ -1,864 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CWISE_NULLARY_OP_H
-#define EIGEN_CWISE_NULLARY_OP_H
-
-namespace Eigen {
-
-/** \class CwiseNullaryOp
- * \ingroup Core_Module
- *
- * \brief Generic expression of a matrix where all coefficients are defined by a functor
- *
- * \param NullaryOp template functor implementing the operator
- * \param PlainObjectType the underlying plain matrix/array type
- *
- * This class represents an expression of a generic nullary operator.
- * It is the return type of the Ones(), Zero(), Constant(), Identity() and Random() methods,
- * and most of the time this is the only way it is used.
- *
- * However, if you want to write a function returning such an expression, you
- * will need to use this class.
- *
- * \sa class CwiseUnaryOp, class CwiseBinaryOp, DenseBase::NullaryExpr()
- */
-
-namespace internal {
-template<typename NullaryOp, typename PlainObjectType>
-struct traits<CwiseNullaryOp<NullaryOp, PlainObjectType> > : traits<PlainObjectType>
-{
- enum {
- Flags = (traits<PlainObjectType>::Flags
- & ( HereditaryBits
- | (functor_has_linear_access<NullaryOp>::ret ? LinearAccessBit : 0)
- | (functor_traits<NullaryOp>::PacketAccess ? PacketAccessBit : 0)))
- | (functor_traits<NullaryOp>::IsRepeatable ? 0 : EvalBeforeNestingBit),
- CoeffReadCost = functor_traits<NullaryOp>::Cost
- };
-};
-}
-
-template<typename NullaryOp, typename PlainObjectType>
-class CwiseNullaryOp : internal::no_assignment_operator,
- public internal::dense_xpr_base< CwiseNullaryOp<NullaryOp, PlainObjectType> >::type
-{
- public:
-
- typedef typename internal::dense_xpr_base<CwiseNullaryOp>::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(CwiseNullaryOp)
-
- CwiseNullaryOp(Index nbRows, Index nbCols, const NullaryOp& func = NullaryOp())
- : m_rows(nbRows), m_cols(nbCols), m_functor(func)
- {
- eigen_assert(nbRows >= 0
- && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == nbRows)
- && nbCols >= 0
- && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == nbCols));
- }
-
- EIGEN_STRONG_INLINE Index rows() const { return m_rows.value(); }
- EIGEN_STRONG_INLINE Index cols() const { return m_cols.value(); }
-
- EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const
- {
- return m_functor(rowId, colId);
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const
- {
- return m_functor.packetOp(rowId, colId);
- }
-
- EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
- {
- return m_functor(index);
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
- {
- return m_functor.packetOp(index);
- }
-
- /** \returns the functor representing the nullary operation */
- const NullaryOp& functor() const { return m_functor; }
-
- protected:
- const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_rows;
- const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_cols;
- const NullaryOp m_functor;
-};
-
-
-/** \returns an expression of a matrix defined by a custom functor \a func
- *
- * The parameters \a rows and \a cols are the number of rows and of columns of
- * the returned matrix. Must be compatible with this MatrixBase type.
- *
- * This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
- * it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
- * instead.
- *
- * The template parameter \a CustomNullaryOp is the type of the functor.
- *
- * \sa class CwiseNullaryOp
- */
-template<typename Derived>
-template<typename CustomNullaryOp>
-EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, Derived>
-DenseBase<Derived>::NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func)
-{
- return CwiseNullaryOp<CustomNullaryOp, Derived>(rows, cols, func);
-}
-
-/** \returns an expression of a matrix defined by a custom functor \a func
- *
- * The parameter \a size is the size of the returned vector.
- * Must be compatible with this MatrixBase type.
- *
- * \only_for_vectors
- *
- * This variant is meant to be used for dynamic-size vector types. For fixed-size types,
- * it is redundant to pass \a size as argument, so Zero() should be used
- * instead.
- *
- * The template parameter \a CustomNullaryOp is the type of the functor.
- *
- * \sa class CwiseNullaryOp
- */
-template<typename Derived>
-template<typename CustomNullaryOp>
-EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, Derived>
-DenseBase<Derived>::NullaryExpr(Index size, const CustomNullaryOp& func)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- if(RowsAtCompileTime == 1) return CwiseNullaryOp<CustomNullaryOp, Derived>(1, size, func);
- else return CwiseNullaryOp<CustomNullaryOp, Derived>(size, 1, func);
-}
-
-/** \returns an expression of a matrix defined by a custom functor \a func
- *
- * This variant is only for fixed-size DenseBase types. For dynamic-size types, you
- * need to use the variants taking size arguments.
- *
- * The template parameter \a CustomNullaryOp is the type of the functor.
- *
- * \sa class CwiseNullaryOp
- */
-template<typename Derived>
-template<typename CustomNullaryOp>
-EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, Derived>
-DenseBase<Derived>::NullaryExpr(const CustomNullaryOp& func)
-{
- return CwiseNullaryOp<CustomNullaryOp, Derived>(RowsAtCompileTime, ColsAtCompileTime, func);
-}
-
-/** \returns an expression of a constant matrix of value \a value
- *
- * The parameters \a nbRows and \a nbCols are the number of rows and of columns of
- * the returned matrix. Must be compatible with this DenseBase type.
- *
- * This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
- * it is redundant to pass \a nbRows and \a nbCols as arguments, so Zero() should be used
- * instead.
- *
- * The template parameter \a CustomNullaryOp is the type of the functor.
- *
- * \sa class CwiseNullaryOp
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
-DenseBase<Derived>::Constant(Index nbRows, Index nbCols, const Scalar& value)
-{
- return DenseBase<Derived>::NullaryExpr(nbRows, nbCols, internal::scalar_constant_op<Scalar>(value));
-}
-
-/** \returns an expression of a constant matrix of value \a value
- *
- * The parameter \a size is the size of the returned vector.
- * Must be compatible with this DenseBase type.
- *
- * \only_for_vectors
- *
- * This variant is meant to be used for dynamic-size vector types. For fixed-size types,
- * it is redundant to pass \a size as argument, so Zero() should be used
- * instead.
- *
- * The template parameter \a CustomNullaryOp is the type of the functor.
- *
- * \sa class CwiseNullaryOp
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
-DenseBase<Derived>::Constant(Index size, const Scalar& value)
-{
- return DenseBase<Derived>::NullaryExpr(size, internal::scalar_constant_op<Scalar>(value));
-}
-
-/** \returns an expression of a constant matrix of value \a value
- *
- * This variant is only for fixed-size DenseBase types. For dynamic-size types, you
- * need to use the variants taking size arguments.
- *
- * The template parameter \a CustomNullaryOp is the type of the functor.
- *
- * \sa class CwiseNullaryOp
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
-DenseBase<Derived>::Constant(const Scalar& value)
-{
- EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
- return DenseBase<Derived>::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_constant_op<Scalar>(value));
-}
-
-/**
- * \brief Sets a linearly space vector.
- *
- * The function generates 'size' equally spaced values in the closed interval [low,high].
- * This particular version of LinSpaced() uses sequential access, i.e. vector access is
- * assumed to be a(0), a(1), ..., a(size). This assumption allows for better vectorization
- * and yields faster code than the random access version.
- *
- * When size is set to 1, a vector of length 1 containing 'high' is returned.
- *
- * \only_for_vectors
- *
- * Example: \include DenseBase_LinSpaced_seq.cpp
- * Output: \verbinclude DenseBase_LinSpaced_seq.out
- *
- * \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Index,Scalar,Scalar), CwiseNullaryOp
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename DenseBase<Derived>::SequentialLinSpacedReturnType
-DenseBase<Derived>::LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,false>(low,high,size));
-}
-
-/**
- * \copydoc DenseBase::LinSpaced(Sequential_t, Index, const Scalar&, const Scalar&)
- * Special version for fixed size types which does not require the size parameter.
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename DenseBase<Derived>::SequentialLinSpacedReturnType
-DenseBase<Derived>::LinSpaced(Sequential_t, const Scalar& low, const Scalar& high)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
- return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,false>(low,high,Derived::SizeAtCompileTime));
-}
-
-/**
- * \brief Sets a linearly space vector.
- *
- * The function generates 'size' equally spaced values in the closed interval [low,high].
- * When size is set to 1, a vector of length 1 containing 'high' is returned.
- *
- * \only_for_vectors
- *
- * Example: \include DenseBase_LinSpaced.cpp
- * Output: \verbinclude DenseBase_LinSpaced.out
- *
- * \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Sequential_t,Index,const Scalar&,const Scalar&,Index), CwiseNullaryOp
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
-DenseBase<Derived>::LinSpaced(Index size, const Scalar& low, const Scalar& high)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,true>(low,high,size));
-}
-
-/**
- * \copydoc DenseBase::LinSpaced(Index, const Scalar&, const Scalar&)
- * Special version for fixed size types which does not require the size parameter.
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
-DenseBase<Derived>::LinSpaced(const Scalar& low, const Scalar& high)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
- return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,true>(low,high,Derived::SizeAtCompileTime));
-}
-
-/** \returns true if all coefficients in this matrix are approximately equal to \a val, to within precision \a prec */
-template<typename Derived>
-bool DenseBase<Derived>::isApproxToConstant
-(const Scalar& val, const RealScalar& prec) const
-{
- for(Index j = 0; j < cols(); ++j)
- for(Index i = 0; i < rows(); ++i)
- if(!internal::isApprox(this->coeff(i, j), val, prec))
- return false;
- return true;
-}
-
-/** This is just an alias for isApproxToConstant().
- *
- * \returns true if all coefficients in this matrix are approximately equal to \a value, to within precision \a prec */
-template<typename Derived>
-bool DenseBase<Derived>::isConstant
-(const Scalar& val, const RealScalar& prec) const
-{
- return isApproxToConstant(val, prec);
-}
-
-/** Alias for setConstant(): sets all coefficients in this expression to \a val.
- *
- * \sa setConstant(), Constant(), class CwiseNullaryOp
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE void DenseBase<Derived>::fill(const Scalar& val)
-{
- setConstant(val);
-}
-
-/** Sets all coefficients in this expression to \a value.
- *
- * \sa fill(), setConstant(Index,const Scalar&), setConstant(Index,Index,const Scalar&), setZero(), setOnes(), Constant(), class CwiseNullaryOp, setZero(), setOnes()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setConstant(const Scalar& val)
-{
- return derived() = Constant(rows(), cols(), val);
-}
-
-/** Resizes to the given \a size, and sets all coefficients in this expression to the given \a value.
- *
- * \only_for_vectors
- *
- * Example: \include Matrix_setConstant_int.cpp
- * Output: \verbinclude Matrix_setConstant_int.out
- *
- * \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE Derived&
-PlainObjectBase<Derived>::setConstant(Index size, const Scalar& val)
-{
- resize(size);
- return setConstant(val);
-}
-
-/** Resizes to the given size, and sets all coefficients in this expression to the given \a value.
- *
- * \param nbRows the new number of rows
- * \param nbCols the new number of columns
- * \param val the value to which all coefficients are set
- *
- * Example: \include Matrix_setConstant_int_int.cpp
- * Output: \verbinclude Matrix_setConstant_int_int.out
- *
- * \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE Derived&
-PlainObjectBase<Derived>::setConstant(Index nbRows, Index nbCols, const Scalar& val)
-{
- resize(nbRows, nbCols);
- return setConstant(val);
-}
-
-/**
- * \brief Sets a linearly space vector.
- *
- * The function generates 'size' equally spaced values in the closed interval [low,high].
- * When size is set to 1, a vector of length 1 containing 'high' is returned.
- *
- * \only_for_vectors
- *
- * Example: \include DenseBase_setLinSpaced.cpp
- * Output: \verbinclude DenseBase_setLinSpaced.out
- *
- * \sa CwiseNullaryOp
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(Index newSize, const Scalar& low, const Scalar& high)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return derived() = Derived::NullaryExpr(newSize, internal::linspaced_op<Scalar,false>(low,high,newSize));
-}
-
-/**
- * \brief Sets a linearly space vector.
- *
- * The function fill *this with equally spaced values in the closed interval [low,high].
- * When size is set to 1, a vector of length 1 containing 'high' is returned.
- *
- * \only_for_vectors
- *
- * \sa setLinSpaced(Index, const Scalar&, const Scalar&), CwiseNullaryOp
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(const Scalar& low, const Scalar& high)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return setLinSpaced(size(), low, high);
-}
-
-// zero:
-
-/** \returns an expression of a zero matrix.
- *
- * The parameters \a rows and \a cols are the number of rows and of columns of
- * the returned matrix. Must be compatible with this MatrixBase type.
- *
- * This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
- * it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
- * instead.
- *
- * Example: \include MatrixBase_zero_int_int.cpp
- * Output: \verbinclude MatrixBase_zero_int_int.out
- *
- * \sa Zero(), Zero(Index)
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
-DenseBase<Derived>::Zero(Index nbRows, Index nbCols)
-{
- return Constant(nbRows, nbCols, Scalar(0));
-}
-
-/** \returns an expression of a zero vector.
- *
- * The parameter \a size is the size of the returned vector.
- * Must be compatible with this MatrixBase type.
- *
- * \only_for_vectors
- *
- * This variant is meant to be used for dynamic-size vector types. For fixed-size types,
- * it is redundant to pass \a size as argument, so Zero() should be used
- * instead.
- *
- * Example: \include MatrixBase_zero_int.cpp
- * Output: \verbinclude MatrixBase_zero_int.out
- *
- * \sa Zero(), Zero(Index,Index)
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
-DenseBase<Derived>::Zero(Index size)
-{
- return Constant(size, Scalar(0));
-}
-
-/** \returns an expression of a fixed-size zero matrix or vector.
- *
- * This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
- * need to use the variants taking size arguments.
- *
- * Example: \include MatrixBase_zero.cpp
- * Output: \verbinclude MatrixBase_zero.out
- *
- * \sa Zero(Index), Zero(Index,Index)
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
-DenseBase<Derived>::Zero()
-{
- return Constant(Scalar(0));
-}
-
-/** \returns true if *this is approximately equal to the zero matrix,
- * within the precision given by \a prec.
- *
- * Example: \include MatrixBase_isZero.cpp
- * Output: \verbinclude MatrixBase_isZero.out
- *
- * \sa class CwiseNullaryOp, Zero()
- */
-template<typename Derived>
-bool DenseBase<Derived>::isZero(const RealScalar& prec) const
-{
- for(Index j = 0; j < cols(); ++j)
- for(Index i = 0; i < rows(); ++i)
- if(!internal::isMuchSmallerThan(this->coeff(i, j), static_cast<Scalar>(1), prec))
- return false;
- return true;
-}
-
-/** Sets all coefficients in this expression to zero.
- *
- * Example: \include MatrixBase_setZero.cpp
- * Output: \verbinclude MatrixBase_setZero.out
- *
- * \sa class CwiseNullaryOp, Zero()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setZero()
-{
- return setConstant(Scalar(0));
-}
-
-/** Resizes to the given \a size, and sets all coefficients in this expression to zero.
- *
- * \only_for_vectors
- *
- * Example: \include Matrix_setZero_int.cpp
- * Output: \verbinclude Matrix_setZero_int.out
- *
- * \sa DenseBase::setZero(), setZero(Index,Index), class CwiseNullaryOp, DenseBase::Zero()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE Derived&
-PlainObjectBase<Derived>::setZero(Index newSize)
-{
- resize(newSize);
- return setConstant(Scalar(0));
-}
-
-/** Resizes to the given size, and sets all coefficients in this expression to zero.
- *
- * \param nbRows the new number of rows
- * \param nbCols the new number of columns
- *
- * Example: \include Matrix_setZero_int_int.cpp
- * Output: \verbinclude Matrix_setZero_int_int.out
- *
- * \sa DenseBase::setZero(), setZero(Index), class CwiseNullaryOp, DenseBase::Zero()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE Derived&
-PlainObjectBase<Derived>::setZero(Index nbRows, Index nbCols)
-{
- resize(nbRows, nbCols);
- return setConstant(Scalar(0));
-}
-
-// ones:
-
-/** \returns an expression of a matrix where all coefficients equal one.
- *
- * The parameters \a nbRows and \a nbCols are the number of rows and of columns of
- * the returned matrix. Must be compatible with this MatrixBase type.
- *
- * This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
- * it is redundant to pass \a rows and \a cols as arguments, so Ones() should be used
- * instead.
- *
- * Example: \include MatrixBase_ones_int_int.cpp
- * Output: \verbinclude MatrixBase_ones_int_int.out
- *
- * \sa Ones(), Ones(Index), isOnes(), class Ones
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
-DenseBase<Derived>::Ones(Index nbRows, Index nbCols)
-{
- return Constant(nbRows, nbCols, Scalar(1));
-}
-
-/** \returns an expression of a vector where all coefficients equal one.
- *
- * The parameter \a newSize is the size of the returned vector.
- * Must be compatible with this MatrixBase type.
- *
- * \only_for_vectors
- *
- * This variant is meant to be used for dynamic-size vector types. For fixed-size types,
- * it is redundant to pass \a size as argument, so Ones() should be used
- * instead.
- *
- * Example: \include MatrixBase_ones_int.cpp
- * Output: \verbinclude MatrixBase_ones_int.out
- *
- * \sa Ones(), Ones(Index,Index), isOnes(), class Ones
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
-DenseBase<Derived>::Ones(Index newSize)
-{
- return Constant(newSize, Scalar(1));
-}
-
-/** \returns an expression of a fixed-size matrix or vector where all coefficients equal one.
- *
- * This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
- * need to use the variants taking size arguments.
- *
- * Example: \include MatrixBase_ones.cpp
- * Output: \verbinclude MatrixBase_ones.out
- *
- * \sa Ones(Index), Ones(Index,Index), isOnes(), class Ones
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
-DenseBase<Derived>::Ones()
-{
- return Constant(Scalar(1));
-}
-
-/** \returns true if *this is approximately equal to the matrix where all coefficients
- * are equal to 1, within the precision given by \a prec.
- *
- * Example: \include MatrixBase_isOnes.cpp
- * Output: \verbinclude MatrixBase_isOnes.out
- *
- * \sa class CwiseNullaryOp, Ones()
- */
-template<typename Derived>
-bool DenseBase<Derived>::isOnes
-(const RealScalar& prec) const
-{
- return isApproxToConstant(Scalar(1), prec);
-}
-
-/** Sets all coefficients in this expression to one.
- *
- * Example: \include MatrixBase_setOnes.cpp
- * Output: \verbinclude MatrixBase_setOnes.out
- *
- * \sa class CwiseNullaryOp, Ones()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setOnes()
-{
- return setConstant(Scalar(1));
-}
-
-/** Resizes to the given \a newSize, and sets all coefficients in this expression to one.
- *
- * \only_for_vectors
- *
- * Example: \include Matrix_setOnes_int.cpp
- * Output: \verbinclude Matrix_setOnes_int.out
- *
- * \sa MatrixBase::setOnes(), setOnes(Index,Index), class CwiseNullaryOp, MatrixBase::Ones()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE Derived&
-PlainObjectBase<Derived>::setOnes(Index newSize)
-{
- resize(newSize);
- return setConstant(Scalar(1));
-}
-
-/** Resizes to the given size, and sets all coefficients in this expression to one.
- *
- * \param nbRows the new number of rows
- * \param nbCols the new number of columns
- *
- * Example: \include Matrix_setOnes_int_int.cpp
- * Output: \verbinclude Matrix_setOnes_int_int.out
- *
- * \sa MatrixBase::setOnes(), setOnes(Index), class CwiseNullaryOp, MatrixBase::Ones()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE Derived&
-PlainObjectBase<Derived>::setOnes(Index nbRows, Index nbCols)
-{
- resize(nbRows, nbCols);
- return setConstant(Scalar(1));
-}
-
-// Identity:
-
-/** \returns an expression of the identity matrix (not necessarily square).
- *
- * The parameters \a nbRows and \a nbCols are the number of rows and of columns of
- * the returned matrix. Must be compatible with this MatrixBase type.
- *
- * This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
- * it is redundant to pass \a rows and \a cols as arguments, so Identity() should be used
- * instead.
- *
- * Example: \include MatrixBase_identity_int_int.cpp
- * Output: \verbinclude MatrixBase_identity_int_int.out
- *
- * \sa Identity(), setIdentity(), isIdentity()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
-MatrixBase<Derived>::Identity(Index nbRows, Index nbCols)
-{
- return DenseBase<Derived>::NullaryExpr(nbRows, nbCols, internal::scalar_identity_op<Scalar>());
-}
-
-/** \returns an expression of the identity matrix (not necessarily square).
- *
- * This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
- * need to use the variant taking size arguments.
- *
- * Example: \include MatrixBase_identity.cpp
- * Output: \verbinclude MatrixBase_identity.out
- *
- * \sa Identity(Index,Index), setIdentity(), isIdentity()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
-MatrixBase<Derived>::Identity()
-{
- EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
- return MatrixBase<Derived>::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_identity_op<Scalar>());
-}
-
-/** \returns true if *this is approximately equal to the identity matrix
- * (not necessarily square),
- * within the precision given by \a prec.
- *
- * Example: \include MatrixBase_isIdentity.cpp
- * Output: \verbinclude MatrixBase_isIdentity.out
- *
- * \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), setIdentity()
- */
-template<typename Derived>
-bool MatrixBase<Derived>::isIdentity
-(const RealScalar& prec) const
-{
- for(Index j = 0; j < cols(); ++j)
- {
- for(Index i = 0; i < rows(); ++i)
- {
- if(i == j)
- {
- if(!internal::isApprox(this->coeff(i, j), static_cast<Scalar>(1), prec))
- return false;
- }
- else
- {
- if(!internal::isMuchSmallerThan(this->coeff(i, j), static_cast<RealScalar>(1), prec))
- return false;
- }
- }
- }
- return true;
-}
-
-namespace internal {
-
-template<typename Derived, bool Big = (Derived::SizeAtCompileTime>=16)>
-struct setIdentity_impl
-{
- static EIGEN_STRONG_INLINE Derived& run(Derived& m)
- {
- return m = Derived::Identity(m.rows(), m.cols());
- }
-};
-
-template<typename Derived>
-struct setIdentity_impl<Derived, true>
-{
- typedef typename Derived::Index Index;
- static EIGEN_STRONG_INLINE Derived& run(Derived& m)
- {
- m.setZero();
- const Index size = (std::min)(m.rows(), m.cols());
- for(Index i = 0; i < size; ++i) m.coeffRef(i,i) = typename Derived::Scalar(1);
- return m;
- }
-};
-
-} // end namespace internal
-
-/** Writes the identity expression (not necessarily square) into *this.
- *
- * Example: \include MatrixBase_setIdentity.cpp
- * Output: \verbinclude MatrixBase_setIdentity.out
- *
- * \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), isIdentity()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity()
-{
- return internal::setIdentity_impl<Derived>::run(derived());
-}
-
-/** \brief Resizes to the given size, and writes the identity expression (not necessarily square) into *this.
- *
- * \param nbRows the new number of rows
- * \param nbCols the new number of columns
- *
- * Example: \include Matrix_setIdentity_int_int.cpp
- * Output: \verbinclude Matrix_setIdentity_int_int.out
- *
- * \sa MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Identity()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity(Index nbRows, Index nbCols)
-{
- derived().resize(nbRows, nbCols);
- return setIdentity();
-}
-
-/** \returns an expression of the i-th unit (basis) vector.
- *
- * \only_for_vectors
- *
- * \sa MatrixBase::Unit(Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index newSize, Index i)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return BasisReturnType(SquareMatrixType::Identity(newSize,newSize), i);
-}
-
-/** \returns an expression of the i-th unit (basis) vector.
- *
- * \only_for_vectors
- *
- * This variant is for fixed-size vector only.
- *
- * \sa MatrixBase::Unit(Index,Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index i)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return BasisReturnType(SquareMatrixType::Identity(),i);
-}
-
-/** \returns an expression of the X axis unit vector (1{,0}^*)
- *
- * \only_for_vectors
- *
- * \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitX()
-{ return Derived::Unit(0); }
-
-/** \returns an expression of the Y axis unit vector (0,1{,0}^*)
- *
- * \only_for_vectors
- *
- * \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitY()
-{ return Derived::Unit(1); }
-
-/** \returns an expression of the Z axis unit vector (0,0,1{,0}^*)
- *
- * \only_for_vectors
- *
- * \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitZ()
-{ return Derived::Unit(2); }
-
-/** \returns an expression of the W axis unit vector (0,0,0,1)
- *
- * \only_for_vectors
- *
- * \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitW()
-{ return Derived::Unit(3); }
-
-} // end namespace Eigen
-
-#endif // EIGEN_CWISE_NULLARY_OP_H
diff --git a/src/Eigen/src/Core/CwiseUnaryOp.h b/src/Eigen/src/Core/CwiseUnaryOp.h
deleted file mode 100644
index f2de749..0000000
--- a/src/Eigen/src/Core/CwiseUnaryOp.h
+++ /dev/null
@@ -1,126 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CWISE_UNARY_OP_H
-#define EIGEN_CWISE_UNARY_OP_H
-
-namespace Eigen {
-
-/** \class CwiseUnaryOp
- * \ingroup Core_Module
- *
- * \brief Generic expression where a coefficient-wise unary operator is applied to an expression
- *
- * \param UnaryOp template functor implementing the operator
- * \param XprType the type of the expression to which we are applying the unary operator
- *
- * This class represents an expression where a unary operator is applied to an expression.
- * It is the return type of all operations taking exactly 1 input expression, regardless of the
- * presence of other inputs such as scalars. For example, the operator* in the expression 3*matrix
- * is considered unary, because only the right-hand side is an expression, and its
- * return type is a specialization of CwiseUnaryOp.
- *
- * Most of the time, this is the only way that it is used, so you typically don't have to name
- * CwiseUnaryOp types explicitly.
- *
- * \sa MatrixBase::unaryExpr(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp
- */
-
-namespace internal {
-template<typename UnaryOp, typename XprType>
-struct traits<CwiseUnaryOp<UnaryOp, XprType> >
- : traits<XprType>
-{
- typedef typename result_of<
- UnaryOp(typename XprType::Scalar)
- >::type Scalar;
- typedef typename XprType::Nested XprTypeNested;
- typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
- enum {
- Flags = _XprTypeNested::Flags & (
- HereditaryBits | LinearAccessBit | AlignedBit
- | (functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0)),
- CoeffReadCost = _XprTypeNested::CoeffReadCost + functor_traits<UnaryOp>::Cost
- };
-};
-}
-
-template<typename UnaryOp, typename XprType, typename StorageKind>
-class CwiseUnaryOpImpl;
-
-template<typename UnaryOp, typename XprType>
-class CwiseUnaryOp : internal::no_assignment_operator,
- public CwiseUnaryOpImpl<UnaryOp, XprType, typename internal::traits<XprType>::StorageKind>
-{
- public:
-
- typedef typename CwiseUnaryOpImpl<UnaryOp, XprType,typename internal::traits<XprType>::StorageKind>::Base Base;
- EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryOp)
-
- inline CwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp())
- : m_xpr(xpr), m_functor(func) {}
-
- EIGEN_STRONG_INLINE Index rows() const { return m_xpr.rows(); }
- EIGEN_STRONG_INLINE Index cols() const { return m_xpr.cols(); }
-
- /** \returns the functor representing the unary operation */
- const UnaryOp& functor() const { return m_functor; }
-
- /** \returns the nested expression */
- const typename internal::remove_all<typename XprType::Nested>::type&
- nestedExpression() const { return m_xpr; }
-
- /** \returns the nested expression */
- typename internal::remove_all<typename XprType::Nested>::type&
- nestedExpression() { return m_xpr.const_cast_derived(); }
-
- protected:
- typename XprType::Nested m_xpr;
- const UnaryOp m_functor;
-};
-
-// This is the generic implementation for dense storage.
-// It can be used for any expression types implementing the dense concept.
-template<typename UnaryOp, typename XprType>
-class CwiseUnaryOpImpl<UnaryOp,XprType,Dense>
- : public internal::dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type
-{
- public:
-
- typedef CwiseUnaryOp<UnaryOp, XprType> Derived;
- typedef typename internal::dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
-
- EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const
- {
- return derived().functor()(derived().nestedExpression().coeff(rowId, colId));
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const
- {
- return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(rowId, colId));
- }
-
- EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
- {
- return derived().functor()(derived().nestedExpression().coeff(index));
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
- {
- return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(index));
- }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_CWISE_UNARY_OP_H
diff --git a/src/Eigen/src/Core/CwiseUnaryView.h b/src/Eigen/src/Core/CwiseUnaryView.h
deleted file mode 100644
index b2638d3..0000000
--- a/src/Eigen/src/Core/CwiseUnaryView.h
+++ /dev/null
@@ -1,139 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CWISE_UNARY_VIEW_H
-#define EIGEN_CWISE_UNARY_VIEW_H
-
-namespace Eigen {
-
-/** \class CwiseUnaryView
- * \ingroup Core_Module
- *
- * \brief Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector
- *
- * \param ViewOp template functor implementing the view
- * \param MatrixType the type of the matrix we are applying the unary operator
- *
- * This class represents a lvalue expression of a generic unary view operator of a matrix or a vector.
- * It is the return type of real() and imag(), and most of the time this is the only way it is used.
- *
- * \sa MatrixBase::unaryViewExpr(const CustomUnaryOp &) const, class CwiseUnaryOp
- */
-
-namespace internal {
-template<typename ViewOp, typename MatrixType>
-struct traits<CwiseUnaryView<ViewOp, MatrixType> >
- : traits<MatrixType>
-{
- typedef typename result_of<
- ViewOp(typename traits<MatrixType>::Scalar)
- >::type Scalar;
- typedef typename MatrixType::Nested MatrixTypeNested;
- typedef typename remove_all<MatrixTypeNested>::type _MatrixTypeNested;
- enum {
- Flags = (traits<_MatrixTypeNested>::Flags & (HereditaryBits | LvalueBit | LinearAccessBit | DirectAccessBit)),
- CoeffReadCost = traits<_MatrixTypeNested>::CoeffReadCost + functor_traits<ViewOp>::Cost,
- MatrixTypeInnerStride = inner_stride_at_compile_time<MatrixType>::ret,
- // need to cast the sizeof's from size_t to int explicitly, otherwise:
- // "error: no integral type can represent all of the enumerator values
- InnerStrideAtCompileTime = MatrixTypeInnerStride == Dynamic
- ? int(Dynamic)
- : int(MatrixTypeInnerStride) * int(sizeof(typename traits<MatrixType>::Scalar) / sizeof(Scalar)),
- OuterStrideAtCompileTime = outer_stride_at_compile_time<MatrixType>::ret == Dynamic
- ? int(Dynamic)
- : outer_stride_at_compile_time<MatrixType>::ret * int(sizeof(typename traits<MatrixType>::Scalar) / sizeof(Scalar))
- };
-};
-}
-
-template<typename ViewOp, typename MatrixType, typename StorageKind>
-class CwiseUnaryViewImpl;
-
-template<typename ViewOp, typename MatrixType>
-class CwiseUnaryView : public CwiseUnaryViewImpl<ViewOp, MatrixType, typename internal::traits<MatrixType>::StorageKind>
-{
- public:
-
- typedef typename CwiseUnaryViewImpl<ViewOp, MatrixType,typename internal::traits<MatrixType>::StorageKind>::Base Base;
- EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryView)
-
- inline CwiseUnaryView(const MatrixType& mat, const ViewOp& func = ViewOp())
- : m_matrix(mat), m_functor(func) {}
-
- EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryView)
-
- EIGEN_STRONG_INLINE Index rows() const { return m_matrix.rows(); }
- EIGEN_STRONG_INLINE Index cols() const { return m_matrix.cols(); }
-
- /** \returns the functor representing unary operation */
- const ViewOp& functor() const { return m_functor; }
-
- /** \returns the nested expression */
- const typename internal::remove_all<typename MatrixType::Nested>::type&
- nestedExpression() const { return m_matrix; }
-
- /** \returns the nested expression */
- typename internal::remove_all<typename MatrixType::Nested>::type&
- nestedExpression() { return m_matrix.const_cast_derived(); }
-
- protected:
- // FIXME changed from MatrixType::Nested because of a weird compilation error with sun CC
- typename internal::nested<MatrixType>::type m_matrix;
- ViewOp m_functor;
-};
-
-template<typename ViewOp, typename MatrixType>
-class CwiseUnaryViewImpl<ViewOp,MatrixType,Dense>
- : public internal::dense_xpr_base< CwiseUnaryView<ViewOp, MatrixType> >::type
-{
- public:
-
- typedef CwiseUnaryView<ViewOp, MatrixType> Derived;
- typedef typename internal::dense_xpr_base< CwiseUnaryView<ViewOp, MatrixType> >::type Base;
-
- EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
- EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryViewImpl)
-
- inline Scalar* data() { return &coeffRef(0); }
- inline const Scalar* data() const { return &coeff(0); }
-
- inline Index innerStride() const
- {
- return derived().nestedExpression().innerStride() * sizeof(typename internal::traits<MatrixType>::Scalar) / sizeof(Scalar);
- }
-
- inline Index outerStride() const
- {
- return derived().nestedExpression().outerStride() * sizeof(typename internal::traits<MatrixType>::Scalar) / sizeof(Scalar);
- }
-
- EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
- {
- return derived().functor()(derived().nestedExpression().coeff(row, col));
- }
-
- EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- return derived().functor()(derived().nestedExpression().coeff(index));
- }
-
- EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
- {
- return derived().functor()(const_cast_derived().nestedExpression().coeffRef(row, col));
- }
-
- EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
- {
- return derived().functor()(const_cast_derived().nestedExpression().coeffRef(index));
- }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_CWISE_UNARY_VIEW_H
diff --git a/src/Eigen/src/Core/DenseBase.h b/src/Eigen/src/Core/DenseBase.h
deleted file mode 100644
index c5800f6..0000000
--- a/src/Eigen/src/Core/DenseBase.h
+++ /dev/null
@@ -1,521 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_DENSEBASE_H
-#define EIGEN_DENSEBASE_H
-
-namespace Eigen {
-
-namespace internal {
-
-// The index type defined by EIGEN_DEFAULT_DENSE_INDEX_TYPE must be a signed type.
-// This dummy function simply aims at checking that at compile time.
-static inline void check_DenseIndex_is_signed() {
- EIGEN_STATIC_ASSERT(NumTraits<DenseIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
-}
-
-} // end namespace internal
-
-/** \class DenseBase
- * \ingroup Core_Module
- *
- * \brief Base class for all dense matrices, vectors, and arrays
- *
- * This class is the base that is inherited by all dense objects (matrix, vector, arrays,
- * and related expression types). The common Eigen API for dense objects is contained in this class.
- *
- * \tparam Derived is the derived type, e.g., a matrix type or an expression.
- *
- * This class can be extended with the help of the plugin mechanism described on the page
- * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_DENSEBASE_PLUGIN.
- *
- * \sa \ref TopicClassHierarchy
- */
-template<typename Derived> class DenseBase
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- : public internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
- typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>
-#else
- : public DenseCoeffsBase<Derived>
-#endif // not EIGEN_PARSED_BY_DOXYGEN
-{
- public:
- using internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
- typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>::operator*;
-
- class InnerIterator;
-
- typedef typename internal::traits<Derived>::StorageKind StorageKind;
-
- /** \brief The type of indices
- * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE.
- * \sa \ref TopicPreprocessorDirectives.
- */
- typedef typename internal::traits<Derived>::Index Index;
-
- typedef typename internal::traits<Derived>::Scalar Scalar;
- typedef typename internal::packet_traits<Scalar>::type PacketScalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- typedef DenseCoeffsBase<Derived> Base;
- using Base::derived;
- using Base::const_cast_derived;
- using Base::rows;
- using Base::cols;
- using Base::size;
- using Base::rowIndexByOuterInner;
- using Base::colIndexByOuterInner;
- using Base::coeff;
- using Base::coeffByOuterInner;
- using Base::packet;
- using Base::packetByOuterInner;
- using Base::writePacket;
- using Base::writePacketByOuterInner;
- using Base::coeffRef;
- using Base::coeffRefByOuterInner;
- using Base::copyCoeff;
- using Base::copyCoeffByOuterInner;
- using Base::copyPacket;
- using Base::copyPacketByOuterInner;
- using Base::operator();
- using Base::operator[];
- using Base::x;
- using Base::y;
- using Base::z;
- using Base::w;
- using Base::stride;
- using Base::innerStride;
- using Base::outerStride;
- using Base::rowStride;
- using Base::colStride;
- typedef typename Base::CoeffReturnType CoeffReturnType;
-
- enum {
-
- RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
- /**< The number of rows at compile-time. This is just a copy of the value provided
- * by the \a Derived type. If a value is not known at compile-time,
- * it is set to the \a Dynamic constant.
- * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
-
- ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
- /**< The number of columns at compile-time. This is just a copy of the value provided
- * by the \a Derived type. If a value is not known at compile-time,
- * it is set to the \a Dynamic constant.
- * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
-
-
- SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
- internal::traits<Derived>::ColsAtCompileTime>::ret),
- /**< This is equal to the number of coefficients, i.e. the number of
- * rows times the number of columns, or to \a Dynamic if this is not
- * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
-
- MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
- /**< This value is equal to the maximum possible number of rows that this expression
- * might have. If this expression might have an arbitrarily high number of rows,
- * this value is set to \a Dynamic.
- *
- * This value is useful to know when evaluating an expression, in order to determine
- * whether it is possible to avoid doing a dynamic memory allocation.
- *
- * \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime
- */
-
- MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
- /**< This value is equal to the maximum possible number of columns that this expression
- * might have. If this expression might have an arbitrarily high number of columns,
- * this value is set to \a Dynamic.
- *
- * This value is useful to know when evaluating an expression, in order to determine
- * whether it is possible to avoid doing a dynamic memory allocation.
- *
- * \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime
- */
-
- MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime,
- internal::traits<Derived>::MaxColsAtCompileTime>::ret),
- /**< This value is equal to the maximum possible number of coefficients that this expression
- * might have. If this expression might have an arbitrarily high number of coefficients,
- * this value is set to \a Dynamic.
- *
- * This value is useful to know when evaluating an expression, in order to determine
- * whether it is possible to avoid doing a dynamic memory allocation.
- *
- * \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime
- */
-
- IsVectorAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime == 1
- || internal::traits<Derived>::MaxColsAtCompileTime == 1,
- /**< This is set to true if either the number of rows or the number of
- * columns is known at compile-time to be equal to 1. Indeed, in that case,
- * we are dealing with a column-vector (if there is only one column) or with
- * a row-vector (if there is only one row). */
-
- Flags = internal::traits<Derived>::Flags,
- /**< This stores expression \ref flags flags which may or may not be inherited by new expressions
- * constructed from this one. See the \ref flags "list of flags".
- */
-
- IsRowMajor = int(Flags) & RowMajorBit, /**< True if this expression has row-major storage order. */
-
- InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime)
- : int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
-
- CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
- /**< This is a rough measure of how expensive it is to read one coefficient from
- * this expression.
- */
-
- InnerStrideAtCompileTime = internal::inner_stride_at_compile_time<Derived>::ret,
- OuterStrideAtCompileTime = internal::outer_stride_at_compile_time<Derived>::ret
- };
-
- enum { ThisConstantIsPrivateInPlainObjectBase };
-
- /** \returns the number of nonzero coefficients which is in practice the number
- * of stored coefficients. */
- inline Index nonZeros() const { return size(); }
- /** \returns true if either the number of rows or the number of columns is equal to 1.
- * In other words, this function returns
- * \code rows()==1 || cols()==1 \endcode
- * \sa rows(), cols(), IsVectorAtCompileTime. */
-
- /** \returns the outer size.
- *
- * \note For a vector, this returns just 1. For a matrix (non-vector), this is the major dimension
- * with respect to the \ref TopicStorageOrders "storage order", i.e., the number of columns for a
- * column-major matrix, and the number of rows for a row-major matrix. */
- Index outerSize() const
- {
- return IsVectorAtCompileTime ? 1
- : int(IsRowMajor) ? this->rows() : this->cols();
- }
-
- /** \returns the inner size.
- *
- * \note For a vector, this is just the size. For a matrix (non-vector), this is the minor dimension
- * with respect to the \ref TopicStorageOrders "storage order", i.e., the number of rows for a
- * column-major matrix, and the number of columns for a row-major matrix. */
- Index innerSize() const
- {
- return IsVectorAtCompileTime ? this->size()
- : int(IsRowMajor) ? this->cols() : this->rows();
- }
-
- /** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are
- * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does
- * nothing else.
- */
- void resize(Index newSize)
- {
- EIGEN_ONLY_USED_FOR_DEBUG(newSize);
- eigen_assert(newSize == this->size()
- && "DenseBase::resize() does not actually allow to resize.");
- }
- /** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are
- * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does
- * nothing else.
- */
- void resize(Index nbRows, Index nbCols)
- {
- EIGEN_ONLY_USED_FOR_DEBUG(nbRows);
- EIGEN_ONLY_USED_FOR_DEBUG(nbCols);
- eigen_assert(nbRows == this->rows() && nbCols == this->cols()
- && "DenseBase::resize() does not actually allow to resize.");
- }
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-
- /** \internal Represents a matrix with all coefficients equal to one another*/
- typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType;
- /** \internal Represents a vector with linearly spaced coefficients that allows sequential access only. */
- typedef CwiseNullaryOp<internal::linspaced_op<Scalar,false>,Derived> SequentialLinSpacedReturnType;
- /** \internal Represents a vector with linearly spaced coefficients that allows random access. */
- typedef CwiseNullaryOp<internal::linspaced_op<Scalar,true>,Derived> RandomAccessLinSpacedReturnType;
- /** \internal the return type of MatrixBase::eigenvalues() */
- typedef Matrix<typename NumTraits<typename internal::traits<Derived>::Scalar>::Real, internal::traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType;
-
-#endif // not EIGEN_PARSED_BY_DOXYGEN
-
- /** Copies \a other into *this. \returns a reference to *this. */
- template<typename OtherDerived>
- Derived& operator=(const DenseBase<OtherDerived>& other);
-
- /** Special case of the template operator=, in order to prevent the compiler
- * from generating a default operator= (issue hit with g++ 4.1)
- */
- Derived& operator=(const DenseBase& other);
-
- template<typename OtherDerived>
- Derived& operator=(const EigenBase<OtherDerived> &other);
-
- template<typename OtherDerived>
- Derived& operator+=(const EigenBase<OtherDerived> &other);
-
- template<typename OtherDerived>
- Derived& operator-=(const EigenBase<OtherDerived> &other);
-
- template<typename OtherDerived>
- Derived& operator=(const ReturnByValue<OtherDerived>& func);
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- /** Copies \a other into *this without evaluating other. \returns a reference to *this. */
- template<typename OtherDerived>
- Derived& lazyAssign(const DenseBase<OtherDerived>& other);
-#endif // not EIGEN_PARSED_BY_DOXYGEN
-
- CommaInitializer<Derived> operator<< (const Scalar& s);
-
- template<unsigned int Added,unsigned int Removed>
- const Flagged<Derived, Added, Removed> flagged() const;
-
- template<typename OtherDerived>
- CommaInitializer<Derived> operator<< (const DenseBase<OtherDerived>& other);
-
- Eigen::Transpose<Derived> transpose();
- typedef typename internal::add_const<Transpose<const Derived> >::type ConstTransposeReturnType;
- ConstTransposeReturnType transpose() const;
- void transposeInPlace();
-#ifndef EIGEN_NO_DEBUG
- protected:
- template<typename OtherDerived>
- void checkTransposeAliasing(const OtherDerived& other) const;
- public:
-#endif
-
-
- static const ConstantReturnType
- Constant(Index rows, Index cols, const Scalar& value);
- static const ConstantReturnType
- Constant(Index size, const Scalar& value);
- static const ConstantReturnType
- Constant(const Scalar& value);
-
- static const SequentialLinSpacedReturnType
- LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high);
- static const RandomAccessLinSpacedReturnType
- LinSpaced(Index size, const Scalar& low, const Scalar& high);
- static const SequentialLinSpacedReturnType
- LinSpaced(Sequential_t, const Scalar& low, const Scalar& high);
- static const RandomAccessLinSpacedReturnType
- LinSpaced(const Scalar& low, const Scalar& high);
-
- template<typename CustomNullaryOp>
- static const CwiseNullaryOp<CustomNullaryOp, Derived>
- NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func);
- template<typename CustomNullaryOp>
- static const CwiseNullaryOp<CustomNullaryOp, Derived>
- NullaryExpr(Index size, const CustomNullaryOp& func);
- template<typename CustomNullaryOp>
- static const CwiseNullaryOp<CustomNullaryOp, Derived>
- NullaryExpr(const CustomNullaryOp& func);
-
- static const ConstantReturnType Zero(Index rows, Index cols);
- static const ConstantReturnType Zero(Index size);
- static const ConstantReturnType Zero();
- static const ConstantReturnType Ones(Index rows, Index cols);
- static const ConstantReturnType Ones(Index size);
- static const ConstantReturnType Ones();
-
- void fill(const Scalar& value);
- Derived& setConstant(const Scalar& value);
- Derived& setLinSpaced(Index size, const Scalar& low, const Scalar& high);
- Derived& setLinSpaced(const Scalar& low, const Scalar& high);
- Derived& setZero();
- Derived& setOnes();
- Derived& setRandom();
-
- template<typename OtherDerived>
- bool isApprox(const DenseBase<OtherDerived>& other,
- const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
- bool isMuchSmallerThan(const RealScalar& other,
- const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
- template<typename OtherDerived>
- bool isMuchSmallerThan(const DenseBase<OtherDerived>& other,
- const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
-
- bool isApproxToConstant(const Scalar& value, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
- bool isConstant(const Scalar& value, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
- bool isZero(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
- bool isOnes(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
-
- inline bool hasNaN() const;
- inline bool allFinite() const;
-
- inline Derived& operator*=(const Scalar& other);
- inline Derived& operator/=(const Scalar& other);
-
- typedef typename internal::add_const_on_value_type<typename internal::eval<Derived>::type>::type EvalReturnType;
- /** \returns the matrix or vector obtained by evaluating this expression.
- *
- * Notice that in the case of a plain matrix or vector (not an expression) this function just returns
- * a const reference, in order to avoid a useless copy.
- */
- EIGEN_STRONG_INLINE EvalReturnType eval() const
- {
- // Even though MSVC does not honor strong inlining when the return type
- // is a dynamic matrix, we desperately need strong inlining for fixed
- // size types on MSVC.
- return typename internal::eval<Derived>::type(derived());
- }
-
- /** swaps *this with the expression \a other.
- *
- */
- template<typename OtherDerived>
- void swap(const DenseBase<OtherDerived>& other,
- int = OtherDerived::ThisConstantIsPrivateInPlainObjectBase)
- {
- SwapWrapper<Derived>(derived()).lazyAssign(other.derived());
- }
-
- /** swaps *this with the matrix or array \a other.
- *
- */
- template<typename OtherDerived>
- void swap(PlainObjectBase<OtherDerived>& other)
- {
- SwapWrapper<Derived>(derived()).lazyAssign(other.derived());
- }
-
-
- inline const NestByValue<Derived> nestByValue() const;
- inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
- inline ForceAlignedAccess<Derived> forceAlignedAccess();
- template<bool Enable> inline const typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf() const;
- template<bool Enable> inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf();
-
- Scalar sum() const;
- Scalar mean() const;
- Scalar trace() const;
-
- Scalar prod() const;
-
- typename internal::traits<Derived>::Scalar minCoeff() const;
- typename internal::traits<Derived>::Scalar maxCoeff() const;
-
- template<typename IndexType>
- typename internal::traits<Derived>::Scalar minCoeff(IndexType* row, IndexType* col) const;
- template<typename IndexType>
- typename internal::traits<Derived>::Scalar maxCoeff(IndexType* row, IndexType* col) const;
- template<typename IndexType>
- typename internal::traits<Derived>::Scalar minCoeff(IndexType* index) const;
- template<typename IndexType>
- typename internal::traits<Derived>::Scalar maxCoeff(IndexType* index) const;
-
- template<typename BinaryOp>
- typename internal::result_of<BinaryOp(typename internal::traits<Derived>::Scalar)>::type
- redux(const BinaryOp& func) const;
-
- template<typename Visitor>
- void visit(Visitor& func) const;
-
- inline const WithFormat<Derived> format(const IOFormat& fmt) const;
-
- /** \returns the unique coefficient of a 1x1 expression */
- CoeffReturnType value() const
- {
- EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
- eigen_assert(this->rows() == 1 && this->cols() == 1);
- return derived().coeff(0,0);
- }
-
- bool all(void) const;
- bool any(void) const;
- Index count() const;
-
- typedef VectorwiseOp<Derived, Horizontal> RowwiseReturnType;
- typedef const VectorwiseOp<const Derived, Horizontal> ConstRowwiseReturnType;
- typedef VectorwiseOp<Derived, Vertical> ColwiseReturnType;
- typedef const VectorwiseOp<const Derived, Vertical> ConstColwiseReturnType;
-
- ConstRowwiseReturnType rowwise() const;
- RowwiseReturnType rowwise();
- ConstColwiseReturnType colwise() const;
- ColwiseReturnType colwise();
-
- static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(Index rows, Index cols);
- static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(Index size);
- static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random();
-
- template<typename ThenDerived,typename ElseDerived>
- const Select<Derived,ThenDerived,ElseDerived>
- select(const DenseBase<ThenDerived>& thenMatrix,
- const DenseBase<ElseDerived>& elseMatrix) const;
-
- template<typename ThenDerived>
- inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType>
- select(const DenseBase<ThenDerived>& thenMatrix, const typename ThenDerived::Scalar& elseScalar) const;
-
- template<typename ElseDerived>
- inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived >
- select(const typename ElseDerived::Scalar& thenScalar, const DenseBase<ElseDerived>& elseMatrix) const;
-
- template<int p> RealScalar lpNorm() const;
-
- template<int RowFactor, int ColFactor>
- const Replicate<Derived,RowFactor,ColFactor> replicate() const;
- const Replicate<Derived,Dynamic,Dynamic> replicate(Index rowFacor,Index colFactor) const;
-
- typedef Reverse<Derived, BothDirections> ReverseReturnType;
- typedef const Reverse<const Derived, BothDirections> ConstReverseReturnType;
- ReverseReturnType reverse();
- ConstReverseReturnType reverse() const;
- void reverseInPlace();
-
-#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::DenseBase
-# include "../plugins/BlockMethods.h"
-# ifdef EIGEN_DENSEBASE_PLUGIN
-# include EIGEN_DENSEBASE_PLUGIN
-# endif
-#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
-
-#ifdef EIGEN2_SUPPORT
-
- Block<Derived> corner(CornerType type, Index cRows, Index cCols);
- const Block<Derived> corner(CornerType type, Index cRows, Index cCols) const;
- template<int CRows, int CCols>
- Block<Derived, CRows, CCols> corner(CornerType type);
- template<int CRows, int CCols>
- const Block<Derived, CRows, CCols> corner(CornerType type) const;
-
-#endif // EIGEN2_SUPPORT
-
-
- // disable the use of evalTo for dense objects with a nice compilation error
- template<typename Dest> inline void evalTo(Dest& ) const
- {
- EIGEN_STATIC_ASSERT((internal::is_same<Dest,void>::value),THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS);
- }
-
- protected:
- /** Default constructor. Do nothing. */
- DenseBase()
- {
- /* Just checks for self-consistency of the flags.
- * Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down
- */
-#ifdef EIGEN_INTERNAL_DEBUGGING
- EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, int(IsRowMajor))
- && EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, int(!IsRowMajor))),
- INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION)
-#endif
- }
-
- private:
- explicit DenseBase(int);
- DenseBase(int,int);
- template<typename OtherDerived> explicit DenseBase(const DenseBase<OtherDerived>&);
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_DENSEBASE_H
diff --git a/src/Eigen/src/Core/DenseCoeffsBase.h b/src/Eigen/src/Core/DenseCoeffsBase.h
deleted file mode 100644
index 3c890f2..0000000
--- a/src/Eigen/src/Core/DenseCoeffsBase.h
+++ /dev/null
@@ -1,754 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_DENSECOEFFSBASE_H
-#define EIGEN_DENSECOEFFSBASE_H
-
-namespace Eigen {
-
-namespace internal {
-template<typename T> struct add_const_on_value_type_if_arithmetic
-{
- typedef typename conditional<is_arithmetic<T>::value, T, typename add_const_on_value_type<T>::type>::type type;
-};
-}
-
-/** \brief Base class providing read-only coefficient access to matrices and arrays.
- * \ingroup Core_Module
- * \tparam Derived Type of the derived class
- * \tparam #ReadOnlyAccessors Constant indicating read-only access
- *
- * This class defines the \c operator() \c const function and friends, which can be used to read specific
- * entries of a matrix or array.
- *
- * \sa DenseCoeffsBase<Derived, WriteAccessors>, DenseCoeffsBase<Derived, DirectAccessors>,
- * \ref TopicClassHierarchy
- */
-template<typename Derived>
-class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
-{
- public:
- typedef typename internal::traits<Derived>::StorageKind StorageKind;
- typedef typename internal::traits<Derived>::Index Index;
- typedef typename internal::traits<Derived>::Scalar Scalar;
- typedef typename internal::packet_traits<Scalar>::type PacketScalar;
-
- // Explanation for this CoeffReturnType typedef.
- // - This is the return type of the coeff() method.
- // - The LvalueBit means exactly that we can offer a coeffRef() method, which means exactly that we can get references
- // to coeffs, which means exactly that we can have coeff() return a const reference (as opposed to returning a value).
- // - The is_artihmetic check is required since "const int", "const double", etc. will cause warnings on some systems
- // while the declaration of "const T", where T is a non arithmetic type does not. Always returning "const Scalar&" is
- // not possible, since the underlying expressions might not offer a valid address the reference could be referring to.
- typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit),
- const Scalar&,
- typename internal::conditional<internal::is_arithmetic<Scalar>::value, Scalar, const Scalar>::type
- >::type CoeffReturnType;
-
- typedef typename internal::add_const_on_value_type_if_arithmetic<
- typename internal::packet_traits<Scalar>::type
- >::type PacketReturnType;
-
- typedef EigenBase<Derived> Base;
- using Base::rows;
- using Base::cols;
- using Base::size;
- using Base::derived;
-
- EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) const
- {
- return int(Derived::RowsAtCompileTime) == 1 ? 0
- : int(Derived::ColsAtCompileTime) == 1 ? inner
- : int(Derived::Flags)&RowMajorBit ? outer
- : inner;
- }
-
- EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) const
- {
- return int(Derived::ColsAtCompileTime) == 1 ? 0
- : int(Derived::RowsAtCompileTime) == 1 ? inner
- : int(Derived::Flags)&RowMajorBit ? inner
- : outer;
- }
-
- /** Short version: don't use this function, use
- * \link operator()(Index,Index) const \endlink instead.
- *
- * Long version: this function is similar to
- * \link operator()(Index,Index) const \endlink, but without the assertion.
- * Use this for limiting the performance cost of debugging code when doing
- * repeated coefficient access. Only use this when it is guaranteed that the
- * parameters \a row and \a col are in range.
- *
- * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
- * function equivalent to \link operator()(Index,Index) const \endlink.
- *
- * \sa operator()(Index,Index) const, coeffRef(Index,Index), coeff(Index) const
- */
- EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
- {
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- return derived().coeff(row, col);
- }
-
- EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const
- {
- return coeff(rowIndexByOuterInner(outer, inner),
- colIndexByOuterInner(outer, inner));
- }
-
- /** \returns the coefficient at given the given row and column.
- *
- * \sa operator()(Index,Index), operator[](Index)
- */
- EIGEN_STRONG_INLINE CoeffReturnType operator()(Index row, Index col) const
- {
- eigen_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- return derived().coeff(row, col);
- }
-
- /** Short version: don't use this function, use
- * \link operator[](Index) const \endlink instead.
- *
- * Long version: this function is similar to
- * \link operator[](Index) const \endlink, but without the assertion.
- * Use this for limiting the performance cost of debugging code when doing
- * repeated coefficient access. Only use this when it is guaranteed that the
- * parameter \a index is in range.
- *
- * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
- * function equivalent to \link operator[](Index) const \endlink.
- *
- * \sa operator[](Index) const, coeffRef(Index), coeff(Index,Index) const
- */
-
- EIGEN_STRONG_INLINE CoeffReturnType
- coeff(Index index) const
- {
- eigen_internal_assert(index >= 0 && index < size());
- return derived().coeff(index);
- }
-
-
- /** \returns the coefficient at given index.
- *
- * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
- *
- * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
- * z() const, w() const
- */
-
- EIGEN_STRONG_INLINE CoeffReturnType
- operator[](Index index) const
- {
- #ifndef EIGEN2_SUPPORT
- EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
- THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
- #endif
- eigen_assert(index >= 0 && index < size());
- return derived().coeff(index);
- }
-
- /** \returns the coefficient at given index.
- *
- * This is synonymous to operator[](Index) const.
- *
- * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
- *
- * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
- * z() const, w() const
- */
-
- EIGEN_STRONG_INLINE CoeffReturnType
- operator()(Index index) const
- {
- eigen_assert(index >= 0 && index < size());
- return derived().coeff(index);
- }
-
- /** equivalent to operator[](0). */
-
- EIGEN_STRONG_INLINE CoeffReturnType
- x() const { return (*this)[0]; }
-
- /** equivalent to operator[](1). */
-
- EIGEN_STRONG_INLINE CoeffReturnType
- y() const { return (*this)[1]; }
-
- /** equivalent to operator[](2). */
-
- EIGEN_STRONG_INLINE CoeffReturnType
- z() const { return (*this)[2]; }
-
- /** equivalent to operator[](3). */
-
- EIGEN_STRONG_INLINE CoeffReturnType
- w() const { return (*this)[3]; }
-
- /** \internal
- * \returns the packet of coefficients starting at the given row and column. It is your responsibility
- * to ensure that a packet really starts there. This method is only available on expressions having the
- * PacketAccessBit.
- *
- * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
- * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
- * starting at an address which is a multiple of the packet size.
- */
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const
- {
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- return derived().template packet<LoadMode>(row,col);
- }
-
-
- /** \internal */
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketReturnType packetByOuterInner(Index outer, Index inner) const
- {
- return packet<LoadMode>(rowIndexByOuterInner(outer, inner),
- colIndexByOuterInner(outer, inner));
- }
-
- /** \internal
- * \returns the packet of coefficients starting at the given index. It is your responsibility
- * to ensure that a packet really starts there. This method is only available on expressions having the
- * PacketAccessBit and the LinearAccessBit.
- *
- * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
- * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
- * starting at an address which is a multiple of the packet size.
- */
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- eigen_internal_assert(index >= 0 && index < size());
- return derived().template packet<LoadMode>(index);
- }
-
- protected:
- // explanation: DenseBase is doing "using ..." on the methods from DenseCoeffsBase.
- // But some methods are only available in the DirectAccess case.
- // So we add dummy methods here with these names, so that "using... " doesn't fail.
- // It's not private so that the child class DenseBase can access them, and it's not public
- // either since it's an implementation detail, so has to be protected.
- void coeffRef();
- void coeffRefByOuterInner();
- void writePacket();
- void writePacketByOuterInner();
- void copyCoeff();
- void copyCoeffByOuterInner();
- void copyPacket();
- void copyPacketByOuterInner();
- void stride();
- void innerStride();
- void outerStride();
- void rowStride();
- void colStride();
-};
-
-/** \brief Base class providing read/write coefficient access to matrices and arrays.
- * \ingroup Core_Module
- * \tparam Derived Type of the derived class
- * \tparam #WriteAccessors Constant indicating read/write access
- *
- * This class defines the non-const \c operator() function and friends, which can be used to write specific
- * entries of a matrix or array. This class inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which
- * defines the const variant for reading specific entries.
- *
- * \sa DenseCoeffsBase<Derived, DirectAccessors>, \ref TopicClassHierarchy
- */
-template<typename Derived>
-class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
-{
- public:
-
- typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
-
- typedef typename internal::traits<Derived>::StorageKind StorageKind;
- typedef typename internal::traits<Derived>::Index Index;
- typedef typename internal::traits<Derived>::Scalar Scalar;
- typedef typename internal::packet_traits<Scalar>::type PacketScalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- using Base::coeff;
- using Base::rows;
- using Base::cols;
- using Base::size;
- using Base::derived;
- using Base::rowIndexByOuterInner;
- using Base::colIndexByOuterInner;
- using Base::operator[];
- using Base::operator();
- using Base::x;
- using Base::y;
- using Base::z;
- using Base::w;
-
- /** Short version: don't use this function, use
- * \link operator()(Index,Index) \endlink instead.
- *
- * Long version: this function is similar to
- * \link operator()(Index,Index) \endlink, but without the assertion.
- * Use this for limiting the performance cost of debugging code when doing
- * repeated coefficient access. Only use this when it is guaranteed that the
- * parameters \a row and \a col are in range.
- *
- * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
- * function equivalent to \link operator()(Index,Index) \endlink.
- *
- * \sa operator()(Index,Index), coeff(Index, Index) const, coeffRef(Index)
- */
- EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
- {
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- return derived().coeffRef(row, col);
- }
-
- EIGEN_STRONG_INLINE Scalar&
- coeffRefByOuterInner(Index outer, Index inner)
- {
- return coeffRef(rowIndexByOuterInner(outer, inner),
- colIndexByOuterInner(outer, inner));
- }
-
- /** \returns a reference to the coefficient at given the given row and column.
- *
- * \sa operator[](Index)
- */
-
- EIGEN_STRONG_INLINE Scalar&
- operator()(Index row, Index col)
- {
- eigen_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- return derived().coeffRef(row, col);
- }
-
-
- /** Short version: don't use this function, use
- * \link operator[](Index) \endlink instead.
- *
- * Long version: this function is similar to
- * \link operator[](Index) \endlink, but without the assertion.
- * Use this for limiting the performance cost of debugging code when doing
- * repeated coefficient access. Only use this when it is guaranteed that the
- * parameters \a row and \a col are in range.
- *
- * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
- * function equivalent to \link operator[](Index) \endlink.
- *
- * \sa operator[](Index), coeff(Index) const, coeffRef(Index,Index)
- */
-
- EIGEN_STRONG_INLINE Scalar&
- coeffRef(Index index)
- {
- eigen_internal_assert(index >= 0 && index < size());
- return derived().coeffRef(index);
- }
-
- /** \returns a reference to the coefficient at given index.
- *
- * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
- *
- * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
- */
-
- EIGEN_STRONG_INLINE Scalar&
- operator[](Index index)
- {
- #ifndef EIGEN2_SUPPORT
- EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
- THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
- #endif
- eigen_assert(index >= 0 && index < size());
- return derived().coeffRef(index);
- }
-
- /** \returns a reference to the coefficient at given index.
- *
- * This is synonymous to operator[](Index).
- *
- * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
- *
- * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
- */
-
- EIGEN_STRONG_INLINE Scalar&
- operator()(Index index)
- {
- eigen_assert(index >= 0 && index < size());
- return derived().coeffRef(index);
- }
-
- /** equivalent to operator[](0). */
-
- EIGEN_STRONG_INLINE Scalar&
- x() { return (*this)[0]; }
-
- /** equivalent to operator[](1). */
-
- EIGEN_STRONG_INLINE Scalar&
- y() { return (*this)[1]; }
-
- /** equivalent to operator[](2). */
-
- EIGEN_STRONG_INLINE Scalar&
- z() { return (*this)[2]; }
-
- /** equivalent to operator[](3). */
-
- EIGEN_STRONG_INLINE Scalar&
- w() { return (*this)[3]; }
-
- /** \internal
- * Stores the given packet of coefficients, at the given row and column of this expression. It is your responsibility
- * to ensure that a packet really starts there. This method is only available on expressions having the
- * PacketAccessBit.
- *
- * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
- * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
- * starting at an address which is a multiple of the packet size.
- */
-
- template<int StoreMode>
- EIGEN_STRONG_INLINE void writePacket
- (Index row, Index col, const typename internal::packet_traits<Scalar>::type& val)
- {
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- derived().template writePacket<StoreMode>(row,col,val);
- }
-
-
- /** \internal */
- template<int StoreMode>
- EIGEN_STRONG_INLINE void writePacketByOuterInner
- (Index outer, Index inner, const typename internal::packet_traits<Scalar>::type& val)
- {
- writePacket<StoreMode>(rowIndexByOuterInner(outer, inner),
- colIndexByOuterInner(outer, inner),
- val);
- }
-
- /** \internal
- * Stores the given packet of coefficients, at the given index in this expression. It is your responsibility
- * to ensure that a packet really starts there. This method is only available on expressions having the
- * PacketAccessBit and the LinearAccessBit.
- *
- * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select
- * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
- * starting at an address which is a multiple of the packet size.
- */
- template<int StoreMode>
- EIGEN_STRONG_INLINE void writePacket
- (Index index, const typename internal::packet_traits<Scalar>::type& val)
- {
- eigen_internal_assert(index >= 0 && index < size());
- derived().template writePacket<StoreMode>(index,val);
- }
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-
- /** \internal Copies the coefficient at position (row,col) of other into *this.
- *
- * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
- * with usual assignments.
- *
- * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
- */
-
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, const DenseBase<OtherDerived>& other)
- {
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- derived().coeffRef(row, col) = other.derived().coeff(row, col);
- }
-
- /** \internal Copies the coefficient at the given index of other into *this.
- *
- * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
- * with usual assignments.
- *
- * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
- */
-
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
- {
- eigen_internal_assert(index >= 0 && index < size());
- derived().coeffRef(index) = other.derived().coeff(index);
- }
-
-
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE void copyCoeffByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other)
- {
- const Index row = rowIndexByOuterInner(outer,inner);
- const Index col = colIndexByOuterInner(outer,inner);
- // derived() is important here: copyCoeff() may be reimplemented in Derived!
- derived().copyCoeff(row, col, other);
- }
-
- /** \internal Copies the packet at position (row,col) of other into *this.
- *
- * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
- * with usual assignments.
- *
- * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
- */
-
- template<typename OtherDerived, int StoreMode, int LoadMode>
- EIGEN_STRONG_INLINE void copyPacket(Index row, Index col, const DenseBase<OtherDerived>& other)
- {
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- derived().template writePacket<StoreMode>(row, col,
- other.derived().template packet<LoadMode>(row, col));
- }
-
- /** \internal Copies the packet at the given index of other into *this.
- *
- * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
- * with usual assignments.
- *
- * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
- */
-
- template<typename OtherDerived, int StoreMode, int LoadMode>
- EIGEN_STRONG_INLINE void copyPacket(Index index, const DenseBase<OtherDerived>& other)
- {
- eigen_internal_assert(index >= 0 && index < size());
- derived().template writePacket<StoreMode>(index,
- other.derived().template packet<LoadMode>(index));
- }
-
- /** \internal */
- template<typename OtherDerived, int StoreMode, int LoadMode>
- EIGEN_STRONG_INLINE void copyPacketByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other)
- {
- const Index row = rowIndexByOuterInner(outer,inner);
- const Index col = colIndexByOuterInner(outer,inner);
- // derived() is important here: copyCoeff() may be reimplemented in Derived!
- derived().template copyPacket< OtherDerived, StoreMode, LoadMode>(row, col, other);
- }
-#endif
-
-};
-
-/** \brief Base class providing direct read-only coefficient access to matrices and arrays.
- * \ingroup Core_Module
- * \tparam Derived Type of the derived class
- * \tparam #DirectAccessors Constant indicating direct access
- *
- * This class defines functions to work with strides which can be used to access entries directly. This class
- * inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which defines functions to access entries read-only using
- * \c operator() .
- *
- * \sa \ref TopicClassHierarchy
- */
-template<typename Derived>
-class DenseCoeffsBase<Derived, DirectAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
-{
- public:
-
- typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
- typedef typename internal::traits<Derived>::Index Index;
- typedef typename internal::traits<Derived>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- using Base::rows;
- using Base::cols;
- using Base::size;
- using Base::derived;
-
- /** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
- *
- * \sa outerStride(), rowStride(), colStride()
- */
- inline Index innerStride() const
- {
- return derived().innerStride();
- }
-
- /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
- * in a column-major matrix).
- *
- * \sa innerStride(), rowStride(), colStride()
- */
- inline Index outerStride() const
- {
- return derived().outerStride();
- }
-
- // FIXME shall we remove it ?
- inline Index stride() const
- {
- return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
- }
-
- /** \returns the pointer increment between two consecutive rows.
- *
- * \sa innerStride(), outerStride(), colStride()
- */
- inline Index rowStride() const
- {
- return Derived::IsRowMajor ? outerStride() : innerStride();
- }
-
- /** \returns the pointer increment between two consecutive columns.
- *
- * \sa innerStride(), outerStride(), rowStride()
- */
- inline Index colStride() const
- {
- return Derived::IsRowMajor ? innerStride() : outerStride();
- }
-};
-
-/** \brief Base class providing direct read/write coefficient access to matrices and arrays.
- * \ingroup Core_Module
- * \tparam Derived Type of the derived class
- * \tparam #DirectWriteAccessors Constant indicating direct access
- *
- * This class defines functions to work with strides which can be used to access entries directly. This class
- * inherits DenseCoeffsBase<Derived, WriteAccessors> which defines functions to access entries read/write using
- * \c operator().
- *
- * \sa \ref TopicClassHierarchy
- */
-template<typename Derived>
-class DenseCoeffsBase<Derived, DirectWriteAccessors>
- : public DenseCoeffsBase<Derived, WriteAccessors>
-{
- public:
-
- typedef DenseCoeffsBase<Derived, WriteAccessors> Base;
- typedef typename internal::traits<Derived>::Index Index;
- typedef typename internal::traits<Derived>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- using Base::rows;
- using Base::cols;
- using Base::size;
- using Base::derived;
-
- /** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
- *
- * \sa outerStride(), rowStride(), colStride()
- */
- inline Index innerStride() const
- {
- return derived().innerStride();
- }
-
- /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
- * in a column-major matrix).
- *
- * \sa innerStride(), rowStride(), colStride()
- */
- inline Index outerStride() const
- {
- return derived().outerStride();
- }
-
- // FIXME shall we remove it ?
- inline Index stride() const
- {
- return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
- }
-
- /** \returns the pointer increment between two consecutive rows.
- *
- * \sa innerStride(), outerStride(), colStride()
- */
- inline Index rowStride() const
- {
- return Derived::IsRowMajor ? outerStride() : innerStride();
- }
-
- /** \returns the pointer increment between two consecutive columns.
- *
- * \sa innerStride(), outerStride(), rowStride()
- */
- inline Index colStride() const
- {
- return Derived::IsRowMajor ? innerStride() : outerStride();
- }
-};
-
-namespace internal {
-
-template<typename Derived, bool JustReturnZero>
-struct first_aligned_impl
-{
- static inline typename Derived::Index run(const Derived&)
- { return 0; }
-};
-
-template<typename Derived>
-struct first_aligned_impl<Derived, false>
-{
- static inline typename Derived::Index run(const Derived& m)
- {
- return internal::first_aligned(&m.const_cast_derived().coeffRef(0,0), m.size());
- }
-};
-
-/** \internal \returns the index of the first element of the array that is well aligned for vectorization.
- *
- * There is also the variant first_aligned(const Scalar*, Integer) defined in Memory.h. See it for more
- * documentation.
- */
-template<typename Derived>
-static inline typename Derived::Index first_aligned(const Derived& m)
-{
- return first_aligned_impl
- <Derived, (Derived::Flags & AlignedBit) || !(Derived::Flags & DirectAccessBit)>
- ::run(m);
-}
-
-template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
-struct inner_stride_at_compile_time
-{
- enum { ret = traits<Derived>::InnerStrideAtCompileTime };
-};
-
-template<typename Derived>
-struct inner_stride_at_compile_time<Derived, false>
-{
- enum { ret = 0 };
-};
-
-template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
-struct outer_stride_at_compile_time
-{
- enum { ret = traits<Derived>::OuterStrideAtCompileTime };
-};
-
-template<typename Derived>
-struct outer_stride_at_compile_time<Derived, false>
-{
- enum { ret = 0 };
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_DENSECOEFFSBASE_H
diff --git a/src/Eigen/src/Core/DenseStorage.h b/src/Eigen/src/Core/DenseStorage.h
deleted file mode 100644
index a72738e..0000000
--- a/src/Eigen/src/Core/DenseStorage.h
+++ /dev/null
@@ -1,339 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIXSTORAGE_H
-#define EIGEN_MATRIXSTORAGE_H
-
-#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- #define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN EIGEN_DENSE_STORAGE_CTOR_PLUGIN;
-#else
- #define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
-#endif
-
-namespace Eigen {
-
-namespace internal {
-
-struct constructor_without_unaligned_array_assert {};
-
-template<typename T, int Size> void check_static_allocation_size()
-{
- // if EIGEN_STACK_ALLOCATION_LIMIT is defined to 0, then no limit
- #if EIGEN_STACK_ALLOCATION_LIMIT
- EIGEN_STATIC_ASSERT(Size * sizeof(T) <= EIGEN_STACK_ALLOCATION_LIMIT, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
- #endif
-}
-
-/** \internal
- * Static array. If the MatrixOrArrayOptions require auto-alignment, the array will be automatically aligned:
- * to 16 bytes boundary if the total size is a multiple of 16 bytes.
- */
-template <typename T, int Size, int MatrixOrArrayOptions,
- int Alignment = (MatrixOrArrayOptions&DontAlign) ? 0
- : (((Size*sizeof(T))%16)==0) ? 16
- : 0 >
-struct plain_array
-{
- T array[Size];
-
- plain_array()
- {
- check_static_allocation_size<T,Size>();
- }
-
- plain_array(constructor_without_unaligned_array_assert)
- {
- check_static_allocation_size<T,Size>();
- }
-};
-
-#if defined(EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT)
- #define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask)
-#elif EIGEN_GNUC_AT_LEAST(4,7)
- // GCC 4.7 is too aggressive in its optimizations and remove the alignement test based on the fact the array is declared to be aligned.
- // See this bug report: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=53900
- // Hiding the origin of the array pointer behind a function argument seems to do the trick even if the function is inlined:
- template<typename PtrType>
- EIGEN_ALWAYS_INLINE PtrType eigen_unaligned_array_assert_workaround_gcc47(PtrType array) { return array; }
- #define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \
- eigen_assert((reinterpret_cast<size_t>(eigen_unaligned_array_assert_workaround_gcc47(array)) & sizemask) == 0 \
- && "this assertion is explained here: " \
- "http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \
- " **** READ THIS WEB PAGE !!! ****");
-#else
- #define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \
- eigen_assert((reinterpret_cast<size_t>(array) & sizemask) == 0 \
- && "this assertion is explained here: " \
- "http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \
- " **** READ THIS WEB PAGE !!! ****");
-#endif
-
-template <typename T, int Size, int MatrixOrArrayOptions>
-struct plain_array<T, Size, MatrixOrArrayOptions, 16>
-{
- EIGEN_USER_ALIGN16 T array[Size];
-
- plain_array()
- {
- EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(0xf);
- check_static_allocation_size<T,Size>();
- }
-
- plain_array(constructor_without_unaligned_array_assert)
- {
- check_static_allocation_size<T,Size>();
- }
-};
-
-template <typename T, int MatrixOrArrayOptions, int Alignment>
-struct plain_array<T, 0, MatrixOrArrayOptions, Alignment>
-{
- EIGEN_USER_ALIGN16 T array[1];
- plain_array() {}
- plain_array(constructor_without_unaligned_array_assert) {}
-};
-
-} // end namespace internal
-
-/** \internal
- *
- * \class DenseStorage
- * \ingroup Core_Module
- *
- * \brief Stores the data of a matrix
- *
- * This class stores the data of fixed-size, dynamic-size or mixed matrices
- * in a way as compact as possible.
- *
- * \sa Matrix
- */
-template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage;
-
-// purely fixed-size matrix
-template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage
-{
- internal::plain_array<T,Size,_Options> m_data;
- public:
- inline DenseStorage() {}
- inline DenseStorage(internal::constructor_without_unaligned_array_assert)
- : m_data(internal::constructor_without_unaligned_array_assert()) {}
- inline DenseStorage(DenseIndex,DenseIndex,DenseIndex) {}
- inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); }
- static inline DenseIndex rows(void) {return _Rows;}
- static inline DenseIndex cols(void) {return _Cols;}
- inline void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {}
- inline void resize(DenseIndex,DenseIndex,DenseIndex) {}
- inline const T *data() const { return m_data.array; }
- inline T *data() { return m_data.array; }
-};
-
-// null matrix
-template<typename T, int _Rows, int _Cols, int _Options> class DenseStorage<T, 0, _Rows, _Cols, _Options>
-{
- public:
- inline DenseStorage() {}
- inline DenseStorage(internal::constructor_without_unaligned_array_assert) {}
- inline DenseStorage(DenseIndex,DenseIndex,DenseIndex) {}
- inline void swap(DenseStorage& ) {}
- static inline DenseIndex rows(void) {return _Rows;}
- static inline DenseIndex cols(void) {return _Cols;}
- inline void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {}
- inline void resize(DenseIndex,DenseIndex,DenseIndex) {}
- inline const T *data() const { return 0; }
- inline T *data() { return 0; }
-};
-
-// more specializations for null matrices; these are necessary to resolve ambiguities
-template<typename T, int _Options> class DenseStorage<T, 0, Dynamic, Dynamic, _Options>
-: public DenseStorage<T, 0, 0, 0, _Options> { };
-
-template<typename T, int _Rows, int _Options> class DenseStorage<T, 0, _Rows, Dynamic, _Options>
-: public DenseStorage<T, 0, 0, 0, _Options> { };
-
-template<typename T, int _Cols, int _Options> class DenseStorage<T, 0, Dynamic, _Cols, _Options>
-: public DenseStorage<T, 0, 0, 0, _Options> { };
-
-// dynamic-size matrix with fixed-size storage
-template<typename T, int Size, int _Options> class DenseStorage<T, Size, Dynamic, Dynamic, _Options>
-{
- internal::plain_array<T,Size,_Options> m_data;
- DenseIndex m_rows;
- DenseIndex m_cols;
- public:
- inline DenseStorage() : m_rows(0), m_cols(0) {}
- inline DenseStorage(internal::constructor_without_unaligned_array_assert)
- : m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0), m_cols(0) {}
- inline DenseStorage(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) : m_rows(nbRows), m_cols(nbCols) {}
- inline void swap(DenseStorage& other)
- { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); }
- inline DenseIndex rows() const {return m_rows;}
- inline DenseIndex cols() const {return m_cols;}
- inline void conservativeResize(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) { m_rows = nbRows; m_cols = nbCols; }
- inline void resize(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) { m_rows = nbRows; m_cols = nbCols; }
- inline const T *data() const { return m_data.array; }
- inline T *data() { return m_data.array; }
-};
-
-// dynamic-size matrix with fixed-size storage and fixed width
-template<typename T, int Size, int _Cols, int _Options> class DenseStorage<T, Size, Dynamic, _Cols, _Options>
-{
- internal::plain_array<T,Size,_Options> m_data;
- DenseIndex m_rows;
- public:
- inline DenseStorage() : m_rows(0) {}
- inline DenseStorage(internal::constructor_without_unaligned_array_assert)
- : m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0) {}
- inline DenseStorage(DenseIndex, DenseIndex nbRows, DenseIndex) : m_rows(nbRows) {}
- inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
- inline DenseIndex rows(void) const {return m_rows;}
- inline DenseIndex cols(void) const {return _Cols;}
- inline void conservativeResize(DenseIndex, DenseIndex nbRows, DenseIndex) { m_rows = nbRows; }
- inline void resize(DenseIndex, DenseIndex nbRows, DenseIndex) { m_rows = nbRows; }
- inline const T *data() const { return m_data.array; }
- inline T *data() { return m_data.array; }
-};
-
-// dynamic-size matrix with fixed-size storage and fixed height
-template<typename T, int Size, int _Rows, int _Options> class DenseStorage<T, Size, _Rows, Dynamic, _Options>
-{
- internal::plain_array<T,Size,_Options> m_data;
- DenseIndex m_cols;
- public:
- inline DenseStorage() : m_cols(0) {}
- inline DenseStorage(internal::constructor_without_unaligned_array_assert)
- : m_data(internal::constructor_without_unaligned_array_assert()), m_cols(0) {}
- inline DenseStorage(DenseIndex, DenseIndex, DenseIndex nbCols) : m_cols(nbCols) {}
- inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
- inline DenseIndex rows(void) const {return _Rows;}
- inline DenseIndex cols(void) const {return m_cols;}
- inline void conservativeResize(DenseIndex, DenseIndex, DenseIndex nbCols) { m_cols = nbCols; }
- inline void resize(DenseIndex, DenseIndex, DenseIndex nbCols) { m_cols = nbCols; }
- inline const T *data() const { return m_data.array; }
- inline T *data() { return m_data.array; }
-};
-
-// purely dynamic matrix.
-template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynamic, _Options>
-{
- T *m_data;
- DenseIndex m_rows;
- DenseIndex m_cols;
- public:
- inline DenseStorage() : m_data(0), m_rows(0), m_cols(0) {}
- inline DenseStorage(internal::constructor_without_unaligned_array_assert)
- : m_data(0), m_rows(0), m_cols(0) {}
- inline DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols)
- : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(nbRows), m_cols(nbCols)
- { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
- inline ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols); }
- inline void swap(DenseStorage& other)
- { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); }
- inline DenseIndex rows(void) const {return m_rows;}
- inline DenseIndex cols(void) const {return m_cols;}
- inline void conservativeResize(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols)
- {
- m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*m_cols);
- m_rows = nbRows;
- m_cols = nbCols;
- }
- void resize(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols)
- {
- if(size != m_rows*m_cols)
- {
- internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols);
- if (size)
- m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
- else
- m_data = 0;
- EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
- }
- m_rows = nbRows;
- m_cols = nbCols;
- }
- inline const T *data() const { return m_data; }
- inline T *data() { return m_data; }
-};
-
-// matrix with dynamic width and fixed height (so that matrix has dynamic size).
-template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Rows, Dynamic, _Options>
-{
- T *m_data;
- DenseIndex m_cols;
- public:
- inline DenseStorage() : m_data(0), m_cols(0) {}
- inline DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {}
- inline DenseStorage(DenseIndex size, DenseIndex, DenseIndex nbCols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_cols(nbCols)
- { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
- inline ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols); }
- inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
- static inline DenseIndex rows(void) {return _Rows;}
- inline DenseIndex cols(void) const {return m_cols;}
- inline void conservativeResize(DenseIndex size, DenseIndex, DenseIndex nbCols)
- {
- m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, _Rows*m_cols);
- m_cols = nbCols;
- }
- EIGEN_STRONG_INLINE void resize(DenseIndex size, DenseIndex, DenseIndex nbCols)
- {
- if(size != _Rows*m_cols)
- {
- internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols);
- if (size)
- m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
- else
- m_data = 0;
- EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
- }
- m_cols = nbCols;
- }
- inline const T *data() const { return m_data; }
- inline T *data() { return m_data; }
-};
-
-// matrix with dynamic height and fixed width (so that matrix has dynamic size).
-template<typename T, int _Cols, int _Options> class DenseStorage<T, Dynamic, Dynamic, _Cols, _Options>
-{
- T *m_data;
- DenseIndex m_rows;
- public:
- inline DenseStorage() : m_data(0), m_rows(0) {}
- inline DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {}
- inline DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(nbRows)
- { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
- inline ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows); }
- inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
- inline DenseIndex rows(void) const {return m_rows;}
- static inline DenseIndex cols(void) {return _Cols;}
- inline void conservativeResize(DenseIndex size, DenseIndex nbRows, DenseIndex)
- {
- m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*_Cols);
- m_rows = nbRows;
- }
- EIGEN_STRONG_INLINE void resize(DenseIndex size, DenseIndex nbRows, DenseIndex)
- {
- if(size != m_rows*_Cols)
- {
- internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows);
- if (size)
- m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
- else
- m_data = 0;
- EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
- }
- m_rows = nbRows;
- }
- inline const T *data() const { return m_data; }
- inline T *data() { return m_data; }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATRIX_H
diff --git a/src/Eigen/src/Core/Diagonal.h b/src/Eigen/src/Core/Diagonal.h
deleted file mode 100644
index aab8007..0000000
--- a/src/Eigen/src/Core/Diagonal.h
+++ /dev/null
@@ -1,237 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_DIAGONAL_H
-#define EIGEN_DIAGONAL_H
-
-namespace Eigen {
-
-/** \class Diagonal
- * \ingroup Core_Module
- *
- * \brief Expression of a diagonal/subdiagonal/superdiagonal in a matrix
- *
- * \param MatrixType the type of the object in which we are taking a sub/main/super diagonal
- * \param DiagIndex the index of the sub/super diagonal. The default is 0 and it means the main diagonal.
- * A positive value means a superdiagonal, a negative value means a subdiagonal.
- * You can also use Dynamic so the index can be set at runtime.
- *
- * The matrix is not required to be square.
- *
- * This class represents an expression of the main diagonal, or any sub/super diagonal
- * of a square matrix. It is the return type of MatrixBase::diagonal() and MatrixBase::diagonal(Index) and most of the
- * time this is the only way it is used.
- *
- * \sa MatrixBase::diagonal(), MatrixBase::diagonal(Index)
- */
-
-namespace internal {
-template<typename MatrixType, int DiagIndex>
-struct traits<Diagonal<MatrixType,DiagIndex> >
- : traits<MatrixType>
-{
- typedef typename nested<MatrixType>::type MatrixTypeNested;
- typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
- typedef typename MatrixType::StorageKind StorageKind;
- enum {
- RowsAtCompileTime = (int(DiagIndex) == DynamicIndex || int(MatrixType::SizeAtCompileTime) == Dynamic) ? Dynamic
- : (EIGEN_PLAIN_ENUM_MIN(MatrixType::RowsAtCompileTime - EIGEN_PLAIN_ENUM_MAX(-DiagIndex, 0),
- MatrixType::ColsAtCompileTime - EIGEN_PLAIN_ENUM_MAX( DiagIndex, 0))),
- ColsAtCompileTime = 1,
- MaxRowsAtCompileTime = int(MatrixType::MaxSizeAtCompileTime) == Dynamic ? Dynamic
- : DiagIndex == DynamicIndex ? EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::MaxRowsAtCompileTime,
- MatrixType::MaxColsAtCompileTime)
- : (EIGEN_PLAIN_ENUM_MIN(MatrixType::MaxRowsAtCompileTime - EIGEN_PLAIN_ENUM_MAX(-DiagIndex, 0),
- MatrixType::MaxColsAtCompileTime - EIGEN_PLAIN_ENUM_MAX( DiagIndex, 0))),
- MaxColsAtCompileTime = 1,
- MaskLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
- Flags = (unsigned int)_MatrixTypeNested::Flags & (HereditaryBits | LinearAccessBit | MaskLvalueBit | DirectAccessBit) & ~RowMajorBit,
- CoeffReadCost = _MatrixTypeNested::CoeffReadCost,
- MatrixTypeOuterStride = outer_stride_at_compile_time<MatrixType>::ret,
- InnerStrideAtCompileTime = MatrixTypeOuterStride == Dynamic ? Dynamic : MatrixTypeOuterStride+1,
- OuterStrideAtCompileTime = 0
- };
-};
-}
-
-template<typename MatrixType, int _DiagIndex> class Diagonal
- : public internal::dense_xpr_base< Diagonal<MatrixType,_DiagIndex> >::type
-{
- public:
-
- enum { DiagIndex = _DiagIndex };
- typedef typename internal::dense_xpr_base<Diagonal>::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(Diagonal)
-
- inline Diagonal(MatrixType& matrix, Index a_index = DiagIndex) : m_matrix(matrix), m_index(a_index) {}
-
- EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Diagonal)
-
- inline Index rows() const
- { return m_index.value()<0 ? (std::min<Index>)(m_matrix.cols(),m_matrix.rows()+m_index.value()) : (std::min<Index>)(m_matrix.rows(),m_matrix.cols()-m_index.value()); }
-
- inline Index cols() const { return 1; }
-
- inline Index innerStride() const
- {
- return m_matrix.outerStride() + 1;
- }
-
- inline Index outerStride() const
- {
- return 0;
- }
-
- typedef typename internal::conditional<
- internal::is_lvalue<MatrixType>::value,
- Scalar,
- const Scalar
- >::type ScalarWithConstIfNotLvalue;
-
- inline ScalarWithConstIfNotLvalue* data() { return &(m_matrix.const_cast_derived().coeffRef(rowOffset(), colOffset())); }
- inline const Scalar* data() const { return &(m_matrix.const_cast_derived().coeffRef(rowOffset(), colOffset())); }
-
- inline Scalar& coeffRef(Index row, Index)
- {
- EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
- return m_matrix.const_cast_derived().coeffRef(row+rowOffset(), row+colOffset());
- }
-
- inline const Scalar& coeffRef(Index row, Index) const
- {
- return m_matrix.const_cast_derived().coeffRef(row+rowOffset(), row+colOffset());
- }
-
- inline CoeffReturnType coeff(Index row, Index) const
- {
- return m_matrix.coeff(row+rowOffset(), row+colOffset());
- }
-
- inline Scalar& coeffRef(Index idx)
- {
- EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
- return m_matrix.const_cast_derived().coeffRef(idx+rowOffset(), idx+colOffset());
- }
-
- inline const Scalar& coeffRef(Index idx) const
- {
- return m_matrix.const_cast_derived().coeffRef(idx+rowOffset(), idx+colOffset());
- }
-
- inline CoeffReturnType coeff(Index idx) const
- {
- return m_matrix.coeff(idx+rowOffset(), idx+colOffset());
- }
-
- const typename internal::remove_all<typename MatrixType::Nested>::type&
- nestedExpression() const
- {
- return m_matrix;
- }
-
- int index() const
- {
- return m_index.value();
- }
-
- protected:
- typename MatrixType::Nested m_matrix;
- const internal::variable_if_dynamicindex<Index, DiagIndex> m_index;
-
- private:
- // some compilers may fail to optimize std::max etc in case of compile-time constants...
- EIGEN_STRONG_INLINE Index absDiagIndex() const { return m_index.value()>0 ? m_index.value() : -m_index.value(); }
- EIGEN_STRONG_INLINE Index rowOffset() const { return m_index.value()>0 ? 0 : -m_index.value(); }
- EIGEN_STRONG_INLINE Index colOffset() const { return m_index.value()>0 ? m_index.value() : 0; }
- // triger a compile time error is someone try to call packet
- template<int LoadMode> typename MatrixType::PacketReturnType packet(Index) const;
- template<int LoadMode> typename MatrixType::PacketReturnType packet(Index,Index) const;
-};
-
-/** \returns an expression of the main diagonal of the matrix \c *this
- *
- * \c *this is not required to be square.
- *
- * Example: \include MatrixBase_diagonal.cpp
- * Output: \verbinclude MatrixBase_diagonal.out
- *
- * \sa class Diagonal */
-template<typename Derived>
-inline typename MatrixBase<Derived>::DiagonalReturnType
-MatrixBase<Derived>::diagonal()
-{
- return derived();
-}
-
-/** This is the const version of diagonal(). */
-template<typename Derived>
-inline typename MatrixBase<Derived>::ConstDiagonalReturnType
-MatrixBase<Derived>::diagonal() const
-{
- return ConstDiagonalReturnType(derived());
-}
-
-/** \returns an expression of the \a DiagIndex-th sub or super diagonal of the matrix \c *this
- *
- * \c *this is not required to be square.
- *
- * The template parameter \a DiagIndex represent a super diagonal if \a DiagIndex > 0
- * and a sub diagonal otherwise. \a DiagIndex == 0 is equivalent to the main diagonal.
- *
- * Example: \include MatrixBase_diagonal_int.cpp
- * Output: \verbinclude MatrixBase_diagonal_int.out
- *
- * \sa MatrixBase::diagonal(), class Diagonal */
-template<typename Derived>
-inline typename MatrixBase<Derived>::template DiagonalIndexReturnType<DynamicIndex>::Type
-MatrixBase<Derived>::diagonal(Index index)
-{
- return typename DiagonalIndexReturnType<DynamicIndex>::Type(derived(), index);
-}
-
-/** This is the const version of diagonal(Index). */
-template<typename Derived>
-inline typename MatrixBase<Derived>::template ConstDiagonalIndexReturnType<DynamicIndex>::Type
-MatrixBase<Derived>::diagonal(Index index) const
-{
- return typename ConstDiagonalIndexReturnType<DynamicIndex>::Type(derived(), index);
-}
-
-/** \returns an expression of the \a DiagIndex-th sub or super diagonal of the matrix \c *this
- *
- * \c *this is not required to be square.
- *
- * The template parameter \a DiagIndex represent a super diagonal if \a DiagIndex > 0
- * and a sub diagonal otherwise. \a DiagIndex == 0 is equivalent to the main diagonal.
- *
- * Example: \include MatrixBase_diagonal_template_int.cpp
- * Output: \verbinclude MatrixBase_diagonal_template_int.out
- *
- * \sa MatrixBase::diagonal(), class Diagonal */
-template<typename Derived>
-template<int Index>
-inline typename MatrixBase<Derived>::template DiagonalIndexReturnType<Index>::Type
-MatrixBase<Derived>::diagonal()
-{
- return derived();
-}
-
-/** This is the const version of diagonal<int>(). */
-template<typename Derived>
-template<int Index>
-inline typename MatrixBase<Derived>::template ConstDiagonalIndexReturnType<Index>::Type
-MatrixBase<Derived>::diagonal() const
-{
- return derived();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_DIAGONAL_H
diff --git a/src/Eigen/src/Core/DiagonalMatrix.h b/src/Eigen/src/Core/DiagonalMatrix.h
deleted file mode 100644
index e6c220f..0000000
--- a/src/Eigen/src/Core/DiagonalMatrix.h
+++ /dev/null
@@ -1,313 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_DIAGONALMATRIX_H
-#define EIGEN_DIAGONALMATRIX_H
-
-namespace Eigen {
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-template<typename Derived>
-class DiagonalBase : public EigenBase<Derived>
-{
- public:
- typedef typename internal::traits<Derived>::DiagonalVectorType DiagonalVectorType;
- typedef typename DiagonalVectorType::Scalar Scalar;
- typedef typename DiagonalVectorType::RealScalar RealScalar;
- typedef typename internal::traits<Derived>::StorageKind StorageKind;
- typedef typename internal::traits<Derived>::Index Index;
-
- enum {
- RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
- ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
- MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
- MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
- IsVectorAtCompileTime = 0,
- Flags = 0
- };
-
- typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, 0, MaxRowsAtCompileTime, MaxColsAtCompileTime> DenseMatrixType;
- typedef DenseMatrixType DenseType;
- typedef DiagonalMatrix<Scalar,DiagonalVectorType::SizeAtCompileTime,DiagonalVectorType::MaxSizeAtCompileTime> PlainObject;
-
- inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
- inline Derived& derived() { return *static_cast<Derived*>(this); }
-
- DenseMatrixType toDenseMatrix() const { return derived(); }
- template<typename DenseDerived>
- void evalTo(MatrixBase<DenseDerived> &other) const;
- template<typename DenseDerived>
- void addTo(MatrixBase<DenseDerived> &other) const
- { other.diagonal() += diagonal(); }
- template<typename DenseDerived>
- void subTo(MatrixBase<DenseDerived> &other) const
- { other.diagonal() -= diagonal(); }
-
- inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); }
- inline DiagonalVectorType& diagonal() { return derived().diagonal(); }
-
- inline Index rows() const { return diagonal().size(); }
- inline Index cols() const { return diagonal().size(); }
-
- /** \returns the diagonal matrix product of \c *this by the matrix \a matrix.
- */
- template<typename MatrixDerived>
- const DiagonalProduct<MatrixDerived, Derived, OnTheLeft>
- operator*(const MatrixBase<MatrixDerived> &matrix) const
- {
- return DiagonalProduct<MatrixDerived, Derived, OnTheLeft>(matrix.derived(), derived());
- }
-
- inline const DiagonalWrapper<const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const DiagonalVectorType> >
- inverse() const
- {
- return diagonal().cwiseInverse();
- }
-
- inline const DiagonalWrapper<const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DiagonalVectorType> >
- operator*(const Scalar& scalar) const
- {
- return diagonal() * scalar;
- }
- friend inline const DiagonalWrapper<const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DiagonalVectorType> >
- operator*(const Scalar& scalar, const DiagonalBase& other)
- {
- return other.diagonal() * scalar;
- }
-
- #ifdef EIGEN2_SUPPORT
- template<typename OtherDerived>
- bool isApprox(const DiagonalBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
- {
- return diagonal().isApprox(other.diagonal(), precision);
- }
- template<typename OtherDerived>
- bool isApprox(const MatrixBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
- {
- return toDenseMatrix().isApprox(other, precision);
- }
- #endif
-};
-
-template<typename Derived>
-template<typename DenseDerived>
-void DiagonalBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const
-{
- other.setZero();
- other.diagonal() = diagonal();
-}
-#endif
-
-/** \class DiagonalMatrix
- * \ingroup Core_Module
- *
- * \brief Represents a diagonal matrix with its storage
- *
- * \param _Scalar the type of coefficients
- * \param SizeAtCompileTime the dimension of the matrix, or Dynamic
- * \param MaxSizeAtCompileTime the dimension of the matrix, or Dynamic. This parameter is optional and defaults
- * to SizeAtCompileTime. Most of the time, you do not need to specify it.
- *
- * \sa class DiagonalWrapper
- */
-
-namespace internal {
-template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime>
-struct traits<DiagonalMatrix<_Scalar,SizeAtCompileTime,MaxSizeAtCompileTime> >
- : traits<Matrix<_Scalar,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
-{
- typedef Matrix<_Scalar,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1> DiagonalVectorType;
- typedef Dense StorageKind;
- typedef DenseIndex Index;
- enum {
- Flags = LvalueBit
- };
-};
-}
-template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime>
-class DiagonalMatrix
- : public DiagonalBase<DiagonalMatrix<_Scalar,SizeAtCompileTime,MaxSizeAtCompileTime> >
-{
- public:
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- typedef typename internal::traits<DiagonalMatrix>::DiagonalVectorType DiagonalVectorType;
- typedef const DiagonalMatrix& Nested;
- typedef _Scalar Scalar;
- typedef typename internal::traits<DiagonalMatrix>::StorageKind StorageKind;
- typedef typename internal::traits<DiagonalMatrix>::Index Index;
- #endif
-
- protected:
-
- DiagonalVectorType m_diagonal;
-
- public:
-
- /** const version of diagonal(). */
- inline const DiagonalVectorType& diagonal() const { return m_diagonal; }
- /** \returns a reference to the stored vector of diagonal coefficients. */
- inline DiagonalVectorType& diagonal() { return m_diagonal; }
-
- /** Default constructor without initialization */
- inline DiagonalMatrix() {}
-
- /** Constructs a diagonal matrix with given dimension */
- inline DiagonalMatrix(Index dim) : m_diagonal(dim) {}
-
- /** 2D constructor. */
- inline DiagonalMatrix(const Scalar& x, const Scalar& y) : m_diagonal(x,y) {}
-
- /** 3D constructor. */
- inline DiagonalMatrix(const Scalar& x, const Scalar& y, const Scalar& z) : m_diagonal(x,y,z) {}
-
- /** Copy constructor. */
- template<typename OtherDerived>
- inline DiagonalMatrix(const DiagonalBase<OtherDerived>& other) : m_diagonal(other.diagonal()) {}
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** copy constructor. prevent a default copy constructor from hiding the other templated constructor */
- inline DiagonalMatrix(const DiagonalMatrix& other) : m_diagonal(other.diagonal()) {}
- #endif
-
- /** generic constructor from expression of the diagonal coefficients */
- template<typename OtherDerived>
- explicit inline DiagonalMatrix(const MatrixBase<OtherDerived>& other) : m_diagonal(other)
- {}
-
- /** Copy operator. */
- template<typename OtherDerived>
- DiagonalMatrix& operator=(const DiagonalBase<OtherDerived>& other)
- {
- m_diagonal = other.diagonal();
- return *this;
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** This is a special case of the templated operator=. Its purpose is to
- * prevent a default operator= from hiding the templated operator=.
- */
- DiagonalMatrix& operator=(const DiagonalMatrix& other)
- {
- m_diagonal = other.diagonal();
- return *this;
- }
- #endif
-
- /** Resizes to given size. */
- inline void resize(Index size) { m_diagonal.resize(size); }
- /** Sets all coefficients to zero. */
- inline void setZero() { m_diagonal.setZero(); }
- /** Resizes and sets all coefficients to zero. */
- inline void setZero(Index size) { m_diagonal.setZero(size); }
- /** Sets this matrix to be the identity matrix of the current size. */
- inline void setIdentity() { m_diagonal.setOnes(); }
- /** Sets this matrix to be the identity matrix of the given size. */
- inline void setIdentity(Index size) { m_diagonal.setOnes(size); }
-};
-
-/** \class DiagonalWrapper
- * \ingroup Core_Module
- *
- * \brief Expression of a diagonal matrix
- *
- * \param _DiagonalVectorType the type of the vector of diagonal coefficients
- *
- * This class is an expression of a diagonal matrix, but not storing its own vector of diagonal coefficients,
- * instead wrapping an existing vector expression. It is the return type of MatrixBase::asDiagonal()
- * and most of the time this is the only way that it is used.
- *
- * \sa class DiagonalMatrix, class DiagonalBase, MatrixBase::asDiagonal()
- */
-
-namespace internal {
-template<typename _DiagonalVectorType>
-struct traits<DiagonalWrapper<_DiagonalVectorType> >
-{
- typedef _DiagonalVectorType DiagonalVectorType;
- typedef typename DiagonalVectorType::Scalar Scalar;
- typedef typename DiagonalVectorType::Index Index;
- typedef typename DiagonalVectorType::StorageKind StorageKind;
- enum {
- RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
- ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
- MaxRowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
- MaxColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
- Flags = traits<DiagonalVectorType>::Flags & LvalueBit
- };
-};
-}
-
-template<typename _DiagonalVectorType>
-class DiagonalWrapper
- : public DiagonalBase<DiagonalWrapper<_DiagonalVectorType> >, internal::no_assignment_operator
-{
- public:
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- typedef _DiagonalVectorType DiagonalVectorType;
- typedef DiagonalWrapper Nested;
- #endif
-
- /** Constructor from expression of diagonal coefficients to wrap. */
- inline DiagonalWrapper(DiagonalVectorType& a_diagonal) : m_diagonal(a_diagonal) {}
-
- /** \returns a const reference to the wrapped expression of diagonal coefficients. */
- const DiagonalVectorType& diagonal() const { return m_diagonal; }
-
- protected:
- typename DiagonalVectorType::Nested m_diagonal;
-};
-
-/** \returns a pseudo-expression of a diagonal matrix with *this as vector of diagonal coefficients
- *
- * \only_for_vectors
- *
- * Example: \include MatrixBase_asDiagonal.cpp
- * Output: \verbinclude MatrixBase_asDiagonal.out
- *
- * \sa class DiagonalWrapper, class DiagonalMatrix, diagonal(), isDiagonal()
- **/
-template<typename Derived>
-inline const DiagonalWrapper<const Derived>
-MatrixBase<Derived>::asDiagonal() const
-{
- return derived();
-}
-
-/** \returns true if *this is approximately equal to a diagonal matrix,
- * within the precision given by \a prec.
- *
- * Example: \include MatrixBase_isDiagonal.cpp
- * Output: \verbinclude MatrixBase_isDiagonal.out
- *
- * \sa asDiagonal()
- */
-template<typename Derived>
-bool MatrixBase<Derived>::isDiagonal(const RealScalar& prec) const
-{
- using std::abs;
- if(cols() != rows()) return false;
- RealScalar maxAbsOnDiagonal = static_cast<RealScalar>(-1);
- for(Index j = 0; j < cols(); ++j)
- {
- RealScalar absOnDiagonal = abs(coeff(j,j));
- if(absOnDiagonal > maxAbsOnDiagonal) maxAbsOnDiagonal = absOnDiagonal;
- }
- for(Index j = 0; j < cols(); ++j)
- for(Index i = 0; i < j; ++i)
- {
- if(!internal::isMuchSmallerThan(coeff(i, j), maxAbsOnDiagonal, prec)) return false;
- if(!internal::isMuchSmallerThan(coeff(j, i), maxAbsOnDiagonal, prec)) return false;
- }
- return true;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_DIAGONALMATRIX_H
diff --git a/src/Eigen/src/Core/DiagonalProduct.h b/src/Eigen/src/Core/DiagonalProduct.h
deleted file mode 100644
index c03a0c2..0000000
--- a/src/Eigen/src/Core/DiagonalProduct.h
+++ /dev/null
@@ -1,130 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_DIAGONALPRODUCT_H
-#define EIGEN_DIAGONALPRODUCT_H
-
-namespace Eigen {
-
-namespace internal {
-template<typename MatrixType, typename DiagonalType, int ProductOrder>
-struct traits<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> >
- : traits<MatrixType>
-{
- typedef typename scalar_product_traits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
-
- _StorageOrder = MatrixType::Flags & RowMajorBit ? RowMajor : ColMajor,
- _ScalarAccessOnDiag = !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft)
- ||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)),
- _SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
- // FIXME currently we need same types, but in the future the next rule should be the one
- //_Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagonalType::DiagonalVectorType::Flags)&PacketAccessBit))),
- _Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagonalType::DiagonalVectorType::Flags)&PacketAccessBit))),
- _LinearAccessMask = (RowsAtCompileTime==1 || ColsAtCompileTime==1) ? LinearAccessBit : 0,
-
- Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixType::Flags)) | (_Vectorizable ? PacketAccessBit : 0) | AlignedBit,//(int(MatrixType::Flags)&int(DiagonalType::DiagonalVectorType::Flags)&AlignedBit),
- CoeffReadCost = NumTraits<Scalar>::MulCost + MatrixType::CoeffReadCost + DiagonalType::DiagonalVectorType::CoeffReadCost
- };
-};
-}
-
-template<typename MatrixType, typename DiagonalType, int ProductOrder>
-class DiagonalProduct : internal::no_assignment_operator,
- public MatrixBase<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> >
-{
- public:
-
- typedef MatrixBase<DiagonalProduct> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(DiagonalProduct)
-
- inline DiagonalProduct(const MatrixType& matrix, const DiagonalType& diagonal)
- : m_matrix(matrix), m_diagonal(diagonal)
- {
- eigen_assert(diagonal.diagonal().size() == (ProductOrder == OnTheLeft ? matrix.rows() : matrix.cols()));
- }
-
- EIGEN_STRONG_INLINE Index rows() const { return m_matrix.rows(); }
- EIGEN_STRONG_INLINE Index cols() const { return m_matrix.cols(); }
-
- EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
- {
- return m_diagonal.diagonal().coeff(ProductOrder == OnTheLeft ? row : col) * m_matrix.coeff(row, col);
- }
-
- EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const
- {
- enum {
- StorageOrder = int(MatrixType::Flags) & RowMajorBit ? RowMajor : ColMajor
- };
- return coeff(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
- {
- enum {
- StorageOrder = Flags & RowMajorBit ? RowMajor : ColMajor
- };
- const Index indexInDiagonalVector = ProductOrder == OnTheLeft ? row : col;
- return packet_impl<LoadMode>(row,col,indexInDiagonalVector,typename internal::conditional<
- ((int(StorageOrder) == RowMajor && int(ProductOrder) == OnTheLeft)
- ||(int(StorageOrder) == ColMajor && int(ProductOrder) == OnTheRight)), internal::true_type, internal::false_type>::type());
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index idx) const
- {
- enum {
- StorageOrder = int(MatrixType::Flags) & RowMajorBit ? RowMajor : ColMajor
- };
- return packet<LoadMode>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
- }
-
- protected:
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::true_type) const
- {
- return internal::pmul(m_matrix.template packet<LoadMode>(row, col),
- internal::pset1<PacketScalar>(m_diagonal.diagonal().coeff(id)));
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::false_type) const
- {
- enum {
- InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
- DiagonalVectorPacketLoadMode = (LoadMode == Aligned && (((InnerSize%16) == 0) || (int(DiagonalType::DiagonalVectorType::Flags)&AlignedBit)==AlignedBit) ? Aligned : Unaligned)
- };
- return internal::pmul(m_matrix.template packet<LoadMode>(row, col),
- m_diagonal.diagonal().template packet<DiagonalVectorPacketLoadMode>(id));
- }
-
- typename MatrixType::Nested m_matrix;
- typename DiagonalType::Nested m_diagonal;
-};
-
-/** \returns the diagonal matrix product of \c *this by the diagonal matrix \a diagonal.
- */
-template<typename Derived>
-template<typename DiagonalDerived>
-inline const DiagonalProduct<Derived, DiagonalDerived, OnTheRight>
-MatrixBase<Derived>::operator*(const DiagonalBase<DiagonalDerived> &a_diagonal) const
-{
- return DiagonalProduct<Derived, DiagonalDerived, OnTheRight>(derived(), a_diagonal.derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_DIAGONALPRODUCT_H
diff --git a/src/Eigen/src/Core/Dot.h b/src/Eigen/src/Core/Dot.h
deleted file mode 100644
index 9d7651f..0000000
--- a/src/Eigen/src/Core/Dot.h
+++ /dev/null
@@ -1,263 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_DOT_H
-#define EIGEN_DOT_H
-
-namespace Eigen {
-
-namespace internal {
-
-// helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot
-// with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
-// looking at the static assertions. Thus this is a trick to get better compile errors.
-template<typename T, typename U,
-// the NeedToTranspose condition here is taken straight from Assign.h
- bool NeedToTranspose = T::IsVectorAtCompileTime
- && U::IsVectorAtCompileTime
- && ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1)
- | // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
- // revert to || as soon as not needed anymore.
- (int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))
->
-struct dot_nocheck
-{
- typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
- static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
- {
- return a.template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
- }
-};
-
-template<typename T, typename U>
-struct dot_nocheck<T, U, true>
-{
- typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
- static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
- {
- return a.transpose().template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
- }
-};
-
-} // end namespace internal
-
-/** \returns the dot product of *this with other.
- *
- * \only_for_vectors
- *
- * \note If the scalar type is complex numbers, then this function returns the hermitian
- * (sesquilinear) dot product, conjugate-linear in the first variable and linear in the
- * second variable.
- *
- * \sa squaredNorm(), norm()
- */
-template<typename Derived>
-template<typename OtherDerived>
-typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
-MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
- typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func;
- EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar);
-
- eigen_assert(size() == other.size());
-
- return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other);
-}
-
-#ifdef EIGEN2_SUPPORT
-/** \returns the dot product of *this with other, with the Eigen2 convention that the dot product is linear in the first variable
- * (conjugating the second variable). Of course this only makes a difference in the complex case.
- *
- * This method is only available in EIGEN2_SUPPORT mode.
- *
- * \only_for_vectors
- *
- * \sa dot()
- */
-template<typename Derived>
-template<typename OtherDerived>
-typename internal::traits<Derived>::Scalar
-MatrixBase<Derived>::eigen2_dot(const MatrixBase<OtherDerived>& other) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-
- eigen_assert(size() == other.size());
-
- return internal::dot_nocheck<OtherDerived,Derived>::run(other,*this);
-}
-#endif
-
-
-//---------- implementation of L2 norm and related functions ----------
-
-/** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm.
- * In both cases, it consists in the sum of the square of all the matrix entries.
- * For vectors, this is also equals to the dot product of \c *this with itself.
- *
- * \sa dot(), norm()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
-{
- return numext::real((*this).cwiseAbs2().sum());
-}
-
-/** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm.
- * In both cases, it consists in the square root of the sum of the square of all the matrix entries.
- * For vectors, this is also equals to the square root of the dot product of \c *this with itself.
- *
- * \sa dot(), squaredNorm()
- */
-template<typename Derived>
-inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
-{
- using std::sqrt;
- return sqrt(squaredNorm());
-}
-
-/** \returns an expression of the quotient of *this by its own norm.
- *
- * \only_for_vectors
- *
- * \sa norm(), normalize()
- */
-template<typename Derived>
-inline const typename MatrixBase<Derived>::PlainObject
-MatrixBase<Derived>::normalized() const
-{
- typedef typename internal::nested<Derived>::type Nested;
- typedef typename internal::remove_reference<Nested>::type _Nested;
- _Nested n(derived());
- return n / n.norm();
-}
-
-/** Normalizes the vector, i.e. divides it by its own norm.
- *
- * \only_for_vectors
- *
- * \sa norm(), normalized()
- */
-template<typename Derived>
-inline void MatrixBase<Derived>::normalize()
-{
- *this /= norm();
-}
-
-//---------- implementation of other norms ----------
-
-namespace internal {
-
-template<typename Derived, int p>
-struct lpNorm_selector
-{
- typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
- static inline RealScalar run(const MatrixBase<Derived>& m)
- {
- using std::pow;
- return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
- }
-};
-
-template<typename Derived>
-struct lpNorm_selector<Derived, 1>
-{
- static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
- {
- return m.cwiseAbs().sum();
- }
-};
-
-template<typename Derived>
-struct lpNorm_selector<Derived, 2>
-{
- static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
- {
- return m.norm();
- }
-};
-
-template<typename Derived>
-struct lpNorm_selector<Derived, Infinity>
-{
- static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
- {
- return m.cwiseAbs().maxCoeff();
- }
-};
-
-} // end namespace internal
-
-/** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
- * of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$
- * norm, that is the maximum of the absolute values of the coefficients of *this.
- *
- * \sa norm()
- */
-template<typename Derived>
-template<int p>
-inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
-MatrixBase<Derived>::lpNorm() const
-{
- return internal::lpNorm_selector<Derived, p>::run(*this);
-}
-
-//---------- implementation of isOrthogonal / isUnitary ----------
-
-/** \returns true if *this is approximately orthogonal to \a other,
- * within the precision given by \a prec.
- *
- * Example: \include MatrixBase_isOrthogonal.cpp
- * Output: \verbinclude MatrixBase_isOrthogonal.out
- */
-template<typename Derived>
-template<typename OtherDerived>
-bool MatrixBase<Derived>::isOrthogonal
-(const MatrixBase<OtherDerived>& other, const RealScalar& prec) const
-{
- typename internal::nested<Derived,2>::type nested(derived());
- typename internal::nested<OtherDerived,2>::type otherNested(other.derived());
- return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
-}
-
-/** \returns true if *this is approximately an unitary matrix,
- * within the precision given by \a prec. In the case where the \a Scalar
- * type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
- *
- * \note This can be used to check whether a family of vectors forms an orthonormal basis.
- * Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an
- * orthonormal basis.
- *
- * Example: \include MatrixBase_isUnitary.cpp
- * Output: \verbinclude MatrixBase_isUnitary.out
- */
-template<typename Derived>
-bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const
-{
- typename Derived::Nested nested(derived());
- for(Index i = 0; i < cols(); ++i)
- {
- if(!internal::isApprox(nested.col(i).squaredNorm(), static_cast<RealScalar>(1), prec))
- return false;
- for(Index j = 0; j < i; ++j)
- if(!internal::isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec))
- return false;
- }
- return true;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_DOT_H
diff --git a/src/Eigen/src/Core/EigenBase.h b/src/Eigen/src/Core/EigenBase.h
deleted file mode 100644
index fadb458..0000000
--- a/src/Eigen/src/Core/EigenBase.h
+++ /dev/null
@@ -1,131 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_EIGENBASE_H
-#define EIGEN_EIGENBASE_H
-
-namespace Eigen {
-
-/** Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor MatrixBase(T).
- *
- * In other words, an EigenBase object is an object that can be copied into a MatrixBase.
- *
- * Besides MatrixBase-derived classes, this also includes special matrix classes such as diagonal matrices, etc.
- *
- * Notice that this class is trivial, it is only used to disambiguate overloaded functions.
- *
- * \sa \ref TopicClassHierarchy
- */
-template<typename Derived> struct EigenBase
-{
-// typedef typename internal::plain_matrix_type<Derived>::type PlainObject;
-
- typedef typename internal::traits<Derived>::StorageKind StorageKind;
- typedef typename internal::traits<Derived>::Index Index;
-
- /** \returns a reference to the derived object */
- Derived& derived() { return *static_cast<Derived*>(this); }
- /** \returns a const reference to the derived object */
- const Derived& derived() const { return *static_cast<const Derived*>(this); }
-
- inline Derived& const_cast_derived() const
- { return *static_cast<Derived*>(const_cast<EigenBase*>(this)); }
- inline const Derived& const_derived() const
- { return *static_cast<const Derived*>(this); }
-
- /** \returns the number of rows. \sa cols(), RowsAtCompileTime */
- inline Index rows() const { return derived().rows(); }
- /** \returns the number of columns. \sa rows(), ColsAtCompileTime*/
- inline Index cols() const { return derived().cols(); }
- /** \returns the number of coefficients, which is rows()*cols().
- * \sa rows(), cols(), SizeAtCompileTime. */
- inline Index size() const { return rows() * cols(); }
-
- /** \internal Don't use it, but do the equivalent: \code dst = *this; \endcode */
- template<typename Dest> inline void evalTo(Dest& dst) const
- { derived().evalTo(dst); }
-
- /** \internal Don't use it, but do the equivalent: \code dst += *this; \endcode */
- template<typename Dest> inline void addTo(Dest& dst) const
- {
- // This is the default implementation,
- // derived class can reimplement it in a more optimized way.
- typename Dest::PlainObject res(rows(),cols());
- evalTo(res);
- dst += res;
- }
-
- /** \internal Don't use it, but do the equivalent: \code dst -= *this; \endcode */
- template<typename Dest> inline void subTo(Dest& dst) const
- {
- // This is the default implementation,
- // derived class can reimplement it in a more optimized way.
- typename Dest::PlainObject res(rows(),cols());
- evalTo(res);
- dst -= res;
- }
-
- /** \internal Don't use it, but do the equivalent: \code dst.applyOnTheRight(*this); \endcode */
- template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const
- {
- // This is the default implementation,
- // derived class can reimplement it in a more optimized way.
- dst = dst * this->derived();
- }
-
- /** \internal Don't use it, but do the equivalent: \code dst.applyOnTheLeft(*this); \endcode */
- template<typename Dest> inline void applyThisOnTheLeft(Dest& dst) const
- {
- // This is the default implementation,
- // derived class can reimplement it in a more optimized way.
- dst = this->derived() * dst;
- }
-
-};
-
-/***************************************************************************
-* Implementation of matrix base methods
-***************************************************************************/
-
-/** \brief Copies the generic expression \a other into *this.
- *
- * \details The expression must provide a (templated) evalTo(Derived& dst) const
- * function which does the actual job. In practice, this allows any user to write
- * its own special matrix without having to modify MatrixBase
- *
- * \returns a reference to *this.
- */
-template<typename Derived>
-template<typename OtherDerived>
-Derived& DenseBase<Derived>::operator=(const EigenBase<OtherDerived> &other)
-{
- other.derived().evalTo(derived());
- return derived();
-}
-
-template<typename Derived>
-template<typename OtherDerived>
-Derived& DenseBase<Derived>::operator+=(const EigenBase<OtherDerived> &other)
-{
- other.derived().addTo(derived());
- return derived();
-}
-
-template<typename Derived>
-template<typename OtherDerived>
-Derived& DenseBase<Derived>::operator-=(const EigenBase<OtherDerived> &other)
-{
- other.derived().subTo(derived());
- return derived();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_EIGENBASE_H
diff --git a/src/Eigen/src/Core/Flagged.h b/src/Eigen/src/Core/Flagged.h
deleted file mode 100644
index 1f2955f..0000000
--- a/src/Eigen/src/Core/Flagged.h
+++ /dev/null
@@ -1,140 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_FLAGGED_H
-#define EIGEN_FLAGGED_H
-
-namespace Eigen {
-
-/** \class Flagged
- * \ingroup Core_Module
- *
- * \brief Expression with modified flags
- *
- * \param ExpressionType the type of the object of which we are modifying the flags
- * \param Added the flags added to the expression
- * \param Removed the flags removed from the expression (has priority over Added).
- *
- * This class represents an expression whose flags have been modified.
- * It is the return type of MatrixBase::flagged()
- * and most of the time this is the only way it is used.
- *
- * \sa MatrixBase::flagged()
- */
-
-namespace internal {
-template<typename ExpressionType, unsigned int Added, unsigned int Removed>
-struct traits<Flagged<ExpressionType, Added, Removed> > : traits<ExpressionType>
-{
- enum { Flags = (ExpressionType::Flags | Added) & ~Removed };
-};
-}
-
-template<typename ExpressionType, unsigned int Added, unsigned int Removed> class Flagged
- : public MatrixBase<Flagged<ExpressionType, Added, Removed> >
-{
- public:
-
- typedef MatrixBase<Flagged> Base;
-
- EIGEN_DENSE_PUBLIC_INTERFACE(Flagged)
- typedef typename internal::conditional<internal::must_nest_by_value<ExpressionType>::ret,
- ExpressionType, const ExpressionType&>::type ExpressionTypeNested;
- typedef typename ExpressionType::InnerIterator InnerIterator;
-
- inline Flagged(const ExpressionType& matrix) : m_matrix(matrix) {}
-
- inline Index rows() const { return m_matrix.rows(); }
- inline Index cols() const { return m_matrix.cols(); }
- inline Index outerStride() const { return m_matrix.outerStride(); }
- inline Index innerStride() const { return m_matrix.innerStride(); }
-
- inline CoeffReturnType coeff(Index row, Index col) const
- {
- return m_matrix.coeff(row, col);
- }
-
- inline CoeffReturnType coeff(Index index) const
- {
- return m_matrix.coeff(index);
- }
-
- inline const Scalar& coeffRef(Index row, Index col) const
- {
- return m_matrix.const_cast_derived().coeffRef(row, col);
- }
-
- inline const Scalar& coeffRef(Index index) const
- {
- return m_matrix.const_cast_derived().coeffRef(index);
- }
-
- inline Scalar& coeffRef(Index row, Index col)
- {
- return m_matrix.const_cast_derived().coeffRef(row, col);
- }
-
- inline Scalar& coeffRef(Index index)
- {
- return m_matrix.const_cast_derived().coeffRef(index);
- }
-
- template<int LoadMode>
- inline const PacketScalar packet(Index row, Index col) const
- {
- return m_matrix.template packet<LoadMode>(row, col);
- }
-
- template<int LoadMode>
- inline void writePacket(Index row, Index col, const PacketScalar& x)
- {
- m_matrix.const_cast_derived().template writePacket<LoadMode>(row, col, x);
- }
-
- template<int LoadMode>
- inline const PacketScalar packet(Index index) const
- {
- return m_matrix.template packet<LoadMode>(index);
- }
-
- template<int LoadMode>
- inline void writePacket(Index index, const PacketScalar& x)
- {
- m_matrix.const_cast_derived().template writePacket<LoadMode>(index, x);
- }
-
- const ExpressionType& _expression() const { return m_matrix; }
-
- template<typename OtherDerived>
- typename ExpressionType::PlainObject solveTriangular(const MatrixBase<OtherDerived>& other) const;
-
- template<typename OtherDerived>
- void solveTriangularInPlace(const MatrixBase<OtherDerived>& other) const;
-
- protected:
- ExpressionTypeNested m_matrix;
-};
-
-/** \returns an expression of *this with added and removed flags
- *
- * This is mostly for internal use.
- *
- * \sa class Flagged
- */
-template<typename Derived>
-template<unsigned int Added,unsigned int Removed>
-inline const Flagged<Derived, Added, Removed>
-DenseBase<Derived>::flagged() const
-{
- return derived();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_FLAGGED_H
diff --git a/src/Eigen/src/Core/ForceAlignedAccess.h b/src/Eigen/src/Core/ForceAlignedAccess.h
deleted file mode 100644
index 807c7a2..0000000
--- a/src/Eigen/src/Core/ForceAlignedAccess.h
+++ /dev/null
@@ -1,146 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_FORCEALIGNEDACCESS_H
-#define EIGEN_FORCEALIGNEDACCESS_H
-
-namespace Eigen {
-
-/** \class ForceAlignedAccess
- * \ingroup Core_Module
- *
- * \brief Enforce aligned packet loads and stores regardless of what is requested
- *
- * \param ExpressionType the type of the object of which we are forcing aligned packet access
- *
- * This class is the return type of MatrixBase::forceAlignedAccess()
- * and most of the time this is the only way it is used.
- *
- * \sa MatrixBase::forceAlignedAccess()
- */
-
-namespace internal {
-template<typename ExpressionType>
-struct traits<ForceAlignedAccess<ExpressionType> > : public traits<ExpressionType>
-{};
-}
-
-template<typename ExpressionType> class ForceAlignedAccess
- : public internal::dense_xpr_base< ForceAlignedAccess<ExpressionType> >::type
-{
- public:
-
- typedef typename internal::dense_xpr_base<ForceAlignedAccess>::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(ForceAlignedAccess)
-
- inline ForceAlignedAccess(const ExpressionType& matrix) : m_expression(matrix) {}
-
- inline Index rows() const { return m_expression.rows(); }
- inline Index cols() const { return m_expression.cols(); }
- inline Index outerStride() const { return m_expression.outerStride(); }
- inline Index innerStride() const { return m_expression.innerStride(); }
-
- inline const CoeffReturnType coeff(Index row, Index col) const
- {
- return m_expression.coeff(row, col);
- }
-
- inline Scalar& coeffRef(Index row, Index col)
- {
- return m_expression.const_cast_derived().coeffRef(row, col);
- }
-
- inline const CoeffReturnType coeff(Index index) const
- {
- return m_expression.coeff(index);
- }
-
- inline Scalar& coeffRef(Index index)
- {
- return m_expression.const_cast_derived().coeffRef(index);
- }
-
- template<int LoadMode>
- inline const PacketScalar packet(Index row, Index col) const
- {
- return m_expression.template packet<Aligned>(row, col);
- }
-
- template<int LoadMode>
- inline void writePacket(Index row, Index col, const PacketScalar& x)
- {
- m_expression.const_cast_derived().template writePacket<Aligned>(row, col, x);
- }
-
- template<int LoadMode>
- inline const PacketScalar packet(Index index) const
- {
- return m_expression.template packet<Aligned>(index);
- }
-
- template<int LoadMode>
- inline void writePacket(Index index, const PacketScalar& x)
- {
- m_expression.const_cast_derived().template writePacket<Aligned>(index, x);
- }
-
- operator const ExpressionType&() const { return m_expression; }
-
- protected:
- const ExpressionType& m_expression;
-
- private:
- ForceAlignedAccess& operator=(const ForceAlignedAccess&);
-};
-
-/** \returns an expression of *this with forced aligned access
- * \sa forceAlignedAccessIf(),class ForceAlignedAccess
- */
-template<typename Derived>
-inline const ForceAlignedAccess<Derived>
-MatrixBase<Derived>::forceAlignedAccess() const
-{
- return ForceAlignedAccess<Derived>(derived());
-}
-
-/** \returns an expression of *this with forced aligned access
- * \sa forceAlignedAccessIf(), class ForceAlignedAccess
- */
-template<typename Derived>
-inline ForceAlignedAccess<Derived>
-MatrixBase<Derived>::forceAlignedAccess()
-{
- return ForceAlignedAccess<Derived>(derived());
-}
-
-/** \returns an expression of *this with forced aligned access if \a Enable is true.
- * \sa forceAlignedAccess(), class ForceAlignedAccess
- */
-template<typename Derived>
-template<bool Enable>
-inline typename internal::add_const_on_value_type<typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type>::type
-MatrixBase<Derived>::forceAlignedAccessIf() const
-{
- return derived();
-}
-
-/** \returns an expression of *this with forced aligned access if \a Enable is true.
- * \sa forceAlignedAccess(), class ForceAlignedAccess
- */
-template<typename Derived>
-template<bool Enable>
-inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type
-MatrixBase<Derived>::forceAlignedAccessIf()
-{
- return derived();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_FORCEALIGNEDACCESS_H
diff --git a/src/Eigen/src/Core/Functors.h b/src/Eigen/src/Core/Functors.h
deleted file mode 100644
index b08b967..0000000
--- a/src/Eigen/src/Core/Functors.h
+++ /dev/null
@@ -1,985 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_FUNCTORS_H
-#define EIGEN_FUNCTORS_H
-
-namespace Eigen {
-
-namespace internal {
-
-// associative functors:
-
-/** \internal
- * \brief Template functor to compute the sum of two scalars
- *
- * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum()
- */
-template<typename Scalar> struct scalar_sum_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op)
- EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; }
- template<typename Packet>
- EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
- { return internal::padd(a,b); }
- template<typename Packet>
- EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
- { return internal::predux(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_sum_op<Scalar> > {
- enum {
- Cost = NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasAdd
- };
-};
-
-/** \internal
- * \brief Template functor to compute the product of two scalars
- *
- * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux()
- */
-template<typename LhsScalar,typename RhsScalar> struct scalar_product_op {
- enum {
- // TODO vectorize mixed product
- Vectorizable = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasMul && packet_traits<RhsScalar>::HasMul
- };
- typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
- EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op)
- EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; }
- template<typename Packet>
- EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
- { return internal::pmul(a,b); }
- template<typename Packet>
- EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
- { return internal::predux_mul(a); }
-};
-template<typename LhsScalar,typename RhsScalar>
-struct functor_traits<scalar_product_op<LhsScalar,RhsScalar> > {
- enum {
- Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost)/2, // rough estimate!
- PacketAccess = scalar_product_op<LhsScalar,RhsScalar>::Vectorizable
- };
-};
-
-/** \internal
- * \brief Template functor to compute the conjugate product of two scalars
- *
- * This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y)
- */
-template<typename LhsScalar,typename RhsScalar> struct scalar_conj_product_op {
-
- enum {
- Conj = NumTraits<LhsScalar>::IsComplex
- };
-
- typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
-
- EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op)
- EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const
- { return conj_helper<LhsScalar,RhsScalar,Conj,false>().pmul(a,b); }
-
- template<typename Packet>
- EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
- { return conj_helper<Packet,Packet,Conj,false>().pmul(a,b); }
-};
-template<typename LhsScalar,typename RhsScalar>
-struct functor_traits<scalar_conj_product_op<LhsScalar,RhsScalar> > {
- enum {
- Cost = NumTraits<LhsScalar>::MulCost,
- PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMul
- };
-};
-
-/** \internal
- * \brief Template functor to compute the min of two scalars
- *
- * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff()
- */
-template<typename Scalar> struct scalar_min_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op)
- EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::min; return (min)(a, b); }
- template<typename Packet>
- EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
- { return internal::pmin(a,b); }
- template<typename Packet>
- EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
- { return internal::predux_min(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_min_op<Scalar> > {
- enum {
- Cost = NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasMin
- };
-};
-
-/** \internal
- * \brief Template functor to compute the max of two scalars
- *
- * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff()
- */
-template<typename Scalar> struct scalar_max_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op)
- EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::max; return (max)(a, b); }
- template<typename Packet>
- EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
- { return internal::pmax(a,b); }
- template<typename Packet>
- EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
- { return internal::predux_max(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_max_op<Scalar> > {
- enum {
- Cost = NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasMax
- };
-};
-
-/** \internal
- * \brief Template functor to compute the hypot of two scalars
- *
- * \sa MatrixBase::stableNorm(), class Redux
- */
-template<typename Scalar> struct scalar_hypot_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op)
-// typedef typename NumTraits<Scalar>::Real result_type;
- EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const
- {
- using std::max;
- using std::min;
- using std::sqrt;
- Scalar p = (max)(_x, _y);
- Scalar q = (min)(_x, _y);
- Scalar qp = q/p;
- return p * sqrt(Scalar(1) + qp*qp);
- }
-};
-template<typename Scalar>
-struct functor_traits<scalar_hypot_op<Scalar> > {
- enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess=0 };
-};
-
-/** \internal
- * \brief Template functor to compute the pow of two scalars
- */
-template<typename Scalar, typename OtherScalar> struct scalar_binary_pow_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_binary_pow_op)
- inline Scalar operator() (const Scalar& a, const OtherScalar& b) const { return numext::pow(a, b); }
-};
-template<typename Scalar, typename OtherScalar>
-struct functor_traits<scalar_binary_pow_op<Scalar,OtherScalar> > {
- enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false };
-};
-
-// other binary functors:
-
-/** \internal
- * \brief Template functor to compute the difference of two scalars
- *
- * \sa class CwiseBinaryOp, MatrixBase::operator-
- */
-template<typename Scalar> struct scalar_difference_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op)
- EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; }
- template<typename Packet>
- EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
- { return internal::psub(a,b); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_difference_op<Scalar> > {
- enum {
- Cost = NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasSub
- };
-};
-
-/** \internal
- * \brief Template functor to compute the quotient of two scalars
- *
- * \sa class CwiseBinaryOp, Cwise::operator/()
- */
-template<typename LhsScalar,typename RhsScalar> struct scalar_quotient_op {
- enum {
- // TODO vectorize mixed product
- Vectorizable = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasDiv && packet_traits<RhsScalar>::HasDiv
- };
- typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
- EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op)
- EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a / b; }
- template<typename Packet>
- EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
- { return internal::pdiv(a,b); }
-};
-template<typename LhsScalar,typename RhsScalar>
-struct functor_traits<scalar_quotient_op<LhsScalar,RhsScalar> > {
- enum {
- Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost), // rough estimate!
- PacketAccess = scalar_quotient_op<LhsScalar,RhsScalar>::Vectorizable
- };
-};
-
-
-
-/** \internal
- * \brief Template functor to compute the and of two booleans
- *
- * \sa class CwiseBinaryOp, ArrayBase::operator&&
- */
-struct scalar_boolean_and_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_and_op)
- EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; }
-};
-template<> struct functor_traits<scalar_boolean_and_op> {
- enum {
- Cost = NumTraits<bool>::AddCost,
- PacketAccess = false
- };
-};
-
-/** \internal
- * \brief Template functor to compute the or of two booleans
- *
- * \sa class CwiseBinaryOp, ArrayBase::operator||
- */
-struct scalar_boolean_or_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_or_op)
- EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; }
-};
-template<> struct functor_traits<scalar_boolean_or_op> {
- enum {
- Cost = NumTraits<bool>::AddCost,
- PacketAccess = false
- };
-};
-
-// unary functors:
-
-/** \internal
- * \brief Template functor to compute the opposite of a scalar
- *
- * \sa class CwiseUnaryOp, MatrixBase::operator-
- */
-template<typename Scalar> struct scalar_opposite_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op)
- EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
- template<typename Packet>
- EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
- { return internal::pnegate(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_opposite_op<Scalar> >
-{ enum {
- Cost = NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasNegate };
-};
-
-/** \internal
- * \brief Template functor to compute the absolute value of a scalar
- *
- * \sa class CwiseUnaryOp, Cwise::abs
- */
-template<typename Scalar> struct scalar_abs_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op)
- typedef typename NumTraits<Scalar>::Real result_type;
- EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { using std::abs; return abs(a); }
- template<typename Packet>
- EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
- { return internal::pabs(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_abs_op<Scalar> >
-{
- enum {
- Cost = NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasAbs
- };
-};
-
-/** \internal
- * \brief Template functor to compute the squared absolute value of a scalar
- *
- * \sa class CwiseUnaryOp, Cwise::abs2
- */
-template<typename Scalar> struct scalar_abs2_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op)
- typedef typename NumTraits<Scalar>::Real result_type;
- EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs2(a); }
- template<typename Packet>
- EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
- { return internal::pmul(a,a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_abs2_op<Scalar> >
-{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; };
-
-/** \internal
- * \brief Template functor to compute the conjugate of a complex value
- *
- * \sa class CwiseUnaryOp, MatrixBase::conjugate()
- */
-template<typename Scalar> struct scalar_conjugate_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op)
- EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { using numext::conj; return conj(a); }
- template<typename Packet>
- EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_conjugate_op<Scalar> >
-{
- enum {
- Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0,
- PacketAccess = packet_traits<Scalar>::HasConj
- };
-};
-
-/** \internal
- * \brief Template functor to cast a scalar to another type
- *
- * \sa class CwiseUnaryOp, MatrixBase::cast()
- */
-template<typename Scalar, typename NewType>
-struct scalar_cast_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
- typedef NewType result_type;
- EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast<Scalar, NewType>(a); }
-};
-template<typename Scalar, typename NewType>
-struct functor_traits<scalar_cast_op<Scalar,NewType> >
-{ enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };
-
-/** \internal
- * \brief Template functor to extract the real part of a complex
- *
- * \sa class CwiseUnaryOp, MatrixBase::real()
- */
-template<typename Scalar>
-struct scalar_real_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op)
- typedef typename NumTraits<Scalar>::Real result_type;
- EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::real(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_real_op<Scalar> >
-{ enum { Cost = 0, PacketAccess = false }; };
-
-/** \internal
- * \brief Template functor to extract the imaginary part of a complex
- *
- * \sa class CwiseUnaryOp, MatrixBase::imag()
- */
-template<typename Scalar>
-struct scalar_imag_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op)
- typedef typename NumTraits<Scalar>::Real result_type;
- EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::imag(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_imag_op<Scalar> >
-{ enum { Cost = 0, PacketAccess = false }; };
-
-/** \internal
- * \brief Template functor to extract the real part of a complex as a reference
- *
- * \sa class CwiseUnaryOp, MatrixBase::real()
- */
-template<typename Scalar>
-struct scalar_real_ref_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op)
- typedef typename NumTraits<Scalar>::Real result_type;
- EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::real_ref(*const_cast<Scalar*>(&a)); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_real_ref_op<Scalar> >
-{ enum { Cost = 0, PacketAccess = false }; };
-
-/** \internal
- * \brief Template functor to extract the imaginary part of a complex as a reference
- *
- * \sa class CwiseUnaryOp, MatrixBase::imag()
- */
-template<typename Scalar>
-struct scalar_imag_ref_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op)
- typedef typename NumTraits<Scalar>::Real result_type;
- EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::imag_ref(*const_cast<Scalar*>(&a)); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_imag_ref_op<Scalar> >
-{ enum { Cost = 0, PacketAccess = false }; };
-
-/** \internal
- *
- * \brief Template functor to compute the exponential of a scalar
- *
- * \sa class CwiseUnaryOp, Cwise::exp()
- */
-template<typename Scalar> struct scalar_exp_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op)
- inline const Scalar operator() (const Scalar& a) const { using std::exp; return exp(a); }
- typedef typename packet_traits<Scalar>::type Packet;
- inline Packet packetOp(const Packet& a) const { return internal::pexp(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_exp_op<Scalar> >
-{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasExp }; };
-
-/** \internal
- *
- * \brief Template functor to compute the logarithm of a scalar
- *
- * \sa class CwiseUnaryOp, Cwise::log()
- */
-template<typename Scalar> struct scalar_log_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op)
- inline const Scalar operator() (const Scalar& a) const { using std::log; return log(a); }
- typedef typename packet_traits<Scalar>::type Packet;
- inline Packet packetOp(const Packet& a) const { return internal::plog(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_log_op<Scalar> >
-{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog }; };
-
-/** \internal
- * \brief Template functor to multiply a scalar by a fixed other one
- *
- * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/
- */
-/* NOTE why doing the pset1() in packetOp *is* an optimization ?
- * indeed it seems better to declare m_other as a Packet and do the pset1() once
- * in the constructor. However, in practice:
- * - GCC does not like m_other as a Packet and generate a load every time it needs it
- * - on the other hand GCC is able to moves the pset1() outside the loop :)
- * - simpler code ;)
- * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y)
- */
-template<typename Scalar>
-struct scalar_multiple_op {
- typedef typename packet_traits<Scalar>::type Packet;
- // FIXME default copy constructors seems bugged with std::complex<>
- EIGEN_STRONG_INLINE scalar_multiple_op(const scalar_multiple_op& other) : m_other(other.m_other) { }
- EIGEN_STRONG_INLINE scalar_multiple_op(const Scalar& other) : m_other(other) { }
- EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
- EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
- { return internal::pmul(a, pset1<Packet>(m_other)); }
- typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
-};
-template<typename Scalar>
-struct functor_traits<scalar_multiple_op<Scalar> >
-{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
-
-template<typename Scalar1, typename Scalar2>
-struct scalar_multiple2_op {
- typedef typename scalar_product_traits<Scalar1,Scalar2>::ReturnType result_type;
- EIGEN_STRONG_INLINE scalar_multiple2_op(const scalar_multiple2_op& other) : m_other(other.m_other) { }
- EIGEN_STRONG_INLINE scalar_multiple2_op(const Scalar2& other) : m_other(other) { }
- EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; }
- typename add_const_on_value_type<typename NumTraits<Scalar2>::Nested>::type m_other;
-};
-template<typename Scalar1,typename Scalar2>
-struct functor_traits<scalar_multiple2_op<Scalar1,Scalar2> >
-{ enum { Cost = NumTraits<Scalar1>::MulCost, PacketAccess = false }; };
-
-/** \internal
- * \brief Template functor to divide a scalar by a fixed other one
- *
- * This functor is used to implement the quotient of a matrix by
- * a scalar where the scalar type is not necessarily a floating point type.
- *
- * \sa class CwiseUnaryOp, MatrixBase::operator/
- */
-template<typename Scalar>
-struct scalar_quotient1_op {
- typedef typename packet_traits<Scalar>::type Packet;
- // FIXME default copy constructors seems bugged with std::complex<>
- EIGEN_STRONG_INLINE scalar_quotient1_op(const scalar_quotient1_op& other) : m_other(other.m_other) { }
- EIGEN_STRONG_INLINE scalar_quotient1_op(const Scalar& other) : m_other(other) {}
- EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; }
- EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
- { return internal::pdiv(a, pset1<Packet>(m_other)); }
- typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
-};
-template<typename Scalar>
-struct functor_traits<scalar_quotient1_op<Scalar> >
-{ enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
-
-// nullary functors
-
-template<typename Scalar>
-struct scalar_constant_op {
- typedef typename packet_traits<Scalar>::type Packet;
- EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { }
- EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { }
- template<typename Index>
- EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; }
- template<typename Index>
- EIGEN_STRONG_INLINE const Packet packetOp(Index, Index = 0) const { return internal::pset1<Packet>(m_other); }
- const Scalar m_other;
-};
-template<typename Scalar>
-struct functor_traits<scalar_constant_op<Scalar> >
-// FIXME replace this packet test by a safe one
-{ enum { Cost = 1, PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; };
-
-template<typename Scalar> struct scalar_identity_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op)
- template<typename Index>
- EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_identity_op<Scalar> >
-{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
-
-template <typename Scalar, bool RandomAccess> struct linspaced_op_impl;
-
-// linear access for packet ops:
-// 1) initialization
-// base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0])
-// 2) each step (where size is 1 for coeff access or PacketSize for packet access)
-// base += [size*step, ..., size*step]
-//
-// TODO: Perhaps it's better to initialize lazily (so not in the constructor but in packetOp)
-// in order to avoid the padd() in operator() ?
-template <typename Scalar>
-struct linspaced_op_impl<Scalar,false>
-{
- typedef typename packet_traits<Scalar>::type Packet;
-
- linspaced_op_impl(const Scalar& low, const Scalar& step) :
- m_low(low), m_step(step),
- m_packetStep(pset1<Packet>(packet_traits<Scalar>::size*step)),
- m_base(padd(pset1<Packet>(low), pmul(pset1<Packet>(step),plset<Scalar>(-packet_traits<Scalar>::size)))) {}
-
- template<typename Index>
- EIGEN_STRONG_INLINE const Scalar operator() (Index i) const
- {
- m_base = padd(m_base, pset1<Packet>(m_step));
- return m_low+Scalar(i)*m_step;
- }
-
- template<typename Index>
- EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = padd(m_base,m_packetStep); }
-
- const Scalar m_low;
- const Scalar m_step;
- const Packet m_packetStep;
- mutable Packet m_base;
-};
-
-// random access for packet ops:
-// 1) each step
-// [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
-template <typename Scalar>
-struct linspaced_op_impl<Scalar,true>
-{
- typedef typename packet_traits<Scalar>::type Packet;
-
- linspaced_op_impl(const Scalar& low, const Scalar& step) :
- m_low(low), m_step(step),
- m_lowPacket(pset1<Packet>(m_low)), m_stepPacket(pset1<Packet>(m_step)), m_interPacket(plset<Scalar>(0)) {}
-
- template<typename Index>
- EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; }
-
- template<typename Index>
- EIGEN_STRONG_INLINE const Packet packetOp(Index i) const
- { return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(Scalar(i)),m_interPacket))); }
-
- const Scalar m_low;
- const Scalar m_step;
- const Packet m_lowPacket;
- const Packet m_stepPacket;
- const Packet m_interPacket;
-};
-
-// ----- Linspace functor ----------------------------------------------------------------
-
-// Forward declaration (we default to random access which does not really give
-// us a speed gain when using packet access but it allows to use the functor in
-// nested expressions).
-template <typename Scalar, bool RandomAccess = true> struct linspaced_op;
-template <typename Scalar, bool RandomAccess> struct functor_traits< linspaced_op<Scalar,RandomAccess> >
-{ enum { Cost = 1, PacketAccess = packet_traits<Scalar>::HasSetLinear, IsRepeatable = true }; };
-template <typename Scalar, bool RandomAccess> struct linspaced_op
-{
- typedef typename packet_traits<Scalar>::type Packet;
- linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1))) {}
-
- template<typename Index>
- EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); }
-
- // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
- // there row==0 and col is used for the actual iteration.
- template<typename Index>
- EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const
- {
- eigen_assert(col==0 || row==0);
- return impl(col + row);
- }
-
- template<typename Index>
- EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return impl.packetOp(i); }
-
- // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
- // there row==0 and col is used for the actual iteration.
- template<typename Index>
- EIGEN_STRONG_INLINE const Packet packetOp(Index row, Index col) const
- {
- eigen_assert(col==0 || row==0);
- return impl.packetOp(col + row);
- }
-
- // This proxy object handles the actual required temporaries, the different
- // implementations (random vs. sequential access) as well as the
- // correct piping to size 2/4 packet operations.
- const linspaced_op_impl<Scalar,RandomAccess> impl;
-};
-
-// all functors allow linear access, except scalar_identity_op. So we fix here a quick meta
-// to indicate whether a functor allows linear access, just always answering 'yes' except for
-// scalar_identity_op.
-// FIXME move this to functor_traits adding a functor_default
-template<typename Functor> struct functor_has_linear_access { enum { ret = 1 }; };
-template<typename Scalar> struct functor_has_linear_access<scalar_identity_op<Scalar> > { enum { ret = 0 }; };
-
-// In Eigen, any binary op (Product, CwiseBinaryOp) require the Lhs and Rhs to have the same scalar type, except for multiplication
-// where the mixing of different types is handled by scalar_product_traits
-// In particular, real * complex<real> is allowed.
-// FIXME move this to functor_traits adding a functor_default
-template<typename Functor> struct functor_is_product_like { enum { ret = 0 }; };
-template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
-template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_conj_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
-template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_quotient_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
-
-
-/** \internal
- * \brief Template functor to add a scalar to a fixed other one
- * \sa class CwiseUnaryOp, Array::operator+
- */
-/* If you wonder why doing the pset1() in packetOp() is an optimization check scalar_multiple_op */
-template<typename Scalar>
-struct scalar_add_op {
- typedef typename packet_traits<Scalar>::type Packet;
- // FIXME default copy constructors seems bugged with std::complex<>
- inline scalar_add_op(const scalar_add_op& other) : m_other(other.m_other) { }
- inline scalar_add_op(const Scalar& other) : m_other(other) { }
- inline Scalar operator() (const Scalar& a) const { return a + m_other; }
- inline const Packet packetOp(const Packet& a) const
- { return internal::padd(a, pset1<Packet>(m_other)); }
- const Scalar m_other;
-};
-template<typename Scalar>
-struct functor_traits<scalar_add_op<Scalar> >
-{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasAdd }; };
-
-/** \internal
- * \brief Template functor to compute the square root of a scalar
- * \sa class CwiseUnaryOp, Cwise::sqrt()
- */
-template<typename Scalar> struct scalar_sqrt_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op)
- inline const Scalar operator() (const Scalar& a) const { using std::sqrt; return sqrt(a); }
- typedef typename packet_traits<Scalar>::type Packet;
- inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_sqrt_op<Scalar> >
-{ enum {
- Cost = 5 * NumTraits<Scalar>::MulCost,
- PacketAccess = packet_traits<Scalar>::HasSqrt
- };
-};
-
-/** \internal
- * \brief Template functor to compute the cosine of a scalar
- * \sa class CwiseUnaryOp, ArrayBase::cos()
- */
-template<typename Scalar> struct scalar_cos_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op)
- inline Scalar operator() (const Scalar& a) const { using std::cos; return cos(a); }
- typedef typename packet_traits<Scalar>::type Packet;
- inline Packet packetOp(const Packet& a) const { return internal::pcos(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_cos_op<Scalar> >
-{
- enum {
- Cost = 5 * NumTraits<Scalar>::MulCost,
- PacketAccess = packet_traits<Scalar>::HasCos
- };
-};
-
-/** \internal
- * \brief Template functor to compute the sine of a scalar
- * \sa class CwiseUnaryOp, ArrayBase::sin()
- */
-template<typename Scalar> struct scalar_sin_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op)
- inline const Scalar operator() (const Scalar& a) const { using std::sin; return sin(a); }
- typedef typename packet_traits<Scalar>::type Packet;
- inline Packet packetOp(const Packet& a) const { return internal::psin(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_sin_op<Scalar> >
-{
- enum {
- Cost = 5 * NumTraits<Scalar>::MulCost,
- PacketAccess = packet_traits<Scalar>::HasSin
- };
-};
-
-
-/** \internal
- * \brief Template functor to compute the tan of a scalar
- * \sa class CwiseUnaryOp, ArrayBase::tan()
- */
-template<typename Scalar> struct scalar_tan_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op)
- inline const Scalar operator() (const Scalar& a) const { using std::tan; return tan(a); }
- typedef typename packet_traits<Scalar>::type Packet;
- inline Packet packetOp(const Packet& a) const { return internal::ptan(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_tan_op<Scalar> >
-{
- enum {
- Cost = 5 * NumTraits<Scalar>::MulCost,
- PacketAccess = packet_traits<Scalar>::HasTan
- };
-};
-
-/** \internal
- * \brief Template functor to compute the arc cosine of a scalar
- * \sa class CwiseUnaryOp, ArrayBase::acos()
- */
-template<typename Scalar> struct scalar_acos_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op)
- inline const Scalar operator() (const Scalar& a) const { using std::acos; return acos(a); }
- typedef typename packet_traits<Scalar>::type Packet;
- inline Packet packetOp(const Packet& a) const { return internal::pacos(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_acos_op<Scalar> >
-{
- enum {
- Cost = 5 * NumTraits<Scalar>::MulCost,
- PacketAccess = packet_traits<Scalar>::HasACos
- };
-};
-
-/** \internal
- * \brief Template functor to compute the arc sine of a scalar
- * \sa class CwiseUnaryOp, ArrayBase::asin()
- */
-template<typename Scalar> struct scalar_asin_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op)
- inline const Scalar operator() (const Scalar& a) const { using std::asin; return asin(a); }
- typedef typename packet_traits<Scalar>::type Packet;
- inline Packet packetOp(const Packet& a) const { return internal::pasin(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_asin_op<Scalar> >
-{
- enum {
- Cost = 5 * NumTraits<Scalar>::MulCost,
- PacketAccess = packet_traits<Scalar>::HasASin
- };
-};
-
-/** \internal
- * \brief Template functor to raise a scalar to a power
- * \sa class CwiseUnaryOp, Cwise::pow
- */
-template<typename Scalar>
-struct scalar_pow_op {
- // FIXME default copy constructors seems bugged with std::complex<>
- inline scalar_pow_op(const scalar_pow_op& other) : m_exponent(other.m_exponent) { }
- inline scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {}
- inline Scalar operator() (const Scalar& a) const { return numext::pow(a, m_exponent); }
- const Scalar m_exponent;
-};
-template<typename Scalar>
-struct functor_traits<scalar_pow_op<Scalar> >
-{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
-
-/** \internal
- * \brief Template functor to compute the quotient between a scalar and array entries.
- * \sa class CwiseUnaryOp, Cwise::inverse()
- */
-template<typename Scalar>
-struct scalar_inverse_mult_op {
- scalar_inverse_mult_op(const Scalar& other) : m_other(other) {}
- inline Scalar operator() (const Scalar& a) const { return m_other / a; }
- template<typename Packet>
- inline const Packet packetOp(const Packet& a) const
- { return internal::pdiv(pset1<Packet>(m_other),a); }
- Scalar m_other;
-};
-
-/** \internal
- * \brief Template functor to compute the inverse of a scalar
- * \sa class CwiseUnaryOp, Cwise::inverse()
- */
-template<typename Scalar>
-struct scalar_inverse_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op)
- inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
- template<typename Packet>
- inline const Packet packetOp(const Packet& a) const
- { return internal::pdiv(pset1<Packet>(Scalar(1)),a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_inverse_op<Scalar> >
-{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
-
-/** \internal
- * \brief Template functor to compute the square of a scalar
- * \sa class CwiseUnaryOp, Cwise::square()
- */
-template<typename Scalar>
-struct scalar_square_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op)
- inline Scalar operator() (const Scalar& a) const { return a*a; }
- template<typename Packet>
- inline const Packet packetOp(const Packet& a) const
- { return internal::pmul(a,a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_square_op<Scalar> >
-{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
-
-/** \internal
- * \brief Template functor to compute the cube of a scalar
- * \sa class CwiseUnaryOp, Cwise::cube()
- */
-template<typename Scalar>
-struct scalar_cube_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op)
- inline Scalar operator() (const Scalar& a) const { return a*a*a; }
- template<typename Packet>
- inline const Packet packetOp(const Packet& a) const
- { return internal::pmul(a,pmul(a,a)); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_cube_op<Scalar> >
-{ enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
-
-// default functor traits for STL functors:
-
-template<typename T>
-struct functor_traits<std::multiplies<T> >
-{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
-
-template<typename T>
-struct functor_traits<std::divides<T> >
-{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
-
-template<typename T>
-struct functor_traits<std::plus<T> >
-{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
-
-template<typename T>
-struct functor_traits<std::minus<T> >
-{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
-
-template<typename T>
-struct functor_traits<std::negate<T> >
-{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
-
-template<typename T>
-struct functor_traits<std::logical_or<T> >
-{ enum { Cost = 1, PacketAccess = false }; };
-
-template<typename T>
-struct functor_traits<std::logical_and<T> >
-{ enum { Cost = 1, PacketAccess = false }; };
-
-template<typename T>
-struct functor_traits<std::logical_not<T> >
-{ enum { Cost = 1, PacketAccess = false }; };
-
-template<typename T>
-struct functor_traits<std::greater<T> >
-{ enum { Cost = 1, PacketAccess = false }; };
-
-template<typename T>
-struct functor_traits<std::less<T> >
-{ enum { Cost = 1, PacketAccess = false }; };
-
-template<typename T>
-struct functor_traits<std::greater_equal<T> >
-{ enum { Cost = 1, PacketAccess = false }; };
-
-template<typename T>
-struct functor_traits<std::less_equal<T> >
-{ enum { Cost = 1, PacketAccess = false }; };
-
-template<typename T>
-struct functor_traits<std::equal_to<T> >
-{ enum { Cost = 1, PacketAccess = false }; };
-
-template<typename T>
-struct functor_traits<std::not_equal_to<T> >
-{ enum { Cost = 1, PacketAccess = false }; };
-
-template<typename T>
-struct functor_traits<std::binder2nd<T> >
-{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
-
-template<typename T>
-struct functor_traits<std::binder1st<T> >
-{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
-
-template<typename T>
-struct functor_traits<std::unary_negate<T> >
-{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
-
-template<typename T>
-struct functor_traits<std::binary_negate<T> >
-{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
-
-#ifdef EIGEN_STDEXT_SUPPORT
-
-template<typename T0,typename T1>
-struct functor_traits<std::project1st<T0,T1> >
-{ enum { Cost = 0, PacketAccess = false }; };
-
-template<typename T0,typename T1>
-struct functor_traits<std::project2nd<T0,T1> >
-{ enum { Cost = 0, PacketAccess = false }; };
-
-template<typename T0,typename T1>
-struct functor_traits<std::select2nd<std::pair<T0,T1> > >
-{ enum { Cost = 0, PacketAccess = false }; };
-
-template<typename T0,typename T1>
-struct functor_traits<std::select1st<std::pair<T0,T1> > >
-{ enum { Cost = 0, PacketAccess = false }; };
-
-template<typename T0,typename T1>
-struct functor_traits<std::unary_compose<T0,T1> >
-{ enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost, PacketAccess = false }; };
-
-template<typename T0,typename T1,typename T2>
-struct functor_traits<std::binary_compose<T0,T1,T2> >
-{ enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost + functor_traits<T2>::Cost, PacketAccess = false }; };
-
-#endif // EIGEN_STDEXT_SUPPORT
-
-// allow to add new functors and specializations of functor_traits from outside Eigen.
-// this macro is really needed because functor_traits must be specialized after it is declared but before it is used...
-#ifdef EIGEN_FUNCTORS_PLUGIN
-#include EIGEN_FUNCTORS_PLUGIN
-#endif
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_FUNCTORS_H
diff --git a/src/Eigen/src/Core/Fuzzy.h b/src/Eigen/src/Core/Fuzzy.h
deleted file mode 100644
index fe63bd2..0000000
--- a/src/Eigen/src/Core/Fuzzy.h
+++ /dev/null
@@ -1,150 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_FUZZY_H
-#define EIGEN_FUZZY_H
-
-namespace Eigen {
-
-namespace internal
-{
-
-template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
-struct isApprox_selector
-{
- static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
- {
- using std::min;
- typename internal::nested<Derived,2>::type nested(x);
- typename internal::nested<OtherDerived,2>::type otherNested(y);
- return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * (min)(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum());
- }
-};
-
-template<typename Derived, typename OtherDerived>
-struct isApprox_selector<Derived, OtherDerived, true>
-{
- static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar&)
- {
- return x.matrix() == y.matrix();
- }
-};
-
-template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
-struct isMuchSmallerThan_object_selector
-{
- static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
- {
- return x.cwiseAbs2().sum() <= numext::abs2(prec) * y.cwiseAbs2().sum();
- }
-};
-
-template<typename Derived, typename OtherDerived>
-struct isMuchSmallerThan_object_selector<Derived, OtherDerived, true>
-{
- static bool run(const Derived& x, const OtherDerived&, const typename Derived::RealScalar&)
- {
- return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
- }
-};
-
-template<typename Derived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
-struct isMuchSmallerThan_scalar_selector
-{
- static bool run(const Derived& x, const typename Derived::RealScalar& y, const typename Derived::RealScalar& prec)
- {
- return x.cwiseAbs2().sum() <= numext::abs2(prec * y);
- }
-};
-
-template<typename Derived>
-struct isMuchSmallerThan_scalar_selector<Derived, true>
-{
- static bool run(const Derived& x, const typename Derived::RealScalar&, const typename Derived::RealScalar&)
- {
- return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
- }
-};
-
-} // end namespace internal
-
-
-/** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$
- * are considered to be approximately equal within precision \f$ p \f$ if
- * \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f]
- * For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm
- * L2 norm).
- *
- * \note Because of the multiplicativeness of this comparison, one can't use this function
- * to check whether \c *this is approximately equal to the zero matrix or vector.
- * Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix
- * or vector. If you want to test whether \c *this is zero, use internal::isMuchSmallerThan(const
- * RealScalar&, RealScalar) instead.
- *
- * \sa internal::isMuchSmallerThan(const RealScalar&, RealScalar) const
- */
-template<typename Derived>
-template<typename OtherDerived>
-bool DenseBase<Derived>::isApprox(
- const DenseBase<OtherDerived>& other,
- const RealScalar& prec
-) const
-{
- return internal::isApprox_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
-}
-
-/** \returns \c true if the norm of \c *this is much smaller than \a other,
- * within the precision determined by \a prec.
- *
- * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
- * considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if
- * \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f]
- *
- * For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason,
- * the value of the reference scalar \a other should come from the Hilbert-Schmidt norm
- * of a reference matrix of same dimensions.
- *
- * \sa isApprox(), isMuchSmallerThan(const DenseBase<OtherDerived>&, RealScalar) const
- */
-template<typename Derived>
-bool DenseBase<Derived>::isMuchSmallerThan(
- const typename NumTraits<Scalar>::Real& other,
- const RealScalar& prec
-) const
-{
- return internal::isMuchSmallerThan_scalar_selector<Derived>::run(derived(), other, prec);
-}
-
-/** \returns \c true if the norm of \c *this is much smaller than the norm of \a other,
- * within the precision determined by \a prec.
- *
- * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
- * considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if
- * \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f]
- * For matrices, the comparison is done using the Hilbert-Schmidt norm.
- *
- * \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const
- */
-template<typename Derived>
-template<typename OtherDerived>
-bool DenseBase<Derived>::isMuchSmallerThan(
- const DenseBase<OtherDerived>& other,
- const RealScalar& prec
-) const
-{
- return internal::isMuchSmallerThan_object_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_FUZZY_H
diff --git a/src/Eigen/src/Core/GeneralProduct.h b/src/Eigen/src/Core/GeneralProduct.h
deleted file mode 100644
index 2a59d94..0000000
--- a/src/Eigen/src/Core/GeneralProduct.h
+++ /dev/null
@@ -1,635 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_GENERAL_PRODUCT_H
-#define EIGEN_GENERAL_PRODUCT_H
-
-namespace Eigen {
-
-/** \class GeneralProduct
- * \ingroup Core_Module
- *
- * \brief Expression of the product of two general matrices or vectors
- *
- * \param LhsNested the type used to store the left-hand side
- * \param RhsNested the type used to store the right-hand side
- * \param ProductMode the type of the product
- *
- * This class represents an expression of the product of two general matrices.
- * We call a general matrix, a dense matrix with full storage. For instance,
- * This excludes triangular, selfadjoint, and sparse matrices.
- * It is the return type of the operator* between general matrices. Its template
- * arguments are determined automatically by ProductReturnType. Therefore,
- * GeneralProduct should never be used direclty. To determine the result type of a
- * function which involves a matrix product, use ProductReturnType::Type.
- *
- * \sa ProductReturnType, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
- */
-template<typename Lhs, typename Rhs, int ProductType = internal::product_type<Lhs,Rhs>::value>
-class GeneralProduct;
-
-enum {
- Large = 2,
- Small = 3
-};
-
-namespace internal {
-
-template<int Rows, int Cols, int Depth> struct product_type_selector;
-
-template<int Size, int MaxSize> struct product_size_category
-{
- enum { is_large = MaxSize == Dynamic ||
- Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD,
- value = is_large ? Large
- : Size == 1 ? 1
- : Small
- };
-};
-
-template<typename Lhs, typename Rhs> struct product_type
-{
- typedef typename remove_all<Lhs>::type _Lhs;
- typedef typename remove_all<Rhs>::type _Rhs;
- enum {
- MaxRows = _Lhs::MaxRowsAtCompileTime,
- Rows = _Lhs::RowsAtCompileTime,
- MaxCols = _Rhs::MaxColsAtCompileTime,
- Cols = _Rhs::ColsAtCompileTime,
- MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::MaxColsAtCompileTime,
- _Rhs::MaxRowsAtCompileTime),
- Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime,
- _Rhs::RowsAtCompileTime),
- LargeThreshold = EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
- };
-
- // the splitting into different lines of code here, introducing the _select enums and the typedef below,
- // is to work around an internal compiler error with gcc 4.1 and 4.2.
-private:
- enum {
- rows_select = product_size_category<Rows,MaxRows>::value,
- cols_select = product_size_category<Cols,MaxCols>::value,
- depth_select = product_size_category<Depth,MaxDepth>::value
- };
- typedef product_type_selector<rows_select, cols_select, depth_select> selector;
-
-public:
- enum {
- value = selector::ret
- };
-#ifdef EIGEN_DEBUG_PRODUCT
- static void debug()
- {
- EIGEN_DEBUG_VAR(Rows);
- EIGEN_DEBUG_VAR(Cols);
- EIGEN_DEBUG_VAR(Depth);
- EIGEN_DEBUG_VAR(rows_select);
- EIGEN_DEBUG_VAR(cols_select);
- EIGEN_DEBUG_VAR(depth_select);
- EIGEN_DEBUG_VAR(value);
- }
-#endif
-};
-
-
-/* The following allows to select the kind of product at compile time
- * based on the three dimensions of the product.
- * This is a compile time mapping from {1,Small,Large}^3 -> {product types} */
-// FIXME I'm not sure the current mapping is the ideal one.
-template<int M, int N> struct product_type_selector<M,N,1> { enum { ret = OuterProduct }; };
-template<int Depth> struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; };
-template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; };
-template<> struct product_type_selector<Small,1, Small> { enum { ret = CoeffBasedProductMode }; };
-template<> struct product_type_selector<1, Small,Small> { enum { ret = CoeffBasedProductMode }; };
-template<> struct product_type_selector<Small,Small,Small> { enum { ret = CoeffBasedProductMode }; };
-template<> struct product_type_selector<Small, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
-template<> struct product_type_selector<Small, Large, 1> { enum { ret = LazyCoeffBasedProductMode }; };
-template<> struct product_type_selector<Large, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
-template<> struct product_type_selector<1, Large,Small> { enum { ret = CoeffBasedProductMode }; };
-template<> struct product_type_selector<1, Large,Large> { enum { ret = GemvProduct }; };
-template<> struct product_type_selector<1, Small,Large> { enum { ret = CoeffBasedProductMode }; };
-template<> struct product_type_selector<Large,1, Small> { enum { ret = CoeffBasedProductMode }; };
-template<> struct product_type_selector<Large,1, Large> { enum { ret = GemvProduct }; };
-template<> struct product_type_selector<Small,1, Large> { enum { ret = CoeffBasedProductMode }; };
-template<> struct product_type_selector<Small,Small,Large> { enum { ret = GemmProduct }; };
-template<> struct product_type_selector<Large,Small,Large> { enum { ret = GemmProduct }; };
-template<> struct product_type_selector<Small,Large,Large> { enum { ret = GemmProduct }; };
-template<> struct product_type_selector<Large,Large,Large> { enum { ret = GemmProduct }; };
-template<> struct product_type_selector<Large,Small,Small> { enum { ret = GemmProduct }; };
-template<> struct product_type_selector<Small,Large,Small> { enum { ret = GemmProduct }; };
-template<> struct product_type_selector<Large,Large,Small> { enum { ret = GemmProduct }; };
-
-} // end namespace internal
-
-/** \class ProductReturnType
- * \ingroup Core_Module
- *
- * \brief Helper class to get the correct and optimized returned type of operator*
- *
- * \param Lhs the type of the left-hand side
- * \param Rhs the type of the right-hand side
- * \param ProductMode the type of the product (determined automatically by internal::product_mode)
- *
- * This class defines the typename Type representing the optimized product expression
- * between two matrix expressions. In practice, using ProductReturnType<Lhs,Rhs>::Type
- * is the recommended way to define the result type of a function returning an expression
- * which involve a matrix product. The class Product should never be
- * used directly.
- *
- * \sa class Product, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
- */
-template<typename Lhs, typename Rhs, int ProductType>
-struct ProductReturnType
-{
- // TODO use the nested type to reduce instanciations ????
-// typedef typename internal::nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
-// typedef typename internal::nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
-
- typedef GeneralProduct<Lhs/*Nested*/, Rhs/*Nested*/, ProductType> Type;
-};
-
-template<typename Lhs, typename Rhs>
-struct ProductReturnType<Lhs,Rhs,CoeffBasedProductMode>
-{
- typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
- typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
- typedef CoeffBasedProduct<LhsNested, RhsNested, EvalBeforeAssigningBit | EvalBeforeNestingBit> Type;
-};
-
-template<typename Lhs, typename Rhs>
-struct ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
-{
- typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
- typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
- typedef CoeffBasedProduct<LhsNested, RhsNested, NestByRefBit> Type;
-};
-
-// this is a workaround for sun CC
-template<typename Lhs, typename Rhs>
-struct LazyProductReturnType : public ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
-{};
-
-/***********************************************************************
-* Implementation of Inner Vector Vector Product
-***********************************************************************/
-
-// FIXME : maybe the "inner product" could return a Scalar
-// instead of a 1x1 matrix ??
-// Pro: more natural for the user
-// Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix
-// product ends up to a row-vector times col-vector product... To tackle this use
-// case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x);
-
-namespace internal {
-
-template<typename Lhs, typename Rhs>
-struct traits<GeneralProduct<Lhs,Rhs,InnerProduct> >
- : traits<Matrix<typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> >
-{};
-
-}
-
-template<typename Lhs, typename Rhs>
-class GeneralProduct<Lhs, Rhs, InnerProduct>
- : internal::no_assignment_operator,
- public Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1>
-{
- typedef Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> Base;
- public:
- GeneralProduct(const Lhs& lhs, const Rhs& rhs)
- {
- EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-
- Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
- }
-
- /** Convertion to scalar */
- operator const typename Base::Scalar() const {
- return Base::coeff(0,0);
- }
-};
-
-/***********************************************************************
-* Implementation of Outer Vector Vector Product
-***********************************************************************/
-
-namespace internal {
-
-// Column major
-template<typename ProductType, typename Dest, typename Func>
-EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest& dest, const Func& func, const false_type&)
-{
- typedef typename Dest::Index Index;
- // FIXME make sure lhs is sequentially stored
- // FIXME not very good if rhs is real and lhs complex while alpha is real too
- const Index cols = dest.cols();
- for (Index j=0; j<cols; ++j)
- func(dest.col(j), prod.rhs().coeff(j) * prod.lhs());
-}
-
-// Row major
-template<typename ProductType, typename Dest, typename Func>
-EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest& dest, const Func& func, const true_type&) {
- typedef typename Dest::Index Index;
- // FIXME make sure rhs is sequentially stored
- // FIXME not very good if lhs is real and rhs complex while alpha is real too
- const Index rows = dest.rows();
- for (Index i=0; i<rows; ++i)
- func(dest.row(i), prod.lhs().coeff(i) * prod.rhs());
-}
-
-template<typename Lhs, typename Rhs>
-struct traits<GeneralProduct<Lhs,Rhs,OuterProduct> >
- : traits<ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs> >
-{};
-
-}
-
-template<typename Lhs, typename Rhs>
-class GeneralProduct<Lhs, Rhs, OuterProduct>
- : public ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs>
-{
- template<typename T> struct IsRowMajor : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
-
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
-
- GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
- {
- EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- }
-
- struct set { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } };
- struct add { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } };
- struct sub { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } };
- struct adds {
- Scalar m_scale;
- adds(const Scalar& s) : m_scale(s) {}
- template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const {
- dst.const_cast_derived() += m_scale * src;
- }
- };
-
- template<typename Dest>
- inline void evalTo(Dest& dest) const {
- internal::outer_product_selector_run(*this, dest, set(), IsRowMajor<Dest>());
- }
-
- template<typename Dest>
- inline void addTo(Dest& dest) const {
- internal::outer_product_selector_run(*this, dest, add(), IsRowMajor<Dest>());
- }
-
- template<typename Dest>
- inline void subTo(Dest& dest) const {
- internal::outer_product_selector_run(*this, dest, sub(), IsRowMajor<Dest>());
- }
-
- template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
- {
- internal::outer_product_selector_run(*this, dest, adds(alpha), IsRowMajor<Dest>());
- }
-};
-
-/***********************************************************************
-* Implementation of General Matrix Vector Product
-***********************************************************************/
-
-/* According to the shape/flags of the matrix we have to distinghish 3 different cases:
- * 1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine
- * 2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine
- * 3 - all other cases are handled using a simple loop along the outer-storage direction.
- * Therefore we need a lower level meta selector.
- * Furthermore, if the matrix is the rhs, then the product has to be transposed.
- */
-namespace internal {
-
-template<typename Lhs, typename Rhs>
-struct traits<GeneralProduct<Lhs,Rhs,GemvProduct> >
- : traits<ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs> >
-{};
-
-template<int Side, int StorageOrder, bool BlasCompatible>
-struct gemv_selector;
-
-} // end namespace internal
-
-template<typename Lhs, typename Rhs>
-class GeneralProduct<Lhs, Rhs, GemvProduct>
- : public ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs>
-{
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
-
- typedef typename Lhs::Scalar LhsScalar;
- typedef typename Rhs::Scalar RhsScalar;
-
- GeneralProduct(const Lhs& a_lhs, const Rhs& a_rhs) : Base(a_lhs,a_rhs)
- {
-// EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::Scalar, typename Rhs::Scalar>::value),
-// YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- }
-
- enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
- typedef typename internal::conditional<int(Side)==OnTheRight,_LhsNested,_RhsNested>::type MatrixType;
-
- template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
- {
- eigen_assert(m_lhs.rows() == dst.rows() && m_rhs.cols() == dst.cols());
- internal::gemv_selector<Side,(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
- bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)>::run(*this, dst, alpha);
- }
-};
-
-namespace internal {
-
-// The vector is on the left => transposition
-template<int StorageOrder, bool BlasCompatible>
-struct gemv_selector<OnTheLeft,StorageOrder,BlasCompatible>
-{
- template<typename ProductType, typename Dest>
- static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
- {
- Transpose<Dest> destT(dest);
- enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
- gemv_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
- ::run(GeneralProduct<Transpose<const typename ProductType::_RhsNested>,Transpose<const typename ProductType::_LhsNested>, GemvProduct>
- (prod.rhs().transpose(), prod.lhs().transpose()), destT, alpha);
- }
-};
-
-template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if;
-
-template<typename Scalar,int Size,int MaxSize>
-struct gemv_static_vector_if<Scalar,Size,MaxSize,false>
-{
- EIGEN_STRONG_INLINE Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; }
-};
-
-template<typename Scalar,int Size>
-struct gemv_static_vector_if<Scalar,Size,Dynamic,true>
-{
- EIGEN_STRONG_INLINE Scalar* data() { return 0; }
-};
-
-template<typename Scalar,int Size,int MaxSize>
-struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
-{
- #if EIGEN_ALIGN_STATICALLY
- internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0> m_data;
- EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
- #else
- // Some architectures cannot align on the stack,
- // => let's manually enforce alignment by allocating more data and return the address of the first aligned element.
- enum {
- ForceAlignment = internal::packet_traits<Scalar>::Vectorizable,
- PacketSize = internal::packet_traits<Scalar>::size
- };
- internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize)+(ForceAlignment?PacketSize:0),0> m_data;
- EIGEN_STRONG_INLINE Scalar* data() {
- return ForceAlignment
- ? reinterpret_cast<Scalar*>((reinterpret_cast<size_t>(m_data.array) & ~(size_t(15))) + 16)
- : m_data.array;
- }
- #endif
-};
-
-template<> struct gemv_selector<OnTheRight,ColMajor,true>
-{
- template<typename ProductType, typename Dest>
- static inline void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
- {
- typedef typename ProductType::Index Index;
- typedef typename ProductType::LhsScalar LhsScalar;
- typedef typename ProductType::RhsScalar RhsScalar;
- typedef typename ProductType::Scalar ResScalar;
- typedef typename ProductType::RealScalar RealScalar;
- typedef typename ProductType::ActualLhsType ActualLhsType;
- typedef typename ProductType::ActualRhsType ActualRhsType;
- typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
- typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
- typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
-
- ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs());
- ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs());
-
- ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
- * RhsBlasTraits::extractScalarFactor(prod.rhs());
-
- enum {
- // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
- // on, the other hand it is good for the cache to pack the vector anyways...
- EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1,
- ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
- MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal
- };
-
- gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
-
- bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0));
- bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
-
- RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);
-
- ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
- evalToDest ? dest.data() : static_dest.data());
-
- if(!evalToDest)
- {
- #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- int size = dest.size();
- EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- #endif
- if(!alphaIsCompatible)
- {
- MappedDest(actualDestPtr, dest.size()).setZero();
- compatibleAlpha = RhsScalar(1);
- }
- else
- MappedDest(actualDestPtr, dest.size()) = dest;
- }
-
- general_matrix_vector_product
- <Index,LhsScalar,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
- actualLhs.rows(), actualLhs.cols(),
- actualLhs.data(), actualLhs.outerStride(),
- actualRhs.data(), actualRhs.innerStride(),
- actualDestPtr, 1,
- compatibleAlpha);
-
- if (!evalToDest)
- {
- if(!alphaIsCompatible)
- dest += actualAlpha * MappedDest(actualDestPtr, dest.size());
- else
- dest = MappedDest(actualDestPtr, dest.size());
- }
- }
-};
-
-template<> struct gemv_selector<OnTheRight,RowMajor,true>
-{
- template<typename ProductType, typename Dest>
- static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
- {
- typedef typename ProductType::LhsScalar LhsScalar;
- typedef typename ProductType::RhsScalar RhsScalar;
- typedef typename ProductType::Scalar ResScalar;
- typedef typename ProductType::Index Index;
- typedef typename ProductType::ActualLhsType ActualLhsType;
- typedef typename ProductType::ActualRhsType ActualRhsType;
- typedef typename ProductType::_ActualRhsType _ActualRhsType;
- typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
- typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
-
- typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
- typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
-
- ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
- * RhsBlasTraits::extractScalarFactor(prod.rhs());
-
- enum {
- // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
- // on, the other hand it is good for the cache to pack the vector anyways...
- DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
- };
-
- gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
-
- ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
- DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());
-
- if(!DirectlyUseRhs)
- {
- #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- int size = actualRhs.size();
- EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- #endif
- Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
- }
-
- general_matrix_vector_product
- <Index,LhsScalar,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
- actualLhs.rows(), actualLhs.cols(),
- actualLhs.data(), actualLhs.outerStride(),
- actualRhsPtr, 1,
- dest.data(), dest.innerStride(),
- actualAlpha);
- }
-};
-
-template<> struct gemv_selector<OnTheRight,ColMajor,false>
-{
- template<typename ProductType, typename Dest>
- static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
- {
- typedef typename Dest::Index Index;
- // TODO makes sure dest is sequentially stored in memory, otherwise use a temp
- const Index size = prod.rhs().rows();
- for(Index k=0; k<size; ++k)
- dest += (alpha*prod.rhs().coeff(k)) * prod.lhs().col(k);
- }
-};
-
-template<> struct gemv_selector<OnTheRight,RowMajor,false>
-{
- template<typename ProductType, typename Dest>
- static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
- {
- typedef typename Dest::Index Index;
- // TODO makes sure rhs is sequentially stored in memory, otherwise use a temp
- const Index rows = prod.rows();
- for(Index i=0; i<rows; ++i)
- dest.coeffRef(i) += alpha * (prod.lhs().row(i).cwiseProduct(prod.rhs().transpose())).sum();
- }
-};
-
-} // end namespace internal
-
-/***************************************************************************
-* Implementation of matrix base methods
-***************************************************************************/
-
-/** \returns the matrix product of \c *this and \a other.
- *
- * \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
- *
- * \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()
- */
-template<typename Derived>
-template<typename OtherDerived>
-inline const typename ProductReturnType<Derived, OtherDerived>::Type
-MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
-{
- // A note regarding the function declaration: In MSVC, this function will sometimes
- // not be inlined since DenseStorage is an unwindable object for dynamic
- // matrices and product types are holding a member to store the result.
- // Thus it does not help tagging this function with EIGEN_STRONG_INLINE.
- enum {
- ProductIsValid = Derived::ColsAtCompileTime==Dynamic
- || OtherDerived::RowsAtCompileTime==Dynamic
- || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
- AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
- SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
- };
- // note to the lost user:
- // * for a dot product use: v1.dot(v2)
- // * for a coeff-wise product use: v1.cwiseProduct(v2)
- EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
- INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
- EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
- INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
- EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
-#ifdef EIGEN_DEBUG_PRODUCT
- internal::product_type<Derived,OtherDerived>::debug();
-#endif
- return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
-}
-
-/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation.
- *
- * The returned product will behave like any other expressions: the coefficients of the product will be
- * computed once at a time as requested. This might be useful in some extremely rare cases when only
- * a small and no coherent fraction of the result's coefficients have to be computed.
- *
- * \warning This version of the matrix product can be much much slower. So use it only if you know
- * what you are doing and that you measured a true speed improvement.
- *
- * \sa operator*(const MatrixBase&)
- */
-template<typename Derived>
-template<typename OtherDerived>
-const typename LazyProductReturnType<Derived,OtherDerived>::Type
-MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
-{
- enum {
- ProductIsValid = Derived::ColsAtCompileTime==Dynamic
- || OtherDerived::RowsAtCompileTime==Dynamic
- || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
- AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
- SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
- };
- // note to the lost user:
- // * for a dot product use: v1.dot(v2)
- // * for a coeff-wise product use: v1.cwiseProduct(v2)
- EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
- INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
- EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
- INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
- EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
-
- return typename LazyProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_PRODUCT_H
diff --git a/src/Eigen/src/Core/GenericPacketMath.h b/src/Eigen/src/Core/GenericPacketMath.h
deleted file mode 100644
index 5f783eb..0000000
--- a/src/Eigen/src/Core/GenericPacketMath.h
+++ /dev/null
@@ -1,350 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_GENERIC_PACKET_MATH_H
-#define EIGEN_GENERIC_PACKET_MATH_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal
- * \file GenericPacketMath.h
- *
- * Default implementation for types not supported by the vectorization.
- * In practice these functions are provided to make easier the writing
- * of generic vectorized code.
- */
-
-#ifndef EIGEN_DEBUG_ALIGNED_LOAD
-#define EIGEN_DEBUG_ALIGNED_LOAD
-#endif
-
-#ifndef EIGEN_DEBUG_UNALIGNED_LOAD
-#define EIGEN_DEBUG_UNALIGNED_LOAD
-#endif
-
-#ifndef EIGEN_DEBUG_ALIGNED_STORE
-#define EIGEN_DEBUG_ALIGNED_STORE
-#endif
-
-#ifndef EIGEN_DEBUG_UNALIGNED_STORE
-#define EIGEN_DEBUG_UNALIGNED_STORE
-#endif
-
-struct default_packet_traits
-{
- enum {
- HasAdd = 1,
- HasSub = 1,
- HasMul = 1,
- HasNegate = 1,
- HasAbs = 1,
- HasAbs2 = 1,
- HasMin = 1,
- HasMax = 1,
- HasConj = 1,
- HasSetLinear = 1,
-
- HasDiv = 0,
- HasSqrt = 0,
- HasExp = 0,
- HasLog = 0,
- HasPow = 0,
-
- HasSin = 0,
- HasCos = 0,
- HasTan = 0,
- HasASin = 0,
- HasACos = 0,
- HasATan = 0
- };
-};
-
-template<typename T> struct packet_traits : default_packet_traits
-{
- typedef T type;
- enum {
- Vectorizable = 0,
- size = 1,
- AlignedOnScalar = 0
- };
- enum {
- HasAdd = 0,
- HasSub = 0,
- HasMul = 0,
- HasNegate = 0,
- HasAbs = 0,
- HasAbs2 = 0,
- HasMin = 0,
- HasMax = 0,
- HasConj = 0,
- HasSetLinear = 0
- };
-};
-
-/** \internal \returns a + b (coeff-wise) */
-template<typename Packet> inline Packet
-padd(const Packet& a,
- const Packet& b) { return a+b; }
-
-/** \internal \returns a - b (coeff-wise) */
-template<typename Packet> inline Packet
-psub(const Packet& a,
- const Packet& b) { return a-b; }
-
-/** \internal \returns -a (coeff-wise) */
-template<typename Packet> inline Packet
-pnegate(const Packet& a) { return -a; }
-
-/** \internal \returns conj(a) (coeff-wise) */
-template<typename Packet> inline Packet
-pconj(const Packet& a) { return numext::conj(a); }
-
-/** \internal \returns a * b (coeff-wise) */
-template<typename Packet> inline Packet
-pmul(const Packet& a,
- const Packet& b) { return a*b; }
-
-/** \internal \returns a / b (coeff-wise) */
-template<typename Packet> inline Packet
-pdiv(const Packet& a,
- const Packet& b) { return a/b; }
-
-/** \internal \returns the min of \a a and \a b (coeff-wise) */
-template<typename Packet> inline Packet
-pmin(const Packet& a,
- const Packet& b) { using std::min; return (min)(a, b); }
-
-/** \internal \returns the max of \a a and \a b (coeff-wise) */
-template<typename Packet> inline Packet
-pmax(const Packet& a,
- const Packet& b) { using std::max; return (max)(a, b); }
-
-/** \internal \returns the absolute value of \a a */
-template<typename Packet> inline Packet
-pabs(const Packet& a) { using std::abs; return abs(a); }
-
-/** \internal \returns the bitwise and of \a a and \a b */
-template<typename Packet> inline Packet
-pand(const Packet& a, const Packet& b) { return a & b; }
-
-/** \internal \returns the bitwise or of \a a and \a b */
-template<typename Packet> inline Packet
-por(const Packet& a, const Packet& b) { return a | b; }
-
-/** \internal \returns the bitwise xor of \a a and \a b */
-template<typename Packet> inline Packet
-pxor(const Packet& a, const Packet& b) { return a ^ b; }
-
-/** \internal \returns the bitwise andnot of \a a and \a b */
-template<typename Packet> inline Packet
-pandnot(const Packet& a, const Packet& b) { return a & (!b); }
-
-/** \internal \returns a packet version of \a *from, from must be 16 bytes aligned */
-template<typename Packet> inline Packet
-pload(const typename unpacket_traits<Packet>::type* from) { return *from; }
-
-/** \internal \returns a packet version of \a *from, (un-aligned load) */
-template<typename Packet> inline Packet
-ploadu(const typename unpacket_traits<Packet>::type* from) { return *from; }
-
-/** \internal \returns a packet with elements of \a *from duplicated.
- * For instance, for a packet of 8 elements, 4 scalar will be read from \a *from and
- * duplicated to form: {from[0],from[0],from[1],from[1],,from[2],from[2],,from[3],from[3]}
- * Currently, this function is only used for scalar * complex products.
- */
-template<typename Packet> inline Packet
-ploaddup(const typename unpacket_traits<Packet>::type* from) { return *from; }
-
-/** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */
-template<typename Packet> inline Packet
-pset1(const typename unpacket_traits<Packet>::type& a) { return a; }
-
-/** \internal \brief Returns a packet with coefficients (a,a+1,...,a+packet_size-1). */
-template<typename Scalar> inline typename packet_traits<Scalar>::type
-plset(const Scalar& a) { return a; }
-
-/** \internal copy the packet \a from to \a *to, \a to must be 16 bytes aligned */
-template<typename Scalar, typename Packet> inline void pstore(Scalar* to, const Packet& from)
-{ (*to) = from; }
-
-/** \internal copy the packet \a from to \a *to, (un-aligned store) */
-template<typename Scalar, typename Packet> inline void pstoreu(Scalar* to, const Packet& from)
-{ (*to) = from; }
-
-/** \internal tries to do cache prefetching of \a addr */
-template<typename Scalar> inline void prefetch(const Scalar* addr)
-{
-#if !defined(_MSC_VER)
-__builtin_prefetch(addr);
-#endif
-}
-
-/** \internal \returns the first element of a packet */
-template<typename Packet> inline typename unpacket_traits<Packet>::type pfirst(const Packet& a)
-{ return a; }
-
-/** \internal \returns a packet where the element i contains the sum of the packet of \a vec[i] */
-template<typename Packet> inline Packet
-preduxp(const Packet* vecs) { return vecs[0]; }
-
-/** \internal \returns the sum of the elements of \a a*/
-template<typename Packet> inline typename unpacket_traits<Packet>::type predux(const Packet& a)
-{ return a; }
-
-/** \internal \returns the product of the elements of \a a*/
-template<typename Packet> inline typename unpacket_traits<Packet>::type predux_mul(const Packet& a)
-{ return a; }
-
-/** \internal \returns the min of the elements of \a a*/
-template<typename Packet> inline typename unpacket_traits<Packet>::type predux_min(const Packet& a)
-{ return a; }
-
-/** \internal \returns the max of the elements of \a a*/
-template<typename Packet> inline typename unpacket_traits<Packet>::type predux_max(const Packet& a)
-{ return a; }
-
-/** \internal \returns the reversed elements of \a a*/
-template<typename Packet> inline Packet preverse(const Packet& a)
-{ return a; }
-
-
-/** \internal \returns \a a with real and imaginary part flipped (for complex type only) */
-template<typename Packet> inline Packet pcplxflip(const Packet& a)
-{
- // FIXME: uncomment the following in case we drop the internal imag and real functions.
-// using std::imag;
-// using std::real;
- return Packet(imag(a),real(a));
-}
-
-/**************************
-* Special math functions
-***************************/
-
-/** \internal \returns the sine of \a a (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet psin(const Packet& a) { using std::sin; return sin(a); }
-
-/** \internal \returns the cosine of \a a (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet pcos(const Packet& a) { using std::cos; return cos(a); }
-
-/** \internal \returns the tan of \a a (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet ptan(const Packet& a) { using std::tan; return tan(a); }
-
-/** \internal \returns the arc sine of \a a (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet pasin(const Packet& a) { using std::asin; return asin(a); }
-
-/** \internal \returns the arc cosine of \a a (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet pacos(const Packet& a) { using std::acos; return acos(a); }
-
-/** \internal \returns the exp of \a a (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet pexp(const Packet& a) { using std::exp; return exp(a); }
-
-/** \internal \returns the log of \a a (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet plog(const Packet& a) { using std::log; return log(a); }
-
-/** \internal \returns the square-root of \a a (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet psqrt(const Packet& a) { using std::sqrt; return sqrt(a); }
-
-/***************************************************************************
-* The following functions might not have to be overwritten for vectorized types
-***************************************************************************/
-
-/** \internal copy a packet with constant coeficient \a a (e.g., [a,a,a,a]) to \a *to. \a to must be 16 bytes aligned */
-// NOTE: this function must really be templated on the packet type (think about different packet types for the same scalar type)
-template<typename Packet>
-inline void pstore1(typename unpacket_traits<Packet>::type* to, const typename unpacket_traits<Packet>::type& a)
-{
- pstore(to, pset1<Packet>(a));
-}
-
-/** \internal \returns a * b + c (coeff-wise) */
-template<typename Packet> inline Packet
-pmadd(const Packet& a,
- const Packet& b,
- const Packet& c)
-{ return padd(pmul(a, b),c); }
-
-/** \internal \returns a packet version of \a *from.
- * If LoadMode equals #Aligned, \a from must be 16 bytes aligned */
-template<typename Packet, int LoadMode>
-inline Packet ploadt(const typename unpacket_traits<Packet>::type* from)
-{
- if(LoadMode == Aligned)
- return pload<Packet>(from);
- else
- return ploadu<Packet>(from);
-}
-
-/** \internal copy the packet \a from to \a *to.
- * If StoreMode equals #Aligned, \a to must be 16 bytes aligned */
-template<typename Scalar, typename Packet, int LoadMode>
-inline void pstoret(Scalar* to, const Packet& from)
-{
- if(LoadMode == Aligned)
- pstore(to, from);
- else
- pstoreu(to, from);
-}
-
-/** \internal default implementation of palign() allowing partial specialization */
-template<int Offset,typename PacketType>
-struct palign_impl
-{
- // by default data are aligned, so there is nothing to be done :)
- static inline void run(PacketType&, const PacketType&) {}
-};
-
-/** \internal update \a first using the concatenation of the packet_size minus \a Offset last elements
- * of \a first and \a Offset first elements of \a second.
- *
- * This function is currently only used to optimize matrix-vector products on unligned matrices.
- * It takes 2 packets that represent a contiguous memory array, and returns a packet starting
- * at the position \a Offset. For instance, for packets of 4 elements, we have:
- * Input:
- * - first = {f0,f1,f2,f3}
- * - second = {s0,s1,s2,s3}
- * Output:
- * - if Offset==0 then {f0,f1,f2,f3}
- * - if Offset==1 then {f1,f2,f3,s0}
- * - if Offset==2 then {f2,f3,s0,s1}
- * - if Offset==3 then {f3,s0,s1,s3}
- */
-template<int Offset,typename PacketType>
-inline void palign(PacketType& first, const PacketType& second)
-{
- palign_impl<Offset,PacketType>::run(first,second);
-}
-
-/***************************************************************************
-* Fast complex products (GCC generates a function call which is very slow)
-***************************************************************************/
-
-template<> inline std::complex<float> pmul(const std::complex<float>& a, const std::complex<float>& b)
-{ return std::complex<float>(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); }
-
-template<> inline std::complex<double> pmul(const std::complex<double>& a, const std::complex<double>& b)
-{ return std::complex<double>(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); }
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_GENERIC_PACKET_MATH_H
-
diff --git a/src/Eigen/src/Core/GlobalFunctions.h b/src/Eigen/src/Core/GlobalFunctions.h
deleted file mode 100644
index 2acf977..0000000
--- a/src/Eigen/src/Core/GlobalFunctions.h
+++ /dev/null
@@ -1,92 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_GLOBAL_FUNCTIONS_H
-#define EIGEN_GLOBAL_FUNCTIONS_H
-
-#define EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(NAME,FUNCTOR) \
- template<typename Derived> \
- inline const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> \
- NAME(const Eigen::ArrayBase<Derived>& x) { \
- return x.derived(); \
- }
-
-#define EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(NAME,FUNCTOR) \
- \
- template<typename Derived> \
- struct NAME##_retval<ArrayBase<Derived> > \
- { \
- typedef const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> type; \
- }; \
- template<typename Derived> \
- struct NAME##_impl<ArrayBase<Derived> > \
- { \
- static inline typename NAME##_retval<ArrayBase<Derived> >::type run(const Eigen::ArrayBase<Derived>& x) \
- { \
- return x.derived(); \
- } \
- };
-
-
-namespace Eigen
-{
- EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(real,scalar_real_op)
- EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(imag,scalar_imag_op)
- EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(conj,scalar_conjugate_op)
- EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sin,scalar_sin_op)
- EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cos,scalar_cos_op)
- EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(asin,scalar_asin_op)
- EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(acos,scalar_acos_op)
- EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tan,scalar_tan_op)
- EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(exp,scalar_exp_op)
- EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log,scalar_log_op)
- EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(abs,scalar_abs_op)
- EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sqrt,scalar_sqrt_op)
-
- template<typename Derived>
- inline const Eigen::CwiseUnaryOp<Eigen::internal::scalar_pow_op<typename Derived::Scalar>, const Derived>
- pow(const Eigen::ArrayBase<Derived>& x, const typename Derived::Scalar& exponent) {
- return x.derived().pow(exponent);
- }
-
- template<typename Derived>
- inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_binary_pow_op<typename Derived::Scalar, typename Derived::Scalar>, const Derived, const Derived>
- pow(const Eigen::ArrayBase<Derived>& x, const Eigen::ArrayBase<Derived>& exponents)
- {
- return Eigen::CwiseBinaryOp<Eigen::internal::scalar_binary_pow_op<typename Derived::Scalar, typename Derived::Scalar>, const Derived, const Derived>(
- x.derived(),
- exponents.derived()
- );
- }
-
- /**
- * \brief Component-wise division of a scalar by array elements.
- **/
- template <typename Derived>
- inline const Eigen::CwiseUnaryOp<Eigen::internal::scalar_inverse_mult_op<typename Derived::Scalar>, const Derived>
- operator/(const typename Derived::Scalar& s, const Eigen::ArrayBase<Derived>& a)
- {
- return Eigen::CwiseUnaryOp<Eigen::internal::scalar_inverse_mult_op<typename Derived::Scalar>, const Derived>(
- a.derived(),
- Eigen::internal::scalar_inverse_mult_op<typename Derived::Scalar>(s)
- );
- }
-
- namespace internal
- {
- EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(real,scalar_real_op)
- EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(imag,scalar_imag_op)
- EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(abs2,scalar_abs2_op)
- }
-}
-
-// TODO: cleanly disable those functions that are not supported on Array (numext::real_ref, internal::random, internal::isApprox...)
-
-#endif // EIGEN_GLOBAL_FUNCTIONS_H
diff --git a/src/Eigen/src/Core/IO.h b/src/Eigen/src/Core/IO.h
deleted file mode 100644
index 8d4bc59..0000000
--- a/src/Eigen/src/Core/IO.h
+++ /dev/null
@@ -1,250 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_IO_H
-#define EIGEN_IO_H
-
-namespace Eigen {
-
-enum { DontAlignCols = 1 };
-enum { StreamPrecision = -1,
- FullPrecision = -2 };
-
-namespace internal {
-template<typename Derived>
-std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt);
-}
-
-/** \class IOFormat
- * \ingroup Core_Module
- *
- * \brief Stores a set of parameters controlling the way matrices are printed
- *
- * List of available parameters:
- * - \b precision number of digits for floating point values, or one of the special constants \c StreamPrecision and \c FullPrecision.
- * The default is the special value \c StreamPrecision which means to use the
- * stream's own precision setting, as set for instance using \c cout.precision(3). The other special value
- * \c FullPrecision means that the number of digits will be computed to match the full precision of each floating-point
- * type.
- * - \b flags an OR-ed combination of flags, the default value is 0, the only currently available flag is \c DontAlignCols which
- * allows to disable the alignment of columns, resulting in faster code.
- * - \b coeffSeparator string printed between two coefficients of the same row
- * - \b rowSeparator string printed between two rows
- * - \b rowPrefix string printed at the beginning of each row
- * - \b rowSuffix string printed at the end of each row
- * - \b matPrefix string printed at the beginning of the matrix
- * - \b matSuffix string printed at the end of the matrix
- *
- * Example: \include IOFormat.cpp
- * Output: \verbinclude IOFormat.out
- *
- * \sa DenseBase::format(), class WithFormat
- */
-struct IOFormat
-{
- /** Default contructor, see class IOFormat for the meaning of the parameters */
- IOFormat(int _precision = StreamPrecision, int _flags = 0,
- const std::string& _coeffSeparator = " ",
- const std::string& _rowSeparator = "\n", const std::string& _rowPrefix="", const std::string& _rowSuffix="",
- const std::string& _matPrefix="", const std::string& _matSuffix="")
- : matPrefix(_matPrefix), matSuffix(_matSuffix), rowPrefix(_rowPrefix), rowSuffix(_rowSuffix), rowSeparator(_rowSeparator),
- rowSpacer(""), coeffSeparator(_coeffSeparator), precision(_precision), flags(_flags)
- {
- int i = int(matSuffix.length())-1;
- while (i>=0 && matSuffix[i]!='\n')
- {
- rowSpacer += ' ';
- i--;
- }
- }
- std::string matPrefix, matSuffix;
- std::string rowPrefix, rowSuffix, rowSeparator, rowSpacer;
- std::string coeffSeparator;
- int precision;
- int flags;
-};
-
-/** \class WithFormat
- * \ingroup Core_Module
- *
- * \brief Pseudo expression providing matrix output with given format
- *
- * \param ExpressionType the type of the object on which IO stream operations are performed
- *
- * This class represents an expression with stream operators controlled by a given IOFormat.
- * It is the return type of DenseBase::format()
- * and most of the time this is the only way it is used.
- *
- * See class IOFormat for some examples.
- *
- * \sa DenseBase::format(), class IOFormat
- */
-template<typename ExpressionType>
-class WithFormat
-{
- public:
-
- WithFormat(const ExpressionType& matrix, const IOFormat& format)
- : m_matrix(matrix), m_format(format)
- {}
-
- friend std::ostream & operator << (std::ostream & s, const WithFormat& wf)
- {
- return internal::print_matrix(s, wf.m_matrix.eval(), wf.m_format);
- }
-
- protected:
- const typename ExpressionType::Nested m_matrix;
- IOFormat m_format;
-};
-
-/** \returns a WithFormat proxy object allowing to print a matrix the with given
- * format \a fmt.
- *
- * See class IOFormat for some examples.
- *
- * \sa class IOFormat, class WithFormat
- */
-template<typename Derived>
-inline const WithFormat<Derived>
-DenseBase<Derived>::format(const IOFormat& fmt) const
-{
- return WithFormat<Derived>(derived(), fmt);
-}
-
-namespace internal {
-
-template<typename Scalar, bool IsInteger>
-struct significant_decimals_default_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- static inline int run()
- {
- using std::ceil;
- using std::log;
- return cast<RealScalar,int>(ceil(-log(NumTraits<RealScalar>::epsilon())/log(RealScalar(10))));
- }
-};
-
-template<typename Scalar>
-struct significant_decimals_default_impl<Scalar, true>
-{
- static inline int run()
- {
- return 0;
- }
-};
-
-template<typename Scalar>
-struct significant_decimals_impl
- : significant_decimals_default_impl<Scalar, NumTraits<Scalar>::IsInteger>
-{};
-
-/** \internal
- * print the matrix \a _m to the output stream \a s using the output format \a fmt */
-template<typename Derived>
-std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt)
-{
- if(_m.size() == 0)
- {
- s << fmt.matPrefix << fmt.matSuffix;
- return s;
- }
-
- typename Derived::Nested m = _m;
- typedef typename Derived::Scalar Scalar;
- typedef typename Derived::Index Index;
-
- Index width = 0;
-
- std::streamsize explicit_precision;
- if(fmt.precision == StreamPrecision)
- {
- explicit_precision = 0;
- }
- else if(fmt.precision == FullPrecision)
- {
- if (NumTraits<Scalar>::IsInteger)
- {
- explicit_precision = 0;
- }
- else
- {
- explicit_precision = significant_decimals_impl<Scalar>::run();
- }
- }
- else
- {
- explicit_precision = fmt.precision;
- }
-
- std::streamsize old_precision = 0;
- if(explicit_precision) old_precision = s.precision(explicit_precision);
-
- bool align_cols = !(fmt.flags & DontAlignCols);
- if(align_cols)
- {
- // compute the largest width
- for(Index j = 0; j < m.cols(); ++j)
- for(Index i = 0; i < m.rows(); ++i)
- {
- std::stringstream sstr;
- sstr.copyfmt(s);
- sstr << m.coeff(i,j);
- width = std::max<Index>(width, Index(sstr.str().length()));
- }
- }
- s << fmt.matPrefix;
- for(Index i = 0; i < m.rows(); ++i)
- {
- if (i)
- s << fmt.rowSpacer;
- s << fmt.rowPrefix;
- if(width) s.width(width);
- s << m.coeff(i, 0);
- for(Index j = 1; j < m.cols(); ++j)
- {
- s << fmt.coeffSeparator;
- if (width) s.width(width);
- s << m.coeff(i, j);
- }
- s << fmt.rowSuffix;
- if( i < m.rows() - 1)
- s << fmt.rowSeparator;
- }
- s << fmt.matSuffix;
- if(explicit_precision) s.precision(old_precision);
- return s;
-}
-
-} // end namespace internal
-
-/** \relates DenseBase
- *
- * Outputs the matrix, to the given stream.
- *
- * If you wish to print the matrix with a format different than the default, use DenseBase::format().
- *
- * It is also possible to change the default format by defining EIGEN_DEFAULT_IO_FORMAT before including Eigen headers.
- * If not defined, this will automatically be defined to Eigen::IOFormat(), that is the Eigen::IOFormat with default parameters.
- *
- * \sa DenseBase::format()
- */
-template<typename Derived>
-std::ostream & operator <<
-(std::ostream & s,
- const DenseBase<Derived> & m)
-{
- return internal::print_matrix(s, m.eval(), EIGEN_DEFAULT_IO_FORMAT);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_IO_H
diff --git a/src/Eigen/src/Core/Map.h b/src/Eigen/src/Core/Map.h
deleted file mode 100644
index f804c89..0000000
--- a/src/Eigen/src/Core/Map.h
+++ /dev/null
@@ -1,192 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MAP_H
-#define EIGEN_MAP_H
-
-namespace Eigen {
-
-/** \class Map
- * \ingroup Core_Module
- *
- * \brief A matrix or vector expression mapping an existing array of data.
- *
- * \tparam PlainObjectType the equivalent matrix type of the mapped data
- * \tparam MapOptions specifies whether the pointer is \c #Aligned, or \c #Unaligned.
- * The default is \c #Unaligned.
- * \tparam StrideType optionally specifies strides. By default, Map assumes the memory layout
- * of an ordinary, contiguous array. This can be overridden by specifying strides.
- * The type passed here must be a specialization of the Stride template, see examples below.
- *
- * This class represents a matrix or vector expression mapping an existing array of data.
- * It can be used to let Eigen interface without any overhead with non-Eigen data structures,
- * such as plain C arrays or structures from other libraries. By default, it assumes that the
- * data is laid out contiguously in memory. You can however override this by explicitly specifying
- * inner and outer strides.
- *
- * Here's an example of simply mapping a contiguous array as a \ref TopicStorageOrders "column-major" matrix:
- * \include Map_simple.cpp
- * Output: \verbinclude Map_simple.out
- *
- * If you need to map non-contiguous arrays, you can do so by specifying strides:
- *
- * Here's an example of mapping an array as a vector, specifying an inner stride, that is, the pointer
- * increment between two consecutive coefficients. Here, we're specifying the inner stride as a compile-time
- * fixed value.
- * \include Map_inner_stride.cpp
- * Output: \verbinclude Map_inner_stride.out
- *
- * Here's an example of mapping an array while specifying an outer stride. Here, since we're mapping
- * as a column-major matrix, 'outer stride' means the pointer increment between two consecutive columns.
- * Here, we're specifying the outer stride as a runtime parameter. Note that here \c OuterStride<> is
- * a short version of \c OuterStride<Dynamic> because the default template parameter of OuterStride
- * is \c Dynamic
- * \include Map_outer_stride.cpp
- * Output: \verbinclude Map_outer_stride.out
- *
- * For more details and for an example of specifying both an inner and an outer stride, see class Stride.
- *
- * \b Tip: to change the array of data mapped by a Map object, you can use the C++
- * placement new syntax:
- *
- * Example: \include Map_placement_new.cpp
- * Output: \verbinclude Map_placement_new.out
- *
- * This class is the return type of PlainObjectBase::Map() but can also be used directly.
- *
- * \sa PlainObjectBase::Map(), \ref TopicStorageOrders
- */
-
-namespace internal {
-template<typename PlainObjectType, int MapOptions, typename StrideType>
-struct traits<Map<PlainObjectType, MapOptions, StrideType> >
- : public traits<PlainObjectType>
-{
- typedef traits<PlainObjectType> TraitsBase;
- typedef typename PlainObjectType::Index Index;
- typedef typename PlainObjectType::Scalar Scalar;
- enum {
- InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0
- ? int(PlainObjectType::InnerStrideAtCompileTime)
- : int(StrideType::InnerStrideAtCompileTime),
- OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0
- ? int(PlainObjectType::OuterStrideAtCompileTime)
- : int(StrideType::OuterStrideAtCompileTime),
- HasNoInnerStride = InnerStrideAtCompileTime == 1,
- HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0,
- HasNoStride = HasNoInnerStride && HasNoOuterStride,
- IsAligned = bool(EIGEN_ALIGN) && ((int(MapOptions)&Aligned)==Aligned),
- IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic,
- KeepsPacketAccess = bool(HasNoInnerStride)
- && ( bool(IsDynamicSize)
- || HasNoOuterStride
- || ( OuterStrideAtCompileTime!=Dynamic
- && ((static_cast<int>(sizeof(Scalar))*OuterStrideAtCompileTime)%16)==0 ) ),
- Flags0 = TraitsBase::Flags & (~NestByRefBit),
- Flags1 = IsAligned ? (int(Flags0) | AlignedBit) : (int(Flags0) & ~AlignedBit),
- Flags2 = (bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime))
- ? int(Flags1) : int(Flags1 & ~LinearAccessBit),
- Flags3 = is_lvalue<PlainObjectType>::value ? int(Flags2) : (int(Flags2) & ~LvalueBit),
- Flags = KeepsPacketAccess ? int(Flags3) : (int(Flags3) & ~PacketAccessBit)
- };
-private:
- enum { Options }; // Expressions don't have Options
-};
-}
-
-template<typename PlainObjectType, int MapOptions, typename StrideType> class Map
- : public MapBase<Map<PlainObjectType, MapOptions, StrideType> >
-{
- public:
-
- typedef MapBase<Map> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(Map)
-
- typedef typename Base::PointerType PointerType;
-#if EIGEN2_SUPPORT_STAGE <= STAGE30_FULL_EIGEN3_API
- typedef const Scalar* PointerArgType;
- inline PointerType cast_to_pointer_type(PointerArgType ptr) { return const_cast<PointerType>(ptr); }
-#else
- typedef PointerType PointerArgType;
- inline PointerType cast_to_pointer_type(PointerArgType ptr) { return ptr; }
-#endif
-
- inline Index innerStride() const
- {
- return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1;
- }
-
- inline Index outerStride() const
- {
- return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer()
- : IsVectorAtCompileTime ? this->size()
- : int(Flags)&RowMajorBit ? this->cols()
- : this->rows();
- }
-
- /** Constructor in the fixed-size case.
- *
- * \param dataPtr pointer to the array to map
- * \param a_stride optional Stride object, passing the strides.
- */
- inline Map(PointerArgType dataPtr, const StrideType& a_stride = StrideType())
- : Base(cast_to_pointer_type(dataPtr)), m_stride(a_stride)
- {
- PlainObjectType::Base::_check_template_params();
- }
-
- /** Constructor in the dynamic-size vector case.
- *
- * \param dataPtr pointer to the array to map
- * \param a_size the size of the vector expression
- * \param a_stride optional Stride object, passing the strides.
- */
- inline Map(PointerArgType dataPtr, Index a_size, const StrideType& a_stride = StrideType())
- : Base(cast_to_pointer_type(dataPtr), a_size), m_stride(a_stride)
- {
- PlainObjectType::Base::_check_template_params();
- }
-
- /** Constructor in the dynamic-size matrix case.
- *
- * \param dataPtr pointer to the array to map
- * \param nbRows the number of rows of the matrix expression
- * \param nbCols the number of columns of the matrix expression
- * \param a_stride optional Stride object, passing the strides.
- */
- inline Map(PointerArgType dataPtr, Index nbRows, Index nbCols, const StrideType& a_stride = StrideType())
- : Base(cast_to_pointer_type(dataPtr), nbRows, nbCols), m_stride(a_stride)
- {
- PlainObjectType::Base::_check_template_params();
- }
-
- EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
-
- protected:
- StrideType m_stride;
-};
-
-template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
-inline Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>
- ::Array(const Scalar *data)
-{
- this->_set_noalias(Eigen::Map<const Array>(data));
-}
-
-template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
-inline Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>
- ::Matrix(const Scalar *data)
-{
- this->_set_noalias(Eigen::Map<const Matrix>(data));
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MAP_H
diff --git a/src/Eigen/src/Core/MapBase.h b/src/Eigen/src/Core/MapBase.h
deleted file mode 100644
index ab50c9b..0000000
--- a/src/Eigen/src/Core/MapBase.h
+++ /dev/null
@@ -1,244 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MAPBASE_H
-#define EIGEN_MAPBASE_H
-
-#define EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) \
- EIGEN_STATIC_ASSERT((int(internal::traits<Derived>::Flags) & LinearAccessBit) || Derived::IsVectorAtCompileTime, \
- YOU_ARE_TRYING_TO_USE_AN_INDEX_BASED_ACCESSOR_ON_AN_EXPRESSION_THAT_DOES_NOT_SUPPORT_THAT)
-
-namespace Eigen {
-
-/** \class MapBase
- * \ingroup Core_Module
- *
- * \brief Base class for Map and Block expression with direct access
- *
- * \sa class Map, class Block
- */
-template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
- : public internal::dense_xpr_base<Derived>::type
-{
- public:
-
- typedef typename internal::dense_xpr_base<Derived>::type Base;
- enum {
- RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
- ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
- SizeAtCompileTime = Base::SizeAtCompileTime
- };
-
- typedef typename internal::traits<Derived>::StorageKind StorageKind;
- typedef typename internal::traits<Derived>::Index Index;
- typedef typename internal::traits<Derived>::Scalar Scalar;
- typedef typename internal::packet_traits<Scalar>::type PacketScalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename internal::conditional<
- bool(internal::is_lvalue<Derived>::value),
- Scalar *,
- const Scalar *>::type
- PointerType;
-
- using Base::derived;
-// using Base::RowsAtCompileTime;
-// using Base::ColsAtCompileTime;
-// using Base::SizeAtCompileTime;
- using Base::MaxRowsAtCompileTime;
- using Base::MaxColsAtCompileTime;
- using Base::MaxSizeAtCompileTime;
- using Base::IsVectorAtCompileTime;
- using Base::Flags;
- using Base::IsRowMajor;
-
- using Base::rows;
- using Base::cols;
- using Base::size;
- using Base::coeff;
- using Base::coeffRef;
- using Base::lazyAssign;
- using Base::eval;
-
- using Base::innerStride;
- using Base::outerStride;
- using Base::rowStride;
- using Base::colStride;
-
- // bug 217 - compile error on ICC 11.1
- using Base::operator=;
-
- typedef typename Base::CoeffReturnType CoeffReturnType;
-
- inline Index rows() const { return m_rows.value(); }
- inline Index cols() const { return m_cols.value(); }
-
- /** Returns a pointer to the first coefficient of the matrix or vector.
- *
- * \note When addressing this data, make sure to honor the strides returned by innerStride() and outerStride().
- *
- * \sa innerStride(), outerStride()
- */
- inline const Scalar* data() const { return m_data; }
-
- inline const Scalar& coeff(Index rowId, Index colId) const
- {
- return m_data[colId * colStride() + rowId * rowStride()];
- }
-
- inline const Scalar& coeff(Index index) const
- {
- EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
- return m_data[index * innerStride()];
- }
-
- inline const Scalar& coeffRef(Index rowId, Index colId) const
- {
- return this->m_data[colId * colStride() + rowId * rowStride()];
- }
-
- inline const Scalar& coeffRef(Index index) const
- {
- EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
- return this->m_data[index * innerStride()];
- }
-
- template<int LoadMode>
- inline PacketScalar packet(Index rowId, Index colId) const
- {
- return internal::ploadt<PacketScalar, LoadMode>
- (m_data + (colId * colStride() + rowId * rowStride()));
- }
-
- template<int LoadMode>
- inline PacketScalar packet(Index index) const
- {
- EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
- return internal::ploadt<PacketScalar, LoadMode>(m_data + index * innerStride());
- }
-
- inline MapBase(PointerType dataPtr) : m_data(dataPtr), m_rows(RowsAtCompileTime), m_cols(ColsAtCompileTime)
- {
- EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
- checkSanity();
- }
-
- inline MapBase(PointerType dataPtr, Index vecSize)
- : m_data(dataPtr),
- m_rows(RowsAtCompileTime == Dynamic ? vecSize : Index(RowsAtCompileTime)),
- m_cols(ColsAtCompileTime == Dynamic ? vecSize : Index(ColsAtCompileTime))
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- eigen_assert(vecSize >= 0);
- eigen_assert(dataPtr == 0 || SizeAtCompileTime == Dynamic || SizeAtCompileTime == vecSize);
- checkSanity();
- }
-
- inline MapBase(PointerType dataPtr, Index nbRows, Index nbCols)
- : m_data(dataPtr), m_rows(nbRows), m_cols(nbCols)
- {
- eigen_assert( (dataPtr == 0)
- || ( nbRows >= 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == nbRows)
- && nbCols >= 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == nbCols)));
- checkSanity();
- }
-
- protected:
-
- void checkSanity() const
- {
- EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(internal::traits<Derived>::Flags&PacketAccessBit,
- internal::inner_stride_at_compile_time<Derived>::ret==1),
- PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1);
- eigen_assert(EIGEN_IMPLIES(internal::traits<Derived>::Flags&AlignedBit, (size_t(m_data) % 16) == 0)
- && "data is not aligned");
- }
-
- PointerType m_data;
- const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_rows;
- const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_cols;
-};
-
-template<typename Derived> class MapBase<Derived, WriteAccessors>
- : public MapBase<Derived, ReadOnlyAccessors>
-{
- public:
-
- typedef MapBase<Derived, ReadOnlyAccessors> Base;
-
- typedef typename Base::Scalar Scalar;
- typedef typename Base::PacketScalar PacketScalar;
- typedef typename Base::Index Index;
- typedef typename Base::PointerType PointerType;
-
- using Base::derived;
- using Base::rows;
- using Base::cols;
- using Base::size;
- using Base::coeff;
- using Base::coeffRef;
-
- using Base::innerStride;
- using Base::outerStride;
- using Base::rowStride;
- using Base::colStride;
-
- typedef typename internal::conditional<
- internal::is_lvalue<Derived>::value,
- Scalar,
- const Scalar
- >::type ScalarWithConstIfNotLvalue;
-
- inline const Scalar* data() const { return this->m_data; }
- inline ScalarWithConstIfNotLvalue* data() { return this->m_data; } // no const-cast here so non-const-correct code will give a compile error
-
- inline ScalarWithConstIfNotLvalue& coeffRef(Index row, Index col)
- {
- return this->m_data[col * colStride() + row * rowStride()];
- }
-
- inline ScalarWithConstIfNotLvalue& coeffRef(Index index)
- {
- EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
- return this->m_data[index * innerStride()];
- }
-
- template<int StoreMode>
- inline void writePacket(Index row, Index col, const PacketScalar& val)
- {
- internal::pstoret<Scalar, PacketScalar, StoreMode>
- (this->m_data + (col * colStride() + row * rowStride()), val);
- }
-
- template<int StoreMode>
- inline void writePacket(Index index, const PacketScalar& val)
- {
- EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
- internal::pstoret<Scalar, PacketScalar, StoreMode>
- (this->m_data + index * innerStride(), val);
- }
-
- explicit inline MapBase(PointerType dataPtr) : Base(dataPtr) {}
- inline MapBase(PointerType dataPtr, Index vecSize) : Base(dataPtr, vecSize) {}
- inline MapBase(PointerType dataPtr, Index nbRows, Index nbCols) : Base(dataPtr, nbRows, nbCols) {}
-
- Derived& operator=(const MapBase& other)
- {
- Base::Base::operator=(other);
- return derived();
- }
-
- using Base::Base::operator=;
-};
-
-#undef EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS
-
-} // end namespace Eigen
-
-#endif // EIGEN_MAPBASE_H
diff --git a/src/Eigen/src/Core/MathFunctions.h b/src/Eigen/src/Core/MathFunctions.h
deleted file mode 100644
index 2bfc5eb..0000000
--- a/src/Eigen/src/Core/MathFunctions.h
+++ /dev/null
@@ -1,768 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATHFUNCTIONS_H
-#define EIGEN_MATHFUNCTIONS_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal \struct global_math_functions_filtering_base
- *
- * What it does:
- * Defines a typedef 'type' as follows:
- * - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then
- * global_math_functions_filtering_base<T>::type is a typedef for it.
- * - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T.
- *
- * How it's used:
- * To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions.
- * When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know
- * is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>.
- * So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization
- * won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it.
- *
- * How it's implemented:
- * SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace
- * the typename dummy by an integer template parameter, it doesn't work anymore!
- */
-
-template<typename T, typename dummy = void>
-struct global_math_functions_filtering_base
-{
- typedef T type;
-};
-
-template<typename T> struct always_void { typedef void type; };
-
-template<typename T>
-struct global_math_functions_filtering_base
- <T,
- typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type
- >
-{
- typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type;
-};
-
-#define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>
-#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type
-
-/****************************************************************************
-* Implementation of real *
-****************************************************************************/
-
-template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
-struct real_default_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- static inline RealScalar run(const Scalar& x)
- {
- return x;
- }
-};
-
-template<typename Scalar>
-struct real_default_impl<Scalar,true>
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- static inline RealScalar run(const Scalar& x)
- {
- using std::real;
- return real(x);
- }
-};
-
-template<typename Scalar> struct real_impl : real_default_impl<Scalar> {};
-
-template<typename Scalar>
-struct real_retval
-{
- typedef typename NumTraits<Scalar>::Real type;
-};
-
-
-/****************************************************************************
-* Implementation of imag *
-****************************************************************************/
-
-template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
-struct imag_default_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- static inline RealScalar run(const Scalar&)
- {
- return RealScalar(0);
- }
-};
-
-template<typename Scalar>
-struct imag_default_impl<Scalar,true>
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- static inline RealScalar run(const Scalar& x)
- {
- using std::imag;
- return imag(x);
- }
-};
-
-template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {};
-
-template<typename Scalar>
-struct imag_retval
-{
- typedef typename NumTraits<Scalar>::Real type;
-};
-
-/****************************************************************************
-* Implementation of real_ref *
-****************************************************************************/
-
-template<typename Scalar>
-struct real_ref_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- static inline RealScalar& run(Scalar& x)
- {
- return reinterpret_cast<RealScalar*>(&x)[0];
- }
- static inline const RealScalar& run(const Scalar& x)
- {
- return reinterpret_cast<const RealScalar*>(&x)[0];
- }
-};
-
-template<typename Scalar>
-struct real_ref_retval
-{
- typedef typename NumTraits<Scalar>::Real & type;
-};
-
-/****************************************************************************
-* Implementation of imag_ref *
-****************************************************************************/
-
-template<typename Scalar, bool IsComplex>
-struct imag_ref_default_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- static inline RealScalar& run(Scalar& x)
- {
- return reinterpret_cast<RealScalar*>(&x)[1];
- }
- static inline const RealScalar& run(const Scalar& x)
- {
- return reinterpret_cast<RealScalar*>(&x)[1];
- }
-};
-
-template<typename Scalar>
-struct imag_ref_default_impl<Scalar, false>
-{
- static inline Scalar run(Scalar&)
- {
- return Scalar(0);
- }
- static inline const Scalar run(const Scalar&)
- {
- return Scalar(0);
- }
-};
-
-template<typename Scalar>
-struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
-
-template<typename Scalar>
-struct imag_ref_retval
-{
- typedef typename NumTraits<Scalar>::Real & type;
-};
-
-/****************************************************************************
-* Implementation of conj *
-****************************************************************************/
-
-template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
-struct conj_impl
-{
- static inline Scalar run(const Scalar& x)
- {
- return x;
- }
-};
-
-template<typename Scalar>
-struct conj_impl<Scalar,true>
-{
- static inline Scalar run(const Scalar& x)
- {
- using std::conj;
- return conj(x);
- }
-};
-
-template<typename Scalar>
-struct conj_retval
-{
- typedef Scalar type;
-};
-
-/****************************************************************************
-* Implementation of abs2 *
-****************************************************************************/
-
-template<typename Scalar>
-struct abs2_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- static inline RealScalar run(const Scalar& x)
- {
- return x*x;
- }
-};
-
-template<typename RealScalar>
-struct abs2_impl<std::complex<RealScalar> >
-{
- static inline RealScalar run(const std::complex<RealScalar>& x)
- {
- return real(x)*real(x) + imag(x)*imag(x);
- }
-};
-
-template<typename Scalar>
-struct abs2_retval
-{
- typedef typename NumTraits<Scalar>::Real type;
-};
-
-/****************************************************************************
-* Implementation of norm1 *
-****************************************************************************/
-
-template<typename Scalar, bool IsComplex>
-struct norm1_default_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- static inline RealScalar run(const Scalar& x)
- {
- using std::abs;
- return abs(real(x)) + abs(imag(x));
- }
-};
-
-template<typename Scalar>
-struct norm1_default_impl<Scalar, false>
-{
- static inline Scalar run(const Scalar& x)
- {
- using std::abs;
- return abs(x);
- }
-};
-
-template<typename Scalar>
-struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
-
-template<typename Scalar>
-struct norm1_retval
-{
- typedef typename NumTraits<Scalar>::Real type;
-};
-
-/****************************************************************************
-* Implementation of hypot *
-****************************************************************************/
-
-template<typename Scalar>
-struct hypot_impl
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- static inline RealScalar run(const Scalar& x, const Scalar& y)
- {
- using std::max;
- using std::min;
- using std::abs;
- using std::sqrt;
- RealScalar _x = abs(x);
- RealScalar _y = abs(y);
- RealScalar p = (max)(_x, _y);
- if(p==RealScalar(0)) return 0;
- RealScalar q = (min)(_x, _y);
- RealScalar qp = q/p;
- return p * sqrt(RealScalar(1) + qp*qp);
- }
-};
-
-template<typename Scalar>
-struct hypot_retval
-{
- typedef typename NumTraits<Scalar>::Real type;
-};
-
-/****************************************************************************
-* Implementation of cast *
-****************************************************************************/
-
-template<typename OldType, typename NewType>
-struct cast_impl
-{
- static inline NewType run(const OldType& x)
- {
- return static_cast<NewType>(x);
- }
-};
-
-// here, for once, we're plainly returning NewType: we don't want cast to do weird things.
-
-template<typename OldType, typename NewType>
-inline NewType cast(const OldType& x)
-{
- return cast_impl<OldType, NewType>::run(x);
-}
-
-/****************************************************************************
-* Implementation of atanh2 *
-****************************************************************************/
-
-template<typename Scalar, bool IsInteger>
-struct atanh2_default_impl
-{
- typedef Scalar retval;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- static inline Scalar run(const Scalar& x, const Scalar& y)
- {
- using std::abs;
- using std::log;
- using std::sqrt;
- Scalar z = x / y;
- if (y == Scalar(0) || abs(z) > sqrt(NumTraits<RealScalar>::epsilon()))
- return RealScalar(0.5) * log((y + x) / (y - x));
- else
- return z + z*z*z / RealScalar(3);
- }
-};
-
-template<typename Scalar>
-struct atanh2_default_impl<Scalar, true>
-{
- static inline Scalar run(const Scalar&, const Scalar&)
- {
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
- return Scalar(0);
- }
-};
-
-template<typename Scalar>
-struct atanh2_impl : atanh2_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
-
-template<typename Scalar>
-struct atanh2_retval
-{
- typedef Scalar type;
-};
-
-/****************************************************************************
-* Implementation of pow *
-****************************************************************************/
-
-template<typename Scalar, bool IsInteger>
-struct pow_default_impl
-{
- typedef Scalar retval;
- static inline Scalar run(const Scalar& x, const Scalar& y)
- {
- using std::pow;
- return pow(x, y);
- }
-};
-
-template<typename Scalar>
-struct pow_default_impl<Scalar, true>
-{
- static inline Scalar run(Scalar x, Scalar y)
- {
- Scalar res(1);
- eigen_assert(!NumTraits<Scalar>::IsSigned || y >= 0);
- if(y & 1) res *= x;
- y >>= 1;
- while(y)
- {
- x *= x;
- if(y&1) res *= x;
- y >>= 1;
- }
- return res;
- }
-};
-
-template<typename Scalar>
-struct pow_impl : pow_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
-
-template<typename Scalar>
-struct pow_retval
-{
- typedef Scalar type;
-};
-
-/****************************************************************************
-* Implementation of random *
-****************************************************************************/
-
-template<typename Scalar,
- bool IsComplex,
- bool IsInteger>
-struct random_default_impl {};
-
-template<typename Scalar>
-struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
-
-template<typename Scalar>
-struct random_retval
-{
- typedef Scalar type;
-};
-
-template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y);
-template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random();
-
-template<typename Scalar>
-struct random_default_impl<Scalar, false, false>
-{
- static inline Scalar run(const Scalar& x, const Scalar& y)
- {
- return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX);
- }
- static inline Scalar run()
- {
- return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1));
- }
-};
-
-enum {
- floor_log2_terminate,
- floor_log2_move_up,
- floor_log2_move_down,
- floor_log2_bogus
-};
-
-template<unsigned int n, int lower, int upper> struct floor_log2_selector
-{
- enum { middle = (lower + upper) / 2,
- value = (upper <= lower + 1) ? int(floor_log2_terminate)
- : (n < (1 << middle)) ? int(floor_log2_move_down)
- : (n==0) ? int(floor_log2_bogus)
- : int(floor_log2_move_up)
- };
-};
-
-template<unsigned int n,
- int lower = 0,
- int upper = sizeof(unsigned int) * CHAR_BIT - 1,
- int selector = floor_log2_selector<n, lower, upper>::value>
-struct floor_log2 {};
-
-template<unsigned int n, int lower, int upper>
-struct floor_log2<n, lower, upper, floor_log2_move_down>
-{
- enum { value = floor_log2<n, lower, floor_log2_selector<n, lower, upper>::middle>::value };
-};
-
-template<unsigned int n, int lower, int upper>
-struct floor_log2<n, lower, upper, floor_log2_move_up>
-{
- enum { value = floor_log2<n, floor_log2_selector<n, lower, upper>::middle, upper>::value };
-};
-
-template<unsigned int n, int lower, int upper>
-struct floor_log2<n, lower, upper, floor_log2_terminate>
-{
- enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower };
-};
-
-template<unsigned int n, int lower, int upper>
-struct floor_log2<n, lower, upper, floor_log2_bogus>
-{
- // no value, error at compile time
-};
-
-template<typename Scalar>
-struct random_default_impl<Scalar, false, true>
-{
- typedef typename NumTraits<Scalar>::NonInteger NonInteger;
-
- static inline Scalar run(const Scalar& x, const Scalar& y)
- {
- return x + Scalar((NonInteger(y)-x+1) * std::rand() / (RAND_MAX + NonInteger(1)));
- }
-
- static inline Scalar run()
- {
-#ifdef EIGEN_MAKING_DOCS
- return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
-#else
- enum { rand_bits = floor_log2<(unsigned int)(RAND_MAX)+1>::value,
- scalar_bits = sizeof(Scalar) * CHAR_BIT,
- shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)),
- offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0
- };
- return Scalar((std::rand() >> shift) - offset);
-#endif
- }
-};
-
-template<typename Scalar>
-struct random_default_impl<Scalar, true, false>
-{
- static inline Scalar run(const Scalar& x, const Scalar& y)
- {
- return Scalar(random(real(x), real(y)),
- random(imag(x), imag(y)));
- }
- static inline Scalar run()
- {
- typedef typename NumTraits<Scalar>::Real RealScalar;
- return Scalar(random<RealScalar>(), random<RealScalar>());
- }
-};
-
-template<typename Scalar>
-inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y)
-{
- return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y);
-}
-
-template<typename Scalar>
-inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
-{
- return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
-}
-
-} // end namespace internal
-
-/****************************************************************************
-* Generic math function *
-****************************************************************************/
-
-namespace numext {
-
-template<typename Scalar>
-inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
-}
-
-template<typename Scalar>
-inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x)
-{
- return internal::real_ref_impl<Scalar>::run(x);
-}
-
-template<typename Scalar>
-inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
-}
-
-template<typename Scalar>
-inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
-}
-
-template<typename Scalar>
-inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x)
-{
- return internal::imag_ref_impl<Scalar>::run(x);
-}
-
-template<typename Scalar>
-inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
-}
-
-template<typename Scalar>
-inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
-}
-
-template<typename Scalar>
-inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
-}
-
-template<typename Scalar>
-inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x)
-{
- return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
-}
-
-template<typename Scalar>
-inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y)
-{
- return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
-}
-
-template<typename Scalar>
-inline EIGEN_MATHFUNC_RETVAL(atanh2, Scalar) atanh2(const Scalar& x, const Scalar& y)
-{
- return EIGEN_MATHFUNC_IMPL(atanh2, Scalar)::run(x, y);
-}
-
-template<typename Scalar>
-inline EIGEN_MATHFUNC_RETVAL(pow, Scalar) pow(const Scalar& x, const Scalar& y)
-{
- return EIGEN_MATHFUNC_IMPL(pow, Scalar)::run(x, y);
-}
-
-// std::isfinite is non standard, so let's define our own version,
-// even though it is not very efficient.
-template<typename T> bool (isfinite)(const T& x)
-{
- return x<NumTraits<T>::highest() && x>NumTraits<T>::lowest();
-}
-
-} // end namespace numext
-
-namespace internal {
-
-/****************************************************************************
-* Implementation of fuzzy comparisons *
-****************************************************************************/
-
-template<typename Scalar,
- bool IsComplex,
- bool IsInteger>
-struct scalar_fuzzy_default_impl {};
-
-template<typename Scalar>
-struct scalar_fuzzy_default_impl<Scalar, false, false>
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- template<typename OtherScalar>
- static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
- {
- using std::abs;
- return abs(x) <= abs(y) * prec;
- }
- static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
- {
- using std::min;
- using std::abs;
- return abs(x - y) <= (min)(abs(x), abs(y)) * prec;
- }
- static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec)
- {
- return x <= y || isApprox(x, y, prec);
- }
-};
-
-template<typename Scalar>
-struct scalar_fuzzy_default_impl<Scalar, false, true>
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- template<typename OtherScalar>
- static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&)
- {
- return x == Scalar(0);
- }
- static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&)
- {
- return x == y;
- }
- static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&)
- {
- return x <= y;
- }
-};
-
-template<typename Scalar>
-struct scalar_fuzzy_default_impl<Scalar, true, false>
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- template<typename OtherScalar>
- static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
- {
- return numext::abs2(x) <= numext::abs2(y) * prec * prec;
- }
- static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
- {
- using std::min;
- return numext::abs2(x - y) <= (min)(numext::abs2(x), numext::abs2(y)) * prec * prec;
- }
-};
-
-template<typename Scalar>
-struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
-
-template<typename Scalar, typename OtherScalar>
-inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
- typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
-{
- return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision);
-}
-
-template<typename Scalar>
-inline bool isApprox(const Scalar& x, const Scalar& y,
- typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
-{
- return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
-}
-
-template<typename Scalar>
-inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y,
- typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
-{
- return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
-}
-
-/******************************************
-*** The special case of the bool type ***
-******************************************/
-
-template<> struct random_impl<bool>
-{
- static inline bool run()
- {
- return random<int>(0,1)==0 ? false : true;
- }
-};
-
-template<> struct scalar_fuzzy_impl<bool>
-{
- typedef bool RealScalar;
-
- template<typename OtherScalar>
- static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&)
- {
- return !x;
- }
-
- static inline bool isApprox(bool x, bool y, bool)
- {
- return x == y;
- }
-
- static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&)
- {
- return (!x) || y;
- }
-
-};
-
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATHFUNCTIONS_H
diff --git a/src/Eigen/src/Core/Matrix.h b/src/Eigen/src/Core/Matrix.h
deleted file mode 100644
index d7d0b5b..0000000
--- a/src/Eigen/src/Core/Matrix.h
+++ /dev/null
@@ -1,405 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIX_H
-#define EIGEN_MATRIX_H
-
-namespace Eigen {
-
-/** \class Matrix
- * \ingroup Core_Module
- *
- * \brief The matrix class, also used for vectors and row-vectors
- *
- * The %Matrix class is the work-horse for all \em dense (\ref dense "note") matrices and vectors within Eigen.
- * Vectors are matrices with one column, and row-vectors are matrices with one row.
- *
- * The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note").
- *
- * The first three template parameters are required:
- * \tparam _Scalar \anchor matrix_tparam_scalar Numeric type, e.g. float, double, int or std::complex<float>.
- * User defined sclar types are supported as well (see \ref user_defined_scalars "here").
- * \tparam _Rows Number of rows, or \b Dynamic
- * \tparam _Cols Number of columns, or \b Dynamic
- *
- * The remaining template parameters are optional -- in most cases you don't have to worry about them.
- * \tparam _Options \anchor matrix_tparam_options A combination of either \b #RowMajor or \b #ColMajor, and of either
- * \b #AutoAlign or \b #DontAlign.
- * The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required
- * for vectorization. It defaults to aligning matrices except for fixed sizes that aren't a multiple of the packet size.
- * \tparam _MaxRows Maximum number of rows. Defaults to \a _Rows (\ref maxrows "note").
- * \tparam _MaxCols Maximum number of columns. Defaults to \a _Cols (\ref maxrows "note").
- *
- * Eigen provides a number of typedefs covering the usual cases. Here are some examples:
- *
- * \li \c Matrix2d is a 2x2 square matrix of doubles (\c Matrix<double, 2, 2>)
- * \li \c Vector4f is a vector of 4 floats (\c Matrix<float, 4, 1>)
- * \li \c RowVector3i is a row-vector of 3 ints (\c Matrix<int, 1, 3>)
- *
- * \li \c MatrixXf is a dynamic-size matrix of floats (\c Matrix<float, Dynamic, Dynamic>)
- * \li \c VectorXf is a dynamic-size vector of floats (\c Matrix<float, Dynamic, 1>)
- *
- * \li \c Matrix2Xf is a partially fixed-size (dynamic-size) matrix of floats (\c Matrix<float, 2, Dynamic>)
- * \li \c MatrixX3d is a partially dynamic-size (fixed-size) matrix of double (\c Matrix<double, Dynamic, 3>)
- *
- * See \link matrixtypedefs this page \endlink for a complete list of predefined \em %Matrix and \em Vector typedefs.
- *
- * You can access elements of vectors and matrices using normal subscripting:
- *
- * \code
- * Eigen::VectorXd v(10);
- * v[0] = 0.1;
- * v[1] = 0.2;
- * v(0) = 0.3;
- * v(1) = 0.4;
- *
- * Eigen::MatrixXi m(10, 10);
- * m(0, 1) = 1;
- * m(0, 2) = 2;
- * m(0, 3) = 3;
- * \endcode
- *
- * This class can be extended with the help of the plugin mechanism described on the page
- * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_MATRIX_PLUGIN.
- *
- * <i><b>Some notes:</b></i>
- *
- * <dl>
- * <dt><b>\anchor dense Dense versus sparse:</b></dt>
- * <dd>This %Matrix class handles dense, not sparse matrices and vectors. For sparse matrices and vectors, see the Sparse module.
- *
- * Dense matrices and vectors are plain usual arrays of coefficients. All the coefficients are stored, in an ordinary contiguous array.
- * This is unlike Sparse matrices and vectors where the coefficients are stored as a list of nonzero coefficients.</dd>
- *
- * <dt><b>\anchor fixedsize Fixed-size versus dynamic-size:</b></dt>
- * <dd>Fixed-size means that the numbers of rows and columns are known are compile-time. In this case, Eigen allocates the array
- * of coefficients as a fixed-size array, as a class member. This makes sense for very small matrices, typically up to 4x4, sometimes up
- * to 16x16. Larger matrices should be declared as dynamic-size even if one happens to know their size at compile-time.
- *
- * Dynamic-size means that the numbers of rows or columns are not necessarily known at compile-time. In this case they are runtime
- * variables, and the array of coefficients is allocated dynamically on the heap.
- *
- * Note that \em dense matrices, be they Fixed-size or Dynamic-size, <em>do not</em> expand dynamically in the sense of a std::map.
- * If you want this behavior, see the Sparse module.</dd>
- *
- * <dt><b>\anchor maxrows _MaxRows and _MaxCols:</b></dt>
- * <dd>In most cases, one just leaves these parameters to the default values.
- * These parameters mean the maximum size of rows and columns that the matrix may have. They are useful in cases
- * when the exact numbers of rows and columns are not known are compile-time, but it is known at compile-time that they cannot
- * exceed a certain value. This happens when taking dynamic-size blocks inside fixed-size matrices: in this case _MaxRows and _MaxCols
- * are the dimensions of the original matrix, while _Rows and _Cols are Dynamic.</dd>
- * </dl>
- *
- * \see MatrixBase for the majority of the API methods for matrices, \ref TopicClassHierarchy,
- * \ref TopicStorageOrders
- */
-
-namespace internal {
-template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
-struct traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
-{
- typedef _Scalar Scalar;
- typedef Dense StorageKind;
- typedef DenseIndex Index;
- typedef MatrixXpr XprKind;
- enum {
- RowsAtCompileTime = _Rows,
- ColsAtCompileTime = _Cols,
- MaxRowsAtCompileTime = _MaxRows,
- MaxColsAtCompileTime = _MaxCols,
- Flags = compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
- CoeffReadCost = NumTraits<Scalar>::ReadCost,
- Options = _Options,
- InnerStrideAtCompileTime = 1,
- OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime
- };
-};
-}
-
-template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
-class Matrix
- : public PlainObjectBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
-{
- public:
-
- /** \brief Base class typedef.
- * \sa PlainObjectBase
- */
- typedef PlainObjectBase<Matrix> Base;
-
- enum { Options = _Options };
-
- EIGEN_DENSE_PUBLIC_INTERFACE(Matrix)
-
- typedef typename Base::PlainObject PlainObject;
-
- using Base::base;
- using Base::coeffRef;
-
- /**
- * \brief Assigns matrices to each other.
- *
- * \note This is a special case of the templated operator=. Its purpose is
- * to prevent a default operator= from hiding the templated operator=.
- *
- * \callgraph
- */
- EIGEN_STRONG_INLINE Matrix& operator=(const Matrix& other)
- {
- return Base::_set(other);
- }
-
- /** \internal
- * \brief Copies the value of the expression \a other into \c *this with automatic resizing.
- *
- * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
- * it will be initialized.
- *
- * Note that copying a row-vector into a vector (and conversely) is allowed.
- * The resizing, if any, is then done in the appropriate way so that row-vectors
- * remain row-vectors and vectors remain vectors.
- */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE Matrix& operator=(const MatrixBase<OtherDerived>& other)
- {
- return Base::_set(other);
- }
-
- /* Here, doxygen failed to copy the brief information when using \copydoc */
-
- /**
- * \brief Copies the generic expression \a other into *this.
- * \copydetails DenseBase::operator=(const EigenBase<OtherDerived> &other)
- */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE Matrix& operator=(const EigenBase<OtherDerived> &other)
- {
- return Base::operator=(other);
- }
-
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE Matrix& operator=(const ReturnByValue<OtherDerived>& func)
- {
- return Base::operator=(func);
- }
-
- /** \brief Default constructor.
- *
- * For fixed-size matrices, does nothing.
- *
- * For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix
- * is called a null matrix. This constructor is the unique way to create null matrices: resizing
- * a matrix to 0 is not supported.
- *
- * \sa resize(Index,Index)
- */
- EIGEN_STRONG_INLINE Matrix() : Base()
- {
- Base::_check_template_params();
- EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
- }
-
- // FIXME is it still needed
- Matrix(internal::constructor_without_unaligned_array_assert)
- : Base(internal::constructor_without_unaligned_array_assert())
- { Base::_check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED }
-
- /** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors
- *
- * Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
- * it is redundant to pass the dimension here, so it makes more sense to use the default
- * constructor Matrix() instead.
- */
- EIGEN_STRONG_INLINE explicit Matrix(Index dim)
- : Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
- {
- Base::_check_template_params();
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
- eigen_assert(dim >= 0);
- eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
- EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename T0, typename T1>
- EIGEN_STRONG_INLINE Matrix(const T0& x, const T1& y)
- {
- Base::_check_template_params();
- Base::template _init2<T0,T1>(x, y);
- }
- #else
- /** \brief Constructs an uninitialized matrix with \a rows rows and \a cols columns.
- *
- * This is useful for dynamic-size matrices. For fixed-size matrices,
- * it is redundant to pass these parameters, so one should use the default constructor
- * Matrix() instead. */
- Matrix(Index rows, Index cols);
- /** \brief Constructs an initialized 2D vector with given coefficients */
- Matrix(const Scalar& x, const Scalar& y);
- #endif
-
- /** \brief Constructs an initialized 3D vector with given coefficients */
- EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z)
- {
- Base::_check_template_params();
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3)
- m_storage.data()[0] = x;
- m_storage.data()[1] = y;
- m_storage.data()[2] = z;
- }
- /** \brief Constructs an initialized 4D vector with given coefficients */
- EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w)
- {
- Base::_check_template_params();
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4)
- m_storage.data()[0] = x;
- m_storage.data()[1] = y;
- m_storage.data()[2] = z;
- m_storage.data()[3] = w;
- }
-
- explicit Matrix(const Scalar *data);
-
- /** \brief Constructor copying the value of the expression \a other */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE Matrix(const MatrixBase<OtherDerived>& other)
- : Base(other.rows() * other.cols(), other.rows(), other.cols())
- {
- // This test resides here, to bring the error messages closer to the user. Normally, these checks
- // are performed deeply within the library, thus causing long and scary error traces.
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-
- Base::_check_template_params();
- Base::_set_noalias(other);
- }
- /** \brief Copy constructor */
- EIGEN_STRONG_INLINE Matrix(const Matrix& other)
- : Base(other.rows() * other.cols(), other.rows(), other.cols())
- {
- Base::_check_template_params();
- Base::_set_noalias(other);
- }
- /** \brief Copy constructor with in-place evaluation */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE Matrix(const ReturnByValue<OtherDerived>& other)
- {
- Base::_check_template_params();
- Base::resize(other.rows(), other.cols());
- other.evalTo(*this);
- }
-
- /** \brief Copy constructor for generic expressions.
- * \sa MatrixBase::operator=(const EigenBase<OtherDerived>&)
- */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE Matrix(const EigenBase<OtherDerived> &other)
- : Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
- {
- Base::_check_template_params();
- Base::_resize_to_match(other);
- // FIXME/CHECK: isn't *this = other.derived() more efficient. it allows to
- // go for pure _set() implementations, right?
- *this = other;
- }
-
- /** \internal
- * \brief Override MatrixBase::swap() since for dynamic-sized matrices
- * of same type it is enough to swap the data pointers.
- */
- template<typename OtherDerived>
- void swap(MatrixBase<OtherDerived> const & other)
- { this->_swap(other.derived()); }
-
- inline Index innerStride() const { return 1; }
- inline Index outerStride() const { return this->innerSize(); }
-
- /////////// Geometry module ///////////
-
- template<typename OtherDerived>
- explicit Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
- template<typename OtherDerived>
- Matrix& operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
-
- #ifdef EIGEN2_SUPPORT
- template<typename OtherDerived>
- explicit Matrix(const eigen2_RotationBase<OtherDerived,ColsAtCompileTime>& r);
- template<typename OtherDerived>
- Matrix& operator=(const eigen2_RotationBase<OtherDerived,ColsAtCompileTime>& r);
- #endif
-
- // allow to extend Matrix outside Eigen
- #ifdef EIGEN_MATRIX_PLUGIN
- #include EIGEN_MATRIX_PLUGIN
- #endif
-
- protected:
- template <typename Derived, typename OtherDerived, bool IsVector>
- friend struct internal::conservative_resize_like_impl;
-
- using Base::m_storage;
-};
-
-/** \defgroup matrixtypedefs Global matrix typedefs
- *
- * \ingroup Core_Module
- *
- * Eigen defines several typedef shortcuts for most common matrix and vector types.
- *
- * The general patterns are the following:
- *
- * \c MatrixSizeType where \c Size can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
- * and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
- * for complex double.
- *
- * For example, \c Matrix3d is a fixed-size 3x3 matrix type of doubles, and \c MatrixXf is a dynamic-size matrix of floats.
- *
- * There are also \c VectorSizeType and \c RowVectorSizeType which are self-explanatory. For example, \c Vector4cf is
- * a fixed-size vector of 4 complex floats.
- *
- * \sa class Matrix
- */
-
-#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
-/** \ingroup matrixtypedefs */ \
-typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \
-/** \ingroup matrixtypedefs */ \
-typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \
-/** \ingroup matrixtypedefs */ \
-typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix;
-
-#define EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \
-/** \ingroup matrixtypedefs */ \
-typedef Matrix<Type, Size, Dynamic> Matrix##Size##X##TypeSuffix; \
-/** \ingroup matrixtypedefs */ \
-typedef Matrix<Type, Dynamic, Size> Matrix##X##Size##TypeSuffix;
-
-#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
-EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \
-EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \
-EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \
-EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \
-EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \
-EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \
-EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 4)
-
-EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i)
-EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f)
-EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d)
-EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<float>, cf)
-EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
-
-#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES
-#undef EIGEN_MAKE_TYPEDEFS
-#undef EIGEN_MAKE_FIXED_TYPEDEFS
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATRIX_H
diff --git a/src/Eigen/src/Core/MatrixBase.h b/src/Eigen/src/Core/MatrixBase.h
deleted file mode 100644
index 344b38f..0000000
--- a/src/Eigen/src/Core/MatrixBase.h
+++ /dev/null
@@ -1,560 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIXBASE_H
-#define EIGEN_MATRIXBASE_H
-
-namespace Eigen {
-
-/** \class MatrixBase
- * \ingroup Core_Module
- *
- * \brief Base class for all dense matrices, vectors, and expressions
- *
- * This class is the base that is inherited by all matrix, vector, and related expression
- * types. Most of the Eigen API is contained in this class, and its base classes. Other important
- * classes for the Eigen API are Matrix, and VectorwiseOp.
- *
- * Note that some methods are defined in other modules such as the \ref LU_Module LU module
- * for all functions related to matrix inversions.
- *
- * \tparam Derived is the derived type, e.g. a matrix type, or an expression, etc.
- *
- * When writing a function taking Eigen objects as argument, if you want your function
- * to take as argument any matrix, vector, or expression, just let it take a
- * MatrixBase argument. As an example, here is a function printFirstRow which, given
- * a matrix, vector, or expression \a x, prints the first row of \a x.
- *
- * \code
- template<typename Derived>
- void printFirstRow(const Eigen::MatrixBase<Derived>& x)
- {
- cout << x.row(0) << endl;
- }
- * \endcode
- *
- * This class can be extended with the help of the plugin mechanism described on the page
- * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_MATRIXBASE_PLUGIN.
- *
- * \sa \ref TopicClassHierarchy
- */
-template<typename Derived> class MatrixBase
- : public DenseBase<Derived>
-{
- public:
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- typedef MatrixBase StorageBaseType;
- typedef typename internal::traits<Derived>::StorageKind StorageKind;
- typedef typename internal::traits<Derived>::Index Index;
- typedef typename internal::traits<Derived>::Scalar Scalar;
- typedef typename internal::packet_traits<Scalar>::type PacketScalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- typedef DenseBase<Derived> Base;
- using Base::RowsAtCompileTime;
- using Base::ColsAtCompileTime;
- using Base::SizeAtCompileTime;
- using Base::MaxRowsAtCompileTime;
- using Base::MaxColsAtCompileTime;
- using Base::MaxSizeAtCompileTime;
- using Base::IsVectorAtCompileTime;
- using Base::Flags;
- using Base::CoeffReadCost;
-
- using Base::derived;
- using Base::const_cast_derived;
- using Base::rows;
- using Base::cols;
- using Base::size;
- using Base::coeff;
- using Base::coeffRef;
- using Base::lazyAssign;
- using Base::eval;
- using Base::operator+=;
- using Base::operator-=;
- using Base::operator*=;
- using Base::operator/=;
-
- typedef typename Base::CoeffReturnType CoeffReturnType;
- typedef typename Base::ConstTransposeReturnType ConstTransposeReturnType;
- typedef typename Base::RowXpr RowXpr;
- typedef typename Base::ColXpr ColXpr;
-#endif // not EIGEN_PARSED_BY_DOXYGEN
-
-
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- /** type of the equivalent square matrix */
- typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime),
- EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType;
-#endif // not EIGEN_PARSED_BY_DOXYGEN
-
- /** \returns the size of the main diagonal, which is min(rows(),cols()).
- * \sa rows(), cols(), SizeAtCompileTime. */
- inline Index diagonalSize() const { return (std::min)(rows(),cols()); }
-
- /** \brief The plain matrix type corresponding to this expression.
- *
- * This is not necessarily exactly the return type of eval(). In the case of plain matrices,
- * the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed
- * that the return type of eval() is either PlainObject or const PlainObject&.
- */
- typedef Matrix<typename internal::traits<Derived>::Scalar,
- internal::traits<Derived>::RowsAtCompileTime,
- internal::traits<Derived>::ColsAtCompileTime,
- AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor),
- internal::traits<Derived>::MaxRowsAtCompileTime,
- internal::traits<Derived>::MaxColsAtCompileTime
- > PlainObject;
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- /** \internal Represents a matrix with all coefficients equal to one another*/
- typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType;
- /** \internal the return type of MatrixBase::adjoint() */
- typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
- CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, ConstTransposeReturnType>,
- ConstTransposeReturnType
- >::type AdjointReturnType;
- /** \internal Return type of eigenvalues() */
- typedef Matrix<std::complex<RealScalar>, internal::traits<Derived>::ColsAtCompileTime, 1, ColMajor> EigenvaluesReturnType;
- /** \internal the return type of identity */
- typedef CwiseNullaryOp<internal::scalar_identity_op<Scalar>,Derived> IdentityReturnType;
- /** \internal the return type of unit vectors */
- typedef Block<const CwiseNullaryOp<internal::scalar_identity_op<Scalar>, SquareMatrixType>,
- internal::traits<Derived>::RowsAtCompileTime,
- internal::traits<Derived>::ColsAtCompileTime> BasisReturnType;
-#endif // not EIGEN_PARSED_BY_DOXYGEN
-
-#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::MatrixBase
-# include "../plugins/CommonCwiseUnaryOps.h"
-# include "../plugins/CommonCwiseBinaryOps.h"
-# include "../plugins/MatrixCwiseUnaryOps.h"
-# include "../plugins/MatrixCwiseBinaryOps.h"
-# ifdef EIGEN_MATRIXBASE_PLUGIN
-# include EIGEN_MATRIXBASE_PLUGIN
-# endif
-#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
-
- /** Special case of the template operator=, in order to prevent the compiler
- * from generating a default operator= (issue hit with g++ 4.1)
- */
- Derived& operator=(const MatrixBase& other);
-
- // We cannot inherit here via Base::operator= since it is causing
- // trouble with MSVC.
-
- template <typename OtherDerived>
- Derived& operator=(const DenseBase<OtherDerived>& other);
-
- template <typename OtherDerived>
- Derived& operator=(const EigenBase<OtherDerived>& other);
-
- template<typename OtherDerived>
- Derived& operator=(const ReturnByValue<OtherDerived>& other);
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename ProductDerived, typename Lhs, typename Rhs>
- Derived& lazyAssign(const ProductBase<ProductDerived, Lhs,Rhs>& other);
-
- template<typename MatrixPower, typename Lhs, typename Rhs>
- Derived& lazyAssign(const MatrixPowerProduct<MatrixPower, Lhs,Rhs>& other);
-#endif // not EIGEN_PARSED_BY_DOXYGEN
-
- template<typename OtherDerived>
- Derived& operator+=(const MatrixBase<OtherDerived>& other);
- template<typename OtherDerived>
- Derived& operator-=(const MatrixBase<OtherDerived>& other);
-
- template<typename OtherDerived>
- const typename ProductReturnType<Derived,OtherDerived>::Type
- operator*(const MatrixBase<OtherDerived> &other) const;
-
- template<typename OtherDerived>
- const typename LazyProductReturnType<Derived,OtherDerived>::Type
- lazyProduct(const MatrixBase<OtherDerived> &other) const;
-
- template<typename OtherDerived>
- Derived& operator*=(const EigenBase<OtherDerived>& other);
-
- template<typename OtherDerived>
- void applyOnTheLeft(const EigenBase<OtherDerived>& other);
-
- template<typename OtherDerived>
- void applyOnTheRight(const EigenBase<OtherDerived>& other);
-
- template<typename DiagonalDerived>
- const DiagonalProduct<Derived, DiagonalDerived, OnTheRight>
- operator*(const DiagonalBase<DiagonalDerived> &diagonal) const;
-
- template<typename OtherDerived>
- typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
- dot(const MatrixBase<OtherDerived>& other) const;
-
- #ifdef EIGEN2_SUPPORT
- template<typename OtherDerived>
- Scalar eigen2_dot(const MatrixBase<OtherDerived>& other) const;
- #endif
-
- RealScalar squaredNorm() const;
- RealScalar norm() const;
- RealScalar stableNorm() const;
- RealScalar blueNorm() const;
- RealScalar hypotNorm() const;
- const PlainObject normalized() const;
- void normalize();
-
- const AdjointReturnType adjoint() const;
- void adjointInPlace();
-
- typedef Diagonal<Derived> DiagonalReturnType;
- DiagonalReturnType diagonal();
- typedef typename internal::add_const<Diagonal<const Derived> >::type ConstDiagonalReturnType;
- ConstDiagonalReturnType diagonal() const;
-
- template<int Index> struct DiagonalIndexReturnType { typedef Diagonal<Derived,Index> Type; };
- template<int Index> struct ConstDiagonalIndexReturnType { typedef const Diagonal<const Derived,Index> Type; };
-
- template<int Index> typename DiagonalIndexReturnType<Index>::Type diagonal();
- template<int Index> typename ConstDiagonalIndexReturnType<Index>::Type diagonal() const;
-
- // Note: The "MatrixBase::" prefixes are added to help MSVC9 to match these declarations with the later implementations.
- // On the other hand they confuse MSVC8...
- #if (defined _MSC_VER) && (_MSC_VER >= 1500) // 2008 or later
- typename MatrixBase::template DiagonalIndexReturnType<DynamicIndex>::Type diagonal(Index index);
- typename MatrixBase::template ConstDiagonalIndexReturnType<DynamicIndex>::Type diagonal(Index index) const;
- #else
- typename DiagonalIndexReturnType<DynamicIndex>::Type diagonal(Index index);
- typename ConstDiagonalIndexReturnType<DynamicIndex>::Type diagonal(Index index) const;
- #endif
-
- #ifdef EIGEN2_SUPPORT
- template<unsigned int Mode> typename internal::eigen2_part_return_type<Derived, Mode>::type part();
- template<unsigned int Mode> const typename internal::eigen2_part_return_type<Derived, Mode>::type part() const;
-
- // huuuge hack. make Eigen2's matrix.part<Diagonal>() work in eigen3. Problem: Diagonal is now a class template instead
- // of an integer constant. Solution: overload the part() method template wrt template parameters list.
- template<template<typename T, int N> class U>
- const DiagonalWrapper<ConstDiagonalReturnType> part() const
- { return diagonal().asDiagonal(); }
- #endif // EIGEN2_SUPPORT
-
- template<unsigned int Mode> struct TriangularViewReturnType { typedef TriangularView<Derived, Mode> Type; };
- template<unsigned int Mode> struct ConstTriangularViewReturnType { typedef const TriangularView<const Derived, Mode> Type; };
-
- template<unsigned int Mode> typename TriangularViewReturnType<Mode>::Type triangularView();
- template<unsigned int Mode> typename ConstTriangularViewReturnType<Mode>::Type triangularView() const;
-
- template<unsigned int UpLo> struct SelfAdjointViewReturnType { typedef SelfAdjointView<Derived, UpLo> Type; };
- template<unsigned int UpLo> struct ConstSelfAdjointViewReturnType { typedef const SelfAdjointView<const Derived, UpLo> Type; };
-
- template<unsigned int UpLo> typename SelfAdjointViewReturnType<UpLo>::Type selfadjointView();
- template<unsigned int UpLo> typename ConstSelfAdjointViewReturnType<UpLo>::Type selfadjointView() const;
-
- const SparseView<Derived> sparseView(const Scalar& m_reference = Scalar(0),
- const typename NumTraits<Scalar>::Real& m_epsilon = NumTraits<Scalar>::dummy_precision()) const;
- static const IdentityReturnType Identity();
- static const IdentityReturnType Identity(Index rows, Index cols);
- static const BasisReturnType Unit(Index size, Index i);
- static const BasisReturnType Unit(Index i);
- static const BasisReturnType UnitX();
- static const BasisReturnType UnitY();
- static const BasisReturnType UnitZ();
- static const BasisReturnType UnitW();
-
- const DiagonalWrapper<const Derived> asDiagonal() const;
- const PermutationWrapper<const Derived> asPermutation() const;
-
- Derived& setIdentity();
- Derived& setIdentity(Index rows, Index cols);
-
- bool isIdentity(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
- bool isDiagonal(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
-
- bool isUpperTriangular(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
- bool isLowerTriangular(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
-
- template<typename OtherDerived>
- bool isOrthogonal(const MatrixBase<OtherDerived>& other,
- const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
- bool isUnitary(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
-
- /** \returns true if each coefficients of \c *this and \a other are all exactly equal.
- * \warning When using floating point scalar values you probably should rather use a
- * fuzzy comparison such as isApprox()
- * \sa isApprox(), operator!= */
- template<typename OtherDerived>
- inline bool operator==(const MatrixBase<OtherDerived>& other) const
- { return cwiseEqual(other).all(); }
-
- /** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other.
- * \warning When using floating point scalar values you probably should rather use a
- * fuzzy comparison such as isApprox()
- * \sa isApprox(), operator== */
- template<typename OtherDerived>
- inline bool operator!=(const MatrixBase<OtherDerived>& other) const
- { return cwiseNotEqual(other).any(); }
-
- NoAlias<Derived,Eigen::MatrixBase > noalias();
-
- inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
- inline ForceAlignedAccess<Derived> forceAlignedAccess();
- template<bool Enable> inline typename internal::add_const_on_value_type<typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type>::type forceAlignedAccessIf() const;
- template<bool Enable> inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf();
-
- Scalar trace() const;
-
-/////////// Array module ///////////
-
- template<int p> RealScalar lpNorm() const;
-
- MatrixBase<Derived>& matrix() { return *this; }
- const MatrixBase<Derived>& matrix() const { return *this; }
-
- /** \returns an \link Eigen::ArrayBase Array \endlink expression of this matrix
- * \sa ArrayBase::matrix() */
- ArrayWrapper<Derived> array() { return derived(); }
- const ArrayWrapper<const Derived> array() const { return derived(); }
-
-/////////// LU module ///////////
-
- const FullPivLU<PlainObject> fullPivLu() const;
- const PartialPivLU<PlainObject> partialPivLu() const;
-
- #if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
- const LU<PlainObject> lu() const;
- #endif
-
- #ifdef EIGEN2_SUPPORT
- const LU<PlainObject> eigen2_lu() const;
- #endif
-
- #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
- const PartialPivLU<PlainObject> lu() const;
- #endif
-
- #ifdef EIGEN2_SUPPORT
- template<typename ResultType>
- void computeInverse(MatrixBase<ResultType> *result) const {
- *result = this->inverse();
- }
- #endif
-
- const internal::inverse_impl<Derived> inverse() const;
- template<typename ResultType>
- void computeInverseAndDetWithCheck(
- ResultType& inverse,
- typename ResultType::Scalar& determinant,
- bool& invertible,
- const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision()
- ) const;
- template<typename ResultType>
- void computeInverseWithCheck(
- ResultType& inverse,
- bool& invertible,
- const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision()
- ) const;
- Scalar determinant() const;
-
-/////////// Cholesky module ///////////
-
- const LLT<PlainObject> llt() const;
- const LDLT<PlainObject> ldlt() const;
-
-/////////// QR module ///////////
-
- const HouseholderQR<PlainObject> householderQr() const;
- const ColPivHouseholderQR<PlainObject> colPivHouseholderQr() const;
- const FullPivHouseholderQR<PlainObject> fullPivHouseholderQr() const;
-
- #ifdef EIGEN2_SUPPORT
- const QR<PlainObject> qr() const;
- #endif
-
- EigenvaluesReturnType eigenvalues() const;
- RealScalar operatorNorm() const;
-
-/////////// SVD module ///////////
-
- JacobiSVD<PlainObject> jacobiSvd(unsigned int computationOptions = 0) const;
-
- #ifdef EIGEN2_SUPPORT
- SVD<PlainObject> svd() const;
- #endif
-
-/////////// Geometry module ///////////
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /// \internal helper struct to form the return type of the cross product
- template<typename OtherDerived> struct cross_product_return_type {
- typedef typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType Scalar;
- typedef Matrix<Scalar,MatrixBase::RowsAtCompileTime,MatrixBase::ColsAtCompileTime> type;
- };
- #endif // EIGEN_PARSED_BY_DOXYGEN
- template<typename OtherDerived>
- typename cross_product_return_type<OtherDerived>::type
- cross(const MatrixBase<OtherDerived>& other) const;
- template<typename OtherDerived>
- PlainObject cross3(const MatrixBase<OtherDerived>& other) const;
- PlainObject unitOrthogonal(void) const;
- Matrix<Scalar,3,1> eulerAngles(Index a0, Index a1, Index a2) const;
-
- #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
- ScalarMultipleReturnType operator*(const UniformScaling<Scalar>& s) const;
- // put this as separate enum value to work around possible GCC 4.3 bug (?)
- enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1?Vertical:Horizontal };
- typedef Homogeneous<Derived, HomogeneousReturnTypeDirection> HomogeneousReturnType;
- HomogeneousReturnType homogeneous() const;
- #endif
-
- enum {
- SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1
- };
- typedef Block<const Derived,
- internal::traits<Derived>::ColsAtCompileTime==1 ? SizeMinusOne : 1,
- internal::traits<Derived>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> ConstStartMinusOne;
- typedef CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>,
- const ConstStartMinusOne > HNormalizedReturnType;
-
- const HNormalizedReturnType hnormalized() const;
-
-////////// Householder module ///////////
-
- void makeHouseholderInPlace(Scalar& tau, RealScalar& beta);
- template<typename EssentialPart>
- void makeHouseholder(EssentialPart& essential,
- Scalar& tau, RealScalar& beta) const;
- template<typename EssentialPart>
- void applyHouseholderOnTheLeft(const EssentialPart& essential,
- const Scalar& tau,
- Scalar* workspace);
- template<typename EssentialPart>
- void applyHouseholderOnTheRight(const EssentialPart& essential,
- const Scalar& tau,
- Scalar* workspace);
-
-///////// Jacobi module /////////
-
- template<typename OtherScalar>
- void applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j);
- template<typename OtherScalar>
- void applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j);
-
-///////// MatrixFunctions module /////////
-
- typedef typename internal::stem_function<Scalar>::type StemFunction;
- const MatrixExponentialReturnValue<Derived> exp() const;
- const MatrixFunctionReturnValue<Derived> matrixFunction(StemFunction f) const;
- const MatrixFunctionReturnValue<Derived> cosh() const;
- const MatrixFunctionReturnValue<Derived> sinh() const;
- const MatrixFunctionReturnValue<Derived> cos() const;
- const MatrixFunctionReturnValue<Derived> sin() const;
- const MatrixSquareRootReturnValue<Derived> sqrt() const;
- const MatrixLogarithmReturnValue<Derived> log() const;
- const MatrixPowerReturnValue<Derived> pow(const RealScalar& p) const;
-
-#ifdef EIGEN2_SUPPORT
- template<typename ProductDerived, typename Lhs, typename Rhs>
- Derived& operator+=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
- EvalBeforeAssigningBit>& other);
-
- template<typename ProductDerived, typename Lhs, typename Rhs>
- Derived& operator-=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
- EvalBeforeAssigningBit>& other);
-
- /** \deprecated because .lazy() is deprecated
- * Overloaded for cache friendly product evaluation */
- template<typename OtherDerived>
- Derived& lazyAssign(const Flagged<OtherDerived, 0, EvalBeforeAssigningBit>& other)
- { return lazyAssign(other._expression()); }
-
- template<unsigned int Added>
- const Flagged<Derived, Added, 0> marked() const;
- const Flagged<Derived, 0, EvalBeforeAssigningBit> lazy() const;
-
- inline const Cwise<Derived> cwise() const;
- inline Cwise<Derived> cwise();
-
- VectorBlock<Derived> start(Index size);
- const VectorBlock<const Derived> start(Index size) const;
- VectorBlock<Derived> end(Index size);
- const VectorBlock<const Derived> end(Index size) const;
- template<int Size> VectorBlock<Derived,Size> start();
- template<int Size> const VectorBlock<const Derived,Size> start() const;
- template<int Size> VectorBlock<Derived,Size> end();
- template<int Size> const VectorBlock<const Derived,Size> end() const;
-
- Minor<Derived> minor(Index row, Index col);
- const Minor<Derived> minor(Index row, Index col) const;
-#endif
-
- protected:
- MatrixBase() : Base() {}
-
- private:
- explicit MatrixBase(int);
- MatrixBase(int,int);
- template<typename OtherDerived> explicit MatrixBase(const MatrixBase<OtherDerived>&);
- protected:
- // mixing arrays and matrices is not legal
- template<typename OtherDerived> Derived& operator+=(const ArrayBase<OtherDerived>& )
- {EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
- // mixing arrays and matrices is not legal
- template<typename OtherDerived> Derived& operator-=(const ArrayBase<OtherDerived>& )
- {EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
-};
-
-
-/***************************************************************************
-* Implementation of matrix base methods
-***************************************************************************/
-
-/** replaces \c *this by \c *this * \a other.
- *
- * \returns a reference to \c *this
- *
- * Example: \include MatrixBase_applyOnTheRight.cpp
- * Output: \verbinclude MatrixBase_applyOnTheRight.out
- */
-template<typename Derived>
-template<typename OtherDerived>
-inline Derived&
-MatrixBase<Derived>::operator*=(const EigenBase<OtherDerived> &other)
-{
- other.derived().applyThisOnTheRight(derived());
- return derived();
-}
-
-/** replaces \c *this by \c *this * \a other. It is equivalent to MatrixBase::operator*=().
- *
- * Example: \include MatrixBase_applyOnTheRight.cpp
- * Output: \verbinclude MatrixBase_applyOnTheRight.out
- */
-template<typename Derived>
-template<typename OtherDerived>
-inline void MatrixBase<Derived>::applyOnTheRight(const EigenBase<OtherDerived> &other)
-{
- other.derived().applyThisOnTheRight(derived());
-}
-
-/** replaces \c *this by \a other * \c *this.
- *
- * Example: \include MatrixBase_applyOnTheLeft.cpp
- * Output: \verbinclude MatrixBase_applyOnTheLeft.out
- */
-template<typename Derived>
-template<typename OtherDerived>
-inline void MatrixBase<Derived>::applyOnTheLeft(const EigenBase<OtherDerived> &other)
-{
- other.derived().applyThisOnTheLeft(derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATRIXBASE_H
diff --git a/src/Eigen/src/Core/NestByValue.h b/src/Eigen/src/Core/NestByValue.h
deleted file mode 100644
index a893b17..0000000
--- a/src/Eigen/src/Core/NestByValue.h
+++ /dev/null
@@ -1,111 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_NESTBYVALUE_H
-#define EIGEN_NESTBYVALUE_H
-
-namespace Eigen {
-
-/** \class NestByValue
- * \ingroup Core_Module
- *
- * \brief Expression which must be nested by value
- *
- * \param ExpressionType the type of the object of which we are requiring nesting-by-value
- *
- * This class is the return type of MatrixBase::nestByValue()
- * and most of the time this is the only way it is used.
- *
- * \sa MatrixBase::nestByValue()
- */
-
-namespace internal {
-template<typename ExpressionType>
-struct traits<NestByValue<ExpressionType> > : public traits<ExpressionType>
-{};
-}
-
-template<typename ExpressionType> class NestByValue
- : public internal::dense_xpr_base< NestByValue<ExpressionType> >::type
-{
- public:
-
- typedef typename internal::dense_xpr_base<NestByValue>::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(NestByValue)
-
- inline NestByValue(const ExpressionType& matrix) : m_expression(matrix) {}
-
- inline Index rows() const { return m_expression.rows(); }
- inline Index cols() const { return m_expression.cols(); }
- inline Index outerStride() const { return m_expression.outerStride(); }
- inline Index innerStride() const { return m_expression.innerStride(); }
-
- inline const CoeffReturnType coeff(Index row, Index col) const
- {
- return m_expression.coeff(row, col);
- }
-
- inline Scalar& coeffRef(Index row, Index col)
- {
- return m_expression.const_cast_derived().coeffRef(row, col);
- }
-
- inline const CoeffReturnType coeff(Index index) const
- {
- return m_expression.coeff(index);
- }
-
- inline Scalar& coeffRef(Index index)
- {
- return m_expression.const_cast_derived().coeffRef(index);
- }
-
- template<int LoadMode>
- inline const PacketScalar packet(Index row, Index col) const
- {
- return m_expression.template packet<LoadMode>(row, col);
- }
-
- template<int LoadMode>
- inline void writePacket(Index row, Index col, const PacketScalar& x)
- {
- m_expression.const_cast_derived().template writePacket<LoadMode>(row, col, x);
- }
-
- template<int LoadMode>
- inline const PacketScalar packet(Index index) const
- {
- return m_expression.template packet<LoadMode>(index);
- }
-
- template<int LoadMode>
- inline void writePacket(Index index, const PacketScalar& x)
- {
- m_expression.const_cast_derived().template writePacket<LoadMode>(index, x);
- }
-
- operator const ExpressionType&() const { return m_expression; }
-
- protected:
- const ExpressionType m_expression;
-};
-
-/** \returns an expression of the temporary version of *this.
- */
-template<typename Derived>
-inline const NestByValue<Derived>
-DenseBase<Derived>::nestByValue() const
-{
- return NestByValue<Derived>(derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_NESTBYVALUE_H
diff --git a/src/Eigen/src/Core/NoAlias.h b/src/Eigen/src/Core/NoAlias.h
deleted file mode 100644
index 768bfb1..0000000
--- a/src/Eigen/src/Core/NoAlias.h
+++ /dev/null
@@ -1,134 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_NOALIAS_H
-#define EIGEN_NOALIAS_H
-
-namespace Eigen {
-
-/** \class NoAlias
- * \ingroup Core_Module
- *
- * \brief Pseudo expression providing an operator = assuming no aliasing
- *
- * \param ExpressionType the type of the object on which to do the lazy assignment
- *
- * This class represents an expression with special assignment operators
- * assuming no aliasing between the target expression and the source expression.
- * More precisely it alloas to bypass the EvalBeforeAssignBit flag of the source expression.
- * It is the return type of MatrixBase::noalias()
- * and most of the time this is the only way it is used.
- *
- * \sa MatrixBase::noalias()
- */
-template<typename ExpressionType, template <typename> class StorageBase>
-class NoAlias
-{
- typedef typename ExpressionType::Scalar Scalar;
- public:
- NoAlias(ExpressionType& expression) : m_expression(expression) {}
-
- /** Behaves like MatrixBase::lazyAssign(other)
- * \sa MatrixBase::lazyAssign() */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE ExpressionType& operator=(const StorageBase<OtherDerived>& other)
- { return internal::assign_selector<ExpressionType,OtherDerived,false>::run(m_expression,other.derived()); }
-
- /** \sa MatrixBase::operator+= */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE ExpressionType& operator+=(const StorageBase<OtherDerived>& other)
- {
- typedef SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, ExpressionType, OtherDerived> SelfAdder;
- SelfAdder tmp(m_expression);
- typedef typename internal::nested<OtherDerived>::type OtherDerivedNested;
- typedef typename internal::remove_all<OtherDerivedNested>::type _OtherDerivedNested;
- internal::assign_selector<SelfAdder,_OtherDerivedNested,false>::run(tmp,OtherDerivedNested(other.derived()));
- return m_expression;
- }
-
- /** \sa MatrixBase::operator-= */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE ExpressionType& operator-=(const StorageBase<OtherDerived>& other)
- {
- typedef SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, ExpressionType, OtherDerived> SelfAdder;
- SelfAdder tmp(m_expression);
- typedef typename internal::nested<OtherDerived>::type OtherDerivedNested;
- typedef typename internal::remove_all<OtherDerivedNested>::type _OtherDerivedNested;
- internal::assign_selector<SelfAdder,_OtherDerivedNested,false>::run(tmp,OtherDerivedNested(other.derived()));
- return m_expression;
- }
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename ProductDerived, typename Lhs, typename Rhs>
- EIGEN_STRONG_INLINE ExpressionType& operator+=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
- { other.derived().addTo(m_expression); return m_expression; }
-
- template<typename ProductDerived, typename Lhs, typename Rhs>
- EIGEN_STRONG_INLINE ExpressionType& operator-=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
- { other.derived().subTo(m_expression); return m_expression; }
-
- template<typename Lhs, typename Rhs, int NestingFlags>
- EIGEN_STRONG_INLINE ExpressionType& operator+=(const CoeffBasedProduct<Lhs,Rhs,NestingFlags>& other)
- { return m_expression.derived() += CoeffBasedProduct<Lhs,Rhs,NestByRefBit>(other.lhs(), other.rhs()); }
-
- template<typename Lhs, typename Rhs, int NestingFlags>
- EIGEN_STRONG_INLINE ExpressionType& operator-=(const CoeffBasedProduct<Lhs,Rhs,NestingFlags>& other)
- { return m_expression.derived() -= CoeffBasedProduct<Lhs,Rhs,NestByRefBit>(other.lhs(), other.rhs()); }
-
- template<typename OtherDerived>
- ExpressionType& operator=(const ReturnByValue<OtherDerived>& func)
- { return m_expression = func; }
-#endif
-
- ExpressionType& expression() const
- {
- return m_expression;
- }
-
- protected:
- ExpressionType& m_expression;
-};
-
-/** \returns a pseudo expression of \c *this with an operator= assuming
- * no aliasing between \c *this and the source expression.
- *
- * More precisely, noalias() allows to bypass the EvalBeforeAssignBit flag.
- * Currently, even though several expressions may alias, only product
- * expressions have this flag. Therefore, noalias() is only usefull when
- * the source expression contains a matrix product.
- *
- * Here are some examples where noalias is usefull:
- * \code
- * D.noalias() = A * B;
- * D.noalias() += A.transpose() * B;
- * D.noalias() -= 2 * A * B.adjoint();
- * \endcode
- *
- * On the other hand the following example will lead to a \b wrong result:
- * \code
- * A.noalias() = A * B;
- * \endcode
- * because the result matrix A is also an operand of the matrix product. Therefore,
- * there is no alternative than evaluating A * B in a temporary, that is the default
- * behavior when you write:
- * \code
- * A = A * B;
- * \endcode
- *
- * \sa class NoAlias
- */
-template<typename Derived>
-NoAlias<Derived,MatrixBase> MatrixBase<Derived>::noalias()
-{
- return derived();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_NOALIAS_H
diff --git a/src/Eigen/src/Core/NumTraits.h b/src/Eigen/src/Core/NumTraits.h
deleted file mode 100644
index bac9e50..0000000
--- a/src/Eigen/src/Core/NumTraits.h
+++ /dev/null
@@ -1,150 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_NUMTRAITS_H
-#define EIGEN_NUMTRAITS_H
-
-namespace Eigen {
-
-/** \class NumTraits
- * \ingroup Core_Module
- *
- * \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
- *
- * \param T the numeric type at hand
- *
- * This class stores enums, typedefs and static methods giving information about a numeric type.
- *
- * The provided data consists of:
- * \li A typedef \a Real, giving the "real part" type of \a T. If \a T is already real,
- * then \a Real is just a typedef to \a T. If \a T is \c std::complex<U> then \a Real
- * is a typedef to \a U.
- * \li A typedef \a NonInteger, giving the type that should be used for operations producing non-integral values,
- * such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives
- * \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to
- * take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is
- * only intended as a helper for code that needs to explicitly promote types.
- * \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you don't know what
- * this means, just use \a T here.
- * \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex
- * type, and to 0 otherwise.
- * \li An enum value \a IsInteger. It is equal to \c 1 if \a T is an integer type such as \c int,
- * and to \c 0 otherwise.
- * \li Enum values ReadCost, AddCost and MulCost representing a rough estimate of the number of CPU cycles needed
- * to by move / add / mul instructions respectively, assuming the data is already stored in CPU registers.
- * Stay vague here. No need to do architecture-specific stuff.
- * \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T is unsigned.
- * \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type \a T must
- * be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 otherwise.
- * \li An epsilon() function which, unlike std::numeric_limits::epsilon(), returns a \a Real instead of a \a T.
- * \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a default
- * value by the fuzzy comparison operators.
- * \li highest() and lowest() functions returning the highest and lowest possible values respectively.
- */
-
-template<typename T> struct GenericNumTraits
-{
- enum {
- IsInteger = std::numeric_limits<T>::is_integer,
- IsSigned = std::numeric_limits<T>::is_signed,
- IsComplex = 0,
- RequireInitialization = internal::is_arithmetic<T>::value ? 0 : 1,
- ReadCost = 1,
- AddCost = 1,
- MulCost = 1
- };
-
- typedef T Real;
- typedef typename internal::conditional<
- IsInteger,
- typename internal::conditional<sizeof(T)<=2, float, double>::type,
- T
- >::type NonInteger;
- typedef T Nested;
-
- static inline Real epsilon() { return std::numeric_limits<T>::epsilon(); }
- static inline Real dummy_precision()
- {
- // make sure to override this for floating-point types
- return Real(0);
- }
- static inline T highest() { return (std::numeric_limits<T>::max)(); }
- static inline T lowest() { return IsInteger ? (std::numeric_limits<T>::min)() : (-(std::numeric_limits<T>::max)()); }
-
-#ifdef EIGEN2_SUPPORT
- enum {
- HasFloatingPoint = !IsInteger
- };
- typedef NonInteger FloatingPoint;
-#endif
-};
-
-template<typename T> struct NumTraits : GenericNumTraits<T>
-{};
-
-template<> struct NumTraits<float>
- : GenericNumTraits<float>
-{
- static inline float dummy_precision() { return 1e-5f; }
-};
-
-template<> struct NumTraits<double> : GenericNumTraits<double>
-{
- static inline double dummy_precision() { return 1e-12; }
-};
-
-template<> struct NumTraits<long double>
- : GenericNumTraits<long double>
-{
- static inline long double dummy_precision() { return 1e-15l; }
-};
-
-template<typename _Real> struct NumTraits<std::complex<_Real> >
- : GenericNumTraits<std::complex<_Real> >
-{
- typedef _Real Real;
- enum {
- IsComplex = 1,
- RequireInitialization = NumTraits<_Real>::RequireInitialization,
- ReadCost = 2 * NumTraits<_Real>::ReadCost,
- AddCost = 2 * NumTraits<Real>::AddCost,
- MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
- };
-
- static inline Real epsilon() { return NumTraits<Real>::epsilon(); }
- static inline Real dummy_precision() { return NumTraits<Real>::dummy_precision(); }
-};
-
-template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
-struct NumTraits<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
-{
- typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> ArrayType;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Array<RealScalar, Rows, Cols, Options, MaxRows, MaxCols> Real;
- typedef typename NumTraits<Scalar>::NonInteger NonIntegerScalar;
- typedef Array<NonIntegerScalar, Rows, Cols, Options, MaxRows, MaxCols> NonInteger;
- typedef ArrayType & Nested;
-
- enum {
- IsComplex = NumTraits<Scalar>::IsComplex,
- IsInteger = NumTraits<Scalar>::IsInteger,
- IsSigned = NumTraits<Scalar>::IsSigned,
- RequireInitialization = 1,
- ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::ReadCost,
- AddCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::AddCost,
- MulCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::MulCost
- };
-
- static inline RealScalar epsilon() { return NumTraits<RealScalar>::epsilon(); }
- static inline RealScalar dummy_precision() { return NumTraits<RealScalar>::dummy_precision(); }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_NUMTRAITS_H
diff --git a/src/Eigen/src/Core/PermutationMatrix.h b/src/Eigen/src/Core/PermutationMatrix.h
deleted file mode 100644
index 1297b84..0000000
--- a/src/Eigen/src/Core/PermutationMatrix.h
+++ /dev/null
@@ -1,689 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2009-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_PERMUTATIONMATRIX_H
-#define EIGEN_PERMUTATIONMATRIX_H
-
-namespace Eigen {
-
-template<int RowCol,typename IndicesType,typename MatrixType, typename StorageKind> class PermutedImpl;
-
-/** \class PermutationBase
- * \ingroup Core_Module
- *
- * \brief Base class for permutations
- *
- * \param Derived the derived class
- *
- * This class is the base class for all expressions representing a permutation matrix,
- * internally stored as a vector of integers.
- * The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix
- * \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have:
- * \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f]
- * This convention ensures that for any two permutations \f$ \sigma, \tau \f$, we have:
- * \f[ P_{\sigma\circ\tau} = P_\sigma P_\tau. \f]
- *
- * Permutation matrices are square and invertible.
- *
- * Notice that in addition to the member functions and operators listed here, there also are non-member
- * operator* to multiply any kind of permutation object with any kind of matrix expression (MatrixBase)
- * on either side.
- *
- * \sa class PermutationMatrix, class PermutationWrapper
- */
-
-namespace internal {
-
-template<typename PermutationType, typename MatrixType, int Side, bool Transposed=false>
-struct permut_matrix_product_retval;
-template<typename PermutationType, typename MatrixType, int Side, bool Transposed=false>
-struct permut_sparsematrix_product_retval;
-enum PermPermProduct_t {PermPermProduct};
-
-} // end namespace internal
-
-template<typename Derived>
-class PermutationBase : public EigenBase<Derived>
-{
- typedef internal::traits<Derived> Traits;
- typedef EigenBase<Derived> Base;
- public:
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- typedef typename Traits::IndicesType IndicesType;
- enum {
- Flags = Traits::Flags,
- CoeffReadCost = Traits::CoeffReadCost,
- RowsAtCompileTime = Traits::RowsAtCompileTime,
- ColsAtCompileTime = Traits::ColsAtCompileTime,
- MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = Traits::MaxColsAtCompileTime
- };
- typedef typename Traits::Scalar Scalar;
- typedef typename Traits::Index Index;
- typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime,0,MaxRowsAtCompileTime,MaxColsAtCompileTime>
- DenseMatrixType;
- typedef PermutationMatrix<IndicesType::SizeAtCompileTime,IndicesType::MaxSizeAtCompileTime,Index>
- PlainPermutationType;
- using Base::derived;
- #endif
-
- /** Copies the other permutation into *this */
- template<typename OtherDerived>
- Derived& operator=(const PermutationBase<OtherDerived>& other)
- {
- indices() = other.indices();
- return derived();
- }
-
- /** Assignment from the Transpositions \a tr */
- template<typename OtherDerived>
- Derived& operator=(const TranspositionsBase<OtherDerived>& tr)
- {
- setIdentity(tr.size());
- for(Index k=size()-1; k>=0; --k)
- applyTranspositionOnTheRight(k,tr.coeff(k));
- return derived();
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** This is a special case of the templated operator=. Its purpose is to
- * prevent a default operator= from hiding the templated operator=.
- */
- Derived& operator=(const PermutationBase& other)
- {
- indices() = other.indices();
- return derived();
- }
- #endif
-
- /** \returns the number of rows */
- inline Index rows() const { return Index(indices().size()); }
-
- /** \returns the number of columns */
- inline Index cols() const { return Index(indices().size()); }
-
- /** \returns the size of a side of the respective square matrix, i.e., the number of indices */
- inline Index size() const { return Index(indices().size()); }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename DenseDerived>
- void evalTo(MatrixBase<DenseDerived>& other) const
- {
- other.setZero();
- for (int i=0; i<rows();++i)
- other.coeffRef(indices().coeff(i),i) = typename DenseDerived::Scalar(1);
- }
- #endif
-
- /** \returns a Matrix object initialized from this permutation matrix. Notice that it
- * is inefficient to return this Matrix object by value. For efficiency, favor using
- * the Matrix constructor taking EigenBase objects.
- */
- DenseMatrixType toDenseMatrix() const
- {
- return derived();
- }
-
- /** const version of indices(). */
- const IndicesType& indices() const { return derived().indices(); }
- /** \returns a reference to the stored array representing the permutation. */
- IndicesType& indices() { return derived().indices(); }
-
- /** Resizes to given size.
- */
- inline void resize(Index newSize)
- {
- indices().resize(newSize);
- }
-
- /** Sets *this to be the identity permutation matrix */
- void setIdentity()
- {
- for(Index i = 0; i < size(); ++i)
- indices().coeffRef(i) = i;
- }
-
- /** Sets *this to be the identity permutation matrix of given size.
- */
- void setIdentity(Index newSize)
- {
- resize(newSize);
- setIdentity();
- }
-
- /** Multiplies *this by the transposition \f$(ij)\f$ on the left.
- *
- * \returns a reference to *this.
- *
- * \warning This is much slower than applyTranspositionOnTheRight(int,int):
- * this has linear complexity and requires a lot of branching.
- *
- * \sa applyTranspositionOnTheRight(int,int)
- */
- Derived& applyTranspositionOnTheLeft(Index i, Index j)
- {
- eigen_assert(i>=0 && j>=0 && i<size() && j<size());
- for(Index k = 0; k < size(); ++k)
- {
- if(indices().coeff(k) == i) indices().coeffRef(k) = j;
- else if(indices().coeff(k) == j) indices().coeffRef(k) = i;
- }
- return derived();
- }
-
- /** Multiplies *this by the transposition \f$(ij)\f$ on the right.
- *
- * \returns a reference to *this.
- *
- * This is a fast operation, it only consists in swapping two indices.
- *
- * \sa applyTranspositionOnTheLeft(int,int)
- */
- Derived& applyTranspositionOnTheRight(Index i, Index j)
- {
- eigen_assert(i>=0 && j>=0 && i<size() && j<size());
- std::swap(indices().coeffRef(i), indices().coeffRef(j));
- return derived();
- }
-
- /** \returns the inverse permutation matrix.
- *
- * \note \note_try_to_help_rvo
- */
- inline Transpose<PermutationBase> inverse() const
- { return derived(); }
- /** \returns the tranpose permutation matrix.
- *
- * \note \note_try_to_help_rvo
- */
- inline Transpose<PermutationBase> transpose() const
- { return derived(); }
-
- /**** multiplication helpers to hopefully get RVO ****/
-
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- protected:
- template<typename OtherDerived>
- void assignTranspose(const PermutationBase<OtherDerived>& other)
- {
- for (int i=0; i<rows();++i) indices().coeffRef(other.indices().coeff(i)) = i;
- }
- template<typename Lhs,typename Rhs>
- void assignProduct(const Lhs& lhs, const Rhs& rhs)
- {
- eigen_assert(lhs.cols() == rhs.rows());
- for (int i=0; i<rows();++i) indices().coeffRef(i) = lhs.indices().coeff(rhs.indices().coeff(i));
- }
-#endif
-
- public:
-
- /** \returns the product permutation matrix.
- *
- * \note \note_try_to_help_rvo
- */
- template<typename Other>
- inline PlainPermutationType operator*(const PermutationBase<Other>& other) const
- { return PlainPermutationType(internal::PermPermProduct, derived(), other.derived()); }
-
- /** \returns the product of a permutation with another inverse permutation.
- *
- * \note \note_try_to_help_rvo
- */
- template<typename Other>
- inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other) const
- { return PlainPermutationType(internal::PermPermProduct, *this, other.eval()); }
-
- /** \returns the product of an inverse permutation with another permutation.
- *
- * \note \note_try_to_help_rvo
- */
- template<typename Other> friend
- inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other, const PermutationBase& perm)
- { return PlainPermutationType(internal::PermPermProduct, other.eval(), perm); }
-
- protected:
-
-};
-
-/** \class PermutationMatrix
- * \ingroup Core_Module
- *
- * \brief Permutation matrix
- *
- * \param SizeAtCompileTime the number of rows/cols, or Dynamic
- * \param MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
- * \param IndexType the interger type of the indices
- *
- * This class represents a permutation matrix, internally stored as a vector of integers.
- *
- * \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix
- */
-
-namespace internal {
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
-struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> >
- : traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
-{
- typedef IndexType Index;
- typedef Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
-};
-}
-
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
-class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> >
-{
- typedef PermutationBase<PermutationMatrix> Base;
- typedef internal::traits<PermutationMatrix> Traits;
- public:
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- typedef typename Traits::IndicesType IndicesType;
- #endif
-
- inline PermutationMatrix()
- {}
-
- /** Constructs an uninitialized permutation matrix of given size.
- */
- inline PermutationMatrix(int size) : m_indices(size)
- {}
-
- /** Copy constructor. */
- template<typename OtherDerived>
- inline PermutationMatrix(const PermutationBase<OtherDerived>& other)
- : m_indices(other.indices()) {}
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** Standard copy constructor. Defined only to prevent a default copy constructor
- * from hiding the other templated constructor */
- inline PermutationMatrix(const PermutationMatrix& other) : m_indices(other.indices()) {}
- #endif
-
- /** Generic constructor from expression of the indices. The indices
- * array has the meaning that the permutations sends each integer i to indices[i].
- *
- * \warning It is your responsibility to check that the indices array that you passes actually
- * describes a permutation, i.e., each value between 0 and n-1 occurs exactly once, where n is the
- * array's size.
- */
- template<typename Other>
- explicit inline PermutationMatrix(const MatrixBase<Other>& a_indices) : m_indices(a_indices)
- {}
-
- /** Convert the Transpositions \a tr to a permutation matrix */
- template<typename Other>
- explicit PermutationMatrix(const TranspositionsBase<Other>& tr)
- : m_indices(tr.size())
- {
- *this = tr;
- }
-
- /** Copies the other permutation into *this */
- template<typename Other>
- PermutationMatrix& operator=(const PermutationBase<Other>& other)
- {
- m_indices = other.indices();
- return *this;
- }
-
- /** Assignment from the Transpositions \a tr */
- template<typename Other>
- PermutationMatrix& operator=(const TranspositionsBase<Other>& tr)
- {
- return Base::operator=(tr.derived());
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** This is a special case of the templated operator=. Its purpose is to
- * prevent a default operator= from hiding the templated operator=.
- */
- PermutationMatrix& operator=(const PermutationMatrix& other)
- {
- m_indices = other.m_indices;
- return *this;
- }
- #endif
-
- /** const version of indices(). */
- const IndicesType& indices() const { return m_indices; }
- /** \returns a reference to the stored array representing the permutation. */
- IndicesType& indices() { return m_indices; }
-
-
- /**** multiplication helpers to hopefully get RVO ****/
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename Other>
- PermutationMatrix(const Transpose<PermutationBase<Other> >& other)
- : m_indices(other.nestedPermutation().size())
- {
- for (int i=0; i<m_indices.size();++i) m_indices.coeffRef(other.nestedPermutation().indices().coeff(i)) = i;
- }
- template<typename Lhs,typename Rhs>
- PermutationMatrix(internal::PermPermProduct_t, const Lhs& lhs, const Rhs& rhs)
- : m_indices(lhs.indices().size())
- {
- Base::assignProduct(lhs,rhs);
- }
-#endif
-
- protected:
-
- IndicesType m_indices;
-};
-
-
-namespace internal {
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
-struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> >
- : traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
-{
- typedef IndexType Index;
- typedef Map<const Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType;
-};
-}
-
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
-class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess>
- : public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> >
-{
- typedef PermutationBase<Map> Base;
- typedef internal::traits<Map> Traits;
- public:
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- typedef typename Traits::IndicesType IndicesType;
- typedef typename IndicesType::Scalar Index;
- #endif
-
- inline Map(const Index* indicesPtr)
- : m_indices(indicesPtr)
- {}
-
- inline Map(const Index* indicesPtr, Index size)
- : m_indices(indicesPtr,size)
- {}
-
- /** Copies the other permutation into *this */
- template<typename Other>
- Map& operator=(const PermutationBase<Other>& other)
- { return Base::operator=(other.derived()); }
-
- /** Assignment from the Transpositions \a tr */
- template<typename Other>
- Map& operator=(const TranspositionsBase<Other>& tr)
- { return Base::operator=(tr.derived()); }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** This is a special case of the templated operator=. Its purpose is to
- * prevent a default operator= from hiding the templated operator=.
- */
- Map& operator=(const Map& other)
- {
- m_indices = other.m_indices;
- return *this;
- }
- #endif
-
- /** const version of indices(). */
- const IndicesType& indices() const { return m_indices; }
- /** \returns a reference to the stored array representing the permutation. */
- IndicesType& indices() { return m_indices; }
-
- protected:
-
- IndicesType m_indices;
-};
-
-/** \class PermutationWrapper
- * \ingroup Core_Module
- *
- * \brief Class to view a vector of integers as a permutation matrix
- *
- * \param _IndicesType the type of the vector of integer (can be any compatible expression)
- *
- * This class allows to view any vector expression of integers as a permutation matrix.
- *
- * \sa class PermutationBase, class PermutationMatrix
- */
-
-struct PermutationStorage {};
-
-template<typename _IndicesType> class TranspositionsWrapper;
-namespace internal {
-template<typename _IndicesType>
-struct traits<PermutationWrapper<_IndicesType> >
-{
- typedef PermutationStorage StorageKind;
- typedef typename _IndicesType::Scalar Scalar;
- typedef typename _IndicesType::Scalar Index;
- typedef _IndicesType IndicesType;
- enum {
- RowsAtCompileTime = _IndicesType::SizeAtCompileTime,
- ColsAtCompileTime = _IndicesType::SizeAtCompileTime,
- MaxRowsAtCompileTime = IndicesType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = IndicesType::MaxColsAtCompileTime,
- Flags = 0,
- CoeffReadCost = _IndicesType::CoeffReadCost
- };
-};
-}
-
-template<typename _IndicesType>
-class PermutationWrapper : public PermutationBase<PermutationWrapper<_IndicesType> >
-{
- typedef PermutationBase<PermutationWrapper> Base;
- typedef internal::traits<PermutationWrapper> Traits;
- public:
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- typedef typename Traits::IndicesType IndicesType;
- #endif
-
- inline PermutationWrapper(const IndicesType& a_indices)
- : m_indices(a_indices)
- {}
-
- /** const version of indices(). */
- const typename internal::remove_all<typename IndicesType::Nested>::type&
- indices() const { return m_indices; }
-
- protected:
-
- typename IndicesType::Nested m_indices;
-};
-
-/** \returns the matrix with the permutation applied to the columns.
- */
-template<typename Derived, typename PermutationDerived>
-inline const internal::permut_matrix_product_retval<PermutationDerived, Derived, OnTheRight>
-operator*(const MatrixBase<Derived>& matrix,
- const PermutationBase<PermutationDerived> &permutation)
-{
- return internal::permut_matrix_product_retval
- <PermutationDerived, Derived, OnTheRight>
- (permutation.derived(), matrix.derived());
-}
-
-/** \returns the matrix with the permutation applied to the rows.
- */
-template<typename Derived, typename PermutationDerived>
-inline const internal::permut_matrix_product_retval
- <PermutationDerived, Derived, OnTheLeft>
-operator*(const PermutationBase<PermutationDerived> &permutation,
- const MatrixBase<Derived>& matrix)
-{
- return internal::permut_matrix_product_retval
- <PermutationDerived, Derived, OnTheLeft>
- (permutation.derived(), matrix.derived());
-}
-
-namespace internal {
-
-template<typename PermutationType, typename MatrixType, int Side, bool Transposed>
-struct traits<permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> >
-{
- typedef typename MatrixType::PlainObject ReturnType;
-};
-
-template<typename PermutationType, typename MatrixType, int Side, bool Transposed>
-struct permut_matrix_product_retval
- : public ReturnByValue<permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> >
-{
- typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
- typedef typename MatrixType::Index Index;
-
- permut_matrix_product_retval(const PermutationType& perm, const MatrixType& matrix)
- : m_permutation(perm), m_matrix(matrix)
- {}
-
- inline Index rows() const { return m_matrix.rows(); }
- inline Index cols() const { return m_matrix.cols(); }
-
- template<typename Dest> inline void evalTo(Dest& dst) const
- {
- const Index n = Side==OnTheLeft ? rows() : cols();
- // FIXME we need an is_same for expression that is not sensitive to constness. For instance
- // is_same_xpr<Block<const Matrix>, Block<Matrix> >::value should be true.
- if(is_same<MatrixTypeNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_matrix))
- {
- // apply the permutation inplace
- Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(m_permutation.size());
- mask.fill(false);
- Index r = 0;
- while(r < m_permutation.size())
- {
- // search for the next seed
- while(r<m_permutation.size() && mask[r]) r++;
- if(r>=m_permutation.size())
- break;
- // we got one, let's follow it until we are back to the seed
- Index k0 = r++;
- Index kPrev = k0;
- mask.coeffRef(k0) = true;
- for(Index k=m_permutation.indices().coeff(k0); k!=k0; k=m_permutation.indices().coeff(k))
- {
- Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k)
- .swap(Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
- (dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev));
-
- mask.coeffRef(k) = true;
- kPrev = k;
- }
- }
- }
- else
- {
- for(int i = 0; i < n; ++i)
- {
- Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
- (dst, ((Side==OnTheLeft) ^ Transposed) ? m_permutation.indices().coeff(i) : i)
-
- =
-
- Block<const MatrixTypeNestedCleaned,Side==OnTheLeft ? 1 : MatrixType::RowsAtCompileTime,Side==OnTheRight ? 1 : MatrixType::ColsAtCompileTime>
- (m_matrix, ((Side==OnTheRight) ^ Transposed) ? m_permutation.indices().coeff(i) : i);
- }
- }
- }
-
- protected:
- const PermutationType& m_permutation;
- typename MatrixType::Nested m_matrix;
-};
-
-/* Template partial specialization for transposed/inverse permutations */
-
-template<typename Derived>
-struct traits<Transpose<PermutationBase<Derived> > >
- : traits<Derived>
-{};
-
-} // end namespace internal
-
-template<typename Derived>
-class Transpose<PermutationBase<Derived> >
- : public EigenBase<Transpose<PermutationBase<Derived> > >
-{
- typedef Derived PermutationType;
- typedef typename PermutationType::IndicesType IndicesType;
- typedef typename PermutationType::PlainPermutationType PlainPermutationType;
- public:
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- typedef internal::traits<PermutationType> Traits;
- typedef typename Derived::DenseMatrixType DenseMatrixType;
- enum {
- Flags = Traits::Flags,
- CoeffReadCost = Traits::CoeffReadCost,
- RowsAtCompileTime = Traits::RowsAtCompileTime,
- ColsAtCompileTime = Traits::ColsAtCompileTime,
- MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = Traits::MaxColsAtCompileTime
- };
- typedef typename Traits::Scalar Scalar;
- #endif
-
- Transpose(const PermutationType& p) : m_permutation(p) {}
-
- inline int rows() const { return m_permutation.rows(); }
- inline int cols() const { return m_permutation.cols(); }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename DenseDerived>
- void evalTo(MatrixBase<DenseDerived>& other) const
- {
- other.setZero();
- for (int i=0; i<rows();++i)
- other.coeffRef(i, m_permutation.indices().coeff(i)) = typename DenseDerived::Scalar(1);
- }
- #endif
-
- /** \return the equivalent permutation matrix */
- PlainPermutationType eval() const { return *this; }
-
- DenseMatrixType toDenseMatrix() const { return *this; }
-
- /** \returns the matrix with the inverse permutation applied to the columns.
- */
- template<typename OtherDerived> friend
- inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true>
- operator*(const MatrixBase<OtherDerived>& matrix, const Transpose& trPerm)
- {
- return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true>(trPerm.m_permutation, matrix.derived());
- }
-
- /** \returns the matrix with the inverse permutation applied to the rows.
- */
- template<typename OtherDerived>
- inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true>
- operator*(const MatrixBase<OtherDerived>& matrix) const
- {
- return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true>(m_permutation, matrix.derived());
- }
-
- const PermutationType& nestedPermutation() const { return m_permutation; }
-
- protected:
- const PermutationType& m_permutation;
-};
-
-template<typename Derived>
-const PermutationWrapper<const Derived> MatrixBase<Derived>::asPermutation() const
-{
- return derived();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_PERMUTATIONMATRIX_H
diff --git a/src/Eigen/src/Core/PlainObjectBase.h b/src/Eigen/src/Core/PlainObjectBase.h
deleted file mode 100644
index dd34b59..0000000
--- a/src/Eigen/src/Core/PlainObjectBase.h
+++ /dev/null
@@ -1,790 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_DENSESTORAGEBASE_H
-#define EIGEN_DENSESTORAGEBASE_H
-
-#if defined(EIGEN_INITIALIZE_MATRICES_BY_ZERO)
-# define EIGEN_INITIALIZE_COEFFS
-# define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=Scalar(0);
-#elif defined(EIGEN_INITIALIZE_MATRICES_BY_NAN)
-# define EIGEN_INITIALIZE_COEFFS
-# define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=std::numeric_limits<Scalar>::quiet_NaN();
-#else
-# undef EIGEN_INITIALIZE_COEFFS
-# define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
-#endif
-
-namespace Eigen {
-
-namespace internal {
-
-template<int MaxSizeAtCompileTime> struct check_rows_cols_for_overflow {
- template<typename Index>
- static EIGEN_ALWAYS_INLINE void run(Index, Index)
- {
- }
-};
-
-template<> struct check_rows_cols_for_overflow<Dynamic> {
- template<typename Index>
- static EIGEN_ALWAYS_INLINE void run(Index rows, Index cols)
- {
- // http://hg.mozilla.org/mozilla-central/file/6c8a909977d3/xpcom/ds/CheckedInt.h#l242
- // we assume Index is signed
- Index max_index = (size_t(1) << (8 * sizeof(Index) - 1)) - 1; // assume Index is signed
- bool error = (rows == 0 || cols == 0) ? false
- : (rows > max_index / cols);
- if (error)
- throw_std_bad_alloc();
- }
-};
-
-template <typename Derived,
- typename OtherDerived = Derived,
- bool IsVector = bool(Derived::IsVectorAtCompileTime) && bool(OtherDerived::IsVectorAtCompileTime)>
-struct conservative_resize_like_impl;
-
-template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> struct matrix_swap_impl;
-
-} // end namespace internal
-
-/** \class PlainObjectBase
- * \brief %Dense storage base class for matrices and arrays.
- *
- * This class can be extended with the help of the plugin mechanism described on the page
- * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_PLAINOBJECTBASE_PLUGIN.
- *
- * \sa \ref TopicClassHierarchy
- */
-#ifdef EIGEN_PARSED_BY_DOXYGEN
-namespace internal {
-
-// this is a warkaround to doxygen not being able to understand the inheritence logic
-// when it is hidden by the dense_xpr_base helper struct.
-template<typename Derived> struct dense_xpr_base_dispatcher_for_doxygen;// : public MatrixBase<Derived> {};
-/** This class is just a workaround for Doxygen and it does not not actually exist. */
-template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
-struct dense_xpr_base_dispatcher_for_doxygen<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
- : public MatrixBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > {};
-/** This class is just a workaround for Doxygen and it does not not actually exist. */
-template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
-struct dense_xpr_base_dispatcher_for_doxygen<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
- : public ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > {};
-
-} // namespace internal
-
-template<typename Derived>
-class PlainObjectBase : public internal::dense_xpr_base_dispatcher_for_doxygen<Derived>
-#else
-template<typename Derived>
-class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
-#endif
-{
- public:
- enum { Options = internal::traits<Derived>::Options };
- typedef typename internal::dense_xpr_base<Derived>::type Base;
-
- typedef typename internal::traits<Derived>::StorageKind StorageKind;
- typedef typename internal::traits<Derived>::Index Index;
- typedef typename internal::traits<Derived>::Scalar Scalar;
- typedef typename internal::packet_traits<Scalar>::type PacketScalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Derived DenseType;
-
- using Base::RowsAtCompileTime;
- using Base::ColsAtCompileTime;
- using Base::SizeAtCompileTime;
- using Base::MaxRowsAtCompileTime;
- using Base::MaxColsAtCompileTime;
- using Base::MaxSizeAtCompileTime;
- using Base::IsVectorAtCompileTime;
- using Base::Flags;
-
- template<typename PlainObjectType, int MapOptions, typename StrideType> friend class Eigen::Map;
- friend class Eigen::Map<Derived, Unaligned>;
- typedef Eigen::Map<Derived, Unaligned> MapType;
- friend class Eigen::Map<const Derived, Unaligned>;
- typedef const Eigen::Map<const Derived, Unaligned> ConstMapType;
- friend class Eigen::Map<Derived, Aligned>;
- typedef Eigen::Map<Derived, Aligned> AlignedMapType;
- friend class Eigen::Map<const Derived, Aligned>;
- typedef const Eigen::Map<const Derived, Aligned> ConstAlignedMapType;
- template<typename StrideType> struct StridedMapType { typedef Eigen::Map<Derived, Unaligned, StrideType> type; };
- template<typename StrideType> struct StridedConstMapType { typedef Eigen::Map<const Derived, Unaligned, StrideType> type; };
- template<typename StrideType> struct StridedAlignedMapType { typedef Eigen::Map<Derived, Aligned, StrideType> type; };
- template<typename StrideType> struct StridedConstAlignedMapType { typedef Eigen::Map<const Derived, Aligned, StrideType> type; };
-
- protected:
- DenseStorage<Scalar, Base::MaxSizeAtCompileTime, Base::RowsAtCompileTime, Base::ColsAtCompileTime, Options> m_storage;
-
- public:
- enum { NeedsToAlign = SizeAtCompileTime != Dynamic && (internal::traits<Derived>::Flags & AlignedBit) != 0 };
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
-
- Base& base() { return *static_cast<Base*>(this); }
- const Base& base() const { return *static_cast<const Base*>(this); }
-
- EIGEN_STRONG_INLINE Index rows() const { return m_storage.rows(); }
- EIGEN_STRONG_INLINE Index cols() const { return m_storage.cols(); }
-
- EIGEN_STRONG_INLINE const Scalar& coeff(Index rowId, Index colId) const
- {
- if(Flags & RowMajorBit)
- return m_storage.data()[colId + rowId * m_storage.cols()];
- else // column-major
- return m_storage.data()[rowId + colId * m_storage.rows()];
- }
-
- EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const
- {
- return m_storage.data()[index];
- }
-
- EIGEN_STRONG_INLINE Scalar& coeffRef(Index rowId, Index colId)
- {
- if(Flags & RowMajorBit)
- return m_storage.data()[colId + rowId * m_storage.cols()];
- else // column-major
- return m_storage.data()[rowId + colId * m_storage.rows()];
- }
-
- EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
- {
- return m_storage.data()[index];
- }
-
- EIGEN_STRONG_INLINE const Scalar& coeffRef(Index rowId, Index colId) const
- {
- if(Flags & RowMajorBit)
- return m_storage.data()[colId + rowId * m_storage.cols()];
- else // column-major
- return m_storage.data()[rowId + colId * m_storage.rows()];
- }
-
- EIGEN_STRONG_INLINE const Scalar& coeffRef(Index index) const
- {
- return m_storage.data()[index];
- }
-
- /** \internal */
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const
- {
- return internal::ploadt<PacketScalar, LoadMode>
- (m_storage.data() + (Flags & RowMajorBit
- ? colId + rowId * m_storage.cols()
- : rowId + colId * m_storage.rows()));
- }
-
- /** \internal */
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
- {
- return internal::ploadt<PacketScalar, LoadMode>(m_storage.data() + index);
- }
-
- /** \internal */
- template<int StoreMode>
- EIGEN_STRONG_INLINE void writePacket(Index rowId, Index colId, const PacketScalar& val)
- {
- internal::pstoret<Scalar, PacketScalar, StoreMode>
- (m_storage.data() + (Flags & RowMajorBit
- ? colId + rowId * m_storage.cols()
- : rowId + colId * m_storage.rows()), val);
- }
-
- /** \internal */
- template<int StoreMode>
- EIGEN_STRONG_INLINE void writePacket(Index index, const PacketScalar& val)
- {
- internal::pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, val);
- }
-
- /** \returns a const pointer to the data array of this matrix */
- EIGEN_STRONG_INLINE const Scalar *data() const
- { return m_storage.data(); }
-
- /** \returns a pointer to the data array of this matrix */
- EIGEN_STRONG_INLINE Scalar *data()
- { return m_storage.data(); }
-
- /** Resizes \c *this to a \a rows x \a cols matrix.
- *
- * This method is intended for dynamic-size matrices, although it is legal to call it on any
- * matrix as long as fixed dimensions are left unchanged. If you only want to change the number
- * of rows and/or of columns, you can use resize(NoChange_t, Index), resize(Index, NoChange_t).
- *
- * If the current number of coefficients of \c *this exactly matches the
- * product \a rows * \a cols, then no memory allocation is performed and
- * the current values are left unchanged. In all other cases, including
- * shrinking, the data is reallocated and all previous values are lost.
- *
- * Example: \include Matrix_resize_int_int.cpp
- * Output: \verbinclude Matrix_resize_int_int.out
- *
- * \sa resize(Index) for vectors, resize(NoChange_t, Index), resize(Index, NoChange_t)
- */
- EIGEN_STRONG_INLINE void resize(Index nbRows, Index nbCols)
- {
- eigen_assert( EIGEN_IMPLIES(RowsAtCompileTime!=Dynamic,nbRows==RowsAtCompileTime)
- && EIGEN_IMPLIES(ColsAtCompileTime!=Dynamic,nbCols==ColsAtCompileTime)
- && EIGEN_IMPLIES(RowsAtCompileTime==Dynamic && MaxRowsAtCompileTime!=Dynamic,nbRows<=MaxRowsAtCompileTime)
- && EIGEN_IMPLIES(ColsAtCompileTime==Dynamic && MaxColsAtCompileTime!=Dynamic,nbCols<=MaxColsAtCompileTime)
- && nbRows>=0 && nbCols>=0 && "Invalid sizes when resizing a matrix or array.");
- internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(nbRows, nbCols);
- #ifdef EIGEN_INITIALIZE_COEFFS
- Index size = nbRows*nbCols;
- bool size_changed = size != this->size();
- m_storage.resize(size, nbRows, nbCols);
- if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
- #else
- internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(nbRows, nbCols);
- m_storage.resize(nbRows*nbCols, nbRows, nbCols);
- #endif
- }
-
- /** Resizes \c *this to a vector of length \a size
- *
- * \only_for_vectors. This method does not work for
- * partially dynamic matrices when the static dimension is anything other
- * than 1. For example it will not work with Matrix<double, 2, Dynamic>.
- *
- * Example: \include Matrix_resize_int.cpp
- * Output: \verbinclude Matrix_resize_int.out
- *
- * \sa resize(Index,Index), resize(NoChange_t, Index), resize(Index, NoChange_t)
- */
- inline void resize(Index size)
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(PlainObjectBase)
- eigen_assert(((SizeAtCompileTime == Dynamic && (MaxSizeAtCompileTime==Dynamic || size<=MaxSizeAtCompileTime)) || SizeAtCompileTime == size) && size>=0);
- #ifdef EIGEN_INITIALIZE_COEFFS
- bool size_changed = size != this->size();
- #endif
- if(RowsAtCompileTime == 1)
- m_storage.resize(size, 1, size);
- else
- m_storage.resize(size, size, 1);
- #ifdef EIGEN_INITIALIZE_COEFFS
- if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
- #endif
- }
-
- /** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the special value \c NoChange
- * as in the example below.
- *
- * Example: \include Matrix_resize_NoChange_int.cpp
- * Output: \verbinclude Matrix_resize_NoChange_int.out
- *
- * \sa resize(Index,Index)
- */
- inline void resize(NoChange_t, Index nbCols)
- {
- resize(rows(), nbCols);
- }
-
- /** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange
- * as in the example below.
- *
- * Example: \include Matrix_resize_int_NoChange.cpp
- * Output: \verbinclude Matrix_resize_int_NoChange.out
- *
- * \sa resize(Index,Index)
- */
- inline void resize(Index nbRows, NoChange_t)
- {
- resize(nbRows, cols());
- }
-
- /** Resizes \c *this to have the same dimensions as \a other.
- * Takes care of doing all the checking that's needed.
- *
- * Note that copying a row-vector into a vector (and conversely) is allowed.
- * The resizing, if any, is then done in the appropriate way so that row-vectors
- * remain row-vectors and vectors remain vectors.
- */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE void resizeLike(const EigenBase<OtherDerived>& _other)
- {
- const OtherDerived& other = _other.derived();
- internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(other.rows(), other.cols());
- const Index othersize = other.rows()*other.cols();
- if(RowsAtCompileTime == 1)
- {
- eigen_assert(other.rows() == 1 || other.cols() == 1);
- resize(1, othersize);
- }
- else if(ColsAtCompileTime == 1)
- {
- eigen_assert(other.rows() == 1 || other.cols() == 1);
- resize(othersize, 1);
- }
- else resize(other.rows(), other.cols());
- }
-
- /** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
- *
- * The method is intended for matrices of dynamic size. If you only want to change the number
- * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or
- * conservativeResize(Index, NoChange_t).
- *
- * Matrices are resized relative to the top-left element. In case values need to be
- * appended to the matrix they will be uninitialized.
- */
- EIGEN_STRONG_INLINE void conservativeResize(Index nbRows, Index nbCols)
- {
- internal::conservative_resize_like_impl<Derived>::run(*this, nbRows, nbCols);
- }
-
- /** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
- *
- * As opposed to conservativeResize(Index rows, Index cols), this version leaves
- * the number of columns unchanged.
- *
- * In case the matrix is growing, new rows will be uninitialized.
- */
- EIGEN_STRONG_INLINE void conservativeResize(Index nbRows, NoChange_t)
- {
- // Note: see the comment in conservativeResize(Index,Index)
- conservativeResize(nbRows, cols());
- }
-
- /** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
- *
- * As opposed to conservativeResize(Index rows, Index cols), this version leaves
- * the number of rows unchanged.
- *
- * In case the matrix is growing, new columns will be uninitialized.
- */
- EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, Index nbCols)
- {
- // Note: see the comment in conservativeResize(Index,Index)
- conservativeResize(rows(), nbCols);
- }
-
- /** Resizes the vector to \a size while retaining old values.
- *
- * \only_for_vectors. This method does not work for
- * partially dynamic matrices when the static dimension is anything other
- * than 1. For example it will not work with Matrix<double, 2, Dynamic>.
- *
- * When values are appended, they will be uninitialized.
- */
- EIGEN_STRONG_INLINE void conservativeResize(Index size)
- {
- internal::conservative_resize_like_impl<Derived>::run(*this, size);
- }
-
- /** Resizes the matrix to \a rows x \a cols of \c other, while leaving old values untouched.
- *
- * The method is intended for matrices of dynamic size. If you only want to change the number
- * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or
- * conservativeResize(Index, NoChange_t).
- *
- * Matrices are resized relative to the top-left element. In case values need to be
- * appended to the matrix they will copied from \c other.
- */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase<OtherDerived>& other)
- {
- internal::conservative_resize_like_impl<Derived,OtherDerived>::run(*this, other);
- }
-
- /** This is a special case of the templated operator=. Its purpose is to
- * prevent a default operator= from hiding the templated operator=.
- */
- EIGEN_STRONG_INLINE Derived& operator=(const PlainObjectBase& other)
- {
- return _set(other);
- }
-
- /** \sa MatrixBase::lazyAssign() */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE Derived& lazyAssign(const DenseBase<OtherDerived>& other)
- {
- _resize_to_match(other);
- return Base::lazyAssign(other.derived());
- }
-
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue<OtherDerived>& func)
- {
- resize(func.rows(), func.cols());
- return Base::operator=(func);
- }
-
- EIGEN_STRONG_INLINE PlainObjectBase() : m_storage()
- {
-// _check_template_params();
-// EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
- }
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- // FIXME is it still needed ?
- /** \internal */
- PlainObjectBase(internal::constructor_without_unaligned_array_assert)
- : m_storage(internal::constructor_without_unaligned_array_assert())
- {
-// _check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
- }
-#endif
-
- EIGEN_STRONG_INLINE PlainObjectBase(Index a_size, Index nbRows, Index nbCols)
- : m_storage(a_size, nbRows, nbCols)
- {
-// _check_template_params();
-// EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
- }
-
- /** \copydoc MatrixBase::operator=(const EigenBase<OtherDerived>&)
- */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE Derived& operator=(const EigenBase<OtherDerived> &other)
- {
- _resize_to_match(other);
- Base::operator=(other.derived());
- return this->derived();
- }
-
- /** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE PlainObjectBase(const EigenBase<OtherDerived> &other)
- : m_storage(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
- {
- _check_template_params();
- internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(other.derived().rows(), other.derived().cols());
- Base::operator=(other.derived());
- }
-
- /** \name Map
- * These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects,
- * while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned
- * \a data pointers.
- *
- * \see class Map
- */
- //@{
- static inline ConstMapType Map(const Scalar* data)
- { return ConstMapType(data); }
- static inline MapType Map(Scalar* data)
- { return MapType(data); }
- static inline ConstMapType Map(const Scalar* data, Index size)
- { return ConstMapType(data, size); }
- static inline MapType Map(Scalar* data, Index size)
- { return MapType(data, size); }
- static inline ConstMapType Map(const Scalar* data, Index rows, Index cols)
- { return ConstMapType(data, rows, cols); }
- static inline MapType Map(Scalar* data, Index rows, Index cols)
- { return MapType(data, rows, cols); }
-
- static inline ConstAlignedMapType MapAligned(const Scalar* data)
- { return ConstAlignedMapType(data); }
- static inline AlignedMapType MapAligned(Scalar* data)
- { return AlignedMapType(data); }
- static inline ConstAlignedMapType MapAligned(const Scalar* data, Index size)
- { return ConstAlignedMapType(data, size); }
- static inline AlignedMapType MapAligned(Scalar* data, Index size)
- { return AlignedMapType(data, size); }
- static inline ConstAlignedMapType MapAligned(const Scalar* data, Index rows, Index cols)
- { return ConstAlignedMapType(data, rows, cols); }
- static inline AlignedMapType MapAligned(Scalar* data, Index rows, Index cols)
- { return AlignedMapType(data, rows, cols); }
-
- template<int Outer, int Inner>
- static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, const Stride<Outer, Inner>& stride)
- { return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, stride); }
- template<int Outer, int Inner>
- static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, const Stride<Outer, Inner>& stride)
- { return typename StridedMapType<Stride<Outer, Inner> >::type(data, stride); }
- template<int Outer, int Inner>
- static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, Index size, const Stride<Outer, Inner>& stride)
- { return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, size, stride); }
- template<int Outer, int Inner>
- static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, Index size, const Stride<Outer, Inner>& stride)
- { return typename StridedMapType<Stride<Outer, Inner> >::type(data, size, stride); }
- template<int Outer, int Inner>
- static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
- { return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
- template<int Outer, int Inner>
- static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
- { return typename StridedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
-
- template<int Outer, int Inner>
- static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, const Stride<Outer, Inner>& stride)
- { return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, stride); }
- template<int Outer, int Inner>
- static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, const Stride<Outer, Inner>& stride)
- { return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, stride); }
- template<int Outer, int Inner>
- static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, Index size, const Stride<Outer, Inner>& stride)
- { return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, size, stride); }
- template<int Outer, int Inner>
- static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, Index size, const Stride<Outer, Inner>& stride)
- { return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, size, stride); }
- template<int Outer, int Inner>
- static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
- { return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
- template<int Outer, int Inner>
- static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
- { return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
- //@}
-
- using Base::setConstant;
- Derived& setConstant(Index size, const Scalar& value);
- Derived& setConstant(Index rows, Index cols, const Scalar& value);
-
- using Base::setZero;
- Derived& setZero(Index size);
- Derived& setZero(Index rows, Index cols);
-
- using Base::setOnes;
- Derived& setOnes(Index size);
- Derived& setOnes(Index rows, Index cols);
-
- using Base::setRandom;
- Derived& setRandom(Index size);
- Derived& setRandom(Index rows, Index cols);
-
- #ifdef EIGEN_PLAINOBJECTBASE_PLUGIN
- #include EIGEN_PLAINOBJECTBASE_PLUGIN
- #endif
-
- protected:
- /** \internal Resizes *this in preparation for assigning \a other to it.
- * Takes care of doing all the checking that's needed.
- *
- * Note that copying a row-vector into a vector (and conversely) is allowed.
- * The resizing, if any, is then done in the appropriate way so that row-vectors
- * remain row-vectors and vectors remain vectors.
- */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE void _resize_to_match(const EigenBase<OtherDerived>& other)
- {
- #ifdef EIGEN_NO_AUTOMATIC_RESIZING
- eigen_assert((this->size()==0 || (IsVectorAtCompileTime ? (this->size() == other.size())
- : (rows() == other.rows() && cols() == other.cols())))
- && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
- EIGEN_ONLY_USED_FOR_DEBUG(other);
- #else
- resizeLike(other);
- #endif
- }
-
- /**
- * \brief Copies the value of the expression \a other into \c *this with automatic resizing.
- *
- * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
- * it will be initialized.
- *
- * Note that copying a row-vector into a vector (and conversely) is allowed.
- * The resizing, if any, is then done in the appropriate way so that row-vectors
- * remain row-vectors and vectors remain vectors.
- *
- * \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias()
- *
- * \internal
- */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE Derived& _set(const DenseBase<OtherDerived>& other)
- {
- _set_selector(other.derived(), typename internal::conditional<static_cast<bool>(int(OtherDerived::Flags) & EvalBeforeAssigningBit), internal::true_type, internal::false_type>::type());
- return this->derived();
- }
-
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::true_type&) { _set_noalias(other.eval()); }
-
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::false_type&) { _set_noalias(other); }
-
- /** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which
- * is the case when creating a new matrix) so one can enforce lazy evaluation.
- *
- * \sa operator=(const MatrixBase<OtherDerived>&), _set()
- */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE Derived& _set_noalias(const DenseBase<OtherDerived>& other)
- {
- // I don't think we need this resize call since the lazyAssign will anyways resize
- // and lazyAssign will be called by the assign selector.
- //_resize_to_match(other);
- // the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because
- // it wouldn't allow to copy a row-vector into a column-vector.
- return internal::assign_selector<Derived,OtherDerived,false>::run(this->derived(), other.derived());
- }
-
- template<typename T0, typename T1>
- EIGEN_STRONG_INLINE void _init2(Index nbRows, Index nbCols, typename internal::enable_if<Base::SizeAtCompileTime!=2,T0>::type* = 0)
- {
- EIGEN_STATIC_ASSERT(bool(NumTraits<T0>::IsInteger) &&
- bool(NumTraits<T1>::IsInteger),
- FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED)
- resize(nbRows,nbCols);
- }
- template<typename T0, typename T1>
- EIGEN_STRONG_INLINE void _init2(const Scalar& val0, const Scalar& val1, typename internal::enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0)
- {
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2)
- m_storage.data()[0] = val0;
- m_storage.data()[1] = val1;
- }
-
- template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
- friend struct internal::matrix_swap_impl;
-
- /** \internal generic implementation of swap for dense storage since for dynamic-sized matrices of same type it is enough to swap the
- * data pointers.
- */
- template<typename OtherDerived>
- void _swap(DenseBase<OtherDerived> const & other)
- {
- enum { SwapPointers = internal::is_same<Derived, OtherDerived>::value && Base::SizeAtCompileTime==Dynamic };
- internal::matrix_swap_impl<Derived, OtherDerived, bool(SwapPointers)>::run(this->derived(), other.const_cast_derived());
- }
-
- public:
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- static EIGEN_STRONG_INLINE void _check_template_params()
- {
- EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, (Options&RowMajor)==RowMajor)
- && EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, (Options&RowMajor)==0)
- && ((RowsAtCompileTime == Dynamic) || (RowsAtCompileTime >= 0))
- && ((ColsAtCompileTime == Dynamic) || (ColsAtCompileTime >= 0))
- && ((MaxRowsAtCompileTime == Dynamic) || (MaxRowsAtCompileTime >= 0))
- && ((MaxColsAtCompileTime == Dynamic) || (MaxColsAtCompileTime >= 0))
- && (MaxRowsAtCompileTime == RowsAtCompileTime || RowsAtCompileTime==Dynamic)
- && (MaxColsAtCompileTime == ColsAtCompileTime || ColsAtCompileTime==Dynamic)
- && (Options & (DontAlign|RowMajor)) == Options),
- INVALID_MATRIX_TEMPLATE_PARAMETERS)
- }
-#endif
-
-private:
- enum { ThisConstantIsPrivateInPlainObjectBase };
-};
-
-namespace internal {
-
-template <typename Derived, typename OtherDerived, bool IsVector>
-struct conservative_resize_like_impl
-{
- typedef typename Derived::Index Index;
- static void run(DenseBase<Derived>& _this, Index rows, Index cols)
- {
- if (_this.rows() == rows && _this.cols() == cols) return;
- EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
-
- if ( ( Derived::IsRowMajor && _this.cols() == cols) || // row-major and we change only the number of rows
- (!Derived::IsRowMajor && _this.rows() == rows) ) // column-major and we change only the number of columns
- {
- internal::check_rows_cols_for_overflow<Derived::MaxSizeAtCompileTime>::run(rows, cols);
- _this.derived().m_storage.conservativeResize(rows*cols,rows,cols);
- }
- else
- {
- // The storage order does not allow us to use reallocation.
- typename Derived::PlainObject tmp(rows,cols);
- const Index common_rows = (std::min)(rows, _this.rows());
- const Index common_cols = (std::min)(cols, _this.cols());
- tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
- _this.derived().swap(tmp);
- }
- }
-
- static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other)
- {
- if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
-
- // Note: Here is space for improvement. Basically, for conservativeResize(Index,Index),
- // neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the
- // dimensions is dynamic, one could use either conservativeResize(Index rows, NoChange_t) or
- // conservativeResize(NoChange_t, Index cols). For these methods new static asserts like
- // EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good.
- EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
- EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived)
-
- if ( ( Derived::IsRowMajor && _this.cols() == other.cols()) || // row-major and we change only the number of rows
- (!Derived::IsRowMajor && _this.rows() == other.rows()) ) // column-major and we change only the number of columns
- {
- const Index new_rows = other.rows() - _this.rows();
- const Index new_cols = other.cols() - _this.cols();
- _this.derived().m_storage.conservativeResize(other.size(),other.rows(),other.cols());
- if (new_rows>0)
- _this.bottomRightCorner(new_rows, other.cols()) = other.bottomRows(new_rows);
- else if (new_cols>0)
- _this.bottomRightCorner(other.rows(), new_cols) = other.rightCols(new_cols);
- }
- else
- {
- // The storage order does not allow us to use reallocation.
- typename Derived::PlainObject tmp(other);
- const Index common_rows = (std::min)(tmp.rows(), _this.rows());
- const Index common_cols = (std::min)(tmp.cols(), _this.cols());
- tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
- _this.derived().swap(tmp);
- }
- }
-};
-
-// Here, the specialization for vectors inherits from the general matrix case
-// to allow calling .conservativeResize(rows,cols) on vectors.
-template <typename Derived, typename OtherDerived>
-struct conservative_resize_like_impl<Derived,OtherDerived,true>
- : conservative_resize_like_impl<Derived,OtherDerived,false>
-{
- using conservative_resize_like_impl<Derived,OtherDerived,false>::run;
-
- typedef typename Derived::Index Index;
- static void run(DenseBase<Derived>& _this, Index size)
- {
- const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : size;
- const Index new_cols = Derived::RowsAtCompileTime==1 ? size : 1;
- _this.derived().m_storage.conservativeResize(size,new_rows,new_cols);
- }
-
- static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other)
- {
- if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
-
- const Index num_new_elements = other.size() - _this.size();
-
- const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : other.rows();
- const Index new_cols = Derived::RowsAtCompileTime==1 ? other.cols() : 1;
- _this.derived().m_storage.conservativeResize(other.size(),new_rows,new_cols);
-
- if (num_new_elements > 0)
- _this.tail(num_new_elements) = other.tail(num_new_elements);
- }
-};
-
-template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
-struct matrix_swap_impl
-{
- static inline void run(MatrixTypeA& a, MatrixTypeB& b)
- {
- a.base().swap(b);
- }
-};
-
-template<typename MatrixTypeA, typename MatrixTypeB>
-struct matrix_swap_impl<MatrixTypeA, MatrixTypeB, true>
-{
- static inline void run(MatrixTypeA& a, MatrixTypeB& b)
- {
- static_cast<typename MatrixTypeA::Base&>(a).m_storage.swap(static_cast<typename MatrixTypeB::Base&>(b).m_storage);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_DENSESTORAGEBASE_H
diff --git a/src/Eigen/src/Core/ProductBase.h b/src/Eigen/src/Core/ProductBase.h
deleted file mode 100644
index a494b5f..0000000
--- a/src/Eigen/src/Core/ProductBase.h
+++ /dev/null
@@ -1,278 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_PRODUCTBASE_H
-#define EIGEN_PRODUCTBASE_H
-
-namespace Eigen {
-
-/** \class ProductBase
- * \ingroup Core_Module
- *
- */
-
-namespace internal {
-template<typename Derived, typename _Lhs, typename _Rhs>
-struct traits<ProductBase<Derived,_Lhs,_Rhs> >
-{
- typedef MatrixXpr XprKind;
- typedef typename remove_all<_Lhs>::type Lhs;
- typedef typename remove_all<_Rhs>::type Rhs;
- typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
- typedef typename promote_storage_type<typename traits<Lhs>::StorageKind,
- typename traits<Rhs>::StorageKind>::ret StorageKind;
- typedef typename promote_index_type<typename traits<Lhs>::Index,
- typename traits<Rhs>::Index>::type Index;
- enum {
- RowsAtCompileTime = traits<Lhs>::RowsAtCompileTime,
- ColsAtCompileTime = traits<Rhs>::ColsAtCompileTime,
- MaxRowsAtCompileTime = traits<Lhs>::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = traits<Rhs>::MaxColsAtCompileTime,
- Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0)
- | EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit,
- // Note that EvalBeforeNestingBit and NestByRefBit
- // are not used in practice because nested is overloaded for products
- CoeffReadCost = 0 // FIXME why is it needed ?
- };
-};
-}
-
-#define EIGEN_PRODUCT_PUBLIC_INTERFACE(Derived) \
- typedef ProductBase<Derived, Lhs, Rhs > Base; \
- EIGEN_DENSE_PUBLIC_INTERFACE(Derived) \
- typedef typename Base::LhsNested LhsNested; \
- typedef typename Base::_LhsNested _LhsNested; \
- typedef typename Base::LhsBlasTraits LhsBlasTraits; \
- typedef typename Base::ActualLhsType ActualLhsType; \
- typedef typename Base::_ActualLhsType _ActualLhsType; \
- typedef typename Base::RhsNested RhsNested; \
- typedef typename Base::_RhsNested _RhsNested; \
- typedef typename Base::RhsBlasTraits RhsBlasTraits; \
- typedef typename Base::ActualRhsType ActualRhsType; \
- typedef typename Base::_ActualRhsType _ActualRhsType; \
- using Base::m_lhs; \
- using Base::m_rhs;
-
-template<typename Derived, typename Lhs, typename Rhs>
-class ProductBase : public MatrixBase<Derived>
-{
- public:
- typedef MatrixBase<Derived> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(ProductBase)
-
- typedef typename Lhs::Nested LhsNested;
- typedef typename internal::remove_all<LhsNested>::type _LhsNested;
- typedef internal::blas_traits<_LhsNested> LhsBlasTraits;
- typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
- typedef typename internal::remove_all<ActualLhsType>::type _ActualLhsType;
- typedef typename internal::traits<Lhs>::Scalar LhsScalar;
-
- typedef typename Rhs::Nested RhsNested;
- typedef typename internal::remove_all<RhsNested>::type _RhsNested;
- typedef internal::blas_traits<_RhsNested> RhsBlasTraits;
- typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
- typedef typename internal::remove_all<ActualRhsType>::type _ActualRhsType;
- typedef typename internal::traits<Rhs>::Scalar RhsScalar;
-
- // Diagonal of a product: no need to evaluate the arguments because they are going to be evaluated only once
- typedef CoeffBasedProduct<LhsNested, RhsNested, 0> FullyLazyCoeffBaseProductType;
-
- public:
-
- typedef typename Base::PlainObject PlainObject;
-
- ProductBase(const Lhs& a_lhs, const Rhs& a_rhs)
- : m_lhs(a_lhs), m_rhs(a_rhs)
- {
- eigen_assert(a_lhs.cols() == a_rhs.rows()
- && "invalid matrix product"
- && "if you wanted a coeff-wise or a dot product use the respective explicit functions");
- }
-
- inline Index rows() const { return m_lhs.rows(); }
- inline Index cols() const { return m_rhs.cols(); }
-
- template<typename Dest>
- inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst,Scalar(1)); }
-
- template<typename Dest>
- inline void addTo(Dest& dst) const { scaleAndAddTo(dst,Scalar(1)); }
-
- template<typename Dest>
- inline void subTo(Dest& dst) const { scaleAndAddTo(dst,Scalar(-1)); }
-
- template<typename Dest>
- inline void scaleAndAddTo(Dest& dst, const Scalar& alpha) const { derived().scaleAndAddTo(dst,alpha); }
-
- const _LhsNested& lhs() const { return m_lhs; }
- const _RhsNested& rhs() const { return m_rhs; }
-
- // Implicit conversion to the nested type (trigger the evaluation of the product)
- operator const PlainObject& () const
- {
- m_result.resize(m_lhs.rows(), m_rhs.cols());
- derived().evalTo(m_result);
- return m_result;
- }
-
- const Diagonal<const FullyLazyCoeffBaseProductType,0> diagonal() const
- { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); }
-
- template<int Index>
- const Diagonal<FullyLazyCoeffBaseProductType,Index> diagonal() const
- { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); }
-
- const Diagonal<FullyLazyCoeffBaseProductType,Dynamic> diagonal(Index index) const
- { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs).diagonal(index); }
-
- // restrict coeff accessors to 1x1 expressions. No need to care about mutators here since this isnt a Lvalue expression
- typename Base::CoeffReturnType coeff(Index row, Index col) const
- {
-#ifdef EIGEN2_SUPPORT
- return lhs().row(row).cwiseProduct(rhs().col(col).transpose()).sum();
-#else
- EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
- eigen_assert(this->rows() == 1 && this->cols() == 1);
- Matrix<Scalar,1,1> result = *this;
- return result.coeff(row,col);
-#endif
- }
-
- typename Base::CoeffReturnType coeff(Index i) const
- {
- EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
- eigen_assert(this->rows() == 1 && this->cols() == 1);
- Matrix<Scalar,1,1> result = *this;
- return result.coeff(i);
- }
-
- const Scalar& coeffRef(Index row, Index col) const
- {
- EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
- eigen_assert(this->rows() == 1 && this->cols() == 1);
- return derived().coeffRef(row,col);
- }
-
- const Scalar& coeffRef(Index i) const
- {
- EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
- eigen_assert(this->rows() == 1 && this->cols() == 1);
- return derived().coeffRef(i);
- }
-
- protected:
-
- LhsNested m_lhs;
- RhsNested m_rhs;
-
- mutable PlainObject m_result;
-};
-
-// here we need to overload the nested rule for products
-// such that the nested type is a const reference to a plain matrix
-namespace internal {
-template<typename Lhs, typename Rhs, int Mode, int N, typename PlainObject>
-struct nested<GeneralProduct<Lhs,Rhs,Mode>, N, PlainObject>
-{
- typedef PlainObject const& type;
-};
-}
-
-template<typename NestedProduct>
-class ScaledProduct;
-
-// Note that these two operator* functions are not defined as member
-// functions of ProductBase, because, otherwise we would have to
-// define all overloads defined in MatrixBase. Furthermore, Using
-// "using Base::operator*" would not work with MSVC.
-//
-// Also note that here we accept any compatible scalar types
-template<typename Derived,typename Lhs,typename Rhs>
-const ScaledProduct<Derived>
-operator*(const ProductBase<Derived,Lhs,Rhs>& prod, const typename Derived::Scalar& x)
-{ return ScaledProduct<Derived>(prod.derived(), x); }
-
-template<typename Derived,typename Lhs,typename Rhs>
-typename internal::enable_if<!internal::is_same<typename Derived::Scalar,typename Derived::RealScalar>::value,
- const ScaledProduct<Derived> >::type
-operator*(const ProductBase<Derived,Lhs,Rhs>& prod, const typename Derived::RealScalar& x)
-{ return ScaledProduct<Derived>(prod.derived(), x); }
-
-
-template<typename Derived,typename Lhs,typename Rhs>
-const ScaledProduct<Derived>
-operator*(const typename Derived::Scalar& x,const ProductBase<Derived,Lhs,Rhs>& prod)
-{ return ScaledProduct<Derived>(prod.derived(), x); }
-
-template<typename Derived,typename Lhs,typename Rhs>
-typename internal::enable_if<!internal::is_same<typename Derived::Scalar,typename Derived::RealScalar>::value,
- const ScaledProduct<Derived> >::type
-operator*(const typename Derived::RealScalar& x,const ProductBase<Derived,Lhs,Rhs>& prod)
-{ return ScaledProduct<Derived>(prod.derived(), x); }
-
-namespace internal {
-template<typename NestedProduct>
-struct traits<ScaledProduct<NestedProduct> >
- : traits<ProductBase<ScaledProduct<NestedProduct>,
- typename NestedProduct::_LhsNested,
- typename NestedProduct::_RhsNested> >
-{
- typedef typename traits<NestedProduct>::StorageKind StorageKind;
-};
-}
-
-template<typename NestedProduct>
-class ScaledProduct
- : public ProductBase<ScaledProduct<NestedProduct>,
- typename NestedProduct::_LhsNested,
- typename NestedProduct::_RhsNested>
-{
- public:
- typedef ProductBase<ScaledProduct<NestedProduct>,
- typename NestedProduct::_LhsNested,
- typename NestedProduct::_RhsNested> Base;
- typedef typename Base::Scalar Scalar;
- typedef typename Base::PlainObject PlainObject;
-// EIGEN_PRODUCT_PUBLIC_INTERFACE(ScaledProduct)
-
- ScaledProduct(const NestedProduct& prod, const Scalar& x)
- : Base(prod.lhs(),prod.rhs()), m_prod(prod), m_alpha(x) {}
-
- template<typename Dest>
- inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst, Scalar(1)); }
-
- template<typename Dest>
- inline void addTo(Dest& dst) const { scaleAndAddTo(dst, Scalar(1)); }
-
- template<typename Dest>
- inline void subTo(Dest& dst) const { scaleAndAddTo(dst, Scalar(-1)); }
-
- template<typename Dest>
- inline void scaleAndAddTo(Dest& dst, const Scalar& a_alpha) const { m_prod.derived().scaleAndAddTo(dst,a_alpha * m_alpha); }
-
- const Scalar& alpha() const { return m_alpha; }
-
- protected:
- const NestedProduct& m_prod;
- Scalar m_alpha;
-};
-
-/** \internal
- * Overloaded to perform an efficient C = (A*B).lazy() */
-template<typename Derived>
-template<typename ProductDerived, typename Lhs, typename Rhs>
-Derived& MatrixBase<Derived>::lazyAssign(const ProductBase<ProductDerived, Lhs,Rhs>& other)
-{
- other.derived().evalTo(derived());
- return derived();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_PRODUCTBASE_H
diff --git a/src/Eigen/src/Core/Random.h b/src/Eigen/src/Core/Random.h
deleted file mode 100644
index 480fea4..0000000
--- a/src/Eigen/src/Core/Random.h
+++ /dev/null
@@ -1,152 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_RANDOM_H
-#define EIGEN_RANDOM_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename Scalar> struct scalar_random_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_random_op)
- template<typename Index>
- inline const Scalar operator() (Index, Index = 0) const { return random<Scalar>(); }
-};
-
-template<typename Scalar>
-struct functor_traits<scalar_random_op<Scalar> >
-{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false, IsRepeatable = false }; };
-
-} // end namespace internal
-
-/** \returns a random matrix expression
- *
- * The parameters \a rows and \a cols are the number of rows and of columns of
- * the returned matrix. Must be compatible with this MatrixBase type.
- *
- * This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
- * it is redundant to pass \a rows and \a cols as arguments, so Random() should be used
- * instead.
- *
- * Example: \include MatrixBase_random_int_int.cpp
- * Output: \verbinclude MatrixBase_random_int_int.out
- *
- * This expression has the "evaluate before nesting" flag so that it will be evaluated into
- * a temporary matrix whenever it is nested in a larger expression. This prevents unexpected
- * behavior with expressions involving random matrices.
- *
- * \sa MatrixBase::setRandom(), MatrixBase::Random(Index), MatrixBase::Random()
- */
-template<typename Derived>
-inline const CwiseNullaryOp<internal::scalar_random_op<typename internal::traits<Derived>::Scalar>, Derived>
-DenseBase<Derived>::Random(Index rows, Index cols)
-{
- return NullaryExpr(rows, cols, internal::scalar_random_op<Scalar>());
-}
-
-/** \returns a random vector expression
- *
- * The parameter \a size is the size of the returned vector.
- * Must be compatible with this MatrixBase type.
- *
- * \only_for_vectors
- *
- * This variant is meant to be used for dynamic-size vector types. For fixed-size types,
- * it is redundant to pass \a size as argument, so Random() should be used
- * instead.
- *
- * Example: \include MatrixBase_random_int.cpp
- * Output: \verbinclude MatrixBase_random_int.out
- *
- * This expression has the "evaluate before nesting" flag so that it will be evaluated into
- * a temporary vector whenever it is nested in a larger expression. This prevents unexpected
- * behavior with expressions involving random matrices.
- *
- * \sa MatrixBase::setRandom(), MatrixBase::Random(Index,Index), MatrixBase::Random()
- */
-template<typename Derived>
-inline const CwiseNullaryOp<internal::scalar_random_op<typename internal::traits<Derived>::Scalar>, Derived>
-DenseBase<Derived>::Random(Index size)
-{
- return NullaryExpr(size, internal::scalar_random_op<Scalar>());
-}
-
-/** \returns a fixed-size random matrix or vector expression
- *
- * This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
- * need to use the variants taking size arguments.
- *
- * Example: \include MatrixBase_random.cpp
- * Output: \verbinclude MatrixBase_random.out
- *
- * This expression has the "evaluate before nesting" flag so that it will be evaluated into
- * a temporary matrix whenever it is nested in a larger expression. This prevents unexpected
- * behavior with expressions involving random matrices.
- *
- * \sa MatrixBase::setRandom(), MatrixBase::Random(Index,Index), MatrixBase::Random(Index)
- */
-template<typename Derived>
-inline const CwiseNullaryOp<internal::scalar_random_op<typename internal::traits<Derived>::Scalar>, Derived>
-DenseBase<Derived>::Random()
-{
- return NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_random_op<Scalar>());
-}
-
-/** Sets all coefficients in this expression to random values.
- *
- * Example: \include MatrixBase_setRandom.cpp
- * Output: \verbinclude MatrixBase_setRandom.out
- *
- * \sa class CwiseNullaryOp, setRandom(Index), setRandom(Index,Index)
- */
-template<typename Derived>
-inline Derived& DenseBase<Derived>::setRandom()
-{
- return *this = Random(rows(), cols());
-}
-
-/** Resizes to the given \a newSize, and sets all coefficients in this expression to random values.
- *
- * \only_for_vectors
- *
- * Example: \include Matrix_setRandom_int.cpp
- * Output: \verbinclude Matrix_setRandom_int.out
- *
- * \sa MatrixBase::setRandom(), setRandom(Index,Index), class CwiseNullaryOp, MatrixBase::Random()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE Derived&
-PlainObjectBase<Derived>::setRandom(Index newSize)
-{
- resize(newSize);
- return setRandom();
-}
-
-/** Resizes to the given size, and sets all coefficients in this expression to random values.
- *
- * \param nbRows the new number of rows
- * \param nbCols the new number of columns
- *
- * Example: \include Matrix_setRandom_int_int.cpp
- * Output: \verbinclude Matrix_setRandom_int_int.out
- *
- * \sa MatrixBase::setRandom(), setRandom(Index), class CwiseNullaryOp, MatrixBase::Random()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE Derived&
-PlainObjectBase<Derived>::setRandom(Index nbRows, Index nbCols)
-{
- resize(nbRows, nbCols);
- return setRandom();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_RANDOM_H
diff --git a/src/Eigen/src/Core/Redux.h b/src/Eigen/src/Core/Redux.h
deleted file mode 100644
index 50548fa..0000000
--- a/src/Eigen/src/Core/Redux.h
+++ /dev/null
@@ -1,408 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_REDUX_H
-#define EIGEN_REDUX_H
-
-namespace Eigen {
-
-namespace internal {
-
-// TODO
-// * implement other kind of vectorization
-// * factorize code
-
-/***************************************************************************
-* Part 1 : the logic deciding a strategy for vectorization and unrolling
-***************************************************************************/
-
-template<typename Func, typename Derived>
-struct redux_traits
-{
-public:
- enum {
- PacketSize = packet_traits<typename Derived::Scalar>::size,
- InnerMaxSize = int(Derived::IsRowMajor)
- ? Derived::MaxColsAtCompileTime
- : Derived::MaxRowsAtCompileTime
- };
-
- enum {
- MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit)
- && (functor_traits<Func>::PacketAccess),
- MayLinearVectorize = MightVectorize && (int(Derived::Flags)&LinearAccessBit),
- MaySliceVectorize = MightVectorize && int(InnerMaxSize)>=3*PacketSize
- };
-
-public:
- enum {
- Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
- : int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
- : int(DefaultTraversal)
- };
-
-public:
- enum {
- Cost = ( Derived::SizeAtCompileTime == Dynamic
- || Derived::CoeffReadCost == Dynamic
- || (Derived::SizeAtCompileTime!=1 && functor_traits<Func>::Cost == Dynamic)
- ) ? Dynamic
- : Derived::SizeAtCompileTime * Derived::CoeffReadCost
- + (Derived::SizeAtCompileTime-1) * functor_traits<Func>::Cost,
- UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize))
- };
-
-public:
- enum {
- Unrolling = Cost != Dynamic && Cost <= UnrollingLimit
- ? CompleteUnrolling
- : NoUnrolling
- };
-};
-
-/***************************************************************************
-* Part 2 : unrollers
-***************************************************************************/
-
-/*** no vectorization ***/
-
-template<typename Func, typename Derived, int Start, int Length>
-struct redux_novec_unroller
-{
- enum {
- HalfLength = Length/2
- };
-
- typedef typename Derived::Scalar Scalar;
-
- static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
- {
- return func(redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
- redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func));
- }
-};
-
-template<typename Func, typename Derived, int Start>
-struct redux_novec_unroller<Func, Derived, Start, 1>
-{
- enum {
- outer = Start / Derived::InnerSizeAtCompileTime,
- inner = Start % Derived::InnerSizeAtCompileTime
- };
-
- typedef typename Derived::Scalar Scalar;
-
- static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func&)
- {
- return mat.coeffByOuterInner(outer, inner);
- }
-};
-
-// This is actually dead code and will never be called. It is required
-// to prevent false warnings regarding failed inlining though
-// for 0 length run() will never be called at all.
-template<typename Func, typename Derived, int Start>
-struct redux_novec_unroller<Func, Derived, Start, 0>
-{
- typedef typename Derived::Scalar Scalar;
- static EIGEN_STRONG_INLINE Scalar run(const Derived&, const Func&) { return Scalar(); }
-};
-
-/*** vectorization ***/
-
-template<typename Func, typename Derived, int Start, int Length>
-struct redux_vec_unroller
-{
- enum {
- PacketSize = packet_traits<typename Derived::Scalar>::size,
- HalfLength = Length/2
- };
-
- typedef typename Derived::Scalar Scalar;
- typedef typename packet_traits<Scalar>::type PacketScalar;
-
- static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func& func)
- {
- return func.packetOp(
- redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
- redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) );
- }
-};
-
-template<typename Func, typename Derived, int Start>
-struct redux_vec_unroller<Func, Derived, Start, 1>
-{
- enum {
- index = Start * packet_traits<typename Derived::Scalar>::size,
- outer = index / int(Derived::InnerSizeAtCompileTime),
- inner = index % int(Derived::InnerSizeAtCompileTime),
- alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned
- };
-
- typedef typename Derived::Scalar Scalar;
- typedef typename packet_traits<Scalar>::type PacketScalar;
-
- static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func&)
- {
- return mat.template packetByOuterInner<alignment>(outer, inner);
- }
-};
-
-/***************************************************************************
-* Part 3 : implementation of all cases
-***************************************************************************/
-
-template<typename Func, typename Derived,
- int Traversal = redux_traits<Func, Derived>::Traversal,
- int Unrolling = redux_traits<Func, Derived>::Unrolling
->
-struct redux_impl;
-
-template<typename Func, typename Derived>
-struct redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>
-{
- typedef typename Derived::Scalar Scalar;
- typedef typename Derived::Index Index;
- static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func)
- {
- eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
- Scalar res;
- res = mat.coeffByOuterInner(0, 0);
- for(Index i = 1; i < mat.innerSize(); ++i)
- res = func(res, mat.coeffByOuterInner(0, i));
- for(Index i = 1; i < mat.outerSize(); ++i)
- for(Index j = 0; j < mat.innerSize(); ++j)
- res = func(res, mat.coeffByOuterInner(i, j));
- return res;
- }
-};
-
-template<typename Func, typename Derived>
-struct redux_impl<Func,Derived, DefaultTraversal, CompleteUnrolling>
- : public redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime>
-{};
-
-template<typename Func, typename Derived>
-struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
-{
- typedef typename Derived::Scalar Scalar;
- typedef typename packet_traits<Scalar>::type PacketScalar;
- typedef typename Derived::Index Index;
-
- static Scalar run(const Derived& mat, const Func& func)
- {
- const Index size = mat.size();
- eigen_assert(size && "you are using an empty matrix");
- const Index packetSize = packet_traits<Scalar>::size;
- const Index alignedStart = internal::first_aligned(mat);
- enum {
- alignment = bool(Derived::Flags & DirectAccessBit) || bool(Derived::Flags & AlignedBit)
- ? Aligned : Unaligned
- };
- const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize);
- const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize);
- const Index alignedEnd2 = alignedStart + alignedSize2;
- const Index alignedEnd = alignedStart + alignedSize;
- Scalar res;
- if(alignedSize)
- {
- PacketScalar packet_res0 = mat.template packet<alignment>(alignedStart);
- if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop
- {
- PacketScalar packet_res1 = mat.template packet<alignment>(alignedStart+packetSize);
- for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize)
- {
- packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment>(index));
- packet_res1 = func.packetOp(packet_res1, mat.template packet<alignment>(index+packetSize));
- }
-
- packet_res0 = func.packetOp(packet_res0,packet_res1);
- if(alignedEnd>alignedEnd2)
- packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment>(alignedEnd2));
- }
- res = func.predux(packet_res0);
-
- for(Index index = 0; index < alignedStart; ++index)
- res = func(res,mat.coeff(index));
-
- for(Index index = alignedEnd; index < size; ++index)
- res = func(res,mat.coeff(index));
- }
- else // too small to vectorize anything.
- // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
- {
- res = mat.coeff(0);
- for(Index index = 1; index < size; ++index)
- res = func(res,mat.coeff(index));
- }
-
- return res;
- }
-};
-
-template<typename Func, typename Derived>
-struct redux_impl<Func, Derived, SliceVectorizedTraversal, NoUnrolling>
-{
- typedef typename Derived::Scalar Scalar;
- typedef typename packet_traits<Scalar>::type PacketScalar;
- typedef typename Derived::Index Index;
-
- static Scalar run(const Derived& mat, const Func& func)
- {
- eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
- const Index innerSize = mat.innerSize();
- const Index outerSize = mat.outerSize();
- enum {
- packetSize = packet_traits<Scalar>::size
- };
- const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize;
- Scalar res;
- if(packetedInnerSize)
- {
- PacketScalar packet_res = mat.template packet<Unaligned>(0,0);
- for(Index j=0; j<outerSize; ++j)
- for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize))
- packet_res = func.packetOp(packet_res, mat.template packetByOuterInner<Unaligned>(j,i));
-
- res = func.predux(packet_res);
- for(Index j=0; j<outerSize; ++j)
- for(Index i=packetedInnerSize; i<innerSize; ++i)
- res = func(res, mat.coeffByOuterInner(j,i));
- }
- else // too small to vectorize anything.
- // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
- {
- res = redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>::run(mat, func);
- }
-
- return res;
- }
-};
-
-template<typename Func, typename Derived>
-struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
-{
- typedef typename Derived::Scalar Scalar;
- typedef typename packet_traits<Scalar>::type PacketScalar;
- enum {
- PacketSize = packet_traits<Scalar>::size,
- Size = Derived::SizeAtCompileTime,
- VectorizedSize = (Size / PacketSize) * PacketSize
- };
- static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func)
- {
- eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
- Scalar res = func.predux(redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func));
- if (VectorizedSize != Size)
- res = func(res,redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func));
- return res;
- }
-};
-
-} // end namespace internal
-
-/***************************************************************************
-* Part 4 : public API
-***************************************************************************/
-
-
-/** \returns the result of a full redux operation on the whole matrix or vector using \a func
- *
- * The template parameter \a BinaryOp is the type of the functor \a func which must be
- * an associative operator. Both current STL and TR1 functor styles are handled.
- *
- * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise()
- */
-template<typename Derived>
-template<typename Func>
-EIGEN_STRONG_INLINE typename internal::result_of<Func(typename internal::traits<Derived>::Scalar)>::type
-DenseBase<Derived>::redux(const Func& func) const
-{
- typedef typename internal::remove_all<typename Derived::Nested>::type ThisNested;
- return internal::redux_impl<Func, ThisNested>
- ::run(derived(), func);
-}
-
-/** \returns the minimum of all coefficients of \c *this.
- * \warning the result is undefined if \c *this contains NaN.
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
-DenseBase<Derived>::minCoeff() const
-{
- return this->redux(Eigen::internal::scalar_min_op<Scalar>());
-}
-
-/** \returns the maximum of all coefficients of \c *this.
- * \warning the result is undefined if \c *this contains NaN.
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
-DenseBase<Derived>::maxCoeff() const
-{
- return this->redux(Eigen::internal::scalar_max_op<Scalar>());
-}
-
-/** \returns the sum of all coefficients of *this
- *
- * \sa trace(), prod(), mean()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
-DenseBase<Derived>::sum() const
-{
- if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
- return Scalar(0);
- return this->redux(Eigen::internal::scalar_sum_op<Scalar>());
-}
-
-/** \returns the mean of all coefficients of *this
-*
-* \sa trace(), prod(), sum()
-*/
-template<typename Derived>
-EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
-DenseBase<Derived>::mean() const
-{
- return Scalar(this->redux(Eigen::internal::scalar_sum_op<Scalar>())) / Scalar(this->size());
-}
-
-/** \returns the product of all coefficients of *this
- *
- * Example: \include MatrixBase_prod.cpp
- * Output: \verbinclude MatrixBase_prod.out
- *
- * \sa sum(), mean(), trace()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
-DenseBase<Derived>::prod() const
-{
- if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
- return Scalar(1);
- return this->redux(Eigen::internal::scalar_product_op<Scalar>());
-}
-
-/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
- *
- * \c *this can be any matrix, not necessarily square.
- *
- * \sa diagonal(), sum()
- */
-template<typename Derived>
-EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
-MatrixBase<Derived>::trace() const
-{
- return derived().diagonal().sum();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_REDUX_H
diff --git a/src/Eigen/src/Core/Ref.h b/src/Eigen/src/Core/Ref.h
deleted file mode 100644
index cd6d949..0000000
--- a/src/Eigen/src/Core/Ref.h
+++ /dev/null
@@ -1,260 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_REF_H
-#define EIGEN_REF_H
-
-namespace Eigen {
-
-template<typename Derived> class RefBase;
-template<typename PlainObjectType, int Options = 0,
- typename StrideType = typename internal::conditional<PlainObjectType::IsVectorAtCompileTime,InnerStride<1>,OuterStride<> >::type > class Ref;
-
-/** \class Ref
- * \ingroup Core_Module
- *
- * \brief A matrix or vector expression mapping an existing expressions
- *
- * \tparam PlainObjectType the equivalent matrix type of the mapped data
- * \tparam Options specifies whether the pointer is \c #Aligned, or \c #Unaligned.
- * The default is \c #Unaligned.
- * \tparam StrideType optionally specifies strides. By default, Ref implies a contiguous storage along the inner dimension (inner stride==1),
- * but accept a variable outer stride (leading dimension).
- * This can be overridden by specifying strides.
- * The type passed here must be a specialization of the Stride template, see examples below.
- *
- * This class permits to write non template functions taking Eigen's object as parameters while limiting the number of copies.
- * A Ref<> object can represent either a const expression or a l-value:
- * \code
- * // in-out argument:
- * void foo1(Ref<VectorXf> x);
- *
- * // read-only const argument:
- * void foo2(const Ref<const VectorXf>& x);
- * \endcode
- *
- * In the in-out case, the input argument must satisfies the constraints of the actual Ref<> type, otherwise a compilation issue will be triggered.
- * By default, a Ref<VectorXf> can reference any dense vector expression of float having a contiguous memory layout.
- * Likewise, a Ref<MatrixXf> can reference any column major dense matrix expression of float whose column's elements are contiguously stored with
- * the possibility to have a constant space inbetween each column, i.e.: the inner stride mmust be equal to 1, but the outer-stride (or leading dimension),
- * can be greater than the number of rows.
- *
- * In the const case, if the input expression does not match the above requirement, then it is evaluated into a temporary before being passed to the function.
- * Here are some examples:
- * \code
- * MatrixXf A;
- * VectorXf a;
- * foo1(a.head()); // OK
- * foo1(A.col()); // OK
- * foo1(A.row()); // compilation error because here innerstride!=1
- * foo2(A.row()); // The row is copied into a contiguous temporary
- * foo2(2*a); // The expression is evaluated into a temporary
- * foo2(A.col().segment(2,4)); // No temporary
- * \endcode
- *
- * The range of inputs that can be referenced without temporary can be enlarged using the last two template parameter.
- * Here is an example accepting an innerstride!=1:
- * \code
- * // in-out argument:
- * void foo3(Ref<VectorXf,0,InnerStride<> > x);
- * foo3(A.row()); // OK
- * \endcode
- * The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to exploit vectorization, and will involved more
- * expensive address computations even if the input is contiguously stored in memory. To overcome this issue, one might propose to overloads internally calling a
- * template function, e.g.:
- * \code
- * // in the .h:
- * void foo(const Ref<MatrixXf>& A);
- * void foo(const Ref<MatrixXf,0,Stride<> >& A);
- *
- * // in the .cpp:
- * template<typename TypeOfA> void foo_impl(const TypeOfA& A) {
- * ... // crazy code goes here
- * }
- * void foo(const Ref<MatrixXf>& A) { foo_impl(A); }
- * void foo(const Ref<MatrixXf,0,Stride<> >& A) { foo_impl(A); }
- * \endcode
- *
- *
- * \sa PlainObjectBase::Map(), \ref TopicStorageOrders
- */
-
-namespace internal {
-
-template<typename _PlainObjectType, int _Options, typename _StrideType>
-struct traits<Ref<_PlainObjectType, _Options, _StrideType> >
- : public traits<Map<_PlainObjectType, _Options, _StrideType> >
-{
- typedef _PlainObjectType PlainObjectType;
- typedef _StrideType StrideType;
- enum {
- Options = _Options,
- Flags = traits<Map<_PlainObjectType, _Options, _StrideType> >::Flags | NestByRefBit
- };
-
- template<typename Derived> struct match {
- enum {
- HasDirectAccess = internal::has_direct_access<Derived>::ret,
- StorageOrderMatch = PlainObjectType::IsVectorAtCompileTime || Derived::IsVectorAtCompileTime || ((PlainObjectType::Flags&RowMajorBit)==(Derived::Flags&RowMajorBit)),
- InnerStrideMatch = int(StrideType::InnerStrideAtCompileTime)==int(Dynamic)
- || int(StrideType::InnerStrideAtCompileTime)==int(Derived::InnerStrideAtCompileTime)
- || (int(StrideType::InnerStrideAtCompileTime)==0 && int(Derived::InnerStrideAtCompileTime)==1),
- OuterStrideMatch = Derived::IsVectorAtCompileTime
- || int(StrideType::OuterStrideAtCompileTime)==int(Dynamic) || int(StrideType::OuterStrideAtCompileTime)==int(Derived::OuterStrideAtCompileTime),
- AlignmentMatch = (_Options!=Aligned) || ((PlainObjectType::Flags&AlignedBit)==0) || ((traits<Derived>::Flags&AlignedBit)==AlignedBit),
- MatchAtCompileTime = HasDirectAccess && StorageOrderMatch && InnerStrideMatch && OuterStrideMatch && AlignmentMatch
- };
- typedef typename internal::conditional<MatchAtCompileTime,internal::true_type,internal::false_type>::type type;
- };
-
-};
-
-template<typename Derived>
-struct traits<RefBase<Derived> > : public traits<Derived> {};
-
-}
-
-template<typename Derived> class RefBase
- : public MapBase<Derived>
-{
- typedef typename internal::traits<Derived>::PlainObjectType PlainObjectType;
- typedef typename internal::traits<Derived>::StrideType StrideType;
-
-public:
-
- typedef MapBase<Derived> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(RefBase)
-
- inline Index innerStride() const
- {
- return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1;
- }
-
- inline Index outerStride() const
- {
- return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer()
- : IsVectorAtCompileTime ? this->size()
- : int(Flags)&RowMajorBit ? this->cols()
- : this->rows();
- }
-
- RefBase()
- : Base(0,RowsAtCompileTime==Dynamic?0:RowsAtCompileTime,ColsAtCompileTime==Dynamic?0:ColsAtCompileTime),
- // Stride<> does not allow default ctor for Dynamic strides, so let' initialize it with dummy values:
- m_stride(StrideType::OuterStrideAtCompileTime==Dynamic?0:StrideType::OuterStrideAtCompileTime,
- StrideType::InnerStrideAtCompileTime==Dynamic?0:StrideType::InnerStrideAtCompileTime)
- {}
-
- EIGEN_INHERIT_ASSIGNMENT_OPERATORS(RefBase)
-
-protected:
-
- typedef Stride<StrideType::OuterStrideAtCompileTime,StrideType::InnerStrideAtCompileTime> StrideBase;
-
- template<typename Expression>
- void construct(Expression& expr)
- {
- if(PlainObjectType::RowsAtCompileTime==1)
- {
- eigen_assert(expr.rows()==1 || expr.cols()==1);
- ::new (static_cast<Base*>(this)) Base(expr.data(), 1, expr.size());
- }
- else if(PlainObjectType::ColsAtCompileTime==1)
- {
- eigen_assert(expr.rows()==1 || expr.cols()==1);
- ::new (static_cast<Base*>(this)) Base(expr.data(), expr.size(), 1);
- }
- else
- ::new (static_cast<Base*>(this)) Base(expr.data(), expr.rows(), expr.cols());
-
- if(Expression::IsVectorAtCompileTime && (!PlainObjectType::IsVectorAtCompileTime) && ((Expression::Flags&RowMajorBit)!=(PlainObjectType::Flags&RowMajorBit)))
- ::new (&m_stride) StrideBase(expr.innerStride(), StrideType::InnerStrideAtCompileTime==0?0:1);
- else
- ::new (&m_stride) StrideBase(StrideType::OuterStrideAtCompileTime==0?0:expr.outerStride(),
- StrideType::InnerStrideAtCompileTime==0?0:expr.innerStride());
- }
-
- StrideBase m_stride;
-};
-
-
-template<typename PlainObjectType, int Options, typename StrideType> class Ref
- : public RefBase<Ref<PlainObjectType, Options, StrideType> >
-{
- typedef internal::traits<Ref> Traits;
- public:
-
- typedef RefBase<Ref> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(Ref)
-
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename Derived>
- inline Ref(PlainObjectBase<Derived>& expr,
- typename internal::enable_if<bool(Traits::template match<Derived>::MatchAtCompileTime),Derived>::type* = 0)
- {
- Base::construct(expr);
- }
- template<typename Derived>
- inline Ref(const DenseBase<Derived>& expr,
- typename internal::enable_if<bool(internal::is_lvalue<Derived>::value&&bool(Traits::template match<Derived>::MatchAtCompileTime)),Derived>::type* = 0,
- int = Derived::ThisConstantIsPrivateInPlainObjectBase)
- #else
- template<typename Derived>
- inline Ref(DenseBase<Derived>& expr)
- #endif
- {
- Base::construct(expr.const_cast_derived());
- }
-
- EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Ref)
-
-};
-
-// this is the const ref version
-template<typename TPlainObjectType, int Options, typename StrideType> class Ref<const TPlainObjectType, Options, StrideType>
- : public RefBase<Ref<const TPlainObjectType, Options, StrideType> >
-{
- typedef internal::traits<Ref> Traits;
- public:
-
- typedef RefBase<Ref> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(Ref)
-
- template<typename Derived>
- inline Ref(const DenseBase<Derived>& expr)
- {
-// std::cout << match_helper<Derived>::HasDirectAccess << "," << match_helper<Derived>::OuterStrideMatch << "," << match_helper<Derived>::InnerStrideMatch << "\n";
-// std::cout << int(StrideType::OuterStrideAtCompileTime) << " - " << int(Derived::OuterStrideAtCompileTime) << "\n";
-// std::cout << int(StrideType::InnerStrideAtCompileTime) << " - " << int(Derived::InnerStrideAtCompileTime) << "\n";
- construct(expr.derived(), typename Traits::template match<Derived>::type());
- }
-
- protected:
-
- template<typename Expression>
- void construct(const Expression& expr,internal::true_type)
- {
- Base::construct(expr);
- }
-
- template<typename Expression>
- void construct(const Expression& expr, internal::false_type)
- {
- m_object.lazyAssign(expr);
- Base::construct(m_object);
- }
-
- protected:
- TPlainObjectType m_object;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_REF_H
diff --git a/src/Eigen/src/Core/Replicate.h b/src/Eigen/src/Core/Replicate.h
deleted file mode 100644
index dde86a8..0000000
--- a/src/Eigen/src/Core/Replicate.h
+++ /dev/null
@@ -1,177 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_REPLICATE_H
-#define EIGEN_REPLICATE_H
-
-namespace Eigen {
-
-/**
- * \class Replicate
- * \ingroup Core_Module
- *
- * \brief Expression of the multiple replication of a matrix or vector
- *
- * \param MatrixType the type of the object we are replicating
- *
- * This class represents an expression of the multiple replication of a matrix or vector.
- * It is the return type of DenseBase::replicate() and most of the time
- * this is the only way it is used.
- *
- * \sa DenseBase::replicate()
- */
-
-namespace internal {
-template<typename MatrixType,int RowFactor,int ColFactor>
-struct traits<Replicate<MatrixType,RowFactor,ColFactor> >
- : traits<MatrixType>
-{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename traits<MatrixType>::StorageKind StorageKind;
- typedef typename traits<MatrixType>::XprKind XprKind;
- enum {
- Factor = (RowFactor==Dynamic || ColFactor==Dynamic) ? Dynamic : RowFactor*ColFactor
- };
- typedef typename nested<MatrixType,Factor>::type MatrixTypeNested;
- typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
- enum {
- RowsAtCompileTime = RowFactor==Dynamic || int(MatrixType::RowsAtCompileTime)==Dynamic
- ? Dynamic
- : RowFactor * MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = ColFactor==Dynamic || int(MatrixType::ColsAtCompileTime)==Dynamic
- ? Dynamic
- : ColFactor * MatrixType::ColsAtCompileTime,
- //FIXME we don't propagate the max sizes !!!
- MaxRowsAtCompileTime = RowsAtCompileTime,
- MaxColsAtCompileTime = ColsAtCompileTime,
- IsRowMajor = MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1 ? 1
- : MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1 ? 0
- : (MatrixType::Flags & RowMajorBit) ? 1 : 0,
- Flags = (_MatrixTypeNested::Flags & HereditaryBits & ~RowMajorBit) | (IsRowMajor ? RowMajorBit : 0),
- CoeffReadCost = _MatrixTypeNested::CoeffReadCost
- };
-};
-}
-
-template<typename MatrixType,int RowFactor,int ColFactor> class Replicate
- : public internal::dense_xpr_base< Replicate<MatrixType,RowFactor,ColFactor> >::type
-{
- typedef typename internal::traits<Replicate>::MatrixTypeNested MatrixTypeNested;
- typedef typename internal::traits<Replicate>::_MatrixTypeNested _MatrixTypeNested;
- public:
-
- typedef typename internal::dense_xpr_base<Replicate>::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(Replicate)
-
- template<typename OriginalMatrixType>
- inline explicit Replicate(const OriginalMatrixType& a_matrix)
- : m_matrix(a_matrix), m_rowFactor(RowFactor), m_colFactor(ColFactor)
- {
- EIGEN_STATIC_ASSERT((internal::is_same<typename internal::remove_const<MatrixType>::type,OriginalMatrixType>::value),
- THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE)
- eigen_assert(RowFactor!=Dynamic && ColFactor!=Dynamic);
- }
-
- template<typename OriginalMatrixType>
- inline Replicate(const OriginalMatrixType& a_matrix, Index rowFactor, Index colFactor)
- : m_matrix(a_matrix), m_rowFactor(rowFactor), m_colFactor(colFactor)
- {
- EIGEN_STATIC_ASSERT((internal::is_same<typename internal::remove_const<MatrixType>::type,OriginalMatrixType>::value),
- THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE)
- }
-
- inline Index rows() const { return m_matrix.rows() * m_rowFactor.value(); }
- inline Index cols() const { return m_matrix.cols() * m_colFactor.value(); }
-
- inline Scalar coeff(Index rowId, Index colId) const
- {
- // try to avoid using modulo; this is a pure optimization strategy
- const Index actual_row = internal::traits<MatrixType>::RowsAtCompileTime==1 ? 0
- : RowFactor==1 ? rowId
- : rowId%m_matrix.rows();
- const Index actual_col = internal::traits<MatrixType>::ColsAtCompileTime==1 ? 0
- : ColFactor==1 ? colId
- : colId%m_matrix.cols();
-
- return m_matrix.coeff(actual_row, actual_col);
- }
- template<int LoadMode>
- inline PacketScalar packet(Index rowId, Index colId) const
- {
- const Index actual_row = internal::traits<MatrixType>::RowsAtCompileTime==1 ? 0
- : RowFactor==1 ? rowId
- : rowId%m_matrix.rows();
- const Index actual_col = internal::traits<MatrixType>::ColsAtCompileTime==1 ? 0
- : ColFactor==1 ? colId
- : colId%m_matrix.cols();
-
- return m_matrix.template packet<LoadMode>(actual_row, actual_col);
- }
-
- const _MatrixTypeNested& nestedExpression() const
- {
- return m_matrix;
- }
-
- protected:
- MatrixTypeNested m_matrix;
- const internal::variable_if_dynamic<Index, RowFactor> m_rowFactor;
- const internal::variable_if_dynamic<Index, ColFactor> m_colFactor;
-};
-
-/**
- * \return an expression of the replication of \c *this
- *
- * Example: \include MatrixBase_replicate.cpp
- * Output: \verbinclude MatrixBase_replicate.out
- *
- * \sa VectorwiseOp::replicate(), DenseBase::replicate(Index,Index), class Replicate
- */
-template<typename Derived>
-template<int RowFactor, int ColFactor>
-inline const Replicate<Derived,RowFactor,ColFactor>
-DenseBase<Derived>::replicate() const
-{
- return Replicate<Derived,RowFactor,ColFactor>(derived());
-}
-
-/**
- * \return an expression of the replication of \c *this
- *
- * Example: \include MatrixBase_replicate_int_int.cpp
- * Output: \verbinclude MatrixBase_replicate_int_int.out
- *
- * \sa VectorwiseOp::replicate(), DenseBase::replicate<int,int>(), class Replicate
- */
-template<typename Derived>
-inline const Replicate<Derived,Dynamic,Dynamic>
-DenseBase<Derived>::replicate(Index rowFactor,Index colFactor) const
-{
- return Replicate<Derived,Dynamic,Dynamic>(derived(),rowFactor,colFactor);
-}
-
-/**
- * \return an expression of the replication of each column (or row) of \c *this
- *
- * Example: \include DirectionWise_replicate_int.cpp
- * Output: \verbinclude DirectionWise_replicate_int.out
- *
- * \sa VectorwiseOp::replicate(), DenseBase::replicate(), class Replicate
- */
-template<typename ExpressionType, int Direction>
-const typename VectorwiseOp<ExpressionType,Direction>::ReplicateReturnType
-VectorwiseOp<ExpressionType,Direction>::replicate(Index factor) const
-{
- return typename VectorwiseOp<ExpressionType,Direction>::ReplicateReturnType
- (_expression(),Direction==Vertical?factor:1,Direction==Horizontal?factor:1);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_REPLICATE_H
diff --git a/src/Eigen/src/Core/ReturnByValue.h b/src/Eigen/src/Core/ReturnByValue.h
deleted file mode 100644
index d66c24b..0000000
--- a/src/Eigen/src/Core/ReturnByValue.h
+++ /dev/null
@@ -1,88 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_RETURNBYVALUE_H
-#define EIGEN_RETURNBYVALUE_H
-
-namespace Eigen {
-
-/** \class ReturnByValue
- * \ingroup Core_Module
- *
- */
-
-namespace internal {
-
-template<typename Derived>
-struct traits<ReturnByValue<Derived> >
- : public traits<typename traits<Derived>::ReturnType>
-{
- enum {
- // We're disabling the DirectAccess because e.g. the constructor of
- // the Block-with-DirectAccess expression requires to have a coeffRef method.
- // Also, we don't want to have to implement the stride stuff.
- Flags = (traits<typename traits<Derived>::ReturnType>::Flags
- | EvalBeforeNestingBit) & ~DirectAccessBit
- };
-};
-
-/* The ReturnByValue object doesn't even have a coeff() method.
- * So the only way that nesting it in an expression can work, is by evaluating it into a plain matrix.
- * So internal::nested always gives the plain return matrix type.
- *
- * FIXME: I don't understand why we need this specialization: isn't this taken care of by the EvalBeforeNestingBit ??
- */
-template<typename Derived,int n,typename PlainObject>
-struct nested<ReturnByValue<Derived>, n, PlainObject>
-{
- typedef typename traits<Derived>::ReturnType type;
-};
-
-} // end namespace internal
-
-template<typename Derived> class ReturnByValue
- : internal::no_assignment_operator, public internal::dense_xpr_base< ReturnByValue<Derived> >::type
-{
- public:
- typedef typename internal::traits<Derived>::ReturnType ReturnType;
-
- typedef typename internal::dense_xpr_base<ReturnByValue>::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(ReturnByValue)
-
- template<typename Dest>
- inline void evalTo(Dest& dst) const
- { static_cast<const Derived*>(this)->evalTo(dst); }
- inline Index rows() const { return static_cast<const Derived*>(this)->rows(); }
- inline Index cols() const { return static_cast<const Derived*>(this)->cols(); }
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-#define Unusable YOU_ARE_TRYING_TO_ACCESS_A_SINGLE_COEFFICIENT_IN_A_SPECIAL_EXPRESSION_WHERE_THAT_IS_NOT_ALLOWED_BECAUSE_THAT_WOULD_BE_INEFFICIENT
- class Unusable{
- Unusable(const Unusable&) {}
- Unusable& operator=(const Unusable&) {return *this;}
- };
- const Unusable& coeff(Index) const { return *reinterpret_cast<const Unusable*>(this); }
- const Unusable& coeff(Index,Index) const { return *reinterpret_cast<const Unusable*>(this); }
- Unusable& coeffRef(Index) { return *reinterpret_cast<Unusable*>(this); }
- Unusable& coeffRef(Index,Index) { return *reinterpret_cast<Unusable*>(this); }
-#endif
-};
-
-template<typename Derived>
-template<typename OtherDerived>
-Derived& DenseBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
-{
- other.evalTo(derived());
- return derived();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_RETURNBYVALUE_H
diff --git a/src/Eigen/src/Core/Reverse.h b/src/Eigen/src/Core/Reverse.h
deleted file mode 100644
index e30ae3d..0000000
--- a/src/Eigen/src/Core/Reverse.h
+++ /dev/null
@@ -1,224 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com>
-// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_REVERSE_H
-#define EIGEN_REVERSE_H
-
-namespace Eigen {
-
-/** \class Reverse
- * \ingroup Core_Module
- *
- * \brief Expression of the reverse of a vector or matrix
- *
- * \param MatrixType the type of the object of which we are taking the reverse
- *
- * This class represents an expression of the reverse of a vector.
- * It is the return type of MatrixBase::reverse() and VectorwiseOp::reverse()
- * and most of the time this is the only way it is used.
- *
- * \sa MatrixBase::reverse(), VectorwiseOp::reverse()
- */
-
-namespace internal {
-
-template<typename MatrixType, int Direction>
-struct traits<Reverse<MatrixType, Direction> >
- : traits<MatrixType>
-{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename traits<MatrixType>::StorageKind StorageKind;
- typedef typename traits<MatrixType>::XprKind XprKind;
- typedef typename nested<MatrixType>::type MatrixTypeNested;
- typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
-
- // let's enable LinearAccess only with vectorization because of the product overhead
- LinearAccess = ( (Direction==BothDirections) && (int(_MatrixTypeNested::Flags)&PacketAccessBit) )
- ? LinearAccessBit : 0,
-
- Flags = int(_MatrixTypeNested::Flags) & (HereditaryBits | LvalueBit | PacketAccessBit | LinearAccess),
-
- CoeffReadCost = _MatrixTypeNested::CoeffReadCost
- };
-};
-
-template<typename PacketScalar, bool ReversePacket> struct reverse_packet_cond
-{
- static inline PacketScalar run(const PacketScalar& x) { return preverse(x); }
-};
-
-template<typename PacketScalar> struct reverse_packet_cond<PacketScalar,false>
-{
- static inline PacketScalar run(const PacketScalar& x) { return x; }
-};
-
-} // end namespace internal
-
-template<typename MatrixType, int Direction> class Reverse
- : public internal::dense_xpr_base< Reverse<MatrixType, Direction> >::type
-{
- public:
-
- typedef typename internal::dense_xpr_base<Reverse>::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(Reverse)
- using Base::IsRowMajor;
-
- // next line is necessary because otherwise const version of operator()
- // is hidden by non-const version defined in this file
- using Base::operator();
-
- protected:
- enum {
- PacketSize = internal::packet_traits<Scalar>::size,
- IsColMajor = !IsRowMajor,
- ReverseRow = (Direction == Vertical) || (Direction == BothDirections),
- ReverseCol = (Direction == Horizontal) || (Direction == BothDirections),
- OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1,
- OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1,
- ReversePacket = (Direction == BothDirections)
- || ((Direction == Vertical) && IsColMajor)
- || ((Direction == Horizontal) && IsRowMajor)
- };
- typedef internal::reverse_packet_cond<PacketScalar,ReversePacket> reverse_packet;
- public:
-
- inline Reverse(const MatrixType& matrix) : m_matrix(matrix) { }
-
- EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Reverse)
-
- inline Index rows() const { return m_matrix.rows(); }
- inline Index cols() const { return m_matrix.cols(); }
-
- inline Index innerStride() const
- {
- return -m_matrix.innerStride();
- }
-
- inline Scalar& operator()(Index row, Index col)
- {
- eigen_assert(row >= 0 && row < rows() && col >= 0 && col < cols());
- return coeffRef(row, col);
- }
-
- inline Scalar& coeffRef(Index row, Index col)
- {
- return m_matrix.const_cast_derived().coeffRef(ReverseRow ? m_matrix.rows() - row - 1 : row,
- ReverseCol ? m_matrix.cols() - col - 1 : col);
- }
-
- inline CoeffReturnType coeff(Index row, Index col) const
- {
- return m_matrix.coeff(ReverseRow ? m_matrix.rows() - row - 1 : row,
- ReverseCol ? m_matrix.cols() - col - 1 : col);
- }
-
- inline CoeffReturnType coeff(Index index) const
- {
- return m_matrix.coeff(m_matrix.size() - index - 1);
- }
-
- inline Scalar& coeffRef(Index index)
- {
- return m_matrix.const_cast_derived().coeffRef(m_matrix.size() - index - 1);
- }
-
- inline Scalar& operator()(Index index)
- {
- eigen_assert(index >= 0 && index < m_matrix.size());
- return coeffRef(index);
- }
-
- template<int LoadMode>
- inline const PacketScalar packet(Index row, Index col) const
- {
- return reverse_packet::run(m_matrix.template packet<LoadMode>(
- ReverseRow ? m_matrix.rows() - row - OffsetRow : row,
- ReverseCol ? m_matrix.cols() - col - OffsetCol : col));
- }
-
- template<int LoadMode>
- inline void writePacket(Index row, Index col, const PacketScalar& x)
- {
- m_matrix.const_cast_derived().template writePacket<LoadMode>(
- ReverseRow ? m_matrix.rows() - row - OffsetRow : row,
- ReverseCol ? m_matrix.cols() - col - OffsetCol : col,
- reverse_packet::run(x));
- }
-
- template<int LoadMode>
- inline const PacketScalar packet(Index index) const
- {
- return internal::preverse(m_matrix.template packet<LoadMode>( m_matrix.size() - index - PacketSize ));
- }
-
- template<int LoadMode>
- inline void writePacket(Index index, const PacketScalar& x)
- {
- m_matrix.const_cast_derived().template writePacket<LoadMode>(m_matrix.size() - index - PacketSize, internal::preverse(x));
- }
-
- const typename internal::remove_all<typename MatrixType::Nested>::type&
- nestedExpression() const
- {
- return m_matrix;
- }
-
- protected:
- typename MatrixType::Nested m_matrix;
-};
-
-/** \returns an expression of the reverse of *this.
- *
- * Example: \include MatrixBase_reverse.cpp
- * Output: \verbinclude MatrixBase_reverse.out
- *
- */
-template<typename Derived>
-inline typename DenseBase<Derived>::ReverseReturnType
-DenseBase<Derived>::reverse()
-{
- return derived();
-}
-
-/** This is the const version of reverse(). */
-template<typename Derived>
-inline const typename DenseBase<Derived>::ConstReverseReturnType
-DenseBase<Derived>::reverse() const
-{
- return derived();
-}
-
-/** This is the "in place" version of reverse: it reverses \c *this.
- *
- * In most cases it is probably better to simply use the reversed expression
- * of a matrix. However, when reversing the matrix data itself is really needed,
- * then this "in-place" version is probably the right choice because it provides
- * the following additional features:
- * - less error prone: doing the same operation with .reverse() requires special care:
- * \code m = m.reverse().eval(); \endcode
- * - this API allows to avoid creating a temporary (the current implementation creates a temporary, but that could be avoided using swap)
- * - it allows future optimizations (cache friendliness, etc.)
- *
- * \sa reverse() */
-template<typename Derived>
-inline void DenseBase<Derived>::reverseInPlace()
-{
- derived() = derived().reverse().eval();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_REVERSE_H
diff --git a/src/Eigen/src/Core/Select.h b/src/Eigen/src/Core/Select.h
deleted file mode 100644
index 87993bb..0000000
--- a/src/Eigen/src/Core/Select.h
+++ /dev/null
@@ -1,162 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SELECT_H
-#define EIGEN_SELECT_H
-
-namespace Eigen {
-
-/** \class Select
- * \ingroup Core_Module
- *
- * \brief Expression of a coefficient wise version of the C++ ternary operator ?:
- *
- * \param ConditionMatrixType the type of the \em condition expression which must be a boolean matrix
- * \param ThenMatrixType the type of the \em then expression
- * \param ElseMatrixType the type of the \em else expression
- *
- * This class represents an expression of a coefficient wise version of the C++ ternary operator ?:.
- * It is the return type of DenseBase::select() and most of the time this is the only way it is used.
- *
- * \sa DenseBase::select(const DenseBase<ThenDerived>&, const DenseBase<ElseDerived>&) const
- */
-
-namespace internal {
-template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType>
-struct traits<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
- : traits<ThenMatrixType>
-{
- typedef typename traits<ThenMatrixType>::Scalar Scalar;
- typedef Dense StorageKind;
- typedef typename traits<ThenMatrixType>::XprKind XprKind;
- typedef typename ConditionMatrixType::Nested ConditionMatrixNested;
- typedef typename ThenMatrixType::Nested ThenMatrixNested;
- typedef typename ElseMatrixType::Nested ElseMatrixNested;
- enum {
- RowsAtCompileTime = ConditionMatrixType::RowsAtCompileTime,
- ColsAtCompileTime = ConditionMatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = ConditionMatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = ConditionMatrixType::MaxColsAtCompileTime,
- Flags = (unsigned int)ThenMatrixType::Flags & ElseMatrixType::Flags & HereditaryBits,
- CoeffReadCost = traits<typename remove_all<ConditionMatrixNested>::type>::CoeffReadCost
- + EIGEN_SIZE_MAX(traits<typename remove_all<ThenMatrixNested>::type>::CoeffReadCost,
- traits<typename remove_all<ElseMatrixNested>::type>::CoeffReadCost)
- };
-};
-}
-
-template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType>
-class Select : internal::no_assignment_operator,
- public internal::dense_xpr_base< Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >::type
-{
- public:
-
- typedef typename internal::dense_xpr_base<Select>::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(Select)
-
- Select(const ConditionMatrixType& a_conditionMatrix,
- const ThenMatrixType& a_thenMatrix,
- const ElseMatrixType& a_elseMatrix)
- : m_condition(a_conditionMatrix), m_then(a_thenMatrix), m_else(a_elseMatrix)
- {
- eigen_assert(m_condition.rows() == m_then.rows() && m_condition.rows() == m_else.rows());
- eigen_assert(m_condition.cols() == m_then.cols() && m_condition.cols() == m_else.cols());
- }
-
- Index rows() const { return m_condition.rows(); }
- Index cols() const { return m_condition.cols(); }
-
- const Scalar coeff(Index i, Index j) const
- {
- if (m_condition.coeff(i,j))
- return m_then.coeff(i,j);
- else
- return m_else.coeff(i,j);
- }
-
- const Scalar coeff(Index i) const
- {
- if (m_condition.coeff(i))
- return m_then.coeff(i);
- else
- return m_else.coeff(i);
- }
-
- const ConditionMatrixType& conditionMatrix() const
- {
- return m_condition;
- }
-
- const ThenMatrixType& thenMatrix() const
- {
- return m_then;
- }
-
- const ElseMatrixType& elseMatrix() const
- {
- return m_else;
- }
-
- protected:
- typename ConditionMatrixType::Nested m_condition;
- typename ThenMatrixType::Nested m_then;
- typename ElseMatrixType::Nested m_else;
-};
-
-
-/** \returns a matrix where each coefficient (i,j) is equal to \a thenMatrix(i,j)
- * if \c *this(i,j), and \a elseMatrix(i,j) otherwise.
- *
- * Example: \include MatrixBase_select.cpp
- * Output: \verbinclude MatrixBase_select.out
- *
- * \sa class Select
- */
-template<typename Derived>
-template<typename ThenDerived,typename ElseDerived>
-inline const Select<Derived,ThenDerived,ElseDerived>
-DenseBase<Derived>::select(const DenseBase<ThenDerived>& thenMatrix,
- const DenseBase<ElseDerived>& elseMatrix) const
-{
- return Select<Derived,ThenDerived,ElseDerived>(derived(), thenMatrix.derived(), elseMatrix.derived());
-}
-
-/** Version of DenseBase::select(const DenseBase&, const DenseBase&) with
- * the \em else expression being a scalar value.
- *
- * \sa DenseBase::select(const DenseBase<ThenDerived>&, const DenseBase<ElseDerived>&) const, class Select
- */
-template<typename Derived>
-template<typename ThenDerived>
-inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType>
-DenseBase<Derived>::select(const DenseBase<ThenDerived>& thenMatrix,
- const typename ThenDerived::Scalar& elseScalar) const
-{
- return Select<Derived,ThenDerived,typename ThenDerived::ConstantReturnType>(
- derived(), thenMatrix.derived(), ThenDerived::Constant(rows(),cols(),elseScalar));
-}
-
-/** Version of DenseBase::select(const DenseBase&, const DenseBase&) with
- * the \em then expression being a scalar value.
- *
- * \sa DenseBase::select(const DenseBase<ThenDerived>&, const DenseBase<ElseDerived>&) const, class Select
- */
-template<typename Derived>
-template<typename ElseDerived>
-inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived >
-DenseBase<Derived>::select(const typename ElseDerived::Scalar& thenScalar,
- const DenseBase<ElseDerived>& elseMatrix) const
-{
- return Select<Derived,typename ElseDerived::ConstantReturnType,ElseDerived>(
- derived(), ElseDerived::Constant(rows(),cols(),thenScalar), elseMatrix.derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SELECT_H
diff --git a/src/Eigen/src/Core/SelfAdjointView.h b/src/Eigen/src/Core/SelfAdjointView.h
deleted file mode 100644
index 6fa7cd1..0000000
--- a/src/Eigen/src/Core/SelfAdjointView.h
+++ /dev/null
@@ -1,314 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SELFADJOINTMATRIX_H
-#define EIGEN_SELFADJOINTMATRIX_H
-
-namespace Eigen {
-
-/** \class SelfAdjointView
- * \ingroup Core_Module
- *
- *
- * \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix
- *
- * \param MatrixType the type of the dense matrix storing the coefficients
- * \param TriangularPart can be either \c #Lower or \c #Upper
- *
- * This class is an expression of a sefladjoint matrix from a triangular part of a matrix
- * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
- * and most of the time this is the only way that it is used.
- *
- * \sa class TriangularBase, MatrixBase::selfadjointView()
- */
-
-namespace internal {
-template<typename MatrixType, unsigned int UpLo>
-struct traits<SelfAdjointView<MatrixType, UpLo> > : traits<MatrixType>
-{
- typedef typename nested<MatrixType>::type MatrixTypeNested;
- typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
- typedef MatrixType ExpressionType;
- typedef typename MatrixType::PlainObject DenseMatrixType;
- enum {
- Mode = UpLo | SelfAdjoint,
- Flags = MatrixTypeNestedCleaned::Flags & (HereditaryBits)
- & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)), // FIXME these flags should be preserved
- CoeffReadCost = MatrixTypeNestedCleaned::CoeffReadCost
- };
-};
-}
-
-template <typename Lhs, int LhsMode, bool LhsIsVector,
- typename Rhs, int RhsMode, bool RhsIsVector>
-struct SelfadjointProductMatrix;
-
-// FIXME could also be called SelfAdjointWrapper to be consistent with DiagonalWrapper ??
-template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
- : public TriangularBase<SelfAdjointView<MatrixType, UpLo> >
-{
- public:
-
- typedef TriangularBase<SelfAdjointView> Base;
- typedef typename internal::traits<SelfAdjointView>::MatrixTypeNested MatrixTypeNested;
- typedef typename internal::traits<SelfAdjointView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned;
-
- /** \brief The type of coefficients in this matrix */
- typedef typename internal::traits<SelfAdjointView>::Scalar Scalar;
-
- typedef typename MatrixType::Index Index;
-
- enum {
- Mode = internal::traits<SelfAdjointView>::Mode
- };
- typedef typename MatrixType::PlainObject PlainObject;
-
- inline SelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
- {}
-
- inline Index rows() const { return m_matrix.rows(); }
- inline Index cols() const { return m_matrix.cols(); }
- inline Index outerStride() const { return m_matrix.outerStride(); }
- inline Index innerStride() const { return m_matrix.innerStride(); }
-
- /** \sa MatrixBase::coeff()
- * \warning the coordinates must fit into the referenced triangular part
- */
- inline Scalar coeff(Index row, Index col) const
- {
- Base::check_coordinates_internal(row, col);
- return m_matrix.coeff(row, col);
- }
-
- /** \sa MatrixBase::coeffRef()
- * \warning the coordinates must fit into the referenced triangular part
- */
- inline Scalar& coeffRef(Index row, Index col)
- {
- Base::check_coordinates_internal(row, col);
- return m_matrix.const_cast_derived().coeffRef(row, col);
- }
-
- /** \internal */
- const MatrixTypeNestedCleaned& _expression() const { return m_matrix; }
-
- const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; }
- MatrixTypeNestedCleaned& nestedExpression() { return *const_cast<MatrixTypeNestedCleaned*>(&m_matrix); }
-
- /** Efficient self-adjoint matrix times vector/matrix product */
- template<typename OtherDerived>
- SelfadjointProductMatrix<MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime>
- operator*(const MatrixBase<OtherDerived>& rhs) const
- {
- return SelfadjointProductMatrix
- <MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime>
- (m_matrix, rhs.derived());
- }
-
- /** Efficient vector/matrix times self-adjoint matrix product */
- template<typename OtherDerived> friend
- SelfadjointProductMatrix<OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false>
- operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView& rhs)
- {
- return SelfadjointProductMatrix
- <OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false>
- (lhs.derived(),rhs.m_matrix);
- }
-
- /** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this:
- * \f$ this = this + \alpha u v^* + conj(\alpha) v u^* \f$
- * \returns a reference to \c *this
- *
- * The vectors \a u and \c v \b must be column vectors, however they can be
- * a adjoint expression without any overhead. Only the meaningful triangular
- * part of the matrix is updated, the rest is left unchanged.
- *
- * \sa rankUpdate(const MatrixBase<DerivedU>&, Scalar)
- */
- template<typename DerivedU, typename DerivedV>
- SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, const Scalar& alpha = Scalar(1));
-
- /** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
- * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
- *
- * \returns a reference to \c *this
- *
- * Note that to perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
- * call this function with u.adjoint().
- *
- * \sa rankUpdate(const MatrixBase<DerivedU>&, const MatrixBase<DerivedV>&, Scalar)
- */
- template<typename DerivedU>
- SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1));
-
-/////////// Cholesky module ///////////
-
- const LLT<PlainObject, UpLo> llt() const;
- const LDLT<PlainObject, UpLo> ldlt() const;
-
-/////////// Eigenvalue module ///////////
-
- /** Real part of #Scalar */
- typedef typename NumTraits<Scalar>::Real RealScalar;
- /** Return type of eigenvalues() */
- typedef Matrix<RealScalar, internal::traits<MatrixType>::ColsAtCompileTime, 1> EigenvaluesReturnType;
-
- EigenvaluesReturnType eigenvalues() const;
- RealScalar operatorNorm() const;
-
- #ifdef EIGEN2_SUPPORT
- template<typename OtherDerived>
- SelfAdjointView& operator=(const MatrixBase<OtherDerived>& other)
- {
- enum {
- OtherPart = UpLo == Upper ? StrictlyLower : StrictlyUpper
- };
- m_matrix.const_cast_derived().template triangularView<UpLo>() = other;
- m_matrix.const_cast_derived().template triangularView<OtherPart>() = other.adjoint();
- return *this;
- }
- template<typename OtherMatrixType, unsigned int OtherMode>
- SelfAdjointView& operator=(const TriangularView<OtherMatrixType, OtherMode>& other)
- {
- enum {
- OtherPart = UpLo == Upper ? StrictlyLower : StrictlyUpper
- };
- m_matrix.const_cast_derived().template triangularView<UpLo>() = other.toDenseMatrix();
- m_matrix.const_cast_derived().template triangularView<OtherPart>() = other.toDenseMatrix().adjoint();
- return *this;
- }
- #endif
-
- protected:
- MatrixTypeNested m_matrix;
-};
-
-
-// template<typename OtherDerived, typename MatrixType, unsigned int UpLo>
-// internal::selfadjoint_matrix_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >
-// operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView<MatrixType,UpLo>& rhs)
-// {
-// return internal::matrix_selfadjoint_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >(lhs.derived(),rhs);
-// }
-
-// selfadjoint to dense matrix
-
-namespace internal {
-
-template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount, ClearOpposite>
-{
- enum {
- col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
- row = (UnrollCount-1) % Derived1::RowsAtCompileTime
- };
-
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount-1, ClearOpposite>::run(dst, src);
-
- if(row == col)
- dst.coeffRef(row, col) = numext::real(src.coeff(row, col));
- else if(row < col)
- dst.coeffRef(col, row) = numext::conj(dst.coeffRef(row, col) = src.coeff(row, col));
- }
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Upper, 0, ClearOpposite>
-{
- static inline void run(Derived1 &, const Derived2 &) {}
-};
-
-template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount, ClearOpposite>
-{
- enum {
- col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
- row = (UnrollCount-1) % Derived1::RowsAtCompileTime
- };
-
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount-1, ClearOpposite>::run(dst, src);
-
- if(row == col)
- dst.coeffRef(row, col) = numext::real(src.coeff(row, col));
- else if(row > col)
- dst.coeffRef(col, row) = numext::conj(dst.coeffRef(row, col) = src.coeff(row, col));
- }
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Lower, 0, ClearOpposite>
-{
- static inline void run(Derived1 &, const Derived2 &) {}
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Upper, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- for(Index j = 0; j < dst.cols(); ++j)
- {
- for(Index i = 0; i < j; ++i)
- {
- dst.copyCoeff(i, j, src);
- dst.coeffRef(j,i) = numext::conj(dst.coeff(i,j));
- }
- dst.copyCoeff(j, j, src);
- }
- }
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Lower, Dynamic, ClearOpposite>
-{
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- typedef typename Derived1::Index Index;
- for(Index i = 0; i < dst.rows(); ++i)
- {
- for(Index j = 0; j < i; ++j)
- {
- dst.copyCoeff(i, j, src);
- dst.coeffRef(j,i) = numext::conj(dst.coeff(i,j));
- }
- dst.copyCoeff(i, i, src);
- }
- }
-};
-
-} // end namespace internal
-
-/***************************************************************************
-* Implementation of MatrixBase methods
-***************************************************************************/
-
-template<typename Derived>
-template<unsigned int UpLo>
-typename MatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type
-MatrixBase<Derived>::selfadjointView() const
-{
- return derived();
-}
-
-template<typename Derived>
-template<unsigned int UpLo>
-typename MatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type
-MatrixBase<Derived>::selfadjointView()
-{
- return derived();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SELFADJOINTMATRIX_H
diff --git a/src/Eigen/src/Core/SelfCwiseBinaryOp.h b/src/Eigen/src/Core/SelfCwiseBinaryOp.h
deleted file mode 100644
index 22f3047..0000000
--- a/src/Eigen/src/Core/SelfCwiseBinaryOp.h
+++ /dev/null
@@ -1,197 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SELFCWISEBINARYOP_H
-#define EIGEN_SELFCWISEBINARYOP_H
-
-namespace Eigen {
-
-/** \class SelfCwiseBinaryOp
- * \ingroup Core_Module
- *
- * \internal
- *
- * \brief Internal helper class for optimizing operators like +=, -=
- *
- * This is a pseudo expression class re-implementing the copyCoeff/copyPacket
- * method to directly performs a +=/-= operations in an optimal way. In particular,
- * this allows to make sure that the input/output data are loaded only once using
- * aligned packet loads.
- *
- * \sa class SwapWrapper for a similar trick.
- */
-
-namespace internal {
-template<typename BinaryOp, typename Lhs, typename Rhs>
-struct traits<SelfCwiseBinaryOp<BinaryOp,Lhs,Rhs> >
- : traits<CwiseBinaryOp<BinaryOp,Lhs,Rhs> >
-{
- enum {
- // Note that it is still a good idea to preserve the DirectAccessBit
- // so that assign can correctly align the data.
- Flags = traits<CwiseBinaryOp<BinaryOp,Lhs,Rhs> >::Flags | (Lhs::Flags&DirectAccessBit) | (Lhs::Flags&LvalueBit),
- OuterStrideAtCompileTime = Lhs::OuterStrideAtCompileTime,
- InnerStrideAtCompileTime = Lhs::InnerStrideAtCompileTime
- };
-};
-}
-
-template<typename BinaryOp, typename Lhs, typename Rhs> class SelfCwiseBinaryOp
- : public internal::dense_xpr_base< SelfCwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type
-{
- public:
-
- typedef typename internal::dense_xpr_base<SelfCwiseBinaryOp>::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(SelfCwiseBinaryOp)
-
- typedef typename internal::packet_traits<Scalar>::type Packet;
-
- inline SelfCwiseBinaryOp(Lhs& xpr, const BinaryOp& func = BinaryOp()) : m_matrix(xpr), m_functor(func) {}
-
- inline Index rows() const { return m_matrix.rows(); }
- inline Index cols() const { return m_matrix.cols(); }
- inline Index outerStride() const { return m_matrix.outerStride(); }
- inline Index innerStride() const { return m_matrix.innerStride(); }
- inline const Scalar* data() const { return m_matrix.data(); }
-
- // note that this function is needed by assign to correctly align loads/stores
- // TODO make Assign use .data()
- inline Scalar& coeffRef(Index row, Index col)
- {
- EIGEN_STATIC_ASSERT_LVALUE(Lhs)
- return m_matrix.const_cast_derived().coeffRef(row, col);
- }
- inline const Scalar& coeffRef(Index row, Index col) const
- {
- return m_matrix.coeffRef(row, col);
- }
-
- // note that this function is needed by assign to correctly align loads/stores
- // TODO make Assign use .data()
- inline Scalar& coeffRef(Index index)
- {
- EIGEN_STATIC_ASSERT_LVALUE(Lhs)
- return m_matrix.const_cast_derived().coeffRef(index);
- }
- inline const Scalar& coeffRef(Index index) const
- {
- return m_matrix.const_cast_derived().coeffRef(index);
- }
-
- template<typename OtherDerived>
- void copyCoeff(Index row, Index col, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- Scalar& tmp = m_matrix.coeffRef(row,col);
- tmp = m_functor(tmp, _other.coeff(row,col));
- }
-
- template<typename OtherDerived>
- void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(index >= 0 && index < m_matrix.size());
- Scalar& tmp = m_matrix.coeffRef(index);
- tmp = m_functor(tmp, _other.coeff(index));
- }
-
- template<typename OtherDerived, int StoreMode, int LoadMode>
- void copyPacket(Index row, Index col, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- m_matrix.template writePacket<StoreMode>(row, col,
- m_functor.packetOp(m_matrix.template packet<StoreMode>(row, col),_other.template packet<LoadMode>(row, col)) );
- }
-
- template<typename OtherDerived, int StoreMode, int LoadMode>
- void copyPacket(Index index, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(index >= 0 && index < m_matrix.size());
- m_matrix.template writePacket<StoreMode>(index,
- m_functor.packetOp(m_matrix.template packet<StoreMode>(index),_other.template packet<LoadMode>(index)) );
- }
-
- // reimplement lazyAssign to handle complex *= real
- // see CwiseBinaryOp ctor for details
- template<typename RhsDerived>
- EIGEN_STRONG_INLINE SelfCwiseBinaryOp& lazyAssign(const DenseBase<RhsDerived>& rhs)
- {
- EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Lhs,RhsDerived)
- EIGEN_CHECK_BINARY_COMPATIBILIY(BinaryOp,typename Lhs::Scalar,typename RhsDerived::Scalar);
-
- #ifdef EIGEN_DEBUG_ASSIGN
- internal::assign_traits<SelfCwiseBinaryOp, RhsDerived>::debug();
- #endif
- eigen_assert(rows() == rhs.rows() && cols() == rhs.cols());
- internal::assign_impl<SelfCwiseBinaryOp, RhsDerived>::run(*this,rhs.derived());
- #ifndef EIGEN_NO_DEBUG
- this->checkTransposeAliasing(rhs.derived());
- #endif
- return *this;
- }
-
- // overloaded to honor evaluation of special matrices
- // maybe another solution would be to not use SelfCwiseBinaryOp
- // at first...
- SelfCwiseBinaryOp& operator=(const Rhs& _rhs)
- {
- typename internal::nested<Rhs>::type rhs(_rhs);
- return Base::operator=(rhs);
- }
-
- Lhs& expression() const
- {
- return m_matrix;
- }
-
- const BinaryOp& functor() const
- {
- return m_functor;
- }
-
- protected:
- Lhs& m_matrix;
- const BinaryOp& m_functor;
-
- private:
- SelfCwiseBinaryOp& operator=(const SelfCwiseBinaryOp&);
-};
-
-template<typename Derived>
-inline Derived& DenseBase<Derived>::operator*=(const Scalar& other)
-{
- typedef typename Derived::PlainObject PlainObject;
- SelfCwiseBinaryOp<internal::scalar_product_op<Scalar>, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
- tmp = PlainObject::Constant(rows(),cols(),other);
- return derived();
-}
-
-template<typename Derived>
-inline Derived& DenseBase<Derived>::operator/=(const Scalar& other)
-{
- typedef typename internal::conditional<NumTraits<Scalar>::IsInteger,
- internal::scalar_quotient_op<Scalar>,
- internal::scalar_product_op<Scalar> >::type BinOp;
- typedef typename Derived::PlainObject PlainObject;
- SelfCwiseBinaryOp<BinOp, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
- Scalar actual_other;
- if(NumTraits<Scalar>::IsInteger) actual_other = other;
- else actual_other = Scalar(1)/other;
- tmp = PlainObject::Constant(rows(),cols(), actual_other);
- return derived();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SELFCWISEBINARYOP_H
diff --git a/src/Eigen/src/Core/SolveTriangular.h b/src/Eigen/src/Core/SolveTriangular.h
deleted file mode 100644
index ef17f28..0000000
--- a/src/Eigen/src/Core/SolveTriangular.h
+++ /dev/null
@@ -1,260 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SOLVETRIANGULAR_H
-#define EIGEN_SOLVETRIANGULAR_H
-
-namespace Eigen {
-
-namespace internal {
-
-// Forward declarations:
-// The following two routines are implemented in the products/TriangularSolver*.h files
-template<typename LhsScalar, typename RhsScalar, typename Index, int Side, int Mode, bool Conjugate, int StorageOrder>
-struct triangular_solve_vector;
-
-template <typename Scalar, typename Index, int Side, int Mode, bool Conjugate, int TriStorageOrder, int OtherStorageOrder>
-struct triangular_solve_matrix;
-
-// small helper struct extracting some traits on the underlying solver operation
-template<typename Lhs, typename Rhs, int Side>
-class trsolve_traits
-{
- private:
- enum {
- RhsIsVectorAtCompileTime = (Side==OnTheLeft ? Rhs::ColsAtCompileTime : Rhs::RowsAtCompileTime)==1
- };
- public:
- enum {
- Unrolling = (RhsIsVectorAtCompileTime && Rhs::SizeAtCompileTime != Dynamic && Rhs::SizeAtCompileTime <= 8)
- ? CompleteUnrolling : NoUnrolling,
- RhsVectors = RhsIsVectorAtCompileTime ? 1 : Dynamic
- };
-};
-
-template<typename Lhs, typename Rhs,
- int Side, // can be OnTheLeft/OnTheRight
- int Mode, // can be Upper/Lower | UnitDiag
- int Unrolling = trsolve_traits<Lhs,Rhs,Side>::Unrolling,
- int RhsVectors = trsolve_traits<Lhs,Rhs,Side>::RhsVectors
- >
-struct triangular_solver_selector;
-
-template<typename Lhs, typename Rhs, int Side, int Mode>
-struct triangular_solver_selector<Lhs,Rhs,Side,Mode,NoUnrolling,1>
-{
- typedef typename Lhs::Scalar LhsScalar;
- typedef typename Rhs::Scalar RhsScalar;
- typedef blas_traits<Lhs> LhsProductTraits;
- typedef typename LhsProductTraits::ExtractType ActualLhsType;
- typedef Map<Matrix<RhsScalar,Dynamic,1>, Aligned> MappedRhs;
- static void run(const Lhs& lhs, Rhs& rhs)
- {
- ActualLhsType actualLhs = LhsProductTraits::extract(lhs);
-
- // FIXME find a way to allow an inner stride if packet_traits<Scalar>::size==1
-
- bool useRhsDirectly = Rhs::InnerStrideAtCompileTime==1 || rhs.innerStride()==1;
-
- ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhs,rhs.size(),
- (useRhsDirectly ? rhs.data() : 0));
-
- if(!useRhsDirectly)
- MappedRhs(actualRhs,rhs.size()) = rhs;
-
- triangular_solve_vector<LhsScalar, RhsScalar, typename Lhs::Index, Side, Mode, LhsProductTraits::NeedToConjugate,
- (int(Lhs::Flags) & RowMajorBit) ? RowMajor : ColMajor>
- ::run(actualLhs.cols(), actualLhs.data(), actualLhs.outerStride(), actualRhs);
-
- if(!useRhsDirectly)
- rhs = MappedRhs(actualRhs, rhs.size());
- }
-};
-
-// the rhs is a matrix
-template<typename Lhs, typename Rhs, int Side, int Mode>
-struct triangular_solver_selector<Lhs,Rhs,Side,Mode,NoUnrolling,Dynamic>
-{
- typedef typename Rhs::Scalar Scalar;
- typedef typename Rhs::Index Index;
- typedef blas_traits<Lhs> LhsProductTraits;
- typedef typename LhsProductTraits::DirectLinearAccessType ActualLhsType;
-
- static void run(const Lhs& lhs, Rhs& rhs)
- {
- typename internal::add_const_on_value_type<ActualLhsType>::type actualLhs = LhsProductTraits::extract(lhs);
-
- const Index size = lhs.rows();
- const Index othersize = Side==OnTheLeft? rhs.cols() : rhs.rows();
-
- typedef internal::gemm_blocking_space<(Rhs::Flags&RowMajorBit) ? RowMajor : ColMajor,Scalar,Scalar,
- Rhs::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime, Lhs::MaxRowsAtCompileTime,4> BlockingType;
-
- BlockingType blocking(rhs.rows(), rhs.cols(), size);
-
- triangular_solve_matrix<Scalar,Index,Side,Mode,LhsProductTraits::NeedToConjugate,(int(Lhs::Flags) & RowMajorBit) ? RowMajor : ColMajor,
- (Rhs::Flags&RowMajorBit) ? RowMajor : ColMajor>
- ::run(size, othersize, &actualLhs.coeffRef(0,0), actualLhs.outerStride(), &rhs.coeffRef(0,0), rhs.outerStride(), blocking);
- }
-};
-
-/***************************************************************************
-* meta-unrolling implementation
-***************************************************************************/
-
-template<typename Lhs, typename Rhs, int Mode, int Index, int Size,
- bool Stop = Index==Size>
-struct triangular_solver_unroller;
-
-template<typename Lhs, typename Rhs, int Mode, int Index, int Size>
-struct triangular_solver_unroller<Lhs,Rhs,Mode,Index,Size,false> {
- enum {
- IsLower = ((Mode&Lower)==Lower),
- I = IsLower ? Index : Size - Index - 1,
- S = IsLower ? 0 : I+1
- };
- static void run(const Lhs& lhs, Rhs& rhs)
- {
- if (Index>0)
- rhs.coeffRef(I) -= lhs.row(I).template segment<Index>(S).transpose()
- .cwiseProduct(rhs.template segment<Index>(S)).sum();
-
- if(!(Mode & UnitDiag))
- rhs.coeffRef(I) /= lhs.coeff(I,I);
-
- triangular_solver_unroller<Lhs,Rhs,Mode,Index+1,Size>::run(lhs,rhs);
- }
-};
-
-template<typename Lhs, typename Rhs, int Mode, int Index, int Size>
-struct triangular_solver_unroller<Lhs,Rhs,Mode,Index,Size,true> {
- static void run(const Lhs&, Rhs&) {}
-};
-
-template<typename Lhs, typename Rhs, int Mode>
-struct triangular_solver_selector<Lhs,Rhs,OnTheLeft,Mode,CompleteUnrolling,1> {
- static void run(const Lhs& lhs, Rhs& rhs)
- { triangular_solver_unroller<Lhs,Rhs,Mode,0,Rhs::SizeAtCompileTime>::run(lhs,rhs); }
-};
-
-template<typename Lhs, typename Rhs, int Mode>
-struct triangular_solver_selector<Lhs,Rhs,OnTheRight,Mode,CompleteUnrolling,1> {
- static void run(const Lhs& lhs, Rhs& rhs)
- {
- Transpose<const Lhs> trLhs(lhs);
- Transpose<Rhs> trRhs(rhs);
-
- triangular_solver_unroller<Transpose<const Lhs>,Transpose<Rhs>,
- ((Mode&Upper)==Upper ? Lower : Upper) | (Mode&UnitDiag),
- 0,Rhs::SizeAtCompileTime>::run(trLhs,trRhs);
- }
-};
-
-} // end namespace internal
-
-/***************************************************************************
-* TriangularView methods
-***************************************************************************/
-
-/** "in-place" version of TriangularView::solve() where the result is written in \a other
- *
- * \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here.
- * This function will const_cast it, so constness isn't honored here.
- *
- * See TriangularView:solve() for the details.
- */
-template<typename MatrixType, unsigned int Mode>
-template<int Side, typename OtherDerived>
-void TriangularView<MatrixType,Mode>::solveInPlace(const MatrixBase<OtherDerived>& _other) const
-{
- OtherDerived& other = _other.const_cast_derived();
- eigen_assert( cols() == rows() && ((Side==OnTheLeft && cols() == other.rows()) || (Side==OnTheRight && cols() == other.cols())) );
- eigen_assert((!(Mode & ZeroDiag)) && bool(Mode & (Upper|Lower)));
-
- enum { copy = internal::traits<OtherDerived>::Flags & RowMajorBit && OtherDerived::IsVectorAtCompileTime };
- typedef typename internal::conditional<copy,
- typename internal::plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::type OtherCopy;
- OtherCopy otherCopy(other);
-
- internal::triangular_solver_selector<MatrixType, typename internal::remove_reference<OtherCopy>::type,
- Side, Mode>::run(nestedExpression(), otherCopy);
-
- if (copy)
- other = otherCopy;
-}
-
-/** \returns the product of the inverse of \c *this with \a other, \a *this being triangular.
- *
- * This function computes the inverse-matrix matrix product inverse(\c *this) * \a other if
- * \a Side==OnTheLeft (the default), or the right-inverse-multiply \a other * inverse(\c *this) if
- * \a Side==OnTheRight.
- *
- * The matrix \c *this must be triangular and invertible (i.e., all the coefficients of the
- * diagonal must be non zero). It works as a forward (resp. backward) substitution if \c *this
- * is an upper (resp. lower) triangular matrix.
- *
- * Example: \include MatrixBase_marked.cpp
- * Output: \verbinclude MatrixBase_marked.out
- *
- * This function returns an expression of the inverse-multiply and can works in-place if it is assigned
- * to the same matrix or vector \a other.
- *
- * For users coming from BLAS, this function (and more specifically solveInPlace()) offer
- * all the operations supported by the \c *TRSV and \c *TRSM BLAS routines.
- *
- * \sa TriangularView::solveInPlace()
- */
-template<typename Derived, unsigned int Mode>
-template<int Side, typename Other>
-const internal::triangular_solve_retval<Side,TriangularView<Derived,Mode>,Other>
-TriangularView<Derived,Mode>::solve(const MatrixBase<Other>& other) const
-{
- return internal::triangular_solve_retval<Side,TriangularView,Other>(*this, other.derived());
-}
-
-namespace internal {
-
-
-template<int Side, typename TriangularType, typename Rhs>
-struct traits<triangular_solve_retval<Side, TriangularType, Rhs> >
-{
- typedef typename internal::plain_matrix_type_column_major<Rhs>::type ReturnType;
-};
-
-template<int Side, typename TriangularType, typename Rhs> struct triangular_solve_retval
- : public ReturnByValue<triangular_solve_retval<Side, TriangularType, Rhs> >
-{
- typedef typename remove_all<typename Rhs::Nested>::type RhsNestedCleaned;
- typedef ReturnByValue<triangular_solve_retval> Base;
- typedef typename Base::Index Index;
-
- triangular_solve_retval(const TriangularType& tri, const Rhs& rhs)
- : m_triangularMatrix(tri), m_rhs(rhs)
- {}
-
- inline Index rows() const { return m_rhs.rows(); }
- inline Index cols() const { return m_rhs.cols(); }
-
- template<typename Dest> inline void evalTo(Dest& dst) const
- {
- if(!(is_same<RhsNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_rhs)))
- dst = m_rhs;
- m_triangularMatrix.template solveInPlace<Side>(dst);
- }
-
- protected:
- const TriangularType& m_triangularMatrix;
- typename Rhs::Nested m_rhs;
-};
-
-} // namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_SOLVETRIANGULAR_H
diff --git a/src/Eigen/src/Core/StableNorm.h b/src/Eigen/src/Core/StableNorm.h
deleted file mode 100644
index 389d942..0000000
--- a/src/Eigen/src/Core/StableNorm.h
+++ /dev/null
@@ -1,203 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_STABLENORM_H
-#define EIGEN_STABLENORM_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename ExpressionType, typename Scalar>
-inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
-{
- using std::max;
- Scalar maxCoeff = bl.cwiseAbs().maxCoeff();
-
- if (maxCoeff>scale)
- {
- ssq = ssq * numext::abs2(scale/maxCoeff);
- Scalar tmp = Scalar(1)/maxCoeff;
- if(tmp > NumTraits<Scalar>::highest())
- {
- invScale = NumTraits<Scalar>::highest();
- scale = Scalar(1)/invScale;
- }
- else
- {
- scale = maxCoeff;
- invScale = tmp;
- }
- }
-
- // TODO if the maxCoeff is much much smaller than the current scale,
- // then we can neglect this sub vector
- if(scale>Scalar(0)) // if scale==0, then bl is 0
- ssq += (bl*invScale).squaredNorm();
-}
-
-template<typename Derived>
-inline typename NumTraits<typename traits<Derived>::Scalar>::Real
-blueNorm_impl(const EigenBase<Derived>& _vec)
-{
- typedef typename Derived::RealScalar RealScalar;
- typedef typename Derived::Index Index;
- using std::pow;
- using std::min;
- using std::max;
- using std::sqrt;
- using std::abs;
- const Derived& vec(_vec.derived());
- static bool initialized = false;
- static RealScalar b1, b2, s1m, s2m, overfl, rbig, relerr;
- if(!initialized)
- {
- int ibeta, it, iemin, iemax, iexp;
- RealScalar eps;
- // This program calculates the machine-dependent constants
- // bl, b2, slm, s2m, relerr overfl
- // from the "basic" machine-dependent numbers
- // nbig, ibeta, it, iemin, iemax, rbig.
- // The following define the basic machine-dependent constants.
- // For portability, the PORT subprograms "ilmaeh" and "rlmach"
- // are used. For any specific computer, each of the assignment
- // statements can be replaced
- ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
- it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa
- iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent
- iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent
- rbig = (std::numeric_limits<RealScalar>::max)(); // largest floating-point number
-
- iexp = -((1-iemin)/2);
- b1 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // lower boundary of midrange
- iexp = (iemax + 1 - it)/2;
- b2 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // upper boundary of midrange
-
- iexp = (2-iemin)/2;
- s1m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for lower range
- iexp = - ((iemax+it)/2);
- s2m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for upper range
-
- overfl = rbig*s2m; // overflow boundary for abig
- eps = RealScalar(pow(double(ibeta), 1-it));
- relerr = sqrt(eps); // tolerance for neglecting asml
- initialized = true;
- }
- Index n = vec.size();
- RealScalar ab2 = b2 / RealScalar(n);
- RealScalar asml = RealScalar(0);
- RealScalar amed = RealScalar(0);
- RealScalar abig = RealScalar(0);
- for(typename Derived::InnerIterator it(vec, 0); it; ++it)
- {
- RealScalar ax = abs(it.value());
- if(ax > ab2) abig += numext::abs2(ax*s2m);
- else if(ax < b1) asml += numext::abs2(ax*s1m);
- else amed += numext::abs2(ax);
- }
- if(abig > RealScalar(0))
- {
- abig = sqrt(abig);
- if(abig > overfl)
- {
- return rbig;
- }
- if(amed > RealScalar(0))
- {
- abig = abig/s2m;
- amed = sqrt(amed);
- }
- else
- return abig/s2m;
- }
- else if(asml > RealScalar(0))
- {
- if (amed > RealScalar(0))
- {
- abig = sqrt(amed);
- amed = sqrt(asml) / s1m;
- }
- else
- return sqrt(asml)/s1m;
- }
- else
- return sqrt(amed);
- asml = (min)(abig, amed);
- abig = (max)(abig, amed);
- if(asml <= abig*relerr)
- return abig;
- else
- return abig * sqrt(RealScalar(1) + numext::abs2(asml/abig));
-}
-
-} // end namespace internal
-
-/** \returns the \em l2 norm of \c *this avoiding underflow and overflow.
- * This version use a blockwise two passes algorithm:
- * 1 - find the absolute largest coefficient \c s
- * 2 - compute \f$ s \Vert \frac{*this}{s} \Vert \f$ in a standard way
- *
- * For architecture/scalar types supporting vectorization, this version
- * is faster than blueNorm(). Otherwise the blueNorm() is much faster.
- *
- * \sa norm(), blueNorm(), hypotNorm()
- */
-template<typename Derived>
-inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
-MatrixBase<Derived>::stableNorm() const
-{
- using std::min;
- using std::sqrt;
- const Index blockSize = 4096;
- RealScalar scale(0);
- RealScalar invScale(1);
- RealScalar ssq(0); // sum of square
- enum {
- Alignment = (int(Flags)&DirectAccessBit) || (int(Flags)&AlignedBit) ? 1 : 0
- };
- Index n = size();
- Index bi = internal::first_aligned(derived());
- if (bi>0)
- internal::stable_norm_kernel(this->head(bi), ssq, scale, invScale);
- for (; bi<n; bi+=blockSize)
- internal::stable_norm_kernel(this->segment(bi,(min)(blockSize, n - bi)).template forceAlignedAccessIf<Alignment>(), ssq, scale, invScale);
- return scale * sqrt(ssq);
-}
-
-/** \returns the \em l2 norm of \c *this using the Blue's algorithm.
- * A Portable Fortran Program to Find the Euclidean Norm of a Vector,
- * ACM TOMS, Vol 4, Issue 1, 1978.
- *
- * For architecture/scalar types without vectorization, this version
- * is much faster than stableNorm(). Otherwise the stableNorm() is faster.
- *
- * \sa norm(), stableNorm(), hypotNorm()
- */
-template<typename Derived>
-inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
-MatrixBase<Derived>::blueNorm() const
-{
- return internal::blueNorm_impl(*this);
-}
-
-/** \returns the \em l2 norm of \c *this avoiding undeflow and overflow.
- * This version use a concatenation of hypot() calls, and it is very slow.
- *
- * \sa norm(), stableNorm()
- */
-template<typename Derived>
-inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
-MatrixBase<Derived>::hypotNorm() const
-{
- return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_STABLENORM_H
diff --git a/src/Eigen/src/Core/Stride.h b/src/Eigen/src/Core/Stride.h
deleted file mode 100644
index 1e3f5fe..0000000
--- a/src/Eigen/src/Core/Stride.h
+++ /dev/null
@@ -1,108 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_STRIDE_H
-#define EIGEN_STRIDE_H
-
-namespace Eigen {
-
-/** \class Stride
- * \ingroup Core_Module
- *
- * \brief Holds strides information for Map
- *
- * This class holds the strides information for mapping arrays with strides with class Map.
- *
- * It holds two values: the inner stride and the outer stride.
- *
- * The inner stride is the pointer increment between two consecutive entries within a given row of a
- * row-major matrix or within a given column of a column-major matrix.
- *
- * The outer stride is the pointer increment between two consecutive rows of a row-major matrix or
- * between two consecutive columns of a column-major matrix.
- *
- * These two values can be passed either at compile-time as template parameters, or at runtime as
- * arguments to the constructor.
- *
- * Indeed, this class takes two template parameters:
- * \param _OuterStrideAtCompileTime the outer stride, or Dynamic if you want to specify it at runtime.
- * \param _InnerStrideAtCompileTime the inner stride, or Dynamic if you want to specify it at runtime.
- *
- * Here is an example:
- * \include Map_general_stride.cpp
- * Output: \verbinclude Map_general_stride.out
- *
- * \sa class InnerStride, class OuterStride, \ref TopicStorageOrders
- */
-template<int _OuterStrideAtCompileTime, int _InnerStrideAtCompileTime>
-class Stride
-{
- public:
- typedef DenseIndex Index;
- enum {
- InnerStrideAtCompileTime = _InnerStrideAtCompileTime,
- OuterStrideAtCompileTime = _OuterStrideAtCompileTime
- };
-
- /** Default constructor, for use when strides are fixed at compile time */
- Stride()
- : m_outer(OuterStrideAtCompileTime), m_inner(InnerStrideAtCompileTime)
- {
- eigen_assert(InnerStrideAtCompileTime != Dynamic && OuterStrideAtCompileTime != Dynamic);
- }
-
- /** Constructor allowing to pass the strides at runtime */
- Stride(Index outerStride, Index innerStride)
- : m_outer(outerStride), m_inner(innerStride)
- {
- eigen_assert(innerStride>=0 && outerStride>=0);
- }
-
- /** Copy constructor */
- Stride(const Stride& other)
- : m_outer(other.outer()), m_inner(other.inner())
- {}
-
- /** \returns the outer stride */
- inline Index outer() const { return m_outer.value(); }
- /** \returns the inner stride */
- inline Index inner() const { return m_inner.value(); }
-
- protected:
- internal::variable_if_dynamic<Index, OuterStrideAtCompileTime> m_outer;
- internal::variable_if_dynamic<Index, InnerStrideAtCompileTime> m_inner;
-};
-
-/** \brief Convenience specialization of Stride to specify only an inner stride
- * See class Map for some examples */
-template<int Value = Dynamic>
-class InnerStride : public Stride<0, Value>
-{
- typedef Stride<0, Value> Base;
- public:
- typedef DenseIndex Index;
- InnerStride() : Base() {}
- InnerStride(Index v) : Base(0, v) {}
-};
-
-/** \brief Convenience specialization of Stride to specify only an outer stride
- * See class Map for some examples */
-template<int Value = Dynamic>
-class OuterStride : public Stride<Value, 0>
-{
- typedef Stride<Value, 0> Base;
- public:
- typedef DenseIndex Index;
- OuterStride() : Base() {}
- OuterStride(Index v) : Base(v,0) {}
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_STRIDE_H
diff --git a/src/Eigen/src/Core/Swap.h b/src/Eigen/src/Core/Swap.h
deleted file mode 100644
index bf58bd5..0000000
--- a/src/Eigen/src/Core/Swap.h
+++ /dev/null
@@ -1,126 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SWAP_H
-#define EIGEN_SWAP_H
-
-namespace Eigen {
-
-/** \class SwapWrapper
- * \ingroup Core_Module
- *
- * \internal
- *
- * \brief Internal helper class for swapping two expressions
- */
-namespace internal {
-template<typename ExpressionType>
-struct traits<SwapWrapper<ExpressionType> > : traits<ExpressionType> {};
-}
-
-template<typename ExpressionType> class SwapWrapper
- : public internal::dense_xpr_base<SwapWrapper<ExpressionType> >::type
-{
- public:
-
- typedef typename internal::dense_xpr_base<SwapWrapper>::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(SwapWrapper)
- typedef typename internal::packet_traits<Scalar>::type Packet;
-
- inline SwapWrapper(ExpressionType& xpr) : m_expression(xpr) {}
-
- inline Index rows() const { return m_expression.rows(); }
- inline Index cols() const { return m_expression.cols(); }
- inline Index outerStride() const { return m_expression.outerStride(); }
- inline Index innerStride() const { return m_expression.innerStride(); }
-
- typedef typename internal::conditional<
- internal::is_lvalue<ExpressionType>::value,
- Scalar,
- const Scalar
- >::type ScalarWithConstIfNotLvalue;
-
- inline ScalarWithConstIfNotLvalue* data() { return m_expression.data(); }
- inline const Scalar* data() const { return m_expression.data(); }
-
- inline Scalar& coeffRef(Index rowId, Index colId)
- {
- return m_expression.const_cast_derived().coeffRef(rowId, colId);
- }
-
- inline Scalar& coeffRef(Index index)
- {
- return m_expression.const_cast_derived().coeffRef(index);
- }
-
- inline Scalar& coeffRef(Index rowId, Index colId) const
- {
- return m_expression.coeffRef(rowId, colId);
- }
-
- inline Scalar& coeffRef(Index index) const
- {
- return m_expression.coeffRef(index);
- }
-
- template<typename OtherDerived>
- void copyCoeff(Index rowId, Index colId, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(rowId >= 0 && rowId < rows()
- && colId >= 0 && colId < cols());
- Scalar tmp = m_expression.coeff(rowId, colId);
- m_expression.coeffRef(rowId, colId) = _other.coeff(rowId, colId);
- _other.coeffRef(rowId, colId) = tmp;
- }
-
- template<typename OtherDerived>
- void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(index >= 0 && index < m_expression.size());
- Scalar tmp = m_expression.coeff(index);
- m_expression.coeffRef(index) = _other.coeff(index);
- _other.coeffRef(index) = tmp;
- }
-
- template<typename OtherDerived, int StoreMode, int LoadMode>
- void copyPacket(Index rowId, Index colId, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(rowId >= 0 && rowId < rows()
- && colId >= 0 && colId < cols());
- Packet tmp = m_expression.template packet<StoreMode>(rowId, colId);
- m_expression.template writePacket<StoreMode>(rowId, colId,
- _other.template packet<LoadMode>(rowId, colId)
- );
- _other.template writePacket<LoadMode>(rowId, colId, tmp);
- }
-
- template<typename OtherDerived, int StoreMode, int LoadMode>
- void copyPacket(Index index, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(index >= 0 && index < m_expression.size());
- Packet tmp = m_expression.template packet<StoreMode>(index);
- m_expression.template writePacket<StoreMode>(index,
- _other.template packet<LoadMode>(index)
- );
- _other.template writePacket<LoadMode>(index, tmp);
- }
-
- ExpressionType& expression() const { return m_expression; }
-
- protected:
- ExpressionType& m_expression;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_SWAP_H
diff --git a/src/Eigen/src/Core/Transpose.h b/src/Eigen/src/Core/Transpose.h
deleted file mode 100644
index 22096ea..0000000
--- a/src/Eigen/src/Core/Transpose.h
+++ /dev/null
@@ -1,419 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_TRANSPOSE_H
-#define EIGEN_TRANSPOSE_H
-
-namespace Eigen {
-
-/** \class Transpose
- * \ingroup Core_Module
- *
- * \brief Expression of the transpose of a matrix
- *
- * \param MatrixType the type of the object of which we are taking the transpose
- *
- * This class represents an expression of the transpose of a matrix.
- * It is the return type of MatrixBase::transpose() and MatrixBase::adjoint()
- * and most of the time this is the only way it is used.
- *
- * \sa MatrixBase::transpose(), MatrixBase::adjoint()
- */
-
-namespace internal {
-template<typename MatrixType>
-struct traits<Transpose<MatrixType> > : traits<MatrixType>
-{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename nested<MatrixType>::type MatrixTypeNested;
- typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedPlain;
- typedef typename traits<MatrixType>::StorageKind StorageKind;
- typedef typename traits<MatrixType>::XprKind XprKind;
- enum {
- RowsAtCompileTime = MatrixType::ColsAtCompileTime,
- ColsAtCompileTime = MatrixType::RowsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
- Flags0 = MatrixTypeNestedPlain::Flags & ~(LvalueBit | NestByRefBit),
- Flags1 = Flags0 | FlagsLvalueBit,
- Flags = Flags1 ^ RowMajorBit,
- CoeffReadCost = MatrixTypeNestedPlain::CoeffReadCost,
- InnerStrideAtCompileTime = inner_stride_at_compile_time<MatrixType>::ret,
- OuterStrideAtCompileTime = outer_stride_at_compile_time<MatrixType>::ret
- };
-};
-}
-
-template<typename MatrixType, typename StorageKind> class TransposeImpl;
-
-template<typename MatrixType> class Transpose
- : public TransposeImpl<MatrixType,typename internal::traits<MatrixType>::StorageKind>
-{
- public:
-
- typedef typename TransposeImpl<MatrixType,typename internal::traits<MatrixType>::StorageKind>::Base Base;
- EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose)
-
- inline Transpose(MatrixType& a_matrix) : m_matrix(a_matrix) {}
-
- EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose)
-
- inline Index rows() const { return m_matrix.cols(); }
- inline Index cols() const { return m_matrix.rows(); }
-
- /** \returns the nested expression */
- const typename internal::remove_all<typename MatrixType::Nested>::type&
- nestedExpression() const { return m_matrix; }
-
- /** \returns the nested expression */
- typename internal::remove_all<typename MatrixType::Nested>::type&
- nestedExpression() { return m_matrix.const_cast_derived(); }
-
- protected:
- typename MatrixType::Nested m_matrix;
-};
-
-namespace internal {
-
-template<typename MatrixType, bool HasDirectAccess = has_direct_access<MatrixType>::ret>
-struct TransposeImpl_base
-{
- typedef typename dense_xpr_base<Transpose<MatrixType> >::type type;
-};
-
-template<typename MatrixType>
-struct TransposeImpl_base<MatrixType, false>
-{
- typedef typename dense_xpr_base<Transpose<MatrixType> >::type type;
-};
-
-} // end namespace internal
-
-template<typename MatrixType> class TransposeImpl<MatrixType,Dense>
- : public internal::TransposeImpl_base<MatrixType>::type
-{
- public:
-
- typedef typename internal::TransposeImpl_base<MatrixType>::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(Transpose<MatrixType>)
- EIGEN_INHERIT_ASSIGNMENT_OPERATORS(TransposeImpl)
-
- inline Index innerStride() const { return derived().nestedExpression().innerStride(); }
- inline Index outerStride() const { return derived().nestedExpression().outerStride(); }
-
- typedef typename internal::conditional<
- internal::is_lvalue<MatrixType>::value,
- Scalar,
- const Scalar
- >::type ScalarWithConstIfNotLvalue;
-
- inline ScalarWithConstIfNotLvalue* data() { return derived().nestedExpression().data(); }
- inline const Scalar* data() const { return derived().nestedExpression().data(); }
-
- inline ScalarWithConstIfNotLvalue& coeffRef(Index rowId, Index colId)
- {
- EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
- return derived().nestedExpression().const_cast_derived().coeffRef(colId, rowId);
- }
-
- inline ScalarWithConstIfNotLvalue& coeffRef(Index index)
- {
- EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
- return derived().nestedExpression().const_cast_derived().coeffRef(index);
- }
-
- inline const Scalar& coeffRef(Index rowId, Index colId) const
- {
- return derived().nestedExpression().coeffRef(colId, rowId);
- }
-
- inline const Scalar& coeffRef(Index index) const
- {
- return derived().nestedExpression().coeffRef(index);
- }
-
- inline CoeffReturnType coeff(Index rowId, Index colId) const
- {
- return derived().nestedExpression().coeff(colId, rowId);
- }
-
- inline CoeffReturnType coeff(Index index) const
- {
- return derived().nestedExpression().coeff(index);
- }
-
- template<int LoadMode>
- inline const PacketScalar packet(Index rowId, Index colId) const
- {
- return derived().nestedExpression().template packet<LoadMode>(colId, rowId);
- }
-
- template<int LoadMode>
- inline void writePacket(Index rowId, Index colId, const PacketScalar& x)
- {
- derived().nestedExpression().const_cast_derived().template writePacket<LoadMode>(colId, rowId, x);
- }
-
- template<int LoadMode>
- inline const PacketScalar packet(Index index) const
- {
- return derived().nestedExpression().template packet<LoadMode>(index);
- }
-
- template<int LoadMode>
- inline void writePacket(Index index, const PacketScalar& x)
- {
- derived().nestedExpression().const_cast_derived().template writePacket<LoadMode>(index, x);
- }
-};
-
-/** \returns an expression of the transpose of *this.
- *
- * Example: \include MatrixBase_transpose.cpp
- * Output: \verbinclude MatrixBase_transpose.out
- *
- * \warning If you want to replace a matrix by its own transpose, do \b NOT do this:
- * \code
- * m = m.transpose(); // bug!!! caused by aliasing effect
- * \endcode
- * Instead, use the transposeInPlace() method:
- * \code
- * m.transposeInPlace();
- * \endcode
- * which gives Eigen good opportunities for optimization, or alternatively you can also do:
- * \code
- * m = m.transpose().eval();
- * \endcode
- *
- * \sa transposeInPlace(), adjoint() */
-template<typename Derived>
-inline Transpose<Derived>
-DenseBase<Derived>::transpose()
-{
- return derived();
-}
-
-/** This is the const version of transpose().
- *
- * Make sure you read the warning for transpose() !
- *
- * \sa transposeInPlace(), adjoint() */
-template<typename Derived>
-inline typename DenseBase<Derived>::ConstTransposeReturnType
-DenseBase<Derived>::transpose() const
-{
- return ConstTransposeReturnType(derived());
-}
-
-/** \returns an expression of the adjoint (i.e. conjugate transpose) of *this.
- *
- * Example: \include MatrixBase_adjoint.cpp
- * Output: \verbinclude MatrixBase_adjoint.out
- *
- * \warning If you want to replace a matrix by its own adjoint, do \b NOT do this:
- * \code
- * m = m.adjoint(); // bug!!! caused by aliasing effect
- * \endcode
- * Instead, use the adjointInPlace() method:
- * \code
- * m.adjointInPlace();
- * \endcode
- * which gives Eigen good opportunities for optimization, or alternatively you can also do:
- * \code
- * m = m.adjoint().eval();
- * \endcode
- *
- * \sa adjointInPlace(), transpose(), conjugate(), class Transpose, class internal::scalar_conjugate_op */
-template<typename Derived>
-inline const typename MatrixBase<Derived>::AdjointReturnType
-MatrixBase<Derived>::adjoint() const
-{
- return this->transpose(); // in the complex case, the .conjugate() is be implicit here
- // due to implicit conversion to return type
-}
-
-/***************************************************************************
-* "in place" transpose implementation
-***************************************************************************/
-
-namespace internal {
-
-template<typename MatrixType,
- bool IsSquare = (MatrixType::RowsAtCompileTime == MatrixType::ColsAtCompileTime) && MatrixType::RowsAtCompileTime!=Dynamic>
-struct inplace_transpose_selector;
-
-template<typename MatrixType>
-struct inplace_transpose_selector<MatrixType,true> { // square matrix
- static void run(MatrixType& m) {
- m.matrix().template triangularView<StrictlyUpper>().swap(m.matrix().transpose());
- }
-};
-
-template<typename MatrixType>
-struct inplace_transpose_selector<MatrixType,false> { // non square matrix
- static void run(MatrixType& m) {
- if (m.rows()==m.cols())
- m.matrix().template triangularView<StrictlyUpper>().swap(m.matrix().transpose());
- else
- m = m.transpose().eval();
- }
-};
-
-} // end namespace internal
-
-/** This is the "in place" version of transpose(): it replaces \c *this by its own transpose.
- * Thus, doing
- * \code
- * m.transposeInPlace();
- * \endcode
- * has the same effect on m as doing
- * \code
- * m = m.transpose().eval();
- * \endcode
- * and is faster and also safer because in the latter line of code, forgetting the eval() results
- * in a bug caused by \ref TopicAliasing "aliasing".
- *
- * Notice however that this method is only useful if you want to replace a matrix by its own transpose.
- * If you just need the transpose of a matrix, use transpose().
- *
- * \note if the matrix is not square, then \c *this must be a resizable matrix.
- * This excludes (non-square) fixed-size matrices, block-expressions and maps.
- *
- * \sa transpose(), adjoint(), adjointInPlace() */
-template<typename Derived>
-inline void DenseBase<Derived>::transposeInPlace()
-{
- eigen_assert((rows() == cols() || (RowsAtCompileTime == Dynamic && ColsAtCompileTime == Dynamic))
- && "transposeInPlace() called on a non-square non-resizable matrix");
- internal::inplace_transpose_selector<Derived>::run(derived());
-}
-
-/***************************************************************************
-* "in place" adjoint implementation
-***************************************************************************/
-
-/** This is the "in place" version of adjoint(): it replaces \c *this by its own transpose.
- * Thus, doing
- * \code
- * m.adjointInPlace();
- * \endcode
- * has the same effect on m as doing
- * \code
- * m = m.adjoint().eval();
- * \endcode
- * and is faster and also safer because in the latter line of code, forgetting the eval() results
- * in a bug caused by aliasing.
- *
- * Notice however that this method is only useful if you want to replace a matrix by its own adjoint.
- * If you just need the adjoint of a matrix, use adjoint().
- *
- * \note if the matrix is not square, then \c *this must be a resizable matrix.
- * This excludes (non-square) fixed-size matrices, block-expressions and maps.
- *
- * \sa transpose(), adjoint(), transposeInPlace() */
-template<typename Derived>
-inline void MatrixBase<Derived>::adjointInPlace()
-{
- derived() = adjoint().eval();
-}
-
-#ifndef EIGEN_NO_DEBUG
-
-// The following is to detect aliasing problems in most common cases.
-
-namespace internal {
-
-template<typename BinOp,typename NestedXpr,typename Rhs>
-struct blas_traits<SelfCwiseBinaryOp<BinOp,NestedXpr,Rhs> >
- : blas_traits<NestedXpr>
-{
- typedef SelfCwiseBinaryOp<BinOp,NestedXpr,Rhs> XprType;
- static inline const XprType extract(const XprType& x) { return x; }
-};
-
-template<bool DestIsTransposed, typename OtherDerived>
-struct check_transpose_aliasing_compile_time_selector
-{
- enum { ret = bool(blas_traits<OtherDerived>::IsTransposed) != DestIsTransposed };
-};
-
-template<bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB>
-struct check_transpose_aliasing_compile_time_selector<DestIsTransposed,CwiseBinaryOp<BinOp,DerivedA,DerivedB> >
-{
- enum { ret = bool(blas_traits<DerivedA>::IsTransposed) != DestIsTransposed
- || bool(blas_traits<DerivedB>::IsTransposed) != DestIsTransposed
- };
-};
-
-template<typename Scalar, bool DestIsTransposed, typename OtherDerived>
-struct check_transpose_aliasing_run_time_selector
-{
- static bool run(const Scalar* dest, const OtherDerived& src)
- {
- return (bool(blas_traits<OtherDerived>::IsTransposed) != DestIsTransposed) && (dest!=0 && dest==(const Scalar*)extract_data(src));
- }
-};
-
-template<typename Scalar, bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB>
-struct check_transpose_aliasing_run_time_selector<Scalar,DestIsTransposed,CwiseBinaryOp<BinOp,DerivedA,DerivedB> >
-{
- static bool run(const Scalar* dest, const CwiseBinaryOp<BinOp,DerivedA,DerivedB>& src)
- {
- return ((blas_traits<DerivedA>::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(const Scalar*)extract_data(src.lhs())))
- || ((blas_traits<DerivedB>::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(const Scalar*)extract_data(src.rhs())));
- }
-};
-
-// the following selector, checkTransposeAliasing_impl, based on MightHaveTransposeAliasing,
-// is because when the condition controlling the assert is known at compile time, ICC emits a warning.
-// This is actually a good warning: in expressions that don't have any transposing, the condition is
-// known at compile time to be false, and using that, we can avoid generating the code of the assert again
-// and again for all these expressions that don't need it.
-
-template<typename Derived, typename OtherDerived,
- bool MightHaveTransposeAliasing
- = check_transpose_aliasing_compile_time_selector
- <blas_traits<Derived>::IsTransposed,OtherDerived>::ret
- >
-struct checkTransposeAliasing_impl
-{
- static void run(const Derived& dst, const OtherDerived& other)
- {
- eigen_assert((!check_transpose_aliasing_run_time_selector
- <typename Derived::Scalar,blas_traits<Derived>::IsTransposed,OtherDerived>
- ::run(extract_data(dst), other))
- && "aliasing detected during transposition, use transposeInPlace() "
- "or evaluate the rhs into a temporary using .eval()");
-
- }
-};
-
-template<typename Derived, typename OtherDerived>
-struct checkTransposeAliasing_impl<Derived, OtherDerived, false>
-{
- static void run(const Derived&, const OtherDerived&)
- {
- }
-};
-
-} // end namespace internal
-
-template<typename Derived>
-template<typename OtherDerived>
-void DenseBase<Derived>::checkTransposeAliasing(const OtherDerived& other) const
-{
- internal::checkTransposeAliasing_impl<Derived, OtherDerived>::run(derived(), other);
-}
-#endif
-
-} // end namespace Eigen
-
-#endif // EIGEN_TRANSPOSE_H
diff --git a/src/Eigen/src/Core/Transpositions.h b/src/Eigen/src/Core/Transpositions.h
deleted file mode 100644
index e4ba075..0000000
--- a/src/Eigen/src/Core/Transpositions.h
+++ /dev/null
@@ -1,436 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_TRANSPOSITIONS_H
-#define EIGEN_TRANSPOSITIONS_H
-
-namespace Eigen {
-
-/** \class Transpositions
- * \ingroup Core_Module
- *
- * \brief Represents a sequence of transpositions (row/column interchange)
- *
- * \param SizeAtCompileTime the number of transpositions, or Dynamic
- * \param MaxSizeAtCompileTime the maximum number of transpositions, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
- *
- * This class represents a permutation transformation as a sequence of \em n transpositions
- * \f$[T_{n-1} \ldots T_{i} \ldots T_{0}]\f$. It is internally stored as a vector of integers \c indices.
- * Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges
- * the rows \c i and \c indices[i] of the matrix \c M.
- * A transposition applied on the right (e.g., \f$ M T_{i}\f$) yields a column interchange.
- *
- * Compared to the class PermutationMatrix, such a sequence of transpositions is what is
- * computed during a decomposition with pivoting, and it is faster when applying the permutation in-place.
- *
- * To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example:
- * \code
- * Transpositions tr;
- * MatrixXf mat;
- * mat = tr * mat;
- * \endcode
- * In this example, we detect that the matrix appears on both side, and so the transpositions
- * are applied in-place without any temporary or extra copy.
- *
- * \sa class PermutationMatrix
- */
-
-namespace internal {
-template<typename TranspositionType, typename MatrixType, int Side, bool Transposed=false> struct transposition_matrix_product_retval;
-}
-
-template<typename Derived>
-class TranspositionsBase
-{
- typedef internal::traits<Derived> Traits;
-
- public:
-
- typedef typename Traits::IndicesType IndicesType;
- typedef typename IndicesType::Scalar Index;
-
- Derived& derived() { return *static_cast<Derived*>(this); }
- const Derived& derived() const { return *static_cast<const Derived*>(this); }
-
- /** Copies the \a other transpositions into \c *this */
- template<typename OtherDerived>
- Derived& operator=(const TranspositionsBase<OtherDerived>& other)
- {
- indices() = other.indices();
- return derived();
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** This is a special case of the templated operator=. Its purpose is to
- * prevent a default operator= from hiding the templated operator=.
- */
- Derived& operator=(const TranspositionsBase& other)
- {
- indices() = other.indices();
- return derived();
- }
- #endif
-
- /** \returns the number of transpositions */
- inline Index size() const { return indices().size(); }
-
- /** Direct access to the underlying index vector */
- inline const Index& coeff(Index i) const { return indices().coeff(i); }
- /** Direct access to the underlying index vector */
- inline Index& coeffRef(Index i) { return indices().coeffRef(i); }
- /** Direct access to the underlying index vector */
- inline const Index& operator()(Index i) const { return indices()(i); }
- /** Direct access to the underlying index vector */
- inline Index& operator()(Index i) { return indices()(i); }
- /** Direct access to the underlying index vector */
- inline const Index& operator[](Index i) const { return indices()(i); }
- /** Direct access to the underlying index vector */
- inline Index& operator[](Index i) { return indices()(i); }
-
- /** const version of indices(). */
- const IndicesType& indices() const { return derived().indices(); }
- /** \returns a reference to the stored array representing the transpositions. */
- IndicesType& indices() { return derived().indices(); }
-
- /** Resizes to given size. */
- inline void resize(int newSize)
- {
- indices().resize(newSize);
- }
-
- /** Sets \c *this to represents an identity transformation */
- void setIdentity()
- {
- for(int i = 0; i < indices().size(); ++i)
- coeffRef(i) = i;
- }
-
- // FIXME: do we want such methods ?
- // might be usefull when the target matrix expression is complex, e.g.:
- // object.matrix().block(..,..,..,..) = trans * object.matrix().block(..,..,..,..);
- /*
- template<typename MatrixType>
- void applyForwardToRows(MatrixType& mat) const
- {
- for(Index k=0 ; k<size() ; ++k)
- if(m_indices(k)!=k)
- mat.row(k).swap(mat.row(m_indices(k)));
- }
-
- template<typename MatrixType>
- void applyBackwardToRows(MatrixType& mat) const
- {
- for(Index k=size()-1 ; k>=0 ; --k)
- if(m_indices(k)!=k)
- mat.row(k).swap(mat.row(m_indices(k)));
- }
- */
-
- /** \returns the inverse transformation */
- inline Transpose<TranspositionsBase> inverse() const
- { return Transpose<TranspositionsBase>(derived()); }
-
- /** \returns the tranpose transformation */
- inline Transpose<TranspositionsBase> transpose() const
- { return Transpose<TranspositionsBase>(derived()); }
-
- protected:
-};
-
-namespace internal {
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
-struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
-{
- typedef IndexType Index;
- typedef Matrix<Index, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
-};
-}
-
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
-class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
-{
- typedef internal::traits<Transpositions> Traits;
- public:
-
- typedef TranspositionsBase<Transpositions> Base;
- typedef typename Traits::IndicesType IndicesType;
- typedef typename IndicesType::Scalar Index;
-
- inline Transpositions() {}
-
- /** Copy constructor. */
- template<typename OtherDerived>
- inline Transpositions(const TranspositionsBase<OtherDerived>& other)
- : m_indices(other.indices()) {}
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** Standard copy constructor. Defined only to prevent a default copy constructor
- * from hiding the other templated constructor */
- inline Transpositions(const Transpositions& other) : m_indices(other.indices()) {}
- #endif
-
- /** Generic constructor from expression of the transposition indices. */
- template<typename Other>
- explicit inline Transpositions(const MatrixBase<Other>& a_indices) : m_indices(a_indices)
- {}
-
- /** Copies the \a other transpositions into \c *this */
- template<typename OtherDerived>
- Transpositions& operator=(const TranspositionsBase<OtherDerived>& other)
- {
- return Base::operator=(other);
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** This is a special case of the templated operator=. Its purpose is to
- * prevent a default operator= from hiding the templated operator=.
- */
- Transpositions& operator=(const Transpositions& other)
- {
- m_indices = other.m_indices;
- return *this;
- }
- #endif
-
- /** Constructs an uninitialized permutation matrix of given size.
- */
- inline Transpositions(Index size) : m_indices(size)
- {}
-
- /** const version of indices(). */
- const IndicesType& indices() const { return m_indices; }
- /** \returns a reference to the stored array representing the transpositions. */
- IndicesType& indices() { return m_indices; }
-
- protected:
-
- IndicesType m_indices;
-};
-
-
-namespace internal {
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
-struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,_PacketAccess> >
-{
- typedef IndexType Index;
- typedef Map<const Matrix<Index,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType;
-};
-}
-
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int PacketAccess>
-class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess>
- : public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess> >
-{
- typedef internal::traits<Map> Traits;
- public:
-
- typedef TranspositionsBase<Map> Base;
- typedef typename Traits::IndicesType IndicesType;
- typedef typename IndicesType::Scalar Index;
-
- inline Map(const Index* indicesPtr)
- : m_indices(indicesPtr)
- {}
-
- inline Map(const Index* indicesPtr, Index size)
- : m_indices(indicesPtr,size)
- {}
-
- /** Copies the \a other transpositions into \c *this */
- template<typename OtherDerived>
- Map& operator=(const TranspositionsBase<OtherDerived>& other)
- {
- return Base::operator=(other);
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** This is a special case of the templated operator=. Its purpose is to
- * prevent a default operator= from hiding the templated operator=.
- */
- Map& operator=(const Map& other)
- {
- m_indices = other.m_indices;
- return *this;
- }
- #endif
-
- /** const version of indices(). */
- const IndicesType& indices() const { return m_indices; }
-
- /** \returns a reference to the stored array representing the transpositions. */
- IndicesType& indices() { return m_indices; }
-
- protected:
-
- IndicesType m_indices;
-};
-
-namespace internal {
-template<typename _IndicesType>
-struct traits<TranspositionsWrapper<_IndicesType> >
-{
- typedef typename _IndicesType::Scalar Index;
- typedef _IndicesType IndicesType;
-};
-}
-
-template<typename _IndicesType>
-class TranspositionsWrapper
- : public TranspositionsBase<TranspositionsWrapper<_IndicesType> >
-{
- typedef internal::traits<TranspositionsWrapper> Traits;
- public:
-
- typedef TranspositionsBase<TranspositionsWrapper> Base;
- typedef typename Traits::IndicesType IndicesType;
- typedef typename IndicesType::Scalar Index;
-
- inline TranspositionsWrapper(IndicesType& a_indices)
- : m_indices(a_indices)
- {}
-
- /** Copies the \a other transpositions into \c *this */
- template<typename OtherDerived>
- TranspositionsWrapper& operator=(const TranspositionsBase<OtherDerived>& other)
- {
- return Base::operator=(other);
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** This is a special case of the templated operator=. Its purpose is to
- * prevent a default operator= from hiding the templated operator=.
- */
- TranspositionsWrapper& operator=(const TranspositionsWrapper& other)
- {
- m_indices = other.m_indices;
- return *this;
- }
- #endif
-
- /** const version of indices(). */
- const IndicesType& indices() const { return m_indices; }
-
- /** \returns a reference to the stored array representing the transpositions. */
- IndicesType& indices() { return m_indices; }
-
- protected:
-
- const typename IndicesType::Nested m_indices;
-};
-
-/** \returns the \a matrix with the \a transpositions applied to the columns.
- */
-template<typename Derived, typename TranspositionsDerived>
-inline const internal::transposition_matrix_product_retval<TranspositionsDerived, Derived, OnTheRight>
-operator*(const MatrixBase<Derived>& matrix,
- const TranspositionsBase<TranspositionsDerived> &transpositions)
-{
- return internal::transposition_matrix_product_retval
- <TranspositionsDerived, Derived, OnTheRight>
- (transpositions.derived(), matrix.derived());
-}
-
-/** \returns the \a matrix with the \a transpositions applied to the rows.
- */
-template<typename Derived, typename TranspositionDerived>
-inline const internal::transposition_matrix_product_retval
- <TranspositionDerived, Derived, OnTheLeft>
-operator*(const TranspositionsBase<TranspositionDerived> &transpositions,
- const MatrixBase<Derived>& matrix)
-{
- return internal::transposition_matrix_product_retval
- <TranspositionDerived, Derived, OnTheLeft>
- (transpositions.derived(), matrix.derived());
-}
-
-namespace internal {
-
-template<typename TranspositionType, typename MatrixType, int Side, bool Transposed>
-struct traits<transposition_matrix_product_retval<TranspositionType, MatrixType, Side, Transposed> >
-{
- typedef typename MatrixType::PlainObject ReturnType;
-};
-
-template<typename TranspositionType, typename MatrixType, int Side, bool Transposed>
-struct transposition_matrix_product_retval
- : public ReturnByValue<transposition_matrix_product_retval<TranspositionType, MatrixType, Side, Transposed> >
-{
- typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
- typedef typename TranspositionType::Index Index;
-
- transposition_matrix_product_retval(const TranspositionType& tr, const MatrixType& matrix)
- : m_transpositions(tr), m_matrix(matrix)
- {}
-
- inline int rows() const { return m_matrix.rows(); }
- inline int cols() const { return m_matrix.cols(); }
-
- template<typename Dest> inline void evalTo(Dest& dst) const
- {
- const int size = m_transpositions.size();
- Index j = 0;
-
- if(!(is_same<MatrixTypeNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_matrix)))
- dst = m_matrix;
-
- for(int k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
- if((j=m_transpositions.coeff(k))!=k)
- {
- if(Side==OnTheLeft)
- dst.row(k).swap(dst.row(j));
- else if(Side==OnTheRight)
- dst.col(k).swap(dst.col(j));
- }
- }
-
- protected:
- const TranspositionType& m_transpositions;
- typename MatrixType::Nested m_matrix;
-};
-
-} // end namespace internal
-
-/* Template partial specialization for transposed/inverse transpositions */
-
-template<typename TranspositionsDerived>
-class Transpose<TranspositionsBase<TranspositionsDerived> >
-{
- typedef TranspositionsDerived TranspositionType;
- typedef typename TranspositionType::IndicesType IndicesType;
- public:
-
- Transpose(const TranspositionType& t) : m_transpositions(t) {}
-
- inline int size() const { return m_transpositions.size(); }
-
- /** \returns the \a matrix with the inverse transpositions applied to the columns.
- */
- template<typename Derived> friend
- inline const internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheRight, true>
- operator*(const MatrixBase<Derived>& matrix, const Transpose& trt)
- {
- return internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheRight, true>(trt.m_transpositions, matrix.derived());
- }
-
- /** \returns the \a matrix with the inverse transpositions applied to the rows.
- */
- template<typename Derived>
- inline const internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheLeft, true>
- operator*(const MatrixBase<Derived>& matrix) const
- {
- return internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheLeft, true>(m_transpositions, matrix.derived());
- }
-
- protected:
- const TranspositionType& m_transpositions;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_TRANSPOSITIONS_H
diff --git a/src/Eigen/src/Core/TriangularMatrix.h b/src/Eigen/src/Core/TriangularMatrix.h
deleted file mode 100644
index 845ae1a..0000000
--- a/src/Eigen/src/Core/TriangularMatrix.h
+++ /dev/null
@@ -1,830 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_TRIANGULARMATRIX_H
-#define EIGEN_TRIANGULARMATRIX_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<int Side, typename TriangularType, typename Rhs> struct triangular_solve_retval;
-
-}
-
-/** \internal
- *
- * \class TriangularBase
- * \ingroup Core_Module
- *
- * \brief Base class for triangular part in a matrix
- */
-template<typename Derived> class TriangularBase : public EigenBase<Derived>
-{
- public:
-
- enum {
- Mode = internal::traits<Derived>::Mode,
- CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
- RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
- ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
- MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime
- };
- typedef typename internal::traits<Derived>::Scalar Scalar;
- typedef typename internal::traits<Derived>::StorageKind StorageKind;
- typedef typename internal::traits<Derived>::Index Index;
- typedef typename internal::traits<Derived>::DenseMatrixType DenseMatrixType;
- typedef DenseMatrixType DenseType;
-
- inline TriangularBase() { eigen_assert(!((Mode&UnitDiag) && (Mode&ZeroDiag))); }
-
- inline Index rows() const { return derived().rows(); }
- inline Index cols() const { return derived().cols(); }
- inline Index outerStride() const { return derived().outerStride(); }
- inline Index innerStride() const { return derived().innerStride(); }
-
- inline Scalar coeff(Index row, Index col) const { return derived().coeff(row,col); }
- inline Scalar& coeffRef(Index row, Index col) { return derived().coeffRef(row,col); }
-
- /** \see MatrixBase::copyCoeff(row,col)
- */
- template<typename Other>
- EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, Other& other)
- {
- derived().coeffRef(row, col) = other.coeff(row, col);
- }
-
- inline Scalar operator()(Index row, Index col) const
- {
- check_coordinates(row, col);
- return coeff(row,col);
- }
- inline Scalar& operator()(Index row, Index col)
- {
- check_coordinates(row, col);
- return coeffRef(row,col);
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
- inline Derived& derived() { return *static_cast<Derived*>(this); }
- #endif // not EIGEN_PARSED_BY_DOXYGEN
-
- template<typename DenseDerived>
- void evalTo(MatrixBase<DenseDerived> &other) const;
- template<typename DenseDerived>
- void evalToLazy(MatrixBase<DenseDerived> &other) const;
-
- DenseMatrixType toDenseMatrix() const
- {
- DenseMatrixType res(rows(), cols());
- evalToLazy(res);
- return res;
- }
-
- protected:
-
- void check_coordinates(Index row, Index col) const
- {
- EIGEN_ONLY_USED_FOR_DEBUG(row);
- EIGEN_ONLY_USED_FOR_DEBUG(col);
- eigen_assert(col>=0 && col<cols() && row>=0 && row<rows());
- const int mode = int(Mode) & ~SelfAdjoint;
- EIGEN_ONLY_USED_FOR_DEBUG(mode);
- eigen_assert((mode==Upper && col>=row)
- || (mode==Lower && col<=row)
- || ((mode==StrictlyUpper || mode==UnitUpper) && col>row)
- || ((mode==StrictlyLower || mode==UnitLower) && col<row));
- }
-
- #ifdef EIGEN_INTERNAL_DEBUGGING
- void check_coordinates_internal(Index row, Index col) const
- {
- check_coordinates(row, col);
- }
- #else
- void check_coordinates_internal(Index , Index ) const {}
- #endif
-
-};
-
-/** \class TriangularView
- * \ingroup Core_Module
- *
- * \brief Base class for triangular part in a matrix
- *
- * \param MatrixType the type of the object in which we are taking the triangular part
- * \param Mode the kind of triangular matrix expression to construct. Can be #Upper,
- * #Lower, #UnitUpper, #UnitLower, #StrictlyUpper, or #StrictlyLower.
- * This is in fact a bit field; it must have either #Upper or #Lower,
- * and additionnaly it may have #UnitDiag or #ZeroDiag or neither.
- *
- * This class represents a triangular part of a matrix, not necessarily square. Strictly speaking, for rectangular
- * matrices one should speak of "trapezoid" parts. This class is the return type
- * of MatrixBase::triangularView() and most of the time this is the only way it is used.
- *
- * \sa MatrixBase::triangularView()
- */
-namespace internal {
-template<typename MatrixType, unsigned int _Mode>
-struct traits<TriangularView<MatrixType, _Mode> > : traits<MatrixType>
-{
- typedef typename nested<MatrixType>::type MatrixTypeNested;
- typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedNonRef;
- typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
- typedef MatrixType ExpressionType;
- typedef typename MatrixType::PlainObject DenseMatrixType;
- enum {
- Mode = _Mode,
- Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit))) | Mode,
- CoeffReadCost = MatrixTypeNestedCleaned::CoeffReadCost
- };
-};
-}
-
-template<int Mode, bool LhsIsTriangular,
- typename Lhs, bool LhsIsVector,
- typename Rhs, bool RhsIsVector>
-struct TriangularProduct;
-
-template<typename _MatrixType, unsigned int _Mode> class TriangularView
- : public TriangularBase<TriangularView<_MatrixType, _Mode> >
-{
- public:
-
- typedef TriangularBase<TriangularView> Base;
- typedef typename internal::traits<TriangularView>::Scalar Scalar;
-
- typedef _MatrixType MatrixType;
- typedef typename internal::traits<TriangularView>::DenseMatrixType DenseMatrixType;
- typedef DenseMatrixType PlainObject;
-
- protected:
- typedef typename internal::traits<TriangularView>::MatrixTypeNested MatrixTypeNested;
- typedef typename internal::traits<TriangularView>::MatrixTypeNestedNonRef MatrixTypeNestedNonRef;
- typedef typename internal::traits<TriangularView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned;
-
- typedef typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type MatrixConjugateReturnType;
-
- public:
- using Base::evalToLazy;
-
-
- typedef typename internal::traits<TriangularView>::StorageKind StorageKind;
- typedef typename internal::traits<TriangularView>::Index Index;
-
- enum {
- Mode = _Mode,
- TransposeMode = (Mode & Upper ? Lower : 0)
- | (Mode & Lower ? Upper : 0)
- | (Mode & (UnitDiag))
- | (Mode & (ZeroDiag))
- };
-
- inline TriangularView(const MatrixType& matrix) : m_matrix(matrix)
- {}
-
- inline Index rows() const { return m_matrix.rows(); }
- inline Index cols() const { return m_matrix.cols(); }
- inline Index outerStride() const { return m_matrix.outerStride(); }
- inline Index innerStride() const { return m_matrix.innerStride(); }
-
- /** \sa MatrixBase::operator+=() */
- template<typename Other> TriangularView& operator+=(const DenseBase<Other>& other) { return *this = m_matrix + other.derived(); }
- /** \sa MatrixBase::operator-=() */
- template<typename Other> TriangularView& operator-=(const DenseBase<Other>& other) { return *this = m_matrix - other.derived(); }
- /** \sa MatrixBase::operator*=() */
- TriangularView& operator*=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = m_matrix * other; }
- /** \sa MatrixBase::operator/=() */
- TriangularView& operator/=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = m_matrix / other; }
-
- /** \sa MatrixBase::fill() */
- void fill(const Scalar& value) { setConstant(value); }
- /** \sa MatrixBase::setConstant() */
- TriangularView& setConstant(const Scalar& value)
- { return *this = MatrixType::Constant(rows(), cols(), value); }
- /** \sa MatrixBase::setZero() */
- TriangularView& setZero() { return setConstant(Scalar(0)); }
- /** \sa MatrixBase::setOnes() */
- TriangularView& setOnes() { return setConstant(Scalar(1)); }
-
- /** \sa MatrixBase::coeff()
- * \warning the coordinates must fit into the referenced triangular part
- */
- inline Scalar coeff(Index row, Index col) const
- {
- Base::check_coordinates_internal(row, col);
- return m_matrix.coeff(row, col);
- }
-
- /** \sa MatrixBase::coeffRef()
- * \warning the coordinates must fit into the referenced triangular part
- */
- inline Scalar& coeffRef(Index row, Index col)
- {
- Base::check_coordinates_internal(row, col);
- return m_matrix.const_cast_derived().coeffRef(row, col);
- }
-
- const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; }
- MatrixTypeNestedCleaned& nestedExpression() { return *const_cast<MatrixTypeNestedCleaned*>(&m_matrix); }
-
- /** Assigns a triangular matrix to a triangular part of a dense matrix */
- template<typename OtherDerived>
- TriangularView& operator=(const TriangularBase<OtherDerived>& other);
-
- template<typename OtherDerived>
- TriangularView& operator=(const MatrixBase<OtherDerived>& other);
-
- TriangularView& operator=(const TriangularView& other)
- { return *this = other.nestedExpression(); }
-
- template<typename OtherDerived>
- void lazyAssign(const TriangularBase<OtherDerived>& other);
-
- template<typename OtherDerived>
- void lazyAssign(const MatrixBase<OtherDerived>& other);
-
- /** \sa MatrixBase::conjugate() */
- inline TriangularView<MatrixConjugateReturnType,Mode> conjugate()
- { return m_matrix.conjugate(); }
- /** \sa MatrixBase::conjugate() const */
- inline const TriangularView<MatrixConjugateReturnType,Mode> conjugate() const
- { return m_matrix.conjugate(); }
-
- /** \sa MatrixBase::adjoint() const */
- inline const TriangularView<const typename MatrixType::AdjointReturnType,TransposeMode> adjoint() const
- { return m_matrix.adjoint(); }
-
- /** \sa MatrixBase::transpose() */
- inline TriangularView<Transpose<MatrixType>,TransposeMode> transpose()
- {
- EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
- return m_matrix.const_cast_derived().transpose();
- }
- /** \sa MatrixBase::transpose() const */
- inline const TriangularView<Transpose<MatrixType>,TransposeMode> transpose() const
- {
- return m_matrix.transpose();
- }
-
- /** Efficient triangular matrix times vector/matrix product */
- template<typename OtherDerived>
- TriangularProduct<Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1>
- operator*(const MatrixBase<OtherDerived>& rhs) const
- {
- return TriangularProduct
- <Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1>
- (m_matrix, rhs.derived());
- }
-
- /** Efficient vector/matrix times triangular matrix product */
- template<typename OtherDerived> friend
- TriangularProduct<Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false>
- operator*(const MatrixBase<OtherDerived>& lhs, const TriangularView& rhs)
- {
- return TriangularProduct
- <Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false>
- (lhs.derived(),rhs.m_matrix);
- }
-
- #ifdef EIGEN2_SUPPORT
- template<typename OtherDerived>
- struct eigen2_product_return_type
- {
- typedef typename TriangularView<MatrixType,Mode>::DenseMatrixType DenseMatrixType;
- typedef typename OtherDerived::PlainObject::DenseType OtherPlainObject;
- typedef typename ProductReturnType<DenseMatrixType, OtherPlainObject>::Type ProdRetType;
- typedef typename ProdRetType::PlainObject type;
- };
- template<typename OtherDerived>
- const typename eigen2_product_return_type<OtherDerived>::type
- operator*(const EigenBase<OtherDerived>& rhs) const
- {
- typename OtherDerived::PlainObject::DenseType rhsPlainObject;
- rhs.evalTo(rhsPlainObject);
- return this->toDenseMatrix() * rhsPlainObject;
- }
- template<typename OtherMatrixType>
- bool isApprox(const TriangularView<OtherMatrixType, Mode>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
- {
- return this->toDenseMatrix().isApprox(other.toDenseMatrix(), precision);
- }
- template<typename OtherDerived>
- bool isApprox(const MatrixBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
- {
- return this->toDenseMatrix().isApprox(other, precision);
- }
- #endif // EIGEN2_SUPPORT
-
- template<int Side, typename Other>
- inline const internal::triangular_solve_retval<Side,TriangularView, Other>
- solve(const MatrixBase<Other>& other) const;
-
- template<int Side, typename OtherDerived>
- void solveInPlace(const MatrixBase<OtherDerived>& other) const;
-
- template<typename Other>
- inline const internal::triangular_solve_retval<OnTheLeft,TriangularView, Other>
- solve(const MatrixBase<Other>& other) const
- { return solve<OnTheLeft>(other); }
-
- template<typename OtherDerived>
- void solveInPlace(const MatrixBase<OtherDerived>& other) const
- { return solveInPlace<OnTheLeft>(other); }
-
- const SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView() const
- {
- EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR);
- return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
- }
- SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView()
- {
- EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR);
- return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
- }
-
- template<typename OtherDerived>
- void swap(TriangularBase<OtherDerived> const & other)
- {
- TriangularView<SwapWrapper<MatrixType>,Mode>(const_cast<MatrixType&>(m_matrix)).lazyAssign(other.derived());
- }
-
- template<typename OtherDerived>
- void swap(MatrixBase<OtherDerived> const & other)
- {
- SwapWrapper<MatrixType> swaper(const_cast<MatrixType&>(m_matrix));
- TriangularView<SwapWrapper<MatrixType>,Mode>(swaper).lazyAssign(other.derived());
- }
-
- Scalar determinant() const
- {
- if (Mode & UnitDiag)
- return 1;
- else if (Mode & ZeroDiag)
- return 0;
- else
- return m_matrix.diagonal().prod();
- }
-
- // TODO simplify the following:
- template<typename ProductDerived, typename Lhs, typename Rhs>
- EIGEN_STRONG_INLINE TriangularView& operator=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
- {
- setZero();
- return assignProduct(other,1);
- }
-
- template<typename ProductDerived, typename Lhs, typename Rhs>
- EIGEN_STRONG_INLINE TriangularView& operator+=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
- {
- return assignProduct(other,1);
- }
-
- template<typename ProductDerived, typename Lhs, typename Rhs>
- EIGEN_STRONG_INLINE TriangularView& operator-=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
- {
- return assignProduct(other,-1);
- }
-
-
- template<typename ProductDerived>
- EIGEN_STRONG_INLINE TriangularView& operator=(const ScaledProduct<ProductDerived>& other)
- {
- setZero();
- return assignProduct(other,other.alpha());
- }
-
- template<typename ProductDerived>
- EIGEN_STRONG_INLINE TriangularView& operator+=(const ScaledProduct<ProductDerived>& other)
- {
- return assignProduct(other,other.alpha());
- }
-
- template<typename ProductDerived>
- EIGEN_STRONG_INLINE TriangularView& operator-=(const ScaledProduct<ProductDerived>& other)
- {
- return assignProduct(other,-other.alpha());
- }
-
- protected:
-
- template<typename ProductDerived, typename Lhs, typename Rhs>
- EIGEN_STRONG_INLINE TriangularView& assignProduct(const ProductBase<ProductDerived, Lhs,Rhs>& prod, const Scalar& alpha);
-
- MatrixTypeNested m_matrix;
-};
-
-/***************************************************************************
-* Implementation of triangular evaluation/assignment
-***************************************************************************/
-
-namespace internal {
-
-template<typename Derived1, typename Derived2, unsigned int Mode, int UnrollCount, bool ClearOpposite>
-struct triangular_assignment_selector
-{
- enum {
- col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
- row = (UnrollCount-1) % Derived1::RowsAtCompileTime
- };
-
- typedef typename Derived1::Scalar Scalar;
-
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- triangular_assignment_selector<Derived1, Derived2, Mode, UnrollCount-1, ClearOpposite>::run(dst, src);
-
- eigen_assert( Mode == Upper || Mode == Lower
- || Mode == StrictlyUpper || Mode == StrictlyLower
- || Mode == UnitUpper || Mode == UnitLower);
- if((Mode == Upper && row <= col)
- || (Mode == Lower && row >= col)
- || (Mode == StrictlyUpper && row < col)
- || (Mode == StrictlyLower && row > col)
- || (Mode == UnitUpper && row < col)
- || (Mode == UnitLower && row > col))
- dst.copyCoeff(row, col, src);
- else if(ClearOpposite)
- {
- if (Mode&UnitDiag && row==col)
- dst.coeffRef(row, col) = Scalar(1);
- else
- dst.coeffRef(row, col) = Scalar(0);
- }
- }
-};
-
-// prevent buggy user code from causing an infinite recursion
-template<typename Derived1, typename Derived2, unsigned int Mode, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, Mode, 0, ClearOpposite>
-{
- static inline void run(Derived1 &, const Derived2 &) {}
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, Upper, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- typedef typename Derived1::Scalar Scalar;
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- for(Index j = 0; j < dst.cols(); ++j)
- {
- Index maxi = (std::min)(j, dst.rows()-1);
- for(Index i = 0; i <= maxi; ++i)
- dst.copyCoeff(i, j, src);
- if (ClearOpposite)
- for(Index i = maxi+1; i < dst.rows(); ++i)
- dst.coeffRef(i, j) = Scalar(0);
- }
- }
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, Lower, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- for(Index j = 0; j < dst.cols(); ++j)
- {
- for(Index i = j; i < dst.rows(); ++i)
- dst.copyCoeff(i, j, src);
- Index maxi = (std::min)(j, dst.rows());
- if (ClearOpposite)
- for(Index i = 0; i < maxi; ++i)
- dst.coeffRef(i, j) = static_cast<typename Derived1::Scalar>(0);
- }
- }
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, StrictlyUpper, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- typedef typename Derived1::Scalar Scalar;
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- for(Index j = 0; j < dst.cols(); ++j)
- {
- Index maxi = (std::min)(j, dst.rows());
- for(Index i = 0; i < maxi; ++i)
- dst.copyCoeff(i, j, src);
- if (ClearOpposite)
- for(Index i = maxi; i < dst.rows(); ++i)
- dst.coeffRef(i, j) = Scalar(0);
- }
- }
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, StrictlyLower, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- for(Index j = 0; j < dst.cols(); ++j)
- {
- for(Index i = j+1; i < dst.rows(); ++i)
- dst.copyCoeff(i, j, src);
- Index maxi = (std::min)(j, dst.rows()-1);
- if (ClearOpposite)
- for(Index i = 0; i <= maxi; ++i)
- dst.coeffRef(i, j) = static_cast<typename Derived1::Scalar>(0);
- }
- }
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, UnitUpper, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- for(Index j = 0; j < dst.cols(); ++j)
- {
- Index maxi = (std::min)(j, dst.rows());
- for(Index i = 0; i < maxi; ++i)
- dst.copyCoeff(i, j, src);
- if (ClearOpposite)
- {
- for(Index i = maxi+1; i < dst.rows(); ++i)
- dst.coeffRef(i, j) = 0;
- }
- }
- dst.diagonal().setOnes();
- }
-};
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, UnitLower, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- for(Index j = 0; j < dst.cols(); ++j)
- {
- Index maxi = (std::min)(j, dst.rows());
- for(Index i = maxi+1; i < dst.rows(); ++i)
- dst.copyCoeff(i, j, src);
- if (ClearOpposite)
- {
- for(Index i = 0; i < maxi; ++i)
- dst.coeffRef(i, j) = 0;
- }
- }
- dst.diagonal().setOnes();
- }
-};
-
-} // end namespace internal
-
-// FIXME should we keep that possibility
-template<typename MatrixType, unsigned int Mode>
-template<typename OtherDerived>
-inline TriangularView<MatrixType, Mode>&
-TriangularView<MatrixType, Mode>::operator=(const MatrixBase<OtherDerived>& other)
-{
- if(OtherDerived::Flags & EvalBeforeAssigningBit)
- {
- typename internal::plain_matrix_type<OtherDerived>::type other_evaluated(other.rows(), other.cols());
- other_evaluated.template triangularView<Mode>().lazyAssign(other.derived());
- lazyAssign(other_evaluated);
- }
- else
- lazyAssign(other.derived());
- return *this;
-}
-
-// FIXME should we keep that possibility
-template<typename MatrixType, unsigned int Mode>
-template<typename OtherDerived>
-void TriangularView<MatrixType, Mode>::lazyAssign(const MatrixBase<OtherDerived>& other)
-{
- enum {
- unroll = MatrixType::SizeAtCompileTime != Dynamic
- && internal::traits<OtherDerived>::CoeffReadCost != Dynamic
- && MatrixType::SizeAtCompileTime*internal::traits<OtherDerived>::CoeffReadCost/2 <= EIGEN_UNROLLING_LIMIT
- };
- eigen_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols());
-
- internal::triangular_assignment_selector
- <MatrixType, OtherDerived, int(Mode),
- unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic,
- false // do not change the opposite triangular part
- >::run(m_matrix.const_cast_derived(), other.derived());
-}
-
-
-
-template<typename MatrixType, unsigned int Mode>
-template<typename OtherDerived>
-inline TriangularView<MatrixType, Mode>&
-TriangularView<MatrixType, Mode>::operator=(const TriangularBase<OtherDerived>& other)
-{
- eigen_assert(Mode == int(OtherDerived::Mode));
- if(internal::traits<OtherDerived>::Flags & EvalBeforeAssigningBit)
- {
- typename OtherDerived::DenseMatrixType other_evaluated(other.rows(), other.cols());
- other_evaluated.template triangularView<Mode>().lazyAssign(other.derived().nestedExpression());
- lazyAssign(other_evaluated);
- }
- else
- lazyAssign(other.derived().nestedExpression());
- return *this;
-}
-
-template<typename MatrixType, unsigned int Mode>
-template<typename OtherDerived>
-void TriangularView<MatrixType, Mode>::lazyAssign(const TriangularBase<OtherDerived>& other)
-{
- enum {
- unroll = MatrixType::SizeAtCompileTime != Dynamic
- && internal::traits<OtherDerived>::CoeffReadCost != Dynamic
- && MatrixType::SizeAtCompileTime * internal::traits<OtherDerived>::CoeffReadCost / 2
- <= EIGEN_UNROLLING_LIMIT
- };
- eigen_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols());
-
- internal::triangular_assignment_selector
- <MatrixType, OtherDerived, int(Mode),
- unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic,
- false // preserve the opposite triangular part
- >::run(m_matrix.const_cast_derived(), other.derived().nestedExpression());
-}
-
-/***************************************************************************
-* Implementation of TriangularBase methods
-***************************************************************************/
-
-/** Assigns a triangular or selfadjoint matrix to a dense matrix.
- * If the matrix is triangular, the opposite part is set to zero. */
-template<typename Derived>
-template<typename DenseDerived>
-void TriangularBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const
-{
- if(internal::traits<Derived>::Flags & EvalBeforeAssigningBit)
- {
- typename internal::plain_matrix_type<Derived>::type other_evaluated(rows(), cols());
- evalToLazy(other_evaluated);
- other.derived().swap(other_evaluated);
- }
- else
- evalToLazy(other.derived());
-}
-
-/** Assigns a triangular or selfadjoint matrix to a dense matrix.
- * If the matrix is triangular, the opposite part is set to zero. */
-template<typename Derived>
-template<typename DenseDerived>
-void TriangularBase<Derived>::evalToLazy(MatrixBase<DenseDerived> &other) const
-{
- enum {
- unroll = DenseDerived::SizeAtCompileTime != Dynamic
- && internal::traits<Derived>::CoeffReadCost != Dynamic
- && DenseDerived::SizeAtCompileTime * internal::traits<Derived>::CoeffReadCost / 2
- <= EIGEN_UNROLLING_LIMIT
- };
- other.derived().resize(this->rows(), this->cols());
-
- internal::triangular_assignment_selector
- <DenseDerived, typename internal::traits<Derived>::MatrixTypeNestedCleaned, Derived::Mode,
- unroll ? int(DenseDerived::SizeAtCompileTime) : Dynamic,
- true // clear the opposite triangular part
- >::run(other.derived(), derived().nestedExpression());
-}
-
-/***************************************************************************
-* Implementation of TriangularView methods
-***************************************************************************/
-
-/***************************************************************************
-* Implementation of MatrixBase methods
-***************************************************************************/
-
-#ifdef EIGEN2_SUPPORT
-
-// implementation of part<>(), including the SelfAdjoint case.
-
-namespace internal {
-template<typename MatrixType, unsigned int Mode>
-struct eigen2_part_return_type
-{
- typedef TriangularView<MatrixType, Mode> type;
-};
-
-template<typename MatrixType>
-struct eigen2_part_return_type<MatrixType, SelfAdjoint>
-{
- typedef SelfAdjointView<MatrixType, Upper> type;
-};
-}
-
-/** \deprecated use MatrixBase::triangularView() */
-template<typename Derived>
-template<unsigned int Mode>
-const typename internal::eigen2_part_return_type<Derived, Mode>::type MatrixBase<Derived>::part() const
-{
- return derived();
-}
-
-/** \deprecated use MatrixBase::triangularView() */
-template<typename Derived>
-template<unsigned int Mode>
-typename internal::eigen2_part_return_type<Derived, Mode>::type MatrixBase<Derived>::part()
-{
- return derived();
-}
-#endif
-
-/**
- * \returns an expression of a triangular view extracted from the current matrix
- *
- * The parameter \a Mode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper,
- * \c #Lower, \c #StrictlyLower, \c #UnitLower.
- *
- * Example: \include MatrixBase_extract.cpp
- * Output: \verbinclude MatrixBase_extract.out
- *
- * \sa class TriangularView
- */
-template<typename Derived>
-template<unsigned int Mode>
-typename MatrixBase<Derived>::template TriangularViewReturnType<Mode>::Type
-MatrixBase<Derived>::triangularView()
-{
- return derived();
-}
-
-/** This is the const version of MatrixBase::triangularView() */
-template<typename Derived>
-template<unsigned int Mode>
-typename MatrixBase<Derived>::template ConstTriangularViewReturnType<Mode>::Type
-MatrixBase<Derived>::triangularView() const
-{
- return derived();
-}
-
-/** \returns true if *this is approximately equal to an upper triangular matrix,
- * within the precision given by \a prec.
- *
- * \sa isLowerTriangular()
- */
-template<typename Derived>
-bool MatrixBase<Derived>::isUpperTriangular(const RealScalar& prec) const
-{
- using std::abs;
- RealScalar maxAbsOnUpperPart = static_cast<RealScalar>(-1);
- for(Index j = 0; j < cols(); ++j)
- {
- Index maxi = (std::min)(j, rows()-1);
- for(Index i = 0; i <= maxi; ++i)
- {
- RealScalar absValue = abs(coeff(i,j));
- if(absValue > maxAbsOnUpperPart) maxAbsOnUpperPart = absValue;
- }
- }
- RealScalar threshold = maxAbsOnUpperPart * prec;
- for(Index j = 0; j < cols(); ++j)
- for(Index i = j+1; i < rows(); ++i)
- if(abs(coeff(i, j)) > threshold) return false;
- return true;
-}
-
-/** \returns true if *this is approximately equal to a lower triangular matrix,
- * within the precision given by \a prec.
- *
- * \sa isUpperTriangular()
- */
-template<typename Derived>
-bool MatrixBase<Derived>::isLowerTriangular(const RealScalar& prec) const
-{
- using std::abs;
- RealScalar maxAbsOnLowerPart = static_cast<RealScalar>(-1);
- for(Index j = 0; j < cols(); ++j)
- for(Index i = j; i < rows(); ++i)
- {
- RealScalar absValue = abs(coeff(i,j));
- if(absValue > maxAbsOnLowerPart) maxAbsOnLowerPart = absValue;
- }
- RealScalar threshold = maxAbsOnLowerPart * prec;
- for(Index j = 1; j < cols(); ++j)
- {
- Index maxi = (std::min)(j, rows()-1);
- for(Index i = 0; i < maxi; ++i)
- if(abs(coeff(i, j)) > threshold) return false;
- }
- return true;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_TRIANGULARMATRIX_H
diff --git a/src/Eigen/src/Core/VectorBlock.h b/src/Eigen/src/Core/VectorBlock.h
deleted file mode 100644
index 1a7330f..0000000
--- a/src/Eigen/src/Core/VectorBlock.h
+++ /dev/null
@@ -1,95 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_VECTORBLOCK_H
-#define EIGEN_VECTORBLOCK_H
-
-namespace Eigen {
-
-/** \class VectorBlock
- * \ingroup Core_Module
- *
- * \brief Expression of a fixed-size or dynamic-size sub-vector
- *
- * \param VectorType the type of the object in which we are taking a sub-vector
- * \param Size size of the sub-vector we are taking at compile time (optional)
- *
- * This class represents an expression of either a fixed-size or dynamic-size sub-vector.
- * It is the return type of DenseBase::segment(Index,Index) and DenseBase::segment<int>(Index) and
- * most of the time this is the only way it is used.
- *
- * However, if you want to directly maniputate sub-vector expressions,
- * for instance if you want to write a function returning such an expression, you
- * will need to use this class.
- *
- * Here is an example illustrating the dynamic case:
- * \include class_VectorBlock.cpp
- * Output: \verbinclude class_VectorBlock.out
- *
- * \note Even though this expression has dynamic size, in the case where \a VectorType
- * has fixed size, this expression inherits a fixed maximal size which means that evaluating
- * it does not cause a dynamic memory allocation.
- *
- * Here is an example illustrating the fixed-size case:
- * \include class_FixedVectorBlock.cpp
- * Output: \verbinclude class_FixedVectorBlock.out
- *
- * \sa class Block, DenseBase::segment(Index,Index,Index,Index), DenseBase::segment(Index,Index)
- */
-
-namespace internal {
-template<typename VectorType, int Size>
-struct traits<VectorBlock<VectorType, Size> >
- : public traits<Block<VectorType,
- traits<VectorType>::Flags & RowMajorBit ? 1 : Size,
- traits<VectorType>::Flags & RowMajorBit ? Size : 1> >
-{
-};
-}
-
-template<typename VectorType, int Size> class VectorBlock
- : public Block<VectorType,
- internal::traits<VectorType>::Flags & RowMajorBit ? 1 : Size,
- internal::traits<VectorType>::Flags & RowMajorBit ? Size : 1>
-{
- typedef Block<VectorType,
- internal::traits<VectorType>::Flags & RowMajorBit ? 1 : Size,
- internal::traits<VectorType>::Flags & RowMajorBit ? Size : 1> Base;
- enum {
- IsColVector = !(internal::traits<VectorType>::Flags & RowMajorBit)
- };
- public:
- EIGEN_DENSE_PUBLIC_INTERFACE(VectorBlock)
-
- using Base::operator=;
-
- /** Dynamic-size constructor
- */
- inline VectorBlock(VectorType& vector, Index start, Index size)
- : Base(vector,
- IsColVector ? start : 0, IsColVector ? 0 : start,
- IsColVector ? size : 1, IsColVector ? 1 : size)
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorBlock);
- }
-
- /** Fixed-size constructor
- */
- inline VectorBlock(VectorType& vector, Index start)
- : Base(vector, IsColVector ? start : 0, IsColVector ? 0 : start)
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorBlock);
- }
-};
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_VECTORBLOCK_H
diff --git a/src/Eigen/src/Core/VectorwiseOp.h b/src/Eigen/src/Core/VectorwiseOp.h
deleted file mode 100644
index d5ab036..0000000
--- a/src/Eigen/src/Core/VectorwiseOp.h
+++ /dev/null
@@ -1,642 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_PARTIAL_REDUX_H
-#define EIGEN_PARTIAL_REDUX_H
-
-namespace Eigen {
-
-/** \class PartialReduxExpr
- * \ingroup Core_Module
- *
- * \brief Generic expression of a partially reduxed matrix
- *
- * \tparam MatrixType the type of the matrix we are applying the redux operation
- * \tparam MemberOp type of the member functor
- * \tparam Direction indicates the direction of the redux (#Vertical or #Horizontal)
- *
- * This class represents an expression of a partial redux operator of a matrix.
- * It is the return type of some VectorwiseOp functions,
- * and most of the time this is the only way it is used.
- *
- * \sa class VectorwiseOp
- */
-
-template< typename MatrixType, typename MemberOp, int Direction>
-class PartialReduxExpr;
-
-namespace internal {
-template<typename MatrixType, typename MemberOp, int Direction>
-struct traits<PartialReduxExpr<MatrixType, MemberOp, Direction> >
- : traits<MatrixType>
-{
- typedef typename MemberOp::result_type Scalar;
- typedef typename traits<MatrixType>::StorageKind StorageKind;
- typedef typename traits<MatrixType>::XprKind XprKind;
- typedef typename MatrixType::Scalar InputScalar;
- typedef typename nested<MatrixType>::type MatrixTypeNested;
- typedef typename remove_all<MatrixTypeNested>::type _MatrixTypeNested;
- enum {
- RowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::MaxColsAtCompileTime,
- Flags0 = (unsigned int)_MatrixTypeNested::Flags & HereditaryBits,
- Flags = (Flags0 & ~RowMajorBit) | (RowsAtCompileTime == 1 ? RowMajorBit : 0),
- TraversalSize = Direction==Vertical ? MatrixType::RowsAtCompileTime : MatrixType::ColsAtCompileTime
- };
- #if EIGEN_GNUC_AT_LEAST(3,4)
- typedef typename MemberOp::template Cost<InputScalar,int(TraversalSize)> CostOpType;
- #else
- typedef typename MemberOp::template Cost<InputScalar,TraversalSize> CostOpType;
- #endif
- enum {
- CoeffReadCost = TraversalSize==Dynamic ? Dynamic
- : TraversalSize * traits<_MatrixTypeNested>::CoeffReadCost + int(CostOpType::value)
- };
-};
-}
-
-template< typename MatrixType, typename MemberOp, int Direction>
-class PartialReduxExpr : internal::no_assignment_operator,
- public internal::dense_xpr_base< PartialReduxExpr<MatrixType, MemberOp, Direction> >::type
-{
- public:
-
- typedef typename internal::dense_xpr_base<PartialReduxExpr>::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(PartialReduxExpr)
- typedef typename internal::traits<PartialReduxExpr>::MatrixTypeNested MatrixTypeNested;
- typedef typename internal::traits<PartialReduxExpr>::_MatrixTypeNested _MatrixTypeNested;
-
- PartialReduxExpr(const MatrixType& mat, const MemberOp& func = MemberOp())
- : m_matrix(mat), m_functor(func) {}
-
- Index rows() const { return (Direction==Vertical ? 1 : m_matrix.rows()); }
- Index cols() const { return (Direction==Horizontal ? 1 : m_matrix.cols()); }
-
- EIGEN_STRONG_INLINE const Scalar coeff(Index i, Index j) const
- {
- if (Direction==Vertical)
- return m_functor(m_matrix.col(j));
- else
- return m_functor(m_matrix.row(i));
- }
-
- const Scalar coeff(Index index) const
- {
- if (Direction==Vertical)
- return m_functor(m_matrix.col(index));
- else
- return m_functor(m_matrix.row(index));
- }
-
- protected:
- MatrixTypeNested m_matrix;
- const MemberOp m_functor;
-};
-
-#define EIGEN_MEMBER_FUNCTOR(MEMBER,COST) \
- template <typename ResultType> \
- struct member_##MEMBER { \
- EIGEN_EMPTY_STRUCT_CTOR(member_##MEMBER) \
- typedef ResultType result_type; \
- template<typename Scalar, int Size> struct Cost \
- { enum { value = COST }; }; \
- template<typename XprType> \
- EIGEN_STRONG_INLINE ResultType operator()(const XprType& mat) const \
- { return mat.MEMBER(); } \
- }
-
-namespace internal {
-
-EIGEN_MEMBER_FUNCTOR(squaredNorm, Size * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
-EIGEN_MEMBER_FUNCTOR(norm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
-EIGEN_MEMBER_FUNCTOR(stableNorm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
-EIGEN_MEMBER_FUNCTOR(blueNorm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
-EIGEN_MEMBER_FUNCTOR(hypotNorm, (Size-1) * functor_traits<scalar_hypot_op<Scalar> >::Cost );
-EIGEN_MEMBER_FUNCTOR(sum, (Size-1)*NumTraits<Scalar>::AddCost);
-EIGEN_MEMBER_FUNCTOR(mean, (Size-1)*NumTraits<Scalar>::AddCost + NumTraits<Scalar>::MulCost);
-EIGEN_MEMBER_FUNCTOR(minCoeff, (Size-1)*NumTraits<Scalar>::AddCost);
-EIGEN_MEMBER_FUNCTOR(maxCoeff, (Size-1)*NumTraits<Scalar>::AddCost);
-EIGEN_MEMBER_FUNCTOR(all, (Size-1)*NumTraits<Scalar>::AddCost);
-EIGEN_MEMBER_FUNCTOR(any, (Size-1)*NumTraits<Scalar>::AddCost);
-EIGEN_MEMBER_FUNCTOR(count, (Size-1)*NumTraits<Scalar>::AddCost);
-EIGEN_MEMBER_FUNCTOR(prod, (Size-1)*NumTraits<Scalar>::MulCost);
-
-
-template <typename BinaryOp, typename Scalar>
-struct member_redux {
- typedef typename result_of<
- BinaryOp(Scalar)
- >::type result_type;
- template<typename _Scalar, int Size> struct Cost
- { enum { value = (Size-1) * functor_traits<BinaryOp>::Cost }; };
- member_redux(const BinaryOp func) : m_functor(func) {}
- template<typename Derived>
- inline result_type operator()(const DenseBase<Derived>& mat) const
- { return mat.redux(m_functor); }
- const BinaryOp m_functor;
-};
-}
-
-/** \class VectorwiseOp
- * \ingroup Core_Module
- *
- * \brief Pseudo expression providing partial reduction operations
- *
- * \param ExpressionType the type of the object on which to do partial reductions
- * \param Direction indicates the direction of the redux (#Vertical or #Horizontal)
- *
- * This class represents a pseudo expression with partial reduction features.
- * It is the return type of DenseBase::colwise() and DenseBase::rowwise()
- * and most of the time this is the only way it is used.
- *
- * Example: \include MatrixBase_colwise.cpp
- * Output: \verbinclude MatrixBase_colwise.out
- *
- * \sa DenseBase::colwise(), DenseBase::rowwise(), class PartialReduxExpr
- */
-template<typename ExpressionType, int Direction> class VectorwiseOp
-{
- public:
-
- typedef typename ExpressionType::Scalar Scalar;
- typedef typename ExpressionType::RealScalar RealScalar;
- typedef typename ExpressionType::Index Index;
- typedef typename internal::conditional<internal::must_nest_by_value<ExpressionType>::ret,
- ExpressionType, ExpressionType&>::type ExpressionTypeNested;
- typedef typename internal::remove_all<ExpressionTypeNested>::type ExpressionTypeNestedCleaned;
-
- template<template<typename _Scalar> class Functor,
- typename Scalar=typename internal::traits<ExpressionType>::Scalar> struct ReturnType
- {
- typedef PartialReduxExpr<ExpressionType,
- Functor<Scalar>,
- Direction
- > Type;
- };
-
- template<typename BinaryOp> struct ReduxReturnType
- {
- typedef PartialReduxExpr<ExpressionType,
- internal::member_redux<BinaryOp,typename internal::traits<ExpressionType>::Scalar>,
- Direction
- > Type;
- };
-
- enum {
- IsVertical = (Direction==Vertical) ? 1 : 0,
- IsHorizontal = (Direction==Horizontal) ? 1 : 0
- };
-
- protected:
-
- /** \internal
- * \returns the i-th subvector according to the \c Direction */
- typedef typename internal::conditional<Direction==Vertical,
- typename ExpressionType::ColXpr,
- typename ExpressionType::RowXpr>::type SubVector;
- SubVector subVector(Index i)
- {
- return SubVector(m_matrix.derived(),i);
- }
-
- /** \internal
- * \returns the number of subvectors in the direction \c Direction */
- Index subVectors() const
- { return Direction==Vertical?m_matrix.cols():m_matrix.rows(); }
-
- template<typename OtherDerived> struct ExtendedType {
- typedef Replicate<OtherDerived,
- Direction==Vertical ? 1 : ExpressionType::RowsAtCompileTime,
- Direction==Horizontal ? 1 : ExpressionType::ColsAtCompileTime> Type;
- };
-
- /** \internal
- * Replicates a vector to match the size of \c *this */
- template<typename OtherDerived>
- typename ExtendedType<OtherDerived>::Type
- extendedTo(const DenseBase<OtherDerived>& other) const
- {
- EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(Direction==Vertical, OtherDerived::MaxColsAtCompileTime==1),
- YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED)
- EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(Direction==Horizontal, OtherDerived::MaxRowsAtCompileTime==1),
- YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED)
- return typename ExtendedType<OtherDerived>::Type
- (other.derived(),
- Direction==Vertical ? 1 : m_matrix.rows(),
- Direction==Horizontal ? 1 : m_matrix.cols());
- }
-
- template<typename OtherDerived> struct OppositeExtendedType {
- typedef Replicate<OtherDerived,
- Direction==Horizontal ? 1 : ExpressionType::RowsAtCompileTime,
- Direction==Vertical ? 1 : ExpressionType::ColsAtCompileTime> Type;
- };
-
- /** \internal
- * Replicates a vector in the opposite direction to match the size of \c *this */
- template<typename OtherDerived>
- typename OppositeExtendedType<OtherDerived>::Type
- extendedToOpposite(const DenseBase<OtherDerived>& other) const
- {
- EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(Direction==Horizontal, OtherDerived::MaxColsAtCompileTime==1),
- YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED)
- EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(Direction==Vertical, OtherDerived::MaxRowsAtCompileTime==1),
- YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED)
- return typename OppositeExtendedType<OtherDerived>::Type
- (other.derived(),
- Direction==Horizontal ? 1 : m_matrix.rows(),
- Direction==Vertical ? 1 : m_matrix.cols());
- }
-
- public:
-
- inline VectorwiseOp(ExpressionType& matrix) : m_matrix(matrix) {}
-
- /** \internal */
- inline const ExpressionType& _expression() const { return m_matrix; }
-
- /** \returns a row or column vector expression of \c *this reduxed by \a func
- *
- * The template parameter \a BinaryOp is the type of the functor
- * of the custom redux operator. Note that func must be an associative operator.
- *
- * \sa class VectorwiseOp, DenseBase::colwise(), DenseBase::rowwise()
- */
- template<typename BinaryOp>
- const typename ReduxReturnType<BinaryOp>::Type
- redux(const BinaryOp& func = BinaryOp()) const
- { return typename ReduxReturnType<BinaryOp>::Type(_expression(), func); }
-
- /** \returns a row (or column) vector expression of the smallest coefficient
- * of each column (or row) of the referenced expression.
- *
- * \warning the result is undefined if \c *this contains NaN.
- *
- * Example: \include PartialRedux_minCoeff.cpp
- * Output: \verbinclude PartialRedux_minCoeff.out
- *
- * \sa DenseBase::minCoeff() */
- const typename ReturnType<internal::member_minCoeff>::Type minCoeff() const
- { return _expression(); }
-
- /** \returns a row (or column) vector expression of the largest coefficient
- * of each column (or row) of the referenced expression.
- *
- * \warning the result is undefined if \c *this contains NaN.
- *
- * Example: \include PartialRedux_maxCoeff.cpp
- * Output: \verbinclude PartialRedux_maxCoeff.out
- *
- * \sa DenseBase::maxCoeff() */
- const typename ReturnType<internal::member_maxCoeff>::Type maxCoeff() const
- { return _expression(); }
-
- /** \returns a row (or column) vector expression of the squared norm
- * of each column (or row) of the referenced expression.
- *
- * Example: \include PartialRedux_squaredNorm.cpp
- * Output: \verbinclude PartialRedux_squaredNorm.out
- *
- * \sa DenseBase::squaredNorm() */
- const typename ReturnType<internal::member_squaredNorm,RealScalar>::Type squaredNorm() const
- { return _expression(); }
-
- /** \returns a row (or column) vector expression of the norm
- * of each column (or row) of the referenced expression.
- *
- * Example: \include PartialRedux_norm.cpp
- * Output: \verbinclude PartialRedux_norm.out
- *
- * \sa DenseBase::norm() */
- const typename ReturnType<internal::member_norm,RealScalar>::Type norm() const
- { return _expression(); }
-
-
- /** \returns a row (or column) vector expression of the norm
- * of each column (or row) of the referenced expression, using
- * blue's algorithm.
- *
- * \sa DenseBase::blueNorm() */
- const typename ReturnType<internal::member_blueNorm,RealScalar>::Type blueNorm() const
- { return _expression(); }
-
-
- /** \returns a row (or column) vector expression of the norm
- * of each column (or row) of the referenced expression, avoiding
- * underflow and overflow.
- *
- * \sa DenseBase::stableNorm() */
- const typename ReturnType<internal::member_stableNorm,RealScalar>::Type stableNorm() const
- { return _expression(); }
-
-
- /** \returns a row (or column) vector expression of the norm
- * of each column (or row) of the referenced expression, avoiding
- * underflow and overflow using a concatenation of hypot() calls.
- *
- * \sa DenseBase::hypotNorm() */
- const typename ReturnType<internal::member_hypotNorm,RealScalar>::Type hypotNorm() const
- { return _expression(); }
-
- /** \returns a row (or column) vector expression of the sum
- * of each column (or row) of the referenced expression.
- *
- * Example: \include PartialRedux_sum.cpp
- * Output: \verbinclude PartialRedux_sum.out
- *
- * \sa DenseBase::sum() */
- const typename ReturnType<internal::member_sum>::Type sum() const
- { return _expression(); }
-
- /** \returns a row (or column) vector expression of the mean
- * of each column (or row) of the referenced expression.
- *
- * \sa DenseBase::mean() */
- const typename ReturnType<internal::member_mean>::Type mean() const
- { return _expression(); }
-
- /** \returns a row (or column) vector expression representing
- * whether \b all coefficients of each respective column (or row) are \c true.
- *
- * \sa DenseBase::all() */
- const typename ReturnType<internal::member_all>::Type all() const
- { return _expression(); }
-
- /** \returns a row (or column) vector expression representing
- * whether \b at \b least one coefficient of each respective column (or row) is \c true.
- *
- * \sa DenseBase::any() */
- const typename ReturnType<internal::member_any>::Type any() const
- { return _expression(); }
-
- /** \returns a row (or column) vector expression representing
- * the number of \c true coefficients of each respective column (or row).
- *
- * Example: \include PartialRedux_count.cpp
- * Output: \verbinclude PartialRedux_count.out
- *
- * \sa DenseBase::count() */
- const PartialReduxExpr<ExpressionType, internal::member_count<Index>, Direction> count() const
- { return _expression(); }
-
- /** \returns a row (or column) vector expression of the product
- * of each column (or row) of the referenced expression.
- *
- * Example: \include PartialRedux_prod.cpp
- * Output: \verbinclude PartialRedux_prod.out
- *
- * \sa DenseBase::prod() */
- const typename ReturnType<internal::member_prod>::Type prod() const
- { return _expression(); }
-
-
- /** \returns a matrix expression
- * where each column (or row) are reversed.
- *
- * Example: \include Vectorwise_reverse.cpp
- * Output: \verbinclude Vectorwise_reverse.out
- *
- * \sa DenseBase::reverse() */
- const Reverse<ExpressionType, Direction> reverse() const
- { return Reverse<ExpressionType, Direction>( _expression() ); }
-
- typedef Replicate<ExpressionType,Direction==Vertical?Dynamic:1,Direction==Horizontal?Dynamic:1> ReplicateReturnType;
- const ReplicateReturnType replicate(Index factor) const;
-
- /**
- * \return an expression of the replication of each column (or row) of \c *this
- *
- * Example: \include DirectionWise_replicate.cpp
- * Output: \verbinclude DirectionWise_replicate.out
- *
- * \sa VectorwiseOp::replicate(Index), DenseBase::replicate(), class Replicate
- */
- // NOTE implemented here because of sunstudio's compilation errors
- template<int Factor> const Replicate<ExpressionType,(IsVertical?Factor:1),(IsHorizontal?Factor:1)>
- replicate(Index factor = Factor) const
- {
- return Replicate<ExpressionType,Direction==Vertical?Factor:1,Direction==Horizontal?Factor:1>
- (_expression(),Direction==Vertical?factor:1,Direction==Horizontal?factor:1);
- }
-
-/////////// Artithmetic operators ///////////
-
- /** Copies the vector \a other to each subvector of \c *this */
- template<typename OtherDerived>
- ExpressionType& operator=(const DenseBase<OtherDerived>& other)
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
- //eigen_assert((m_matrix.isNull()) == (other.isNull())); FIXME
- return const_cast<ExpressionType&>(m_matrix = extendedTo(other.derived()));
- }
-
- /** Adds the vector \a other to each subvector of \c *this */
- template<typename OtherDerived>
- ExpressionType& operator+=(const DenseBase<OtherDerived>& other)
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
- return const_cast<ExpressionType&>(m_matrix += extendedTo(other.derived()));
- }
-
- /** Substracts the vector \a other to each subvector of \c *this */
- template<typename OtherDerived>
- ExpressionType& operator-=(const DenseBase<OtherDerived>& other)
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
- return const_cast<ExpressionType&>(m_matrix -= extendedTo(other.derived()));
- }
-
- /** Multiples each subvector of \c *this by the vector \a other */
- template<typename OtherDerived>
- ExpressionType& operator*=(const DenseBase<OtherDerived>& other)
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
- EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
- m_matrix *= extendedTo(other.derived());
- return const_cast<ExpressionType&>(m_matrix);
- }
-
- /** Divides each subvector of \c *this by the vector \a other */
- template<typename OtherDerived>
- ExpressionType& operator/=(const DenseBase<OtherDerived>& other)
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
- EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
- m_matrix /= extendedTo(other.derived());
- return const_cast<ExpressionType&>(m_matrix);
- }
-
- /** Returns the expression of the sum of the vector \a other to each subvector of \c *this */
- template<typename OtherDerived> EIGEN_STRONG_INLINE
- CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
- const ExpressionTypeNestedCleaned,
- const typename ExtendedType<OtherDerived>::Type>
- operator+(const DenseBase<OtherDerived>& other) const
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
- return m_matrix + extendedTo(other.derived());
- }
-
- /** Returns the expression of the difference between each subvector of \c *this and the vector \a other */
- template<typename OtherDerived>
- CwiseBinaryOp<internal::scalar_difference_op<Scalar>,
- const ExpressionTypeNestedCleaned,
- const typename ExtendedType<OtherDerived>::Type>
- operator-(const DenseBase<OtherDerived>& other) const
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
- return m_matrix - extendedTo(other.derived());
- }
-
- /** Returns the expression where each subvector is the product of the vector \a other
- * by the corresponding subvector of \c *this */
- template<typename OtherDerived> EIGEN_STRONG_INLINE
- CwiseBinaryOp<internal::scalar_product_op<Scalar>,
- const ExpressionTypeNestedCleaned,
- const typename ExtendedType<OtherDerived>::Type>
- operator*(const DenseBase<OtherDerived>& other) const
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
- EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
- return m_matrix * extendedTo(other.derived());
- }
-
- /** Returns the expression where each subvector is the quotient of the corresponding
- * subvector of \c *this by the vector \a other */
- template<typename OtherDerived>
- CwiseBinaryOp<internal::scalar_quotient_op<Scalar>,
- const ExpressionTypeNestedCleaned,
- const typename ExtendedType<OtherDerived>::Type>
- operator/(const DenseBase<OtherDerived>& other) const
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
- EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
- return m_matrix / extendedTo(other.derived());
- }
-
- /** \returns an expression where each column of row of the referenced matrix are normalized.
- * The referenced matrix is \b not modified.
- * \sa MatrixBase::normalized(), normalize()
- */
- CwiseBinaryOp<internal::scalar_quotient_op<Scalar>,
- const ExpressionTypeNestedCleaned,
- const typename OppositeExtendedType<typename ReturnType<internal::member_norm,RealScalar>::Type>::Type>
- normalized() const { return m_matrix.cwiseQuotient(extendedToOpposite(this->norm())); }
-
-
- /** Normalize in-place each row or columns of the referenced matrix.
- * \sa MatrixBase::normalize(), normalized()
- */
- void normalize() {
- m_matrix = this->normalized();
- }
-
-/////////// Geometry module ///////////
-
- #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
- Homogeneous<ExpressionType,Direction> homogeneous() const;
- #endif
-
- typedef typename ExpressionType::PlainObject CrossReturnType;
- template<typename OtherDerived>
- const CrossReturnType cross(const MatrixBase<OtherDerived>& other) const;
-
- enum {
- HNormalized_Size = Direction==Vertical ? internal::traits<ExpressionType>::RowsAtCompileTime
- : internal::traits<ExpressionType>::ColsAtCompileTime,
- HNormalized_SizeMinusOne = HNormalized_Size==Dynamic ? Dynamic : HNormalized_Size-1
- };
- typedef Block<const ExpressionType,
- Direction==Vertical ? int(HNormalized_SizeMinusOne)
- : int(internal::traits<ExpressionType>::RowsAtCompileTime),
- Direction==Horizontal ? int(HNormalized_SizeMinusOne)
- : int(internal::traits<ExpressionType>::ColsAtCompileTime)>
- HNormalized_Block;
- typedef Block<const ExpressionType,
- Direction==Vertical ? 1 : int(internal::traits<ExpressionType>::RowsAtCompileTime),
- Direction==Horizontal ? 1 : int(internal::traits<ExpressionType>::ColsAtCompileTime)>
- HNormalized_Factors;
- typedef CwiseBinaryOp<internal::scalar_quotient_op<typename internal::traits<ExpressionType>::Scalar>,
- const HNormalized_Block,
- const Replicate<HNormalized_Factors,
- Direction==Vertical ? HNormalized_SizeMinusOne : 1,
- Direction==Horizontal ? HNormalized_SizeMinusOne : 1> >
- HNormalizedReturnType;
-
- const HNormalizedReturnType hnormalized() const;
-
- protected:
- ExpressionTypeNested m_matrix;
-};
-
-/** \returns a VectorwiseOp wrapper of *this providing additional partial reduction operations
- *
- * Example: \include MatrixBase_colwise.cpp
- * Output: \verbinclude MatrixBase_colwise.out
- *
- * \sa rowwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting
- */
-template<typename Derived>
-inline const typename DenseBase<Derived>::ConstColwiseReturnType
-DenseBase<Derived>::colwise() const
-{
- return derived();
-}
-
-/** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations
- *
- * \sa rowwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting
- */
-template<typename Derived>
-inline typename DenseBase<Derived>::ColwiseReturnType
-DenseBase<Derived>::colwise()
-{
- return derived();
-}
-
-/** \returns a VectorwiseOp wrapper of *this providing additional partial reduction operations
- *
- * Example: \include MatrixBase_rowwise.cpp
- * Output: \verbinclude MatrixBase_rowwise.out
- *
- * \sa colwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting
- */
-template<typename Derived>
-inline const typename DenseBase<Derived>::ConstRowwiseReturnType
-DenseBase<Derived>::rowwise() const
-{
- return derived();
-}
-
-/** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations
- *
- * \sa colwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting
- */
-template<typename Derived>
-inline typename DenseBase<Derived>::RowwiseReturnType
-DenseBase<Derived>::rowwise()
-{
- return derived();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_PARTIAL_REDUX_H
diff --git a/src/Eigen/src/Core/Visitor.h b/src/Eigen/src/Core/Visitor.h
deleted file mode 100644
index 64867b7..0000000
--- a/src/Eigen/src/Core/Visitor.h
+++ /dev/null
@@ -1,237 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_VISITOR_H
-#define EIGEN_VISITOR_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename Visitor, typename Derived, int UnrollCount>
-struct visitor_impl
-{
- enum {
- col = (UnrollCount-1) / Derived::RowsAtCompileTime,
- row = (UnrollCount-1) % Derived::RowsAtCompileTime
- };
-
- static inline void run(const Derived &mat, Visitor& visitor)
- {
- visitor_impl<Visitor, Derived, UnrollCount-1>::run(mat, visitor);
- visitor(mat.coeff(row, col), row, col);
- }
-};
-
-template<typename Visitor, typename Derived>
-struct visitor_impl<Visitor, Derived, 1>
-{
- static inline void run(const Derived &mat, Visitor& visitor)
- {
- return visitor.init(mat.coeff(0, 0), 0, 0);
- }
-};
-
-template<typename Visitor, typename Derived>
-struct visitor_impl<Visitor, Derived, Dynamic>
-{
- typedef typename Derived::Index Index;
- static inline void run(const Derived& mat, Visitor& visitor)
- {
- visitor.init(mat.coeff(0,0), 0, 0);
- for(Index i = 1; i < mat.rows(); ++i)
- visitor(mat.coeff(i, 0), i, 0);
- for(Index j = 1; j < mat.cols(); ++j)
- for(Index i = 0; i < mat.rows(); ++i)
- visitor(mat.coeff(i, j), i, j);
- }
-};
-
-} // end namespace internal
-
-/** Applies the visitor \a visitor to the whole coefficients of the matrix or vector.
- *
- * The template parameter \a Visitor is the type of the visitor and provides the following interface:
- * \code
- * struct MyVisitor {
- * // called for the first coefficient
- * void init(const Scalar& value, Index i, Index j);
- * // called for all other coefficients
- * void operator() (const Scalar& value, Index i, Index j);
- * };
- * \endcode
- *
- * \note compared to one or two \em for \em loops, visitors offer automatic
- * unrolling for small fixed size matrix.
- *
- * \sa minCoeff(Index*,Index*), maxCoeff(Index*,Index*), DenseBase::redux()
- */
-template<typename Derived>
-template<typename Visitor>
-void DenseBase<Derived>::visit(Visitor& visitor) const
-{
- enum { unroll = SizeAtCompileTime != Dynamic
- && CoeffReadCost != Dynamic
- && (SizeAtCompileTime == 1 || internal::functor_traits<Visitor>::Cost != Dynamic)
- && SizeAtCompileTime * CoeffReadCost + (SizeAtCompileTime-1) * internal::functor_traits<Visitor>::Cost
- <= EIGEN_UNROLLING_LIMIT };
- return internal::visitor_impl<Visitor, Derived,
- unroll ? int(SizeAtCompileTime) : Dynamic
- >::run(derived(), visitor);
-}
-
-namespace internal {
-
-/** \internal
- * \brief Base class to implement min and max visitors
- */
-template <typename Derived>
-struct coeff_visitor
-{
- typedef typename Derived::Index Index;
- typedef typename Derived::Scalar Scalar;
- Index row, col;
- Scalar res;
- inline void init(const Scalar& value, Index i, Index j)
- {
- res = value;
- row = i;
- col = j;
- }
-};
-
-/** \internal
- * \brief Visitor computing the min coefficient with its value and coordinates
- *
- * \sa DenseBase::minCoeff(Index*, Index*)
- */
-template <typename Derived>
-struct min_coeff_visitor : coeff_visitor<Derived>
-{
- typedef typename Derived::Index Index;
- typedef typename Derived::Scalar Scalar;
- void operator() (const Scalar& value, Index i, Index j)
- {
- if(value < this->res)
- {
- this->res = value;
- this->row = i;
- this->col = j;
- }
- }
-};
-
-template<typename Scalar>
-struct functor_traits<min_coeff_visitor<Scalar> > {
- enum {
- Cost = NumTraits<Scalar>::AddCost
- };
-};
-
-/** \internal
- * \brief Visitor computing the max coefficient with its value and coordinates
- *
- * \sa DenseBase::maxCoeff(Index*, Index*)
- */
-template <typename Derived>
-struct max_coeff_visitor : coeff_visitor<Derived>
-{
- typedef typename Derived::Index Index;
- typedef typename Derived::Scalar Scalar;
- void operator() (const Scalar& value, Index i, Index j)
- {
- if(value > this->res)
- {
- this->res = value;
- this->row = i;
- this->col = j;
- }
- }
-};
-
-template<typename Scalar>
-struct functor_traits<max_coeff_visitor<Scalar> > {
- enum {
- Cost = NumTraits<Scalar>::AddCost
- };
-};
-
-} // end namespace internal
-
-/** \returns the minimum of all coefficients of *this and puts in *row and *col its location.
- * \warning the result is undefined if \c *this contains NaN.
- *
- * \sa DenseBase::minCoeff(Index*), DenseBase::maxCoeff(Index*,Index*), DenseBase::visitor(), DenseBase::minCoeff()
- */
-template<typename Derived>
-template<typename IndexType>
-typename internal::traits<Derived>::Scalar
-DenseBase<Derived>::minCoeff(IndexType* rowId, IndexType* colId) const
-{
- internal::min_coeff_visitor<Derived> minVisitor;
- this->visit(minVisitor);
- *rowId = minVisitor.row;
- if (colId) *colId = minVisitor.col;
- return minVisitor.res;
-}
-
-/** \returns the minimum of all coefficients of *this and puts in *index its location.
- * \warning the result is undefined if \c *this contains NaN.
- *
- * \sa DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::visitor(), DenseBase::minCoeff()
- */
-template<typename Derived>
-template<typename IndexType>
-typename internal::traits<Derived>::Scalar
-DenseBase<Derived>::minCoeff(IndexType* index) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- internal::min_coeff_visitor<Derived> minVisitor;
- this->visit(minVisitor);
- *index = (RowsAtCompileTime==1) ? minVisitor.col : minVisitor.row;
- return minVisitor.res;
-}
-
-/** \returns the maximum of all coefficients of *this and puts in *row and *col its location.
- * \warning the result is undefined if \c *this contains NaN.
- *
- * \sa DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visitor(), DenseBase::maxCoeff()
- */
-template<typename Derived>
-template<typename IndexType>
-typename internal::traits<Derived>::Scalar
-DenseBase<Derived>::maxCoeff(IndexType* rowPtr, IndexType* colPtr) const
-{
- internal::max_coeff_visitor<Derived> maxVisitor;
- this->visit(maxVisitor);
- *rowPtr = maxVisitor.row;
- if (colPtr) *colPtr = maxVisitor.col;
- return maxVisitor.res;
-}
-
-/** \returns the maximum of all coefficients of *this and puts in *index its location.
- * \warning the result is undefined if \c *this contains NaN.
- *
- * \sa DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visitor(), DenseBase::maxCoeff()
- */
-template<typename Derived>
-template<typename IndexType>
-typename internal::traits<Derived>::Scalar
-DenseBase<Derived>::maxCoeff(IndexType* index) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- internal::max_coeff_visitor<Derived> maxVisitor;
- this->visit(maxVisitor);
- *index = (RowsAtCompileTime==1) ? maxVisitor.col : maxVisitor.row;
- return maxVisitor.res;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_VISITOR_H
diff --git a/src/Eigen/src/Core/arch/AltiVec/CMakeLists.txt b/src/Eigen/src/Core/arch/AltiVec/CMakeLists.txt
deleted file mode 100644
index 9f8d2e9..0000000
--- a/src/Eigen/src/Core/arch/AltiVec/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_Core_arch_AltiVec_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Core_arch_AltiVec_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/arch/AltiVec COMPONENT Devel
-)
diff --git a/src/Eigen/src/Core/arch/AltiVec/Complex.h b/src/Eigen/src/Core/arch/AltiVec/Complex.h
deleted file mode 100644
index 68d9a2b..0000000
--- a/src/Eigen/src/Core/arch/AltiVec/Complex.h
+++ /dev/null
@@ -1,217 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COMPLEX_ALTIVEC_H
-#define EIGEN_COMPLEX_ALTIVEC_H
-
-namespace Eigen {
-
-namespace internal {
-
-static Packet4ui p4ui_CONJ_XOR = vec_mergeh((Packet4ui)p4i_ZERO, (Packet4ui)p4f_ZERO_);//{ 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
-static Packet16uc p16uc_COMPLEX_RE = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 };
-static Packet16uc p16uc_COMPLEX_IM = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 1), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 };
-static Packet16uc p16uc_COMPLEX_REV = vec_sld(p16uc_REVERSE, p16uc_REVERSE, 8);//{ 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 };
-static Packet16uc p16uc_COMPLEX_REV2 = vec_sld(p16uc_FORWARD, p16uc_FORWARD, 8);//{ 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
-static Packet16uc p16uc_PSET_HI = (Packet16uc) vec_mergeh((Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 1));//{ 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 };
-static Packet16uc p16uc_PSET_LO = (Packet16uc) vec_mergeh((Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 2), (Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 3));//{ 8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15 };
-
-//---------- float ----------
-struct Packet2cf
-{
- EIGEN_STRONG_INLINE Packet2cf() {}
- EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {}
- Packet4f v;
-};
-
-template<> struct packet_traits<std::complex<float> > : default_packet_traits
-{
- typedef Packet2cf type;
- enum {
- Vectorizable = 1,
- AlignedOnScalar = 1,
- size = 2,
-
- HasAdd = 1,
- HasSub = 1,
- HasMul = 1,
- HasDiv = 1,
- HasNegate = 1,
- HasAbs = 0,
- HasAbs2 = 0,
- HasMin = 0,
- HasMax = 0,
- HasSetLinear = 0
- };
-};
-
-template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2}; };
-
-template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from)
-{
- Packet2cf res;
- /* On AltiVec we cannot load 64-bit registers, so wa have to take care of alignment */
- if((ptrdiff_t(&from) % 16) == 0)
- res.v = pload<Packet4f>((const float *)&from);
- else
- res.v = ploadu<Packet4f>((const float *)&from);
- res.v = vec_perm(res.v, res.v, p16uc_PSET_HI);
- return res;
-}
-
-template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_add(a.v,b.v)); }
-template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_sub(a.v,b.v)); }
-template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate(a.v)); }
-template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) { return Packet2cf((Packet4f)vec_xor((Packet4ui)a.v, p4ui_CONJ_XOR)); }
-
-template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
-{
- Packet4f v1, v2;
-
- // Permute and multiply the real parts of a and b
- v1 = vec_perm(a.v, a.v, p16uc_COMPLEX_RE);
- // Get the imaginary parts of a
- v2 = vec_perm(a.v, a.v, p16uc_COMPLEX_IM);
- // multiply a_re * b
- v1 = vec_madd(v1, b.v, p4f_ZERO);
- // multiply a_im * b and get the conjugate result
- v2 = vec_madd(v2, b.v, p4f_ZERO);
- v2 = (Packet4f) vec_xor((Packet4ui)v2, p4ui_CONJ_XOR);
- // permute back to a proper order
- v2 = vec_perm(v2, v2, p16uc_COMPLEX_REV);
-
- return Packet2cf(vec_add(v1, v2));
-}
-
-template<> EIGEN_STRONG_INLINE Packet2cf pand <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_and(a.v,b.v)); }
-template<> EIGEN_STRONG_INLINE Packet2cf por <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_or(a.v,b.v)); }
-template<> EIGEN_STRONG_INLINE Packet2cf pxor <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_xor(a.v,b.v)); }
-template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_and(a.v, vec_nor(b.v,b.v))); }
-
-template<> EIGEN_STRONG_INLINE Packet2cf pload <Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>((const float*)from)); }
-template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>((const float*)from)); }
-
-template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from)
-{
- return pset1<Packet2cf>(*from);
-}
-
-template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); }
-template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); }
-
-template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { vec_dstt((float *)addr, DST_CTRL(2,2,32), DST_CHAN); }
-
-template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a)
-{
- std::complex<float> EIGEN_ALIGN16 res[2];
- pstore((float *)&res, a.v);
-
- return res[0];
-}
-
-template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a)
-{
- Packet4f rev_a;
- rev_a = vec_perm(a.v, a.v, p16uc_COMPLEX_REV2);
- return Packet2cf(rev_a);
-}
-
-template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
-{
- Packet4f b;
- b = (Packet4f) vec_sld(a.v, a.v, 8);
- b = padd(a.v, b);
- return pfirst(Packet2cf(b));
-}
-
-template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs)
-{
- Packet4f b1, b2;
-
- b1 = (Packet4f) vec_sld(vecs[0].v, vecs[1].v, 8);
- b2 = (Packet4f) vec_sld(vecs[1].v, vecs[0].v, 8);
- b2 = (Packet4f) vec_sld(b2, b2, 8);
- b2 = padd(b1, b2);
-
- return Packet2cf(b2);
-}
-
-template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a)
-{
- Packet4f b;
- Packet2cf prod;
- b = (Packet4f) vec_sld(a.v, a.v, 8);
- prod = pmul(a, Packet2cf(b));
-
- return pfirst(prod);
-}
-
-template<int Offset>
-struct palign_impl<Offset,Packet2cf>
-{
- static EIGEN_STRONG_INLINE void run(Packet2cf& first, const Packet2cf& second)
- {
- if (Offset==1)
- {
- first.v = vec_sld(first.v, second.v, 8);
- }
- }
-};
-
-template<> struct conj_helper<Packet2cf, Packet2cf, false,true>
-{
- EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
- { return padd(pmul(x,y),c); }
-
- EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
- {
- return internal::pmul(a, pconj(b));
- }
-};
-
-template<> struct conj_helper<Packet2cf, Packet2cf, true,false>
-{
- EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
- { return padd(pmul(x,y),c); }
-
- EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
- {
- return internal::pmul(pconj(a), b);
- }
-};
-
-template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
-{
- EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
- { return padd(pmul(x,y),c); }
-
- EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
- {
- return pconj(internal::pmul(a, b));
- }
-};
-
-template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
-{
- // TODO optimize it for AltiVec
- Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
- Packet4f s = vec_madd(b.v, b.v, p4f_ZERO);
- return Packet2cf(pdiv(res.v, vec_add(s,vec_perm(s, s, p16uc_COMPLEX_REV))));
-}
-
-template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& x)
-{
- return Packet2cf(vec_perm(x.v, x.v, p16uc_COMPLEX_REV));
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_COMPLEX_ALTIVEC_H
diff --git a/src/Eigen/src/Core/arch/AltiVec/PacketMath.h b/src/Eigen/src/Core/arch/AltiVec/PacketMath.h
deleted file mode 100644
index e408996..0000000
--- a/src/Eigen/src/Core/arch/AltiVec/PacketMath.h
+++ /dev/null
@@ -1,501 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Konstantinos Margaritis <markos@codex.gr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_PACKET_MATH_ALTIVEC_H
-#define EIGEN_PACKET_MATH_ALTIVEC_H
-
-namespace Eigen {
-
-namespace internal {
-
-#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
-#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 4
-#endif
-
-#ifndef EIGEN_HAS_FUSE_CJMADD
-#define EIGEN_HAS_FUSE_CJMADD 1
-#endif
-
-// NOTE Altivec has 32 registers, but Eigen only accepts a value of 8 or 16
-#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
-#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16
-#endif
-
-typedef __vector float Packet4f;
-typedef __vector int Packet4i;
-typedef __vector unsigned int Packet4ui;
-typedef __vector __bool int Packet4bi;
-typedef __vector short int Packet8i;
-typedef __vector unsigned char Packet16uc;
-
-// We don't want to write the same code all the time, but we need to reuse the constants
-// and it doesn't really work to declare them global, so we define macros instead
-
-#define _EIGEN_DECLARE_CONST_FAST_Packet4f(NAME,X) \
- Packet4f p4f_##NAME = (Packet4f) vec_splat_s32(X)
-
-#define _EIGEN_DECLARE_CONST_FAST_Packet4i(NAME,X) \
- Packet4i p4i_##NAME = vec_splat_s32(X)
-
-#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
- Packet4f p4f_##NAME = pset1<Packet4f>(X)
-
-#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
- Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1<int>(X))
-
-#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
- Packet4i p4i_##NAME = pset1<Packet4i>(X)
-
-#define DST_CHAN 1
-#define DST_CTRL(size, count, stride) (((size) << 24) | ((count) << 16) | (stride))
-
-// Define global static constants:
-static Packet4f p4f_COUNTDOWN = { 3.0, 2.0, 1.0, 0.0 };
-static Packet4i p4i_COUNTDOWN = { 3, 2, 1, 0 };
-static Packet16uc p16uc_REVERSE = {12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3};
-static Packet16uc p16uc_FORWARD = vec_lvsl(0, (float*)0);
-static Packet16uc p16uc_DUPLICATE = {0,1,2,3, 0,1,2,3, 4,5,6,7, 4,5,6,7};
-
-static _EIGEN_DECLARE_CONST_FAST_Packet4f(ZERO, 0);
-static _EIGEN_DECLARE_CONST_FAST_Packet4i(ZERO, 0);
-static _EIGEN_DECLARE_CONST_FAST_Packet4i(ONE,1);
-static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS16,-16);
-static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS1,-1);
-static Packet4f p4f_ONE = vec_ctf(p4i_ONE, 0);
-static Packet4f p4f_ZERO_ = (Packet4f) vec_sl((Packet4ui)p4i_MINUS1, (Packet4ui)p4i_MINUS1);
-
-template<> struct packet_traits<float> : default_packet_traits
-{
- typedef Packet4f type;
- enum {
- Vectorizable = 1,
- AlignedOnScalar = 1,
- size=4,
-
- // FIXME check the Has*
- HasSin = 0,
- HasCos = 0,
- HasLog = 0,
- HasExp = 0,
- HasSqrt = 0
- };
-};
-template<> struct packet_traits<int> : default_packet_traits
-{
- typedef Packet4i type;
- enum {
- // FIXME check the Has*
- Vectorizable = 1,
- AlignedOnScalar = 1,
- size=4
- };
-};
-
-template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4}; };
-template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4}; };
-/*
-inline std::ostream & operator <<(std::ostream & s, const Packet4f & v)
-{
- union {
- Packet4f v;
- float n[4];
- } vt;
- vt.v = v;
- s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
- return s;
-}
-
-inline std::ostream & operator <<(std::ostream & s, const Packet4i & v)
-{
- union {
- Packet4i v;
- int n[4];
- } vt;
- vt.v = v;
- s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
- return s;
-}
-
-inline std::ostream & operator <<(std::ostream & s, const Packet4ui & v)
-{
- union {
- Packet4ui v;
- unsigned int n[4];
- } vt;
- vt.v = v;
- s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
- return s;
-}
-
-inline std::ostream & operator <<(std::ostream & s, const Packetbi & v)
-{
- union {
- Packet4bi v;
- unsigned int n[4];
- } vt;
- vt.v = v;
- s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
- return s;
-}
-*/
-template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) {
- // Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
- float EIGEN_ALIGN16 af[4];
- af[0] = from;
- Packet4f vc = vec_ld(0, af);
- vc = vec_splat(vc, 0);
- return vc;
-}
-
-template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) {
- int EIGEN_ALIGN16 ai[4];
- ai[0] = from;
- Packet4i vc = vec_ld(0, ai);
- vc = vec_splat(vc, 0);
- return vc;
-}
-
-template<> EIGEN_STRONG_INLINE Packet4f plset<float>(const float& a) { return vec_add(pset1<Packet4f>(a), p4f_COUNTDOWN); }
-template<> EIGEN_STRONG_INLINE Packet4i plset<int>(const int& a) { return vec_add(pset1<Packet4i>(a), p4i_COUNTDOWN); }
-
-template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_add(a,b); }
-template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_add(a,b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_sub(a,b); }
-template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_sub(a,b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return psub<Packet4f>(p4f_ZERO, a); }
-template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return psub<Packet4i>(p4i_ZERO, a); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; }
-template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; }
-
-template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_madd(a,b,p4f_ZERO); }
-/* Commented out: it's actually slower than processing it scalar
- *
-template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b)
-{
- // Detailed in: http://freevec.org/content/32bit_signed_integer_multiplication_altivec
- //Set up constants, variables
- Packet4i a1, b1, bswap, low_prod, high_prod, prod, prod_, v1sel;
-
- // Get the absolute values
- a1 = vec_abs(a);
- b1 = vec_abs(b);
-
- // Get the signs using xor
- Packet4bi sgn = (Packet4bi) vec_cmplt(vec_xor(a, b), p4i_ZERO);
-
- // Do the multiplication for the asbolute values.
- bswap = (Packet4i) vec_rl((Packet4ui) b1, (Packet4ui) p4i_MINUS16 );
- low_prod = vec_mulo((Packet8i) a1, (Packet8i)b1);
- high_prod = vec_msum((Packet8i) a1, (Packet8i) bswap, p4i_ZERO);
- high_prod = (Packet4i) vec_sl((Packet4ui) high_prod, (Packet4ui) p4i_MINUS16);
- prod = vec_add( low_prod, high_prod );
-
- // NOR the product and select only the negative elements according to the sign mask
- prod_ = vec_nor(prod, prod);
- prod_ = vec_sel(p4i_ZERO, prod_, sgn);
-
- // Add 1 to the result to get the negative numbers
- v1sel = vec_sel(p4i_ZERO, p4i_ONE, sgn);
- prod_ = vec_add(prod_, v1sel);
-
- // Merge the results back to the final vector.
- prod = vec_sel(prod, prod_, sgn);
-
- return prod;
-}
-*/
-template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b)
-{
- Packet4f t, y_0, y_1, res;
-
- // Altivec does not offer a divide instruction, we have to do a reciprocal approximation
- y_0 = vec_re(b);
-
- // Do one Newton-Raphson iteration to get the needed accuracy
- t = vec_nmsub(y_0, b, p4f_ONE);
- y_1 = vec_madd(y_0, t, y_0);
-
- res = vec_madd(a, y_1, p4f_ZERO);
- return res;
-}
-
-template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
-{ eigen_assert(false && "packet integer division are not supported by AltiVec");
- return pset1<Packet4i>(0);
-}
-
-// for some weird raisons, it has to be overloaded for packet of integers
-template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vec_madd(a, b, c); }
-template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd(pmul(a,b), c); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_min(a, b); }
-template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_min(a, b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_max(a, b); }
-template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_max(a, b); }
-
-// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
-template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_and(a, b); }
-template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_and(a, b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_or(a, b); }
-template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_or(a, b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_xor(a, b); }
-template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_xor(a, b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_and(a, vec_nor(b, b)); }
-template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_and(a, vec_nor(b, b)); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vec_ld(0, from); }
-template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return vec_ld(0, from); }
-
-template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from)
-{
- EIGEN_DEBUG_ALIGNED_LOAD
- // Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
- Packet16uc MSQ, LSQ;
- Packet16uc mask;
- MSQ = vec_ld(0, (unsigned char *)from); // most significant quadword
- LSQ = vec_ld(15, (unsigned char *)from); // least significant quadword
- mask = vec_lvsl(0, from); // create the permute mask
- return (Packet4f) vec_perm(MSQ, LSQ, mask); // align the data
-
-}
-template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from)
-{
- EIGEN_DEBUG_ALIGNED_LOAD
- // Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
- Packet16uc MSQ, LSQ;
- Packet16uc mask;
- MSQ = vec_ld(0, (unsigned char *)from); // most significant quadword
- LSQ = vec_ld(15, (unsigned char *)from); // least significant quadword
- mask = vec_lvsl(0, from); // create the permute mask
- return (Packet4i) vec_perm(MSQ, LSQ, mask); // align the data
-}
-
-template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
-{
- Packet4f p;
- if((ptrdiff_t(&from) % 16) == 0) p = pload<Packet4f>(from);
- else p = ploadu<Packet4f>(from);
- return vec_perm(p, p, p16uc_DUPLICATE);
-}
-template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
-{
- Packet4i p;
- if((ptrdiff_t(&from) % 16) == 0) p = pload<Packet4i>(from);
- else p = ploadu<Packet4i>(from);
- return vec_perm(p, p, p16uc_DUPLICATE);
-}
-
-template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vec_st(from, 0, to); }
-template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vec_st(from, 0, to); }
-
-template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from)
-{
- EIGEN_DEBUG_UNALIGNED_STORE
- // Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
- // Warning: not thread safe!
- Packet16uc MSQ, LSQ, edges;
- Packet16uc edgeAlign, align;
-
- MSQ = vec_ld(0, (unsigned char *)to); // most significant quadword
- LSQ = vec_ld(15, (unsigned char *)to); // least significant quadword
- edgeAlign = vec_lvsl(0, to); // permute map to extract edges
- edges=vec_perm(LSQ,MSQ,edgeAlign); // extract the edges
- align = vec_lvsr( 0, to ); // permute map to misalign data
- MSQ = vec_perm(edges,(Packet16uc)from,align); // misalign the data (MSQ)
- LSQ = vec_perm((Packet16uc)from,edges,align); // misalign the data (LSQ)
- vec_st( LSQ, 15, (unsigned char *)to ); // Store the LSQ part first
- vec_st( MSQ, 0, (unsigned char *)to ); // Store the MSQ part
-}
-template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from)
-{
- EIGEN_DEBUG_UNALIGNED_STORE
- // Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
- // Warning: not thread safe!
- Packet16uc MSQ, LSQ, edges;
- Packet16uc edgeAlign, align;
-
- MSQ = vec_ld(0, (unsigned char *)to); // most significant quadword
- LSQ = vec_ld(15, (unsigned char *)to); // least significant quadword
- edgeAlign = vec_lvsl(0, to); // permute map to extract edges
- edges=vec_perm(LSQ, MSQ, edgeAlign); // extract the edges
- align = vec_lvsr( 0, to ); // permute map to misalign data
- MSQ = vec_perm(edges, (Packet16uc) from, align); // misalign the data (MSQ)
- LSQ = vec_perm((Packet16uc) from, edges, align); // misalign the data (LSQ)
- vec_st( LSQ, 15, (unsigned char *)to ); // Store the LSQ part first
- vec_st( MSQ, 0, (unsigned char *)to ); // Store the MSQ part
-}
-
-template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { vec_dstt(addr, DST_CTRL(2,2,32), DST_CHAN); }
-template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { vec_dstt(addr, DST_CTRL(2,2,32), DST_CHAN); }
-
-template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vec_st(a, 0, x); return x[0]; }
-template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int EIGEN_ALIGN16 x[4]; vec_st(a, 0, x); return x[0]; }
-
-template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) { return (Packet4f)vec_perm((Packet16uc)a,(Packet16uc)a, p16uc_REVERSE); }
-template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) { return (Packet4i)vec_perm((Packet16uc)a,(Packet16uc)a, p16uc_REVERSE); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vec_abs(a); }
-template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vec_abs(a); }
-
-template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
-{
- Packet4f b, sum;
- b = (Packet4f) vec_sld(a, a, 8);
- sum = vec_add(a, b);
- b = (Packet4f) vec_sld(sum, sum, 4);
- sum = vec_add(sum, b);
- return pfirst(sum);
-}
-
-template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
-{
- Packet4f v[4], sum[4];
-
- // It's easier and faster to transpose then add as columns
- // Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation
- // Do the transpose, first set of moves
- v[0] = vec_mergeh(vecs[0], vecs[2]);
- v[1] = vec_mergel(vecs[0], vecs[2]);
- v[2] = vec_mergeh(vecs[1], vecs[3]);
- v[3] = vec_mergel(vecs[1], vecs[3]);
- // Get the resulting vectors
- sum[0] = vec_mergeh(v[0], v[2]);
- sum[1] = vec_mergel(v[0], v[2]);
- sum[2] = vec_mergeh(v[1], v[3]);
- sum[3] = vec_mergel(v[1], v[3]);
-
- // Now do the summation:
- // Lines 0+1
- sum[0] = vec_add(sum[0], sum[1]);
- // Lines 2+3
- sum[1] = vec_add(sum[2], sum[3]);
- // Add the results
- sum[0] = vec_add(sum[0], sum[1]);
-
- return sum[0];
-}
-
-template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
-{
- Packet4i sum;
- sum = vec_sums(a, p4i_ZERO);
- sum = vec_sld(sum, p4i_ZERO, 12);
- return pfirst(sum);
-}
-
-template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
-{
- Packet4i v[4], sum[4];
-
- // It's easier and faster to transpose then add as columns
- // Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation
- // Do the transpose, first set of moves
- v[0] = vec_mergeh(vecs[0], vecs[2]);
- v[1] = vec_mergel(vecs[0], vecs[2]);
- v[2] = vec_mergeh(vecs[1], vecs[3]);
- v[3] = vec_mergel(vecs[1], vecs[3]);
- // Get the resulting vectors
- sum[0] = vec_mergeh(v[0], v[2]);
- sum[1] = vec_mergel(v[0], v[2]);
- sum[2] = vec_mergeh(v[1], v[3]);
- sum[3] = vec_mergel(v[1], v[3]);
-
- // Now do the summation:
- // Lines 0+1
- sum[0] = vec_add(sum[0], sum[1]);
- // Lines 2+3
- sum[1] = vec_add(sum[2], sum[3]);
- // Add the results
- sum[0] = vec_add(sum[0], sum[1]);
-
- return sum[0];
-}
-
-// Other reduction functions:
-// mul
-template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
-{
- Packet4f prod;
- prod = pmul(a, (Packet4f)vec_sld(a, a, 8));
- return pfirst(pmul(prod, (Packet4f)vec_sld(prod, prod, 4)));
-}
-
-template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
-{
- EIGEN_ALIGN16 int aux[4];
- pstore(aux, a);
- return aux[0] * aux[1] * aux[2] * aux[3];
-}
-
-// min
-template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
-{
- Packet4f b, res;
- b = vec_min(a, vec_sld(a, a, 8));
- res = vec_min(b, vec_sld(b, b, 4));
- return pfirst(res);
-}
-
-template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
-{
- Packet4i b, res;
- b = vec_min(a, vec_sld(a, a, 8));
- res = vec_min(b, vec_sld(b, b, 4));
- return pfirst(res);
-}
-
-// max
-template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
-{
- Packet4f b, res;
- b = vec_max(a, vec_sld(a, a, 8));
- res = vec_max(b, vec_sld(b, b, 4));
- return pfirst(res);
-}
-
-template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
-{
- Packet4i b, res;
- b = vec_max(a, vec_sld(a, a, 8));
- res = vec_max(b, vec_sld(b, b, 4));
- return pfirst(res);
-}
-
-template<int Offset>
-struct palign_impl<Offset,Packet4f>
-{
- static EIGEN_STRONG_INLINE void run(Packet4f& first, const Packet4f& second)
- {
- if (Offset!=0)
- first = vec_sld(first, second, Offset*4);
- }
-};
-
-template<int Offset>
-struct palign_impl<Offset,Packet4i>
-{
- static EIGEN_STRONG_INLINE void run(Packet4i& first, const Packet4i& second)
- {
- if (Offset!=0)
- first = vec_sld(first, second, Offset*4);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_PACKET_MATH_ALTIVEC_H
diff --git a/src/Eigen/src/Core/arch/CMakeLists.txt b/src/Eigen/src/Core/arch/CMakeLists.txt
deleted file mode 100644
index 8456dec..0000000
--- a/src/Eigen/src/Core/arch/CMakeLists.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-ADD_SUBDIRECTORY(SSE)
-ADD_SUBDIRECTORY(AltiVec)
-ADD_SUBDIRECTORY(NEON)
-ADD_SUBDIRECTORY(Default)
diff --git a/src/Eigen/src/Core/arch/Default/CMakeLists.txt b/src/Eigen/src/Core/arch/Default/CMakeLists.txt
deleted file mode 100644
index 339c091..0000000
--- a/src/Eigen/src/Core/arch/Default/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_Core_arch_Default_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Core_arch_Default_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/arch/Default COMPONENT Devel
-)
diff --git a/src/Eigen/src/Core/arch/Default/Settings.h b/src/Eigen/src/Core/arch/Default/Settings.h
deleted file mode 100644
index 097373c..0000000
--- a/src/Eigen/src/Core/arch/Default/Settings.h
+++ /dev/null
@@ -1,49 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-
-/* All the parameters defined in this file can be specialized in the
- * architecture specific files, and/or by the user.
- * More to come... */
-
-#ifndef EIGEN_DEFAULT_SETTINGS_H
-#define EIGEN_DEFAULT_SETTINGS_H
-
-/** Defines the maximal loop size to enable meta unrolling of loops.
- * Note that the value here is expressed in Eigen's own notion of "number of FLOPS",
- * it does not correspond to the number of iterations or the number of instructions
- */
-#ifndef EIGEN_UNROLLING_LIMIT
-#define EIGEN_UNROLLING_LIMIT 100
-#endif
-
-/** Defines the threshold between a "small" and a "large" matrix.
- * This threshold is mainly used to select the proper product implementation.
- */
-#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
-#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
-#endif
-
-/** Defines the maximal width of the blocks used in the triangular product and solver
- * for vectors (level 2 blas xTRMV and xTRSV). The default is 8.
- */
-#ifndef EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH
-#define EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH 8
-#endif
-
-
-/** Defines the default number of registers available for that architecture.
- * Currently it must be 8 or 16. Other values will fail.
- */
-#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
-#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 8
-#endif
-
-#endif // EIGEN_DEFAULT_SETTINGS_H
diff --git a/src/Eigen/src/Core/arch/NEON/CMakeLists.txt b/src/Eigen/src/Core/arch/NEON/CMakeLists.txt
deleted file mode 100644
index fd4d4af..0000000
--- a/src/Eigen/src/Core/arch/NEON/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_Core_arch_NEON_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Core_arch_NEON_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/arch/NEON COMPONENT Devel
-)
diff --git a/src/Eigen/src/Core/arch/NEON/Complex.h b/src/Eigen/src/Core/arch/NEON/Complex.h
deleted file mode 100644
index f183d31..0000000
--- a/src/Eigen/src/Core/arch/NEON/Complex.h
+++ /dev/null
@@ -1,253 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COMPLEX_NEON_H
-#define EIGEN_COMPLEX_NEON_H
-
-namespace Eigen {
-
-namespace internal {
-
-static uint32x4_t p4ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET4(0x00000000, 0x80000000, 0x00000000, 0x80000000);
-static uint32x2_t p2ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET2(0x00000000, 0x80000000);
-
-//---------- float ----------
-struct Packet2cf
-{
- EIGEN_STRONG_INLINE Packet2cf() {}
- EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {}
- Packet4f v;
-};
-
-template<> struct packet_traits<std::complex<float> > : default_packet_traits
-{
- typedef Packet2cf type;
- enum {
- Vectorizable = 1,
- AlignedOnScalar = 1,
- size = 2,
-
- HasAdd = 1,
- HasSub = 1,
- HasMul = 1,
- HasDiv = 1,
- HasNegate = 1,
- HasAbs = 0,
- HasAbs2 = 0,
- HasMin = 0,
- HasMax = 0,
- HasSetLinear = 0
- };
-};
-
-template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2}; };
-
-template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from)
-{
- float32x2_t r64;
- r64 = vld1_f32((float *)&from);
-
- return Packet2cf(vcombine_f32(r64, r64));
-}
-
-template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(padd<Packet4f>(a.v,b.v)); }
-template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(psub<Packet4f>(a.v,b.v)); }
-template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate<Packet4f>(a.v)); }
-template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a)
-{
- Packet4ui b = vreinterpretq_u32_f32(a.v);
- return Packet2cf(vreinterpretq_f32_u32(veorq_u32(b, p4ui_CONJ_XOR)));
-}
-
-template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
-{
- Packet4f v1, v2;
-
- // Get the real values of a | a1_re | a1_re | a2_re | a2_re |
- v1 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 0), vdup_lane_f32(vget_high_f32(a.v), 0));
- // Get the real values of a | a1_im | a1_im | a2_im | a2_im |
- v2 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 1), vdup_lane_f32(vget_high_f32(a.v), 1));
- // Multiply the real a with b
- v1 = vmulq_f32(v1, b.v);
- // Multiply the imag a with b
- v2 = vmulq_f32(v2, b.v);
- // Conjugate v2
- v2 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(v2), p4ui_CONJ_XOR));
- // Swap real/imag elements in v2.
- v2 = vrev64q_f32(v2);
- // Add and return the result
- return Packet2cf(vaddq_f32(v1, v2));
-}
-
-template<> EIGEN_STRONG_INLINE Packet2cf pand <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
-{
- return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
-}
-template<> EIGEN_STRONG_INLINE Packet2cf por <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
-{
- return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
-}
-template<> EIGEN_STRONG_INLINE Packet2cf pxor <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
-{
- return Packet2cf(vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
-}
-template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
-{
- return Packet2cf(vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
-}
-
-template<> EIGEN_STRONG_INLINE Packet2cf pload<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>((const float*)from)); }
-template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>((const float*)from)); }
-
-template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) { return pset1<Packet2cf>(*from); }
-
-template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); }
-template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); }
-
-template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { __pld((float *)addr); }
-
-template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a)
-{
- std::complex<float> EIGEN_ALIGN16 x[2];
- vst1q_f32((float *)x, a.v);
- return x[0];
-}
-
-template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a)
-{
- float32x2_t a_lo, a_hi;
- Packet4f a_r128;
-
- a_lo = vget_low_f32(a.v);
- a_hi = vget_high_f32(a.v);
- a_r128 = vcombine_f32(a_hi, a_lo);
-
- return Packet2cf(a_r128);
-}
-
-template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& a)
-{
- return Packet2cf(vrev64q_f32(a.v));
-}
-
-template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
-{
- float32x2_t a1, a2;
- std::complex<float> s;
-
- a1 = vget_low_f32(a.v);
- a2 = vget_high_f32(a.v);
- a2 = vadd_f32(a1, a2);
- vst1_f32((float *)&s, a2);
-
- return s;
-}
-
-template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs)
-{
- Packet4f sum1, sum2, sum;
-
- // Add the first two 64-bit float32x2_t of vecs[0]
- sum1 = vcombine_f32(vget_low_f32(vecs[0].v), vget_low_f32(vecs[1].v));
- sum2 = vcombine_f32(vget_high_f32(vecs[0].v), vget_high_f32(vecs[1].v));
- sum = vaddq_f32(sum1, sum2);
-
- return Packet2cf(sum);
-}
-
-template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a)
-{
- float32x2_t a1, a2, v1, v2, prod;
- std::complex<float> s;
-
- a1 = vget_low_f32(a.v);
- a2 = vget_high_f32(a.v);
- // Get the real values of a | a1_re | a1_re | a2_re | a2_re |
- v1 = vdup_lane_f32(a1, 0);
- // Get the real values of a | a1_im | a1_im | a2_im | a2_im |
- v2 = vdup_lane_f32(a1, 1);
- // Multiply the real a with b
- v1 = vmul_f32(v1, a2);
- // Multiply the imag a with b
- v2 = vmul_f32(v2, a2);
- // Conjugate v2
- v2 = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(v2), p2ui_CONJ_XOR));
- // Swap real/imag elements in v2.
- v2 = vrev64_f32(v2);
- // Add v1, v2
- prod = vadd_f32(v1, v2);
-
- vst1_f32((float *)&s, prod);
-
- return s;
-}
-
-template<int Offset>
-struct palign_impl<Offset,Packet2cf>
-{
- EIGEN_STRONG_INLINE static void run(Packet2cf& first, const Packet2cf& second)
- {
- if (Offset==1)
- {
- first.v = vextq_f32(first.v, second.v, 2);
- }
- }
-};
-
-template<> struct conj_helper<Packet2cf, Packet2cf, false,true>
-{
- EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
- { return padd(pmul(x,y),c); }
-
- EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
- {
- return internal::pmul(a, pconj(b));
- }
-};
-
-template<> struct conj_helper<Packet2cf, Packet2cf, true,false>
-{
- EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
- { return padd(pmul(x,y),c); }
-
- EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
- {
- return internal::pmul(pconj(a), b);
- }
-};
-
-template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
-{
- EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
- { return padd(pmul(x,y),c); }
-
- EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
- {
- return pconj(internal::pmul(a, b));
- }
-};
-
-template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
-{
- // TODO optimize it for AltiVec
- Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
- Packet4f s, rev_s;
-
- // this computes the norm
- s = vmulq_f32(b.v, b.v);
- rev_s = vrev64q_f32(s);
-
- return Packet2cf(pdiv(res.v, vaddq_f32(s,rev_s)));
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_COMPLEX_NEON_H
diff --git a/src/Eigen/src/Core/arch/NEON/PacketMath.h b/src/Eigen/src/Core/arch/NEON/PacketMath.h
deleted file mode 100644
index 163bac2..0000000
--- a/src/Eigen/src/Core/arch/NEON/PacketMath.h
+++ /dev/null
@@ -1,410 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2010 Konstantinos Margaritis <markos@codex.gr>
-// Heavily based on Gael's SSE version.
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_PACKET_MATH_NEON_H
-#define EIGEN_PACKET_MATH_NEON_H
-
-namespace Eigen {
-
-namespace internal {
-
-#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
-#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
-#endif
-
-// FIXME NEON has 16 quad registers, but since the current register allocator
-// is so bad, it is much better to reduce it to 8
-#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
-#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 8
-#endif
-
-typedef float32x4_t Packet4f;
-typedef int32x4_t Packet4i;
-typedef uint32x4_t Packet4ui;
-
-#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
- const Packet4f p4f_##NAME = pset1<Packet4f>(X)
-
-#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
- const Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1<int>(X))
-
-#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
- const Packet4i p4i_##NAME = pset1<Packet4i>(X)
-
-#if defined(__llvm__) && !defined(__clang__)
- //Special treatment for Apple's llvm-gcc, its NEON packet types are unions
- #define EIGEN_INIT_NEON_PACKET2(X, Y) {{X, Y}}
- #define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {{X, Y, Z, W}}
-#else
- //Default initializer for packets
- #define EIGEN_INIT_NEON_PACKET2(X, Y) {X, Y}
- #define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {X, Y, Z, W}
-#endif
-
-#ifndef __pld
-#define __pld(x) asm volatile ( " pld [%[addr]]\n" :: [addr] "r" (x) : "cc" );
-#endif
-
-template<> struct packet_traits<float> : default_packet_traits
-{
- typedef Packet4f type;
- enum {
- Vectorizable = 1,
- AlignedOnScalar = 1,
- size = 4,
-
- HasDiv = 1,
- // FIXME check the Has*
- HasSin = 0,
- HasCos = 0,
- HasLog = 0,
- HasExp = 0,
- HasSqrt = 0
- };
-};
-template<> struct packet_traits<int> : default_packet_traits
-{
- typedef Packet4i type;
- enum {
- Vectorizable = 1,
- AlignedOnScalar = 1,
- size=4
- // FIXME check the Has*
- };
-};
-
-#if EIGEN_GNUC_AT_MOST(4,4) && !defined(__llvm__)
-// workaround gcc 4.2, 4.3 and 4.4 compilatin issue
-EIGEN_STRONG_INLINE float32x4_t vld1q_f32(const float* x) { return ::vld1q_f32((const float32_t*)x); }
-EIGEN_STRONG_INLINE float32x2_t vld1_f32 (const float* x) { return ::vld1_f32 ((const float32_t*)x); }
-EIGEN_STRONG_INLINE void vst1q_f32(float* to, float32x4_t from) { ::vst1q_f32((float32_t*)to,from); }
-EIGEN_STRONG_INLINE void vst1_f32 (float* to, float32x2_t from) { ::vst1_f32 ((float32_t*)to,from); }
-#endif
-
-template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4}; };
-template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4}; };
-
-template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return vdupq_n_f32(from); }
-template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return vdupq_n_s32(from); }
-
-template<> EIGEN_STRONG_INLINE Packet4f plset<float>(const float& a)
-{
- Packet4f countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3);
- return vaddq_f32(pset1<Packet4f>(a), countdown);
-}
-template<> EIGEN_STRONG_INLINE Packet4i plset<int>(const int& a)
-{
- Packet4i countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3);
- return vaddq_s32(pset1<Packet4i>(a), countdown);
-}
-
-template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return vaddq_f32(a,b); }
-template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return vaddq_s32(a,b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return vsubq_f32(a,b); }
-template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return vsubq_s32(a,b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return vnegq_f32(a); }
-template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return vnegq_s32(a); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; }
-template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; }
-
-template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmulq_f32(a,b); }
-template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmulq_s32(a,b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b)
-{
- Packet4f inv, restep, div;
-
- // NEON does not offer a divide instruction, we have to do a reciprocal approximation
- // However NEON in contrast to other SIMD engines (AltiVec/SSE), offers
- // a reciprocal estimate AND a reciprocal step -which saves a few instructions
- // vrecpeq_f32() returns an estimate to 1/b, which we will finetune with
- // Newton-Raphson and vrecpsq_f32()
- inv = vrecpeq_f32(b);
-
- // This returns a differential, by which we will have to multiply inv to get a better
- // approximation of 1/b.
- restep = vrecpsq_f32(b, inv);
- inv = vmulq_f32(restep, inv);
-
- // Finally, multiply a by 1/b and get the wanted result of the division.
- div = vmulq_f32(a, inv);
-
- return div;
-}
-template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
-{ eigen_assert(false && "packet integer division are not supported by NEON");
- return pset1<Packet4i>(0);
-}
-
-// for some weird raisons, it has to be overloaded for packet of integers
-template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vmlaq_f32(c,a,b); }
-template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return vmlaq_s32(c,a,b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return vminq_f32(a,b); }
-template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b) { return vminq_s32(a,b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmaxq_f32(a,b); }
-template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmaxq_s32(a,b); }
-
-// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
-template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b)
-{
- return vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
-}
-template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return vandq_s32(a,b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b)
-{
- return vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
-}
-template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return vorrq_s32(a,b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b)
-{
- return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
-}
-template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return veorq_s32(a,b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b)
-{
- return vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
-}
-template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return vbicq_s32(a,b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f32(from); }
-template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s32(from); }
-
-template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f32(from); }
-template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_s32(from); }
-
-template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
-{
- float32x2_t lo, hi;
- lo = vld1_dup_f32(from);
- hi = vld1_dup_f32(from+1);
- return vcombine_f32(lo, hi);
-}
-template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
-{
- int32x2_t lo, hi;
- lo = vld1_dup_s32(from);
- hi = vld1_dup_s32(from+1);
- return vcombine_s32(lo, hi);
-}
-
-template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f32(to, from); }
-template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_s32(to, from); }
-
-template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f32(to, from); }
-template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_s32(to, from); }
-
-template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { __pld(addr); }
-template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { __pld(addr); }
-
-// FIXME only store the 2 first elements ?
-template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vst1q_f32(x, a); return x[0]; }
-template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int EIGEN_ALIGN16 x[4]; vst1q_s32(x, a); return x[0]; }
-
-template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) {
- float32x2_t a_lo, a_hi;
- Packet4f a_r64;
-
- a_r64 = vrev64q_f32(a);
- a_lo = vget_low_f32(a_r64);
- a_hi = vget_high_f32(a_r64);
- return vcombine_f32(a_hi, a_lo);
-}
-template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) {
- int32x2_t a_lo, a_hi;
- Packet4i a_r64;
-
- a_r64 = vrev64q_s32(a);
- a_lo = vget_low_s32(a_r64);
- a_hi = vget_high_s32(a_r64);
- return vcombine_s32(a_hi, a_lo);
-}
-template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vabsq_f32(a); }
-template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vabsq_s32(a); }
-
-template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
-{
- float32x2_t a_lo, a_hi, sum;
-
- a_lo = vget_low_f32(a);
- a_hi = vget_high_f32(a);
- sum = vpadd_f32(a_lo, a_hi);
- sum = vpadd_f32(sum, sum);
- return vget_lane_f32(sum, 0);
-}
-
-template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
-{
- float32x4x2_t vtrn1, vtrn2, res1, res2;
- Packet4f sum1, sum2, sum;
-
- // NEON zip performs interleaving of the supplied vectors.
- // We perform two interleaves in a row to acquire the transposed vector
- vtrn1 = vzipq_f32(vecs[0], vecs[2]);
- vtrn2 = vzipq_f32(vecs[1], vecs[3]);
- res1 = vzipq_f32(vtrn1.val[0], vtrn2.val[0]);
- res2 = vzipq_f32(vtrn1.val[1], vtrn2.val[1]);
-
- // Do the addition of the resulting vectors
- sum1 = vaddq_f32(res1.val[0], res1.val[1]);
- sum2 = vaddq_f32(res2.val[0], res2.val[1]);
- sum = vaddq_f32(sum1, sum2);
-
- return sum;
-}
-
-template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
-{
- int32x2_t a_lo, a_hi, sum;
-
- a_lo = vget_low_s32(a);
- a_hi = vget_high_s32(a);
- sum = vpadd_s32(a_lo, a_hi);
- sum = vpadd_s32(sum, sum);
- return vget_lane_s32(sum, 0);
-}
-
-template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
-{
- int32x4x2_t vtrn1, vtrn2, res1, res2;
- Packet4i sum1, sum2, sum;
-
- // NEON zip performs interleaving of the supplied vectors.
- // We perform two interleaves in a row to acquire the transposed vector
- vtrn1 = vzipq_s32(vecs[0], vecs[2]);
- vtrn2 = vzipq_s32(vecs[1], vecs[3]);
- res1 = vzipq_s32(vtrn1.val[0], vtrn2.val[0]);
- res2 = vzipq_s32(vtrn1.val[1], vtrn2.val[1]);
-
- // Do the addition of the resulting vectors
- sum1 = vaddq_s32(res1.val[0], res1.val[1]);
- sum2 = vaddq_s32(res2.val[0], res2.val[1]);
- sum = vaddq_s32(sum1, sum2);
-
- return sum;
-}
-
-// Other reduction functions:
-// mul
-template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
-{
- float32x2_t a_lo, a_hi, prod;
-
- // Get a_lo = |a1|a2| and a_hi = |a3|a4|
- a_lo = vget_low_f32(a);
- a_hi = vget_high_f32(a);
- // Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
- prod = vmul_f32(a_lo, a_hi);
- // Multiply prod with its swapped value |a2*a4|a1*a3|
- prod = vmul_f32(prod, vrev64_f32(prod));
-
- return vget_lane_f32(prod, 0);
-}
-template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
-{
- int32x2_t a_lo, a_hi, prod;
-
- // Get a_lo = |a1|a2| and a_hi = |a3|a4|
- a_lo = vget_low_s32(a);
- a_hi = vget_high_s32(a);
- // Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
- prod = vmul_s32(a_lo, a_hi);
- // Multiply prod with its swapped value |a2*a4|a1*a3|
- prod = vmul_s32(prod, vrev64_s32(prod));
-
- return vget_lane_s32(prod, 0);
-}
-
-// min
-template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
-{
- float32x2_t a_lo, a_hi, min;
-
- a_lo = vget_low_f32(a);
- a_hi = vget_high_f32(a);
- min = vpmin_f32(a_lo, a_hi);
- min = vpmin_f32(min, min);
-
- return vget_lane_f32(min, 0);
-}
-
-template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
-{
- int32x2_t a_lo, a_hi, min;
-
- a_lo = vget_low_s32(a);
- a_hi = vget_high_s32(a);
- min = vpmin_s32(a_lo, a_hi);
- min = vpmin_s32(min, min);
-
- return vget_lane_s32(min, 0);
-}
-
-// max
-template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
-{
- float32x2_t a_lo, a_hi, max;
-
- a_lo = vget_low_f32(a);
- a_hi = vget_high_f32(a);
- max = vpmax_f32(a_lo, a_hi);
- max = vpmax_f32(max, max);
-
- return vget_lane_f32(max, 0);
-}
-
-template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
-{
- int32x2_t a_lo, a_hi, max;
-
- a_lo = vget_low_s32(a);
- a_hi = vget_high_s32(a);
- max = vpmax_s32(a_lo, a_hi);
-
- return vget_lane_s32(max, 0);
-}
-
-// this PALIGN_NEON business is to work around a bug in LLVM Clang 3.0 causing incorrect compilation errors,
-// see bug 347 and this LLVM bug: http://llvm.org/bugs/show_bug.cgi?id=11074
-#define PALIGN_NEON(Offset,Type,Command) \
-template<>\
-struct palign_impl<Offset,Type>\
-{\
- EIGEN_STRONG_INLINE static void run(Type& first, const Type& second)\
- {\
- if (Offset!=0)\
- first = Command(first, second, Offset);\
- }\
-};\
-
-PALIGN_NEON(0,Packet4f,vextq_f32)
-PALIGN_NEON(1,Packet4f,vextq_f32)
-PALIGN_NEON(2,Packet4f,vextq_f32)
-PALIGN_NEON(3,Packet4f,vextq_f32)
-PALIGN_NEON(0,Packet4i,vextq_s32)
-PALIGN_NEON(1,Packet4i,vextq_s32)
-PALIGN_NEON(2,Packet4i,vextq_s32)
-PALIGN_NEON(3,Packet4i,vextq_s32)
-
-#undef PALIGN_NEON
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_PACKET_MATH_NEON_H
diff --git a/src/Eigen/src/Core/arch/SSE/CMakeLists.txt b/src/Eigen/src/Core/arch/SSE/CMakeLists.txt
deleted file mode 100644
index 46ea7cc..0000000
--- a/src/Eigen/src/Core/arch/SSE/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_Core_arch_SSE_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Core_arch_SSE_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/arch/SSE COMPONENT Devel
-)
diff --git a/src/Eigen/src/Core/arch/SSE/Complex.h b/src/Eigen/src/Core/arch/SSE/Complex.h
deleted file mode 100644
index 91bba5e..0000000
--- a/src/Eigen/src/Core/arch/SSE/Complex.h
+++ /dev/null
@@ -1,442 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COMPLEX_SSE_H
-#define EIGEN_COMPLEX_SSE_H
-
-namespace Eigen {
-
-namespace internal {
-
-//---------- float ----------
-struct Packet2cf
-{
- EIGEN_STRONG_INLINE Packet2cf() {}
- EIGEN_STRONG_INLINE explicit Packet2cf(const __m128& a) : v(a) {}
- __m128 v;
-};
-
-template<> struct packet_traits<std::complex<float> > : default_packet_traits
-{
- typedef Packet2cf type;
- enum {
- Vectorizable = 1,
- AlignedOnScalar = 1,
- size = 2,
-
- HasAdd = 1,
- HasSub = 1,
- HasMul = 1,
- HasDiv = 1,
- HasNegate = 1,
- HasAbs = 0,
- HasAbs2 = 0,
- HasMin = 0,
- HasMax = 0,
- HasSetLinear = 0
- };
-};
-
-template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2}; };
-
-template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_add_ps(a.v,b.v)); }
-template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_sub_ps(a.v,b.v)); }
-template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a)
-{
- const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x80000000,0x80000000,0x80000000));
- return Packet2cf(_mm_xor_ps(a.v,mask));
-}
-template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a)
-{
- const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000));
- return Packet2cf(_mm_xor_ps(a.v,mask));
-}
-
-template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
-{
- // TODO optimize it for SSE3 and 4
- #ifdef EIGEN_VECTORIZE_SSE3
- return Packet2cf(_mm_addsub_ps(_mm_mul_ps(_mm_moveldup_ps(a.v), b.v),
- _mm_mul_ps(_mm_movehdup_ps(a.v),
- vec4f_swizzle1(b.v, 1, 0, 3, 2))));
-// return Packet2cf(_mm_addsub_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v),
-// _mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
-// vec4f_swizzle1(b.v, 1, 0, 3, 2))));
- #else
- const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x00000000,0x80000000,0x00000000));
- return Packet2cf(_mm_add_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v),
- _mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
- vec4f_swizzle1(b.v, 1, 0, 3, 2)), mask)));
- #endif
-}
-
-template<> EIGEN_STRONG_INLINE Packet2cf pand <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_and_ps(a.v,b.v)); }
-template<> EIGEN_STRONG_INLINE Packet2cf por <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_or_ps(a.v,b.v)); }
-template<> EIGEN_STRONG_INLINE Packet2cf pxor <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_xor_ps(a.v,b.v)); }
-template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_andnot_ps(a.v,b.v)); }
-
-template<> EIGEN_STRONG_INLINE Packet2cf pload <Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>(&numext::real_ref(*from))); }
-template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>(&numext::real_ref(*from))); }
-
-template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from)
-{
- Packet2cf res;
-#if EIGEN_GNUC_AT_MOST(4,2)
- // Workaround annoying "may be used uninitialized in this function" warning with gcc 4.2
- res.v = _mm_loadl_pi(_mm_set1_ps(0.0f), reinterpret_cast<const __m64*>(&from));
-#elif EIGEN_GNUC_AT_LEAST(4,6)
- // Suppress annoying "may be used uninitialized in this function" warning with gcc >= 4.6
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wuninitialized"
- res.v = _mm_loadl_pi(res.v, (const __m64*)&from);
- #pragma GCC diagnostic pop
-#else
- res.v = _mm_loadl_pi(res.v, (const __m64*)&from);
-#endif
- return Packet2cf(_mm_movelh_ps(res.v,res.v));
-}
-
-template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) { return pset1<Packet2cf>(*from); }
-
-template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore(&numext::real_ref(*to), from.v); }
-template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&numext::real_ref(*to), from.v); }
-
-template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
-
-template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a)
-{
- #if EIGEN_GNUC_AT_MOST(4,3)
- // Workaround gcc 4.2 ICE - this is not performance wise ideal, but who cares...
- // This workaround also fix invalid code generation with gcc 4.3
- EIGEN_ALIGN16 std::complex<float> res[2];
- _mm_store_ps((float*)res, a.v);
- return res[0];
- #else
- std::complex<float> res;
- _mm_storel_pi((__m64*)&res, a.v);
- return res;
- #endif
-}
-
-template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) { return Packet2cf(_mm_castpd_ps(preverse(_mm_castps_pd(a.v)))); }
-
-template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
-{
- return pfirst(Packet2cf(_mm_add_ps(a.v, _mm_movehl_ps(a.v,a.v))));
-}
-
-template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs)
-{
- return Packet2cf(_mm_add_ps(_mm_movelh_ps(vecs[0].v,vecs[1].v), _mm_movehl_ps(vecs[1].v,vecs[0].v)));
-}
-
-template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a)
-{
- return pfirst(pmul(a, Packet2cf(_mm_movehl_ps(a.v,a.v))));
-}
-
-template<int Offset>
-struct palign_impl<Offset,Packet2cf>
-{
- static EIGEN_STRONG_INLINE void run(Packet2cf& first, const Packet2cf& second)
- {
- if (Offset==1)
- {
- first.v = _mm_movehl_ps(first.v, first.v);
- first.v = _mm_movelh_ps(first.v, second.v);
- }
- }
-};
-
-template<> struct conj_helper<Packet2cf, Packet2cf, false,true>
-{
- EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
- { return padd(pmul(x,y),c); }
-
- EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
- {
- #ifdef EIGEN_VECTORIZE_SSE3
- return internal::pmul(a, pconj(b));
- #else
- const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000));
- return Packet2cf(_mm_add_ps(_mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v), mask),
- _mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
- vec4f_swizzle1(b.v, 1, 0, 3, 2))));
- #endif
- }
-};
-
-template<> struct conj_helper<Packet2cf, Packet2cf, true,false>
-{
- EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
- { return padd(pmul(x,y),c); }
-
- EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
- {
- #ifdef EIGEN_VECTORIZE_SSE3
- return internal::pmul(pconj(a), b);
- #else
- const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000));
- return Packet2cf(_mm_add_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v),
- _mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
- vec4f_swizzle1(b.v, 1, 0, 3, 2)), mask)));
- #endif
- }
-};
-
-template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
-{
- EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
- { return padd(pmul(x,y),c); }
-
- EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
- {
- #ifdef EIGEN_VECTORIZE_SSE3
- return pconj(internal::pmul(a, b));
- #else
- const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000));
- return Packet2cf(_mm_sub_ps(_mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v), mask),
- _mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
- vec4f_swizzle1(b.v, 1, 0, 3, 2))));
- #endif
- }
-};
-
-template<> struct conj_helper<Packet4f, Packet2cf, false,false>
-{
- EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet4f& x, const Packet2cf& y, const Packet2cf& c) const
- { return padd(c, pmul(x,y)); }
-
- EIGEN_STRONG_INLINE Packet2cf pmul(const Packet4f& x, const Packet2cf& y) const
- { return Packet2cf(Eigen::internal::pmul(x, y.v)); }
-};
-
-template<> struct conj_helper<Packet2cf, Packet4f, false,false>
-{
- EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet4f& y, const Packet2cf& c) const
- { return padd(c, pmul(x,y)); }
-
- EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& x, const Packet4f& y) const
- { return Packet2cf(Eigen::internal::pmul(x.v, y)); }
-};
-
-template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
-{
- // TODO optimize it for SSE3 and 4
- Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
- __m128 s = _mm_mul_ps(b.v,b.v);
- return Packet2cf(_mm_div_ps(res.v,_mm_add_ps(s,_mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(s), 0xb1)))));
-}
-
-EIGEN_STRONG_INLINE Packet2cf pcplxflip/*<Packet2cf>*/(const Packet2cf& x)
-{
- return Packet2cf(vec4f_swizzle1(x.v, 1, 0, 3, 2));
-}
-
-
-//---------- double ----------
-struct Packet1cd
-{
- EIGEN_STRONG_INLINE Packet1cd() {}
- EIGEN_STRONG_INLINE explicit Packet1cd(const __m128d& a) : v(a) {}
- __m128d v;
-};
-
-template<> struct packet_traits<std::complex<double> > : default_packet_traits
-{
- typedef Packet1cd type;
- enum {
- Vectorizable = 1,
- AlignedOnScalar = 0,
- size = 1,
-
- HasAdd = 1,
- HasSub = 1,
- HasMul = 1,
- HasDiv = 1,
- HasNegate = 1,
- HasAbs = 0,
- HasAbs2 = 0,
- HasMin = 0,
- HasMax = 0,
- HasSetLinear = 0
- };
-};
-
-template<> struct unpacket_traits<Packet1cd> { typedef std::complex<double> type; enum {size=1}; };
-
-template<> EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_add_pd(a.v,b.v)); }
-template<> EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_sub_pd(a.v,b.v)); }
-template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate(a.v)); }
-template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a)
-{
- const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
- return Packet1cd(_mm_xor_pd(a.v,mask));
-}
-
-template<> EIGEN_STRONG_INLINE Packet1cd pmul<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
-{
- // TODO optimize it for SSE3 and 4
- #ifdef EIGEN_VECTORIZE_SSE3
- return Packet1cd(_mm_addsub_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v),
- _mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
- vec2d_swizzle1(b.v, 1, 0))));
- #else
- const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0));
- return Packet1cd(_mm_add_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v),
- _mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
- vec2d_swizzle1(b.v, 1, 0)), mask)));
- #endif
-}
-
-template<> EIGEN_STRONG_INLINE Packet1cd pand <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_and_pd(a.v,b.v)); }
-template<> EIGEN_STRONG_INLINE Packet1cd por <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_or_pd(a.v,b.v)); }
-template<> EIGEN_STRONG_INLINE Packet1cd pxor <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_xor_pd(a.v,b.v)); }
-template<> EIGEN_STRONG_INLINE Packet1cd pandnot<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_andnot_pd(a.v,b.v)); }
-
-// FIXME force unaligned load, this is a temporary fix
-template<> EIGEN_STRONG_INLINE Packet1cd pload <Packet1cd>(const std::complex<double>* from)
-{ EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload<Packet2d>((const double*)from)); }
-template<> EIGEN_STRONG_INLINE Packet1cd ploadu<Packet1cd>(const std::complex<double>* from)
-{ EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu<Packet2d>((const double*)from)); }
-template<> EIGEN_STRONG_INLINE Packet1cd pset1<Packet1cd>(const std::complex<double>& from)
-{ /* here we really have to use unaligned loads :( */ return ploadu<Packet1cd>(&from); }
-
-template<> EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>* from) { return pset1<Packet1cd>(*from); }
-
-// FIXME force unaligned store, this is a temporary fix
-template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); }
-template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); }
-
-template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
-
-template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet1cd>(const Packet1cd& a)
-{
- EIGEN_ALIGN16 double res[2];
- _mm_store_pd(res, a.v);
- return std::complex<double>(res[0],res[1]);
-}
-
-template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; }
-
-template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet1cd>(const Packet1cd& a)
-{
- return pfirst(a);
-}
-
-template<> EIGEN_STRONG_INLINE Packet1cd preduxp<Packet1cd>(const Packet1cd* vecs)
-{
- return vecs[0];
-}
-
-template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet1cd>(const Packet1cd& a)
-{
- return pfirst(a);
-}
-
-template<int Offset>
-struct palign_impl<Offset,Packet1cd>
-{
- static EIGEN_STRONG_INLINE void run(Packet1cd& /*first*/, const Packet1cd& /*second*/)
- {
- // FIXME is it sure we never have to align a Packet1cd?
- // Even though a std::complex<double> has 16 bytes, it is not necessarily aligned on a 16 bytes boundary...
- }
-};
-
-template<> struct conj_helper<Packet1cd, Packet1cd, false,true>
-{
- EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
- { return padd(pmul(x,y),c); }
-
- EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
- {
- #ifdef EIGEN_VECTORIZE_SSE3
- return internal::pmul(a, pconj(b));
- #else
- const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
- return Packet1cd(_mm_add_pd(_mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v), mask),
- _mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
- vec2d_swizzle1(b.v, 1, 0))));
- #endif
- }
-};
-
-template<> struct conj_helper<Packet1cd, Packet1cd, true,false>
-{
- EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
- { return padd(pmul(x,y),c); }
-
- EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
- {
- #ifdef EIGEN_VECTORIZE_SSE3
- return internal::pmul(pconj(a), b);
- #else
- const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
- return Packet1cd(_mm_add_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v),
- _mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
- vec2d_swizzle1(b.v, 1, 0)), mask)));
- #endif
- }
-};
-
-template<> struct conj_helper<Packet1cd, Packet1cd, true,true>
-{
- EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
- { return padd(pmul(x,y),c); }
-
- EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
- {
- #ifdef EIGEN_VECTORIZE_SSE3
- return pconj(internal::pmul(a, b));
- #else
- const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
- return Packet1cd(_mm_sub_pd(_mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v), mask),
- _mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
- vec2d_swizzle1(b.v, 1, 0))));
- #endif
- }
-};
-
-template<> struct conj_helper<Packet2d, Packet1cd, false,false>
-{
- EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet2d& x, const Packet1cd& y, const Packet1cd& c) const
- { return padd(c, pmul(x,y)); }
-
- EIGEN_STRONG_INLINE Packet1cd pmul(const Packet2d& x, const Packet1cd& y) const
- { return Packet1cd(Eigen::internal::pmul(x, y.v)); }
-};
-
-template<> struct conj_helper<Packet1cd, Packet2d, false,false>
-{
- EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet2d& y, const Packet1cd& c) const
- { return padd(c, pmul(x,y)); }
-
- EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& x, const Packet2d& y) const
- { return Packet1cd(Eigen::internal::pmul(x.v, y)); }
-};
-
-template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
-{
- // TODO optimize it for SSE3 and 4
- Packet1cd res = conj_helper<Packet1cd,Packet1cd,false,true>().pmul(a,b);
- __m128d s = _mm_mul_pd(b.v,b.v);
- return Packet1cd(_mm_div_pd(res.v, _mm_add_pd(s,_mm_shuffle_pd(s, s, 0x1))));
-}
-
-EIGEN_STRONG_INLINE Packet1cd pcplxflip/*<Packet1cd>*/(const Packet1cd& x)
-{
- return Packet1cd(preverse(x.v));
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_COMPLEX_SSE_H
diff --git a/src/Eigen/src/Core/arch/SSE/MathFunctions.h b/src/Eigen/src/Core/arch/SSE/MathFunctions.h
deleted file mode 100644
index 99cbd0d..0000000
--- a/src/Eigen/src/Core/arch/SSE/MathFunctions.h
+++ /dev/null
@@ -1,475 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2007 Julien Pommier
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/* The sin, cos, exp, and log functions of this file come from
- * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
- */
-
-#ifndef EIGEN_MATH_FUNCTIONS_SSE_H
-#define EIGEN_MATH_FUNCTIONS_SSE_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
-Packet4f plog<Packet4f>(const Packet4f& _x)
-{
- Packet4f x = _x;
- _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
- _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
- _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
-
- _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inv_mant_mask, ~0x7f800000);
-
- /* the smallest non denormalized float number */
- _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(min_norm_pos, 0x00800000);
- _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(minus_inf, 0xff800000);//-1.f/0.f);
-
- /* natural logarithm computed for 4 simultaneous float
- return NaN for x <= 0
- */
- _EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292E-2f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, - 1.1514610310E-1f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740E-1f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, - 1.2420140846E-1f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, + 1.4249322787E-1f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, - 1.6668057665E-1f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, + 2.0000714765E-1f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, - 2.4999993993E-1f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, + 3.3333331174E-1f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f);
-
-
- Packet4i emm0;
-
- Packet4f invalid_mask = _mm_cmplt_ps(x, _mm_setzero_ps());
- Packet4f iszero_mask = _mm_cmpeq_ps(x, _mm_setzero_ps());
-
- x = pmax(x, p4f_min_norm_pos); /* cut off denormalized stuff */
- emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);
-
- /* keep only the fractional part */
- x = _mm_and_ps(x, p4f_inv_mant_mask);
- x = _mm_or_ps(x, p4f_half);
-
- emm0 = _mm_sub_epi32(emm0, p4i_0x7f);
- Packet4f e = padd(_mm_cvtepi32_ps(emm0), p4f_1);
-
- /* part2:
- if( x < SQRTHF ) {
- e -= 1;
- x = x + x - 1.0;
- } else { x = x - 1.0; }
- */
- Packet4f mask = _mm_cmplt_ps(x, p4f_cephes_SQRTHF);
- Packet4f tmp = _mm_and_ps(x, mask);
- x = psub(x, p4f_1);
- e = psub(e, _mm_and_ps(p4f_1, mask));
- x = padd(x, tmp);
-
- Packet4f x2 = pmul(x,x);
- Packet4f x3 = pmul(x2,x);
-
- Packet4f y, y1, y2;
- y = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1);
- y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4);
- y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7);
- y = pmadd(y , x, p4f_cephes_log_p2);
- y1 = pmadd(y1, x, p4f_cephes_log_p5);
- y2 = pmadd(y2, x, p4f_cephes_log_p8);
- y = pmadd(y, x3, y1);
- y = pmadd(y, x3, y2);
- y = pmul(y, x3);
-
- y1 = pmul(e, p4f_cephes_log_q1);
- tmp = pmul(x2, p4f_half);
- y = padd(y, y1);
- x = psub(x, tmp);
- y2 = pmul(e, p4f_cephes_log_q2);
- x = padd(x, y);
- x = padd(x, y2);
- // negative arg will be NAN, 0 will be -INF
- return _mm_or_ps(_mm_andnot_ps(iszero_mask, _mm_or_ps(x, invalid_mask)),
- _mm_and_ps(iszero_mask, p4f_minus_inf));
-}
-
-template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
-Packet4f pexp<Packet4f>(const Packet4f& _x)
-{
- Packet4f x = _x;
- _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
- _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
- _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
-
-
- _EIGEN_DECLARE_CONST_Packet4f(exp_hi, 88.3762626647950f);
- _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f);
-
- _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f);
-
- _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f);
-
- Packet4f tmp = _mm_setzero_ps(), fx;
- Packet4i emm0;
-
- // clamp x
- x = pmax(pmin(x, p4f_exp_hi), p4f_exp_lo);
-
- /* express exp(x) as exp(g + n*log(2)) */
- fx = pmadd(x, p4f_cephes_LOG2EF, p4f_half);
-
-#ifdef EIGEN_VECTORIZE_SSE4_1
- fx = _mm_floor_ps(fx);
-#else
- emm0 = _mm_cvttps_epi32(fx);
- tmp = _mm_cvtepi32_ps(emm0);
- /* if greater, substract 1 */
- Packet4f mask = _mm_cmpgt_ps(tmp, fx);
- mask = _mm_and_ps(mask, p4f_1);
- fx = psub(tmp, mask);
-#endif
-
- tmp = pmul(fx, p4f_cephes_exp_C1);
- Packet4f z = pmul(fx, p4f_cephes_exp_C2);
- x = psub(x, tmp);
- x = psub(x, z);
-
- z = pmul(x,x);
-
- Packet4f y = p4f_cephes_exp_p0;
- y = pmadd(y, x, p4f_cephes_exp_p1);
- y = pmadd(y, x, p4f_cephes_exp_p2);
- y = pmadd(y, x, p4f_cephes_exp_p3);
- y = pmadd(y, x, p4f_cephes_exp_p4);
- y = pmadd(y, x, p4f_cephes_exp_p5);
- y = pmadd(y, z, x);
- y = padd(y, p4f_1);
-
- // build 2^n
- emm0 = _mm_cvttps_epi32(fx);
- emm0 = _mm_add_epi32(emm0, p4i_0x7f);
- emm0 = _mm_slli_epi32(emm0, 23);
- return pmul(y, _mm_castsi128_ps(emm0));
-}
-template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
-Packet2d pexp<Packet2d>(const Packet2d& _x)
-{
- Packet2d x = _x;
-
- _EIGEN_DECLARE_CONST_Packet2d(1 , 1.0);
- _EIGEN_DECLARE_CONST_Packet2d(2 , 2.0);
- _EIGEN_DECLARE_CONST_Packet2d(half, 0.5);
-
- _EIGEN_DECLARE_CONST_Packet2d(exp_hi, 709.437);
- _EIGEN_DECLARE_CONST_Packet2d(exp_lo, -709.436139303);
-
- _EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599);
-
- _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4);
- _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2);
- _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1);
-
- _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6);
- _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3);
- _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1);
- _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0);
-
- _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125);
- _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6);
- static const __m128i p4i_1023_0 = _mm_setr_epi32(1023, 1023, 0, 0);
-
- Packet2d tmp = _mm_setzero_pd(), fx;
- Packet4i emm0;
-
- // clamp x
- x = pmax(pmin(x, p2d_exp_hi), p2d_exp_lo);
- /* express exp(x) as exp(g + n*log(2)) */
- fx = pmadd(p2d_cephes_LOG2EF, x, p2d_half);
-
-#ifdef EIGEN_VECTORIZE_SSE4_1
- fx = _mm_floor_pd(fx);
-#else
- emm0 = _mm_cvttpd_epi32(fx);
- tmp = _mm_cvtepi32_pd(emm0);
- /* if greater, substract 1 */
- Packet2d mask = _mm_cmpgt_pd(tmp, fx);
- mask = _mm_and_pd(mask, p2d_1);
- fx = psub(tmp, mask);
-#endif
-
- tmp = pmul(fx, p2d_cephes_exp_C1);
- Packet2d z = pmul(fx, p2d_cephes_exp_C2);
- x = psub(x, tmp);
- x = psub(x, z);
-
- Packet2d x2 = pmul(x,x);
-
- Packet2d px = p2d_cephes_exp_p0;
- px = pmadd(px, x2, p2d_cephes_exp_p1);
- px = pmadd(px, x2, p2d_cephes_exp_p2);
- px = pmul (px, x);
-
- Packet2d qx = p2d_cephes_exp_q0;
- qx = pmadd(qx, x2, p2d_cephes_exp_q1);
- qx = pmadd(qx, x2, p2d_cephes_exp_q2);
- qx = pmadd(qx, x2, p2d_cephes_exp_q3);
-
- x = pdiv(px,psub(qx,px));
- x = pmadd(p2d_2,x,p2d_1);
-
- // build 2^n
- emm0 = _mm_cvttpd_epi32(fx);
- emm0 = _mm_add_epi32(emm0, p4i_1023_0);
- emm0 = _mm_slli_epi32(emm0, 20);
- emm0 = _mm_shuffle_epi32(emm0, _MM_SHUFFLE(1,2,0,3));
- return pmul(x, _mm_castsi128_pd(emm0));
-}
-
-/* evaluation of 4 sines at onces, using SSE2 intrinsics.
-
- The code is the exact rewriting of the cephes sinf function.
- Precision is excellent as long as x < 8192 (I did not bother to
- take into account the special handling they have for greater values
- -- it does not return garbage for arguments over 8192, though, but
- the extra precision is missing).
-
- Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
- surprising but correct result.
-*/
-
-template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
-Packet4f psin<Packet4f>(const Packet4f& _x)
-{
- Packet4f x = _x;
- _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
- _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
-
- _EIGEN_DECLARE_CONST_Packet4i(1, 1);
- _EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
- _EIGEN_DECLARE_CONST_Packet4i(2, 2);
- _EIGEN_DECLARE_CONST_Packet4i(4, 4);
-
- _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000);
-
- _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
- _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
- _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
- _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
- _EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736E-3f);
- _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
- _EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948E-005f);
- _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
- _EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
-
- Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y;
-
- Packet4i emm0, emm2;
- sign_bit = x;
- /* take the absolute value */
- x = pabs(x);
-
- /* take the modulo */
-
- /* extract the sign bit (upper one) */
- sign_bit = _mm_and_ps(sign_bit, p4f_sign_mask);
-
- /* scale by 4/Pi */
- y = pmul(x, p4f_cephes_FOPI);
-
- /* store the integer part of y in mm0 */
- emm2 = _mm_cvttps_epi32(y);
- /* j=(j+1) & (~1) (see the cephes sources) */
- emm2 = _mm_add_epi32(emm2, p4i_1);
- emm2 = _mm_and_si128(emm2, p4i_not1);
- y = _mm_cvtepi32_ps(emm2);
- /* get the swap sign flag */
- emm0 = _mm_and_si128(emm2, p4i_4);
- emm0 = _mm_slli_epi32(emm0, 29);
- /* get the polynom selection mask
- there is one polynom for 0 <= x <= Pi/4
- and another one for Pi/4<x<=Pi/2
-
- Both branches will be computed.
- */
- emm2 = _mm_and_si128(emm2, p4i_2);
- emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
-
- Packet4f swap_sign_bit = _mm_castsi128_ps(emm0);
- Packet4f poly_mask = _mm_castsi128_ps(emm2);
- sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
-
- /* The magic pass: "Extended precision modular arithmetic"
- x = ((x - y * DP1) - y * DP2) - y * DP3; */
- xmm1 = pmul(y, p4f_minus_cephes_DP1);
- xmm2 = pmul(y, p4f_minus_cephes_DP2);
- xmm3 = pmul(y, p4f_minus_cephes_DP3);
- x = padd(x, xmm1);
- x = padd(x, xmm2);
- x = padd(x, xmm3);
-
- /* Evaluate the first polynom (0 <= x <= Pi/4) */
- y = p4f_coscof_p0;
- Packet4f z = _mm_mul_ps(x,x);
-
- y = pmadd(y, z, p4f_coscof_p1);
- y = pmadd(y, z, p4f_coscof_p2);
- y = pmul(y, z);
- y = pmul(y, z);
- Packet4f tmp = pmul(z, p4f_half);
- y = psub(y, tmp);
- y = padd(y, p4f_1);
-
- /* Evaluate the second polynom (Pi/4 <= x <= 0) */
-
- Packet4f y2 = p4f_sincof_p0;
- y2 = pmadd(y2, z, p4f_sincof_p1);
- y2 = pmadd(y2, z, p4f_sincof_p2);
- y2 = pmul(y2, z);
- y2 = pmul(y2, x);
- y2 = padd(y2, x);
-
- /* select the correct result from the two polynoms */
- y2 = _mm_and_ps(poly_mask, y2);
- y = _mm_andnot_ps(poly_mask, y);
- y = _mm_or_ps(y,y2);
- /* update the sign */
- return _mm_xor_ps(y, sign_bit);
-}
-
-/* almost the same as psin */
-template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
-Packet4f pcos<Packet4f>(const Packet4f& _x)
-{
- Packet4f x = _x;
- _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
- _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
-
- _EIGEN_DECLARE_CONST_Packet4i(1, 1);
- _EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
- _EIGEN_DECLARE_CONST_Packet4i(2, 2);
- _EIGEN_DECLARE_CONST_Packet4i(4, 4);
-
- _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
- _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
- _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
- _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
- _EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736E-3f);
- _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
- _EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948E-005f);
- _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
- _EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f);
- _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
-
- Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
- Packet4i emm0, emm2;
-
- x = pabs(x);
-
- /* scale by 4/Pi */
- y = pmul(x, p4f_cephes_FOPI);
-
- /* get the integer part of y */
- emm2 = _mm_cvttps_epi32(y);
- /* j=(j+1) & (~1) (see the cephes sources) */
- emm2 = _mm_add_epi32(emm2, p4i_1);
- emm2 = _mm_and_si128(emm2, p4i_not1);
- y = _mm_cvtepi32_ps(emm2);
-
- emm2 = _mm_sub_epi32(emm2, p4i_2);
-
- /* get the swap sign flag */
- emm0 = _mm_andnot_si128(emm2, p4i_4);
- emm0 = _mm_slli_epi32(emm0, 29);
- /* get the polynom selection mask */
- emm2 = _mm_and_si128(emm2, p4i_2);
- emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
-
- Packet4f sign_bit = _mm_castsi128_ps(emm0);
- Packet4f poly_mask = _mm_castsi128_ps(emm2);
-
- /* The magic pass: "Extended precision modular arithmetic"
- x = ((x - y * DP1) - y * DP2) - y * DP3; */
- xmm1 = pmul(y, p4f_minus_cephes_DP1);
- xmm2 = pmul(y, p4f_minus_cephes_DP2);
- xmm3 = pmul(y, p4f_minus_cephes_DP3);
- x = padd(x, xmm1);
- x = padd(x, xmm2);
- x = padd(x, xmm3);
-
- /* Evaluate the first polynom (0 <= x <= Pi/4) */
- y = p4f_coscof_p0;
- Packet4f z = pmul(x,x);
-
- y = pmadd(y,z,p4f_coscof_p1);
- y = pmadd(y,z,p4f_coscof_p2);
- y = pmul(y, z);
- y = pmul(y, z);
- Packet4f tmp = _mm_mul_ps(z, p4f_half);
- y = psub(y, tmp);
- y = padd(y, p4f_1);
-
- /* Evaluate the second polynom (Pi/4 <= x <= 0) */
- Packet4f y2 = p4f_sincof_p0;
- y2 = pmadd(y2, z, p4f_sincof_p1);
- y2 = pmadd(y2, z, p4f_sincof_p2);
- y2 = pmul(y2, z);
- y2 = pmadd(y2, x, x);
-
- /* select the correct result from the two polynoms */
- y2 = _mm_and_ps(poly_mask, y2);
- y = _mm_andnot_ps(poly_mask, y);
- y = _mm_or_ps(y,y2);
-
- /* update the sign */
- return _mm_xor_ps(y, sign_bit);
-}
-
-#if EIGEN_FAST_MATH
-
-// This is based on Quake3's fast inverse square root.
-// For detail see here: http://www.beyond3d.com/content/articles/8/
-// It lacks 1 (or 2 bits in some rare cases) of precision, and does not handle negative, +inf, or denormalized numbers correctly.
-template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
-Packet4f psqrt<Packet4f>(const Packet4f& _x)
-{
- Packet4f half = pmul(_x, pset1<Packet4f>(.5f));
-
- /* select only the inverse sqrt of non-zero inputs */
- Packet4f non_zero_mask = _mm_cmpge_ps(_x, pset1<Packet4f>((std::numeric_limits<float>::min)()));
- Packet4f x = _mm_and_ps(non_zero_mask, _mm_rsqrt_ps(_x));
-
- x = pmul(x, psub(pset1<Packet4f>(1.5f), pmul(half, pmul(x,x))));
- return pmul(_x,x);
-}
-
-#else
-
-template<> EIGEN_STRONG_INLINE Packet4f psqrt<Packet4f>(const Packet4f& x) { return _mm_sqrt_ps(x); }
-
-#endif
-
-template<> EIGEN_STRONG_INLINE Packet2d psqrt<Packet2d>(const Packet2d& x) { return _mm_sqrt_pd(x); }
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATH_FUNCTIONS_SSE_H
diff --git a/src/Eigen/src/Core/arch/SSE/PacketMath.h b/src/Eigen/src/Core/arch/SSE/PacketMath.h
deleted file mode 100644
index fc8ae50..0000000
--- a/src/Eigen/src/Core/arch/SSE/PacketMath.h
+++ /dev/null
@@ -1,649 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_PACKET_MATH_SSE_H
-#define EIGEN_PACKET_MATH_SSE_H
-
-namespace Eigen {
-
-namespace internal {
-
-#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
-#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
-#endif
-
-#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
-#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS (2*sizeof(void*))
-#endif
-
-typedef __m128 Packet4f;
-typedef __m128i Packet4i;
-typedef __m128d Packet2d;
-
-template<> struct is_arithmetic<__m128> { enum { value = true }; };
-template<> struct is_arithmetic<__m128i> { enum { value = true }; };
-template<> struct is_arithmetic<__m128d> { enum { value = true }; };
-
-#define vec4f_swizzle1(v,p,q,r,s) \
- (_mm_castsi128_ps(_mm_shuffle_epi32( _mm_castps_si128(v), ((s)<<6|(r)<<4|(q)<<2|(p)))))
-
-#define vec4i_swizzle1(v,p,q,r,s) \
- (_mm_shuffle_epi32( v, ((s)<<6|(r)<<4|(q)<<2|(p))))
-
-#define vec2d_swizzle1(v,p,q) \
- (_mm_castsi128_pd(_mm_shuffle_epi32( _mm_castpd_si128(v), ((q*2+1)<<6|(q*2)<<4|(p*2+1)<<2|(p*2)))))
-
-#define vec4f_swizzle2(a,b,p,q,r,s) \
- (_mm_shuffle_ps( (a), (b), ((s)<<6|(r)<<4|(q)<<2|(p))))
-
-#define vec4i_swizzle2(a,b,p,q,r,s) \
- (_mm_castps_si128( (_mm_shuffle_ps( _mm_castsi128_ps(a), _mm_castsi128_ps(b), ((s)<<6|(r)<<4|(q)<<2|(p))))))
-
-#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
- const Packet4f p4f_##NAME = pset1<Packet4f>(X)
-
-#define _EIGEN_DECLARE_CONST_Packet2d(NAME,X) \
- const Packet2d p2d_##NAME = pset1<Packet2d>(X)
-
-#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
- const Packet4f p4f_##NAME = _mm_castsi128_ps(pset1<Packet4i>(X))
-
-#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
- const Packet4i p4i_##NAME = pset1<Packet4i>(X)
-
-
-template<> struct packet_traits<float> : default_packet_traits
-{
- typedef Packet4f type;
- enum {
- Vectorizable = 1,
- AlignedOnScalar = 1,
- size=4,
-
- HasDiv = 1,
- HasSin = EIGEN_FAST_MATH,
- HasCos = EIGEN_FAST_MATH,
- HasLog = 1,
- HasExp = 1,
- HasSqrt = 1
- };
-};
-template<> struct packet_traits<double> : default_packet_traits
-{
- typedef Packet2d type;
- enum {
- Vectorizable = 1,
- AlignedOnScalar = 1,
- size=2,
-
- HasDiv = 1,
- HasExp = 1,
- HasSqrt = 1
- };
-};
-template<> struct packet_traits<int> : default_packet_traits
-{
- typedef Packet4i type;
- enum {
- // FIXME check the Has*
- Vectorizable = 1,
- AlignedOnScalar = 1,
- size=4
- };
-};
-
-template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4}; };
-template<> struct unpacket_traits<Packet2d> { typedef double type; enum {size=2}; };
-template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4}; };
-
-#if defined(_MSC_VER) && (_MSC_VER==1500)
-// Workaround MSVC 9 internal compiler error.
-// TODO: It has been detected with win64 builds (amd64), so let's check whether it also happens in 32bits+SSE mode
-// TODO: let's check whether there does not exist a better fix, like adding a pset0() function. (it crashed on pset1(0)).
-template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return _mm_set_ps(from,from,from,from); }
-template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return _mm_set_pd(from,from); }
-template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return _mm_set_epi32(from,from,from,from); }
-#else
-template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return _mm_set1_ps(from); }
-template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return _mm_set1_pd(from); }
-template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return _mm_set1_epi32(from); }
-#endif
-
-template<> EIGEN_STRONG_INLINE Packet4f plset<float>(const float& a) { return _mm_add_ps(pset1<Packet4f>(a), _mm_set_ps(3,2,1,0)); }
-template<> EIGEN_STRONG_INLINE Packet2d plset<double>(const double& a) { return _mm_add_pd(pset1<Packet2d>(a),_mm_set_pd(1,0)); }
-template<> EIGEN_STRONG_INLINE Packet4i plset<int>(const int& a) { return _mm_add_epi32(pset1<Packet4i>(a),_mm_set_epi32(3,2,1,0)); }
-
-template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_add_ps(a,b); }
-template<> EIGEN_STRONG_INLINE Packet2d padd<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_add_pd(a,b); }
-template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_add_epi32(a,b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_sub_ps(a,b); }
-template<> EIGEN_STRONG_INLINE Packet2d psub<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_sub_pd(a,b); }
-template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_sub_epi32(a,b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a)
-{
- const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x80000000,0x80000000,0x80000000));
- return _mm_xor_ps(a,mask);
-}
-template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a)
-{
- const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0x0,0x80000000,0x0,0x80000000));
- return _mm_xor_pd(a,mask);
-}
-template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a)
-{
- return psub(_mm_setr_epi32(0,0,0,0), a);
-}
-
-template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; }
-template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; }
-template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; }
-
-template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_mul_ps(a,b); }
-template<> EIGEN_STRONG_INLINE Packet2d pmul<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_mul_pd(a,b); }
-template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b)
-{
-#ifdef EIGEN_VECTORIZE_SSE4_1
- return _mm_mullo_epi32(a,b);
-#else
- // this version is slightly faster than 4 scalar products
- return vec4i_swizzle1(
- vec4i_swizzle2(
- _mm_mul_epu32(a,b),
- _mm_mul_epu32(vec4i_swizzle1(a,1,0,3,2),
- vec4i_swizzle1(b,1,0,3,2)),
- 0,2,0,2),
- 0,2,1,3);
-#endif
-}
-
-template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_div_ps(a,b); }
-template<> EIGEN_STRONG_INLINE Packet2d pdiv<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_div_pd(a,b); }
-template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
-{ eigen_assert(false && "packet integer division are not supported by SSE");
- return pset1<Packet4i>(0);
-}
-
-// for some weird raisons, it has to be overloaded for packet of integers
-template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd(pmul(a,b), c); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_min_ps(a,b); }
-template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_min_pd(a,b); }
-template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b)
-{
-#ifdef EIGEN_VECTORIZE_SSE4_1
- return _mm_min_epi32(a,b);
-#else
- // after some bench, this version *is* faster than a scalar implementation
- Packet4i mask = _mm_cmplt_epi32(a,b);
- return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
-#endif
-}
-
-template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_max_ps(a,b); }
-template<> EIGEN_STRONG_INLINE Packet2d pmax<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_max_pd(a,b); }
-template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b)
-{
-#ifdef EIGEN_VECTORIZE_SSE4_1
- return _mm_max_epi32(a,b);
-#else
- // after some bench, this version *is* faster than a scalar implementation
- Packet4i mask = _mm_cmpgt_epi32(a,b);
- return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
-#endif
-}
-
-template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_and_ps(a,b); }
-template<> EIGEN_STRONG_INLINE Packet2d pand<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_and_pd(a,b); }
-template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_and_si128(a,b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_or_ps(a,b); }
-template<> EIGEN_STRONG_INLINE Packet2d por<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_or_pd(a,b); }
-template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_or_si128(a,b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_xor_ps(a,b); }
-template<> EIGEN_STRONG_INLINE Packet2d pxor<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_xor_pd(a,b); }
-template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_xor_si128(a,b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_andnot_ps(a,b); }
-template<> EIGEN_STRONG_INLINE Packet2d pandnot<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_andnot_pd(a,b); }
-template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_andnot_si128(a,b); }
-
-template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_ps(from); }
-template<> EIGEN_STRONG_INLINE Packet2d pload<Packet2d>(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_pd(from); }
-template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_si128(reinterpret_cast<const Packet4i*>(from)); }
-
-#if defined(_MSC_VER)
- template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) {
- EIGEN_DEBUG_UNALIGNED_LOAD
- #if (_MSC_VER==1600)
- // NOTE Some version of MSVC10 generates bad code when using _mm_loadu_ps
- // (i.e., it does not generate an unaligned load!!
- // TODO On most architectures this version should also be faster than a single _mm_loadu_ps
- // so we could also enable it for MSVC08 but first we have to make this later does not generate crap when doing so...
- __m128 res = _mm_loadl_pi(_mm_set1_ps(0.0f), (const __m64*)(from));
- res = _mm_loadh_pi(res, (const __m64*)(from+2));
- return res;
- #else
- return _mm_loadu_ps(from);
- #endif
- }
- template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm_loadu_pd(from); }
- template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm_loadu_si128(reinterpret_cast<const Packet4i*>(from)); }
-#else
-// Fast unaligned loads. Note that here we cannot directly use intrinsics: this would
-// require pointer casting to incompatible pointer types and leads to invalid code
-// because of the strict aliasing rule. The "dummy" stuff are required to enforce
-// a correct instruction dependency.
-// TODO: do the same for MSVC (ICC is compatible)
-// NOTE: with the code below, MSVC's compiler crashes!
-
-#if defined(__GNUC__) && defined(__i386__)
- // bug 195: gcc/i386 emits weird x87 fldl/fstpl instructions for _mm_load_sd
- #define EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS 1
-#elif defined(__clang__)
- // bug 201: Segfaults in __mm_loadh_pd with clang 2.8
- #define EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS 1
-#else
- #define EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS 0
-#endif
-
-template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from)
-{
- EIGEN_DEBUG_UNALIGNED_LOAD
-#if EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS
- return _mm_loadu_ps(from);
-#else
- __m128d res;
- res = _mm_load_sd((const double*)(from)) ;
- res = _mm_loadh_pd(res, (const double*)(from+2)) ;
- return _mm_castpd_ps(res);
-#endif
-}
-template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from)
-{
- EIGEN_DEBUG_UNALIGNED_LOAD
-#if EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS
- return _mm_loadu_pd(from);
-#else
- __m128d res;
- res = _mm_load_sd(from) ;
- res = _mm_loadh_pd(res,from+1);
- return res;
-#endif
-}
-template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from)
-{
- EIGEN_DEBUG_UNALIGNED_LOAD
-#if EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS
- return _mm_loadu_si128(reinterpret_cast<const Packet4i*>(from));
-#else
- __m128d res;
- res = _mm_load_sd((const double*)(from)) ;
- res = _mm_loadh_pd(res, (const double*)(from+2)) ;
- return _mm_castpd_si128(res);
-#endif
-}
-#endif
-
-template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
-{
- return vec4f_swizzle1(_mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(from))), 0, 0, 1, 1);
-}
-template<> EIGEN_STRONG_INLINE Packet2d ploaddup<Packet2d>(const double* from)
-{ return pset1<Packet2d>(from[0]); }
-template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
-{
- Packet4i tmp;
- tmp = _mm_loadl_epi64(reinterpret_cast<const Packet4i*>(from));
- return vec4i_swizzle1(tmp, 0, 0, 1, 1);
-}
-
-template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_ps(to, from); }
-template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_pd(to, from); }
-template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_si128(reinterpret_cast<Packet4i*>(to), from); }
-
-template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d& from) {
- EIGEN_DEBUG_UNALIGNED_STORE
- _mm_storel_pd((to), from);
- _mm_storeh_pd((to+1), from);
-}
-template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(reinterpret_cast<double*>(to), _mm_castps_pd(from)); }
-template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(reinterpret_cast<double*>(to), _mm_castsi128_pd(from)); }
-
-// some compilers might be tempted to perform multiple moves instead of using a vector path.
-template<> EIGEN_STRONG_INLINE void pstore1<Packet4f>(float* to, const float& a)
-{
- Packet4f pa = _mm_set_ss(a);
- pstore(to, vec4f_swizzle1(pa,0,0,0,0));
-}
-// some compilers might be tempted to perform multiple moves instead of using a vector path.
-template<> EIGEN_STRONG_INLINE void pstore1<Packet2d>(double* to, const double& a)
-{
- Packet2d pa = _mm_set_sd(a);
- pstore(to, vec2d_swizzle1(pa,0,0));
-}
-
-template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
-template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
-template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
-
-#if defined(_MSC_VER) && defined(_WIN64) && !defined(__INTEL_COMPILER)
-// The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010
-// Direct of the struct members fixed bug #62.
-template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { return a.m128_f32[0]; }
-template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return a.m128d_f64[0]; }
-template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; }
-#elif defined(_MSC_VER) && !defined(__INTEL_COMPILER)
-// The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010
-template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float x = _mm_cvtss_f32(a); return x; }
-template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { double x = _mm_cvtsd_f64(a); return x; }
-template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; }
-#else
-template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { return _mm_cvtss_f32(a); }
-template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return _mm_cvtsd_f64(a); }
-template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { return _mm_cvtsi128_si32(a); }
-#endif
-
-template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a)
-{ return _mm_shuffle_ps(a,a,0x1B); }
-template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a)
-{ return _mm_shuffle_pd(a,a,0x1); }
-template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a)
-{ return _mm_shuffle_epi32(a,0x1B); }
-
-
-template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a)
-{
- const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF));
- return _mm_and_ps(a,mask);
-}
-template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a)
-{
- const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF));
- return _mm_and_pd(a,mask);
-}
-template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a)
-{
- #ifdef EIGEN_VECTORIZE_SSSE3
- return _mm_abs_epi32(a);
- #else
- Packet4i aux = _mm_srai_epi32(a,31);
- return _mm_sub_epi32(_mm_xor_si128(a,aux),aux);
- #endif
-}
-
-EIGEN_STRONG_INLINE void punpackp(Packet4f* vecs)
-{
- vecs[1] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x55));
- vecs[2] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xAA));
- vecs[3] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xFF));
- vecs[0] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x00));
-}
-
-#ifdef EIGEN_VECTORIZE_SSE3
-// TODO implement SSE2 versions as well as integer versions
-template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
-{
- return _mm_hadd_ps(_mm_hadd_ps(vecs[0], vecs[1]),_mm_hadd_ps(vecs[2], vecs[3]));
-}
-template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
-{
- return _mm_hadd_pd(vecs[0], vecs[1]);
-}
-// SSSE3 version:
-// EIGEN_STRONG_INLINE Packet4i preduxp(const Packet4i* vecs)
-// {
-// return _mm_hadd_epi32(_mm_hadd_epi32(vecs[0], vecs[1]),_mm_hadd_epi32(vecs[2], vecs[3]));
-// }
-
-template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
-{
- Packet4f tmp0 = _mm_hadd_ps(a,a);
- return pfirst(_mm_hadd_ps(tmp0, tmp0));
-}
-
-template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a) { return pfirst(_mm_hadd_pd(a, a)); }
-
-// SSSE3 version:
-// EIGEN_STRONG_INLINE float predux(const Packet4i& a)
-// {
-// Packet4i tmp0 = _mm_hadd_epi32(a,a);
-// return pfirst(_mm_hadd_epi32(tmp0, tmp0));
-// }
-#else
-// SSE2 versions
-template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
-{
- Packet4f tmp = _mm_add_ps(a, _mm_movehl_ps(a,a));
- return pfirst(_mm_add_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
-}
-template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a)
-{
- return pfirst(_mm_add_sd(a, _mm_unpackhi_pd(a,a)));
-}
-
-template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
-{
- Packet4f tmp0, tmp1, tmp2;
- tmp0 = _mm_unpacklo_ps(vecs[0], vecs[1]);
- tmp1 = _mm_unpackhi_ps(vecs[0], vecs[1]);
- tmp2 = _mm_unpackhi_ps(vecs[2], vecs[3]);
- tmp0 = _mm_add_ps(tmp0, tmp1);
- tmp1 = _mm_unpacklo_ps(vecs[2], vecs[3]);
- tmp1 = _mm_add_ps(tmp1, tmp2);
- tmp2 = _mm_movehl_ps(tmp1, tmp0);
- tmp0 = _mm_movelh_ps(tmp0, tmp1);
- return _mm_add_ps(tmp0, tmp2);
-}
-
-template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
-{
- return _mm_add_pd(_mm_unpacklo_pd(vecs[0], vecs[1]), _mm_unpackhi_pd(vecs[0], vecs[1]));
-}
-#endif // SSE3
-
-template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
-{
- Packet4i tmp = _mm_add_epi32(a, _mm_unpackhi_epi64(a,a));
- return pfirst(tmp) + pfirst(_mm_shuffle_epi32(tmp, 1));
-}
-
-template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
-{
- Packet4i tmp0, tmp1, tmp2;
- tmp0 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
- tmp1 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
- tmp2 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
- tmp0 = _mm_add_epi32(tmp0, tmp1);
- tmp1 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
- tmp1 = _mm_add_epi32(tmp1, tmp2);
- tmp2 = _mm_unpacklo_epi64(tmp0, tmp1);
- tmp0 = _mm_unpackhi_epi64(tmp0, tmp1);
- return _mm_add_epi32(tmp0, tmp2);
-}
-
-// Other reduction functions:
-
-// mul
-template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
-{
- Packet4f tmp = _mm_mul_ps(a, _mm_movehl_ps(a,a));
- return pfirst(_mm_mul_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
-}
-template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a)
-{
- return pfirst(_mm_mul_sd(a, _mm_unpackhi_pd(a,a)));
-}
-template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
-{
- // after some experiments, it is seems this is the fastest way to implement it
- // for GCC (eg., reusing pmul is very slow !)
- // TODO try to call _mm_mul_epu32 directly
- EIGEN_ALIGN16 int aux[4];
- pstore(aux, a);
- return (aux[0] * aux[1]) * (aux[2] * aux[3]);;
-}
-
-// min
-template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
-{
- Packet4f tmp = _mm_min_ps(a, _mm_movehl_ps(a,a));
- return pfirst(_mm_min_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
-}
-template<> EIGEN_STRONG_INLINE double predux_min<Packet2d>(const Packet2d& a)
-{
- return pfirst(_mm_min_sd(a, _mm_unpackhi_pd(a,a)));
-}
-template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
-{
- // after some experiments, it is seems this is the fastest way to implement it
- // for GCC (eg., it does not like using std::min after the pstore !!)
- EIGEN_ALIGN16 int aux[4];
- pstore(aux, a);
- int aux0 = aux[0]<aux[1] ? aux[0] : aux[1];
- int aux2 = aux[2]<aux[3] ? aux[2] : aux[3];
- return aux0<aux2 ? aux0 : aux2;
-}
-
-// max
-template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
-{
- Packet4f tmp = _mm_max_ps(a, _mm_movehl_ps(a,a));
- return pfirst(_mm_max_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
-}
-template<> EIGEN_STRONG_INLINE double predux_max<Packet2d>(const Packet2d& a)
-{
- return pfirst(_mm_max_sd(a, _mm_unpackhi_pd(a,a)));
-}
-template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
-{
- // after some experiments, it is seems this is the fastest way to implement it
- // for GCC (eg., it does not like using std::min after the pstore !!)
- EIGEN_ALIGN16 int aux[4];
- pstore(aux, a);
- int aux0 = aux[0]>aux[1] ? aux[0] : aux[1];
- int aux2 = aux[2]>aux[3] ? aux[2] : aux[3];
- return aux0>aux2 ? aux0 : aux2;
-}
-
-#if (defined __GNUC__)
-// template <> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c)
-// {
-// Packet4f res = b;
-// asm("mulps %[a], %[b] \n\taddps %[c], %[b]" : [b] "+x" (res) : [a] "x" (a), [c] "x" (c));
-// return res;
-// }
-// EIGEN_STRONG_INLINE Packet4i _mm_alignr_epi8(const Packet4i& a, const Packet4i& b, const int i)
-// {
-// Packet4i res = a;
-// asm("palignr %[i], %[a], %[b] " : [b] "+x" (res) : [a] "x" (a), [i] "i" (i));
-// return res;
-// }
-#endif
-
-#ifdef EIGEN_VECTORIZE_SSSE3
-// SSSE3 versions
-template<int Offset>
-struct palign_impl<Offset,Packet4f>
-{
- static EIGEN_STRONG_INLINE void run(Packet4f& first, const Packet4f& second)
- {
- if (Offset!=0)
- first = _mm_castsi128_ps(_mm_alignr_epi8(_mm_castps_si128(second), _mm_castps_si128(first), Offset*4));
- }
-};
-
-template<int Offset>
-struct palign_impl<Offset,Packet4i>
-{
- static EIGEN_STRONG_INLINE void run(Packet4i& first, const Packet4i& second)
- {
- if (Offset!=0)
- first = _mm_alignr_epi8(second,first, Offset*4);
- }
-};
-
-template<int Offset>
-struct palign_impl<Offset,Packet2d>
-{
- static EIGEN_STRONG_INLINE void run(Packet2d& first, const Packet2d& second)
- {
- if (Offset==1)
- first = _mm_castsi128_pd(_mm_alignr_epi8(_mm_castpd_si128(second), _mm_castpd_si128(first), 8));
- }
-};
-#else
-// SSE2 versions
-template<int Offset>
-struct palign_impl<Offset,Packet4f>
-{
- static EIGEN_STRONG_INLINE void run(Packet4f& first, const Packet4f& second)
- {
- if (Offset==1)
- {
- first = _mm_move_ss(first,second);
- first = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(first),0x39));
- }
- else if (Offset==2)
- {
- first = _mm_movehl_ps(first,first);
- first = _mm_movelh_ps(first,second);
- }
- else if (Offset==3)
- {
- first = _mm_move_ss(first,second);
- first = _mm_shuffle_ps(first,second,0x93);
- }
- }
-};
-
-template<int Offset>
-struct palign_impl<Offset,Packet4i>
-{
- static EIGEN_STRONG_INLINE void run(Packet4i& first, const Packet4i& second)
- {
- if (Offset==1)
- {
- first = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
- first = _mm_shuffle_epi32(first,0x39);
- }
- else if (Offset==2)
- {
- first = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(first)));
- first = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
- }
- else if (Offset==3)
- {
- first = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
- first = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(second),0x93));
- }
- }
-};
-
-template<int Offset>
-struct palign_impl<Offset,Packet2d>
-{
- static EIGEN_STRONG_INLINE void run(Packet2d& first, const Packet2d& second)
- {
- if (Offset==1)
- {
- first = _mm_castps_pd(_mm_movehl_ps(_mm_castpd_ps(first),_mm_castpd_ps(first)));
- first = _mm_castps_pd(_mm_movelh_ps(_mm_castpd_ps(first),_mm_castpd_ps(second)));
- }
- }
-};
-#endif
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_PACKET_MATH_SSE_H
diff --git a/src/Eigen/src/Core/products/CMakeLists.txt b/src/Eigen/src/Core/products/CMakeLists.txt
deleted file mode 100644
index 21fc94a..0000000
--- a/src/Eigen/src/Core/products/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_Core_Product_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Core_Product_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/products COMPONENT Devel
- )
diff --git a/src/Eigen/src/Core/products/CoeffBasedProduct.h b/src/Eigen/src/Core/products/CoeffBasedProduct.h
deleted file mode 100644
index c06a0df..0000000
--- a/src/Eigen/src/Core/products/CoeffBasedProduct.h
+++ /dev/null
@@ -1,441 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COEFFBASED_PRODUCT_H
-#define EIGEN_COEFFBASED_PRODUCT_H
-
-namespace Eigen {
-
-namespace internal {
-
-/*********************************************************************************
-* Coefficient based product implementation.
-* It is designed for the following use cases:
-* - small fixed sizes
-* - lazy products
-*********************************************************************************/
-
-/* Since the all the dimensions of the product are small, here we can rely
- * on the generic Assign mechanism to evaluate the product per coeff (or packet).
- *
- * Note that here the inner-loops should always be unrolled.
- */
-
-template<int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
-struct product_coeff_impl;
-
-template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl;
-
-template<typename LhsNested, typename RhsNested, int NestingFlags>
-struct traits<CoeffBasedProduct<LhsNested,RhsNested,NestingFlags> >
-{
- typedef MatrixXpr XprKind;
- typedef typename remove_all<LhsNested>::type _LhsNested;
- typedef typename remove_all<RhsNested>::type _RhsNested;
- typedef typename scalar_product_traits<typename _LhsNested::Scalar, typename _RhsNested::Scalar>::ReturnType Scalar;
- typedef typename promote_storage_type<typename traits<_LhsNested>::StorageKind,
- typename traits<_RhsNested>::StorageKind>::ret StorageKind;
- typedef typename promote_index_type<typename traits<_LhsNested>::Index,
- typename traits<_RhsNested>::Index>::type Index;
-
- enum {
- LhsCoeffReadCost = _LhsNested::CoeffReadCost,
- RhsCoeffReadCost = _RhsNested::CoeffReadCost,
- LhsFlags = _LhsNested::Flags,
- RhsFlags = _RhsNested::Flags,
-
- RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
- ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
- InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
-
- MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
-
- LhsRowMajor = LhsFlags & RowMajorBit,
- RhsRowMajor = RhsFlags & RowMajorBit,
-
- SameType = is_same<typename _LhsNested::Scalar,typename _RhsNested::Scalar>::value,
-
- CanVectorizeRhs = RhsRowMajor && (RhsFlags & PacketAccessBit)
- && (ColsAtCompileTime == Dynamic
- || ( (ColsAtCompileTime % packet_traits<Scalar>::size) == 0
- && (RhsFlags&AlignedBit)
- )
- ),
-
- CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit)
- && (RowsAtCompileTime == Dynamic
- || ( (RowsAtCompileTime % packet_traits<Scalar>::size) == 0
- && (LhsFlags&AlignedBit)
- )
- ),
-
- EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
- : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
- : (RhsRowMajor && !CanVectorizeLhs),
-
- Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit)
- | (EvalToRowMajor ? RowMajorBit : 0)
- | NestingFlags
- | (LhsFlags & RhsFlags & AlignedBit)
- // TODO enable vectorization for mixed types
- | (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0),
-
- CoeffReadCost = InnerSize == Dynamic ? Dynamic
- : InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
- + (InnerSize - 1) * NumTraits<Scalar>::AddCost,
-
- /* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
- * of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
- * loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
- * the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
- */
- CanVectorizeInner = SameType
- && LhsRowMajor
- && (!RhsRowMajor)
- && (LhsFlags & RhsFlags & ActualPacketAccessBit)
- && (LhsFlags & RhsFlags & AlignedBit)
- && (InnerSize % packet_traits<Scalar>::size == 0)
- };
-};
-
-} // end namespace internal
-
-template<typename LhsNested, typename RhsNested, int NestingFlags>
-class CoeffBasedProduct
- : internal::no_assignment_operator,
- public MatrixBase<CoeffBasedProduct<LhsNested, RhsNested, NestingFlags> >
-{
- public:
-
- typedef MatrixBase<CoeffBasedProduct> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(CoeffBasedProduct)
- typedef typename Base::PlainObject PlainObject;
-
- private:
-
- typedef typename internal::traits<CoeffBasedProduct>::_LhsNested _LhsNested;
- typedef typename internal::traits<CoeffBasedProduct>::_RhsNested _RhsNested;
-
- enum {
- PacketSize = internal::packet_traits<Scalar>::size,
- InnerSize = internal::traits<CoeffBasedProduct>::InnerSize,
- Unroll = CoeffReadCost != Dynamic && CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
- CanVectorizeInner = internal::traits<CoeffBasedProduct>::CanVectorizeInner
- };
-
- typedef internal::product_coeff_impl<CanVectorizeInner ? InnerVectorizedTraversal : DefaultTraversal,
- Unroll ? InnerSize-1 : Dynamic,
- _LhsNested, _RhsNested, Scalar> ScalarCoeffImpl;
-
- typedef CoeffBasedProduct<LhsNested,RhsNested,NestByRefBit> LazyCoeffBasedProductType;
-
- public:
-
- inline CoeffBasedProduct(const CoeffBasedProduct& other)
- : Base(), m_lhs(other.m_lhs), m_rhs(other.m_rhs)
- {}
-
- template<typename Lhs, typename Rhs>
- inline CoeffBasedProduct(const Lhs& lhs, const Rhs& rhs)
- : m_lhs(lhs), m_rhs(rhs)
- {
- // we don't allow taking products of matrices of different real types, as that wouldn't be vectorizable.
- // We still allow to mix T and complex<T>.
- EIGEN_STATIC_ASSERT((internal::scalar_product_traits<typename Lhs::RealScalar, typename Rhs::RealScalar>::Defined),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- eigen_assert(lhs.cols() == rhs.rows()
- && "invalid matrix product"
- && "if you wanted a coeff-wise or a dot product use the respective explicit functions");
- }
-
- EIGEN_STRONG_INLINE Index rows() const { return m_lhs.rows(); }
- EIGEN_STRONG_INLINE Index cols() const { return m_rhs.cols(); }
-
- EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
- {
- Scalar res;
- ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
- return res;
- }
-
- /* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
- * which is why we don't set the LinearAccessBit.
- */
- EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
- {
- Scalar res;
- const Index row = RowsAtCompileTime == 1 ? 0 : index;
- const Index col = RowsAtCompileTime == 1 ? index : 0;
- ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
- return res;
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE const PacketScalar packet(Index row, Index col) const
- {
- PacketScalar res;
- internal::product_packet_impl<Flags&RowMajorBit ? RowMajor : ColMajor,
- Unroll ? InnerSize-1 : Dynamic,
- _LhsNested, _RhsNested, PacketScalar, LoadMode>
- ::run(row, col, m_lhs, m_rhs, res);
- return res;
- }
-
- // Implicit conversion to the nested type (trigger the evaluation of the product)
- EIGEN_STRONG_INLINE operator const PlainObject& () const
- {
- m_result.lazyAssign(*this);
- return m_result;
- }
-
- const _LhsNested& lhs() const { return m_lhs; }
- const _RhsNested& rhs() const { return m_rhs; }
-
- const Diagonal<const LazyCoeffBasedProductType,0> diagonal() const
- { return reinterpret_cast<const LazyCoeffBasedProductType&>(*this); }
-
- template<int DiagonalIndex>
- const Diagonal<const LazyCoeffBasedProductType,DiagonalIndex> diagonal() const
- { return reinterpret_cast<const LazyCoeffBasedProductType&>(*this); }
-
- const Diagonal<const LazyCoeffBasedProductType,Dynamic> diagonal(Index index) const
- { return reinterpret_cast<const LazyCoeffBasedProductType&>(*this).diagonal(index); }
-
- protected:
- typename internal::add_const_on_value_type<LhsNested>::type m_lhs;
- typename internal::add_const_on_value_type<RhsNested>::type m_rhs;
-
- mutable PlainObject m_result;
-};
-
-namespace internal {
-
-// here we need to overload the nested rule for products
-// such that the nested type is a const reference to a plain matrix
-template<typename Lhs, typename Rhs, int N, typename PlainObject>
-struct nested<CoeffBasedProduct<Lhs,Rhs,EvalBeforeNestingBit|EvalBeforeAssigningBit>, N, PlainObject>
-{
- typedef PlainObject const& type;
-};
-
-/***************************************************************************
-* Normal product .coeff() implementation (with meta-unrolling)
-***************************************************************************/
-
-/**************************************
-*** Scalar path - no vectorization ***
-**************************************/
-
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
-struct product_coeff_impl<DefaultTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
- {
- product_coeff_impl<DefaultTraversal, UnrollingIndex-1, Lhs, Rhs, RetScalar>::run(row, col, lhs, rhs, res);
- res += lhs.coeff(row, UnrollingIndex) * rhs.coeff(UnrollingIndex, col);
- }
-};
-
-template<typename Lhs, typename Rhs, typename RetScalar>
-struct product_coeff_impl<DefaultTraversal, 0, Lhs, Rhs, RetScalar>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
- {
- res = lhs.coeff(row, 0) * rhs.coeff(0, col);
- }
-};
-
-template<typename Lhs, typename Rhs, typename RetScalar>
-struct product_coeff_impl<DefaultTraversal, Dynamic, Lhs, Rhs, RetScalar>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar& res)
- {
- eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
- res = lhs.coeff(row, 0) * rhs.coeff(0, col);
- for(Index i = 1; i < lhs.cols(); ++i)
- res += lhs.coeff(row, i) * rhs.coeff(i, col);
- }
-};
-
-/*******************************************
-*** Scalar path with inner vectorization ***
-*******************************************/
-
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet>
-struct product_coeff_vectorized_unroller
-{
- typedef typename Lhs::Index Index;
- enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
- {
- product_coeff_vectorized_unroller<UnrollingIndex-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, pres);
- pres = padd(pres, pmul( lhs.template packet<Aligned>(row, UnrollingIndex) , rhs.template packet<Aligned>(UnrollingIndex, col) ));
- }
-};
-
-template<typename Lhs, typename Rhs, typename Packet>
-struct product_coeff_vectorized_unroller<0, Lhs, Rhs, Packet>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
- {
- pres = pmul(lhs.template packet<Aligned>(row, 0) , rhs.template packet<Aligned>(0, col));
- }
-};
-
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
-struct product_coeff_impl<InnerVectorizedTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
-{
- typedef typename Lhs::PacketScalar Packet;
- typedef typename Lhs::Index Index;
- enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
- {
- Packet pres;
- product_coeff_vectorized_unroller<UnrollingIndex+1-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, pres);
- product_coeff_impl<DefaultTraversal,UnrollingIndex,Lhs,Rhs,RetScalar>::run(row, col, lhs, rhs, res);
- res = predux(pres);
- }
-};
-
-template<typename Lhs, typename Rhs, int LhsRows = Lhs::RowsAtCompileTime, int RhsCols = Rhs::ColsAtCompileTime>
-struct product_coeff_vectorized_dyn_selector
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
- {
- res = lhs.row(row).transpose().cwiseProduct(rhs.col(col)).sum();
- }
-};
-
-// NOTE the 3 following specializations are because taking .col(0) on a vector is a bit slower
-// NOTE maybe they are now useless since we have a specialization for Block<Matrix>
-template<typename Lhs, typename Rhs, int RhsCols>
-struct product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,RhsCols>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index /*row*/, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
- {
- res = lhs.transpose().cwiseProduct(rhs.col(col)).sum();
- }
-};
-
-template<typename Lhs, typename Rhs, int LhsRows>
-struct product_coeff_vectorized_dyn_selector<Lhs,Rhs,LhsRows,1>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
- {
- res = lhs.row(row).transpose().cwiseProduct(rhs).sum();
- }
-};
-
-template<typename Lhs, typename Rhs>
-struct product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,1>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
- {
- res = lhs.transpose().cwiseProduct(rhs).sum();
- }
-};
-
-template<typename Lhs, typename Rhs, typename RetScalar>
-struct product_coeff_impl<InnerVectorizedTraversal, Dynamic, Lhs, Rhs, RetScalar>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
- {
- product_coeff_vectorized_dyn_selector<Lhs,Rhs>::run(row, col, lhs, rhs, res);
- }
-};
-
-/*******************
-*** Packet path ***
-*******************/
-
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
- {
- product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, res);
- res = pmadd(pset1<Packet>(lhs.coeff(row, UnrollingIndex)), rhs.template packet<LoadMode>(UnrollingIndex, col), res);
- }
-};
-
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
- {
- product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, res);
- res = pmadd(lhs.template packet<LoadMode>(row, UnrollingIndex), pset1<Packet>(rhs.coeff(UnrollingIndex, col)), res);
- }
-};
-
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
- {
- res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
- }
-};
-
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
- {
- res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
- }
-};
-
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet& res)
- {
- eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
- res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
- for(Index i = 1; i < lhs.cols(); ++i)
- res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
- }
-};
-
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet& res)
- {
- eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
- res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
- for(Index i = 1; i < lhs.cols(); ++i)
- res = pmadd(lhs.template packet<LoadMode>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_COEFFBASED_PRODUCT_H
diff --git a/src/Eigen/src/Core/products/GeneralBlockPanelKernel.h b/src/Eigen/src/Core/products/GeneralBlockPanelKernel.h
deleted file mode 100644
index bcdca5b..0000000
--- a/src/Eigen/src/Core/products/GeneralBlockPanelKernel.h
+++ /dev/null
@@ -1,1341 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_GENERAL_BLOCK_PANEL_H
-#define EIGEN_GENERAL_BLOCK_PANEL_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs=false, bool _ConjRhs=false>
-class gebp_traits;
-
-
-/** \internal \returns b if a<=0, and returns a otherwise. */
-inline std::ptrdiff_t manage_caching_sizes_helper(std::ptrdiff_t a, std::ptrdiff_t b)
-{
- return a<=0 ? b : a;
-}
-
-/** \internal */
-inline void manage_caching_sizes(Action action, std::ptrdiff_t* l1=0, std::ptrdiff_t* l2=0)
-{
- static std::ptrdiff_t m_l1CacheSize = 0;
- static std::ptrdiff_t m_l2CacheSize = 0;
- if(m_l2CacheSize==0)
- {
- m_l1CacheSize = manage_caching_sizes_helper(queryL1CacheSize(),8 * 1024);
- m_l2CacheSize = manage_caching_sizes_helper(queryTopLevelCacheSize(),1*1024*1024);
- }
-
- if(action==SetAction)
- {
- // set the cpu cache size and cache all block sizes from a global cache size in byte
- eigen_internal_assert(l1!=0 && l2!=0);
- m_l1CacheSize = *l1;
- m_l2CacheSize = *l2;
- }
- else if(action==GetAction)
- {
- eigen_internal_assert(l1!=0 && l2!=0);
- *l1 = m_l1CacheSize;
- *l2 = m_l2CacheSize;
- }
- else
- {
- eigen_internal_assert(false);
- }
-}
-
-/** \brief Computes the blocking parameters for a m x k times k x n matrix product
- *
- * \param[in,out] k Input: the third dimension of the product. Output: the blocking size along the same dimension.
- * \param[in,out] m Input: the number of rows of the left hand side. Output: the blocking size along the same dimension.
- * \param[in,out] n Input: the number of columns of the right hand side. Output: the blocking size along the same dimension.
- *
- * Given a m x k times k x n matrix product of scalar types \c LhsScalar and \c RhsScalar,
- * this function computes the blocking size parameters along the respective dimensions
- * for matrix products and related algorithms. The blocking sizes depends on various
- * parameters:
- * - the L1 and L2 cache sizes,
- * - the register level blocking sizes defined by gebp_traits,
- * - the number of scalars that fit into a packet (when vectorization is enabled).
- *
- * \sa setCpuCacheSizes */
-template<typename LhsScalar, typename RhsScalar, int KcFactor, typename SizeType>
-void computeProductBlockingSizes(SizeType& k, SizeType& m, SizeType& n)
-{
- EIGEN_UNUSED_VARIABLE(n);
- // Explanations:
- // Let's recall the product algorithms form kc x nc horizontal panels B' on the rhs and
- // mc x kc blocks A' on the lhs. A' has to fit into L2 cache. Moreover, B' is processed
- // per kc x nr vertical small panels where nr is the blocking size along the n dimension
- // at the register level. For vectorization purpose, these small vertical panels are unpacked,
- // e.g., each coefficient is replicated to fit a packet. This small vertical panel has to
- // stay in L1 cache.
- std::ptrdiff_t l1, l2;
-
- typedef gebp_traits<LhsScalar,RhsScalar> Traits;
- enum {
- kdiv = KcFactor * 2 * Traits::nr
- * Traits::RhsProgress * sizeof(RhsScalar),
- mr = gebp_traits<LhsScalar,RhsScalar>::mr,
- mr_mask = (0xffffffff/mr)*mr
- };
-
- manage_caching_sizes(GetAction, &l1, &l2);
- k = std::min<SizeType>(k, l1/kdiv);
- SizeType _m = k>0 ? l2/(4 * sizeof(LhsScalar) * k) : 0;
- if(_m<m) m = _m & mr_mask;
-}
-
-template<typename LhsScalar, typename RhsScalar, typename SizeType>
-inline void computeProductBlockingSizes(SizeType& k, SizeType& m, SizeType& n)
-{
- computeProductBlockingSizes<LhsScalar,RhsScalar,1>(k, m, n);
-}
-
-#ifdef EIGEN_HAS_FUSE_CJMADD
- #define MADD(CJ,A,B,C,T) C = CJ.pmadd(A,B,C);
-#else
-
- // FIXME (a bit overkill maybe ?)
-
- template<typename CJ, typename A, typename B, typename C, typename T> struct gebp_madd_selector {
- EIGEN_ALWAYS_INLINE static void run(const CJ& cj, A& a, B& b, C& c, T& /*t*/)
- {
- c = cj.pmadd(a,b,c);
- }
- };
-
- template<typename CJ, typename T> struct gebp_madd_selector<CJ,T,T,T,T> {
- EIGEN_ALWAYS_INLINE static void run(const CJ& cj, T& a, T& b, T& c, T& t)
- {
- t = b; t = cj.pmul(a,t); c = padd(c,t);
- }
- };
-
- template<typename CJ, typename A, typename B, typename C, typename T>
- EIGEN_STRONG_INLINE void gebp_madd(const CJ& cj, A& a, B& b, C& c, T& t)
- {
- gebp_madd_selector<CJ,A,B,C,T>::run(cj,a,b,c,t);
- }
-
- #define MADD(CJ,A,B,C,T) gebp_madd(CJ,A,B,C,T);
-// #define MADD(CJ,A,B,C,T) T = B; T = CJ.pmul(A,T); C = padd(C,T);
-#endif
-
-/* Vectorization logic
- * real*real: unpack rhs to constant packets, ...
- *
- * cd*cd : unpack rhs to (b_r,b_r), (b_i,b_i), mul to get (a_r b_r,a_i b_r) (a_r b_i,a_i b_i),
- * storing each res packet into two packets (2x2),
- * at the end combine them: swap the second and addsub them
- * cf*cf : same but with 2x4 blocks
- * cplx*real : unpack rhs to constant packets, ...
- * real*cplx : load lhs as (a0,a0,a1,a1), and mul as usual
- */
-template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs, bool _ConjRhs>
-class gebp_traits
-{
-public:
- typedef _LhsScalar LhsScalar;
- typedef _RhsScalar RhsScalar;
- typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
-
- enum {
- ConjLhs = _ConjLhs,
- ConjRhs = _ConjRhs,
- Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable,
- LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
- RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
- ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
-
- NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
-
- // register block size along the N direction (must be either 2 or 4)
- nr = NumberOfRegisters/4,
-
- // register block size along the M direction (currently, this one cannot be modified)
- mr = 2 * LhsPacketSize,
-
- WorkSpaceFactor = nr * RhsPacketSize,
-
- LhsProgress = LhsPacketSize,
- RhsProgress = RhsPacketSize
- };
-
- typedef typename packet_traits<LhsScalar>::type _LhsPacket;
- typedef typename packet_traits<RhsScalar>::type _RhsPacket;
- typedef typename packet_traits<ResScalar>::type _ResPacket;
-
- typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
- typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
- typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
-
- typedef ResPacket AccPacket;
-
- EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
- {
- p = pset1<ResPacket>(ResScalar(0));
- }
-
- EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const RhsScalar* rhs, RhsScalar* b)
- {
- for(DenseIndex k=0; k<n; k++)
- pstore1<RhsPacket>(&b[k*RhsPacketSize], rhs[k]);
- }
-
- EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
- {
- dest = pload<RhsPacket>(b);
- }
-
- EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
- {
- dest = pload<LhsPacket>(a);
- }
-
- EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, AccPacket& tmp) const
- {
- tmp = b; tmp = pmul(a,tmp); c = padd(c,tmp);
- }
-
- EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
- {
- r = pmadd(c,alpha,r);
- }
-
-protected:
-// conj_helper<LhsScalar,RhsScalar,ConjLhs,ConjRhs> cj;
-// conj_helper<LhsPacket,RhsPacket,ConjLhs,ConjRhs> pcj;
-};
-
-template<typename RealScalar, bool _ConjLhs>
-class gebp_traits<std::complex<RealScalar>, RealScalar, _ConjLhs, false>
-{
-public:
- typedef std::complex<RealScalar> LhsScalar;
- typedef RealScalar RhsScalar;
- typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
-
- enum {
- ConjLhs = _ConjLhs,
- ConjRhs = false,
- Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable,
- LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
- RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
- ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
-
- NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
- nr = NumberOfRegisters/4,
- mr = 2 * LhsPacketSize,
- WorkSpaceFactor = nr*RhsPacketSize,
-
- LhsProgress = LhsPacketSize,
- RhsProgress = RhsPacketSize
- };
-
- typedef typename packet_traits<LhsScalar>::type _LhsPacket;
- typedef typename packet_traits<RhsScalar>::type _RhsPacket;
- typedef typename packet_traits<ResScalar>::type _ResPacket;
-
- typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
- typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
- typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
-
- typedef ResPacket AccPacket;
-
- EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
- {
- p = pset1<ResPacket>(ResScalar(0));
- }
-
- EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const RhsScalar* rhs, RhsScalar* b)
- {
- for(DenseIndex k=0; k<n; k++)
- pstore1<RhsPacket>(&b[k*RhsPacketSize], rhs[k]);
- }
-
- EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
- {
- dest = pload<RhsPacket>(b);
- }
-
- EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
- {
- dest = pload<LhsPacket>(a);
- }
-
- EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const
- {
- madd_impl(a, b, c, tmp, typename conditional<Vectorizable,true_type,false_type>::type());
- }
-
- EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const
- {
- tmp = b; tmp = pmul(a.v,tmp); c.v = padd(c.v,tmp);
- }
-
- EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const
- {
- c += a * b;
- }
-
- EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
- {
- r = cj.pmadd(c,alpha,r);
- }
-
-protected:
- conj_helper<ResPacket,ResPacket,ConjLhs,false> cj;
-};
-
-template<typename RealScalar, bool _ConjLhs, bool _ConjRhs>
-class gebp_traits<std::complex<RealScalar>, std::complex<RealScalar>, _ConjLhs, _ConjRhs >
-{
-public:
- typedef std::complex<RealScalar> Scalar;
- typedef std::complex<RealScalar> LhsScalar;
- typedef std::complex<RealScalar> RhsScalar;
- typedef std::complex<RealScalar> ResScalar;
-
- enum {
- ConjLhs = _ConjLhs,
- ConjRhs = _ConjRhs,
- Vectorizable = packet_traits<RealScalar>::Vectorizable
- && packet_traits<Scalar>::Vectorizable,
- RealPacketSize = Vectorizable ? packet_traits<RealScalar>::size : 1,
- ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
-
- nr = 2,
- mr = 2 * ResPacketSize,
- WorkSpaceFactor = Vectorizable ? 2*nr*RealPacketSize : nr,
-
- LhsProgress = ResPacketSize,
- RhsProgress = Vectorizable ? 2*ResPacketSize : 1
- };
-
- typedef typename packet_traits<RealScalar>::type RealPacket;
- typedef typename packet_traits<Scalar>::type ScalarPacket;
- struct DoublePacket
- {
- RealPacket first;
- RealPacket second;
- };
-
- typedef typename conditional<Vectorizable,RealPacket, Scalar>::type LhsPacket;
- typedef typename conditional<Vectorizable,DoublePacket,Scalar>::type RhsPacket;
- typedef typename conditional<Vectorizable,ScalarPacket,Scalar>::type ResPacket;
- typedef typename conditional<Vectorizable,DoublePacket,Scalar>::type AccPacket;
-
- EIGEN_STRONG_INLINE void initAcc(Scalar& p) { p = Scalar(0); }
-
- EIGEN_STRONG_INLINE void initAcc(DoublePacket& p)
- {
- p.first = pset1<RealPacket>(RealScalar(0));
- p.second = pset1<RealPacket>(RealScalar(0));
- }
-
- /* Unpack the rhs coeff such that each complex coefficient is spread into
- * two packects containing respectively the real and imaginary coefficient
- * duplicated as many time as needed: (x+iy) => [x, ..., x] [y, ..., y]
- */
- EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const Scalar* rhs, Scalar* b)
- {
- for(DenseIndex k=0; k<n; k++)
- {
- if(Vectorizable)
- {
- pstore1<RealPacket>((RealScalar*)&b[k*ResPacketSize*2+0], real(rhs[k]));
- pstore1<RealPacket>((RealScalar*)&b[k*ResPacketSize*2+ResPacketSize], imag(rhs[k]));
- }
- else
- b[k] = rhs[k];
- }
- }
-
- EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, ResPacket& dest) const { dest = *b; }
-
- EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, DoublePacket& dest) const
- {
- dest.first = pload<RealPacket>((const RealScalar*)b);
- dest.second = pload<RealPacket>((const RealScalar*)(b+ResPacketSize));
- }
-
- // nothing special here
- EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
- {
- dest = pload<LhsPacket>((const typename unpacket_traits<LhsPacket>::type*)(a));
- }
-
- EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, DoublePacket& c, RhsPacket& /*tmp*/) const
- {
- c.first = padd(pmul(a,b.first), c.first);
- c.second = padd(pmul(a,b.second),c.second);
- }
-
- EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, ResPacket& c, RhsPacket& /*tmp*/) const
- {
- c = cj.pmadd(a,b,c);
- }
-
- EIGEN_STRONG_INLINE void acc(const Scalar& c, const Scalar& alpha, Scalar& r) const { r += alpha * c; }
-
- EIGEN_STRONG_INLINE void acc(const DoublePacket& c, const ResPacket& alpha, ResPacket& r) const
- {
- // assemble c
- ResPacket tmp;
- if((!ConjLhs)&&(!ConjRhs))
- {
- tmp = pcplxflip(pconj(ResPacket(c.second)));
- tmp = padd(ResPacket(c.first),tmp);
- }
- else if((!ConjLhs)&&(ConjRhs))
- {
- tmp = pconj(pcplxflip(ResPacket(c.second)));
- tmp = padd(ResPacket(c.first),tmp);
- }
- else if((ConjLhs)&&(!ConjRhs))
- {
- tmp = pcplxflip(ResPacket(c.second));
- tmp = padd(pconj(ResPacket(c.first)),tmp);
- }
- else if((ConjLhs)&&(ConjRhs))
- {
- tmp = pcplxflip(ResPacket(c.second));
- tmp = psub(pconj(ResPacket(c.first)),tmp);
- }
-
- r = pmadd(tmp,alpha,r);
- }
-
-protected:
- conj_helper<LhsScalar,RhsScalar,ConjLhs,ConjRhs> cj;
-};
-
-template<typename RealScalar, bool _ConjRhs>
-class gebp_traits<RealScalar, std::complex<RealScalar>, false, _ConjRhs >
-{
-public:
- typedef std::complex<RealScalar> Scalar;
- typedef RealScalar LhsScalar;
- typedef Scalar RhsScalar;
- typedef Scalar ResScalar;
-
- enum {
- ConjLhs = false,
- ConjRhs = _ConjRhs,
- Vectorizable = packet_traits<RealScalar>::Vectorizable
- && packet_traits<Scalar>::Vectorizable,
- LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
- RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
- ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
-
- NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
- nr = 4,
- mr = 2*ResPacketSize,
- WorkSpaceFactor = nr*RhsPacketSize,
-
- LhsProgress = ResPacketSize,
- RhsProgress = ResPacketSize
- };
-
- typedef typename packet_traits<LhsScalar>::type _LhsPacket;
- typedef typename packet_traits<RhsScalar>::type _RhsPacket;
- typedef typename packet_traits<ResScalar>::type _ResPacket;
-
- typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
- typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
- typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
-
- typedef ResPacket AccPacket;
-
- EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
- {
- p = pset1<ResPacket>(ResScalar(0));
- }
-
- EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const RhsScalar* rhs, RhsScalar* b)
- {
- for(DenseIndex k=0; k<n; k++)
- pstore1<RhsPacket>(&b[k*RhsPacketSize], rhs[k]);
- }
-
- EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
- {
- dest = pload<RhsPacket>(b);
- }
-
- EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
- {
- dest = ploaddup<LhsPacket>(a);
- }
-
- EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const
- {
- madd_impl(a, b, c, tmp, typename conditional<Vectorizable,true_type,false_type>::type());
- }
-
- EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const
- {
- tmp = b; tmp.v = pmul(a,tmp.v); c = padd(c,tmp);
- }
-
- EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const
- {
- c += a * b;
- }
-
- EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
- {
- r = cj.pmadd(alpha,c,r);
- }
-
-protected:
- conj_helper<ResPacket,ResPacket,false,ConjRhs> cj;
-};
-
-/* optimized GEneral packed Block * packed Panel product kernel
- *
- * Mixing type logic: C += A * B
- * | A | B | comments
- * |real |cplx | no vectorization yet, would require to pack A with duplication
- * |cplx |real | easy vectorization
- */
-template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
-struct gebp_kernel
-{
- typedef gebp_traits<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> Traits;
- typedef typename Traits::ResScalar ResScalar;
- typedef typename Traits::LhsPacket LhsPacket;
- typedef typename Traits::RhsPacket RhsPacket;
- typedef typename Traits::ResPacket ResPacket;
- typedef typename Traits::AccPacket AccPacket;
-
- enum {
- Vectorizable = Traits::Vectorizable,
- LhsProgress = Traits::LhsProgress,
- RhsProgress = Traits::RhsProgress,
- ResPacketSize = Traits::ResPacketSize
- };
-
- EIGEN_DONT_INLINE
- void operator()(ResScalar* res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index rows, Index depth, Index cols, ResScalar alpha,
- Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0, RhsScalar* unpackedB=0);
-};
-
-template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
-EIGEN_DONT_INLINE
-void gebp_kernel<LhsScalar,RhsScalar,Index,mr,nr,ConjugateLhs,ConjugateRhs>
- ::operator()(ResScalar* res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index rows, Index depth, Index cols, ResScalar alpha,
- Index strideA, Index strideB, Index offsetA, Index offsetB, RhsScalar* unpackedB)
- {
- Traits traits;
-
- if(strideA==-1) strideA = depth;
- if(strideB==-1) strideB = depth;
- conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
-// conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;
- Index packet_cols = (cols/nr) * nr;
- const Index peeled_mc = (rows/mr)*mr;
- // FIXME:
- const Index peeled_mc2 = peeled_mc + (rows-peeled_mc >= LhsProgress ? LhsProgress : 0);
- const Index peeled_kc = (depth/4)*4;
-
- if(unpackedB==0)
- unpackedB = const_cast<RhsScalar*>(blockB - strideB * nr * RhsProgress);
-
- // loops on each micro vertical panel of rhs (depth x nr)
- for(Index j2=0; j2<packet_cols; j2+=nr)
- {
- traits.unpackRhs(depth*nr,&blockB[j2*strideB+offsetB*nr],unpackedB);
-
- // loops on each largest micro horizontal panel of lhs (mr x depth)
- // => we select a mr x nr micro block of res which is entirely
- // stored into mr/packet_size x nr registers.
- for(Index i=0; i<peeled_mc; i+=mr)
- {
- const LhsScalar* blA = &blockA[i*strideA+offsetA*mr];
- prefetch(&blA[0]);
-
- // gets res block as register
- AccPacket C0, C1, C2, C3, C4, C5, C6, C7;
- traits.initAcc(C0);
- traits.initAcc(C1);
- if(nr==4) traits.initAcc(C2);
- if(nr==4) traits.initAcc(C3);
- traits.initAcc(C4);
- traits.initAcc(C5);
- if(nr==4) traits.initAcc(C6);
- if(nr==4) traits.initAcc(C7);
-
- ResScalar* r0 = &res[(j2+0)*resStride + i];
- ResScalar* r1 = r0 + resStride;
- ResScalar* r2 = r1 + resStride;
- ResScalar* r3 = r2 + resStride;
-
- prefetch(r0+16);
- prefetch(r1+16);
- prefetch(r2+16);
- prefetch(r3+16);
-
- // performs "inner" product
- // TODO let's check wether the folowing peeled loop could not be
- // optimized via optimal prefetching from one loop to the other
- const RhsScalar* blB = unpackedB;
- for(Index k=0; k<peeled_kc; k+=4)
- {
- if(nr==2)
- {
- LhsPacket A0, A1;
- RhsPacket B_0;
- RhsPacket T0;
-
-EIGEN_ASM_COMMENT("mybegin2");
- traits.loadLhs(&blA[0*LhsProgress], A0);
- traits.loadLhs(&blA[1*LhsProgress], A1);
- traits.loadRhs(&blB[0*RhsProgress], B_0);
- traits.madd(A0,B_0,C0,T0);
- traits.madd(A1,B_0,C4,B_0);
- traits.loadRhs(&blB[1*RhsProgress], B_0);
- traits.madd(A0,B_0,C1,T0);
- traits.madd(A1,B_0,C5,B_0);
-
- traits.loadLhs(&blA[2*LhsProgress], A0);
- traits.loadLhs(&blA[3*LhsProgress], A1);
- traits.loadRhs(&blB[2*RhsProgress], B_0);
- traits.madd(A0,B_0,C0,T0);
- traits.madd(A1,B_0,C4,B_0);
- traits.loadRhs(&blB[3*RhsProgress], B_0);
- traits.madd(A0,B_0,C1,T0);
- traits.madd(A1,B_0,C5,B_0);
-
- traits.loadLhs(&blA[4*LhsProgress], A0);
- traits.loadLhs(&blA[5*LhsProgress], A1);
- traits.loadRhs(&blB[4*RhsProgress], B_0);
- traits.madd(A0,B_0,C0,T0);
- traits.madd(A1,B_0,C4,B_0);
- traits.loadRhs(&blB[5*RhsProgress], B_0);
- traits.madd(A0,B_0,C1,T0);
- traits.madd(A1,B_0,C5,B_0);
-
- traits.loadLhs(&blA[6*LhsProgress], A0);
- traits.loadLhs(&blA[7*LhsProgress], A1);
- traits.loadRhs(&blB[6*RhsProgress], B_0);
- traits.madd(A0,B_0,C0,T0);
- traits.madd(A1,B_0,C4,B_0);
- traits.loadRhs(&blB[7*RhsProgress], B_0);
- traits.madd(A0,B_0,C1,T0);
- traits.madd(A1,B_0,C5,B_0);
-EIGEN_ASM_COMMENT("myend");
- }
- else
- {
-EIGEN_ASM_COMMENT("mybegin4");
- LhsPacket A0, A1;
- RhsPacket B_0, B1, B2, B3;
- RhsPacket T0;
-
- traits.loadLhs(&blA[0*LhsProgress], A0);
- traits.loadLhs(&blA[1*LhsProgress], A1);
- traits.loadRhs(&blB[0*RhsProgress], B_0);
- traits.loadRhs(&blB[1*RhsProgress], B1);
-
- traits.madd(A0,B_0,C0,T0);
- traits.loadRhs(&blB[2*RhsProgress], B2);
- traits.madd(A1,B_0,C4,B_0);
- traits.loadRhs(&blB[3*RhsProgress], B3);
- traits.loadRhs(&blB[4*RhsProgress], B_0);
- traits.madd(A0,B1,C1,T0);
- traits.madd(A1,B1,C5,B1);
- traits.loadRhs(&blB[5*RhsProgress], B1);
- traits.madd(A0,B2,C2,T0);
- traits.madd(A1,B2,C6,B2);
- traits.loadRhs(&blB[6*RhsProgress], B2);
- traits.madd(A0,B3,C3,T0);
- traits.loadLhs(&blA[2*LhsProgress], A0);
- traits.madd(A1,B3,C7,B3);
- traits.loadLhs(&blA[3*LhsProgress], A1);
- traits.loadRhs(&blB[7*RhsProgress], B3);
- traits.madd(A0,B_0,C0,T0);
- traits.madd(A1,B_0,C4,B_0);
- traits.loadRhs(&blB[8*RhsProgress], B_0);
- traits.madd(A0,B1,C1,T0);
- traits.madd(A1,B1,C5,B1);
- traits.loadRhs(&blB[9*RhsProgress], B1);
- traits.madd(A0,B2,C2,T0);
- traits.madd(A1,B2,C6,B2);
- traits.loadRhs(&blB[10*RhsProgress], B2);
- traits.madd(A0,B3,C3,T0);
- traits.loadLhs(&blA[4*LhsProgress], A0);
- traits.madd(A1,B3,C7,B3);
- traits.loadLhs(&blA[5*LhsProgress], A1);
- traits.loadRhs(&blB[11*RhsProgress], B3);
-
- traits.madd(A0,B_0,C0,T0);
- traits.madd(A1,B_0,C4,B_0);
- traits.loadRhs(&blB[12*RhsProgress], B_0);
- traits.madd(A0,B1,C1,T0);
- traits.madd(A1,B1,C5,B1);
- traits.loadRhs(&blB[13*RhsProgress], B1);
- traits.madd(A0,B2,C2,T0);
- traits.madd(A1,B2,C6,B2);
- traits.loadRhs(&blB[14*RhsProgress], B2);
- traits.madd(A0,B3,C3,T0);
- traits.loadLhs(&blA[6*LhsProgress], A0);
- traits.madd(A1,B3,C7,B3);
- traits.loadLhs(&blA[7*LhsProgress], A1);
- traits.loadRhs(&blB[15*RhsProgress], B3);
- traits.madd(A0,B_0,C0,T0);
- traits.madd(A1,B_0,C4,B_0);
- traits.madd(A0,B1,C1,T0);
- traits.madd(A1,B1,C5,B1);
- traits.madd(A0,B2,C2,T0);
- traits.madd(A1,B2,C6,B2);
- traits.madd(A0,B3,C3,T0);
- traits.madd(A1,B3,C7,B3);
- }
-
- blB += 4*nr*RhsProgress;
- blA += 4*mr;
- }
- // process remaining peeled loop
- for(Index k=peeled_kc; k<depth; k++)
- {
- if(nr==2)
- {
- LhsPacket A0, A1;
- RhsPacket B_0;
- RhsPacket T0;
-
- traits.loadLhs(&blA[0*LhsProgress], A0);
- traits.loadLhs(&blA[1*LhsProgress], A1);
- traits.loadRhs(&blB[0*RhsProgress], B_0);
- traits.madd(A0,B_0,C0,T0);
- traits.madd(A1,B_0,C4,B_0);
- traits.loadRhs(&blB[1*RhsProgress], B_0);
- traits.madd(A0,B_0,C1,T0);
- traits.madd(A1,B_0,C5,B_0);
- }
- else
- {
- LhsPacket A0, A1;
- RhsPacket B_0, B1, B2, B3;
- RhsPacket T0;
-
- traits.loadLhs(&blA[0*LhsProgress], A0);
- traits.loadLhs(&blA[1*LhsProgress], A1);
- traits.loadRhs(&blB[0*RhsProgress], B_0);
- traits.loadRhs(&blB[1*RhsProgress], B1);
-
- traits.madd(A0,B_0,C0,T0);
- traits.loadRhs(&blB[2*RhsProgress], B2);
- traits.madd(A1,B_0,C4,B_0);
- traits.loadRhs(&blB[3*RhsProgress], B3);
- traits.madd(A0,B1,C1,T0);
- traits.madd(A1,B1,C5,B1);
- traits.madd(A0,B2,C2,T0);
- traits.madd(A1,B2,C6,B2);
- traits.madd(A0,B3,C3,T0);
- traits.madd(A1,B3,C7,B3);
- }
-
- blB += nr*RhsProgress;
- blA += mr;
- }
-
- if(nr==4)
- {
- ResPacket R0, R1, R2, R3, R4, R5, R6;
- ResPacket alphav = pset1<ResPacket>(alpha);
-
- R0 = ploadu<ResPacket>(r0);
- R1 = ploadu<ResPacket>(r1);
- R2 = ploadu<ResPacket>(r2);
- R3 = ploadu<ResPacket>(r3);
- R4 = ploadu<ResPacket>(r0 + ResPacketSize);
- R5 = ploadu<ResPacket>(r1 + ResPacketSize);
- R6 = ploadu<ResPacket>(r2 + ResPacketSize);
- traits.acc(C0, alphav, R0);
- pstoreu(r0, R0);
- R0 = ploadu<ResPacket>(r3 + ResPacketSize);
-
- traits.acc(C1, alphav, R1);
- traits.acc(C2, alphav, R2);
- traits.acc(C3, alphav, R3);
- traits.acc(C4, alphav, R4);
- traits.acc(C5, alphav, R5);
- traits.acc(C6, alphav, R6);
- traits.acc(C7, alphav, R0);
-
- pstoreu(r1, R1);
- pstoreu(r2, R2);
- pstoreu(r3, R3);
- pstoreu(r0 + ResPacketSize, R4);
- pstoreu(r1 + ResPacketSize, R5);
- pstoreu(r2 + ResPacketSize, R6);
- pstoreu(r3 + ResPacketSize, R0);
- }
- else
- {
- ResPacket R0, R1, R4;
- ResPacket alphav = pset1<ResPacket>(alpha);
-
- R0 = ploadu<ResPacket>(r0);
- R1 = ploadu<ResPacket>(r1);
- R4 = ploadu<ResPacket>(r0 + ResPacketSize);
- traits.acc(C0, alphav, R0);
- pstoreu(r0, R0);
- R0 = ploadu<ResPacket>(r1 + ResPacketSize);
- traits.acc(C1, alphav, R1);
- traits.acc(C4, alphav, R4);
- traits.acc(C5, alphav, R0);
- pstoreu(r1, R1);
- pstoreu(r0 + ResPacketSize, R4);
- pstoreu(r1 + ResPacketSize, R0);
- }
-
- }
-
- if(rows-peeled_mc>=LhsProgress)
- {
- Index i = peeled_mc;
- const LhsScalar* blA = &blockA[i*strideA+offsetA*LhsProgress];
- prefetch(&blA[0]);
-
- // gets res block as register
- AccPacket C0, C1, C2, C3;
- traits.initAcc(C0);
- traits.initAcc(C1);
- if(nr==4) traits.initAcc(C2);
- if(nr==4) traits.initAcc(C3);
-
- // performs "inner" product
- const RhsScalar* blB = unpackedB;
- for(Index k=0; k<peeled_kc; k+=4)
- {
- if(nr==2)
- {
- LhsPacket A0;
- RhsPacket B_0, B1;
-
- traits.loadLhs(&blA[0*LhsProgress], A0);
- traits.loadRhs(&blB[0*RhsProgress], B_0);
- traits.loadRhs(&blB[1*RhsProgress], B1);
- traits.madd(A0,B_0,C0,B_0);
- traits.loadRhs(&blB[2*RhsProgress], B_0);
- traits.madd(A0,B1,C1,B1);
- traits.loadLhs(&blA[1*LhsProgress], A0);
- traits.loadRhs(&blB[3*RhsProgress], B1);
- traits.madd(A0,B_0,C0,B_0);
- traits.loadRhs(&blB[4*RhsProgress], B_0);
- traits.madd(A0,B1,C1,B1);
- traits.loadLhs(&blA[2*LhsProgress], A0);
- traits.loadRhs(&blB[5*RhsProgress], B1);
- traits.madd(A0,B_0,C0,B_0);
- traits.loadRhs(&blB[6*RhsProgress], B_0);
- traits.madd(A0,B1,C1,B1);
- traits.loadLhs(&blA[3*LhsProgress], A0);
- traits.loadRhs(&blB[7*RhsProgress], B1);
- traits.madd(A0,B_0,C0,B_0);
- traits.madd(A0,B1,C1,B1);
- }
- else
- {
- LhsPacket A0;
- RhsPacket B_0, B1, B2, B3;
-
- traits.loadLhs(&blA[0*LhsProgress], A0);
- traits.loadRhs(&blB[0*RhsProgress], B_0);
- traits.loadRhs(&blB[1*RhsProgress], B1);
-
- traits.madd(A0,B_0,C0,B_0);
- traits.loadRhs(&blB[2*RhsProgress], B2);
- traits.loadRhs(&blB[3*RhsProgress], B3);
- traits.loadRhs(&blB[4*RhsProgress], B_0);
- traits.madd(A0,B1,C1,B1);
- traits.loadRhs(&blB[5*RhsProgress], B1);
- traits.madd(A0,B2,C2,B2);
- traits.loadRhs(&blB[6*RhsProgress], B2);
- traits.madd(A0,B3,C3,B3);
- traits.loadLhs(&blA[1*LhsProgress], A0);
- traits.loadRhs(&blB[7*RhsProgress], B3);
- traits.madd(A0,B_0,C0,B_0);
- traits.loadRhs(&blB[8*RhsProgress], B_0);
- traits.madd(A0,B1,C1,B1);
- traits.loadRhs(&blB[9*RhsProgress], B1);
- traits.madd(A0,B2,C2,B2);
- traits.loadRhs(&blB[10*RhsProgress], B2);
- traits.madd(A0,B3,C3,B3);
- traits.loadLhs(&blA[2*LhsProgress], A0);
- traits.loadRhs(&blB[11*RhsProgress], B3);
-
- traits.madd(A0,B_0,C0,B_0);
- traits.loadRhs(&blB[12*RhsProgress], B_0);
- traits.madd(A0,B1,C1,B1);
- traits.loadRhs(&blB[13*RhsProgress], B1);
- traits.madd(A0,B2,C2,B2);
- traits.loadRhs(&blB[14*RhsProgress], B2);
- traits.madd(A0,B3,C3,B3);
-
- traits.loadLhs(&blA[3*LhsProgress], A0);
- traits.loadRhs(&blB[15*RhsProgress], B3);
- traits.madd(A0,B_0,C0,B_0);
- traits.madd(A0,B1,C1,B1);
- traits.madd(A0,B2,C2,B2);
- traits.madd(A0,B3,C3,B3);
- }
-
- blB += nr*4*RhsProgress;
- blA += 4*LhsProgress;
- }
- // process remaining peeled loop
- for(Index k=peeled_kc; k<depth; k++)
- {
- if(nr==2)
- {
- LhsPacket A0;
- RhsPacket B_0, B1;
-
- traits.loadLhs(&blA[0*LhsProgress], A0);
- traits.loadRhs(&blB[0*RhsProgress], B_0);
- traits.loadRhs(&blB[1*RhsProgress], B1);
- traits.madd(A0,B_0,C0,B_0);
- traits.madd(A0,B1,C1,B1);
- }
- else
- {
- LhsPacket A0;
- RhsPacket B_0, B1, B2, B3;
-
- traits.loadLhs(&blA[0*LhsProgress], A0);
- traits.loadRhs(&blB[0*RhsProgress], B_0);
- traits.loadRhs(&blB[1*RhsProgress], B1);
- traits.loadRhs(&blB[2*RhsProgress], B2);
- traits.loadRhs(&blB[3*RhsProgress], B3);
-
- traits.madd(A0,B_0,C0,B_0);
- traits.madd(A0,B1,C1,B1);
- traits.madd(A0,B2,C2,B2);
- traits.madd(A0,B3,C3,B3);
- }
-
- blB += nr*RhsProgress;
- blA += LhsProgress;
- }
-
- ResPacket R0, R1, R2, R3;
- ResPacket alphav = pset1<ResPacket>(alpha);
-
- ResScalar* r0 = &res[(j2+0)*resStride + i];
- ResScalar* r1 = r0 + resStride;
- ResScalar* r2 = r1 + resStride;
- ResScalar* r3 = r2 + resStride;
-
- R0 = ploadu<ResPacket>(r0);
- R1 = ploadu<ResPacket>(r1);
- if(nr==4) R2 = ploadu<ResPacket>(r2);
- if(nr==4) R3 = ploadu<ResPacket>(r3);
-
- traits.acc(C0, alphav, R0);
- traits.acc(C1, alphav, R1);
- if(nr==4) traits.acc(C2, alphav, R2);
- if(nr==4) traits.acc(C3, alphav, R3);
-
- pstoreu(r0, R0);
- pstoreu(r1, R1);
- if(nr==4) pstoreu(r2, R2);
- if(nr==4) pstoreu(r3, R3);
- }
- for(Index i=peeled_mc2; i<rows; i++)
- {
- const LhsScalar* blA = &blockA[i*strideA+offsetA];
- prefetch(&blA[0]);
-
- // gets a 1 x nr res block as registers
- ResScalar C0(0), C1(0), C2(0), C3(0);
- // TODO directly use blockB ???
- const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
- for(Index k=0; k<depth; k++)
- {
- if(nr==2)
- {
- LhsScalar A0;
- RhsScalar B_0, B1;
-
- A0 = blA[k];
- B_0 = blB[0];
- B1 = blB[1];
- MADD(cj,A0,B_0,C0,B_0);
- MADD(cj,A0,B1,C1,B1);
- }
- else
- {
- LhsScalar A0;
- RhsScalar B_0, B1, B2, B3;
-
- A0 = blA[k];
- B_0 = blB[0];
- B1 = blB[1];
- B2 = blB[2];
- B3 = blB[3];
-
- MADD(cj,A0,B_0,C0,B_0);
- MADD(cj,A0,B1,C1,B1);
- MADD(cj,A0,B2,C2,B2);
- MADD(cj,A0,B3,C3,B3);
- }
-
- blB += nr;
- }
- res[(j2+0)*resStride + i] += alpha*C0;
- res[(j2+1)*resStride + i] += alpha*C1;
- if(nr==4) res[(j2+2)*resStride + i] += alpha*C2;
- if(nr==4) res[(j2+3)*resStride + i] += alpha*C3;
- }
- }
- // process remaining rhs/res columns one at a time
- // => do the same but with nr==1
- for(Index j2=packet_cols; j2<cols; j2++)
- {
- // unpack B
- traits.unpackRhs(depth, &blockB[j2*strideB+offsetB], unpackedB);
-
- for(Index i=0; i<peeled_mc; i+=mr)
- {
- const LhsScalar* blA = &blockA[i*strideA+offsetA*mr];
- prefetch(&blA[0]);
-
- // TODO move the res loads to the stores
-
- // get res block as registers
- AccPacket C0, C4;
- traits.initAcc(C0);
- traits.initAcc(C4);
-
- const RhsScalar* blB = unpackedB;
- for(Index k=0; k<depth; k++)
- {
- LhsPacket A0, A1;
- RhsPacket B_0;
- RhsPacket T0;
-
- traits.loadLhs(&blA[0*LhsProgress], A0);
- traits.loadLhs(&blA[1*LhsProgress], A1);
- traits.loadRhs(&blB[0*RhsProgress], B_0);
- traits.madd(A0,B_0,C0,T0);
- traits.madd(A1,B_0,C4,B_0);
-
- blB += RhsProgress;
- blA += 2*LhsProgress;
- }
- ResPacket R0, R4;
- ResPacket alphav = pset1<ResPacket>(alpha);
-
- ResScalar* r0 = &res[(j2+0)*resStride + i];
-
- R0 = ploadu<ResPacket>(r0);
- R4 = ploadu<ResPacket>(r0+ResPacketSize);
-
- traits.acc(C0, alphav, R0);
- traits.acc(C4, alphav, R4);
-
- pstoreu(r0, R0);
- pstoreu(r0+ResPacketSize, R4);
- }
- if(rows-peeled_mc>=LhsProgress)
- {
- Index i = peeled_mc;
- const LhsScalar* blA = &blockA[i*strideA+offsetA*LhsProgress];
- prefetch(&blA[0]);
-
- AccPacket C0;
- traits.initAcc(C0);
-
- const RhsScalar* blB = unpackedB;
- for(Index k=0; k<depth; k++)
- {
- LhsPacket A0;
- RhsPacket B_0;
- traits.loadLhs(blA, A0);
- traits.loadRhs(blB, B_0);
- traits.madd(A0, B_0, C0, B_0);
- blB += RhsProgress;
- blA += LhsProgress;
- }
-
- ResPacket alphav = pset1<ResPacket>(alpha);
- ResPacket R0 = ploadu<ResPacket>(&res[(j2+0)*resStride + i]);
- traits.acc(C0, alphav, R0);
- pstoreu(&res[(j2+0)*resStride + i], R0);
- }
- for(Index i=peeled_mc2; i<rows; i++)
- {
- const LhsScalar* blA = &blockA[i*strideA+offsetA];
- prefetch(&blA[0]);
-
- // gets a 1 x 1 res block as registers
- ResScalar C0(0);
- // FIXME directly use blockB ??
- const RhsScalar* blB = &blockB[j2*strideB+offsetB];
- for(Index k=0; k<depth; k++)
- {
- LhsScalar A0 = blA[k];
- RhsScalar B_0 = blB[k];
- MADD(cj, A0, B_0, C0, B_0);
- }
- res[(j2+0)*resStride + i] += alpha*C0;
- }
- }
- }
-
-
-#undef CJMADD
-
-// pack a block of the lhs
-// The traversal is as follow (mr==4):
-// 0 4 8 12 ...
-// 1 5 9 13 ...
-// 2 6 10 14 ...
-// 3 7 11 15 ...
-//
-// 16 20 24 28 ...
-// 17 21 25 29 ...
-// 18 22 26 30 ...
-// 19 23 27 31 ...
-//
-// 32 33 34 35 ...
-// 36 36 38 39 ...
-template<typename Scalar, typename Index, int Pack1, int Pack2, int StorageOrder, bool Conjugate, bool PanelMode>
-struct gemm_pack_lhs
-{
- EIGEN_DONT_INLINE void operator()(Scalar* blockA, const Scalar* EIGEN_RESTRICT _lhs, Index lhsStride, Index depth, Index rows, Index stride=0, Index offset=0);
-};
-
-template<typename Scalar, typename Index, int Pack1, int Pack2, int StorageOrder, bool Conjugate, bool PanelMode>
-EIGEN_DONT_INLINE void gemm_pack_lhs<Scalar, Index, Pack1, Pack2, StorageOrder, Conjugate, PanelMode>
- ::operator()(Scalar* blockA, const Scalar* EIGEN_RESTRICT _lhs, Index lhsStride, Index depth, Index rows, Index stride, Index offset)
-{
- typedef typename packet_traits<Scalar>::type Packet;
- enum { PacketSize = packet_traits<Scalar>::size };
-
- EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS");
- EIGEN_UNUSED_VARIABLE(stride)
- EIGEN_UNUSED_VARIABLE(offset)
- eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
- eigen_assert( (StorageOrder==RowMajor) || ((Pack1%PacketSize)==0 && Pack1<=4*PacketSize) );
- conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
- const_blas_data_mapper<Scalar, Index, StorageOrder> lhs(_lhs,lhsStride);
- Index count = 0;
- Index peeled_mc = (rows/Pack1)*Pack1;
- for(Index i=0; i<peeled_mc; i+=Pack1)
- {
- if(PanelMode) count += Pack1 * offset;
-
- if(StorageOrder==ColMajor)
- {
- for(Index k=0; k<depth; k++)
- {
- Packet A, B, C, D;
- if(Pack1>=1*PacketSize) A = ploadu<Packet>(&lhs(i+0*PacketSize, k));
- if(Pack1>=2*PacketSize) B = ploadu<Packet>(&lhs(i+1*PacketSize, k));
- if(Pack1>=3*PacketSize) C = ploadu<Packet>(&lhs(i+2*PacketSize, k));
- if(Pack1>=4*PacketSize) D = ploadu<Packet>(&lhs(i+3*PacketSize, k));
- if(Pack1>=1*PacketSize) { pstore(blockA+count, cj.pconj(A)); count+=PacketSize; }
- if(Pack1>=2*PacketSize) { pstore(blockA+count, cj.pconj(B)); count+=PacketSize; }
- if(Pack1>=3*PacketSize) { pstore(blockA+count, cj.pconj(C)); count+=PacketSize; }
- if(Pack1>=4*PacketSize) { pstore(blockA+count, cj.pconj(D)); count+=PacketSize; }
- }
- }
- else
- {
- for(Index k=0; k<depth; k++)
- {
- // TODO add a vectorized transpose here
- Index w=0;
- for(; w<Pack1-3; w+=4)
- {
- Scalar a(cj(lhs(i+w+0, k))),
- b(cj(lhs(i+w+1, k))),
- c(cj(lhs(i+w+2, k))),
- d(cj(lhs(i+w+3, k)));
- blockA[count++] = a;
- blockA[count++] = b;
- blockA[count++] = c;
- blockA[count++] = d;
- }
- if(Pack1%4)
- for(;w<Pack1;++w)
- blockA[count++] = cj(lhs(i+w, k));
- }
- }
- if(PanelMode) count += Pack1 * (stride-offset-depth);
- }
- if(rows-peeled_mc>=Pack2)
- {
- if(PanelMode) count += Pack2*offset;
- for(Index k=0; k<depth; k++)
- for(Index w=0; w<Pack2; w++)
- blockA[count++] = cj(lhs(peeled_mc+w, k));
- if(PanelMode) count += Pack2 * (stride-offset-depth);
- peeled_mc += Pack2;
- }
- for(Index i=peeled_mc; i<rows; i++)
- {
- if(PanelMode) count += offset;
- for(Index k=0; k<depth; k++)
- blockA[count++] = cj(lhs(i, k));
- if(PanelMode) count += (stride-offset-depth);
- }
-}
-
-// copy a complete panel of the rhs
-// this version is optimized for column major matrices
-// The traversal order is as follow: (nr==4):
-// 0 1 2 3 12 13 14 15 24 27
-// 4 5 6 7 16 17 18 19 25 28
-// 8 9 10 11 20 21 22 23 26 29
-// . . . . . . . . . .
-template<typename Scalar, typename Index, int nr, bool Conjugate, bool PanelMode>
-struct gemm_pack_rhs<Scalar, Index, nr, ColMajor, Conjugate, PanelMode>
-{
- typedef typename packet_traits<Scalar>::type Packet;
- enum { PacketSize = packet_traits<Scalar>::size };
- EIGEN_DONT_INLINE void operator()(Scalar* blockB, const Scalar* rhs, Index rhsStride, Index depth, Index cols, Index stride=0, Index offset=0);
-};
-
-template<typename Scalar, typename Index, int nr, bool Conjugate, bool PanelMode>
-EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, nr, ColMajor, Conjugate, PanelMode>
- ::operator()(Scalar* blockB, const Scalar* rhs, Index rhsStride, Index depth, Index cols, Index stride, Index offset)
-{
- EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS COLMAJOR");
- EIGEN_UNUSED_VARIABLE(stride)
- EIGEN_UNUSED_VARIABLE(offset)
- eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
- conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
- Index packet_cols = (cols/nr) * nr;
- Index count = 0;
- for(Index j2=0; j2<packet_cols; j2+=nr)
- {
- // skip what we have before
- if(PanelMode) count += nr * offset;
- const Scalar* b0 = &rhs[(j2+0)*rhsStride];
- const Scalar* b1 = &rhs[(j2+1)*rhsStride];
- const Scalar* b2 = &rhs[(j2+2)*rhsStride];
- const Scalar* b3 = &rhs[(j2+3)*rhsStride];
- for(Index k=0; k<depth; k++)
- {
- blockB[count+0] = cj(b0[k]);
- blockB[count+1] = cj(b1[k]);
- if(nr==4) blockB[count+2] = cj(b2[k]);
- if(nr==4) blockB[count+3] = cj(b3[k]);
- count += nr;
- }
- // skip what we have after
- if(PanelMode) count += nr * (stride-offset-depth);
- }
-
- // copy the remaining columns one at a time (nr==1)
- for(Index j2=packet_cols; j2<cols; ++j2)
- {
- if(PanelMode) count += offset;
- const Scalar* b0 = &rhs[(j2+0)*rhsStride];
- for(Index k=0; k<depth; k++)
- {
- blockB[count] = cj(b0[k]);
- count += 1;
- }
- if(PanelMode) count += (stride-offset-depth);
- }
-}
-
-// this version is optimized for row major matrices
-template<typename Scalar, typename Index, int nr, bool Conjugate, bool PanelMode>
-struct gemm_pack_rhs<Scalar, Index, nr, RowMajor, Conjugate, PanelMode>
-{
- enum { PacketSize = packet_traits<Scalar>::size };
- EIGEN_DONT_INLINE void operator()(Scalar* blockB, const Scalar* rhs, Index rhsStride, Index depth, Index cols, Index stride=0, Index offset=0);
-};
-
-template<typename Scalar, typename Index, int nr, bool Conjugate, bool PanelMode>
-EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, nr, RowMajor, Conjugate, PanelMode>
- ::operator()(Scalar* blockB, const Scalar* rhs, Index rhsStride, Index depth, Index cols, Index stride, Index offset)
-{
- EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS ROWMAJOR");
- EIGEN_UNUSED_VARIABLE(stride)
- EIGEN_UNUSED_VARIABLE(offset)
- eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
- conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
- Index packet_cols = (cols/nr) * nr;
- Index count = 0;
- for(Index j2=0; j2<packet_cols; j2+=nr)
- {
- // skip what we have before
- if(PanelMode) count += nr * offset;
- for(Index k=0; k<depth; k++)
- {
- const Scalar* b0 = &rhs[k*rhsStride + j2];
- blockB[count+0] = cj(b0[0]);
- blockB[count+1] = cj(b0[1]);
- if(nr==4) blockB[count+2] = cj(b0[2]);
- if(nr==4) blockB[count+3] = cj(b0[3]);
- count += nr;
- }
- // skip what we have after
- if(PanelMode) count += nr * (stride-offset-depth);
- }
- // copy the remaining columns one at a time (nr==1)
- for(Index j2=packet_cols; j2<cols; ++j2)
- {
- if(PanelMode) count += offset;
- const Scalar* b0 = &rhs[j2];
- for(Index k=0; k<depth; k++)
- {
- blockB[count] = cj(b0[k*rhsStride]);
- count += 1;
- }
- if(PanelMode) count += stride-offset-depth;
- }
-}
-
-} // end namespace internal
-
-/** \returns the currently set level 1 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
- * \sa setCpuCacheSize */
-inline std::ptrdiff_t l1CacheSize()
-{
- std::ptrdiff_t l1, l2;
- internal::manage_caching_sizes(GetAction, &l1, &l2);
- return l1;
-}
-
-/** \returns the currently set level 2 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
- * \sa setCpuCacheSize */
-inline std::ptrdiff_t l2CacheSize()
-{
- std::ptrdiff_t l1, l2;
- internal::manage_caching_sizes(GetAction, &l1, &l2);
- return l2;
-}
-
-/** Set the cpu L1 and L2 cache sizes (in bytes).
- * These values are use to adjust the size of the blocks
- * for the algorithms working per blocks.
- *
- * \sa computeProductBlockingSizes */
-inline void setCpuCacheSizes(std::ptrdiff_t l1, std::ptrdiff_t l2)
-{
- internal::manage_caching_sizes(SetAction, &l1, &l2);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_GENERAL_BLOCK_PANEL_H
diff --git a/src/Eigen/src/Core/products/GeneralMatrixMatrix.h b/src/Eigen/src/Core/products/GeneralMatrixMatrix.h
deleted file mode 100644
index 3f5ffcf..0000000
--- a/src/Eigen/src/Core/products/GeneralMatrixMatrix.h
+++ /dev/null
@@ -1,427 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_GENERAL_MATRIX_MATRIX_H
-#define EIGEN_GENERAL_MATRIX_MATRIX_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename _LhsScalar, typename _RhsScalar> class level3_blocking;
-
-/* Specialization for a row-major destination matrix => simple transposition of the product */
-template<
- typename Index,
- typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
- typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
-struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor>
-{
- typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
- static EIGEN_STRONG_INLINE void run(
- Index rows, Index cols, Index depth,
- const LhsScalar* lhs, Index lhsStride,
- const RhsScalar* rhs, Index rhsStride,
- ResScalar* res, Index resStride,
- ResScalar alpha,
- level3_blocking<RhsScalar,LhsScalar>& blocking,
- GemmParallelInfo<Index>* info = 0)
- {
- // transpose the product such that the result is column major
- general_matrix_matrix_product<Index,
- RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
- LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
- ColMajor>
- ::run(cols,rows,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha,blocking,info);
- }
-};
-
-/* Specialization for a col-major destination matrix
- * => Blocking algorithm following Goto's paper */
-template<
- typename Index,
- typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
- typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
-struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor>
-{
-
-typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
-static void run(Index rows, Index cols, Index depth,
- const LhsScalar* _lhs, Index lhsStride,
- const RhsScalar* _rhs, Index rhsStride,
- ResScalar* res, Index resStride,
- ResScalar alpha,
- level3_blocking<LhsScalar,RhsScalar>& blocking,
- GemmParallelInfo<Index>* info = 0)
-{
- const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
- const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);
-
- typedef gebp_traits<LhsScalar,RhsScalar> Traits;
-
- Index kc = blocking.kc(); // cache block size along the K direction
- Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction
- //Index nc = blocking.nc(); // cache block size along the N direction
-
- gemm_pack_lhs<LhsScalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
- gemm_pack_rhs<RhsScalar, Index, Traits::nr, RhsStorageOrder> pack_rhs;
- gebp_kernel<LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;
-
-#ifdef EIGEN_HAS_OPENMP
- if(info)
- {
- // this is the parallel version!
- Index tid = omp_get_thread_num();
- Index threads = omp_get_num_threads();
-
- std::size_t sizeA = kc*mc;
- std::size_t sizeW = kc*Traits::WorkSpaceFactor;
- ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, 0);
- ei_declare_aligned_stack_constructed_variable(RhsScalar, w, sizeW, 0);
-
- RhsScalar* blockB = blocking.blockB();
- eigen_internal_assert(blockB!=0);
-
- // For each horizontal panel of the rhs, and corresponding vertical panel of the lhs...
- for(Index k=0; k<depth; k+=kc)
- {
- const Index actual_kc = (std::min)(k+kc,depth)-k; // => rows of B', and cols of the A'
-
- // In order to reduce the chance that a thread has to wait for the other,
- // let's start by packing A'.
- pack_lhs(blockA, &lhs(0,k), lhsStride, actual_kc, mc);
-
- // Pack B_k to B' in a parallel fashion:
- // each thread packs the sub block B_k,j to B'_j where j is the thread id.
-
- // However, before copying to B'_j, we have to make sure that no other thread is still using it,
- // i.e., we test that info[tid].users equals 0.
- // Then, we set info[tid].users to the number of threads to mark that all other threads are going to use it.
- while(info[tid].users!=0) {}
- info[tid].users += threads;
-
- pack_rhs(blockB+info[tid].rhs_start*actual_kc, &rhs(k,info[tid].rhs_start), rhsStride, actual_kc, info[tid].rhs_length);
-
- // Notify the other threads that the part B'_j is ready to go.
- info[tid].sync = k;
-
- // Computes C_i += A' * B' per B'_j
- for(Index shift=0; shift<threads; ++shift)
- {
- Index j = (tid+shift)%threads;
-
- // At this point we have to make sure that B'_j has been updated by the thread j,
- // we use testAndSetOrdered to mimic a volatile access.
- // However, no need to wait for the B' part which has been updated by the current thread!
- if(shift>0)
- while(info[j].sync!=k) {}
-
- gebp(res+info[j].rhs_start*resStride, resStride, blockA, blockB+info[j].rhs_start*actual_kc, mc, actual_kc, info[j].rhs_length, alpha, -1,-1,0,0, w);
- }
-
- // Then keep going as usual with the remaining A'
- for(Index i=mc; i<rows; i+=mc)
- {
- const Index actual_mc = (std::min)(i+mc,rows)-i;
-
- // pack A_i,k to A'
- pack_lhs(blockA, &lhs(i,k), lhsStride, actual_kc, actual_mc);
-
- // C_i += A' * B'
- gebp(res+i, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1,-1,0,0, w);
- }
-
- // Release all the sub blocks B'_j of B' for the current thread,
- // i.e., we simply decrement the number of users by 1
- for(Index j=0; j<threads; ++j)
- #pragma omp atomic
- --(info[j].users);
- }
- }
- else
-#endif // EIGEN_HAS_OPENMP
- {
- EIGEN_UNUSED_VARIABLE(info);
-
- // this is the sequential version!
- std::size_t sizeA = kc*mc;
- std::size_t sizeB = kc*cols;
- std::size_t sizeW = kc*Traits::WorkSpaceFactor;
-
- ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA());
- ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB());
- ei_declare_aligned_stack_constructed_variable(RhsScalar, blockW, sizeW, blocking.blockW());
-
- // For each horizontal panel of the rhs, and corresponding panel of the lhs...
- // (==GEMM_VAR1)
- for(Index k2=0; k2<depth; k2+=kc)
- {
- const Index actual_kc = (std::min)(k2+kc,depth)-k2;
-
- // OK, here we have selected one horizontal panel of rhs and one vertical panel of lhs.
- // => Pack rhs's panel into a sequential chunk of memory (L2 caching)
- // Note that this panel will be read as many times as the number of blocks in the lhs's
- // vertical panel which is, in practice, a very low number.
- pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, cols);
-
- // For each mc x kc block of the lhs's vertical panel...
- // (==GEPP_VAR1)
- for(Index i2=0; i2<rows; i2+=mc)
- {
- const Index actual_mc = (std::min)(i2+mc,rows)-i2;
-
- // We pack the lhs's block into a sequential chunk of memory (L1 caching)
- // Note that this block will be read a very high number of times, which is equal to the number of
- // micro vertical panel of the large rhs's panel (e.g., cols/4 times).
- pack_lhs(blockA, &lhs(i2,k2), lhsStride, actual_kc, actual_mc);
-
- // Everything is packed, we can now call the block * panel kernel:
- gebp(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1, -1, 0, 0, blockW);
- }
- }
- }
-}
-
-};
-
-/*********************************************************************************
-* Specialization of GeneralProduct<> for "large" GEMM, i.e.,
-* implementation of the high level wrapper to general_matrix_matrix_product
-**********************************************************************************/
-
-template<typename Lhs, typename Rhs>
-struct traits<GeneralProduct<Lhs,Rhs,GemmProduct> >
- : traits<ProductBase<GeneralProduct<Lhs,Rhs,GemmProduct>, Lhs, Rhs> >
-{};
-
-template<typename Scalar, typename Index, typename Gemm, typename Lhs, typename Rhs, typename Dest, typename BlockingType>
-struct gemm_functor
-{
- gemm_functor(const Lhs& lhs, const Rhs& rhs, Dest& dest, const Scalar& actualAlpha,
- BlockingType& blocking)
- : m_lhs(lhs), m_rhs(rhs), m_dest(dest), m_actualAlpha(actualAlpha), m_blocking(blocking)
- {}
-
- void initParallelSession() const
- {
- m_blocking.allocateB();
- }
-
- void operator() (Index row, Index rows, Index col=0, Index cols=-1, GemmParallelInfo<Index>* info=0) const
- {
- if(cols==-1)
- cols = m_rhs.cols();
-
- Gemm::run(rows, cols, m_lhs.cols(),
- /*(const Scalar*)*/&m_lhs.coeffRef(row,0), m_lhs.outerStride(),
- /*(const Scalar*)*/&m_rhs.coeffRef(0,col), m_rhs.outerStride(),
- (Scalar*)&(m_dest.coeffRef(row,col)), m_dest.outerStride(),
- m_actualAlpha, m_blocking, info);
- }
-
- protected:
- const Lhs& m_lhs;
- const Rhs& m_rhs;
- Dest& m_dest;
- Scalar m_actualAlpha;
- BlockingType& m_blocking;
-};
-
-template<int StorageOrder, typename LhsScalar, typename RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor=1,
-bool FiniteAtCompileTime = MaxRows!=Dynamic && MaxCols!=Dynamic && MaxDepth != Dynamic> class gemm_blocking_space;
-
-template<typename _LhsScalar, typename _RhsScalar>
-class level3_blocking
-{
- typedef _LhsScalar LhsScalar;
- typedef _RhsScalar RhsScalar;
-
- protected:
- LhsScalar* m_blockA;
- RhsScalar* m_blockB;
- RhsScalar* m_blockW;
-
- DenseIndex m_mc;
- DenseIndex m_nc;
- DenseIndex m_kc;
-
- public:
-
- level3_blocking()
- : m_blockA(0), m_blockB(0), m_blockW(0), m_mc(0), m_nc(0), m_kc(0)
- {}
-
- inline DenseIndex mc() const { return m_mc; }
- inline DenseIndex nc() const { return m_nc; }
- inline DenseIndex kc() const { return m_kc; }
-
- inline LhsScalar* blockA() { return m_blockA; }
- inline RhsScalar* blockB() { return m_blockB; }
- inline RhsScalar* blockW() { return m_blockW; }
-};
-
-template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
-class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, true>
- : public level3_blocking<
- typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
- typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
-{
- enum {
- Transpose = StorageOrder==RowMajor,
- ActualRows = Transpose ? MaxCols : MaxRows,
- ActualCols = Transpose ? MaxRows : MaxCols
- };
- typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
- typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
- typedef gebp_traits<LhsScalar,RhsScalar> Traits;
- enum {
- SizeA = ActualRows * MaxDepth,
- SizeB = ActualCols * MaxDepth,
- SizeW = MaxDepth * Traits::WorkSpaceFactor
- };
-
- EIGEN_ALIGN16 LhsScalar m_staticA[SizeA];
- EIGEN_ALIGN16 RhsScalar m_staticB[SizeB];
- EIGEN_ALIGN16 RhsScalar m_staticW[SizeW];
-
- public:
-
- gemm_blocking_space(DenseIndex /*rows*/, DenseIndex /*cols*/, DenseIndex /*depth*/)
- {
- this->m_mc = ActualRows;
- this->m_nc = ActualCols;
- this->m_kc = MaxDepth;
- this->m_blockA = m_staticA;
- this->m_blockB = m_staticB;
- this->m_blockW = m_staticW;
- }
-
- inline void allocateA() {}
- inline void allocateB() {}
- inline void allocateW() {}
- inline void allocateAll() {}
-};
-
-template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
-class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, false>
- : public level3_blocking<
- typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
- typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
-{
- enum {
- Transpose = StorageOrder==RowMajor
- };
- typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
- typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
- typedef gebp_traits<LhsScalar,RhsScalar> Traits;
-
- DenseIndex m_sizeA;
- DenseIndex m_sizeB;
- DenseIndex m_sizeW;
-
- public:
-
- gemm_blocking_space(DenseIndex rows, DenseIndex cols, DenseIndex depth)
- {
- this->m_mc = Transpose ? cols : rows;
- this->m_nc = Transpose ? rows : cols;
- this->m_kc = depth;
-
- computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, this->m_nc);
- m_sizeA = this->m_mc * this->m_kc;
- m_sizeB = this->m_kc * this->m_nc;
- m_sizeW = this->m_kc*Traits::WorkSpaceFactor;
- }
-
- void allocateA()
- {
- if(this->m_blockA==0)
- this->m_blockA = aligned_new<LhsScalar>(m_sizeA);
- }
-
- void allocateB()
- {
- if(this->m_blockB==0)
- this->m_blockB = aligned_new<RhsScalar>(m_sizeB);
- }
-
- void allocateW()
- {
- if(this->m_blockW==0)
- this->m_blockW = aligned_new<RhsScalar>(m_sizeW);
- }
-
- void allocateAll()
- {
- allocateA();
- allocateB();
- allocateW();
- }
-
- ~gemm_blocking_space()
- {
- aligned_delete(this->m_blockA, m_sizeA);
- aligned_delete(this->m_blockB, m_sizeB);
- aligned_delete(this->m_blockW, m_sizeW);
- }
-};
-
-} // end namespace internal
-
-template<typename Lhs, typename Rhs>
-class GeneralProduct<Lhs, Rhs, GemmProduct>
- : public ProductBase<GeneralProduct<Lhs,Rhs,GemmProduct>, Lhs, Rhs>
-{
- enum {
- MaxDepthAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(Lhs::MaxColsAtCompileTime,Rhs::MaxRowsAtCompileTime)
- };
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
-
- typedef typename Lhs::Scalar LhsScalar;
- typedef typename Rhs::Scalar RhsScalar;
- typedef Scalar ResScalar;
-
- GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
- {
- typedef internal::scalar_product_op<LhsScalar,RhsScalar> BinOp;
- EIGEN_CHECK_BINARY_COMPATIBILIY(BinOp,LhsScalar,RhsScalar);
- }
-
- template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
- {
- eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
-
- typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
- typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
-
- Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
- * RhsBlasTraits::extractScalarFactor(m_rhs);
-
- typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,LhsScalar,RhsScalar,
- Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType;
-
- typedef internal::gemm_functor<
- Scalar, Index,
- internal::general_matrix_matrix_product<
- Index,
- LhsScalar, (_ActualLhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(LhsBlasTraits::NeedToConjugate),
- RhsScalar, (_ActualRhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(RhsBlasTraits::NeedToConjugate),
- (Dest::Flags&RowMajorBit) ? RowMajor : ColMajor>,
- _ActualLhsType, _ActualRhsType, Dest, BlockingType> GemmFunctor;
-
- BlockingType blocking(dst.rows(), dst.cols(), lhs.cols());
-
- internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)>(GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), this->rows(), this->cols(), Dest::Flags&RowMajorBit);
- }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_GENERAL_MATRIX_MATRIX_H
diff --git a/src/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h b/src/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h
deleted file mode 100644
index 5c37639..0000000
--- a/src/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h
+++ /dev/null
@@ -1,278 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
-#define EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
-
-namespace Eigen {
-
-template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjLhs, bool ConjRhs>
-struct selfadjoint_rank1_update;
-
-namespace internal {
-
-/**********************************************************************
-* This file implements a general A * B product while
-* evaluating only one triangular part of the product.
-* This is more general version of self adjoint product (C += A A^T)
-* as the level 3 SYRK Blas routine.
-**********************************************************************/
-
-// forward declarations (defined at the end of this file)
-template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
-struct tribb_kernel;
-
-/* Optimized matrix-matrix product evaluating only one triangular half */
-template <typename Index,
- typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
- typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
- int ResStorageOrder, int UpLo, int Version = Specialized>
-struct general_matrix_matrix_triangular_product;
-
-// as usual if the result is row major => we transpose the product
-template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
- typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int UpLo, int Version>
-struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor,UpLo,Version>
-{
- typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
- static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* lhs, Index lhsStride,
- const RhsScalar* rhs, Index rhsStride, ResScalar* res, Index resStride, const ResScalar& alpha)
- {
- general_matrix_matrix_triangular_product<Index,
- RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
- LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
- ColMajor, UpLo==Lower?Upper:Lower>
- ::run(size,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha);
- }
-};
-
-template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
- typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int UpLo, int Version>
-struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor,UpLo,Version>
-{
- typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
- static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* _lhs, Index lhsStride,
- const RhsScalar* _rhs, Index rhsStride, ResScalar* res, Index resStride, const ResScalar& alpha)
- {
- const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
- const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);
-
- typedef gebp_traits<LhsScalar,RhsScalar> Traits;
-
- Index kc = depth; // cache block size along the K direction
- Index mc = size; // cache block size along the M direction
- Index nc = size; // cache block size along the N direction
- computeProductBlockingSizes<LhsScalar,RhsScalar>(kc, mc, nc);
- // !!! mc must be a multiple of nr:
- if(mc > Traits::nr)
- mc = (mc/Traits::nr)*Traits::nr;
-
- std::size_t sizeW = kc*Traits::WorkSpaceFactor;
- std::size_t sizeB = sizeW + kc*size;
- ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, kc*mc, 0);
- ei_declare_aligned_stack_constructed_variable(RhsScalar, allocatedBlockB, sizeB, 0);
- RhsScalar* blockB = allocatedBlockB + sizeW;
-
- gemm_pack_lhs<LhsScalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
- gemm_pack_rhs<RhsScalar, Index, Traits::nr, RhsStorageOrder> pack_rhs;
- gebp_kernel <LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;
- tribb_kernel<LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs, UpLo> sybb;
-
- for(Index k2=0; k2<depth; k2+=kc)
- {
- const Index actual_kc = (std::min)(k2+kc,depth)-k2;
-
- // note that the actual rhs is the transpose/adjoint of mat
- pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, size);
-
- for(Index i2=0; i2<size; i2+=mc)
- {
- const Index actual_mc = (std::min)(i2+mc,size)-i2;
-
- pack_lhs(blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc);
-
- // the selected actual_mc * size panel of res is split into three different part:
- // 1 - before the diagonal => processed with gebp or skipped
- // 2 - the actual_mc x actual_mc symmetric block => processed with a special kernel
- // 3 - after the diagonal => processed with gebp or skipped
- if (UpLo==Lower)
- gebp(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, (std::min)(size,i2), alpha,
- -1, -1, 0, 0, allocatedBlockB);
-
- sybb(res+resStride*i2 + i2, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha, allocatedBlockB);
-
- if (UpLo==Upper)
- {
- Index j2 = i2+actual_mc;
- gebp(res+resStride*j2+i2, resStride, blockA, blockB+actual_kc*j2, actual_mc, actual_kc, (std::max)(Index(0), size-j2), alpha,
- -1, -1, 0, 0, allocatedBlockB);
- }
- }
- }
- }
-};
-
-// Optimized packed Block * packed Block product kernel evaluating only one given triangular part
-// This kernel is built on top of the gebp kernel:
-// - the current destination block is processed per panel of actual_mc x BlockSize
-// where BlockSize is set to the minimal value allowing gebp to be as fast as possible
-// - then, as usual, each panel is split into three parts along the diagonal,
-// the sub blocks above and below the diagonal are processed as usual,
-// while the triangular block overlapping the diagonal is evaluated into a
-// small temporary buffer which is then accumulated into the result using a
-// triangular traversal.
-template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
-struct tribb_kernel
-{
- typedef gebp_traits<LhsScalar,RhsScalar,ConjLhs,ConjRhs> Traits;
- typedef typename Traits::ResScalar ResScalar;
-
- enum {
- BlockSize = EIGEN_PLAIN_ENUM_MAX(mr,nr)
- };
- void operator()(ResScalar* res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index size, Index depth, const ResScalar& alpha, RhsScalar* workspace)
- {
- gebp_kernel<LhsScalar, RhsScalar, Index, mr, nr, ConjLhs, ConjRhs> gebp_kernel;
- Matrix<ResScalar,BlockSize,BlockSize,ColMajor> buffer;
-
- // let's process the block per panel of actual_mc x BlockSize,
- // again, each is split into three parts, etc.
- for (Index j=0; j<size; j+=BlockSize)
- {
- Index actualBlockSize = std::min<Index>(BlockSize,size - j);
- const RhsScalar* actual_b = blockB+j*depth;
-
- if(UpLo==Upper)
- gebp_kernel(res+j*resStride, resStride, blockA, actual_b, j, depth, actualBlockSize, alpha,
- -1, -1, 0, 0, workspace);
-
- // selfadjoint micro block
- {
- Index i = j;
- buffer.setZero();
- // 1 - apply the kernel on the temporary buffer
- gebp_kernel(buffer.data(), BlockSize, blockA+depth*i, actual_b, actualBlockSize, depth, actualBlockSize, alpha,
- -1, -1, 0, 0, workspace);
- // 2 - triangular accumulation
- for(Index j1=0; j1<actualBlockSize; ++j1)
- {
- ResScalar* r = res + (j+j1)*resStride + i;
- for(Index i1=UpLo==Lower ? j1 : 0;
- UpLo==Lower ? i1<actualBlockSize : i1<=j1; ++i1)
- r[i1] += buffer(i1,j1);
- }
- }
-
- if(UpLo==Lower)
- {
- Index i = j+actualBlockSize;
- gebp_kernel(res+j*resStride+i, resStride, blockA+depth*i, actual_b, size-i, depth, actualBlockSize, alpha,
- -1, -1, 0, 0, workspace);
- }
- }
- }
-};
-
-} // end namespace internal
-
-// high level API
-
-template<typename MatrixType, typename ProductType, int UpLo, bool IsOuterProduct>
-struct general_product_to_triangular_selector;
-
-
-template<typename MatrixType, typename ProductType, int UpLo>
-struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,true>
-{
- static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha)
- {
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
-
- typedef typename internal::remove_all<typename ProductType::LhsNested>::type Lhs;
- typedef internal::blas_traits<Lhs> LhsBlasTraits;
- typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs;
- typedef typename internal::remove_all<ActualLhs>::type _ActualLhs;
- typename internal::add_const_on_value_type<ActualLhs>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
-
- typedef typename internal::remove_all<typename ProductType::RhsNested>::type Rhs;
- typedef internal::blas_traits<Rhs> RhsBlasTraits;
- typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs;
- typedef typename internal::remove_all<ActualRhs>::type _ActualRhs;
- typename internal::add_const_on_value_type<ActualRhs>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
-
- Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived());
-
- enum {
- StorageOrder = (internal::traits<MatrixType>::Flags&RowMajorBit) ? RowMajor : ColMajor,
- UseLhsDirectly = _ActualLhs::InnerStrideAtCompileTime==1,
- UseRhsDirectly = _ActualRhs::InnerStrideAtCompileTime==1
- };
-
- internal::gemv_static_vector_if<Scalar,Lhs::SizeAtCompileTime,Lhs::MaxSizeAtCompileTime,!UseLhsDirectly> static_lhs;
- ei_declare_aligned_stack_constructed_variable(Scalar, actualLhsPtr, actualLhs.size(),
- (UseLhsDirectly ? const_cast<Scalar*>(actualLhs.data()) : static_lhs.data()));
- if(!UseLhsDirectly) Map<typename _ActualLhs::PlainObject>(actualLhsPtr, actualLhs.size()) = actualLhs;
-
- internal::gemv_static_vector_if<Scalar,Rhs::SizeAtCompileTime,Rhs::MaxSizeAtCompileTime,!UseRhsDirectly> static_rhs;
- ei_declare_aligned_stack_constructed_variable(Scalar, actualRhsPtr, actualRhs.size(),
- (UseRhsDirectly ? const_cast<Scalar*>(actualRhs.data()) : static_rhs.data()));
- if(!UseRhsDirectly) Map<typename _ActualRhs::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
-
-
- selfadjoint_rank1_update<Scalar,Index,StorageOrder,UpLo,
- LhsBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex,
- RhsBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex>
- ::run(actualLhs.size(), mat.data(), mat.outerStride(), actualLhsPtr, actualRhsPtr, actualAlpha);
- }
-};
-
-template<typename MatrixType, typename ProductType, int UpLo>
-struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,false>
-{
- static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha)
- {
- typedef typename MatrixType::Index Index;
-
- typedef typename internal::remove_all<typename ProductType::LhsNested>::type Lhs;
- typedef internal::blas_traits<Lhs> LhsBlasTraits;
- typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs;
- typedef typename internal::remove_all<ActualLhs>::type _ActualLhs;
- typename internal::add_const_on_value_type<ActualLhs>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
-
- typedef typename internal::remove_all<typename ProductType::RhsNested>::type Rhs;
- typedef internal::blas_traits<Rhs> RhsBlasTraits;
- typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs;
- typedef typename internal::remove_all<ActualRhs>::type _ActualRhs;
- typename internal::add_const_on_value_type<ActualRhs>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
-
- typename ProductType::Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived());
-
- internal::general_matrix_matrix_triangular_product<Index,
- typename Lhs::Scalar, _ActualLhs::Flags&RowMajorBit ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
- typename Rhs::Scalar, _ActualRhs::Flags&RowMajorBit ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
- MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor, UpLo>
- ::run(mat.cols(), actualLhs.cols(),
- &actualLhs.coeffRef(0,0), actualLhs.outerStride(), &actualRhs.coeffRef(0,0), actualRhs.outerStride(),
- mat.data(), mat.outerStride(), actualAlpha);
- }
-};
-
-template<typename MatrixType, unsigned int UpLo>
-template<typename ProductDerived, typename _Lhs, typename _Rhs>
-TriangularView<MatrixType,UpLo>& TriangularView<MatrixType,UpLo>::assignProduct(const ProductBase<ProductDerived, _Lhs,_Rhs>& prod, const Scalar& alpha)
-{
- general_product_to_triangular_selector<MatrixType, ProductDerived, UpLo, (_Lhs::ColsAtCompileTime==1) || (_Rhs::RowsAtCompileTime==1)>::run(m_matrix.const_cast_derived(), prod.derived(), alpha);
-
- return *this;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
diff --git a/src/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_MKL.h b/src/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_MKL.h
deleted file mode 100644
index 3deed06..0000000
--- a/src/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_MKL.h
+++ /dev/null
@@ -1,146 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * Level 3 BLAS SYRK/HERK implementation.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_MKL_H
-#define EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_MKL_H
-
-namespace Eigen {
-
-namespace internal {
-
-template <typename Index, typename Scalar, int AStorageOrder, bool ConjugateA, int ResStorageOrder, int UpLo>
-struct general_matrix_matrix_rankupdate :
- general_matrix_matrix_triangular_product<
- Index,Scalar,AStorageOrder,ConjugateA,Scalar,AStorageOrder,ConjugateA,ResStorageOrder,UpLo,BuiltIn> {};
-
-
-// try to go to BLAS specialization
-#define EIGEN_MKL_RANKUPDATE_SPECIALIZE(Scalar) \
-template <typename Index, int LhsStorageOrder, bool ConjugateLhs, \
- int RhsStorageOrder, bool ConjugateRhs, int UpLo> \
-struct general_matrix_matrix_triangular_product<Index,Scalar,LhsStorageOrder,ConjugateLhs, \
- Scalar,RhsStorageOrder,ConjugateRhs,ColMajor,UpLo,Specialized> { \
- static EIGEN_STRONG_INLINE void run(Index size, Index depth,const Scalar* lhs, Index lhsStride, \
- const Scalar* rhs, Index rhsStride, Scalar* res, Index resStride, Scalar alpha) \
- { \
- if (lhs==rhs) { \
- general_matrix_matrix_rankupdate<Index,Scalar,LhsStorageOrder,ConjugateLhs,ColMajor,UpLo> \
- ::run(size,depth,lhs,lhsStride,rhs,rhsStride,res,resStride,alpha); \
- } else { \
- general_matrix_matrix_triangular_product<Index, \
- Scalar, LhsStorageOrder, ConjugateLhs, \
- Scalar, RhsStorageOrder, ConjugateRhs, \
- ColMajor, UpLo, BuiltIn> \
- ::run(size,depth,lhs,lhsStride,rhs,rhsStride,res,resStride,alpha); \
- } \
- } \
-};
-
-EIGEN_MKL_RANKUPDATE_SPECIALIZE(double)
-//EIGEN_MKL_RANKUPDATE_SPECIALIZE(dcomplex)
-EIGEN_MKL_RANKUPDATE_SPECIALIZE(float)
-//EIGEN_MKL_RANKUPDATE_SPECIALIZE(scomplex)
-
-// SYRK for float/double
-#define EIGEN_MKL_RANKUPDATE_R(EIGTYPE, MKLTYPE, MKLFUNC) \
-template <typename Index, int AStorageOrder, bool ConjugateA, int UpLo> \
-struct general_matrix_matrix_rankupdate<Index,EIGTYPE,AStorageOrder,ConjugateA,ColMajor,UpLo> { \
- enum { \
- IsLower = (UpLo&Lower) == Lower, \
- LowUp = IsLower ? Lower : Upper, \
- conjA = ((AStorageOrder==ColMajor) && ConjugateA) ? 1 : 0 \
- }; \
- static EIGEN_STRONG_INLINE void run(Index size, Index depth,const EIGTYPE* lhs, Index lhsStride, \
- const EIGTYPE* rhs, Index rhsStride, EIGTYPE* res, Index resStride, EIGTYPE alpha) \
- { \
- /* typedef Matrix<EIGTYPE, Dynamic, Dynamic, RhsStorageOrder> MatrixRhs;*/ \
-\
- MKL_INT lda=lhsStride, ldc=resStride, n=size, k=depth; \
- char uplo=(IsLower) ? 'L' : 'U', trans=(AStorageOrder==RowMajor) ? 'T':'N'; \
- MKLTYPE alpha_, beta_; \
-\
-/* Set alpha_ & beta_ */ \
- assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(alpha_, alpha); \
- assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(beta_, EIGTYPE(1)); \
- MKLFUNC(&uplo, &trans, &n, &k, &alpha_, lhs, &lda, &beta_, res, &ldc); \
- } \
-};
-
-// HERK for complex data
-#define EIGEN_MKL_RANKUPDATE_C(EIGTYPE, MKLTYPE, RTYPE, MKLFUNC) \
-template <typename Index, int AStorageOrder, bool ConjugateA, int UpLo> \
-struct general_matrix_matrix_rankupdate<Index,EIGTYPE,AStorageOrder,ConjugateA,ColMajor,UpLo> { \
- enum { \
- IsLower = (UpLo&Lower) == Lower, \
- LowUp = IsLower ? Lower : Upper, \
- conjA = (((AStorageOrder==ColMajor) && ConjugateA) || ((AStorageOrder==RowMajor) && !ConjugateA)) ? 1 : 0 \
- }; \
- static EIGEN_STRONG_INLINE void run(Index size, Index depth,const EIGTYPE* lhs, Index lhsStride, \
- const EIGTYPE* rhs, Index rhsStride, EIGTYPE* res, Index resStride, EIGTYPE alpha) \
- { \
- typedef Matrix<EIGTYPE, Dynamic, Dynamic, AStorageOrder> MatrixType; \
-\
- MKL_INT lda=lhsStride, ldc=resStride, n=size, k=depth; \
- char uplo=(IsLower) ? 'L' : 'U', trans=(AStorageOrder==RowMajor) ? 'C':'N'; \
- RTYPE alpha_, beta_; \
- const EIGTYPE* a_ptr; \
-\
-/* Set alpha_ & beta_ */ \
-/* assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(alpha_, alpha); */\
-/* assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(beta_, EIGTYPE(1));*/ \
- alpha_ = alpha.real(); \
- beta_ = 1.0; \
-/* Copy with conjugation in some cases*/ \
- MatrixType a; \
- if (conjA) { \
- Map<const MatrixType, 0, OuterStride<> > mapA(lhs,n,k,OuterStride<>(lhsStride)); \
- a = mapA.conjugate(); \
- lda = a.outerStride(); \
- a_ptr = a.data(); \
- } else a_ptr=lhs; \
- MKLFUNC(&uplo, &trans, &n, &k, &alpha_, (MKLTYPE*)a_ptr, &lda, &beta_, (MKLTYPE*)res, &ldc); \
- } \
-};
-
-
-EIGEN_MKL_RANKUPDATE_R(double, double, dsyrk)
-EIGEN_MKL_RANKUPDATE_R(float, float, ssyrk)
-
-//EIGEN_MKL_RANKUPDATE_C(dcomplex, MKL_Complex16, double, zherk)
-//EIGEN_MKL_RANKUPDATE_C(scomplex, MKL_Complex8, double, cherk)
-
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_MKL_H
diff --git a/src/Eigen/src/Core/products/GeneralMatrixMatrix_MKL.h b/src/Eigen/src/Core/products/GeneralMatrixMatrix_MKL.h
deleted file mode 100644
index 060af32..0000000
--- a/src/Eigen/src/Core/products/GeneralMatrixMatrix_MKL.h
+++ /dev/null
@@ -1,118 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * General matrix-matrix product functionality based on ?GEMM.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_GENERAL_MATRIX_MATRIX_MKL_H
-#define EIGEN_GENERAL_MATRIX_MATRIX_MKL_H
-
-namespace Eigen {
-
-namespace internal {
-
-/**********************************************************************
-* This file implements general matrix-matrix multiplication using BLAS
-* gemm function via partial specialization of
-* general_matrix_matrix_product::run(..) method for float, double,
-* std::complex<float> and std::complex<double> types
-**********************************************************************/
-
-// gemm specialization
-
-#define GEMM_SPECIALIZATION(EIGTYPE, EIGPREFIX, MKLTYPE, MKLPREFIX) \
-template< \
- typename Index, \
- int LhsStorageOrder, bool ConjugateLhs, \
- int RhsStorageOrder, bool ConjugateRhs> \
-struct general_matrix_matrix_product<Index,EIGTYPE,LhsStorageOrder,ConjugateLhs,EIGTYPE,RhsStorageOrder,ConjugateRhs,ColMajor> \
-{ \
-static void run(Index rows, Index cols, Index depth, \
- const EIGTYPE* _lhs, Index lhsStride, \
- const EIGTYPE* _rhs, Index rhsStride, \
- EIGTYPE* res, Index resStride, \
- EIGTYPE alpha, \
- level3_blocking<EIGTYPE, EIGTYPE>& /*blocking*/, \
- GemmParallelInfo<Index>* /*info = 0*/) \
-{ \
- using std::conj; \
-\
- char transa, transb; \
- MKL_INT m, n, k, lda, ldb, ldc; \
- const EIGTYPE *a, *b; \
- MKLTYPE alpha_, beta_; \
- MatrixX##EIGPREFIX a_tmp, b_tmp; \
- EIGTYPE myone(1);\
-\
-/* Set transpose options */ \
- transa = (LhsStorageOrder==RowMajor) ? ((ConjugateLhs) ? 'C' : 'T') : 'N'; \
- transb = (RhsStorageOrder==RowMajor) ? ((ConjugateRhs) ? 'C' : 'T') : 'N'; \
-\
-/* Set m, n, k */ \
- m = (MKL_INT)rows; \
- n = (MKL_INT)cols; \
- k = (MKL_INT)depth; \
-\
-/* Set alpha_ & beta_ */ \
- assign_scalar_eig2mkl(alpha_, alpha); \
- assign_scalar_eig2mkl(beta_, myone); \
-\
-/* Set lda, ldb, ldc */ \
- lda = (MKL_INT)lhsStride; \
- ldb = (MKL_INT)rhsStride; \
- ldc = (MKL_INT)resStride; \
-\
-/* Set a, b, c */ \
- if ((LhsStorageOrder==ColMajor) && (ConjugateLhs)) { \
- Map<const MatrixX##EIGPREFIX, 0, OuterStride<> > lhs(_lhs,m,k,OuterStride<>(lhsStride)); \
- a_tmp = lhs.conjugate(); \
- a = a_tmp.data(); \
- lda = a_tmp.outerStride(); \
- } else a = _lhs; \
-\
- if ((RhsStorageOrder==ColMajor) && (ConjugateRhs)) { \
- Map<const MatrixX##EIGPREFIX, 0, OuterStride<> > rhs(_rhs,k,n,OuterStride<>(rhsStride)); \
- b_tmp = rhs.conjugate(); \
- b = b_tmp.data(); \
- ldb = b_tmp.outerStride(); \
- } else b = _rhs; \
-\
- MKLPREFIX##gemm(&transa, &transb, &m, &n, &k, &alpha_, (const MKLTYPE*)a, &lda, (const MKLTYPE*)b, &ldb, &beta_, (MKLTYPE*)res, &ldc); \
-}};
-
-GEMM_SPECIALIZATION(double, d, double, d)
-GEMM_SPECIALIZATION(float, f, float, s)
-GEMM_SPECIALIZATION(dcomplex, cd, MKL_Complex16, z)
-GEMM_SPECIALIZATION(scomplex, cf, MKL_Complex8, c)
-
-} // end namespase internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_GENERAL_MATRIX_MATRIX_MKL_H
diff --git a/src/Eigen/src/Core/products/GeneralMatrixVector.h b/src/Eigen/src/Core/products/GeneralMatrixVector.h
deleted file mode 100644
index 0938770..0000000
--- a/src/Eigen/src/Core/products/GeneralMatrixVector.h
+++ /dev/null
@@ -1,566 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_GENERAL_MATRIX_VECTOR_H
-#define EIGEN_GENERAL_MATRIX_VECTOR_H
-
-namespace Eigen {
-
-namespace internal {
-
-/* Optimized col-major matrix * vector product:
- * This algorithm processes 4 columns at onces that allows to both reduce
- * the number of load/stores of the result by a factor 4 and to reduce
- * the instruction dependency. Moreover, we know that all bands have the
- * same alignment pattern.
- *
- * Mixing type logic: C += alpha * A * B
- * | A | B |alpha| comments
- * |real |cplx |cplx | no vectorization
- * |real |cplx |real | alpha is converted to a cplx when calling the run function, no vectorization
- * |cplx |real |cplx | invalid, the caller has to do tmp: = A * B; C += alpha*tmp
- * |cplx |real |real | optimal case, vectorization possible via real-cplx mul
- */
-template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
-struct general_matrix_vector_product<Index,LhsScalar,ColMajor,ConjugateLhs,RhsScalar,ConjugateRhs,Version>
-{
-typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
-
-enum {
- Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable
- && int(packet_traits<LhsScalar>::size)==int(packet_traits<RhsScalar>::size),
- LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
- RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
- ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1
-};
-
-typedef typename packet_traits<LhsScalar>::type _LhsPacket;
-typedef typename packet_traits<RhsScalar>::type _RhsPacket;
-typedef typename packet_traits<ResScalar>::type _ResPacket;
-
-typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
-typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
-typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
-
-EIGEN_DONT_INLINE static void run(
- Index rows, Index cols,
- const LhsScalar* lhs, Index lhsStride,
- const RhsScalar* rhs, Index rhsIncr,
- ResScalar* res, Index resIncr, RhsScalar alpha);
-};
-
-template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
-EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,ColMajor,ConjugateLhs,RhsScalar,ConjugateRhs,Version>::run(
- Index rows, Index cols,
- const LhsScalar* lhs, Index lhsStride,
- const RhsScalar* rhs, Index rhsIncr,
- ResScalar* res, Index resIncr, RhsScalar alpha)
-{
- EIGEN_UNUSED_VARIABLE(resIncr)
- eigen_internal_assert(resIncr==1);
- #ifdef _EIGEN_ACCUMULATE_PACKETS
- #error _EIGEN_ACCUMULATE_PACKETS has already been defined
- #endif
- #define _EIGEN_ACCUMULATE_PACKETS(A0,A13,A2) \
- pstore(&res[j], \
- padd(pload<ResPacket>(&res[j]), \
- padd( \
- padd(pcj.pmul(EIGEN_CAT(ploa , A0)<LhsPacket>(&lhs0[j]), ptmp0), \
- pcj.pmul(EIGEN_CAT(ploa , A13)<LhsPacket>(&lhs1[j]), ptmp1)), \
- padd(pcj.pmul(EIGEN_CAT(ploa , A2)<LhsPacket>(&lhs2[j]), ptmp2), \
- pcj.pmul(EIGEN_CAT(ploa , A13)<LhsPacket>(&lhs3[j]), ptmp3)) )))
-
- conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
- conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;
- if(ConjugateRhs)
- alpha = numext::conj(alpha);
-
- enum { AllAligned = 0, EvenAligned, FirstAligned, NoneAligned };
- const Index columnsAtOnce = 4;
- const Index peels = 2;
- const Index LhsPacketAlignedMask = LhsPacketSize-1;
- const Index ResPacketAlignedMask = ResPacketSize-1;
-// const Index PeelAlignedMask = ResPacketSize*peels-1;
- const Index size = rows;
-
- // How many coeffs of the result do we have to skip to be aligned.
- // Here we assume data are at least aligned on the base scalar type.
- Index alignedStart = internal::first_aligned(res,size);
- Index alignedSize = ResPacketSize>1 ? alignedStart + ((size-alignedStart) & ~ResPacketAlignedMask) : 0;
- const Index peeledSize = alignedSize - RhsPacketSize*peels - RhsPacketSize + 1;
-
- const Index alignmentStep = LhsPacketSize>1 ? (LhsPacketSize - lhsStride % LhsPacketSize) & LhsPacketAlignedMask : 0;
- Index alignmentPattern = alignmentStep==0 ? AllAligned
- : alignmentStep==(LhsPacketSize/2) ? EvenAligned
- : FirstAligned;
-
- // we cannot assume the first element is aligned because of sub-matrices
- const Index lhsAlignmentOffset = internal::first_aligned(lhs,size);
-
- // find how many columns do we have to skip to be aligned with the result (if possible)
- Index skipColumns = 0;
- // if the data cannot be aligned (TODO add some compile time tests when possible, e.g. for floats)
- if( (size_t(lhs)%sizeof(LhsScalar)) || (size_t(res)%sizeof(ResScalar)) )
- {
- alignedSize = 0;
- alignedStart = 0;
- }
- else if (LhsPacketSize>1)
- {
- eigen_internal_assert(size_t(lhs+lhsAlignmentOffset)%sizeof(LhsPacket)==0 || size<LhsPacketSize);
-
- while (skipColumns<LhsPacketSize &&
- alignedStart != ((lhsAlignmentOffset + alignmentStep*skipColumns)%LhsPacketSize))
- ++skipColumns;
- if (skipColumns==LhsPacketSize)
- {
- // nothing can be aligned, no need to skip any column
- alignmentPattern = NoneAligned;
- skipColumns = 0;
- }
- else
- {
- skipColumns = (std::min)(skipColumns,cols);
- // note that the skiped columns are processed later.
- }
-
- eigen_internal_assert( (alignmentPattern==NoneAligned)
- || (skipColumns + columnsAtOnce >= cols)
- || LhsPacketSize > size
- || (size_t(lhs+alignedStart+lhsStride*skipColumns)%sizeof(LhsPacket))==0);
- }
- else if(Vectorizable)
- {
- alignedStart = 0;
- alignedSize = size;
- alignmentPattern = AllAligned;
- }
-
- Index offset1 = (FirstAligned && alignmentStep==1?3:1);
- Index offset3 = (FirstAligned && alignmentStep==1?1:3);
-
- Index columnBound = ((cols-skipColumns)/columnsAtOnce)*columnsAtOnce + skipColumns;
- for (Index i=skipColumns; i<columnBound; i+=columnsAtOnce)
- {
- RhsPacket ptmp0 = pset1<RhsPacket>(alpha*rhs[i*rhsIncr]),
- ptmp1 = pset1<RhsPacket>(alpha*rhs[(i+offset1)*rhsIncr]),
- ptmp2 = pset1<RhsPacket>(alpha*rhs[(i+2)*rhsIncr]),
- ptmp3 = pset1<RhsPacket>(alpha*rhs[(i+offset3)*rhsIncr]);
-
- // this helps a lot generating better binary code
- const LhsScalar *lhs0 = lhs + i*lhsStride, *lhs1 = lhs + (i+offset1)*lhsStride,
- *lhs2 = lhs + (i+2)*lhsStride, *lhs3 = lhs + (i+offset3)*lhsStride;
-
- if (Vectorizable)
- {
- /* explicit vectorization */
- // process initial unaligned coeffs
- for (Index j=0; j<alignedStart; ++j)
- {
- res[j] = cj.pmadd(lhs0[j], pfirst(ptmp0), res[j]);
- res[j] = cj.pmadd(lhs1[j], pfirst(ptmp1), res[j]);
- res[j] = cj.pmadd(lhs2[j], pfirst(ptmp2), res[j]);
- res[j] = cj.pmadd(lhs3[j], pfirst(ptmp3), res[j]);
- }
-
- if (alignedSize>alignedStart)
- {
- switch(alignmentPattern)
- {
- case AllAligned:
- for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
- _EIGEN_ACCUMULATE_PACKETS(d,d,d);
- break;
- case EvenAligned:
- for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
- _EIGEN_ACCUMULATE_PACKETS(d,du,d);
- break;
- case FirstAligned:
- {
- Index j = alignedStart;
- if(peels>1)
- {
- LhsPacket A00, A01, A02, A03, A10, A11, A12, A13;
- ResPacket T0, T1;
-
- A01 = pload<LhsPacket>(&lhs1[alignedStart-1]);
- A02 = pload<LhsPacket>(&lhs2[alignedStart-2]);
- A03 = pload<LhsPacket>(&lhs3[alignedStart-3]);
-
- for (; j<peeledSize; j+=peels*ResPacketSize)
- {
- A11 = pload<LhsPacket>(&lhs1[j-1+LhsPacketSize]); palign<1>(A01,A11);
- A12 = pload<LhsPacket>(&lhs2[j-2+LhsPacketSize]); palign<2>(A02,A12);
- A13 = pload<LhsPacket>(&lhs3[j-3+LhsPacketSize]); palign<3>(A03,A13);
-
- A00 = pload<LhsPacket>(&lhs0[j]);
- A10 = pload<LhsPacket>(&lhs0[j+LhsPacketSize]);
- T0 = pcj.pmadd(A00, ptmp0, pload<ResPacket>(&res[j]));
- T1 = pcj.pmadd(A10, ptmp0, pload<ResPacket>(&res[j+ResPacketSize]));
-
- T0 = pcj.pmadd(A01, ptmp1, T0);
- A01 = pload<LhsPacket>(&lhs1[j-1+2*LhsPacketSize]); palign<1>(A11,A01);
- T0 = pcj.pmadd(A02, ptmp2, T0);
- A02 = pload<LhsPacket>(&lhs2[j-2+2*LhsPacketSize]); palign<2>(A12,A02);
- T0 = pcj.pmadd(A03, ptmp3, T0);
- pstore(&res[j],T0);
- A03 = pload<LhsPacket>(&lhs3[j-3+2*LhsPacketSize]); palign<3>(A13,A03);
- T1 = pcj.pmadd(A11, ptmp1, T1);
- T1 = pcj.pmadd(A12, ptmp2, T1);
- T1 = pcj.pmadd(A13, ptmp3, T1);
- pstore(&res[j+ResPacketSize],T1);
- }
- }
- for (; j<alignedSize; j+=ResPacketSize)
- _EIGEN_ACCUMULATE_PACKETS(d,du,du);
- break;
- }
- default:
- for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
- _EIGEN_ACCUMULATE_PACKETS(du,du,du);
- break;
- }
- }
- } // end explicit vectorization
-
- /* process remaining coeffs (or all if there is no explicit vectorization) */
- for (Index j=alignedSize; j<size; ++j)
- {
- res[j] = cj.pmadd(lhs0[j], pfirst(ptmp0), res[j]);
- res[j] = cj.pmadd(lhs1[j], pfirst(ptmp1), res[j]);
- res[j] = cj.pmadd(lhs2[j], pfirst(ptmp2), res[j]);
- res[j] = cj.pmadd(lhs3[j], pfirst(ptmp3), res[j]);
- }
- }
-
- // process remaining first and last columns (at most columnsAtOnce-1)
- Index end = cols;
- Index start = columnBound;
- do
- {
- for (Index k=start; k<end; ++k)
- {
- RhsPacket ptmp0 = pset1<RhsPacket>(alpha*rhs[k*rhsIncr]);
- const LhsScalar* lhs0 = lhs + k*lhsStride;
-
- if (Vectorizable)
- {
- /* explicit vectorization */
- // process first unaligned result's coeffs
- for (Index j=0; j<alignedStart; ++j)
- res[j] += cj.pmul(lhs0[j], pfirst(ptmp0));
- // process aligned result's coeffs
- if ((size_t(lhs0+alignedStart)%sizeof(LhsPacket))==0)
- for (Index i = alignedStart;i<alignedSize;i+=ResPacketSize)
- pstore(&res[i], pcj.pmadd(pload<LhsPacket>(&lhs0[i]), ptmp0, pload<ResPacket>(&res[i])));
- else
- for (Index i = alignedStart;i<alignedSize;i+=ResPacketSize)
- pstore(&res[i], pcj.pmadd(ploadu<LhsPacket>(&lhs0[i]), ptmp0, pload<ResPacket>(&res[i])));
- }
-
- // process remaining scalars (or all if no explicit vectorization)
- for (Index i=alignedSize; i<size; ++i)
- res[i] += cj.pmul(lhs0[i], pfirst(ptmp0));
- }
- if (skipColumns)
- {
- start = 0;
- end = skipColumns;
- skipColumns = 0;
- }
- else
- break;
- } while(Vectorizable);
- #undef _EIGEN_ACCUMULATE_PACKETS
-}
-
-/* Optimized row-major matrix * vector product:
- * This algorithm processes 4 rows at onces that allows to both reduce
- * the number of load/stores of the result by a factor 4 and to reduce
- * the instruction dependency. Moreover, we know that all bands have the
- * same alignment pattern.
- *
- * Mixing type logic:
- * - alpha is always a complex (or converted to a complex)
- * - no vectorization
- */
-template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
-struct general_matrix_vector_product<Index,LhsScalar,RowMajor,ConjugateLhs,RhsScalar,ConjugateRhs,Version>
-{
-typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
-
-enum {
- Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable
- && int(packet_traits<LhsScalar>::size)==int(packet_traits<RhsScalar>::size),
- LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
- RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
- ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1
-};
-
-typedef typename packet_traits<LhsScalar>::type _LhsPacket;
-typedef typename packet_traits<RhsScalar>::type _RhsPacket;
-typedef typename packet_traits<ResScalar>::type _ResPacket;
-
-typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
-typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
-typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
-
-EIGEN_DONT_INLINE static void run(
- Index rows, Index cols,
- const LhsScalar* lhs, Index lhsStride,
- const RhsScalar* rhs, Index rhsIncr,
- ResScalar* res, Index resIncr,
- ResScalar alpha);
-};
-
-template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
-EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,RowMajor,ConjugateLhs,RhsScalar,ConjugateRhs,Version>::run(
- Index rows, Index cols,
- const LhsScalar* lhs, Index lhsStride,
- const RhsScalar* rhs, Index rhsIncr,
- ResScalar* res, Index resIncr,
- ResScalar alpha)
-{
- EIGEN_UNUSED_VARIABLE(rhsIncr);
- eigen_internal_assert(rhsIncr==1);
- #ifdef _EIGEN_ACCUMULATE_PACKETS
- #error _EIGEN_ACCUMULATE_PACKETS has already been defined
- #endif
-
- #define _EIGEN_ACCUMULATE_PACKETS(A0,A13,A2) {\
- RhsPacket b = pload<RhsPacket>(&rhs[j]); \
- ptmp0 = pcj.pmadd(EIGEN_CAT(ploa,A0) <LhsPacket>(&lhs0[j]), b, ptmp0); \
- ptmp1 = pcj.pmadd(EIGEN_CAT(ploa,A13)<LhsPacket>(&lhs1[j]), b, ptmp1); \
- ptmp2 = pcj.pmadd(EIGEN_CAT(ploa,A2) <LhsPacket>(&lhs2[j]), b, ptmp2); \
- ptmp3 = pcj.pmadd(EIGEN_CAT(ploa,A13)<LhsPacket>(&lhs3[j]), b, ptmp3); }
-
- conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
- conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;
-
- enum { AllAligned=0, EvenAligned=1, FirstAligned=2, NoneAligned=3 };
- const Index rowsAtOnce = 4;
- const Index peels = 2;
- const Index RhsPacketAlignedMask = RhsPacketSize-1;
- const Index LhsPacketAlignedMask = LhsPacketSize-1;
-// const Index PeelAlignedMask = RhsPacketSize*peels-1;
- const Index depth = cols;
-
- // How many coeffs of the result do we have to skip to be aligned.
- // Here we assume data are at least aligned on the base scalar type
- // if that's not the case then vectorization is discarded, see below.
- Index alignedStart = internal::first_aligned(rhs, depth);
- Index alignedSize = RhsPacketSize>1 ? alignedStart + ((depth-alignedStart) & ~RhsPacketAlignedMask) : 0;
- const Index peeledSize = alignedSize - RhsPacketSize*peels - RhsPacketSize + 1;
-
- const Index alignmentStep = LhsPacketSize>1 ? (LhsPacketSize - lhsStride % LhsPacketSize) & LhsPacketAlignedMask : 0;
- Index alignmentPattern = alignmentStep==0 ? AllAligned
- : alignmentStep==(LhsPacketSize/2) ? EvenAligned
- : FirstAligned;
-
- // we cannot assume the first element is aligned because of sub-matrices
- const Index lhsAlignmentOffset = internal::first_aligned(lhs,depth);
-
- // find how many rows do we have to skip to be aligned with rhs (if possible)
- Index skipRows = 0;
- // if the data cannot be aligned (TODO add some compile time tests when possible, e.g. for floats)
- if( (sizeof(LhsScalar)!=sizeof(RhsScalar)) || (size_t(lhs)%sizeof(LhsScalar)) || (size_t(rhs)%sizeof(RhsScalar)) )
- {
- alignedSize = 0;
- alignedStart = 0;
- }
- else if (LhsPacketSize>1)
- {
- eigen_internal_assert(size_t(lhs+lhsAlignmentOffset)%sizeof(LhsPacket)==0 || depth<LhsPacketSize);
-
- while (skipRows<LhsPacketSize &&
- alignedStart != ((lhsAlignmentOffset + alignmentStep*skipRows)%LhsPacketSize))
- ++skipRows;
- if (skipRows==LhsPacketSize)
- {
- // nothing can be aligned, no need to skip any column
- alignmentPattern = NoneAligned;
- skipRows = 0;
- }
- else
- {
- skipRows = (std::min)(skipRows,Index(rows));
- // note that the skiped columns are processed later.
- }
- eigen_internal_assert( alignmentPattern==NoneAligned
- || LhsPacketSize==1
- || (skipRows + rowsAtOnce >= rows)
- || LhsPacketSize > depth
- || (size_t(lhs+alignedStart+lhsStride*skipRows)%sizeof(LhsPacket))==0);
- }
- else if(Vectorizable)
- {
- alignedStart = 0;
- alignedSize = depth;
- alignmentPattern = AllAligned;
- }
-
- Index offset1 = (FirstAligned && alignmentStep==1?3:1);
- Index offset3 = (FirstAligned && alignmentStep==1?1:3);
-
- Index rowBound = ((rows-skipRows)/rowsAtOnce)*rowsAtOnce + skipRows;
- for (Index i=skipRows; i<rowBound; i+=rowsAtOnce)
- {
- EIGEN_ALIGN16 ResScalar tmp0 = ResScalar(0);
- ResScalar tmp1 = ResScalar(0), tmp2 = ResScalar(0), tmp3 = ResScalar(0);
-
- // this helps the compiler generating good binary code
- const LhsScalar *lhs0 = lhs + i*lhsStride, *lhs1 = lhs + (i+offset1)*lhsStride,
- *lhs2 = lhs + (i+2)*lhsStride, *lhs3 = lhs + (i+offset3)*lhsStride;
-
- if (Vectorizable)
- {
- /* explicit vectorization */
- ResPacket ptmp0 = pset1<ResPacket>(ResScalar(0)), ptmp1 = pset1<ResPacket>(ResScalar(0)),
- ptmp2 = pset1<ResPacket>(ResScalar(0)), ptmp3 = pset1<ResPacket>(ResScalar(0));
-
- // process initial unaligned coeffs
- // FIXME this loop get vectorized by the compiler !
- for (Index j=0; j<alignedStart; ++j)
- {
- RhsScalar b = rhs[j];
- tmp0 += cj.pmul(lhs0[j],b); tmp1 += cj.pmul(lhs1[j],b);
- tmp2 += cj.pmul(lhs2[j],b); tmp3 += cj.pmul(lhs3[j],b);
- }
-
- if (alignedSize>alignedStart)
- {
- switch(alignmentPattern)
- {
- case AllAligned:
- for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
- _EIGEN_ACCUMULATE_PACKETS(d,d,d);
- break;
- case EvenAligned:
- for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
- _EIGEN_ACCUMULATE_PACKETS(d,du,d);
- break;
- case FirstAligned:
- {
- Index j = alignedStart;
- if (peels>1)
- {
- /* Here we proccess 4 rows with with two peeled iterations to hide
- * the overhead of unaligned loads. Moreover unaligned loads are handled
- * using special shift/move operations between the two aligned packets
- * overlaping the desired unaligned packet. This is *much* more efficient
- * than basic unaligned loads.
- */
- LhsPacket A01, A02, A03, A11, A12, A13;
- A01 = pload<LhsPacket>(&lhs1[alignedStart-1]);
- A02 = pload<LhsPacket>(&lhs2[alignedStart-2]);
- A03 = pload<LhsPacket>(&lhs3[alignedStart-3]);
-
- for (; j<peeledSize; j+=peels*RhsPacketSize)
- {
- RhsPacket b = pload<RhsPacket>(&rhs[j]);
- A11 = pload<LhsPacket>(&lhs1[j-1+LhsPacketSize]); palign<1>(A01,A11);
- A12 = pload<LhsPacket>(&lhs2[j-2+LhsPacketSize]); palign<2>(A02,A12);
- A13 = pload<LhsPacket>(&lhs3[j-3+LhsPacketSize]); palign<3>(A03,A13);
-
- ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j]), b, ptmp0);
- ptmp1 = pcj.pmadd(A01, b, ptmp1);
- A01 = pload<LhsPacket>(&lhs1[j-1+2*LhsPacketSize]); palign<1>(A11,A01);
- ptmp2 = pcj.pmadd(A02, b, ptmp2);
- A02 = pload<LhsPacket>(&lhs2[j-2+2*LhsPacketSize]); palign<2>(A12,A02);
- ptmp3 = pcj.pmadd(A03, b, ptmp3);
- A03 = pload<LhsPacket>(&lhs3[j-3+2*LhsPacketSize]); palign<3>(A13,A03);
-
- b = pload<RhsPacket>(&rhs[j+RhsPacketSize]);
- ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j+LhsPacketSize]), b, ptmp0);
- ptmp1 = pcj.pmadd(A11, b, ptmp1);
- ptmp2 = pcj.pmadd(A12, b, ptmp2);
- ptmp3 = pcj.pmadd(A13, b, ptmp3);
- }
- }
- for (; j<alignedSize; j+=RhsPacketSize)
- _EIGEN_ACCUMULATE_PACKETS(d,du,du);
- break;
- }
- default:
- for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
- _EIGEN_ACCUMULATE_PACKETS(du,du,du);
- break;
- }
- tmp0 += predux(ptmp0);
- tmp1 += predux(ptmp1);
- tmp2 += predux(ptmp2);
- tmp3 += predux(ptmp3);
- }
- } // end explicit vectorization
-
- // process remaining coeffs (or all if no explicit vectorization)
- // FIXME this loop get vectorized by the compiler !
- for (Index j=alignedSize; j<depth; ++j)
- {
- RhsScalar b = rhs[j];
- tmp0 += cj.pmul(lhs0[j],b); tmp1 += cj.pmul(lhs1[j],b);
- tmp2 += cj.pmul(lhs2[j],b); tmp3 += cj.pmul(lhs3[j],b);
- }
- res[i*resIncr] += alpha*tmp0;
- res[(i+offset1)*resIncr] += alpha*tmp1;
- res[(i+2)*resIncr] += alpha*tmp2;
- res[(i+offset3)*resIncr] += alpha*tmp3;
- }
-
- // process remaining first and last rows (at most columnsAtOnce-1)
- Index end = rows;
- Index start = rowBound;
- do
- {
- for (Index i=start; i<end; ++i)
- {
- EIGEN_ALIGN16 ResScalar tmp0 = ResScalar(0);
- ResPacket ptmp0 = pset1<ResPacket>(tmp0);
- const LhsScalar* lhs0 = lhs + i*lhsStride;
- // process first unaligned result's coeffs
- // FIXME this loop get vectorized by the compiler !
- for (Index j=0; j<alignedStart; ++j)
- tmp0 += cj.pmul(lhs0[j], rhs[j]);
-
- if (alignedSize>alignedStart)
- {
- // process aligned rhs coeffs
- if ((size_t(lhs0+alignedStart)%sizeof(LhsPacket))==0)
- for (Index j = alignedStart;j<alignedSize;j+=RhsPacketSize)
- ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j]), pload<RhsPacket>(&rhs[j]), ptmp0);
- else
- for (Index j = alignedStart;j<alignedSize;j+=RhsPacketSize)
- ptmp0 = pcj.pmadd(ploadu<LhsPacket>(&lhs0[j]), pload<RhsPacket>(&rhs[j]), ptmp0);
- tmp0 += predux(ptmp0);
- }
-
- // process remaining scalars
- // FIXME this loop get vectorized by the compiler !
- for (Index j=alignedSize; j<depth; ++j)
- tmp0 += cj.pmul(lhs0[j], rhs[j]);
- res[i*resIncr] += alpha*tmp0;
- }
- if (skipRows)
- {
- start = 0;
- end = skipRows;
- skipRows = 0;
- }
- else
- break;
- } while(Vectorizable);
-
- #undef _EIGEN_ACCUMULATE_PACKETS
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_GENERAL_MATRIX_VECTOR_H
diff --git a/src/Eigen/src/Core/products/GeneralMatrixVector_MKL.h b/src/Eigen/src/Core/products/GeneralMatrixVector_MKL.h
deleted file mode 100644
index 1cb9fe6..0000000
--- a/src/Eigen/src/Core/products/GeneralMatrixVector_MKL.h
+++ /dev/null
@@ -1,131 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * General matrix-vector product functionality based on ?GEMV.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_GENERAL_MATRIX_VECTOR_MKL_H
-#define EIGEN_GENERAL_MATRIX_VECTOR_MKL_H
-
-namespace Eigen {
-
-namespace internal {
-
-/**********************************************************************
-* This file implements general matrix-vector multiplication using BLAS
-* gemv function via partial specialization of
-* general_matrix_vector_product::run(..) method for float, double,
-* std::complex<float> and std::complex<double> types
-**********************************************************************/
-
-// gemv specialization
-
-template<typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs>
-struct general_matrix_vector_product_gemv :
- general_matrix_vector_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,ConjugateRhs,BuiltIn> {};
-
-#define EIGEN_MKL_GEMV_SPECIALIZE(Scalar) \
-template<typename Index, bool ConjugateLhs, bool ConjugateRhs> \
-struct general_matrix_vector_product<Index,Scalar,ColMajor,ConjugateLhs,Scalar,ConjugateRhs,Specialized> { \
-static void run( \
- Index rows, Index cols, \
- const Scalar* lhs, Index lhsStride, \
- const Scalar* rhs, Index rhsIncr, \
- Scalar* res, Index resIncr, Scalar alpha) \
-{ \
- if (ConjugateLhs) { \
- general_matrix_vector_product<Index,Scalar,ColMajor,ConjugateLhs,Scalar,ConjugateRhs,BuiltIn>::run( \
- rows, cols, lhs, lhsStride, rhs, rhsIncr, res, resIncr, alpha); \
- } else { \
- general_matrix_vector_product_gemv<Index,Scalar,ColMajor,ConjugateLhs,Scalar,ConjugateRhs>::run( \
- rows, cols, lhs, lhsStride, rhs, rhsIncr, res, resIncr, alpha); \
- } \
-} \
-}; \
-template<typename Index, bool ConjugateLhs, bool ConjugateRhs> \
-struct general_matrix_vector_product<Index,Scalar,RowMajor,ConjugateLhs,Scalar,ConjugateRhs,Specialized> { \
-static void run( \
- Index rows, Index cols, \
- const Scalar* lhs, Index lhsStride, \
- const Scalar* rhs, Index rhsIncr, \
- Scalar* res, Index resIncr, Scalar alpha) \
-{ \
- general_matrix_vector_product_gemv<Index,Scalar,RowMajor,ConjugateLhs,Scalar,ConjugateRhs>::run( \
- rows, cols, lhs, lhsStride, rhs, rhsIncr, res, resIncr, alpha); \
-} \
-}; \
-
-EIGEN_MKL_GEMV_SPECIALIZE(double)
-EIGEN_MKL_GEMV_SPECIALIZE(float)
-EIGEN_MKL_GEMV_SPECIALIZE(dcomplex)
-EIGEN_MKL_GEMV_SPECIALIZE(scomplex)
-
-#define EIGEN_MKL_GEMV_SPECIALIZATION(EIGTYPE,MKLTYPE,MKLPREFIX) \
-template<typename Index, int LhsStorageOrder, bool ConjugateLhs, bool ConjugateRhs> \
-struct general_matrix_vector_product_gemv<Index,EIGTYPE,LhsStorageOrder,ConjugateLhs,EIGTYPE,ConjugateRhs> \
-{ \
-typedef Matrix<EIGTYPE,Dynamic,1,ColMajor> GEMVVector;\
-\
-static void run( \
- Index rows, Index cols, \
- const EIGTYPE* lhs, Index lhsStride, \
- const EIGTYPE* rhs, Index rhsIncr, \
- EIGTYPE* res, Index resIncr, EIGTYPE alpha) \
-{ \
- MKL_INT m=rows, n=cols, lda=lhsStride, incx=rhsIncr, incy=resIncr; \
- MKLTYPE alpha_, beta_; \
- const EIGTYPE *x_ptr, myone(1); \
- char trans=(LhsStorageOrder==ColMajor) ? 'N' : (ConjugateLhs) ? 'C' : 'T'; \
- if (LhsStorageOrder==RowMajor) { \
- m=cols; \
- n=rows; \
- }\
- assign_scalar_eig2mkl(alpha_, alpha); \
- assign_scalar_eig2mkl(beta_, myone); \
- GEMVVector x_tmp; \
- if (ConjugateRhs) { \
- Map<const GEMVVector, 0, InnerStride<> > map_x(rhs,cols,1,InnerStride<>(incx)); \
- x_tmp=map_x.conjugate(); \
- x_ptr=x_tmp.data(); \
- incx=1; \
- } else x_ptr=rhs; \
- MKLPREFIX##gemv(&trans, &m, &n, &alpha_, (const MKLTYPE*)lhs, &lda, (const MKLTYPE*)x_ptr, &incx, &beta_, (MKLTYPE*)res, &incy); \
-}\
-};
-
-EIGEN_MKL_GEMV_SPECIALIZATION(double, double, d)
-EIGEN_MKL_GEMV_SPECIALIZATION(float, float, s)
-EIGEN_MKL_GEMV_SPECIALIZATION(dcomplex, MKL_Complex16, z)
-EIGEN_MKL_GEMV_SPECIALIZATION(scomplex, MKL_Complex8, c)
-
-} // end namespase internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_GENERAL_MATRIX_VECTOR_MKL_H
diff --git a/src/Eigen/src/Core/products/Parallelizer.h b/src/Eigen/src/Core/products/Parallelizer.h
deleted file mode 100644
index 5c3e9b7..0000000
--- a/src/Eigen/src/Core/products/Parallelizer.h
+++ /dev/null
@@ -1,159 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_PARALLELIZER_H
-#define EIGEN_PARALLELIZER_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal */
-inline void manage_multi_threading(Action action, int* v)
-{
- static EIGEN_UNUSED int m_maxThreads = -1;
-
- if(action==SetAction)
- {
- eigen_internal_assert(v!=0);
- m_maxThreads = *v;
- }
- else if(action==GetAction)
- {
- eigen_internal_assert(v!=0);
- #ifdef EIGEN_HAS_OPENMP
- if(m_maxThreads>0)
- *v = m_maxThreads;
- else
- *v = omp_get_max_threads();
- #else
- *v = 1;
- #endif
- }
- else
- {
- eigen_internal_assert(false);
- }
-}
-
-}
-
-/** Must be call first when calling Eigen from multiple threads */
-inline void initParallel()
-{
- int nbt;
- internal::manage_multi_threading(GetAction, &nbt);
- std::ptrdiff_t l1, l2;
- internal::manage_caching_sizes(GetAction, &l1, &l2);
-}
-
-/** \returns the max number of threads reserved for Eigen
- * \sa setNbThreads */
-inline int nbThreads()
-{
- int ret;
- internal::manage_multi_threading(GetAction, &ret);
- return ret;
-}
-
-/** Sets the max number of threads reserved for Eigen
- * \sa nbThreads */
-inline void setNbThreads(int v)
-{
- internal::manage_multi_threading(SetAction, &v);
-}
-
-namespace internal {
-
-template<typename Index> struct GemmParallelInfo
-{
- GemmParallelInfo() : sync(-1), users(0), rhs_start(0), rhs_length(0) {}
-
- int volatile sync;
- int volatile users;
-
- Index rhs_start;
- Index rhs_length;
-};
-
-template<bool Condition, typename Functor, typename Index>
-void parallelize_gemm(const Functor& func, Index rows, Index cols, bool transpose)
-{
- // TODO when EIGEN_USE_BLAS is defined,
- // we should still enable OMP for other scalar types
-#if !(defined (EIGEN_HAS_OPENMP)) || defined (EIGEN_USE_BLAS)
- // FIXME the transpose variable is only needed to properly split
- // the matrix product when multithreading is enabled. This is a temporary
- // fix to support row-major destination matrices. This whole
- // parallelizer mechanism has to be redisigned anyway.
- EIGEN_UNUSED_VARIABLE(transpose);
- func(0,rows, 0,cols);
-#else
-
- // Dynamically check whether we should enable or disable OpenMP.
- // The conditions are:
- // - the max number of threads we can create is greater than 1
- // - we are not already in a parallel code
- // - the sizes are large enough
-
- // 1- are we already in a parallel session?
- // FIXME omp_get_num_threads()>1 only works for openmp, what if the user does not use openmp?
- if((!Condition) || (omp_get_num_threads()>1))
- return func(0,rows, 0,cols);
-
- Index size = transpose ? cols : rows;
-
- // 2- compute the maximal number of threads from the size of the product:
- // FIXME this has to be fine tuned
- Index max_threads = std::max<Index>(1,size / 32);
-
- // 3 - compute the number of threads we are going to use
- Index threads = std::min<Index>(nbThreads(), max_threads);
-
- if(threads==1)
- return func(0,rows, 0,cols);
-
- Eigen::initParallel();
- func.initParallelSession();
-
- if(transpose)
- std::swap(rows,cols);
-
- Index blockCols = (cols / threads) & ~Index(0x3);
- Index blockRows = (rows / threads) & ~Index(0x7);
-
- GemmParallelInfo<Index>* info = new GemmParallelInfo<Index>[threads];
-
- #pragma omp parallel for schedule(static,1) num_threads(threads)
- for(Index i=0; i<threads; ++i)
- {
- Index r0 = i*blockRows;
- Index actualBlockRows = (i+1==threads) ? rows-r0 : blockRows;
-
- Index c0 = i*blockCols;
- Index actualBlockCols = (i+1==threads) ? cols-c0 : blockCols;
-
- info[i].rhs_start = c0;
- info[i].rhs_length = actualBlockCols;
-
- if(transpose)
- func(0, cols, r0, actualBlockRows, info);
- else
- func(r0, actualBlockRows, 0,cols, info);
- }
-
- delete[] info;
-#endif
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_PARALLELIZER_H
diff --git a/src/Eigen/src/Core/products/SelfadjointMatrixMatrix.h b/src/Eigen/src/Core/products/SelfadjointMatrixMatrix.h
deleted file mode 100644
index 99cf9e0..0000000
--- a/src/Eigen/src/Core/products/SelfadjointMatrixMatrix.h
+++ /dev/null
@@ -1,436 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SELFADJOINT_MATRIX_MATRIX_H
-#define EIGEN_SELFADJOINT_MATRIX_MATRIX_H
-
-namespace Eigen {
-
-namespace internal {
-
-// pack a selfadjoint block diagonal for use with the gebp_kernel
-template<typename Scalar, typename Index, int Pack1, int Pack2, int StorageOrder>
-struct symm_pack_lhs
-{
- template<int BlockRows> inline
- void pack(Scalar* blockA, const const_blas_data_mapper<Scalar,Index,StorageOrder>& lhs, Index cols, Index i, Index& count)
- {
- // normal copy
- for(Index k=0; k<i; k++)
- for(Index w=0; w<BlockRows; w++)
- blockA[count++] = lhs(i+w,k); // normal
- // symmetric copy
- Index h = 0;
- for(Index k=i; k<i+BlockRows; k++)
- {
- for(Index w=0; w<h; w++)
- blockA[count++] = numext::conj(lhs(k, i+w)); // transposed
-
- blockA[count++] = numext::real(lhs(k,k)); // real (diagonal)
-
- for(Index w=h+1; w<BlockRows; w++)
- blockA[count++] = lhs(i+w, k); // normal
- ++h;
- }
- // transposed copy
- for(Index k=i+BlockRows; k<cols; k++)
- for(Index w=0; w<BlockRows; w++)
- blockA[count++] = numext::conj(lhs(k, i+w)); // transposed
- }
- void operator()(Scalar* blockA, const Scalar* _lhs, Index lhsStride, Index cols, Index rows)
- {
- const_blas_data_mapper<Scalar,Index,StorageOrder> lhs(_lhs,lhsStride);
- Index count = 0;
- Index peeled_mc = (rows/Pack1)*Pack1;
- for(Index i=0; i<peeled_mc; i+=Pack1)
- {
- pack<Pack1>(blockA, lhs, cols, i, count);
- }
-
- if(rows-peeled_mc>=Pack2)
- {
- pack<Pack2>(blockA, lhs, cols, peeled_mc, count);
- peeled_mc += Pack2;
- }
-
- // do the same with mr==1
- for(Index i=peeled_mc; i<rows; i++)
- {
- for(Index k=0; k<i; k++)
- blockA[count++] = lhs(i, k); // normal
-
- blockA[count++] = numext::real(lhs(i, i)); // real (diagonal)
-
- for(Index k=i+1; k<cols; k++)
- blockA[count++] = numext::conj(lhs(k, i)); // transposed
- }
- }
-};
-
-template<typename Scalar, typename Index, int nr, int StorageOrder>
-struct symm_pack_rhs
-{
- enum { PacketSize = packet_traits<Scalar>::size };
- void operator()(Scalar* blockB, const Scalar* _rhs, Index rhsStride, Index rows, Index cols, Index k2)
- {
- Index end_k = k2 + rows;
- Index count = 0;
- const_blas_data_mapper<Scalar,Index,StorageOrder> rhs(_rhs,rhsStride);
- Index packet_cols = (cols/nr)*nr;
-
- // first part: normal case
- for(Index j2=0; j2<k2; j2+=nr)
- {
- for(Index k=k2; k<end_k; k++)
- {
- blockB[count+0] = rhs(k,j2+0);
- blockB[count+1] = rhs(k,j2+1);
- if (nr==4)
- {
- blockB[count+2] = rhs(k,j2+2);
- blockB[count+3] = rhs(k,j2+3);
- }
- count += nr;
- }
- }
-
- // second part: diagonal block
- for(Index j2=k2; j2<(std::min)(k2+rows,packet_cols); j2+=nr)
- {
- // again we can split vertically in three different parts (transpose, symmetric, normal)
- // transpose
- for(Index k=k2; k<j2; k++)
- {
- blockB[count+0] = numext::conj(rhs(j2+0,k));
- blockB[count+1] = numext::conj(rhs(j2+1,k));
- if (nr==4)
- {
- blockB[count+2] = numext::conj(rhs(j2+2,k));
- blockB[count+3] = numext::conj(rhs(j2+3,k));
- }
- count += nr;
- }
- // symmetric
- Index h = 0;
- for(Index k=j2; k<j2+nr; k++)
- {
- // normal
- for (Index w=0 ; w<h; ++w)
- blockB[count+w] = rhs(k,j2+w);
-
- blockB[count+h] = numext::real(rhs(k,k));
-
- // transpose
- for (Index w=h+1 ; w<nr; ++w)
- blockB[count+w] = numext::conj(rhs(j2+w,k));
- count += nr;
- ++h;
- }
- // normal
- for(Index k=j2+nr; k<end_k; k++)
- {
- blockB[count+0] = rhs(k,j2+0);
- blockB[count+1] = rhs(k,j2+1);
- if (nr==4)
- {
- blockB[count+2] = rhs(k,j2+2);
- blockB[count+3] = rhs(k,j2+3);
- }
- count += nr;
- }
- }
-
- // third part: transposed
- for(Index j2=k2+rows; j2<packet_cols; j2+=nr)
- {
- for(Index k=k2; k<end_k; k++)
- {
- blockB[count+0] = numext::conj(rhs(j2+0,k));
- blockB[count+1] = numext::conj(rhs(j2+1,k));
- if (nr==4)
- {
- blockB[count+2] = numext::conj(rhs(j2+2,k));
- blockB[count+3] = numext::conj(rhs(j2+3,k));
- }
- count += nr;
- }
- }
-
- // copy the remaining columns one at a time (=> the same with nr==1)
- for(Index j2=packet_cols; j2<cols; ++j2)
- {
- // transpose
- Index half = (std::min)(end_k,j2);
- for(Index k=k2; k<half; k++)
- {
- blockB[count] = numext::conj(rhs(j2,k));
- count += 1;
- }
-
- if(half==j2 && half<k2+rows)
- {
- blockB[count] = numext::real(rhs(j2,j2));
- count += 1;
- }
- else
- half--;
-
- // normal
- for(Index k=half+1; k<k2+rows; k++)
- {
- blockB[count] = rhs(k,j2);
- count += 1;
- }
- }
- }
-};
-
-/* Optimized selfadjoint matrix * matrix (_SYMM) product built on top of
- * the general matrix matrix product.
- */
-template <typename Scalar, typename Index,
- int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs,
- int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs,
- int ResStorageOrder>
-struct product_selfadjoint_matrix;
-
-template <typename Scalar, typename Index,
- int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs,
- int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs>
-struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,LhsSelfAdjoint,ConjugateLhs, RhsStorageOrder,RhsSelfAdjoint,ConjugateRhs,RowMajor>
-{
-
- static EIGEN_STRONG_INLINE void run(
- Index rows, Index cols,
- const Scalar* lhs, Index lhsStride,
- const Scalar* rhs, Index rhsStride,
- Scalar* res, Index resStride,
- const Scalar& alpha)
- {
- product_selfadjoint_matrix<Scalar, Index,
- EIGEN_LOGICAL_XOR(RhsSelfAdjoint,RhsStorageOrder==RowMajor) ? ColMajor : RowMajor,
- RhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsSelfAdjoint,ConjugateRhs),
- EIGEN_LOGICAL_XOR(LhsSelfAdjoint,LhsStorageOrder==RowMajor) ? ColMajor : RowMajor,
- LhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsSelfAdjoint,ConjugateLhs),
- ColMajor>
- ::run(cols, rows, rhs, rhsStride, lhs, lhsStride, res, resStride, alpha);
- }
-};
-
-template <typename Scalar, typename Index,
- int LhsStorageOrder, bool ConjugateLhs,
- int RhsStorageOrder, bool ConjugateRhs>
-struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,true,ConjugateLhs, RhsStorageOrder,false,ConjugateRhs,ColMajor>
-{
-
- static EIGEN_DONT_INLINE void run(
- Index rows, Index cols,
- const Scalar* _lhs, Index lhsStride,
- const Scalar* _rhs, Index rhsStride,
- Scalar* res, Index resStride,
- const Scalar& alpha);
-};
-
-template <typename Scalar, typename Index,
- int LhsStorageOrder, bool ConjugateLhs,
- int RhsStorageOrder, bool ConjugateRhs>
-EIGEN_DONT_INLINE void product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,true,ConjugateLhs, RhsStorageOrder,false,ConjugateRhs,ColMajor>::run(
- Index rows, Index cols,
- const Scalar* _lhs, Index lhsStride,
- const Scalar* _rhs, Index rhsStride,
- Scalar* res, Index resStride,
- const Scalar& alpha)
- {
- Index size = rows;
-
- const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
- const_blas_data_mapper<Scalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);
-
- typedef gebp_traits<Scalar,Scalar> Traits;
-
- Index kc = size; // cache block size along the K direction
- Index mc = rows; // cache block size along the M direction
- Index nc = cols; // cache block size along the N direction
- computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc);
- // kc must smaller than mc
- kc = (std::min)(kc,mc);
-
- std::size_t sizeW = kc*Traits::WorkSpaceFactor;
- std::size_t sizeB = sizeW + kc*cols;
- ei_declare_aligned_stack_constructed_variable(Scalar, blockA, kc*mc, 0);
- ei_declare_aligned_stack_constructed_variable(Scalar, allocatedBlockB, sizeB, 0);
- Scalar* blockB = allocatedBlockB + sizeW;
-
- gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
- symm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
- gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
- gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder==RowMajor?ColMajor:RowMajor, true> pack_lhs_transposed;
-
- for(Index k2=0; k2<size; k2+=kc)
- {
- const Index actual_kc = (std::min)(k2+kc,size)-k2;
-
- // we have selected one row panel of rhs and one column panel of lhs
- // pack rhs's panel into a sequential chunk of memory
- // and expand each coeff to a constant packet for further reuse
- pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, cols);
-
- // the select lhs's panel has to be split in three different parts:
- // 1 - the transposed panel above the diagonal block => transposed packed copy
- // 2 - the diagonal block => special packed copy
- // 3 - the panel below the diagonal block => generic packed copy
- for(Index i2=0; i2<k2; i2+=mc)
- {
- const Index actual_mc = (std::min)(i2+mc,k2)-i2;
- // transposed packed copy
- pack_lhs_transposed(blockA, &lhs(k2, i2), lhsStride, actual_kc, actual_mc);
-
- gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
- }
- // the block diagonal
- {
- const Index actual_mc = (std::min)(k2+kc,size)-k2;
- // symmetric packed copy
- pack_lhs(blockA, &lhs(k2,k2), lhsStride, actual_kc, actual_mc);
-
- gebp_kernel(res+k2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
- }
-
- for(Index i2=k2+kc; i2<size; i2+=mc)
- {
- const Index actual_mc = (std::min)(i2+mc,size)-i2;
- gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder,false>()
- (blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc);
-
- gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
- }
- }
- }
-
-// matrix * selfadjoint product
-template <typename Scalar, typename Index,
- int LhsStorageOrder, bool ConjugateLhs,
- int RhsStorageOrder, bool ConjugateRhs>
-struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,false,ConjugateLhs, RhsStorageOrder,true,ConjugateRhs,ColMajor>
-{
-
- static EIGEN_DONT_INLINE void run(
- Index rows, Index cols,
- const Scalar* _lhs, Index lhsStride,
- const Scalar* _rhs, Index rhsStride,
- Scalar* res, Index resStride,
- const Scalar& alpha);
-};
-
-template <typename Scalar, typename Index,
- int LhsStorageOrder, bool ConjugateLhs,
- int RhsStorageOrder, bool ConjugateRhs>
-EIGEN_DONT_INLINE void product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,false,ConjugateLhs, RhsStorageOrder,true,ConjugateRhs,ColMajor>::run(
- Index rows, Index cols,
- const Scalar* _lhs, Index lhsStride,
- const Scalar* _rhs, Index rhsStride,
- Scalar* res, Index resStride,
- const Scalar& alpha)
- {
- Index size = cols;
-
- const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
-
- typedef gebp_traits<Scalar,Scalar> Traits;
-
- Index kc = size; // cache block size along the K direction
- Index mc = rows; // cache block size along the M direction
- Index nc = cols; // cache block size along the N direction
- computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc);
- std::size_t sizeW = kc*Traits::WorkSpaceFactor;
- std::size_t sizeB = sizeW + kc*cols;
- ei_declare_aligned_stack_constructed_variable(Scalar, blockA, kc*mc, 0);
- ei_declare_aligned_stack_constructed_variable(Scalar, allocatedBlockB, sizeB, 0);
- Scalar* blockB = allocatedBlockB + sizeW;
-
- gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
- gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
- symm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
-
- for(Index k2=0; k2<size; k2+=kc)
- {
- const Index actual_kc = (std::min)(k2+kc,size)-k2;
-
- pack_rhs(blockB, _rhs, rhsStride, actual_kc, cols, k2);
-
- // => GEPP
- for(Index i2=0; i2<rows; i2+=mc)
- {
- const Index actual_mc = (std::min)(i2+mc,rows)-i2;
- pack_lhs(blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc);
-
- gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
- }
- }
- }
-
-} // end namespace internal
-
-/***************************************************************************
-* Wrapper to product_selfadjoint_matrix
-***************************************************************************/
-
-namespace internal {
-template<typename Lhs, int LhsMode, typename Rhs, int RhsMode>
-struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false> >
- : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>, Lhs, Rhs> >
-{};
-}
-
-template<typename Lhs, int LhsMode, typename Rhs, int RhsMode>
-struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>
- : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>, Lhs, Rhs >
-{
- EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
-
- SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
-
- enum {
- LhsIsUpper = (LhsMode&(Upper|Lower))==Upper,
- LhsIsSelfAdjoint = (LhsMode&SelfAdjoint)==SelfAdjoint,
- RhsIsUpper = (RhsMode&(Upper|Lower))==Upper,
- RhsIsSelfAdjoint = (RhsMode&SelfAdjoint)==SelfAdjoint
- };
-
- template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
- {
- eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
-
- typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
- typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
-
- Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
- * RhsBlasTraits::extractScalarFactor(m_rhs);
-
- internal::product_selfadjoint_matrix<Scalar, Index,
- EIGEN_LOGICAL_XOR(LhsIsUpper,
- internal::traits<Lhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, LhsIsSelfAdjoint,
- NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsIsUpper,bool(LhsBlasTraits::NeedToConjugate)),
- EIGEN_LOGICAL_XOR(RhsIsUpper,
- internal::traits<Rhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, RhsIsSelfAdjoint,
- NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsIsUpper,bool(RhsBlasTraits::NeedToConjugate)),
- internal::traits<Dest>::Flags&RowMajorBit ? RowMajor : ColMajor>
- ::run(
- lhs.rows(), rhs.cols(), // sizes
- &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
- &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info
- &dst.coeffRef(0,0), dst.outerStride(), // result info
- actualAlpha // alpha
- );
- }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_SELFADJOINT_MATRIX_MATRIX_H
diff --git a/src/Eigen/src/Core/products/SelfadjointMatrixMatrix_MKL.h b/src/Eigen/src/Core/products/SelfadjointMatrixMatrix_MKL.h
deleted file mode 100644
index dfa687f..0000000
--- a/src/Eigen/src/Core/products/SelfadjointMatrixMatrix_MKL.h
+++ /dev/null
@@ -1,295 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * Self adjoint matrix * matrix product functionality based on ?SYMM/?HEMM.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_SELFADJOINT_MATRIX_MATRIX_MKL_H
-#define EIGEN_SELFADJOINT_MATRIX_MATRIX_MKL_H
-
-namespace Eigen {
-
-namespace internal {
-
-
-/* Optimized selfadjoint matrix * matrix (?SYMM/?HEMM) product */
-
-#define EIGEN_MKL_SYMM_L(EIGTYPE, MKLTYPE, EIGPREFIX, MKLPREFIX) \
-template <typename Index, \
- int LhsStorageOrder, bool ConjugateLhs, \
- int RhsStorageOrder, bool ConjugateRhs> \
-struct product_selfadjoint_matrix<EIGTYPE,Index,LhsStorageOrder,true,ConjugateLhs,RhsStorageOrder,false,ConjugateRhs,ColMajor> \
-{\
-\
- static void run( \
- Index rows, Index cols, \
- const EIGTYPE* _lhs, Index lhsStride, \
- const EIGTYPE* _rhs, Index rhsStride, \
- EIGTYPE* res, Index resStride, \
- EIGTYPE alpha) \
- { \
- char side='L', uplo='L'; \
- MKL_INT m, n, lda, ldb, ldc; \
- const EIGTYPE *a, *b; \
- MKLTYPE alpha_, beta_; \
- MatrixX##EIGPREFIX b_tmp; \
- EIGTYPE myone(1);\
-\
-/* Set transpose options */ \
-/* Set m, n, k */ \
- m = (MKL_INT)rows; \
- n = (MKL_INT)cols; \
-\
-/* Set alpha_ & beta_ */ \
- assign_scalar_eig2mkl(alpha_, alpha); \
- assign_scalar_eig2mkl(beta_, myone); \
-\
-/* Set lda, ldb, ldc */ \
- lda = (MKL_INT)lhsStride; \
- ldb = (MKL_INT)rhsStride; \
- ldc = (MKL_INT)resStride; \
-\
-/* Set a, b, c */ \
- if (LhsStorageOrder==RowMajor) uplo='U'; \
- a = _lhs; \
-\
- if (RhsStorageOrder==RowMajor) { \
- Map<const MatrixX##EIGPREFIX, 0, OuterStride<> > rhs(_rhs,n,m,OuterStride<>(rhsStride)); \
- b_tmp = rhs.adjoint(); \
- b = b_tmp.data(); \
- ldb = b_tmp.outerStride(); \
- } else b = _rhs; \
-\
- MKLPREFIX##symm(&side, &uplo, &m, &n, &alpha_, (const MKLTYPE*)a, &lda, (const MKLTYPE*)b, &ldb, &beta_, (MKLTYPE*)res, &ldc); \
-\
- } \
-};
-
-
-#define EIGEN_MKL_HEMM_L(EIGTYPE, MKLTYPE, EIGPREFIX, MKLPREFIX) \
-template <typename Index, \
- int LhsStorageOrder, bool ConjugateLhs, \
- int RhsStorageOrder, bool ConjugateRhs> \
-struct product_selfadjoint_matrix<EIGTYPE,Index,LhsStorageOrder,true,ConjugateLhs,RhsStorageOrder,false,ConjugateRhs,ColMajor> \
-{\
- static void run( \
- Index rows, Index cols, \
- const EIGTYPE* _lhs, Index lhsStride, \
- const EIGTYPE* _rhs, Index rhsStride, \
- EIGTYPE* res, Index resStride, \
- EIGTYPE alpha) \
- { \
- char side='L', uplo='L'; \
- MKL_INT m, n, lda, ldb, ldc; \
- const EIGTYPE *a, *b; \
- MKLTYPE alpha_, beta_; \
- MatrixX##EIGPREFIX b_tmp; \
- Matrix<EIGTYPE, Dynamic, Dynamic, LhsStorageOrder> a_tmp; \
- EIGTYPE myone(1); \
-\
-/* Set transpose options */ \
-/* Set m, n, k */ \
- m = (MKL_INT)rows; \
- n = (MKL_INT)cols; \
-\
-/* Set alpha_ & beta_ */ \
- assign_scalar_eig2mkl(alpha_, alpha); \
- assign_scalar_eig2mkl(beta_, myone); \
-\
-/* Set lda, ldb, ldc */ \
- lda = (MKL_INT)lhsStride; \
- ldb = (MKL_INT)rhsStride; \
- ldc = (MKL_INT)resStride; \
-\
-/* Set a, b, c */ \
- if (((LhsStorageOrder==ColMajor) && ConjugateLhs) || ((LhsStorageOrder==RowMajor) && (!ConjugateLhs))) { \
- Map<const Matrix<EIGTYPE, Dynamic, Dynamic, LhsStorageOrder>, 0, OuterStride<> > lhs(_lhs,m,m,OuterStride<>(lhsStride)); \
- a_tmp = lhs.conjugate(); \
- a = a_tmp.data(); \
- lda = a_tmp.outerStride(); \
- } else a = _lhs; \
- if (LhsStorageOrder==RowMajor) uplo='U'; \
-\
- if (RhsStorageOrder==ColMajor && (!ConjugateRhs)) { \
- b = _rhs; } \
- else { \
- if (RhsStorageOrder==ColMajor && ConjugateRhs) { \
- Map<const MatrixX##EIGPREFIX, 0, OuterStride<> > rhs(_rhs,m,n,OuterStride<>(rhsStride)); \
- b_tmp = rhs.conjugate(); \
- } else \
- if (ConjugateRhs) { \
- Map<const MatrixX##EIGPREFIX, 0, OuterStride<> > rhs(_rhs,n,m,OuterStride<>(rhsStride)); \
- b_tmp = rhs.adjoint(); \
- } else { \
- Map<const MatrixX##EIGPREFIX, 0, OuterStride<> > rhs(_rhs,n,m,OuterStride<>(rhsStride)); \
- b_tmp = rhs.transpose(); \
- } \
- b = b_tmp.data(); \
- ldb = b_tmp.outerStride(); \
- } \
-\
- MKLPREFIX##hemm(&side, &uplo, &m, &n, &alpha_, (const MKLTYPE*)a, &lda, (const MKLTYPE*)b, &ldb, &beta_, (MKLTYPE*)res, &ldc); \
-\
- } \
-};
-
-EIGEN_MKL_SYMM_L(double, double, d, d)
-EIGEN_MKL_SYMM_L(float, float, f, s)
-EIGEN_MKL_HEMM_L(dcomplex, MKL_Complex16, cd, z)
-EIGEN_MKL_HEMM_L(scomplex, MKL_Complex8, cf, c)
-
-
-/* Optimized matrix * selfadjoint matrix (?SYMM/?HEMM) product */
-
-#define EIGEN_MKL_SYMM_R(EIGTYPE, MKLTYPE, EIGPREFIX, MKLPREFIX) \
-template <typename Index, \
- int LhsStorageOrder, bool ConjugateLhs, \
- int RhsStorageOrder, bool ConjugateRhs> \
-struct product_selfadjoint_matrix<EIGTYPE,Index,LhsStorageOrder,false,ConjugateLhs,RhsStorageOrder,true,ConjugateRhs,ColMajor> \
-{\
-\
- static void run( \
- Index rows, Index cols, \
- const EIGTYPE* _lhs, Index lhsStride, \
- const EIGTYPE* _rhs, Index rhsStride, \
- EIGTYPE* res, Index resStride, \
- EIGTYPE alpha) \
- { \
- char side='R', uplo='L'; \
- MKL_INT m, n, lda, ldb, ldc; \
- const EIGTYPE *a, *b; \
- MKLTYPE alpha_, beta_; \
- MatrixX##EIGPREFIX b_tmp; \
- EIGTYPE myone(1);\
-\
-/* Set m, n, k */ \
- m = (MKL_INT)rows; \
- n = (MKL_INT)cols; \
-\
-/* Set alpha_ & beta_ */ \
- assign_scalar_eig2mkl(alpha_, alpha); \
- assign_scalar_eig2mkl(beta_, myone); \
-\
-/* Set lda, ldb, ldc */ \
- lda = (MKL_INT)rhsStride; \
- ldb = (MKL_INT)lhsStride; \
- ldc = (MKL_INT)resStride; \
-\
-/* Set a, b, c */ \
- if (RhsStorageOrder==RowMajor) uplo='U'; \
- a = _rhs; \
-\
- if (LhsStorageOrder==RowMajor) { \
- Map<const MatrixX##EIGPREFIX, 0, OuterStride<> > lhs(_lhs,n,m,OuterStride<>(rhsStride)); \
- b_tmp = lhs.adjoint(); \
- b = b_tmp.data(); \
- ldb = b_tmp.outerStride(); \
- } else b = _lhs; \
-\
- MKLPREFIX##symm(&side, &uplo, &m, &n, &alpha_, (const MKLTYPE*)a, &lda, (const MKLTYPE*)b, &ldb, &beta_, (MKLTYPE*)res, &ldc); \
-\
- } \
-};
-
-
-#define EIGEN_MKL_HEMM_R(EIGTYPE, MKLTYPE, EIGPREFIX, MKLPREFIX) \
-template <typename Index, \
- int LhsStorageOrder, bool ConjugateLhs, \
- int RhsStorageOrder, bool ConjugateRhs> \
-struct product_selfadjoint_matrix<EIGTYPE,Index,LhsStorageOrder,false,ConjugateLhs,RhsStorageOrder,true,ConjugateRhs,ColMajor> \
-{\
- static void run( \
- Index rows, Index cols, \
- const EIGTYPE* _lhs, Index lhsStride, \
- const EIGTYPE* _rhs, Index rhsStride, \
- EIGTYPE* res, Index resStride, \
- EIGTYPE alpha) \
- { \
- char side='R', uplo='L'; \
- MKL_INT m, n, lda, ldb, ldc; \
- const EIGTYPE *a, *b; \
- MKLTYPE alpha_, beta_; \
- MatrixX##EIGPREFIX b_tmp; \
- Matrix<EIGTYPE, Dynamic, Dynamic, RhsStorageOrder> a_tmp; \
- EIGTYPE myone(1); \
-\
-/* Set m, n, k */ \
- m = (MKL_INT)rows; \
- n = (MKL_INT)cols; \
-\
-/* Set alpha_ & beta_ */ \
- assign_scalar_eig2mkl(alpha_, alpha); \
- assign_scalar_eig2mkl(beta_, myone); \
-\
-/* Set lda, ldb, ldc */ \
- lda = (MKL_INT)rhsStride; \
- ldb = (MKL_INT)lhsStride; \
- ldc = (MKL_INT)resStride; \
-\
-/* Set a, b, c */ \
- if (((RhsStorageOrder==ColMajor) && ConjugateRhs) || ((RhsStorageOrder==RowMajor) && (!ConjugateRhs))) { \
- Map<const Matrix<EIGTYPE, Dynamic, Dynamic, RhsStorageOrder>, 0, OuterStride<> > rhs(_rhs,n,n,OuterStride<>(rhsStride)); \
- a_tmp = rhs.conjugate(); \
- a = a_tmp.data(); \
- lda = a_tmp.outerStride(); \
- } else a = _rhs; \
- if (RhsStorageOrder==RowMajor) uplo='U'; \
-\
- if (LhsStorageOrder==ColMajor && (!ConjugateLhs)) { \
- b = _lhs; } \
- else { \
- if (LhsStorageOrder==ColMajor && ConjugateLhs) { \
- Map<const MatrixX##EIGPREFIX, 0, OuterStride<> > lhs(_lhs,m,n,OuterStride<>(lhsStride)); \
- b_tmp = lhs.conjugate(); \
- } else \
- if (ConjugateLhs) { \
- Map<const MatrixX##EIGPREFIX, 0, OuterStride<> > lhs(_lhs,n,m,OuterStride<>(lhsStride)); \
- b_tmp = lhs.adjoint(); \
- } else { \
- Map<const MatrixX##EIGPREFIX, 0, OuterStride<> > lhs(_lhs,n,m,OuterStride<>(lhsStride)); \
- b_tmp = lhs.transpose(); \
- } \
- b = b_tmp.data(); \
- ldb = b_tmp.outerStride(); \
- } \
-\
- MKLPREFIX##hemm(&side, &uplo, &m, &n, &alpha_, (const MKLTYPE*)a, &lda, (const MKLTYPE*)b, &ldb, &beta_, (MKLTYPE*)res, &ldc); \
- } \
-};
-
-EIGEN_MKL_SYMM_R(double, double, d, d)
-EIGEN_MKL_SYMM_R(float, float, f, s)
-EIGEN_MKL_HEMM_R(dcomplex, MKL_Complex16, cd, z)
-EIGEN_MKL_HEMM_R(scomplex, MKL_Complex8, cf, c)
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_SELFADJOINT_MATRIX_MATRIX_MKL_H
diff --git a/src/Eigen/src/Core/products/SelfadjointMatrixVector.h b/src/Eigen/src/Core/products/SelfadjointMatrixVector.h
deleted file mode 100644
index f698f67..0000000
--- a/src/Eigen/src/Core/products/SelfadjointMatrixVector.h
+++ /dev/null
@@ -1,281 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H
-#define EIGEN_SELFADJOINT_MATRIX_VECTOR_H
-
-namespace Eigen {
-
-namespace internal {
-
-/* Optimized selfadjoint matrix * vector product:
- * This algorithm processes 2 columns at onces that allows to both reduce
- * the number of load/stores of the result by a factor 2 and to reduce
- * the instruction dependency.
- */
-
-template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version=Specialized>
-struct selfadjoint_matrix_vector_product;
-
-template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version>
-struct selfadjoint_matrix_vector_product
-
-{
-static EIGEN_DONT_INLINE void run(
- Index size,
- const Scalar* lhs, Index lhsStride,
- const Scalar* _rhs, Index rhsIncr,
- Scalar* res,
- Scalar alpha);
-};
-
-template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version>
-EIGEN_DONT_INLINE void selfadjoint_matrix_vector_product<Scalar,Index,StorageOrder,UpLo,ConjugateLhs,ConjugateRhs,Version>::run(
- Index size,
- const Scalar* lhs, Index lhsStride,
- const Scalar* _rhs, Index rhsIncr,
- Scalar* res,
- Scalar alpha)
-{
- typedef typename packet_traits<Scalar>::type Packet;
- const Index PacketSize = sizeof(Packet)/sizeof(Scalar);
-
- enum {
- IsRowMajor = StorageOrder==RowMajor ? 1 : 0,
- IsLower = UpLo == Lower ? 1 : 0,
- FirstTriangular = IsRowMajor == IsLower
- };
-
- conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, IsRowMajor), ConjugateRhs> cj0;
- conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> cj1;
- conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex, ConjugateRhs> cjd;
-
- conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, IsRowMajor), ConjugateRhs> pcj0;
- conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> pcj1;
-
- Scalar cjAlpha = ConjugateRhs ? numext::conj(alpha) : alpha;
-
- // FIXME this copy is now handled outside product_selfadjoint_vector, so it could probably be removed.
- // if the rhs is not sequentially stored in memory we copy it to a temporary buffer,
- // this is because we need to extract packets
- ei_declare_aligned_stack_constructed_variable(Scalar,rhs,size,rhsIncr==1 ? const_cast<Scalar*>(_rhs) : 0);
- if (rhsIncr!=1)
- {
- const Scalar* it = _rhs;
- for (Index i=0; i<size; ++i, it+=rhsIncr)
- rhs[i] = *it;
- }
-
- Index bound = (std::max)(Index(0),size-8) & 0xfffffffe;
- if (FirstTriangular)
- bound = size - bound;
-
- for (Index j=FirstTriangular ? bound : 0;
- j<(FirstTriangular ? size : bound);j+=2)
- {
- const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
- const Scalar* EIGEN_RESTRICT A1 = lhs + (j+1)*lhsStride;
-
- Scalar t0 = cjAlpha * rhs[j];
- Packet ptmp0 = pset1<Packet>(t0);
- Scalar t1 = cjAlpha * rhs[j+1];
- Packet ptmp1 = pset1<Packet>(t1);
-
- Scalar t2(0);
- Packet ptmp2 = pset1<Packet>(t2);
- Scalar t3(0);
- Packet ptmp3 = pset1<Packet>(t3);
-
- size_t starti = FirstTriangular ? 0 : j+2;
- size_t endi = FirstTriangular ? j : size;
- size_t alignedStart = (starti) + internal::first_aligned(&res[starti], endi-starti);
- size_t alignedEnd = alignedStart + ((endi-alignedStart)/(PacketSize))*(PacketSize);
-
- // TODO make sure this product is a real * complex and that the rhs is properly conjugated if needed
- res[j] += cjd.pmul(numext::real(A0[j]), t0);
- res[j+1] += cjd.pmul(numext::real(A1[j+1]), t1);
- if(FirstTriangular)
- {
- res[j] += cj0.pmul(A1[j], t1);
- t3 += cj1.pmul(A1[j], rhs[j]);
- }
- else
- {
- res[j+1] += cj0.pmul(A0[j+1],t0);
- t2 += cj1.pmul(A0[j+1], rhs[j+1]);
- }
-
- for (size_t i=starti; i<alignedStart; ++i)
- {
- res[i] += t0 * A0[i] + t1 * A1[i];
- t2 += numext::conj(A0[i]) * rhs[i];
- t3 += numext::conj(A1[i]) * rhs[i];
- }
- // Yes this an optimization for gcc 4.3 and 4.4 (=> huge speed up)
- // gcc 4.2 does this optimization automatically.
- const Scalar* EIGEN_RESTRICT a0It = A0 + alignedStart;
- const Scalar* EIGEN_RESTRICT a1It = A1 + alignedStart;
- const Scalar* EIGEN_RESTRICT rhsIt = rhs + alignedStart;
- Scalar* EIGEN_RESTRICT resIt = res + alignedStart;
- for (size_t i=alignedStart; i<alignedEnd; i+=PacketSize)
- {
- Packet A0i = ploadu<Packet>(a0It); a0It += PacketSize;
- Packet A1i = ploadu<Packet>(a1It); a1It += PacketSize;
- Packet Bi = ploadu<Packet>(rhsIt); rhsIt += PacketSize; // FIXME should be aligned in most cases
- Packet Xi = pload <Packet>(resIt);
-
- Xi = pcj0.pmadd(A0i,ptmp0, pcj0.pmadd(A1i,ptmp1,Xi));
- ptmp2 = pcj1.pmadd(A0i, Bi, ptmp2);
- ptmp3 = pcj1.pmadd(A1i, Bi, ptmp3);
- pstore(resIt,Xi); resIt += PacketSize;
- }
- for (size_t i=alignedEnd; i<endi; i++)
- {
- res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
- t2 += cj1.pmul(A0[i], rhs[i]);
- t3 += cj1.pmul(A1[i], rhs[i]);
- }
-
- res[j] += alpha * (t2 + predux(ptmp2));
- res[j+1] += alpha * (t3 + predux(ptmp3));
- }
- for (Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ? bound : size);j++)
- {
- const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
-
- Scalar t1 = cjAlpha * rhs[j];
- Scalar t2(0);
- // TODO make sure this product is a real * complex and that the rhs is properly conjugated if needed
- res[j] += cjd.pmul(numext::real(A0[j]), t1);
- for (Index i=FirstTriangular ? 0 : j+1; i<(FirstTriangular ? j : size); i++)
- {
- res[i] += cj0.pmul(A0[i], t1);
- t2 += cj1.pmul(A0[i], rhs[i]);
- }
- res[j] += alpha * t2;
- }
-}
-
-} // end namespace internal
-
-/***************************************************************************
-* Wrapper to product_selfadjoint_vector
-***************************************************************************/
-
-namespace internal {
-template<typename Lhs, int LhsMode, typename Rhs>
-struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true> >
- : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs> >
-{};
-}
-
-template<typename Lhs, int LhsMode, typename Rhs>
-struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
- : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs >
-{
- EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
-
- enum {
- LhsUpLo = LhsMode&(Upper|Lower)
- };
-
- SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
- {
- typedef typename Dest::Scalar ResScalar;
- typedef typename Base::RhsScalar RhsScalar;
- typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
-
- eigen_assert(dest.rows()==m_lhs.rows() && dest.cols()==m_rhs.cols());
-
- typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
- typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
-
- Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
- * RhsBlasTraits::extractScalarFactor(m_rhs);
-
- enum {
- EvalToDest = (Dest::InnerStrideAtCompileTime==1),
- UseRhs = (_ActualRhsType::InnerStrideAtCompileTime==1)
- };
-
- internal::gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,!EvalToDest> static_dest;
- internal::gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!UseRhs> static_rhs;
-
- ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
- EvalToDest ? dest.data() : static_dest.data());
-
- ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,rhs.size(),
- UseRhs ? const_cast<RhsScalar*>(rhs.data()) : static_rhs.data());
-
- if(!EvalToDest)
- {
- #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- int size = dest.size();
- EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- #endif
- MappedDest(actualDestPtr, dest.size()) = dest;
- }
-
- if(!UseRhs)
- {
- #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- int size = rhs.size();
- EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- #endif
- Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, rhs.size()) = rhs;
- }
-
-
- internal::selfadjoint_matrix_vector_product<Scalar, Index, (internal::traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run
- (
- lhs.rows(), // size
- &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
- actualRhsPtr, 1, // rhs info
- actualDestPtr, // result info
- actualAlpha // scale factor
- );
-
- if(!EvalToDest)
- dest = MappedDest(actualDestPtr, dest.size());
- }
-};
-
-namespace internal {
-template<typename Lhs, typename Rhs, int RhsMode>
-struct traits<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false> >
- : traits<ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs> >
-{};
-}
-
-template<typename Lhs, typename Rhs, int RhsMode>
-struct SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>
- : public ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs >
-{
- EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
-
- enum {
- RhsUpLo = RhsMode&(Upper|Lower)
- };
-
- SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
- {
- // let's simply transpose the product
- Transpose<Dest> destT(dest);
- SelfadjointProductMatrix<Transpose<const Rhs>, int(RhsUpLo)==Upper ? Lower : Upper, false,
- Transpose<const Lhs>, 0, true>(m_rhs.transpose(), m_lhs.transpose()).scaleAndAddTo(destT, alpha);
- }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H
diff --git a/src/Eigen/src/Core/products/SelfadjointMatrixVector_MKL.h b/src/Eigen/src/Core/products/SelfadjointMatrixVector_MKL.h
deleted file mode 100644
index 86684b6..0000000
--- a/src/Eigen/src/Core/products/SelfadjointMatrixVector_MKL.h
+++ /dev/null
@@ -1,114 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * Selfadjoint matrix-vector product functionality based on ?SYMV/HEMV.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_MKL_H
-#define EIGEN_SELFADJOINT_MATRIX_VECTOR_MKL_H
-
-namespace Eigen {
-
-namespace internal {
-
-/**********************************************************************
-* This file implements selfadjoint matrix-vector multiplication using BLAS
-**********************************************************************/
-
-// symv/hemv specialization
-
-template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs>
-struct selfadjoint_matrix_vector_product_symv :
- selfadjoint_matrix_vector_product<Scalar,Index,StorageOrder,UpLo,ConjugateLhs,ConjugateRhs,BuiltIn> {};
-
-#define EIGEN_MKL_SYMV_SPECIALIZE(Scalar) \
-template<typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs> \
-struct selfadjoint_matrix_vector_product<Scalar,Index,StorageOrder,UpLo,ConjugateLhs,ConjugateRhs,Specialized> { \
-static void run( \
- Index size, const Scalar* lhs, Index lhsStride, \
- const Scalar* _rhs, Index rhsIncr, Scalar* res, Scalar alpha) { \
- enum {\
- IsColMajor = StorageOrder==ColMajor \
- }; \
- if (IsColMajor == ConjugateLhs) {\
- selfadjoint_matrix_vector_product<Scalar,Index,StorageOrder,UpLo,ConjugateLhs,ConjugateRhs,BuiltIn>::run( \
- size, lhs, lhsStride, _rhs, rhsIncr, res, alpha); \
- } else {\
- selfadjoint_matrix_vector_product_symv<Scalar,Index,StorageOrder,UpLo,ConjugateLhs,ConjugateRhs>::run( \
- size, lhs, lhsStride, _rhs, rhsIncr, res, alpha); \
- }\
- } \
-}; \
-
-EIGEN_MKL_SYMV_SPECIALIZE(double)
-EIGEN_MKL_SYMV_SPECIALIZE(float)
-EIGEN_MKL_SYMV_SPECIALIZE(dcomplex)
-EIGEN_MKL_SYMV_SPECIALIZE(scomplex)
-
-#define EIGEN_MKL_SYMV_SPECIALIZATION(EIGTYPE,MKLTYPE,MKLFUNC) \
-template<typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs> \
-struct selfadjoint_matrix_vector_product_symv<EIGTYPE,Index,StorageOrder,UpLo,ConjugateLhs,ConjugateRhs> \
-{ \
-typedef Matrix<EIGTYPE,Dynamic,1,ColMajor> SYMVVector;\
-\
-static void run( \
-Index size, const EIGTYPE* lhs, Index lhsStride, \
-const EIGTYPE* _rhs, Index rhsIncr, EIGTYPE* res, EIGTYPE alpha) \
-{ \
- enum {\
- IsRowMajor = StorageOrder==RowMajor ? 1 : 0, \
- IsLower = UpLo == Lower ? 1 : 0 \
- }; \
- MKL_INT n=size, lda=lhsStride, incx=rhsIncr, incy=1; \
- MKLTYPE alpha_, beta_; \
- const EIGTYPE *x_ptr, myone(1); \
- char uplo=(IsRowMajor) ? (IsLower ? 'U' : 'L') : (IsLower ? 'L' : 'U'); \
- assign_scalar_eig2mkl(alpha_, alpha); \
- assign_scalar_eig2mkl(beta_, myone); \
- SYMVVector x_tmp; \
- if (ConjugateRhs) { \
- Map<const SYMVVector, 0, InnerStride<> > map_x(_rhs,size,1,InnerStride<>(incx)); \
- x_tmp=map_x.conjugate(); \
- x_ptr=x_tmp.data(); \
- incx=1; \
- } else x_ptr=_rhs; \
- MKLFUNC(&uplo, &n, &alpha_, (const MKLTYPE*)lhs, &lda, (const MKLTYPE*)x_ptr, &incx, &beta_, (MKLTYPE*)res, &incy); \
-}\
-};
-
-EIGEN_MKL_SYMV_SPECIALIZATION(double, double, dsymv)
-EIGEN_MKL_SYMV_SPECIALIZATION(float, float, ssymv)
-EIGEN_MKL_SYMV_SPECIALIZATION(dcomplex, MKL_Complex16, zhemv)
-EIGEN_MKL_SYMV_SPECIALIZATION(scomplex, MKL_Complex8, chemv)
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_MKL_H
diff --git a/src/Eigen/src/Core/products/SelfadjointProduct.h b/src/Eigen/src/Core/products/SelfadjointProduct.h
deleted file mode 100644
index 6ca4ae6..0000000
--- a/src/Eigen/src/Core/products/SelfadjointProduct.h
+++ /dev/null
@@ -1,123 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SELFADJOINT_PRODUCT_H
-#define EIGEN_SELFADJOINT_PRODUCT_H
-
-/**********************************************************************
-* This file implements a self adjoint product: C += A A^T updating only
-* half of the selfadjoint matrix C.
-* It corresponds to the level 3 SYRK and level 2 SYR Blas routines.
-**********************************************************************/
-
-namespace Eigen {
-
-
-template<typename Scalar, typename Index, int UpLo, bool ConjLhs, bool ConjRhs>
-struct selfadjoint_rank1_update<Scalar,Index,ColMajor,UpLo,ConjLhs,ConjRhs>
-{
- static void run(Index size, Scalar* mat, Index stride, const Scalar* vecX, const Scalar* vecY, const Scalar& alpha)
- {
- internal::conj_if<ConjRhs> cj;
- typedef Map<const Matrix<Scalar,Dynamic,1> > OtherMap;
- typedef typename internal::conditional<ConjLhs,typename OtherMap::ConjugateReturnType,const OtherMap&>::type ConjLhsType;
- for (Index i=0; i<size; ++i)
- {
- Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i+(UpLo==Lower ? i : 0), (UpLo==Lower ? size-i : (i+1)))
- += (alpha * cj(vecY[i])) * ConjLhsType(OtherMap(vecX+(UpLo==Lower ? i : 0),UpLo==Lower ? size-i : (i+1)));
- }
- }
-};
-
-template<typename Scalar, typename Index, int UpLo, bool ConjLhs, bool ConjRhs>
-struct selfadjoint_rank1_update<Scalar,Index,RowMajor,UpLo,ConjLhs,ConjRhs>
-{
- static void run(Index size, Scalar* mat, Index stride, const Scalar* vecX, const Scalar* vecY, const Scalar& alpha)
- {
- selfadjoint_rank1_update<Scalar,Index,ColMajor,UpLo==Lower?Upper:Lower,ConjRhs,ConjLhs>::run(size,mat,stride,vecY,vecX,alpha);
- }
-};
-
-template<typename MatrixType, typename OtherType, int UpLo, bool OtherIsVector = OtherType::IsVectorAtCompileTime>
-struct selfadjoint_product_selector;
-
-template<typename MatrixType, typename OtherType, int UpLo>
-struct selfadjoint_product_selector<MatrixType,OtherType,UpLo,true>
-{
- static void run(MatrixType& mat, const OtherType& other, const typename MatrixType::Scalar& alpha)
- {
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
- typedef internal::blas_traits<OtherType> OtherBlasTraits;
- typedef typename OtherBlasTraits::DirectLinearAccessType ActualOtherType;
- typedef typename internal::remove_all<ActualOtherType>::type _ActualOtherType;
- typename internal::add_const_on_value_type<ActualOtherType>::type actualOther = OtherBlasTraits::extract(other.derived());
-
- Scalar actualAlpha = alpha * OtherBlasTraits::extractScalarFactor(other.derived());
-
- enum {
- StorageOrder = (internal::traits<MatrixType>::Flags&RowMajorBit) ? RowMajor : ColMajor,
- UseOtherDirectly = _ActualOtherType::InnerStrideAtCompileTime==1
- };
- internal::gemv_static_vector_if<Scalar,OtherType::SizeAtCompileTime,OtherType::MaxSizeAtCompileTime,!UseOtherDirectly> static_other;
-
- ei_declare_aligned_stack_constructed_variable(Scalar, actualOtherPtr, other.size(),
- (UseOtherDirectly ? const_cast<Scalar*>(actualOther.data()) : static_other.data()));
-
- if(!UseOtherDirectly)
- Map<typename _ActualOtherType::PlainObject>(actualOtherPtr, actualOther.size()) = actualOther;
-
- selfadjoint_rank1_update<Scalar,Index,StorageOrder,UpLo,
- OtherBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex,
- (!OtherBlasTraits::NeedToConjugate) && NumTraits<Scalar>::IsComplex>
- ::run(other.size(), mat.data(), mat.outerStride(), actualOtherPtr, actualOtherPtr, actualAlpha);
- }
-};
-
-template<typename MatrixType, typename OtherType, int UpLo>
-struct selfadjoint_product_selector<MatrixType,OtherType,UpLo,false>
-{
- static void run(MatrixType& mat, const OtherType& other, const typename MatrixType::Scalar& alpha)
- {
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
- typedef internal::blas_traits<OtherType> OtherBlasTraits;
- typedef typename OtherBlasTraits::DirectLinearAccessType ActualOtherType;
- typedef typename internal::remove_all<ActualOtherType>::type _ActualOtherType;
- typename internal::add_const_on_value_type<ActualOtherType>::type actualOther = OtherBlasTraits::extract(other.derived());
-
- Scalar actualAlpha = alpha * OtherBlasTraits::extractScalarFactor(other.derived());
-
- enum { IsRowMajor = (internal::traits<MatrixType>::Flags&RowMajorBit) ? 1 : 0 };
-
- internal::general_matrix_matrix_triangular_product<Index,
- Scalar, _ActualOtherType::Flags&RowMajorBit ? RowMajor : ColMajor, OtherBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex,
- Scalar, _ActualOtherType::Flags&RowMajorBit ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits<Scalar>::IsComplex,
- MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor, UpLo>
- ::run(mat.cols(), actualOther.cols(),
- &actualOther.coeffRef(0,0), actualOther.outerStride(), &actualOther.coeffRef(0,0), actualOther.outerStride(),
- mat.data(), mat.outerStride(), actualAlpha);
- }
-};
-
-// high level API
-
-template<typename MatrixType, unsigned int UpLo>
-template<typename DerivedU>
-SelfAdjointView<MatrixType,UpLo>& SelfAdjointView<MatrixType,UpLo>
-::rankUpdate(const MatrixBase<DerivedU>& u, const Scalar& alpha)
-{
- selfadjoint_product_selector<MatrixType,DerivedU,UpLo>::run(_expression().const_cast_derived(), u.derived(), alpha);
-
- return *this;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SELFADJOINT_PRODUCT_H
diff --git a/src/Eigen/src/Core/products/SelfadjointRank2Update.h b/src/Eigen/src/Core/products/SelfadjointRank2Update.h
deleted file mode 100644
index 8594a97..0000000
--- a/src/Eigen/src/Core/products/SelfadjointRank2Update.h
+++ /dev/null
@@ -1,93 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SELFADJOINTRANK2UPTADE_H
-#define EIGEN_SELFADJOINTRANK2UPTADE_H
-
-namespace Eigen {
-
-namespace internal {
-
-/* Optimized selfadjoint matrix += alpha * uv' + conj(alpha)*vu'
- * It corresponds to the Level2 syr2 BLAS routine
- */
-
-template<typename Scalar, typename Index, typename UType, typename VType, int UpLo>
-struct selfadjoint_rank2_update_selector;
-
-template<typename Scalar, typename Index, typename UType, typename VType>
-struct selfadjoint_rank2_update_selector<Scalar,Index,UType,VType,Lower>
-{
- static void run(Scalar* mat, Index stride, const UType& u, const VType& v, const Scalar& alpha)
- {
- const Index size = u.size();
- for (Index i=0; i<size; ++i)
- {
- Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i+i, size-i) +=
- (numext::conj(alpha) * numext::conj(u.coeff(i))) * v.tail(size-i)
- + (alpha * numext::conj(v.coeff(i))) * u.tail(size-i);
- }
- }
-};
-
-template<typename Scalar, typename Index, typename UType, typename VType>
-struct selfadjoint_rank2_update_selector<Scalar,Index,UType,VType,Upper>
-{
- static void run(Scalar* mat, Index stride, const UType& u, const VType& v, const Scalar& alpha)
- {
- const Index size = u.size();
- for (Index i=0; i<size; ++i)
- Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i, i+1) +=
- (numext::conj(alpha) * numext::conj(u.coeff(i))) * v.head(i+1)
- + (alpha * numext::conj(v.coeff(i))) * u.head(i+1);
- }
-};
-
-template<bool Cond, typename T> struct conj_expr_if
- : conditional<!Cond, const T&,
- CwiseUnaryOp<scalar_conjugate_op<typename traits<T>::Scalar>,T> > {};
-
-} // end namespace internal
-
-template<typename MatrixType, unsigned int UpLo>
-template<typename DerivedU, typename DerivedV>
-SelfAdjointView<MatrixType,UpLo>& SelfAdjointView<MatrixType,UpLo>
-::rankUpdate(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, const Scalar& alpha)
-{
- typedef internal::blas_traits<DerivedU> UBlasTraits;
- typedef typename UBlasTraits::DirectLinearAccessType ActualUType;
- typedef typename internal::remove_all<ActualUType>::type _ActualUType;
- typename internal::add_const_on_value_type<ActualUType>::type actualU = UBlasTraits::extract(u.derived());
-
- typedef internal::blas_traits<DerivedV> VBlasTraits;
- typedef typename VBlasTraits::DirectLinearAccessType ActualVType;
- typedef typename internal::remove_all<ActualVType>::type _ActualVType;
- typename internal::add_const_on_value_type<ActualVType>::type actualV = VBlasTraits::extract(v.derived());
-
- // If MatrixType is row major, then we use the routine for lower triangular in the upper triangular case and
- // vice versa, and take the complex conjugate of all coefficients and vector entries.
-
- enum { IsRowMajor = (internal::traits<MatrixType>::Flags&RowMajorBit) ? 1 : 0 };
- Scalar actualAlpha = alpha * UBlasTraits::extractScalarFactor(u.derived())
- * numext::conj(VBlasTraits::extractScalarFactor(v.derived()));
- if (IsRowMajor)
- actualAlpha = numext::conj(actualAlpha);
-
- internal::selfadjoint_rank2_update_selector<Scalar, Index,
- typename internal::remove_all<typename internal::conj_expr_if<IsRowMajor ^ UBlasTraits::NeedToConjugate,_ActualUType>::type>::type,
- typename internal::remove_all<typename internal::conj_expr_if<IsRowMajor ^ VBlasTraits::NeedToConjugate,_ActualVType>::type>::type,
- (IsRowMajor ? int(UpLo==Upper ? Lower : Upper) : UpLo)>
- ::run(_expression().const_cast_derived().data(),_expression().outerStride(),actualU,actualV,actualAlpha);
-
- return *this;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SELFADJOINTRANK2UPTADE_H
diff --git a/src/Eigen/src/Core/products/TriangularMatrixMatrix.h b/src/Eigen/src/Core/products/TriangularMatrixMatrix.h
deleted file mode 100644
index 8110507..0000000
--- a/src/Eigen/src/Core/products/TriangularMatrixMatrix.h
+++ /dev/null
@@ -1,427 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_TRIANGULAR_MATRIX_MATRIX_H
-#define EIGEN_TRIANGULAR_MATRIX_MATRIX_H
-
-namespace Eigen {
-
-namespace internal {
-
-// template<typename Scalar, int mr, int StorageOrder, bool Conjugate, int Mode>
-// struct gemm_pack_lhs_triangular
-// {
-// Matrix<Scalar,mr,mr,
-// void operator()(Scalar* blockA, const EIGEN_RESTRICT Scalar* _lhs, int lhsStride, int depth, int rows)
-// {
-// conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
-// const_blas_data_mapper<Scalar, StorageOrder> lhs(_lhs,lhsStride);
-// int count = 0;
-// const int peeled_mc = (rows/mr)*mr;
-// for(int i=0; i<peeled_mc; i+=mr)
-// {
-// for(int k=0; k<depth; k++)
-// for(int w=0; w<mr; w++)
-// blockA[count++] = cj(lhs(i+w, k));
-// }
-// for(int i=peeled_mc; i<rows; i++)
-// {
-// for(int k=0; k<depth; k++)
-// blockA[count++] = cj(lhs(i, k));
-// }
-// }
-// };
-
-/* Optimized triangular matrix * matrix (_TRMM++) product built on top of
- * the general matrix matrix product.
- */
-template <typename Scalar, typename Index,
- int Mode, bool LhsIsTriangular,
- int LhsStorageOrder, bool ConjugateLhs,
- int RhsStorageOrder, bool ConjugateRhs,
- int ResStorageOrder, int Version = Specialized>
-struct product_triangular_matrix_matrix;
-
-template <typename Scalar, typename Index,
- int Mode, bool LhsIsTriangular,
- int LhsStorageOrder, bool ConjugateLhs,
- int RhsStorageOrder, bool ConjugateRhs, int Version>
-struct product_triangular_matrix_matrix<Scalar,Index,Mode,LhsIsTriangular,
- LhsStorageOrder,ConjugateLhs,
- RhsStorageOrder,ConjugateRhs,RowMajor,Version>
-{
- static EIGEN_STRONG_INLINE void run(
- Index rows, Index cols, Index depth,
- const Scalar* lhs, Index lhsStride,
- const Scalar* rhs, Index rhsStride,
- Scalar* res, Index resStride,
- const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking)
- {
- product_triangular_matrix_matrix<Scalar, Index,
- (Mode&(UnitDiag|ZeroDiag)) | ((Mode&Upper) ? Lower : Upper),
- (!LhsIsTriangular),
- RhsStorageOrder==RowMajor ? ColMajor : RowMajor,
- ConjugateRhs,
- LhsStorageOrder==RowMajor ? ColMajor : RowMajor,
- ConjugateLhs,
- ColMajor>
- ::run(cols, rows, depth, rhs, rhsStride, lhs, lhsStride, res, resStride, alpha, blocking);
- }
-};
-
-// implements col-major += alpha * op(triangular) * op(general)
-template <typename Scalar, typename Index, int Mode,
- int LhsStorageOrder, bool ConjugateLhs,
- int RhsStorageOrder, bool ConjugateRhs, int Version>
-struct product_triangular_matrix_matrix<Scalar,Index,Mode,true,
- LhsStorageOrder,ConjugateLhs,
- RhsStorageOrder,ConjugateRhs,ColMajor,Version>
-{
-
- typedef gebp_traits<Scalar,Scalar> Traits;
- enum {
- SmallPanelWidth = 2 * EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
- IsLower = (Mode&Lower) == Lower,
- SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1
- };
-
- static EIGEN_DONT_INLINE void run(
- Index _rows, Index _cols, Index _depth,
- const Scalar* _lhs, Index lhsStride,
- const Scalar* _rhs, Index rhsStride,
- Scalar* res, Index resStride,
- const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking);
-};
-
-template <typename Scalar, typename Index, int Mode,
- int LhsStorageOrder, bool ConjugateLhs,
- int RhsStorageOrder, bool ConjugateRhs, int Version>
-EIGEN_DONT_INLINE void product_triangular_matrix_matrix<Scalar,Index,Mode,true,
- LhsStorageOrder,ConjugateLhs,
- RhsStorageOrder,ConjugateRhs,ColMajor,Version>::run(
- Index _rows, Index _cols, Index _depth,
- const Scalar* _lhs, Index lhsStride,
- const Scalar* _rhs, Index rhsStride,
- Scalar* res, Index resStride,
- const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking)
- {
- // strip zeros
- Index diagSize = (std::min)(_rows,_depth);
- Index rows = IsLower ? _rows : diagSize;
- Index depth = IsLower ? diagSize : _depth;
- Index cols = _cols;
-
- const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
- const_blas_data_mapper<Scalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);
-
- Index kc = blocking.kc(); // cache block size along the K direction
- Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction
-
- std::size_t sizeA = kc*mc;
- std::size_t sizeB = kc*cols;
- std::size_t sizeW = kc*Traits::WorkSpaceFactor;
-
- ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
- ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
- ei_declare_aligned_stack_constructed_variable(Scalar, blockW, sizeW, blocking.blockW());
-
- Matrix<Scalar,SmallPanelWidth,SmallPanelWidth,LhsStorageOrder> triangularBuffer;
- triangularBuffer.setZero();
- if((Mode&ZeroDiag)==ZeroDiag)
- triangularBuffer.diagonal().setZero();
- else
- triangularBuffer.diagonal().setOnes();
-
- gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
- gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
- gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
-
- for(Index k2=IsLower ? depth : 0;
- IsLower ? k2>0 : k2<depth;
- IsLower ? k2-=kc : k2+=kc)
- {
- Index actual_kc = (std::min)(IsLower ? k2 : depth-k2, kc);
- Index actual_k2 = IsLower ? k2-actual_kc : k2;
-
- // align blocks with the end of the triangular part for trapezoidal lhs
- if((!IsLower)&&(k2<rows)&&(k2+actual_kc>rows))
- {
- actual_kc = rows-k2;
- k2 = k2+actual_kc-kc;
- }
-
- pack_rhs(blockB, &rhs(actual_k2,0), rhsStride, actual_kc, cols);
-
- // the selected lhs's panel has to be split in three different parts:
- // 1 - the part which is zero => skip it
- // 2 - the diagonal block => special kernel
- // 3 - the dense panel below (lower case) or above (upper case) the diagonal block => GEPP
-
- // the block diagonal, if any:
- if(IsLower || actual_k2<rows)
- {
- // for each small vertical panels of lhs
- for (Index k1=0; k1<actual_kc; k1+=SmallPanelWidth)
- {
- Index actualPanelWidth = std::min<Index>(actual_kc-k1, SmallPanelWidth);
- Index lengthTarget = IsLower ? actual_kc-k1-actualPanelWidth : k1;
- Index startBlock = actual_k2+k1;
- Index blockBOffset = k1;
-
- // => GEBP with the micro triangular block
- // The trick is to pack this micro block while filling the opposite triangular part with zeros.
- // To this end we do an extra triangular copy to a small temporary buffer
- for (Index k=0;k<actualPanelWidth;++k)
- {
- if (SetDiag)
- triangularBuffer.coeffRef(k,k) = lhs(startBlock+k,startBlock+k);
- for (Index i=IsLower ? k+1 : 0; IsLower ? i<actualPanelWidth : i<k; ++i)
- triangularBuffer.coeffRef(i,k) = lhs(startBlock+i,startBlock+k);
- }
- pack_lhs(blockA, triangularBuffer.data(), triangularBuffer.outerStride(), actualPanelWidth, actualPanelWidth);
-
- gebp_kernel(res+startBlock, resStride, blockA, blockB, actualPanelWidth, actualPanelWidth, cols, alpha,
- actualPanelWidth, actual_kc, 0, blockBOffset, blockW);
-
- // GEBP with remaining micro panel
- if (lengthTarget>0)
- {
- Index startTarget = IsLower ? actual_k2+k1+actualPanelWidth : actual_k2;
-
- pack_lhs(blockA, &lhs(startTarget,startBlock), lhsStride, actualPanelWidth, lengthTarget);
-
- gebp_kernel(res+startTarget, resStride, blockA, blockB, lengthTarget, actualPanelWidth, cols, alpha,
- actualPanelWidth, actual_kc, 0, blockBOffset, blockW);
- }
- }
- }
- // the part below (lower case) or above (upper case) the diagonal => GEPP
- {
- Index start = IsLower ? k2 : 0;
- Index end = IsLower ? rows : (std::min)(actual_k2,rows);
- for(Index i2=start; i2<end; i2+=mc)
- {
- const Index actual_mc = (std::min)(i2+mc,end)-i2;
- gemm_pack_lhs<Scalar, Index, Traits::mr,Traits::LhsProgress, LhsStorageOrder,false>()
- (blockA, &lhs(i2, actual_k2), lhsStride, actual_kc, actual_mc);
-
- gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1, -1, 0, 0, blockW);
- }
- }
- }
- }
-
-// implements col-major += alpha * op(general) * op(triangular)
-template <typename Scalar, typename Index, int Mode,
- int LhsStorageOrder, bool ConjugateLhs,
- int RhsStorageOrder, bool ConjugateRhs, int Version>
-struct product_triangular_matrix_matrix<Scalar,Index,Mode,false,
- LhsStorageOrder,ConjugateLhs,
- RhsStorageOrder,ConjugateRhs,ColMajor,Version>
-{
- typedef gebp_traits<Scalar,Scalar> Traits;
- enum {
- SmallPanelWidth = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
- IsLower = (Mode&Lower) == Lower,
- SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1
- };
-
- static EIGEN_DONT_INLINE void run(
- Index _rows, Index _cols, Index _depth,
- const Scalar* _lhs, Index lhsStride,
- const Scalar* _rhs, Index rhsStride,
- Scalar* res, Index resStride,
- const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking);
-};
-
-template <typename Scalar, typename Index, int Mode,
- int LhsStorageOrder, bool ConjugateLhs,
- int RhsStorageOrder, bool ConjugateRhs, int Version>
-EIGEN_DONT_INLINE void product_triangular_matrix_matrix<Scalar,Index,Mode,false,
- LhsStorageOrder,ConjugateLhs,
- RhsStorageOrder,ConjugateRhs,ColMajor,Version>::run(
- Index _rows, Index _cols, Index _depth,
- const Scalar* _lhs, Index lhsStride,
- const Scalar* _rhs, Index rhsStride,
- Scalar* res, Index resStride,
- const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking)
- {
- // strip zeros
- Index diagSize = (std::min)(_cols,_depth);
- Index rows = _rows;
- Index depth = IsLower ? _depth : diagSize;
- Index cols = IsLower ? diagSize : _cols;
-
- const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
- const_blas_data_mapper<Scalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);
-
- Index kc = blocking.kc(); // cache block size along the K direction
- Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction
-
- std::size_t sizeA = kc*mc;
- std::size_t sizeB = kc*cols;
- std::size_t sizeW = kc*Traits::WorkSpaceFactor;
-
- ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
- ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
- ei_declare_aligned_stack_constructed_variable(Scalar, blockW, sizeW, blocking.blockW());
-
- Matrix<Scalar,SmallPanelWidth,SmallPanelWidth,RhsStorageOrder> triangularBuffer;
- triangularBuffer.setZero();
- if((Mode&ZeroDiag)==ZeroDiag)
- triangularBuffer.diagonal().setZero();
- else
- triangularBuffer.diagonal().setOnes();
-
- gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
- gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
- gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
- gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder,false,true> pack_rhs_panel;
-
- for(Index k2=IsLower ? 0 : depth;
- IsLower ? k2<depth : k2>0;
- IsLower ? k2+=kc : k2-=kc)
- {
- Index actual_kc = (std::min)(IsLower ? depth-k2 : k2, kc);
- Index actual_k2 = IsLower ? k2 : k2-actual_kc;
-
- // align blocks with the end of the triangular part for trapezoidal rhs
- if(IsLower && (k2<cols) && (actual_k2+actual_kc>cols))
- {
- actual_kc = cols-k2;
- k2 = actual_k2 + actual_kc - kc;
- }
-
- // remaining size
- Index rs = IsLower ? (std::min)(cols,actual_k2) : cols - k2;
- // size of the triangular part
- Index ts = (IsLower && actual_k2>=cols) ? 0 : actual_kc;
-
- Scalar* geb = blockB+ts*ts;
-
- pack_rhs(geb, &rhs(actual_k2,IsLower ? 0 : k2), rhsStride, actual_kc, rs);
-
- // pack the triangular part of the rhs padding the unrolled blocks with zeros
- if(ts>0)
- {
- for (Index j2=0; j2<actual_kc; j2+=SmallPanelWidth)
- {
- Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
- Index actual_j2 = actual_k2 + j2;
- Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
- Index panelLength = IsLower ? actual_kc-j2-actualPanelWidth : j2;
- // general part
- pack_rhs_panel(blockB+j2*actual_kc,
- &rhs(actual_k2+panelOffset, actual_j2), rhsStride,
- panelLength, actualPanelWidth,
- actual_kc, panelOffset);
-
- // append the triangular part via a temporary buffer
- for (Index j=0;j<actualPanelWidth;++j)
- {
- if (SetDiag)
- triangularBuffer.coeffRef(j,j) = rhs(actual_j2+j,actual_j2+j);
- for (Index k=IsLower ? j+1 : 0; IsLower ? k<actualPanelWidth : k<j; ++k)
- triangularBuffer.coeffRef(k,j) = rhs(actual_j2+k,actual_j2+j);
- }
-
- pack_rhs_panel(blockB+j2*actual_kc,
- triangularBuffer.data(), triangularBuffer.outerStride(),
- actualPanelWidth, actualPanelWidth,
- actual_kc, j2);
- }
- }
-
- for (Index i2=0; i2<rows; i2+=mc)
- {
- const Index actual_mc = (std::min)(mc,rows-i2);
- pack_lhs(blockA, &lhs(i2, actual_k2), lhsStride, actual_kc, actual_mc);
-
- // triangular kernel
- if(ts>0)
- {
- for (Index j2=0; j2<actual_kc; j2+=SmallPanelWidth)
- {
- Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
- Index panelLength = IsLower ? actual_kc-j2 : j2+actualPanelWidth;
- Index blockOffset = IsLower ? j2 : 0;
-
- gebp_kernel(res+i2+(actual_k2+j2)*resStride, resStride,
- blockA, blockB+j2*actual_kc,
- actual_mc, panelLength, actualPanelWidth,
- alpha,
- actual_kc, actual_kc, // strides
- blockOffset, blockOffset,// offsets
- blockW); // workspace
- }
- }
- gebp_kernel(res+i2+(IsLower ? 0 : k2)*resStride, resStride,
- blockA, geb, actual_mc, actual_kc, rs,
- alpha,
- -1, -1, 0, 0, blockW);
- }
- }
- }
-
-/***************************************************************************
-* Wrapper to product_triangular_matrix_matrix
-***************************************************************************/
-
-template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
-struct traits<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false> >
- : traits<ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>, Lhs, Rhs> >
-{};
-
-} // end namespace internal
-
-template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
-struct TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>
- : public ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>, Lhs, Rhs >
-{
- EIGEN_PRODUCT_PUBLIC_INTERFACE(TriangularProduct)
-
- TriangularProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
- {
- typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
- typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
-
- Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
- * RhsBlasTraits::extractScalarFactor(m_rhs);
-
- typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,Scalar,Scalar,
- Lhs::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime, Lhs::MaxColsAtCompileTime,4> BlockingType;
-
- enum { IsLower = (Mode&Lower) == Lower };
- Index stripedRows = ((!LhsIsTriangular) || (IsLower)) ? lhs.rows() : (std::min)(lhs.rows(),lhs.cols());
- Index stripedCols = ((LhsIsTriangular) || (!IsLower)) ? rhs.cols() : (std::min)(rhs.cols(),rhs.rows());
- Index stripedDepth = LhsIsTriangular ? ((!IsLower) ? lhs.cols() : (std::min)(lhs.cols(),lhs.rows()))
- : ((IsLower) ? rhs.rows() : (std::min)(rhs.rows(),rhs.cols()));
-
- BlockingType blocking(stripedRows, stripedCols, stripedDepth);
-
- internal::product_triangular_matrix_matrix<Scalar, Index,
- Mode, LhsIsTriangular,
- (internal::traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
- (internal::traits<_ActualRhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
- (internal::traits<Dest >::Flags&RowMajorBit) ? RowMajor : ColMajor>
- ::run(
- stripedRows, stripedCols, stripedDepth, // sizes
- &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
- &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info
- &dst.coeffRef(0,0), dst.outerStride(), // result info
- actualAlpha, blocking
- );
- }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_TRIANGULAR_MATRIX_MATRIX_H
diff --git a/src/Eigen/src/Core/products/TriangularMatrixMatrix_MKL.h b/src/Eigen/src/Core/products/TriangularMatrixMatrix_MKL.h
deleted file mode 100644
index ba41a1c..0000000
--- a/src/Eigen/src/Core/products/TriangularMatrixMatrix_MKL.h
+++ /dev/null
@@ -1,309 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * Triangular matrix * matrix product functionality based on ?TRMM.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_TRIANGULAR_MATRIX_MATRIX_MKL_H
-#define EIGEN_TRIANGULAR_MATRIX_MATRIX_MKL_H
-
-namespace Eigen {
-
-namespace internal {
-
-
-template <typename Scalar, typename Index,
- int Mode, bool LhsIsTriangular,
- int LhsStorageOrder, bool ConjugateLhs,
- int RhsStorageOrder, bool ConjugateRhs,
- int ResStorageOrder>
-struct product_triangular_matrix_matrix_trmm :
- product_triangular_matrix_matrix<Scalar,Index,Mode,
- LhsIsTriangular,LhsStorageOrder,ConjugateLhs,
- RhsStorageOrder, ConjugateRhs, ResStorageOrder, BuiltIn> {};
-
-
-// try to go to BLAS specialization
-#define EIGEN_MKL_TRMM_SPECIALIZE(Scalar, LhsIsTriangular) \
-template <typename Index, int Mode, \
- int LhsStorageOrder, bool ConjugateLhs, \
- int RhsStorageOrder, bool ConjugateRhs> \
-struct product_triangular_matrix_matrix<Scalar,Index, Mode, LhsIsTriangular, \
- LhsStorageOrder,ConjugateLhs, RhsStorageOrder,ConjugateRhs,ColMajor,Specialized> { \
- static inline void run(Index _rows, Index _cols, Index _depth, const Scalar* _lhs, Index lhsStride,\
- const Scalar* _rhs, Index rhsStride, Scalar* res, Index resStride, Scalar alpha, level3_blocking<Scalar,Scalar>& blocking) { \
- product_triangular_matrix_matrix_trmm<Scalar,Index,Mode, \
- LhsIsTriangular,LhsStorageOrder,ConjugateLhs, \
- RhsStorageOrder, ConjugateRhs, ColMajor>::run( \
- _rows, _cols, _depth, _lhs, lhsStride, _rhs, rhsStride, res, resStride, alpha, blocking); \
- } \
-};
-
-EIGEN_MKL_TRMM_SPECIALIZE(double, true)
-EIGEN_MKL_TRMM_SPECIALIZE(double, false)
-EIGEN_MKL_TRMM_SPECIALIZE(dcomplex, true)
-EIGEN_MKL_TRMM_SPECIALIZE(dcomplex, false)
-EIGEN_MKL_TRMM_SPECIALIZE(float, true)
-EIGEN_MKL_TRMM_SPECIALIZE(float, false)
-EIGEN_MKL_TRMM_SPECIALIZE(scomplex, true)
-EIGEN_MKL_TRMM_SPECIALIZE(scomplex, false)
-
-// implements col-major += alpha * op(triangular) * op(general)
-#define EIGEN_MKL_TRMM_L(EIGTYPE, MKLTYPE, EIGPREFIX, MKLPREFIX) \
-template <typename Index, int Mode, \
- int LhsStorageOrder, bool ConjugateLhs, \
- int RhsStorageOrder, bool ConjugateRhs> \
-struct product_triangular_matrix_matrix_trmm<EIGTYPE,Index,Mode,true, \
- LhsStorageOrder,ConjugateLhs,RhsStorageOrder,ConjugateRhs,ColMajor> \
-{ \
- enum { \
- IsLower = (Mode&Lower) == Lower, \
- SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1, \
- IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \
- IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \
- LowUp = IsLower ? Lower : Upper, \
- conjA = ((LhsStorageOrder==ColMajor) && ConjugateLhs) ? 1 : 0 \
- }; \
-\
- static void run( \
- Index _rows, Index _cols, Index _depth, \
- const EIGTYPE* _lhs, Index lhsStride, \
- const EIGTYPE* _rhs, Index rhsStride, \
- EIGTYPE* res, Index resStride, \
- EIGTYPE alpha, level3_blocking<EIGTYPE,EIGTYPE>& blocking) \
- { \
- Index diagSize = (std::min)(_rows,_depth); \
- Index rows = IsLower ? _rows : diagSize; \
- Index depth = IsLower ? diagSize : _depth; \
- Index cols = _cols; \
-\
- typedef Matrix<EIGTYPE, Dynamic, Dynamic, LhsStorageOrder> MatrixLhs; \
- typedef Matrix<EIGTYPE, Dynamic, Dynamic, RhsStorageOrder> MatrixRhs; \
-\
-/* Non-square case - doesn't fit to MKL ?TRMM. Fall to default triangular product or call MKL ?GEMM*/ \
- if (rows != depth) { \
-\
- int nthr = mkl_domain_get_max_threads(MKL_BLAS); \
-\
- if (((nthr==1) && (((std::max)(rows,depth)-diagSize)/(double)diagSize < 0.5))) { \
- /* Most likely no benefit to call TRMM or GEMM from MKL*/ \
- product_triangular_matrix_matrix<EIGTYPE,Index,Mode,true, \
- LhsStorageOrder,ConjugateLhs, RhsStorageOrder, ConjugateRhs, ColMajor, BuiltIn>::run( \
- _rows, _cols, _depth, _lhs, lhsStride, _rhs, rhsStride, res, resStride, alpha, blocking); \
- /*std::cout << "TRMM_L: A is not square! Go to Eigen TRMM implementation!\n";*/ \
- } else { \
- /* Make sense to call GEMM */ \
- Map<const MatrixLhs, 0, OuterStride<> > lhsMap(_lhs,rows,depth,OuterStride<>(lhsStride)); \
- MatrixLhs aa_tmp=lhsMap.template triangularView<Mode>(); \
- MKL_INT aStride = aa_tmp.outerStride(); \
- gemm_blocking_space<ColMajor,EIGTYPE,EIGTYPE,Dynamic,Dynamic,Dynamic> gemm_blocking(_rows,_cols,_depth); \
- general_matrix_matrix_product<Index,EIGTYPE,LhsStorageOrder,ConjugateLhs,EIGTYPE,RhsStorageOrder,ConjugateRhs,ColMajor>::run( \
- rows, cols, depth, aa_tmp.data(), aStride, _rhs, rhsStride, res, resStride, alpha, gemm_blocking, 0); \
-\
- /*std::cout << "TRMM_L: A is not square! Go to MKL GEMM implementation! " << nthr<<" \n";*/ \
- } \
- return; \
- } \
- char side = 'L', transa, uplo, diag = 'N'; \
- EIGTYPE *b; \
- const EIGTYPE *a; \
- MKL_INT m, n, lda, ldb; \
- MKLTYPE alpha_; \
-\
-/* Set alpha_*/ \
- assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(alpha_, alpha); \
-\
-/* Set m, n */ \
- m = (MKL_INT)diagSize; \
- n = (MKL_INT)cols; \
-\
-/* Set trans */ \
- transa = (LhsStorageOrder==RowMajor) ? ((ConjugateLhs) ? 'C' : 'T') : 'N'; \
-\
-/* Set b, ldb */ \
- Map<const MatrixRhs, 0, OuterStride<> > rhs(_rhs,depth,cols,OuterStride<>(rhsStride)); \
- MatrixX##EIGPREFIX b_tmp; \
-\
- if (ConjugateRhs) b_tmp = rhs.conjugate(); else b_tmp = rhs; \
- b = b_tmp.data(); \
- ldb = b_tmp.outerStride(); \
-\
-/* Set uplo */ \
- uplo = IsLower ? 'L' : 'U'; \
- if (LhsStorageOrder==RowMajor) uplo = (uplo == 'L') ? 'U' : 'L'; \
-/* Set a, lda */ \
- Map<const MatrixLhs, 0, OuterStride<> > lhs(_lhs,rows,depth,OuterStride<>(lhsStride)); \
- MatrixLhs a_tmp; \
-\
- if ((conjA!=0) || (SetDiag==0)) { \
- if (conjA) a_tmp = lhs.conjugate(); else a_tmp = lhs; \
- if (IsZeroDiag) \
- a_tmp.diagonal().setZero(); \
- else if (IsUnitDiag) \
- a_tmp.diagonal().setOnes();\
- a = a_tmp.data(); \
- lda = a_tmp.outerStride(); \
- } else { \
- a = _lhs; \
- lda = lhsStride; \
- } \
- /*std::cout << "TRMM_L: A is square! Go to MKL TRMM implementation! \n";*/ \
-/* call ?trmm*/ \
- MKLPREFIX##trmm(&side, &uplo, &transa, &diag, &m, &n, &alpha_, (const MKLTYPE*)a, &lda, (MKLTYPE*)b, &ldb); \
-\
-/* Add op(a_triangular)*b into res*/ \
- Map<MatrixX##EIGPREFIX, 0, OuterStride<> > res_tmp(res,rows,cols,OuterStride<>(resStride)); \
- res_tmp=res_tmp+b_tmp; \
- } \
-};
-
-EIGEN_MKL_TRMM_L(double, double, d, d)
-EIGEN_MKL_TRMM_L(dcomplex, MKL_Complex16, cd, z)
-EIGEN_MKL_TRMM_L(float, float, f, s)
-EIGEN_MKL_TRMM_L(scomplex, MKL_Complex8, cf, c)
-
-// implements col-major += alpha * op(general) * op(triangular)
-#define EIGEN_MKL_TRMM_R(EIGTYPE, MKLTYPE, EIGPREFIX, MKLPREFIX) \
-template <typename Index, int Mode, \
- int LhsStorageOrder, bool ConjugateLhs, \
- int RhsStorageOrder, bool ConjugateRhs> \
-struct product_triangular_matrix_matrix_trmm<EIGTYPE,Index,Mode,false, \
- LhsStorageOrder,ConjugateLhs,RhsStorageOrder,ConjugateRhs,ColMajor> \
-{ \
- enum { \
- IsLower = (Mode&Lower) == Lower, \
- SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1, \
- IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \
- IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \
- LowUp = IsLower ? Lower : Upper, \
- conjA = ((RhsStorageOrder==ColMajor) && ConjugateRhs) ? 1 : 0 \
- }; \
-\
- static void run( \
- Index _rows, Index _cols, Index _depth, \
- const EIGTYPE* _lhs, Index lhsStride, \
- const EIGTYPE* _rhs, Index rhsStride, \
- EIGTYPE* res, Index resStride, \
- EIGTYPE alpha, level3_blocking<EIGTYPE,EIGTYPE>& blocking) \
- { \
- Index diagSize = (std::min)(_cols,_depth); \
- Index rows = _rows; \
- Index depth = IsLower ? _depth : diagSize; \
- Index cols = IsLower ? diagSize : _cols; \
-\
- typedef Matrix<EIGTYPE, Dynamic, Dynamic, LhsStorageOrder> MatrixLhs; \
- typedef Matrix<EIGTYPE, Dynamic, Dynamic, RhsStorageOrder> MatrixRhs; \
-\
-/* Non-square case - doesn't fit to MKL ?TRMM. Fall to default triangular product or call MKL ?GEMM*/ \
- if (cols != depth) { \
-\
- int nthr = mkl_domain_get_max_threads(MKL_BLAS); \
-\
- if ((nthr==1) && (((std::max)(cols,depth)-diagSize)/(double)diagSize < 0.5)) { \
- /* Most likely no benefit to call TRMM or GEMM from MKL*/ \
- product_triangular_matrix_matrix<EIGTYPE,Index,Mode,false, \
- LhsStorageOrder,ConjugateLhs, RhsStorageOrder, ConjugateRhs, ColMajor, BuiltIn>::run( \
- _rows, _cols, _depth, _lhs, lhsStride, _rhs, rhsStride, res, resStride, alpha, blocking); \
- /*std::cout << "TRMM_R: A is not square! Go to Eigen TRMM implementation!\n";*/ \
- } else { \
- /* Make sense to call GEMM */ \
- Map<const MatrixRhs, 0, OuterStride<> > rhsMap(_rhs,depth,cols, OuterStride<>(rhsStride)); \
- MatrixRhs aa_tmp=rhsMap.template triangularView<Mode>(); \
- MKL_INT aStride = aa_tmp.outerStride(); \
- gemm_blocking_space<ColMajor,EIGTYPE,EIGTYPE,Dynamic,Dynamic,Dynamic> gemm_blocking(_rows,_cols,_depth); \
- general_matrix_matrix_product<Index,EIGTYPE,LhsStorageOrder,ConjugateLhs,EIGTYPE,RhsStorageOrder,ConjugateRhs,ColMajor>::run( \
- rows, cols, depth, _lhs, lhsStride, aa_tmp.data(), aStride, res, resStride, alpha, gemm_blocking, 0); \
-\
- /*std::cout << "TRMM_R: A is not square! Go to MKL GEMM implementation! " << nthr<<" \n";*/ \
- } \
- return; \
- } \
- char side = 'R', transa, uplo, diag = 'N'; \
- EIGTYPE *b; \
- const EIGTYPE *a; \
- MKL_INT m, n, lda, ldb; \
- MKLTYPE alpha_; \
-\
-/* Set alpha_*/ \
- assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(alpha_, alpha); \
-\
-/* Set m, n */ \
- m = (MKL_INT)rows; \
- n = (MKL_INT)diagSize; \
-\
-/* Set trans */ \
- transa = (RhsStorageOrder==RowMajor) ? ((ConjugateRhs) ? 'C' : 'T') : 'N'; \
-\
-/* Set b, ldb */ \
- Map<const MatrixLhs, 0, OuterStride<> > lhs(_lhs,rows,depth,OuterStride<>(lhsStride)); \
- MatrixX##EIGPREFIX b_tmp; \
-\
- if (ConjugateLhs) b_tmp = lhs.conjugate(); else b_tmp = lhs; \
- b = b_tmp.data(); \
- ldb = b_tmp.outerStride(); \
-\
-/* Set uplo */ \
- uplo = IsLower ? 'L' : 'U'; \
- if (RhsStorageOrder==RowMajor) uplo = (uplo == 'L') ? 'U' : 'L'; \
-/* Set a, lda */ \
- Map<const MatrixRhs, 0, OuterStride<> > rhs(_rhs,depth,cols, OuterStride<>(rhsStride)); \
- MatrixRhs a_tmp; \
-\
- if ((conjA!=0) || (SetDiag==0)) { \
- if (conjA) a_tmp = rhs.conjugate(); else a_tmp = rhs; \
- if (IsZeroDiag) \
- a_tmp.diagonal().setZero(); \
- else if (IsUnitDiag) \
- a_tmp.diagonal().setOnes();\
- a = a_tmp.data(); \
- lda = a_tmp.outerStride(); \
- } else { \
- a = _rhs; \
- lda = rhsStride; \
- } \
- /*std::cout << "TRMM_R: A is square! Go to MKL TRMM implementation! \n";*/ \
-/* call ?trmm*/ \
- MKLPREFIX##trmm(&side, &uplo, &transa, &diag, &m, &n, &alpha_, (const MKLTYPE*)a, &lda, (MKLTYPE*)b, &ldb); \
-\
-/* Add op(a_triangular)*b into res*/ \
- Map<MatrixX##EIGPREFIX, 0, OuterStride<> > res_tmp(res,rows,cols,OuterStride<>(resStride)); \
- res_tmp=res_tmp+b_tmp; \
- } \
-};
-
-EIGEN_MKL_TRMM_R(double, double, d, d)
-EIGEN_MKL_TRMM_R(dcomplex, MKL_Complex16, cd, z)
-EIGEN_MKL_TRMM_R(float, float, f, s)
-EIGEN_MKL_TRMM_R(scomplex, MKL_Complex8, cf, c)
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_TRIANGULAR_MATRIX_MATRIX_MKL_H
diff --git a/src/Eigen/src/Core/products/TriangularMatrixVector.h b/src/Eigen/src/Core/products/TriangularMatrixVector.h
deleted file mode 100644
index 6117d5a..0000000
--- a/src/Eigen/src/Core/products/TriangularMatrixVector.h
+++ /dev/null
@@ -1,348 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_TRIANGULARMATRIXVECTOR_H
-#define EIGEN_TRIANGULARMATRIXVECTOR_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs, int StorageOrder, int Version=Specialized>
-struct triangular_matrix_vector_product;
-
-template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs, int Version>
-struct triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,ColMajor,Version>
-{
- typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
- enum {
- IsLower = ((Mode&Lower)==Lower),
- HasUnitDiag = (Mode & UnitDiag)==UnitDiag,
- HasZeroDiag = (Mode & ZeroDiag)==ZeroDiag
- };
- static EIGEN_DONT_INLINE void run(Index _rows, Index _cols, const LhsScalar* _lhs, Index lhsStride,
- const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, const ResScalar& alpha);
-};
-
-template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs, int Version>
-EIGEN_DONT_INLINE void triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,ColMajor,Version>
- ::run(Index _rows, Index _cols, const LhsScalar* _lhs, Index lhsStride,
- const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, const ResScalar& alpha)
- {
- static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH;
- Index size = (std::min)(_rows,_cols);
- Index rows = IsLower ? _rows : (std::min)(_rows,_cols);
- Index cols = IsLower ? (std::min)(_rows,_cols) : _cols;
-
- typedef Map<const Matrix<LhsScalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > LhsMap;
- const LhsMap lhs(_lhs,rows,cols,OuterStride<>(lhsStride));
- typename conj_expr_if<ConjLhs,LhsMap>::type cjLhs(lhs);
-
- typedef Map<const Matrix<RhsScalar,Dynamic,1>, 0, InnerStride<> > RhsMap;
- const RhsMap rhs(_rhs,cols,InnerStride<>(rhsIncr));
- typename conj_expr_if<ConjRhs,RhsMap>::type cjRhs(rhs);
-
- typedef Map<Matrix<ResScalar,Dynamic,1> > ResMap;
- ResMap res(_res,rows);
-
- for (Index pi=0; pi<size; pi+=PanelWidth)
- {
- Index actualPanelWidth = (std::min)(PanelWidth, size-pi);
- for (Index k=0; k<actualPanelWidth; ++k)
- {
- Index i = pi + k;
- Index s = IsLower ? ((HasUnitDiag||HasZeroDiag) ? i+1 : i ) : pi;
- Index r = IsLower ? actualPanelWidth-k : k+1;
- if ((!(HasUnitDiag||HasZeroDiag)) || (--r)>0)
- res.segment(s,r) += (alpha * cjRhs.coeff(i)) * cjLhs.col(i).segment(s,r);
- if (HasUnitDiag)
- res.coeffRef(i) += alpha * cjRhs.coeff(i);
- }
- Index r = IsLower ? rows - pi - actualPanelWidth : pi;
- if (r>0)
- {
- Index s = IsLower ? pi+actualPanelWidth : 0;
- general_matrix_vector_product<Index,LhsScalar,ColMajor,ConjLhs,RhsScalar,ConjRhs,BuiltIn>::run(
- r, actualPanelWidth,
- &lhs.coeffRef(s,pi), lhsStride,
- &rhs.coeffRef(pi), rhsIncr,
- &res.coeffRef(s), resIncr, alpha);
- }
- }
- if((!IsLower) && cols>size)
- {
- general_matrix_vector_product<Index,LhsScalar,ColMajor,ConjLhs,RhsScalar,ConjRhs>::run(
- rows, cols-size,
- &lhs.coeffRef(0,size), lhsStride,
- &rhs.coeffRef(size), rhsIncr,
- _res, resIncr, alpha);
- }
- }
-
-template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs,int Version>
-struct triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,RowMajor,Version>
-{
- typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
- enum {
- IsLower = ((Mode&Lower)==Lower),
- HasUnitDiag = (Mode & UnitDiag)==UnitDiag,
- HasZeroDiag = (Mode & ZeroDiag)==ZeroDiag
- };
- static EIGEN_DONT_INLINE void run(Index _rows, Index _cols, const LhsScalar* _lhs, Index lhsStride,
- const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, const ResScalar& alpha);
-};
-
-template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs,int Version>
-EIGEN_DONT_INLINE void triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,RowMajor,Version>
- ::run(Index _rows, Index _cols, const LhsScalar* _lhs, Index lhsStride,
- const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, const ResScalar& alpha)
- {
- static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH;
- Index diagSize = (std::min)(_rows,_cols);
- Index rows = IsLower ? _rows : diagSize;
- Index cols = IsLower ? diagSize : _cols;
-
- typedef Map<const Matrix<LhsScalar,Dynamic,Dynamic,RowMajor>, 0, OuterStride<> > LhsMap;
- const LhsMap lhs(_lhs,rows,cols,OuterStride<>(lhsStride));
- typename conj_expr_if<ConjLhs,LhsMap>::type cjLhs(lhs);
-
- typedef Map<const Matrix<RhsScalar,Dynamic,1> > RhsMap;
- const RhsMap rhs(_rhs,cols);
- typename conj_expr_if<ConjRhs,RhsMap>::type cjRhs(rhs);
-
- typedef Map<Matrix<ResScalar,Dynamic,1>, 0, InnerStride<> > ResMap;
- ResMap res(_res,rows,InnerStride<>(resIncr));
-
- for (Index pi=0; pi<diagSize; pi+=PanelWidth)
- {
- Index actualPanelWidth = (std::min)(PanelWidth, diagSize-pi);
- for (Index k=0; k<actualPanelWidth; ++k)
- {
- Index i = pi + k;
- Index s = IsLower ? pi : ((HasUnitDiag||HasZeroDiag) ? i+1 : i);
- Index r = IsLower ? k+1 : actualPanelWidth-k;
- if ((!(HasUnitDiag||HasZeroDiag)) || (--r)>0)
- res.coeffRef(i) += alpha * (cjLhs.row(i).segment(s,r).cwiseProduct(cjRhs.segment(s,r).transpose())).sum();
- if (HasUnitDiag)
- res.coeffRef(i) += alpha * cjRhs.coeff(i);
- }
- Index r = IsLower ? pi : cols - pi - actualPanelWidth;
- if (r>0)
- {
- Index s = IsLower ? 0 : pi + actualPanelWidth;
- general_matrix_vector_product<Index,LhsScalar,RowMajor,ConjLhs,RhsScalar,ConjRhs,BuiltIn>::run(
- actualPanelWidth, r,
- &lhs.coeffRef(pi,s), lhsStride,
- &rhs.coeffRef(s), rhsIncr,
- &res.coeffRef(pi), resIncr, alpha);
- }
- }
- if(IsLower && rows>diagSize)
- {
- general_matrix_vector_product<Index,LhsScalar,RowMajor,ConjLhs,RhsScalar,ConjRhs>::run(
- rows-diagSize, cols,
- &lhs.coeffRef(diagSize,0), lhsStride,
- &rhs.coeffRef(0), rhsIncr,
- &res.coeffRef(diagSize), resIncr, alpha);
- }
- }
-
-/***************************************************************************
-* Wrapper to product_triangular_vector
-***************************************************************************/
-
-template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
-struct traits<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,true> >
- : traits<ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,true>, Lhs, Rhs> >
-{};
-
-template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
-struct traits<TriangularProduct<Mode,LhsIsTriangular,Lhs,true,Rhs,false> >
- : traits<ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,true,Rhs,false>, Lhs, Rhs> >
-{};
-
-
-template<int StorageOrder>
-struct trmv_selector;
-
-} // end namespace internal
-
-template<int Mode, typename Lhs, typename Rhs>
-struct TriangularProduct<Mode,true,Lhs,false,Rhs,true>
- : public ProductBase<TriangularProduct<Mode,true,Lhs,false,Rhs,true>, Lhs, Rhs >
-{
- EIGEN_PRODUCT_PUBLIC_INTERFACE(TriangularProduct)
-
- TriangularProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
- {
- eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
-
- internal::trmv_selector<(int(internal::traits<Lhs>::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(*this, dst, alpha);
- }
-};
-
-template<int Mode, typename Lhs, typename Rhs>
-struct TriangularProduct<Mode,false,Lhs,true,Rhs,false>
- : public ProductBase<TriangularProduct<Mode,false,Lhs,true,Rhs,false>, Lhs, Rhs >
-{
- EIGEN_PRODUCT_PUBLIC_INTERFACE(TriangularProduct)
-
- TriangularProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
- {
- eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
-
- typedef TriangularProduct<(Mode & (UnitDiag|ZeroDiag)) | ((Mode & Lower) ? Upper : Lower),true,Transpose<const Rhs>,false,Transpose<const Lhs>,true> TriangularProductTranspose;
- Transpose<Dest> dstT(dst);
- internal::trmv_selector<(int(internal::traits<Rhs>::Flags)&RowMajorBit) ? ColMajor : RowMajor>::run(
- TriangularProductTranspose(m_rhs.transpose(),m_lhs.transpose()), dstT, alpha);
- }
-};
-
-namespace internal {
-
-// TODO: find a way to factorize this piece of code with gemv_selector since the logic is exactly the same.
-
-template<> struct trmv_selector<ColMajor>
-{
- template<int Mode, typename Lhs, typename Rhs, typename Dest>
- static void run(const TriangularProduct<Mode,true,Lhs,false,Rhs,true>& prod, Dest& dest, const typename TriangularProduct<Mode,true,Lhs,false,Rhs,true>::Scalar& alpha)
- {
- typedef TriangularProduct<Mode,true,Lhs,false,Rhs,true> ProductType;
- typedef typename ProductType::Index Index;
- typedef typename ProductType::LhsScalar LhsScalar;
- typedef typename ProductType::RhsScalar RhsScalar;
- typedef typename ProductType::Scalar ResScalar;
- typedef typename ProductType::RealScalar RealScalar;
- typedef typename ProductType::ActualLhsType ActualLhsType;
- typedef typename ProductType::ActualRhsType ActualRhsType;
- typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
- typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
- typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
-
- typename internal::add_const_on_value_type<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
- typename internal::add_const_on_value_type<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
-
- ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
- * RhsBlasTraits::extractScalarFactor(prod.rhs());
-
- enum {
- // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
- // on, the other hand it is good for the cache to pack the vector anyways...
- EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1,
- ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
- MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal
- };
-
- gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
-
- bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0));
- bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
-
- RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);
-
- ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
- evalToDest ? dest.data() : static_dest.data());
-
- if(!evalToDest)
- {
- #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- Index size = dest.size();
- EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- #endif
- if(!alphaIsCompatible)
- {
- MappedDest(actualDestPtr, dest.size()).setZero();
- compatibleAlpha = RhsScalar(1);
- }
- else
- MappedDest(actualDestPtr, dest.size()) = dest;
- }
-
- internal::triangular_matrix_vector_product
- <Index,Mode,
- LhsScalar, LhsBlasTraits::NeedToConjugate,
- RhsScalar, RhsBlasTraits::NeedToConjugate,
- ColMajor>
- ::run(actualLhs.rows(),actualLhs.cols(),
- actualLhs.data(),actualLhs.outerStride(),
- actualRhs.data(),actualRhs.innerStride(),
- actualDestPtr,1,compatibleAlpha);
-
- if (!evalToDest)
- {
- if(!alphaIsCompatible)
- dest += actualAlpha * MappedDest(actualDestPtr, dest.size());
- else
- dest = MappedDest(actualDestPtr, dest.size());
- }
- }
-};
-
-template<> struct trmv_selector<RowMajor>
-{
- template<int Mode, typename Lhs, typename Rhs, typename Dest>
- static void run(const TriangularProduct<Mode,true,Lhs,false,Rhs,true>& prod, Dest& dest, const typename TriangularProduct<Mode,true,Lhs,false,Rhs,true>::Scalar& alpha)
- {
- typedef TriangularProduct<Mode,true,Lhs,false,Rhs,true> ProductType;
- typedef typename ProductType::LhsScalar LhsScalar;
- typedef typename ProductType::RhsScalar RhsScalar;
- typedef typename ProductType::Scalar ResScalar;
- typedef typename ProductType::Index Index;
- typedef typename ProductType::ActualLhsType ActualLhsType;
- typedef typename ProductType::ActualRhsType ActualRhsType;
- typedef typename ProductType::_ActualRhsType _ActualRhsType;
- typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
- typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
-
- typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
- typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
-
- ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
- * RhsBlasTraits::extractScalarFactor(prod.rhs());
-
- enum {
- DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
- };
-
- gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
-
- ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
- DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());
-
- if(!DirectlyUseRhs)
- {
- #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- int size = actualRhs.size();
- EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- #endif
- Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
- }
-
- internal::triangular_matrix_vector_product
- <Index,Mode,
- LhsScalar, LhsBlasTraits::NeedToConjugate,
- RhsScalar, RhsBlasTraits::NeedToConjugate,
- RowMajor>
- ::run(actualLhs.rows(),actualLhs.cols(),
- actualLhs.data(),actualLhs.outerStride(),
- actualRhsPtr,1,
- dest.data(),dest.innerStride(),
- actualAlpha);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_TRIANGULARMATRIXVECTOR_H
diff --git a/src/Eigen/src/Core/products/TriangularMatrixVector_MKL.h b/src/Eigen/src/Core/products/TriangularMatrixVector_MKL.h
deleted file mode 100644
index 09f110d..0000000
--- a/src/Eigen/src/Core/products/TriangularMatrixVector_MKL.h
+++ /dev/null
@@ -1,247 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * Triangular matrix-vector product functionality based on ?TRMV.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_TRIANGULAR_MATRIX_VECTOR_MKL_H
-#define EIGEN_TRIANGULAR_MATRIX_VECTOR_MKL_H
-
-namespace Eigen {
-
-namespace internal {
-
-/**********************************************************************
-* This file implements triangular matrix-vector multiplication using BLAS
-**********************************************************************/
-
-// trmv/hemv specialization
-
-template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs, int StorageOrder>
-struct triangular_matrix_vector_product_trmv :
- triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,StorageOrder,BuiltIn> {};
-
-#define EIGEN_MKL_TRMV_SPECIALIZE(Scalar) \
-template<typename Index, int Mode, bool ConjLhs, bool ConjRhs> \
-struct triangular_matrix_vector_product<Index,Mode,Scalar,ConjLhs,Scalar,ConjRhs,ColMajor,Specialized> { \
- static void run(Index _rows, Index _cols, const Scalar* _lhs, Index lhsStride, \
- const Scalar* _rhs, Index rhsIncr, Scalar* _res, Index resIncr, Scalar alpha) { \
- triangular_matrix_vector_product_trmv<Index,Mode,Scalar,ConjLhs,Scalar,ConjRhs,ColMajor>::run( \
- _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \
- } \
-}; \
-template<typename Index, int Mode, bool ConjLhs, bool ConjRhs> \
-struct triangular_matrix_vector_product<Index,Mode,Scalar,ConjLhs,Scalar,ConjRhs,RowMajor,Specialized> { \
- static void run(Index _rows, Index _cols, const Scalar* _lhs, Index lhsStride, \
- const Scalar* _rhs, Index rhsIncr, Scalar* _res, Index resIncr, Scalar alpha) { \
- triangular_matrix_vector_product_trmv<Index,Mode,Scalar,ConjLhs,Scalar,ConjRhs,RowMajor>::run( \
- _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \
- } \
-};
-
-EIGEN_MKL_TRMV_SPECIALIZE(double)
-EIGEN_MKL_TRMV_SPECIALIZE(float)
-EIGEN_MKL_TRMV_SPECIALIZE(dcomplex)
-EIGEN_MKL_TRMV_SPECIALIZE(scomplex)
-
-// implements col-major: res += alpha * op(triangular) * vector
-#define EIGEN_MKL_TRMV_CM(EIGTYPE, MKLTYPE, EIGPREFIX, MKLPREFIX) \
-template<typename Index, int Mode, bool ConjLhs, bool ConjRhs> \
-struct triangular_matrix_vector_product_trmv<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,ConjRhs,ColMajor> { \
- enum { \
- IsLower = (Mode&Lower) == Lower, \
- SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1, \
- IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \
- IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \
- LowUp = IsLower ? Lower : Upper \
- }; \
- static void run(Index _rows, Index _cols, const EIGTYPE* _lhs, Index lhsStride, \
- const EIGTYPE* _rhs, Index rhsIncr, EIGTYPE* _res, Index resIncr, EIGTYPE alpha) \
- { \
- if (ConjLhs || IsZeroDiag) { \
- triangular_matrix_vector_product<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,ConjRhs,ColMajor,BuiltIn>::run( \
- _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \
- return; \
- }\
- Index size = (std::min)(_rows,_cols); \
- Index rows = IsLower ? _rows : size; \
- Index cols = IsLower ? size : _cols; \
-\
- typedef VectorX##EIGPREFIX VectorRhs; \
- EIGTYPE *x, *y;\
-\
-/* Set x*/ \
- Map<const VectorRhs, 0, InnerStride<> > rhs(_rhs,cols,InnerStride<>(rhsIncr)); \
- VectorRhs x_tmp; \
- if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \
- x = x_tmp.data(); \
-\
-/* Square part handling */\
-\
- char trans, uplo, diag; \
- MKL_INT m, n, lda, incx, incy; \
- EIGTYPE const *a; \
- MKLTYPE alpha_, beta_; \
- assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(alpha_, alpha); \
- assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(beta_, EIGTYPE(1)); \
-\
-/* Set m, n */ \
- n = (MKL_INT)size; \
- lda = lhsStride; \
- incx = 1; \
- incy = resIncr; \
-\
-/* Set uplo, trans and diag*/ \
- trans = 'N'; \
- uplo = IsLower ? 'L' : 'U'; \
- diag = IsUnitDiag ? 'U' : 'N'; \
-\
-/* call ?TRMV*/ \
- MKLPREFIX##trmv(&uplo, &trans, &diag, &n, (const MKLTYPE*)_lhs, &lda, (MKLTYPE*)x, &incx); \
-\
-/* Add op(a_tr)rhs into res*/ \
- MKLPREFIX##axpy(&n, &alpha_,(const MKLTYPE*)x, &incx, (MKLTYPE*)_res, &incy); \
-/* Non-square case - doesn't fit to MKL ?TRMV. Fall to default triangular product*/ \
- if (size<(std::max)(rows,cols)) { \
- typedef Matrix<EIGTYPE, Dynamic, Dynamic> MatrixLhs; \
- if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \
- x = x_tmp.data(); \
- if (size<rows) { \
- y = _res + size*resIncr; \
- a = _lhs + size; \
- m = rows-size; \
- n = size; \
- } \
- else { \
- x += size; \
- y = _res; \
- a = _lhs + size*lda; \
- m = size; \
- n = cols-size; \
- } \
- MKLPREFIX##gemv(&trans, &m, &n, &alpha_, (const MKLTYPE*)a, &lda, (const MKLTYPE*)x, &incx, &beta_, (MKLTYPE*)y, &incy); \
- } \
- } \
-};
-
-EIGEN_MKL_TRMV_CM(double, double, d, d)
-EIGEN_MKL_TRMV_CM(dcomplex, MKL_Complex16, cd, z)
-EIGEN_MKL_TRMV_CM(float, float, f, s)
-EIGEN_MKL_TRMV_CM(scomplex, MKL_Complex8, cf, c)
-
-// implements row-major: res += alpha * op(triangular) * vector
-#define EIGEN_MKL_TRMV_RM(EIGTYPE, MKLTYPE, EIGPREFIX, MKLPREFIX) \
-template<typename Index, int Mode, bool ConjLhs, bool ConjRhs> \
-struct triangular_matrix_vector_product_trmv<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,ConjRhs,RowMajor> { \
- enum { \
- IsLower = (Mode&Lower) == Lower, \
- SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1, \
- IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \
- IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \
- LowUp = IsLower ? Lower : Upper \
- }; \
- static void run(Index _rows, Index _cols, const EIGTYPE* _lhs, Index lhsStride, \
- const EIGTYPE* _rhs, Index rhsIncr, EIGTYPE* _res, Index resIncr, EIGTYPE alpha) \
- { \
- if (IsZeroDiag) { \
- triangular_matrix_vector_product<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,ConjRhs,RowMajor,BuiltIn>::run( \
- _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \
- return; \
- }\
- Index size = (std::min)(_rows,_cols); \
- Index rows = IsLower ? _rows : size; \
- Index cols = IsLower ? size : _cols; \
-\
- typedef VectorX##EIGPREFIX VectorRhs; \
- EIGTYPE *x, *y;\
-\
-/* Set x*/ \
- Map<const VectorRhs, 0, InnerStride<> > rhs(_rhs,cols,InnerStride<>(rhsIncr)); \
- VectorRhs x_tmp; \
- if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \
- x = x_tmp.data(); \
-\
-/* Square part handling */\
-\
- char trans, uplo, diag; \
- MKL_INT m, n, lda, incx, incy; \
- EIGTYPE const *a; \
- MKLTYPE alpha_, beta_; \
- assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(alpha_, alpha); \
- assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(beta_, EIGTYPE(1)); \
-\
-/* Set m, n */ \
- n = (MKL_INT)size; \
- lda = lhsStride; \
- incx = 1; \
- incy = resIncr; \
-\
-/* Set uplo, trans and diag*/ \
- trans = ConjLhs ? 'C' : 'T'; \
- uplo = IsLower ? 'U' : 'L'; \
- diag = IsUnitDiag ? 'U' : 'N'; \
-\
-/* call ?TRMV*/ \
- MKLPREFIX##trmv(&uplo, &trans, &diag, &n, (const MKLTYPE*)_lhs, &lda, (MKLTYPE*)x, &incx); \
-\
-/* Add op(a_tr)rhs into res*/ \
- MKLPREFIX##axpy(&n, &alpha_,(const MKLTYPE*)x, &incx, (MKLTYPE*)_res, &incy); \
-/* Non-square case - doesn't fit to MKL ?TRMV. Fall to default triangular product*/ \
- if (size<(std::max)(rows,cols)) { \
- typedef Matrix<EIGTYPE, Dynamic, Dynamic> MatrixLhs; \
- if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \
- x = x_tmp.data(); \
- if (size<rows) { \
- y = _res + size*resIncr; \
- a = _lhs + size*lda; \
- m = rows-size; \
- n = size; \
- } \
- else { \
- x += size; \
- y = _res; \
- a = _lhs + size; \
- m = size; \
- n = cols-size; \
- } \
- MKLPREFIX##gemv(&trans, &n, &m, &alpha_, (const MKLTYPE*)a, &lda, (const MKLTYPE*)x, &incx, &beta_, (MKLTYPE*)y, &incy); \
- } \
- } \
-};
-
-EIGEN_MKL_TRMV_RM(double, double, d, d)
-EIGEN_MKL_TRMV_RM(dcomplex, MKL_Complex16, cd, z)
-EIGEN_MKL_TRMV_RM(float, float, f, s)
-EIGEN_MKL_TRMV_RM(scomplex, MKL_Complex8, cf, c)
-
-} // end namespase internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_TRIANGULAR_MATRIX_VECTOR_MKL_H
diff --git a/src/Eigen/src/Core/products/TriangularSolverMatrix.h b/src/Eigen/src/Core/products/TriangularSolverMatrix.h
deleted file mode 100644
index f103eae..0000000
--- a/src/Eigen/src/Core/products/TriangularSolverMatrix.h
+++ /dev/null
@@ -1,329 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_TRIANGULAR_SOLVER_MATRIX_H
-#define EIGEN_TRIANGULAR_SOLVER_MATRIX_H
-
-namespace Eigen {
-
-namespace internal {
-
-// if the rhs is row major, let's transpose the product
-template <typename Scalar, typename Index, int Side, int Mode, bool Conjugate, int TriStorageOrder>
-struct triangular_solve_matrix<Scalar,Index,Side,Mode,Conjugate,TriStorageOrder,RowMajor>
-{
- static void run(
- Index size, Index cols,
- const Scalar* tri, Index triStride,
- Scalar* _other, Index otherStride,
- level3_blocking<Scalar,Scalar>& blocking)
- {
- triangular_solve_matrix<
- Scalar, Index, Side==OnTheLeft?OnTheRight:OnTheLeft,
- (Mode&UnitDiag) | ((Mode&Upper) ? Lower : Upper),
- NumTraits<Scalar>::IsComplex && Conjugate,
- TriStorageOrder==RowMajor ? ColMajor : RowMajor, ColMajor>
- ::run(size, cols, tri, triStride, _other, otherStride, blocking);
- }
-};
-
-/* Optimized triangular solver with multiple right hand side and the triangular matrix on the left
- */
-template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
-struct triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conjugate,TriStorageOrder,ColMajor>
-{
- static EIGEN_DONT_INLINE void run(
- Index size, Index otherSize,
- const Scalar* _tri, Index triStride,
- Scalar* _other, Index otherStride,
- level3_blocking<Scalar,Scalar>& blocking);
-};
-template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
-EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conjugate,TriStorageOrder,ColMajor>::run(
- Index size, Index otherSize,
- const Scalar* _tri, Index triStride,
- Scalar* _other, Index otherStride,
- level3_blocking<Scalar,Scalar>& blocking)
- {
- Index cols = otherSize;
- const_blas_data_mapper<Scalar, Index, TriStorageOrder> tri(_tri,triStride);
- blas_data_mapper<Scalar, Index, ColMajor> other(_other,otherStride);
-
- typedef gebp_traits<Scalar,Scalar> Traits;
- enum {
- SmallPanelWidth = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
- IsLower = (Mode&Lower) == Lower
- };
-
- Index kc = blocking.kc(); // cache block size along the K direction
- Index mc = (std::min)(size,blocking.mc()); // cache block size along the M direction
-
- std::size_t sizeA = kc*mc;
- std::size_t sizeB = kc*cols;
- std::size_t sizeW = kc*Traits::WorkSpaceFactor;
-
- ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
- ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
- ei_declare_aligned_stack_constructed_variable(Scalar, blockW, sizeW, blocking.blockW());
-
- conj_if<Conjugate> conj;
- gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, Conjugate, false> gebp_kernel;
- gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, TriStorageOrder> pack_lhs;
- gemm_pack_rhs<Scalar, Index, Traits::nr, ColMajor, false, true> pack_rhs;
-
- // the goal here is to subdivise the Rhs panels such that we keep some cache
- // coherence when accessing the rhs elements
- std::ptrdiff_t l1, l2;
- manage_caching_sizes(GetAction, &l1, &l2);
- Index subcols = cols>0 ? l2/(4 * sizeof(Scalar) * otherStride) : 0;
- subcols = std::max<Index>((subcols/Traits::nr)*Traits::nr, Traits::nr);
-
- for(Index k2=IsLower ? 0 : size;
- IsLower ? k2<size : k2>0;
- IsLower ? k2+=kc : k2-=kc)
- {
- const Index actual_kc = (std::min)(IsLower ? size-k2 : k2, kc);
-
- // We have selected and packed a big horizontal panel R1 of rhs. Let B be the packed copy of this panel,
- // and R2 the remaining part of rhs. The corresponding vertical panel of lhs is split into
- // A11 (the triangular part) and A21 the remaining rectangular part.
- // Then the high level algorithm is:
- // - B = R1 => general block copy (done during the next step)
- // - R1 = A11^-1 B => tricky part
- // - update B from the new R1 => actually this has to be performed continuously during the above step
- // - R2 -= A21 * B => GEPP
-
- // The tricky part: compute R1 = A11^-1 B while updating B from R1
- // The idea is to split A11 into multiple small vertical panels.
- // Each panel can be split into a small triangular part T1k which is processed without optimization,
- // and the remaining small part T2k which is processed using gebp with appropriate block strides
- for(Index j2=0; j2<cols; j2+=subcols)
- {
- Index actual_cols = (std::min)(cols-j2,subcols);
- // for each small vertical panels [T1k^T, T2k^T]^T of lhs
- for (Index k1=0; k1<actual_kc; k1+=SmallPanelWidth)
- {
- Index actualPanelWidth = std::min<Index>(actual_kc-k1, SmallPanelWidth);
- // tr solve
- for (Index k=0; k<actualPanelWidth; ++k)
- {
- // TODO write a small kernel handling this (can be shared with trsv)
- Index i = IsLower ? k2+k1+k : k2-k1-k-1;
- Index s = IsLower ? k2+k1 : i+1;
- Index rs = actualPanelWidth - k - 1; // remaining size
-
- Scalar a = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(tri(i,i));
- for (Index j=j2; j<j2+actual_cols; ++j)
- {
- if (TriStorageOrder==RowMajor)
- {
- Scalar b(0);
- const Scalar* l = &tri(i,s);
- Scalar* r = &other(s,j);
- for (Index i3=0; i3<k; ++i3)
- b += conj(l[i3]) * r[i3];
-
- other(i,j) = (other(i,j) - b)*a;
- }
- else
- {
- Index s = IsLower ? i+1 : i-rs;
- Scalar b = (other(i,j) *= a);
- Scalar* r = &other(s,j);
- const Scalar* l = &tri(s,i);
- for (Index i3=0;i3<rs;++i3)
- r[i3] -= b * conj(l[i3]);
- }
- }
- }
-
- Index lengthTarget = actual_kc-k1-actualPanelWidth;
- Index startBlock = IsLower ? k2+k1 : k2-k1-actualPanelWidth;
- Index blockBOffset = IsLower ? k1 : lengthTarget;
-
- // update the respective rows of B from other
- pack_rhs(blockB+actual_kc*j2, &other(startBlock,j2), otherStride, actualPanelWidth, actual_cols, actual_kc, blockBOffset);
-
- // GEBP
- if (lengthTarget>0)
- {
- Index startTarget = IsLower ? k2+k1+actualPanelWidth : k2-actual_kc;
-
- pack_lhs(blockA, &tri(startTarget,startBlock), triStride, actualPanelWidth, lengthTarget);
-
- gebp_kernel(&other(startTarget,j2), otherStride, blockA, blockB+actual_kc*j2, lengthTarget, actualPanelWidth, actual_cols, Scalar(-1),
- actualPanelWidth, actual_kc, 0, blockBOffset, blockW);
- }
- }
- }
-
- // R2 -= A21 * B => GEPP
- {
- Index start = IsLower ? k2+kc : 0;
- Index end = IsLower ? size : k2-kc;
- for(Index i2=start; i2<end; i2+=mc)
- {
- const Index actual_mc = (std::min)(mc,end-i2);
- if (actual_mc>0)
- {
- pack_lhs(blockA, &tri(i2, IsLower ? k2 : k2-kc), triStride, actual_kc, actual_mc);
-
- gebp_kernel(_other+i2, otherStride, blockA, blockB, actual_mc, actual_kc, cols, Scalar(-1), -1, -1, 0, 0, blockW);
- }
- }
- }
- }
- }
-
-/* Optimized triangular solver with multiple left hand sides and the trinagular matrix on the right
- */
-template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
-struct triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conjugate,TriStorageOrder,ColMajor>
-{
- static EIGEN_DONT_INLINE void run(
- Index size, Index otherSize,
- const Scalar* _tri, Index triStride,
- Scalar* _other, Index otherStride,
- level3_blocking<Scalar,Scalar>& blocking);
-};
-template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
-EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conjugate,TriStorageOrder,ColMajor>::run(
- Index size, Index otherSize,
- const Scalar* _tri, Index triStride,
- Scalar* _other, Index otherStride,
- level3_blocking<Scalar,Scalar>& blocking)
- {
- Index rows = otherSize;
- const_blas_data_mapper<Scalar, Index, TriStorageOrder> rhs(_tri,triStride);
- blas_data_mapper<Scalar, Index, ColMajor> lhs(_other,otherStride);
-
- typedef gebp_traits<Scalar,Scalar> Traits;
- enum {
- RhsStorageOrder = TriStorageOrder,
- SmallPanelWidth = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
- IsLower = (Mode&Lower) == Lower
- };
-
- Index kc = blocking.kc(); // cache block size along the K direction
- Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction
-
- std::size_t sizeA = kc*mc;
- std::size_t sizeB = kc*size;
- std::size_t sizeW = kc*Traits::WorkSpaceFactor;
-
- ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
- ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
- ei_declare_aligned_stack_constructed_variable(Scalar, blockW, sizeW, blocking.blockW());
-
- conj_if<Conjugate> conj;
- gebp_kernel<Scalar,Scalar, Index, Traits::mr, Traits::nr, false, Conjugate> gebp_kernel;
- gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
- gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder,false,true> pack_rhs_panel;
- gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, ColMajor, false, true> pack_lhs_panel;
-
- for(Index k2=IsLower ? size : 0;
- IsLower ? k2>0 : k2<size;
- IsLower ? k2-=kc : k2+=kc)
- {
- const Index actual_kc = (std::min)(IsLower ? k2 : size-k2, kc);
- Index actual_k2 = IsLower ? k2-actual_kc : k2 ;
-
- Index startPanel = IsLower ? 0 : k2+actual_kc;
- Index rs = IsLower ? actual_k2 : size - actual_k2 - actual_kc;
- Scalar* geb = blockB+actual_kc*actual_kc;
-
- if (rs>0) pack_rhs(geb, &rhs(actual_k2,startPanel), triStride, actual_kc, rs);
-
- // triangular packing (we only pack the panels off the diagonal,
- // neglecting the blocks overlapping the diagonal
- {
- for (Index j2=0; j2<actual_kc; j2+=SmallPanelWidth)
- {
- Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
- Index actual_j2 = actual_k2 + j2;
- Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
- Index panelLength = IsLower ? actual_kc-j2-actualPanelWidth : j2;
-
- if (panelLength>0)
- pack_rhs_panel(blockB+j2*actual_kc,
- &rhs(actual_k2+panelOffset, actual_j2), triStride,
- panelLength, actualPanelWidth,
- actual_kc, panelOffset);
- }
- }
-
- for(Index i2=0; i2<rows; i2+=mc)
- {
- const Index actual_mc = (std::min)(mc,rows-i2);
-
- // triangular solver kernel
- {
- // for each small block of the diagonal (=> vertical panels of rhs)
- for (Index j2 = IsLower
- ? (actual_kc - ((actual_kc%SmallPanelWidth) ? Index(actual_kc%SmallPanelWidth)
- : Index(SmallPanelWidth)))
- : 0;
- IsLower ? j2>=0 : j2<actual_kc;
- IsLower ? j2-=SmallPanelWidth : j2+=SmallPanelWidth)
- {
- Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
- Index absolute_j2 = actual_k2 + j2;
- Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
- Index panelLength = IsLower ? actual_kc - j2 - actualPanelWidth : j2;
-
- // GEBP
- if(panelLength>0)
- {
- gebp_kernel(&lhs(i2,absolute_j2), otherStride,
- blockA, blockB+j2*actual_kc,
- actual_mc, panelLength, actualPanelWidth,
- Scalar(-1),
- actual_kc, actual_kc, // strides
- panelOffset, panelOffset, // offsets
- blockW); // workspace
- }
-
- // unblocked triangular solve
- for (Index k=0; k<actualPanelWidth; ++k)
- {
- Index j = IsLower ? absolute_j2+actualPanelWidth-k-1 : absolute_j2+k;
-
- Scalar* r = &lhs(i2,j);
- for (Index k3=0; k3<k; ++k3)
- {
- Scalar b = conj(rhs(IsLower ? j+1+k3 : absolute_j2+k3,j));
- Scalar* a = &lhs(i2,IsLower ? j+1+k3 : absolute_j2+k3);
- for (Index i=0; i<actual_mc; ++i)
- r[i] -= a[i] * b;
- }
- Scalar b = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(rhs(j,j));
- for (Index i=0; i<actual_mc; ++i)
- r[i] *= b;
- }
-
- // pack the just computed part of lhs to A
- pack_lhs_panel(blockA, _other+absolute_j2*otherStride+i2, otherStride,
- actualPanelWidth, actual_mc,
- actual_kc, j2);
- }
- }
-
- if (rs>0)
- gebp_kernel(_other+i2+startPanel*otherStride, otherStride, blockA, geb,
- actual_mc, actual_kc, rs, Scalar(-1),
- -1, -1, 0, 0, blockW);
- }
- }
- }
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_TRIANGULAR_SOLVER_MATRIX_H
diff --git a/src/Eigen/src/Core/products/TriangularSolverMatrix_MKL.h b/src/Eigen/src/Core/products/TriangularSolverMatrix_MKL.h
deleted file mode 100644
index 6a0bb83..0000000
--- a/src/Eigen/src/Core/products/TriangularSolverMatrix_MKL.h
+++ /dev/null
@@ -1,155 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * Triangular matrix * matrix product functionality based on ?TRMM.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_TRIANGULAR_SOLVER_MATRIX_MKL_H
-#define EIGEN_TRIANGULAR_SOLVER_MATRIX_MKL_H
-
-namespace Eigen {
-
-namespace internal {
-
-// implements LeftSide op(triangular)^-1 * general
-#define EIGEN_MKL_TRSM_L(EIGTYPE, MKLTYPE, MKLPREFIX) \
-template <typename Index, int Mode, bool Conjugate, int TriStorageOrder> \
-struct triangular_solve_matrix<EIGTYPE,Index,OnTheLeft,Mode,Conjugate,TriStorageOrder,ColMajor> \
-{ \
- enum { \
- IsLower = (Mode&Lower) == Lower, \
- IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \
- IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \
- conjA = ((TriStorageOrder==ColMajor) && Conjugate) ? 1 : 0 \
- }; \
- static void run( \
- Index size, Index otherSize, \
- const EIGTYPE* _tri, Index triStride, \
- EIGTYPE* _other, Index otherStride, level3_blocking<EIGTYPE,EIGTYPE>& /*blocking*/) \
- { \
- MKL_INT m = size, n = otherSize, lda, ldb; \
- char side = 'L', uplo, diag='N', transa; \
- /* Set alpha_ */ \
- MKLTYPE alpha; \
- EIGTYPE myone(1); \
- assign_scalar_eig2mkl(alpha, myone); \
- ldb = otherStride;\
-\
- const EIGTYPE *a; \
-/* Set trans */ \
- transa = (TriStorageOrder==RowMajor) ? ((Conjugate) ? 'C' : 'T') : 'N'; \
-/* Set uplo */ \
- uplo = IsLower ? 'L' : 'U'; \
- if (TriStorageOrder==RowMajor) uplo = (uplo == 'L') ? 'U' : 'L'; \
-/* Set a, lda */ \
- typedef Matrix<EIGTYPE, Dynamic, Dynamic, TriStorageOrder> MatrixTri; \
- Map<const MatrixTri, 0, OuterStride<> > tri(_tri,size,size,OuterStride<>(triStride)); \
- MatrixTri a_tmp; \
-\
- if (conjA) { \
- a_tmp = tri.conjugate(); \
- a = a_tmp.data(); \
- lda = a_tmp.outerStride(); \
- } else { \
- a = _tri; \
- lda = triStride; \
- } \
- if (IsUnitDiag) diag='U'; \
-/* call ?trsm*/ \
- MKLPREFIX##trsm(&side, &uplo, &transa, &diag, &m, &n, &alpha, (const MKLTYPE*)a, &lda, (MKLTYPE*)_other, &ldb); \
- } \
-};
-
-EIGEN_MKL_TRSM_L(double, double, d)
-EIGEN_MKL_TRSM_L(dcomplex, MKL_Complex16, z)
-EIGEN_MKL_TRSM_L(float, float, s)
-EIGEN_MKL_TRSM_L(scomplex, MKL_Complex8, c)
-
-
-// implements RightSide general * op(triangular)^-1
-#define EIGEN_MKL_TRSM_R(EIGTYPE, MKLTYPE, MKLPREFIX) \
-template <typename Index, int Mode, bool Conjugate, int TriStorageOrder> \
-struct triangular_solve_matrix<EIGTYPE,Index,OnTheRight,Mode,Conjugate,TriStorageOrder,ColMajor> \
-{ \
- enum { \
- IsLower = (Mode&Lower) == Lower, \
- IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \
- IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \
- conjA = ((TriStorageOrder==ColMajor) && Conjugate) ? 1 : 0 \
- }; \
- static void run( \
- Index size, Index otherSize, \
- const EIGTYPE* _tri, Index triStride, \
- EIGTYPE* _other, Index otherStride, level3_blocking<EIGTYPE,EIGTYPE>& /*blocking*/) \
- { \
- MKL_INT m = otherSize, n = size, lda, ldb; \
- char side = 'R', uplo, diag='N', transa; \
- /* Set alpha_ */ \
- MKLTYPE alpha; \
- EIGTYPE myone(1); \
- assign_scalar_eig2mkl(alpha, myone); \
- ldb = otherStride;\
-\
- const EIGTYPE *a; \
-/* Set trans */ \
- transa = (TriStorageOrder==RowMajor) ? ((Conjugate) ? 'C' : 'T') : 'N'; \
-/* Set uplo */ \
- uplo = IsLower ? 'L' : 'U'; \
- if (TriStorageOrder==RowMajor) uplo = (uplo == 'L') ? 'U' : 'L'; \
-/* Set a, lda */ \
- typedef Matrix<EIGTYPE, Dynamic, Dynamic, TriStorageOrder> MatrixTri; \
- Map<const MatrixTri, 0, OuterStride<> > tri(_tri,size,size,OuterStride<>(triStride)); \
- MatrixTri a_tmp; \
-\
- if (conjA) { \
- a_tmp = tri.conjugate(); \
- a = a_tmp.data(); \
- lda = a_tmp.outerStride(); \
- } else { \
- a = _tri; \
- lda = triStride; \
- } \
- if (IsUnitDiag) diag='U'; \
-/* call ?trsm*/ \
- MKLPREFIX##trsm(&side, &uplo, &transa, &diag, &m, &n, &alpha, (const MKLTYPE*)a, &lda, (MKLTYPE*)_other, &ldb); \
- /*std::cout << "TRMS_L specialization!\n";*/ \
- } \
-};
-
-EIGEN_MKL_TRSM_R(double, double, d)
-EIGEN_MKL_TRSM_R(dcomplex, MKL_Complex16, z)
-EIGEN_MKL_TRSM_R(float, float, s)
-EIGEN_MKL_TRSM_R(scomplex, MKL_Complex8, c)
-
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_TRIANGULAR_SOLVER_MATRIX_MKL_H
diff --git a/src/Eigen/src/Core/products/TriangularSolverVector.h b/src/Eigen/src/Core/products/TriangularSolverVector.h
deleted file mode 100644
index ce4d100..0000000
--- a/src/Eigen/src/Core/products/TriangularSolverVector.h
+++ /dev/null
@@ -1,139 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_TRIANGULAR_SOLVER_VECTOR_H
-#define EIGEN_TRIANGULAR_SOLVER_VECTOR_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename LhsScalar, typename RhsScalar, typename Index, int Mode, bool Conjugate, int StorageOrder>
-struct triangular_solve_vector<LhsScalar, RhsScalar, Index, OnTheRight, Mode, Conjugate, StorageOrder>
-{
- static void run(Index size, const LhsScalar* _lhs, Index lhsStride, RhsScalar* rhs)
- {
- triangular_solve_vector<LhsScalar,RhsScalar,Index,OnTheLeft,
- ((Mode&Upper)==Upper ? Lower : Upper) | (Mode&UnitDiag),
- Conjugate,StorageOrder==RowMajor?ColMajor:RowMajor
- >::run(size, _lhs, lhsStride, rhs);
- }
-};
-
-// forward and backward substitution, row-major, rhs is a vector
-template<typename LhsScalar, typename RhsScalar, typename Index, int Mode, bool Conjugate>
-struct triangular_solve_vector<LhsScalar, RhsScalar, Index, OnTheLeft, Mode, Conjugate, RowMajor>
-{
- enum {
- IsLower = ((Mode&Lower)==Lower)
- };
- static void run(Index size, const LhsScalar* _lhs, Index lhsStride, RhsScalar* rhs)
- {
- typedef Map<const Matrix<LhsScalar,Dynamic,Dynamic,RowMajor>, 0, OuterStride<> > LhsMap;
- const LhsMap lhs(_lhs,size,size,OuterStride<>(lhsStride));
- typename internal::conditional<
- Conjugate,
- const CwiseUnaryOp<typename internal::scalar_conjugate_op<LhsScalar>,LhsMap>,
- const LhsMap&>
- ::type cjLhs(lhs);
- static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH;
- for(Index pi=IsLower ? 0 : size;
- IsLower ? pi<size : pi>0;
- IsLower ? pi+=PanelWidth : pi-=PanelWidth)
- {
- Index actualPanelWidth = (std::min)(IsLower ? size - pi : pi, PanelWidth);
-
- Index r = IsLower ? pi : size - pi; // remaining size
- if (r > 0)
- {
- // let's directly call the low level product function because:
- // 1 - it is faster to compile
- // 2 - it is slighlty faster at runtime
- Index startRow = IsLower ? pi : pi-actualPanelWidth;
- Index startCol = IsLower ? 0 : pi;
-
- general_matrix_vector_product<Index,LhsScalar,RowMajor,Conjugate,RhsScalar,false>::run(
- actualPanelWidth, r,
- &lhs.coeffRef(startRow,startCol), lhsStride,
- rhs + startCol, 1,
- rhs + startRow, 1,
- RhsScalar(-1));
- }
-
- for(Index k=0; k<actualPanelWidth; ++k)
- {
- Index i = IsLower ? pi+k : pi-k-1;
- Index s = IsLower ? pi : i+1;
- if (k>0)
- rhs[i] -= (cjLhs.row(i).segment(s,k).transpose().cwiseProduct(Map<const Matrix<RhsScalar,Dynamic,1> >(rhs+s,k))).sum();
-
- if(!(Mode & UnitDiag))
- rhs[i] /= cjLhs(i,i);
- }
- }
- }
-};
-
-// forward and backward substitution, column-major, rhs is a vector
-template<typename LhsScalar, typename RhsScalar, typename Index, int Mode, bool Conjugate>
-struct triangular_solve_vector<LhsScalar, RhsScalar, Index, OnTheLeft, Mode, Conjugate, ColMajor>
-{
- enum {
- IsLower = ((Mode&Lower)==Lower)
- };
- static void run(Index size, const LhsScalar* _lhs, Index lhsStride, RhsScalar* rhs)
- {
- typedef Map<const Matrix<LhsScalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > LhsMap;
- const LhsMap lhs(_lhs,size,size,OuterStride<>(lhsStride));
- typename internal::conditional<Conjugate,
- const CwiseUnaryOp<typename internal::scalar_conjugate_op<LhsScalar>,LhsMap>,
- const LhsMap&
- >::type cjLhs(lhs);
- static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH;
-
- for(Index pi=IsLower ? 0 : size;
- IsLower ? pi<size : pi>0;
- IsLower ? pi+=PanelWidth : pi-=PanelWidth)
- {
- Index actualPanelWidth = (std::min)(IsLower ? size - pi : pi, PanelWidth);
- Index startBlock = IsLower ? pi : pi-actualPanelWidth;
- Index endBlock = IsLower ? pi + actualPanelWidth : 0;
-
- for(Index k=0; k<actualPanelWidth; ++k)
- {
- Index i = IsLower ? pi+k : pi-k-1;
- if(!(Mode & UnitDiag))
- rhs[i] /= cjLhs.coeff(i,i);
-
- Index r = actualPanelWidth - k - 1; // remaining size
- Index s = IsLower ? i+1 : i-r;
- if (r>0)
- Map<Matrix<RhsScalar,Dynamic,1> >(rhs+s,r) -= rhs[i] * cjLhs.col(i).segment(s,r);
- }
- Index r = IsLower ? size - endBlock : startBlock; // remaining size
- if (r > 0)
- {
- // let's directly call the low level product function because:
- // 1 - it is faster to compile
- // 2 - it is slighlty faster at runtime
- general_matrix_vector_product<Index,LhsScalar,ColMajor,Conjugate,RhsScalar,false>::run(
- r, actualPanelWidth,
- &lhs.coeffRef(endBlock,startBlock), lhsStride,
- rhs+startBlock, 1,
- rhs+endBlock, 1, RhsScalar(-1));
- }
- }
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_TRIANGULAR_SOLVER_VECTOR_H
diff --git a/src/Eigen/src/Core/util/BlasUtil.h b/src/Eigen/src/Core/util/BlasUtil.h
deleted file mode 100644
index a28f16f..0000000
--- a/src/Eigen/src/Core/util/BlasUtil.h
+++ /dev/null
@@ -1,264 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_BLASUTIL_H
-#define EIGEN_BLASUTIL_H
-
-// This file contains many lightweight helper classes used to
-// implement and control fast level 2 and level 3 BLAS-like routines.
-
-namespace Eigen {
-
-namespace internal {
-
-// forward declarations
-template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjugateLhs=false, bool ConjugateRhs=false>
-struct gebp_kernel;
-
-template<typename Scalar, typename Index, int nr, int StorageOrder, bool Conjugate = false, bool PanelMode=false>
-struct gemm_pack_rhs;
-
-template<typename Scalar, typename Index, int Pack1, int Pack2, int StorageOrder, bool Conjugate = false, bool PanelMode = false>
-struct gemm_pack_lhs;
-
-template<
- typename Index,
- typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
- typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
- int ResStorageOrder>
-struct general_matrix_matrix_product;
-
-template<typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version=Specialized>
-struct general_matrix_vector_product;
-
-
-template<bool Conjugate> struct conj_if;
-
-template<> struct conj_if<true> {
- template<typename T>
- inline T operator()(const T& x) { return numext::conj(x); }
- template<typename T>
- inline T pconj(const T& x) { return internal::pconj(x); }
-};
-
-template<> struct conj_if<false> {
- template<typename T>
- inline const T& operator()(const T& x) { return x; }
- template<typename T>
- inline const T& pconj(const T& x) { return x; }
-};
-
-template<typename Scalar> struct conj_helper<Scalar,Scalar,false,false>
-{
- EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return internal::pmadd(x,y,c); }
- EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return internal::pmul(x,y); }
-};
-
-template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, false,true>
-{
- typedef std::complex<RealScalar> Scalar;
- EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const
- { return c + pmul(x,y); }
-
- EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const
- { return Scalar(numext::real(x)*numext::real(y) + numext::imag(x)*numext::imag(y), numext::imag(x)*numext::real(y) - numext::real(x)*numext::imag(y)); }
-};
-
-template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, true,false>
-{
- typedef std::complex<RealScalar> Scalar;
- EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const
- { return c + pmul(x,y); }
-
- EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const
- { return Scalar(numext::real(x)*numext::real(y) + numext::imag(x)*numext::imag(y), numext::real(x)*numext::imag(y) - numext::imag(x)*numext::real(y)); }
-};
-
-template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, true,true>
-{
- typedef std::complex<RealScalar> Scalar;
- EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const
- { return c + pmul(x,y); }
-
- EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const
- { return Scalar(numext::real(x)*numext::real(y) - numext::imag(x)*numext::imag(y), - numext::real(x)*numext::imag(y) - numext::imag(x)*numext::real(y)); }
-};
-
-template<typename RealScalar,bool Conj> struct conj_helper<std::complex<RealScalar>, RealScalar, Conj,false>
-{
- typedef std::complex<RealScalar> Scalar;
- EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const RealScalar& y, const Scalar& c) const
- { return padd(c, pmul(x,y)); }
- EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const RealScalar& y) const
- { return conj_if<Conj>()(x)*y; }
-};
-
-template<typename RealScalar,bool Conj> struct conj_helper<RealScalar, std::complex<RealScalar>, false,Conj>
-{
- typedef std::complex<RealScalar> Scalar;
- EIGEN_STRONG_INLINE Scalar pmadd(const RealScalar& x, const Scalar& y, const Scalar& c) const
- { return padd(c, pmul(x,y)); }
- EIGEN_STRONG_INLINE Scalar pmul(const RealScalar& x, const Scalar& y) const
- { return x*conj_if<Conj>()(y); }
-};
-
-template<typename From,typename To> struct get_factor {
- static EIGEN_STRONG_INLINE To run(const From& x) { return x; }
-};
-
-template<typename Scalar> struct get_factor<Scalar,typename NumTraits<Scalar>::Real> {
- static EIGEN_STRONG_INLINE typename NumTraits<Scalar>::Real run(const Scalar& x) { return numext::real(x); }
-};
-
-// Lightweight helper class to access matrix coefficients.
-// Yes, this is somehow redundant with Map<>, but this version is much much lighter,
-// and so I hope better compilation performance (time and code quality).
-template<typename Scalar, typename Index, int StorageOrder>
-class blas_data_mapper
-{
- public:
- blas_data_mapper(Scalar* data, Index stride) : m_data(data), m_stride(stride) {}
- EIGEN_STRONG_INLINE Scalar& operator()(Index i, Index j)
- { return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; }
- protected:
- Scalar* EIGEN_RESTRICT m_data;
- Index m_stride;
-};
-
-// lightweight helper class to access matrix coefficients (const version)
-template<typename Scalar, typename Index, int StorageOrder>
-class const_blas_data_mapper
-{
- public:
- const_blas_data_mapper(const Scalar* data, Index stride) : m_data(data), m_stride(stride) {}
- EIGEN_STRONG_INLINE const Scalar& operator()(Index i, Index j) const
- { return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; }
- protected:
- const Scalar* EIGEN_RESTRICT m_data;
- Index m_stride;
-};
-
-
-/* Helper class to analyze the factors of a Product expression.
- * In particular it allows to pop out operator-, scalar multiples,
- * and conjugate */
-template<typename XprType> struct blas_traits
-{
- typedef typename traits<XprType>::Scalar Scalar;
- typedef const XprType& ExtractType;
- typedef XprType _ExtractType;
- enum {
- IsComplex = NumTraits<Scalar>::IsComplex,
- IsTransposed = false,
- NeedToConjugate = false,
- HasUsableDirectAccess = ( (int(XprType::Flags)&DirectAccessBit)
- && ( bool(XprType::IsVectorAtCompileTime)
- || int(inner_stride_at_compile_time<XprType>::ret) == 1)
- ) ? 1 : 0
- };
- typedef typename conditional<bool(HasUsableDirectAccess),
- ExtractType,
- typename _ExtractType::PlainObject
- >::type DirectLinearAccessType;
- static inline ExtractType extract(const XprType& x) { return x; }
- static inline const Scalar extractScalarFactor(const XprType&) { return Scalar(1); }
-};
-
-// pop conjugate
-template<typename Scalar, typename NestedXpr>
-struct blas_traits<CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> >
- : blas_traits<NestedXpr>
-{
- typedef blas_traits<NestedXpr> Base;
- typedef CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> XprType;
- typedef typename Base::ExtractType ExtractType;
-
- enum {
- IsComplex = NumTraits<Scalar>::IsComplex,
- NeedToConjugate = Base::NeedToConjugate ? 0 : IsComplex
- };
- static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
- static inline Scalar extractScalarFactor(const XprType& x) { return conj(Base::extractScalarFactor(x.nestedExpression())); }
-};
-
-// pop scalar multiple
-template<typename Scalar, typename NestedXpr>
-struct blas_traits<CwiseUnaryOp<scalar_multiple_op<Scalar>, NestedXpr> >
- : blas_traits<NestedXpr>
-{
- typedef blas_traits<NestedXpr> Base;
- typedef CwiseUnaryOp<scalar_multiple_op<Scalar>, NestedXpr> XprType;
- typedef typename Base::ExtractType ExtractType;
- static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
- static inline Scalar extractScalarFactor(const XprType& x)
- { return x.functor().m_other * Base::extractScalarFactor(x.nestedExpression()); }
-};
-
-// pop opposite
-template<typename Scalar, typename NestedXpr>
-struct blas_traits<CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> >
- : blas_traits<NestedXpr>
-{
- typedef blas_traits<NestedXpr> Base;
- typedef CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> XprType;
- typedef typename Base::ExtractType ExtractType;
- static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
- static inline Scalar extractScalarFactor(const XprType& x)
- { return - Base::extractScalarFactor(x.nestedExpression()); }
-};
-
-// pop/push transpose
-template<typename NestedXpr>
-struct blas_traits<Transpose<NestedXpr> >
- : blas_traits<NestedXpr>
-{
- typedef typename NestedXpr::Scalar Scalar;
- typedef blas_traits<NestedXpr> Base;
- typedef Transpose<NestedXpr> XprType;
- typedef Transpose<const typename Base::_ExtractType> ExtractType; // const to get rid of a compile error; anyway blas traits are only used on the RHS
- typedef Transpose<const typename Base::_ExtractType> _ExtractType;
- typedef typename conditional<bool(Base::HasUsableDirectAccess),
- ExtractType,
- typename ExtractType::PlainObject
- >::type DirectLinearAccessType;
- enum {
- IsTransposed = Base::IsTransposed ? 0 : 1
- };
- static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
- static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.nestedExpression()); }
-};
-
-template<typename T>
-struct blas_traits<const T>
- : blas_traits<T>
-{};
-
-template<typename T, bool HasUsableDirectAccess=blas_traits<T>::HasUsableDirectAccess>
-struct extract_data_selector {
- static const typename T::Scalar* run(const T& m)
- {
- return blas_traits<T>::extract(m).data();
- }
-};
-
-template<typename T>
-struct extract_data_selector<T,false> {
- static typename T::Scalar* run(const T&) { return 0; }
-};
-
-template<typename T> const typename T::Scalar* extract_data(const T& m)
-{
- return extract_data_selector<T>::run(m);
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_BLASUTIL_H
diff --git a/src/Eigen/src/Core/util/CMakeLists.txt b/src/Eigen/src/Core/util/CMakeLists.txt
deleted file mode 100644
index a1e2e52..0000000
--- a/src/Eigen/src/Core/util/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_Core_util_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Core_util_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/util COMPONENT Devel
- )
diff --git a/src/Eigen/src/Core/util/Constants.h b/src/Eigen/src/Core/util/Constants.h
deleted file mode 100644
index 14b9624..0000000
--- a/src/Eigen/src/Core/util/Constants.h
+++ /dev/null
@@ -1,438 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CONSTANTS_H
-#define EIGEN_CONSTANTS_H
-
-namespace Eigen {
-
-/** This value means that a positive quantity (e.g., a size) is not known at compile-time, and that instead the value is
- * stored in some runtime variable.
- *
- * Changing the value of Dynamic breaks the ABI, as Dynamic is often used as a template parameter for Matrix.
- */
-const int Dynamic = -1;
-
-/** This value means that a signed quantity (e.g., a signed index) is not known at compile-time, and that instead its value
- * has to be specified at runtime.
- */
-const int DynamicIndex = 0xffffff;
-
-/** This value means +Infinity; it is currently used only as the p parameter to MatrixBase::lpNorm<int>().
- * The value Infinity there means the L-infinity norm.
- */
-const int Infinity = -1;
-
-/** \defgroup flags Flags
- * \ingroup Core_Module
- *
- * These are the possible bits which can be OR'ed to constitute the flags of a matrix or
- * expression.
- *
- * It is important to note that these flags are a purely compile-time notion. They are a compile-time property of
- * an expression type, implemented as enum's. They are not stored in memory at runtime, and they do not incur any
- * runtime overhead.
- *
- * \sa MatrixBase::Flags
- */
-
-/** \ingroup flags
- *
- * for a matrix, this means that the storage order is row-major.
- * If this bit is not set, the storage order is column-major.
- * For an expression, this determines the storage order of
- * the matrix created by evaluation of that expression.
- * \sa \ref TopicStorageOrders */
-const unsigned int RowMajorBit = 0x1;
-
-/** \ingroup flags
- *
- * means the expression should be evaluated by the calling expression */
-const unsigned int EvalBeforeNestingBit = 0x2;
-
-/** \ingroup flags
- *
- * means the expression should be evaluated before any assignment */
-const unsigned int EvalBeforeAssigningBit = 0x4;
-
-/** \ingroup flags
- *
- * Short version: means the expression might be vectorized
- *
- * Long version: means that the coefficients can be handled by packets
- * and start at a memory location whose alignment meets the requirements
- * of the present CPU architecture for optimized packet access. In the fixed-size
- * case, there is the additional condition that it be possible to access all the
- * coefficients by packets (this implies the requirement that the size be a multiple of 16 bytes,
- * and that any nontrivial strides don't break the alignment). In the dynamic-size case,
- * there is no such condition on the total size and strides, so it might not be possible to access
- * all coeffs by packets.
- *
- * \note This bit can be set regardless of whether vectorization is actually enabled.
- * To check for actual vectorizability, see \a ActualPacketAccessBit.
- */
-const unsigned int PacketAccessBit = 0x8;
-
-#ifdef EIGEN_VECTORIZE
-/** \ingroup flags
- *
- * If vectorization is enabled (EIGEN_VECTORIZE is defined) this constant
- * is set to the value \a PacketAccessBit.
- *
- * If vectorization is not enabled (EIGEN_VECTORIZE is not defined) this constant
- * is set to the value 0.
- */
-const unsigned int ActualPacketAccessBit = PacketAccessBit;
-#else
-const unsigned int ActualPacketAccessBit = 0x0;
-#endif
-
-/** \ingroup flags
- *
- * Short version: means the expression can be seen as 1D vector.
- *
- * Long version: means that one can access the coefficients
- * of this expression by coeff(int), and coeffRef(int) in the case of a lvalue expression. These
- * index-based access methods are guaranteed
- * to not have to do any runtime computation of a (row, col)-pair from the index, so that it
- * is guaranteed that whenever it is available, index-based access is at least as fast as
- * (row,col)-based access. Expressions for which that isn't possible don't have the LinearAccessBit.
- *
- * If both PacketAccessBit and LinearAccessBit are set, then the
- * packets of this expression can be accessed by packet(int), and writePacket(int) in the case of a
- * lvalue expression.
- *
- * Typically, all vector expressions have the LinearAccessBit, but there is one exception:
- * Product expressions don't have it, because it would be troublesome for vectorization, even when the
- * Product is a vector expression. Thus, vector Product expressions allow index-based coefficient access but
- * not index-based packet access, so they don't have the LinearAccessBit.
- */
-const unsigned int LinearAccessBit = 0x10;
-
-/** \ingroup flags
- *
- * Means the expression has a coeffRef() method, i.e. is writable as its individual coefficients are directly addressable.
- * This rules out read-only expressions.
- *
- * Note that DirectAccessBit and LvalueBit are mutually orthogonal, as there are examples of expression having one but note
- * the other:
- * \li writable expressions that don't have a very simple memory layout as a strided array, have LvalueBit but not DirectAccessBit
- * \li Map-to-const expressions, for example Map<const Matrix>, have DirectAccessBit but not LvalueBit
- *
- * Expressions having LvalueBit also have their coeff() method returning a const reference instead of returning a new value.
- */
-const unsigned int LvalueBit = 0x20;
-
-/** \ingroup flags
- *
- * Means that the underlying array of coefficients can be directly accessed as a plain strided array. The memory layout
- * of the array of coefficients must be exactly the natural one suggested by rows(), cols(),
- * outerStride(), innerStride(), and the RowMajorBit. This rules out expressions such as Diagonal, whose coefficients,
- * though referencable, do not have such a regular memory layout.
- *
- * See the comment on LvalueBit for an explanation of how LvalueBit and DirectAccessBit are mutually orthogonal.
- */
-const unsigned int DirectAccessBit = 0x40;
-
-/** \ingroup flags
- *
- * means the first coefficient packet is guaranteed to be aligned */
-const unsigned int AlignedBit = 0x80;
-
-const unsigned int NestByRefBit = 0x100;
-
-// list of flags that are inherited by default
-const unsigned int HereditaryBits = RowMajorBit
- | EvalBeforeNestingBit
- | EvalBeforeAssigningBit;
-
-/** \defgroup enums Enumerations
- * \ingroup Core_Module
- *
- * Various enumerations used in %Eigen. Many of these are used as template parameters.
- */
-
-/** \ingroup enums
- * Enum containing possible values for the \p Mode parameter of
- * MatrixBase::selfadjointView() and MatrixBase::triangularView(). */
-enum {
- /** View matrix as a lower triangular matrix. */
- Lower=0x1,
- /** View matrix as an upper triangular matrix. */
- Upper=0x2,
- /** %Matrix has ones on the diagonal; to be used in combination with #Lower or #Upper. */
- UnitDiag=0x4,
- /** %Matrix has zeros on the diagonal; to be used in combination with #Lower or #Upper. */
- ZeroDiag=0x8,
- /** View matrix as a lower triangular matrix with ones on the diagonal. */
- UnitLower=UnitDiag|Lower,
- /** View matrix as an upper triangular matrix with ones on the diagonal. */
- UnitUpper=UnitDiag|Upper,
- /** View matrix as a lower triangular matrix with zeros on the diagonal. */
- StrictlyLower=ZeroDiag|Lower,
- /** View matrix as an upper triangular matrix with zeros on the diagonal. */
- StrictlyUpper=ZeroDiag|Upper,
- /** Used in BandMatrix and SelfAdjointView to indicate that the matrix is self-adjoint. */
- SelfAdjoint=0x10,
- /** Used to support symmetric, non-selfadjoint, complex matrices. */
- Symmetric=0x20
-};
-
-/** \ingroup enums
- * Enum for indicating whether an object is aligned or not. */
-enum {
- /** Object is not correctly aligned for vectorization. */
- Unaligned=0,
- /** Object is aligned for vectorization. */
- Aligned=1
-};
-
-/** \ingroup enums
- * Enum used by DenseBase::corner() in Eigen2 compatibility mode. */
-// FIXME after the corner() API change, this was not needed anymore, except by AlignedBox
-// TODO: find out what to do with that. Adapt the AlignedBox API ?
-enum CornerType { TopLeft, TopRight, BottomLeft, BottomRight };
-
-/** \ingroup enums
- * Enum containing possible values for the \p Direction parameter of
- * Reverse, PartialReduxExpr and VectorwiseOp. */
-enum DirectionType {
- /** For Reverse, all columns are reversed;
- * for PartialReduxExpr and VectorwiseOp, act on columns. */
- Vertical,
- /** For Reverse, all rows are reversed;
- * for PartialReduxExpr and VectorwiseOp, act on rows. */
- Horizontal,
- /** For Reverse, both rows and columns are reversed;
- * not used for PartialReduxExpr and VectorwiseOp. */
- BothDirections
-};
-
-/** \internal \ingroup enums
- * Enum to specify how to traverse the entries of a matrix. */
-enum {
- /** \internal Default traversal, no vectorization, no index-based access */
- DefaultTraversal,
- /** \internal No vectorization, use index-based access to have only one for loop instead of 2 nested loops */
- LinearTraversal,
- /** \internal Equivalent to a slice vectorization for fixed-size matrices having good alignment
- * and good size */
- InnerVectorizedTraversal,
- /** \internal Vectorization path using a single loop plus scalar loops for the
- * unaligned boundaries */
- LinearVectorizedTraversal,
- /** \internal Generic vectorization path using one vectorized loop per row/column with some
- * scalar loops to handle the unaligned boundaries */
- SliceVectorizedTraversal,
- /** \internal Special case to properly handle incompatible scalar types or other defecting cases*/
- InvalidTraversal,
- /** \internal Evaluate all entries at once */
- AllAtOnceTraversal
-};
-
-/** \internal \ingroup enums
- * Enum to specify whether to unroll loops when traversing over the entries of a matrix. */
-enum {
- /** \internal Do not unroll loops. */
- NoUnrolling,
- /** \internal Unroll only the inner loop, but not the outer loop. */
- InnerUnrolling,
- /** \internal Unroll both the inner and the outer loop. If there is only one loop,
- * because linear traversal is used, then unroll that loop. */
- CompleteUnrolling
-};
-
-/** \internal \ingroup enums
- * Enum to specify whether to use the default (built-in) implementation or the specialization. */
-enum {
- Specialized,
- BuiltIn
-};
-
-/** \ingroup enums
- * Enum containing possible values for the \p _Options template parameter of
- * Matrix, Array and BandMatrix. */
-enum {
- /** Storage order is column major (see \ref TopicStorageOrders). */
- ColMajor = 0,
- /** Storage order is row major (see \ref TopicStorageOrders). */
- RowMajor = 0x1, // it is only a coincidence that this is equal to RowMajorBit -- don't rely on that
- /** Align the matrix itself if it is vectorizable fixed-size */
- AutoAlign = 0,
- /** Don't require alignment for the matrix itself (the array of coefficients, if dynamically allocated, may still be requested to be aligned) */ // FIXME --- clarify the situation
- DontAlign = 0x2
-};
-
-/** \ingroup enums
- * Enum for specifying whether to apply or solve on the left or right. */
-enum {
- /** Apply transformation on the left. */
- OnTheLeft = 1,
- /** Apply transformation on the right. */
- OnTheRight = 2
-};
-
-/* the following used to be written as:
- *
- * struct NoChange_t {};
- * namespace {
- * EIGEN_UNUSED NoChange_t NoChange;
- * }
- *
- * on the ground that it feels dangerous to disambiguate overloaded functions on enum/integer types.
- * However, this leads to "variable declared but never referenced" warnings on Intel Composer XE,
- * and we do not know how to get rid of them (bug 450).
- */
-
-enum NoChange_t { NoChange };
-enum Sequential_t { Sequential };
-enum Default_t { Default };
-
-/** \internal \ingroup enums
- * Used in AmbiVector. */
-enum {
- IsDense = 0,
- IsSparse
-};
-
-/** \ingroup enums
- * Used as template parameter in DenseCoeffBase and MapBase to indicate
- * which accessors should be provided. */
-enum AccessorLevels {
- /** Read-only access via a member function. */
- ReadOnlyAccessors,
- /** Read/write access via member functions. */
- WriteAccessors,
- /** Direct read-only access to the coefficients. */
- DirectAccessors,
- /** Direct read/write access to the coefficients. */
- DirectWriteAccessors
-};
-
-/** \ingroup enums
- * Enum with options to give to various decompositions. */
-enum DecompositionOptions {
- /** \internal Not used (meant for LDLT?). */
- Pivoting = 0x01,
- /** \internal Not used (meant for LDLT?). */
- NoPivoting = 0x02,
- /** Used in JacobiSVD to indicate that the square matrix U is to be computed. */
- ComputeFullU = 0x04,
- /** Used in JacobiSVD to indicate that the thin matrix U is to be computed. */
- ComputeThinU = 0x08,
- /** Used in JacobiSVD to indicate that the square matrix V is to be computed. */
- ComputeFullV = 0x10,
- /** Used in JacobiSVD to indicate that the thin matrix V is to be computed. */
- ComputeThinV = 0x20,
- /** Used in SelfAdjointEigenSolver and GeneralizedSelfAdjointEigenSolver to specify
- * that only the eigenvalues are to be computed and not the eigenvectors. */
- EigenvaluesOnly = 0x40,
- /** Used in SelfAdjointEigenSolver and GeneralizedSelfAdjointEigenSolver to specify
- * that both the eigenvalues and the eigenvectors are to be computed. */
- ComputeEigenvectors = 0x80,
- /** \internal */
- EigVecMask = EigenvaluesOnly | ComputeEigenvectors,
- /** Used in GeneralizedSelfAdjointEigenSolver to indicate that it should
- * solve the generalized eigenproblem \f$ Ax = \lambda B x \f$. */
- Ax_lBx = 0x100,
- /** Used in GeneralizedSelfAdjointEigenSolver to indicate that it should
- * solve the generalized eigenproblem \f$ ABx = \lambda x \f$. */
- ABx_lx = 0x200,
- /** Used in GeneralizedSelfAdjointEigenSolver to indicate that it should
- * solve the generalized eigenproblem \f$ BAx = \lambda x \f$. */
- BAx_lx = 0x400,
- /** \internal */
- GenEigMask = Ax_lBx | ABx_lx | BAx_lx
-};
-
-/** \ingroup enums
- * Possible values for the \p QRPreconditioner template parameter of JacobiSVD. */
-enum QRPreconditioners {
- /** Do not specify what is to be done if the SVD of a non-square matrix is asked for. */
- NoQRPreconditioner,
- /** Use a QR decomposition without pivoting as the first step. */
- HouseholderQRPreconditioner,
- /** Use a QR decomposition with column pivoting as the first step. */
- ColPivHouseholderQRPreconditioner,
- /** Use a QR decomposition with full pivoting as the first step. */
- FullPivHouseholderQRPreconditioner
-};
-
-#ifdef Success
-#error The preprocessor symbol 'Success' is defined, possibly by the X11 header file X.h
-#endif
-
-/** \ingroup enums
- * Enum for reporting the status of a computation. */
-enum ComputationInfo {
- /** Computation was successful. */
- Success = 0,
- /** The provided data did not satisfy the prerequisites. */
- NumericalIssue = 1,
- /** Iterative procedure did not converge. */
- NoConvergence = 2,
- /** The inputs are invalid, or the algorithm has been improperly called.
- * When assertions are enabled, such errors trigger an assert. */
- InvalidInput = 3
-};
-
-/** \ingroup enums
- * Enum used to specify how a particular transformation is stored in a matrix.
- * \sa Transform, Hyperplane::transform(). */
-enum TransformTraits {
- /** Transformation is an isometry. */
- Isometry = 0x1,
- /** Transformation is an affine transformation stored as a (Dim+1)^2 matrix whose last row is
- * assumed to be [0 ... 0 1]. */
- Affine = 0x2,
- /** Transformation is an affine transformation stored as a (Dim) x (Dim+1) matrix. */
- AffineCompact = 0x10 | Affine,
- /** Transformation is a general projective transformation stored as a (Dim+1)^2 matrix. */
- Projective = 0x20
-};
-
-/** \internal \ingroup enums
- * Enum used to choose between implementation depending on the computer architecture. */
-namespace Architecture
-{
- enum Type {
- Generic = 0x0,
- SSE = 0x1,
- AltiVec = 0x2,
-#if defined EIGEN_VECTORIZE_SSE
- Target = SSE
-#elif defined EIGEN_VECTORIZE_ALTIVEC
- Target = AltiVec
-#else
- Target = Generic
-#endif
- };
-}
-
-/** \internal \ingroup enums
- * Enum used as template parameter in GeneralProduct. */
-enum { CoeffBasedProductMode, LazyCoeffBasedProductMode, OuterProduct, InnerProduct, GemvProduct, GemmProduct };
-
-/** \internal \ingroup enums
- * Enum used in experimental parallel implementation. */
-enum Action {GetAction, SetAction};
-
-/** The type used to identify a dense storage. */
-struct Dense {};
-
-/** The type used to identify a matrix expression */
-struct MatrixXpr {};
-
-/** The type used to identify an array expression */
-struct ArrayXpr {};
-
-} // end namespace Eigen
-
-#endif // EIGEN_CONSTANTS_H
diff --git a/src/Eigen/src/Core/util/DisableStupidWarnings.h b/src/Eigen/src/Core/util/DisableStupidWarnings.h
deleted file mode 100644
index 6a0bf06..0000000
--- a/src/Eigen/src/Core/util/DisableStupidWarnings.h
+++ /dev/null
@@ -1,40 +0,0 @@
-#ifndef EIGEN_WARNINGS_DISABLED
-#define EIGEN_WARNINGS_DISABLED
-
-#ifdef _MSC_VER
- // 4100 - unreferenced formal parameter (occurred e.g. in aligned_allocator::destroy(pointer p))
- // 4101 - unreferenced local variable
- // 4127 - conditional expression is constant
- // 4181 - qualifier applied to reference type ignored
- // 4211 - nonstandard extension used : redefined extern to static
- // 4244 - 'argument' : conversion from 'type1' to 'type2', possible loss of data
- // 4273 - QtAlignedMalloc, inconsistent DLL linkage
- // 4324 - structure was padded due to declspec(align())
- // 4512 - assignment operator could not be generated
- // 4522 - 'class' : multiple assignment operators specified
- // 4700 - uninitialized local variable 'xyz' used
- // 4717 - 'function' : recursive on all control paths, function will cause runtime stack overflow
- #ifndef EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS
- #pragma warning( push )
- #endif
- #pragma warning( disable : 4100 4101 4127 4181 4211 4244 4273 4324 4512 4522 4700 4717 )
-#elif defined __INTEL_COMPILER
- // 2196 - routine is both "inline" and "noinline" ("noinline" assumed)
- // ICC 12 generates this warning even without any inline keyword, when defining class methods 'inline' i.e. inside of class body
- // typedef that may be a reference type.
- // 279 - controlling expression is constant
- // ICC 12 generates this warning on assert(constant_expression_depending_on_template_params) and frankly this is a legitimate use case.
- #ifndef EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS
- #pragma warning push
- #endif
- #pragma warning disable 2196 279
-#elif defined __clang__
- // -Wconstant-logical-operand - warning: use of logical && with constant operand; switch to bitwise & or remove constant
- // this is really a stupid warning as it warns on compile-time expressions involving enums
- #ifndef EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS
- #pragma clang diagnostic push
- #endif
- #pragma clang diagnostic ignored "-Wconstant-logical-operand"
-#endif
-
-#endif // not EIGEN_WARNINGS_DISABLED
diff --git a/src/Eigen/src/Core/util/ForwardDeclarations.h b/src/Eigen/src/Core/util/ForwardDeclarations.h
deleted file mode 100644
index d6a8145..0000000
--- a/src/Eigen/src/Core/util/ForwardDeclarations.h
+++ /dev/null
@@ -1,299 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_FORWARDDECLARATIONS_H
-#define EIGEN_FORWARDDECLARATIONS_H
-
-namespace Eigen {
-namespace internal {
-
-template<typename T> struct traits;
-
-// here we say once and for all that traits<const T> == traits<T>
-// When constness must affect traits, it has to be constness on template parameters on which T itself depends.
-// For example, traits<Map<const T> > != traits<Map<T> >, but
-// traits<const Map<T> > == traits<Map<T> >
-template<typename T> struct traits<const T> : traits<T> {};
-
-template<typename Derived> struct has_direct_access
-{
- enum { ret = (traits<Derived>::Flags & DirectAccessBit) ? 1 : 0 };
-};
-
-template<typename Derived> struct accessors_level
-{
- enum { has_direct_access = (traits<Derived>::Flags & DirectAccessBit) ? 1 : 0,
- has_write_access = (traits<Derived>::Flags & LvalueBit) ? 1 : 0,
- value = has_direct_access ? (has_write_access ? DirectWriteAccessors : DirectAccessors)
- : (has_write_access ? WriteAccessors : ReadOnlyAccessors)
- };
-};
-
-} // end namespace internal
-
-template<typename T> struct NumTraits;
-
-template<typename Derived> struct EigenBase;
-template<typename Derived> class DenseBase;
-template<typename Derived> class PlainObjectBase;
-
-
-template<typename Derived,
- int Level = internal::accessors_level<Derived>::value >
-class DenseCoeffsBase;
-
-template<typename _Scalar, int _Rows, int _Cols,
- int _Options = AutoAlign |
-#if defined(__GNUC__) && __GNUC__==3 && __GNUC_MINOR__==4
- // workaround a bug in at least gcc 3.4.6
- // the innermost ?: ternary operator is misparsed. We write it slightly
- // differently and this makes gcc 3.4.6 happy, but it's ugly.
- // The error would only show up with EIGEN_DEFAULT_TO_ROW_MAJOR is defined
- // (when EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION is RowMajor)
- ( (_Rows==1 && _Cols!=1) ? RowMajor
- : !(_Cols==1 && _Rows!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
- : ColMajor ),
-#else
- ( (_Rows==1 && _Cols!=1) ? RowMajor
- : (_Cols==1 && _Rows!=1) ? ColMajor
- : EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
-#endif
- int _MaxRows = _Rows,
- int _MaxCols = _Cols
-> class Matrix;
-
-template<typename Derived> class MatrixBase;
-template<typename Derived> class ArrayBase;
-
-template<typename ExpressionType, unsigned int Added, unsigned int Removed> class Flagged;
-template<typename ExpressionType, template <typename> class StorageBase > class NoAlias;
-template<typename ExpressionType> class NestByValue;
-template<typename ExpressionType> class ForceAlignedAccess;
-template<typename ExpressionType> class SwapWrapper;
-
-template<typename XprType, int BlockRows=Dynamic, int BlockCols=Dynamic, bool InnerPanel = false> class Block;
-
-template<typename MatrixType, int Size=Dynamic> class VectorBlock;
-template<typename MatrixType> class Transpose;
-template<typename MatrixType> class Conjugate;
-template<typename NullaryOp, typename MatrixType> class CwiseNullaryOp;
-template<typename UnaryOp, typename MatrixType> class CwiseUnaryOp;
-template<typename ViewOp, typename MatrixType> class CwiseUnaryView;
-template<typename BinaryOp, typename Lhs, typename Rhs> class CwiseBinaryOp;
-template<typename BinOp, typename Lhs, typename Rhs> class SelfCwiseBinaryOp;
-template<typename Derived, typename Lhs, typename Rhs> class ProductBase;
-template<typename Lhs, typename Rhs, int Mode> class GeneralProduct;
-template<typename Lhs, typename Rhs, int NestingFlags> class CoeffBasedProduct;
-
-template<typename Derived> class DiagonalBase;
-template<typename _DiagonalVectorType> class DiagonalWrapper;
-template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime=SizeAtCompileTime> class DiagonalMatrix;
-template<typename MatrixType, typename DiagonalType, int ProductOrder> class DiagonalProduct;
-template<typename MatrixType, int Index = 0> class Diagonal;
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class PermutationMatrix;
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class Transpositions;
-template<typename Derived> class PermutationBase;
-template<typename Derived> class TranspositionsBase;
-template<typename _IndicesType> class PermutationWrapper;
-template<typename _IndicesType> class TranspositionsWrapper;
-
-template<typename Derived,
- int Level = internal::accessors_level<Derived>::has_write_access ? WriteAccessors : ReadOnlyAccessors
-> class MapBase;
-template<int InnerStrideAtCompileTime, int OuterStrideAtCompileTime> class Stride;
-template<typename MatrixType, int MapOptions=Unaligned, typename StrideType = Stride<0,0> > class Map;
-
-template<typename Derived> class TriangularBase;
-template<typename MatrixType, unsigned int Mode> class TriangularView;
-template<typename MatrixType, unsigned int Mode> class SelfAdjointView;
-template<typename MatrixType> class SparseView;
-template<typename ExpressionType> class WithFormat;
-template<typename MatrixType> struct CommaInitializer;
-template<typename Derived> class ReturnByValue;
-template<typename ExpressionType> class ArrayWrapper;
-template<typename ExpressionType> class MatrixWrapper;
-
-namespace internal {
-template<typename DecompositionType, typename Rhs> struct solve_retval_base;
-template<typename DecompositionType, typename Rhs> struct solve_retval;
-template<typename DecompositionType> struct kernel_retval_base;
-template<typename DecompositionType> struct kernel_retval;
-template<typename DecompositionType> struct image_retval_base;
-template<typename DecompositionType> struct image_retval;
-} // end namespace internal
-
-namespace internal {
-template<typename _Scalar, int Rows=Dynamic, int Cols=Dynamic, int Supers=Dynamic, int Subs=Dynamic, int Options=0> class BandMatrix;
-}
-
-namespace internal {
-template<typename Lhs, typename Rhs> struct product_type;
-}
-
-template<typename Lhs, typename Rhs,
- int ProductType = internal::product_type<Lhs,Rhs>::value>
-struct ProductReturnType;
-
-// this is a workaround for sun CC
-template<typename Lhs, typename Rhs> struct LazyProductReturnType;
-
-namespace internal {
-
-// Provides scalar/packet-wise product and product with accumulation
-// with optional conjugation of the arguments.
-template<typename LhsScalar, typename RhsScalar, bool ConjLhs=false, bool ConjRhs=false> struct conj_helper;
-
-template<typename Scalar> struct scalar_sum_op;
-template<typename Scalar> struct scalar_difference_op;
-template<typename LhsScalar,typename RhsScalar> struct scalar_conj_product_op;
-template<typename Scalar> struct scalar_opposite_op;
-template<typename Scalar> struct scalar_conjugate_op;
-template<typename Scalar> struct scalar_real_op;
-template<typename Scalar> struct scalar_imag_op;
-template<typename Scalar> struct scalar_abs_op;
-template<typename Scalar> struct scalar_abs2_op;
-template<typename Scalar> struct scalar_sqrt_op;
-template<typename Scalar> struct scalar_exp_op;
-template<typename Scalar> struct scalar_log_op;
-template<typename Scalar> struct scalar_cos_op;
-template<typename Scalar> struct scalar_sin_op;
-template<typename Scalar> struct scalar_acos_op;
-template<typename Scalar> struct scalar_asin_op;
-template<typename Scalar> struct scalar_tan_op;
-template<typename Scalar> struct scalar_pow_op;
-template<typename Scalar> struct scalar_inverse_op;
-template<typename Scalar> struct scalar_square_op;
-template<typename Scalar> struct scalar_cube_op;
-template<typename Scalar, typename NewType> struct scalar_cast_op;
-template<typename Scalar> struct scalar_multiple_op;
-template<typename Scalar> struct scalar_quotient1_op;
-template<typename Scalar> struct scalar_min_op;
-template<typename Scalar> struct scalar_max_op;
-template<typename Scalar> struct scalar_random_op;
-template<typename Scalar> struct scalar_add_op;
-template<typename Scalar> struct scalar_constant_op;
-template<typename Scalar> struct scalar_identity_op;
-
-template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_product_op;
-template<typename LhsScalar,typename RhsScalar> struct scalar_multiple2_op;
-template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_quotient_op;
-
-} // end namespace internal
-
-struct IOFormat;
-
-// Array module
-template<typename _Scalar, int _Rows, int _Cols,
- int _Options = AutoAlign |
-#if defined(__GNUC__) && __GNUC__==3 && __GNUC_MINOR__==4
- // workaround a bug in at least gcc 3.4.6
- // the innermost ?: ternary operator is misparsed. We write it slightly
- // differently and this makes gcc 3.4.6 happy, but it's ugly.
- // The error would only show up with EIGEN_DEFAULT_TO_ROW_MAJOR is defined
- // (when EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION is RowMajor)
- ( (_Rows==1 && _Cols!=1) ? RowMajor
- : !(_Cols==1 && _Rows!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
- : ColMajor ),
-#else
- ( (_Rows==1 && _Cols!=1) ? RowMajor
- : (_Cols==1 && _Rows!=1) ? ColMajor
- : EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
-#endif
- int _MaxRows = _Rows, int _MaxCols = _Cols> class Array;
-template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType> class Select;
-template<typename MatrixType, typename BinaryOp, int Direction> class PartialReduxExpr;
-template<typename ExpressionType, int Direction> class VectorwiseOp;
-template<typename MatrixType,int RowFactor,int ColFactor> class Replicate;
-template<typename MatrixType, int Direction = BothDirections> class Reverse;
-
-template<typename MatrixType> class FullPivLU;
-template<typename MatrixType> class PartialPivLU;
-namespace internal {
-template<typename MatrixType> struct inverse_impl;
-}
-template<typename MatrixType> class HouseholderQR;
-template<typename MatrixType> class ColPivHouseholderQR;
-template<typename MatrixType> class FullPivHouseholderQR;
-template<typename MatrixType, int QRPreconditioner = ColPivHouseholderQRPreconditioner> class JacobiSVD;
-template<typename MatrixType, int UpLo = Lower> class LLT;
-template<typename MatrixType, int UpLo = Lower> class LDLT;
-template<typename VectorsType, typename CoeffsType, int Side=OnTheLeft> class HouseholderSequence;
-template<typename Scalar> class JacobiRotation;
-
-// Geometry module:
-template<typename Derived, int _Dim> class RotationBase;
-template<typename Lhs, typename Rhs> class Cross;
-template<typename Derived> class QuaternionBase;
-template<typename Scalar> class Rotation2D;
-template<typename Scalar> class AngleAxis;
-template<typename Scalar,int Dim> class Translation;
-
-#ifdef EIGEN2_SUPPORT
-template<typename Derived, int _Dim> class eigen2_RotationBase;
-template<typename Lhs, typename Rhs> class eigen2_Cross;
-template<typename Scalar> class eigen2_Quaternion;
-template<typename Scalar> class eigen2_Rotation2D;
-template<typename Scalar> class eigen2_AngleAxis;
-template<typename Scalar,int Dim> class eigen2_Transform;
-template <typename _Scalar, int _AmbientDim> class eigen2_ParametrizedLine;
-template <typename _Scalar, int _AmbientDim> class eigen2_Hyperplane;
-template<typename Scalar,int Dim> class eigen2_Translation;
-template<typename Scalar,int Dim> class eigen2_Scaling;
-#endif
-
-#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
-template<typename Scalar> class Quaternion;
-template<typename Scalar,int Dim> class Transform;
-template <typename _Scalar, int _AmbientDim> class ParametrizedLine;
-template <typename _Scalar, int _AmbientDim> class Hyperplane;
-template<typename Scalar,int Dim> class Scaling;
-#endif
-
-#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
-template<typename Scalar, int Options = AutoAlign> class Quaternion;
-template<typename Scalar,int Dim,int Mode,int _Options=AutoAlign> class Transform;
-template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class ParametrizedLine;
-template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class Hyperplane;
-template<typename Scalar> class UniformScaling;
-template<typename MatrixType,int Direction> class Homogeneous;
-#endif
-
-// MatrixFunctions module
-template<typename Derived> struct MatrixExponentialReturnValue;
-template<typename Derived> class MatrixFunctionReturnValue;
-template<typename Derived> class MatrixSquareRootReturnValue;
-template<typename Derived> class MatrixLogarithmReturnValue;
-template<typename Derived> class MatrixPowerReturnValue;
-template<typename Derived, typename Lhs, typename Rhs> class MatrixPowerProduct;
-
-namespace internal {
-template <typename Scalar>
-struct stem_function
-{
- typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
- typedef ComplexScalar type(ComplexScalar, int);
-};
-}
-
-
-#ifdef EIGEN2_SUPPORT
-template<typename ExpressionType> class Cwise;
-template<typename MatrixType> class Minor;
-template<typename MatrixType> class LU;
-template<typename MatrixType> class QR;
-template<typename MatrixType> class SVD;
-namespace internal {
-template<typename MatrixType, unsigned int Mode> struct eigen2_part_return_type;
-}
-#endif
-
-} // end namespace Eigen
-
-#endif // EIGEN_FORWARDDECLARATIONS_H
diff --git a/src/Eigen/src/Core/util/MKL_support.h b/src/Eigen/src/Core/util/MKL_support.h
deleted file mode 100644
index 8acca9c..0000000
--- a/src/Eigen/src/Core/util/MKL_support.h
+++ /dev/null
@@ -1,126 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * Include file with common MKL declarations
- ********************************************************************************
-*/
-
-#ifndef EIGEN_MKL_SUPPORT_H
-#define EIGEN_MKL_SUPPORT_H
-
-#ifdef EIGEN_USE_MKL_ALL
- #ifndef EIGEN_USE_BLAS
- #define EIGEN_USE_BLAS
- #endif
- #ifndef EIGEN_USE_LAPACKE
- #define EIGEN_USE_LAPACKE
- #endif
- #ifndef EIGEN_USE_MKL_VML
- #define EIGEN_USE_MKL_VML
- #endif
-#endif
-
-#ifdef EIGEN_USE_LAPACKE_STRICT
- #define EIGEN_USE_LAPACKE
-#endif
-
-#if defined(EIGEN_USE_BLAS) || defined(EIGEN_USE_LAPACKE) || defined(EIGEN_USE_MKL_VML)
- #define EIGEN_USE_MKL
-#endif
-
-#if defined EIGEN_USE_MKL
-# include <mkl.h>
-/*Check IMKL version for compatibility: < 10.3 is not usable with Eigen*/
-# ifndef INTEL_MKL_VERSION
-# undef EIGEN_USE_MKL /* INTEL_MKL_VERSION is not even defined on older versions */
-# elif INTEL_MKL_VERSION < 100305 /* the intel-mkl-103-release-notes say this was when the lapacke.h interface was added*/
-# undef EIGEN_USE_MKL
-# endif
-# ifndef EIGEN_USE_MKL
- /*If the MKL version is too old, undef everything*/
-# undef EIGEN_USE_MKL_ALL
-# undef EIGEN_USE_BLAS
-# undef EIGEN_USE_LAPACKE
-# undef EIGEN_USE_MKL_VML
-# undef EIGEN_USE_LAPACKE_STRICT
-# undef EIGEN_USE_LAPACKE
-# endif
-#endif
-
-#if defined EIGEN_USE_MKL
-#include <mkl_lapacke.h>
-#define EIGEN_MKL_VML_THRESHOLD 128
-
-namespace Eigen {
-
-typedef std::complex<double> dcomplex;
-typedef std::complex<float> scomplex;
-
-namespace internal {
-
-template<typename MKLType, typename EigenType>
-static inline void assign_scalar_eig2mkl(MKLType& mklScalar, const EigenType& eigenScalar) {
- mklScalar=eigenScalar;
-}
-
-template<typename MKLType, typename EigenType>
-static inline void assign_conj_scalar_eig2mkl(MKLType& mklScalar, const EigenType& eigenScalar) {
- mklScalar=eigenScalar;
-}
-
-template <>
-inline void assign_scalar_eig2mkl<MKL_Complex16,dcomplex>(MKL_Complex16& mklScalar, const dcomplex& eigenScalar) {
- mklScalar.real=eigenScalar.real();
- mklScalar.imag=eigenScalar.imag();
-}
-
-template <>
-inline void assign_scalar_eig2mkl<MKL_Complex8,scomplex>(MKL_Complex8& mklScalar, const scomplex& eigenScalar) {
- mklScalar.real=eigenScalar.real();
- mklScalar.imag=eigenScalar.imag();
-}
-
-template <>
-inline void assign_conj_scalar_eig2mkl<MKL_Complex16,dcomplex>(MKL_Complex16& mklScalar, const dcomplex& eigenScalar) {
- mklScalar.real=eigenScalar.real();
- mklScalar.imag=-eigenScalar.imag();
-}
-
-template <>
-inline void assign_conj_scalar_eig2mkl<MKL_Complex8,scomplex>(MKL_Complex8& mklScalar, const scomplex& eigenScalar) {
- mklScalar.real=eigenScalar.real();
- mklScalar.imag=-eigenScalar.imag();
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif
-
-#endif // EIGEN_MKL_SUPPORT_H
diff --git a/src/Eigen/src/Core/util/Macros.h b/src/Eigen/src/Core/util/Macros.h
deleted file mode 100644
index 3a010ec..0000000
--- a/src/Eigen/src/Core/util/Macros.h
+++ /dev/null
@@ -1,424 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MACROS_H
-#define EIGEN_MACROS_H
-
-#define EIGEN_WORLD_VERSION 3
-#define EIGEN_MAJOR_VERSION 2
-#define EIGEN_MINOR_VERSION 2
-
-#define EIGEN_VERSION_AT_LEAST(x,y,z) (EIGEN_WORLD_VERSION>x || (EIGEN_WORLD_VERSION>=x && \
- (EIGEN_MAJOR_VERSION>y || (EIGEN_MAJOR_VERSION>=y && \
- EIGEN_MINOR_VERSION>=z))))
-#ifdef __GNUC__
- #define EIGEN_GNUC_AT_LEAST(x,y) ((__GNUC__==x && __GNUC_MINOR__>=y) || __GNUC__>x)
-#else
- #define EIGEN_GNUC_AT_LEAST(x,y) 0
-#endif
-
-#ifdef __GNUC__
- #define EIGEN_GNUC_AT_MOST(x,y) ((__GNUC__==x && __GNUC_MINOR__<=y) || __GNUC__<x)
-#else
- #define EIGEN_GNUC_AT_MOST(x,y) 0
-#endif
-
-#if EIGEN_GNUC_AT_MOST(4,3) && !defined(__clang__)
- // see bug 89
- #define EIGEN_SAFE_TO_USE_STANDARD_ASSERT_MACRO 0
-#else
- #define EIGEN_SAFE_TO_USE_STANDARD_ASSERT_MACRO 1
-#endif
-
-#if defined(__GNUC__) && (__GNUC__ <= 3)
-#define EIGEN_GCC3_OR_OLDER 1
-#else
-#define EIGEN_GCC3_OR_OLDER 0
-#endif
-
-// 16 byte alignment is only useful for vectorization. Since it affects the ABI, we need to enable
-// 16 byte alignment on all platforms where vectorization might be enabled. In theory we could always
-// enable alignment, but it can be a cause of problems on some platforms, so we just disable it in
-// certain common platform (compiler+architecture combinations) to avoid these problems.
-// Only static alignment is really problematic (relies on nonstandard compiler extensions that don't
-// work everywhere, for example don't work on GCC/ARM), try to keep heap alignment even
-// when we have to disable static alignment.
-#if defined(__GNUC__) && !(defined(__i386__) || defined(__x86_64__) || defined(__powerpc__) || defined(__ppc__) || defined(__ia64__))
-#define EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT 1
-#else
-#define EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT 0
-#endif
-
-// static alignment is completely disabled with GCC 3, Sun Studio, and QCC/QNX
-#if !EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT \
- && !EIGEN_GCC3_OR_OLDER \
- && !defined(__SUNPRO_CC) \
- && !defined(__QNXNTO__)
- #define EIGEN_ARCH_WANTS_STACK_ALIGNMENT 1
-#else
- #define EIGEN_ARCH_WANTS_STACK_ALIGNMENT 0
-#endif
-
-#ifdef EIGEN_DONT_ALIGN
- #ifndef EIGEN_DONT_ALIGN_STATICALLY
- #define EIGEN_DONT_ALIGN_STATICALLY
- #endif
- #define EIGEN_ALIGN 0
-#else
- #define EIGEN_ALIGN 1
-#endif
-
-// EIGEN_ALIGN_STATICALLY is the true test whether we want to align arrays on the stack or not. It takes into account both the user choice to explicitly disable
-// alignment (EIGEN_DONT_ALIGN_STATICALLY) and the architecture config (EIGEN_ARCH_WANTS_STACK_ALIGNMENT). Henceforth, only EIGEN_ALIGN_STATICALLY should be used.
-#if EIGEN_ARCH_WANTS_STACK_ALIGNMENT && !defined(EIGEN_DONT_ALIGN_STATICALLY)
- #define EIGEN_ALIGN_STATICALLY 1
-#else
- #define EIGEN_ALIGN_STATICALLY 0
- #ifndef EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT
- #define EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT
- #endif
-#endif
-
-#ifdef EIGEN_DEFAULT_TO_ROW_MAJOR
-#define EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION RowMajor
-#else
-#define EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ColMajor
-#endif
-
-#ifndef EIGEN_DEFAULT_DENSE_INDEX_TYPE
-#define EIGEN_DEFAULT_DENSE_INDEX_TYPE std::ptrdiff_t
-#endif
-
-/** Allows to disable some optimizations which might affect the accuracy of the result.
- * Such optimization are enabled by default, and set EIGEN_FAST_MATH to 0 to disable them.
- * They currently include:
- * - single precision Cwise::sin() and Cwise::cos() when SSE vectorization is enabled.
- */
-#ifndef EIGEN_FAST_MATH
-#define EIGEN_FAST_MATH 1
-#endif
-
-#define EIGEN_DEBUG_VAR(x) std::cerr << #x << " = " << x << std::endl;
-
-// concatenate two tokens
-#define EIGEN_CAT2(a,b) a ## b
-#define EIGEN_CAT(a,b) EIGEN_CAT2(a,b)
-
-// convert a token to a string
-#define EIGEN_MAKESTRING2(a) #a
-#define EIGEN_MAKESTRING(a) EIGEN_MAKESTRING2(a)
-
-// EIGEN_STRONG_INLINE is a stronger version of the inline, using __forceinline on MSVC,
-// but it still doesn't use GCC's always_inline. This is useful in (common) situations where MSVC needs forceinline
-// but GCC is still doing fine with just inline.
-#if (defined _MSC_VER) || (defined __INTEL_COMPILER)
-#define EIGEN_STRONG_INLINE __forceinline
-#else
-#define EIGEN_STRONG_INLINE inline
-#endif
-
-// EIGEN_ALWAYS_INLINE is the stronget, it has the effect of making the function inline and adding every possible
-// attribute to maximize inlining. This should only be used when really necessary: in particular,
-// it uses __attribute__((always_inline)) on GCC, which most of the time is useless and can severely harm compile times.
-// FIXME with the always_inline attribute,
-// gcc 3.4.x reports the following compilation error:
-// Eval.h:91: sorry, unimplemented: inlining failed in call to 'const Eigen::Eval<Derived> Eigen::MatrixBase<Scalar, Derived>::eval() const'
-// : function body not available
-#if EIGEN_GNUC_AT_LEAST(4,0)
-#define EIGEN_ALWAYS_INLINE __attribute__((always_inline)) inline
-#else
-#define EIGEN_ALWAYS_INLINE EIGEN_STRONG_INLINE
-#endif
-
-#if (defined __GNUC__)
-#define EIGEN_DONT_INLINE __attribute__((noinline))
-#elif (defined _MSC_VER)
-#define EIGEN_DONT_INLINE __declspec(noinline)
-#else
-#define EIGEN_DONT_INLINE
-#endif
-
-#if (defined __GNUC__)
-#define EIGEN_PERMISSIVE_EXPR __extension__
-#else
-#define EIGEN_PERMISSIVE_EXPR
-#endif
-
-// this macro allows to get rid of linking errors about multiply defined functions.
-// - static is not very good because it prevents definitions from different object files to be merged.
-// So static causes the resulting linked executable to be bloated with multiple copies of the same function.
-// - inline is not perfect either as it unwantedly hints the compiler toward inlining the function.
-#define EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-#define EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS inline
-
-#ifdef NDEBUG
-# ifndef EIGEN_NO_DEBUG
-# define EIGEN_NO_DEBUG
-# endif
-#endif
-
-// eigen_plain_assert is where we implement the workaround for the assert() bug in GCC <= 4.3, see bug 89
-#ifdef EIGEN_NO_DEBUG
- #define eigen_plain_assert(x)
-#else
- #if EIGEN_SAFE_TO_USE_STANDARD_ASSERT_MACRO
- namespace Eigen {
- namespace internal {
- inline bool copy_bool(bool b) { return b; }
- }
- }
- #define eigen_plain_assert(x) assert(x)
- #else
- // work around bug 89
- #include <cstdlib> // for abort
- #include <iostream> // for std::cerr
-
- namespace Eigen {
- namespace internal {
- // trivial function copying a bool. Must be EIGEN_DONT_INLINE, so we implement it after including Eigen headers.
- // see bug 89.
- namespace {
- EIGEN_DONT_INLINE bool copy_bool(bool b) { return b; }
- }
- inline void assert_fail(const char *condition, const char *function, const char *file, int line)
- {
- std::cerr << "assertion failed: " << condition << " in function " << function << " at " << file << ":" << line << std::endl;
- abort();
- }
- }
- }
- #define eigen_plain_assert(x) \
- do { \
- if(!Eigen::internal::copy_bool(x)) \
- Eigen::internal::assert_fail(EIGEN_MAKESTRING(x), __PRETTY_FUNCTION__, __FILE__, __LINE__); \
- } while(false)
- #endif
-#endif
-
-// eigen_assert can be overridden
-#ifndef eigen_assert
-#define eigen_assert(x) eigen_plain_assert(x)
-#endif
-
-#ifdef EIGEN_INTERNAL_DEBUGGING
-#define eigen_internal_assert(x) eigen_assert(x)
-#else
-#define eigen_internal_assert(x)
-#endif
-
-#ifdef EIGEN_NO_DEBUG
-#define EIGEN_ONLY_USED_FOR_DEBUG(x) (void)x
-#else
-#define EIGEN_ONLY_USED_FOR_DEBUG(x)
-#endif
-
-#ifndef EIGEN_NO_DEPRECATED_WARNING
- #if (defined __GNUC__)
- #define EIGEN_DEPRECATED __attribute__((deprecated))
- #elif (defined _MSC_VER)
- #define EIGEN_DEPRECATED __declspec(deprecated)
- #else
- #define EIGEN_DEPRECATED
- #endif
-#else
- #define EIGEN_DEPRECATED
-#endif
-
-#if (defined __GNUC__)
-#define EIGEN_UNUSED __attribute__((unused))
-#else
-#define EIGEN_UNUSED
-#endif
-
-// Suppresses 'unused variable' warnings.
-namespace Eigen {
- namespace internal {
- template<typename T> void ignore_unused_variable(const T&) {}
- }
-}
-#define EIGEN_UNUSED_VARIABLE(var) Eigen::internal::ignore_unused_variable(var);
-
-#if !defined(EIGEN_ASM_COMMENT)
- #if (defined __GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
- #define EIGEN_ASM_COMMENT(X) asm("#" X)
- #else
- #define EIGEN_ASM_COMMENT(X)
- #endif
-#endif
-
-/* EIGEN_ALIGN_TO_BOUNDARY(n) forces data to be n-byte aligned. This is used to satisfy SIMD requirements.
- * However, we do that EVEN if vectorization (EIGEN_VECTORIZE) is disabled,
- * so that vectorization doesn't affect binary compatibility.
- *
- * If we made alignment depend on whether or not EIGEN_VECTORIZE is defined, it would be impossible to link
- * vectorized and non-vectorized code.
- */
-#if (defined __GNUC__) || (defined __PGI) || (defined __IBMCPP__) || (defined __ARMCC_VERSION)
- #define EIGEN_ALIGN_TO_BOUNDARY(n) __attribute__((aligned(n)))
-#elif (defined _MSC_VER)
- #define EIGEN_ALIGN_TO_BOUNDARY(n) __declspec(align(n))
-#elif (defined __SUNPRO_CC)
- // FIXME not sure about this one:
- #define EIGEN_ALIGN_TO_BOUNDARY(n) __attribute__((aligned(n)))
-#else
- #error Please tell me what is the equivalent of __attribute__((aligned(n))) for your compiler
-#endif
-
-#define EIGEN_ALIGN16 EIGEN_ALIGN_TO_BOUNDARY(16)
-
-#if EIGEN_ALIGN_STATICALLY
-#define EIGEN_USER_ALIGN_TO_BOUNDARY(n) EIGEN_ALIGN_TO_BOUNDARY(n)
-#define EIGEN_USER_ALIGN16 EIGEN_ALIGN16
-#else
-#define EIGEN_USER_ALIGN_TO_BOUNDARY(n)
-#define EIGEN_USER_ALIGN16
-#endif
-
-#ifdef EIGEN_DONT_USE_RESTRICT_KEYWORD
- #define EIGEN_RESTRICT
-#endif
-#ifndef EIGEN_RESTRICT
- #define EIGEN_RESTRICT __restrict
-#endif
-
-#ifndef EIGEN_STACK_ALLOCATION_LIMIT
-// 131072 == 128 KB
-#define EIGEN_STACK_ALLOCATION_LIMIT 131072
-#endif
-
-#ifndef EIGEN_DEFAULT_IO_FORMAT
-#ifdef EIGEN_MAKING_DOCS
-// format used in Eigen's documentation
-// needed to define it here as escaping characters in CMake add_definition's argument seems very problematic.
-#define EIGEN_DEFAULT_IO_FORMAT Eigen::IOFormat(3, 0, " ", "\n", "", "")
-#else
-#define EIGEN_DEFAULT_IO_FORMAT Eigen::IOFormat()
-#endif
-#endif
-
-// just an empty macro !
-#define EIGEN_EMPTY
-
-#if defined(_MSC_VER) && (!defined(__INTEL_COMPILER))
-#define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \
- using Base::operator =;
-#elif defined(__clang__) // workaround clang bug (see http://forum.kde.org/viewtopic.php?f=74&t=102653)
-#define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \
- using Base::operator =; \
- EIGEN_STRONG_INLINE Derived& operator=(const Derived& other) { Base::operator=(other); return *this; } \
- template <typename OtherDerived> \
- EIGEN_STRONG_INLINE Derived& operator=(const DenseBase<OtherDerived>& other) { Base::operator=(other.derived()); return *this; }
-#else
-#define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \
- using Base::operator =; \
- EIGEN_STRONG_INLINE Derived& operator=(const Derived& other) \
- { \
- Base::operator=(other); \
- return *this; \
- }
-#endif
-
-#define EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived) \
- EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived)
-
-/**
-* Just a side note. Commenting within defines works only by documenting
-* behind the object (via '!<'). Comments cannot be multi-line and thus
-* we have these extra long lines. What is confusing doxygen over here is
-* that we use '\' and basically have a bunch of typedefs with their
-* documentation in a single line.
-**/
-
-#define EIGEN_GENERIC_PUBLIC_INTERFACE(Derived) \
- typedef typename Eigen::internal::traits<Derived>::Scalar Scalar; /*!< \brief Numeric type, e.g. float, double, int or std::complex<float>. */ \
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; /*!< \brief The underlying numeric type for composed scalar types. \details In cases where Scalar is e.g. std::complex<T>, T were corresponding to RealScalar. */ \
- typedef typename Base::CoeffReturnType CoeffReturnType; /*!< \brief The return type for coefficient access. \details Depending on whether the object allows direct coefficient access (e.g. for a MatrixXd), this type is either 'const Scalar&' or simply 'Scalar' for objects that do not allow direct coefficient access. */ \
- typedef typename Eigen::internal::nested<Derived>::type Nested; \
- typedef typename Eigen::internal::traits<Derived>::StorageKind StorageKind; \
- typedef typename Eigen::internal::traits<Derived>::Index Index; \
- enum { RowsAtCompileTime = Eigen::internal::traits<Derived>::RowsAtCompileTime, \
- ColsAtCompileTime = Eigen::internal::traits<Derived>::ColsAtCompileTime, \
- Flags = Eigen::internal::traits<Derived>::Flags, \
- CoeffReadCost = Eigen::internal::traits<Derived>::CoeffReadCost, \
- SizeAtCompileTime = Base::SizeAtCompileTime, \
- MaxSizeAtCompileTime = Base::MaxSizeAtCompileTime, \
- IsVectorAtCompileTime = Base::IsVectorAtCompileTime };
-
-
-#define EIGEN_DENSE_PUBLIC_INTERFACE(Derived) \
- typedef typename Eigen::internal::traits<Derived>::Scalar Scalar; /*!< \brief Numeric type, e.g. float, double, int or std::complex<float>. */ \
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; /*!< \brief The underlying numeric type for composed scalar types. \details In cases where Scalar is e.g. std::complex<T>, T were corresponding to RealScalar. */ \
- typedef typename Base::PacketScalar PacketScalar; \
- typedef typename Base::CoeffReturnType CoeffReturnType; /*!< \brief The return type for coefficient access. \details Depending on whether the object allows direct coefficient access (e.g. for a MatrixXd), this type is either 'const Scalar&' or simply 'Scalar' for objects that do not allow direct coefficient access. */ \
- typedef typename Eigen::internal::nested<Derived>::type Nested; \
- typedef typename Eigen::internal::traits<Derived>::StorageKind StorageKind; \
- typedef typename Eigen::internal::traits<Derived>::Index Index; \
- enum { RowsAtCompileTime = Eigen::internal::traits<Derived>::RowsAtCompileTime, \
- ColsAtCompileTime = Eigen::internal::traits<Derived>::ColsAtCompileTime, \
- MaxRowsAtCompileTime = Eigen::internal::traits<Derived>::MaxRowsAtCompileTime, \
- MaxColsAtCompileTime = Eigen::internal::traits<Derived>::MaxColsAtCompileTime, \
- Flags = Eigen::internal::traits<Derived>::Flags, \
- CoeffReadCost = Eigen::internal::traits<Derived>::CoeffReadCost, \
- SizeAtCompileTime = Base::SizeAtCompileTime, \
- MaxSizeAtCompileTime = Base::MaxSizeAtCompileTime, \
- IsVectorAtCompileTime = Base::IsVectorAtCompileTime }; \
- using Base::derived; \
- using Base::const_cast_derived;
-
-
-#define EIGEN_PLAIN_ENUM_MIN(a,b) (((int)a <= (int)b) ? (int)a : (int)b)
-#define EIGEN_PLAIN_ENUM_MAX(a,b) (((int)a >= (int)b) ? (int)a : (int)b)
-
-// EIGEN_SIZE_MIN_PREFER_DYNAMIC gives the min between compile-time sizes. 0 has absolute priority, followed by 1,
-// followed by Dynamic, followed by other finite values. The reason for giving Dynamic the priority over
-// finite values is that min(3, Dynamic) should be Dynamic, since that could be anything between 0 and 3.
-#define EIGEN_SIZE_MIN_PREFER_DYNAMIC(a,b) (((int)a == 0 || (int)b == 0) ? 0 \
- : ((int)a == 1 || (int)b == 1) ? 1 \
- : ((int)a == Dynamic || (int)b == Dynamic) ? Dynamic \
- : ((int)a <= (int)b) ? (int)a : (int)b)
-
-// EIGEN_SIZE_MIN_PREFER_FIXED is a variant of EIGEN_SIZE_MIN_PREFER_DYNAMIC comparing MaxSizes. The difference is that finite values
-// now have priority over Dynamic, so that min(3, Dynamic) gives 3. Indeed, whatever the actual value is
-// (between 0 and 3), it is not more than 3.
-#define EIGEN_SIZE_MIN_PREFER_FIXED(a,b) (((int)a == 0 || (int)b == 0) ? 0 \
- : ((int)a == 1 || (int)b == 1) ? 1 \
- : ((int)a == Dynamic && (int)b == Dynamic) ? Dynamic \
- : ((int)a == Dynamic) ? (int)b \
- : ((int)b == Dynamic) ? (int)a \
- : ((int)a <= (int)b) ? (int)a : (int)b)
-
-// see EIGEN_SIZE_MIN_PREFER_DYNAMIC. No need for a separate variant for MaxSizes here.
-#define EIGEN_SIZE_MAX(a,b) (((int)a == Dynamic || (int)b == Dynamic) ? Dynamic \
- : ((int)a >= (int)b) ? (int)a : (int)b)
-
-#define EIGEN_LOGICAL_XOR(a,b) (((a) || (b)) && !((a) && (b)))
-
-#define EIGEN_IMPLIES(a,b) (!(a) || (b))
-
-#define EIGEN_MAKE_CWISE_BINARY_OP(METHOD,FUNCTOR) \
- template<typename OtherDerived> \
- EIGEN_STRONG_INLINE const CwiseBinaryOp<FUNCTOR<Scalar>, const Derived, const OtherDerived> \
- (METHOD)(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const \
- { \
- return CwiseBinaryOp<FUNCTOR<Scalar>, const Derived, const OtherDerived>(derived(), other.derived()); \
- }
-
-// the expression type of a cwise product
-#define EIGEN_CWISE_PRODUCT_RETURN_TYPE(LHS,RHS) \
- CwiseBinaryOp< \
- internal::scalar_product_op< \
- typename internal::traits<LHS>::Scalar, \
- typename internal::traits<RHS>::Scalar \
- >, \
- const LHS, \
- const RHS \
- >
-
-#endif // EIGEN_MACROS_H
diff --git a/src/Eigen/src/Core/util/Memory.h b/src/Eigen/src/Core/util/Memory.h
deleted file mode 100644
index c401124..0000000
--- a/src/Eigen/src/Core/util/Memory.h
+++ /dev/null
@@ -1,977 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
-// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
-// Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-
-/*****************************************************************************
-*** Platform checks for aligned malloc functions ***
-*****************************************************************************/
-
-#ifndef EIGEN_MEMORY_H
-#define EIGEN_MEMORY_H
-
-#ifndef EIGEN_MALLOC_ALREADY_ALIGNED
-
-// Try to determine automatically if malloc is already aligned.
-
-// On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
-// http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
-// This is true at least since glibc 2.8.
-// This leaves the question how to detect 64-bit. According to this document,
-// http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
-// page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
-// quite safe, at least within the context of glibc, to equate 64-bit with LP64.
-#if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
- && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ )
- #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
-#else
- #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
-#endif
-
-// FreeBSD 6 seems to have 16-byte aligned malloc
-// See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
-// FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
-// See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
-#if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__)
- #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
-#else
- #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
-#endif
-
-#if defined(__APPLE__) \
- || defined(_WIN64) \
- || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
- || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
- #define EIGEN_MALLOC_ALREADY_ALIGNED 1
-#else
- #define EIGEN_MALLOC_ALREADY_ALIGNED 0
-#endif
-
-#endif
-
-// See bug 554 (http://eigen.tuxfamily.org/bz/show_bug.cgi?id=554)
-// It seems to be unsafe to check _POSIX_ADVISORY_INFO without including unistd.h first.
-// Currently, let's include it only on unix systems:
-#if defined(__unix__) || defined(__unix)
- #include <unistd.h>
- #if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
- #define EIGEN_HAS_POSIX_MEMALIGN 1
- #endif
-#endif
-
-#ifndef EIGEN_HAS_POSIX_MEMALIGN
- #define EIGEN_HAS_POSIX_MEMALIGN 0
-#endif
-
-#ifdef EIGEN_VECTORIZE_SSE
- #define EIGEN_HAS_MM_MALLOC 1
-#else
- #define EIGEN_HAS_MM_MALLOC 0
-#endif
-
-namespace Eigen {
-
-namespace internal {
-
-inline void throw_std_bad_alloc()
-{
- #ifdef EIGEN_EXCEPTIONS
- throw std::bad_alloc();
- #else
- std::size_t huge = -1;
- new int[huge];
- #endif
-}
-
-/*****************************************************************************
-*** Implementation of handmade aligned functions ***
-*****************************************************************************/
-
-/* ----- Hand made implementations of aligned malloc/free and realloc ----- */
-
-/** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned.
- * Fast, but wastes 16 additional bytes of memory. Does not throw any exception.
- */
-inline void* handmade_aligned_malloc(std::size_t size)
-{
- void *original = std::malloc(size+16);
- if (original == 0) return 0;
- void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16);
- *(reinterpret_cast<void**>(aligned) - 1) = original;
- return aligned;
-}
-
-/** \internal Frees memory allocated with handmade_aligned_malloc */
-inline void handmade_aligned_free(void *ptr)
-{
- if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
-}
-
-/** \internal
- * \brief Reallocates aligned memory.
- * Since we know that our handmade version is based on std::realloc
- * we can use std::realloc to implement efficient reallocation.
- */
-inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0)
-{
- if (ptr == 0) return handmade_aligned_malloc(size);
- void *original = *(reinterpret_cast<void**>(ptr) - 1);
- std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original);
- original = std::realloc(original,size+16);
- if (original == 0) return 0;
- void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16);
- void *previous_aligned = static_cast<char *>(original)+previous_offset;
- if(aligned!=previous_aligned)
- std::memmove(aligned, previous_aligned, size);
-
- *(reinterpret_cast<void**>(aligned) - 1) = original;
- return aligned;
-}
-
-/*****************************************************************************
-*** Implementation of generic aligned realloc (when no realloc can be used)***
-*****************************************************************************/
-
-void* aligned_malloc(std::size_t size);
-void aligned_free(void *ptr);
-
-/** \internal
- * \brief Reallocates aligned memory.
- * Allows reallocation with aligned ptr types. This implementation will
- * always create a new memory chunk and copy the old data.
- */
-inline void* generic_aligned_realloc(void* ptr, size_t size, size_t old_size)
-{
- if (ptr==0)
- return aligned_malloc(size);
-
- if (size==0)
- {
- aligned_free(ptr);
- return 0;
- }
-
- void* newptr = aligned_malloc(size);
- if (newptr == 0)
- {
- #ifdef EIGEN_HAS_ERRNO
- errno = ENOMEM; // according to the standard
- #endif
- return 0;
- }
-
- if (ptr != 0)
- {
- std::memcpy(newptr, ptr, (std::min)(size,old_size));
- aligned_free(ptr);
- }
-
- return newptr;
-}
-
-/*****************************************************************************
-*** Implementation of portable aligned versions of malloc/free/realloc ***
-*****************************************************************************/
-
-#ifdef EIGEN_NO_MALLOC
-inline void check_that_malloc_is_allowed()
-{
- eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
-}
-#elif defined EIGEN_RUNTIME_NO_MALLOC
-inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
-{
- static bool value = true;
- if (update == 1)
- value = new_value;
- return value;
-}
-inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
-inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
-inline void check_that_malloc_is_allowed()
-{
- eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
-}
-#else
-inline void check_that_malloc_is_allowed()
-{}
-#endif
-
-/** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 bytes alignment.
- * On allocation error, the returned pointer is null, and std::bad_alloc is thrown.
- */
-inline void* aligned_malloc(size_t size)
-{
- check_that_malloc_is_allowed();
-
- void *result;
- #if !EIGEN_ALIGN
- result = std::malloc(size);
- #elif EIGEN_MALLOC_ALREADY_ALIGNED
- result = std::malloc(size);
- #elif EIGEN_HAS_POSIX_MEMALIGN
- if(posix_memalign(&result, 16, size)) result = 0;
- #elif EIGEN_HAS_MM_MALLOC
- result = _mm_malloc(size, 16);
- #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
- result = _aligned_malloc(size, 16);
- #else
- result = handmade_aligned_malloc(size);
- #endif
-
- if(!result && size)
- throw_std_bad_alloc();
-
- return result;
-}
-
-/** \internal Frees memory allocated with aligned_malloc. */
-inline void aligned_free(void *ptr)
-{
- #if !EIGEN_ALIGN
- std::free(ptr);
- #elif EIGEN_MALLOC_ALREADY_ALIGNED
- std::free(ptr);
- #elif EIGEN_HAS_POSIX_MEMALIGN
- std::free(ptr);
- #elif EIGEN_HAS_MM_MALLOC
- _mm_free(ptr);
- #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
- _aligned_free(ptr);
- #else
- handmade_aligned_free(ptr);
- #endif
-}
-
-/**
-* \internal
-* \brief Reallocates an aligned block of memory.
-* \throws std::bad_alloc on allocation failure
-**/
-inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
-{
- EIGEN_UNUSED_VARIABLE(old_size);
-
- void *result;
-#if !EIGEN_ALIGN
- result = std::realloc(ptr,new_size);
-#elif EIGEN_MALLOC_ALREADY_ALIGNED
- result = std::realloc(ptr,new_size);
-#elif EIGEN_HAS_POSIX_MEMALIGN
- result = generic_aligned_realloc(ptr,new_size,old_size);
-#elif EIGEN_HAS_MM_MALLOC
- // The defined(_mm_free) is just here to verify that this MSVC version
- // implements _mm_malloc/_mm_free based on the corresponding _aligned_
- // functions. This may not always be the case and we just try to be safe.
- #if defined(_MSC_VER) && (!defined(_WIN32_WCE)) && defined(_mm_free)
- result = _aligned_realloc(ptr,new_size,16);
- #else
- result = generic_aligned_realloc(ptr,new_size,old_size);
- #endif
-#elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
- result = _aligned_realloc(ptr,new_size,16);
-#else
- result = handmade_aligned_realloc(ptr,new_size,old_size);
-#endif
-
- if (!result && new_size)
- throw_std_bad_alloc();
-
- return result;
-}
-
-/*****************************************************************************
-*** Implementation of conditionally aligned functions ***
-*****************************************************************************/
-
-/** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned.
- * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown.
- */
-template<bool Align> inline void* conditional_aligned_malloc(size_t size)
-{
- return aligned_malloc(size);
-}
-
-template<> inline void* conditional_aligned_malloc<false>(size_t size)
-{
- check_that_malloc_is_allowed();
-
- void *result = std::malloc(size);
- if(!result && size)
- throw_std_bad_alloc();
- return result;
-}
-
-/** \internal Frees memory allocated with conditional_aligned_malloc */
-template<bool Align> inline void conditional_aligned_free(void *ptr)
-{
- aligned_free(ptr);
-}
-
-template<> inline void conditional_aligned_free<false>(void *ptr)
-{
- std::free(ptr);
-}
-
-template<bool Align> inline void* conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
-{
- return aligned_realloc(ptr, new_size, old_size);
-}
-
-template<> inline void* conditional_aligned_realloc<false>(void* ptr, size_t new_size, size_t)
-{
- return std::realloc(ptr, new_size);
-}
-
-/*****************************************************************************
-*** Construction/destruction of array elements ***
-*****************************************************************************/
-
-/** \internal Constructs the elements of an array.
- * The \a size parameter tells on how many objects to call the constructor of T.
- */
-template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size)
-{
- for (size_t i=0; i < size; ++i) ::new (ptr + i) T;
- return ptr;
-}
-
-/** \internal Destructs the elements of an array.
- * The \a size parameters tells on how many objects to call the destructor of T.
- */
-template<typename T> inline void destruct_elements_of_array(T *ptr, size_t size)
-{
- // always destruct an array starting from the end.
- if(ptr)
- while(size) ptr[--size].~T();
-}
-
-/*****************************************************************************
-*** Implementation of aligned new/delete-like functions ***
-*****************************************************************************/
-
-template<typename T>
-EIGEN_ALWAYS_INLINE void check_size_for_overflow(size_t size)
-{
- if(size > size_t(-1) / sizeof(T))
- throw_std_bad_alloc();
-}
-
-/** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment.
- * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown.
- * The default constructor of T is called.
- */
-template<typename T> inline T* aligned_new(size_t size)
-{
- check_size_for_overflow<T>(size);
- T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
- return construct_elements_of_array(result, size);
-}
-
-template<typename T, bool Align> inline T* conditional_aligned_new(size_t size)
-{
- check_size_for_overflow<T>(size);
- T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
- return construct_elements_of_array(result, size);
-}
-
-/** \internal Deletes objects constructed with aligned_new
- * The \a size parameters tells on how many objects to call the destructor of T.
- */
-template<typename T> inline void aligned_delete(T *ptr, size_t size)
-{
- destruct_elements_of_array<T>(ptr, size);
- aligned_free(ptr);
-}
-
-/** \internal Deletes objects constructed with conditional_aligned_new
- * The \a size parameters tells on how many objects to call the destructor of T.
- */
-template<typename T, bool Align> inline void conditional_aligned_delete(T *ptr, size_t size)
-{
- destruct_elements_of_array<T>(ptr, size);
- conditional_aligned_free<Align>(ptr);
-}
-
-template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size)
-{
- check_size_for_overflow<T>(new_size);
- check_size_for_overflow<T>(old_size);
- if(new_size < old_size)
- destruct_elements_of_array(pts+new_size, old_size-new_size);
- T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
- if(new_size > old_size)
- construct_elements_of_array(result+old_size, new_size-old_size);
- return result;
-}
-
-
-template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t size)
-{
- check_size_for_overflow<T>(size);
- T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
- if(NumTraits<T>::RequireInitialization)
- construct_elements_of_array(result, size);
- return result;
-}
-
-template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, size_t new_size, size_t old_size)
-{
- check_size_for_overflow<T>(new_size);
- check_size_for_overflow<T>(old_size);
- if(NumTraits<T>::RequireInitialization && (new_size < old_size))
- destruct_elements_of_array(pts+new_size, old_size-new_size);
- T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
- if(NumTraits<T>::RequireInitialization && (new_size > old_size))
- construct_elements_of_array(result+old_size, new_size-old_size);
- return result;
-}
-
-template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *ptr, size_t size)
-{
- if(NumTraits<T>::RequireInitialization)
- destruct_elements_of_array<T>(ptr, size);
- conditional_aligned_free<Align>(ptr);
-}
-
-/****************************************************************************/
-
-/** \internal Returns the index of the first element of the array that is well aligned for vectorization.
- *
- * \param array the address of the start of the array
- * \param size the size of the array
- *
- * \note If no element of the array is well aligned, the size of the array is returned. Typically,
- * for example with SSE, "well aligned" means 16-byte-aligned. If vectorization is disabled or if the
- * packet size for the given scalar type is 1, then everything is considered well-aligned.
- *
- * \note If the scalar type is vectorizable, we rely on the following assumptions: sizeof(Scalar) is a
- * power of 2, the packet size in bytes is also a power of 2, and is a multiple of sizeof(Scalar). On the
- * other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for
- * example with Scalar=double on certain 32-bit platforms, see bug #79.
- *
- * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h.
- */
-template<typename Scalar, typename Index>
-static inline Index first_aligned(const Scalar* array, Index size)
-{
- enum { PacketSize = packet_traits<Scalar>::size,
- PacketAlignedMask = PacketSize-1
- };
-
- if(PacketSize==1)
- {
- // Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements
- // of the array have the same alignment.
- return 0;
- }
- else if(size_t(array) & (sizeof(Scalar)-1))
- {
- // There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar.
- // Consequently, no element of the array is well aligned.
- return size;
- }
- else
- {
- return std::min<Index>( (PacketSize - (Index((size_t(array)/sizeof(Scalar))) & PacketAlignedMask))
- & PacketAlignedMask, size);
- }
-}
-
-/** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size
- */
-template<typename Index>
-inline static Index first_multiple(Index size, Index base)
-{
- return ((size+base-1)/base)*base;
-}
-
-// std::copy is much slower than memcpy, so let's introduce a smart_copy which
-// use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
-template<typename T, bool UseMemcpy> struct smart_copy_helper;
-
-template<typename T> void smart_copy(const T* start, const T* end, T* target)
-{
- smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
-}
-
-template<typename T> struct smart_copy_helper<T,true> {
- static inline void run(const T* start, const T* end, T* target)
- { memcpy(target, start, std::ptrdiff_t(end)-std::ptrdiff_t(start)); }
-};
-
-template<typename T> struct smart_copy_helper<T,false> {
- static inline void run(const T* start, const T* end, T* target)
- { std::copy(start, end, target); }
-};
-
-
-/*****************************************************************************
-*** Implementation of runtime stack allocation (falling back to malloc) ***
-*****************************************************************************/
-
-// you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
-// to the appropriate stack allocation function
-#ifndef EIGEN_ALLOCA
- #if (defined __linux__)
- #define EIGEN_ALLOCA alloca
- #elif defined(_MSC_VER)
- #define EIGEN_ALLOCA _alloca
- #endif
-#endif
-
-// This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
-// at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
-template<typename T> class aligned_stack_memory_handler
-{
- public:
- /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
- * Note that \a ptr can be 0 regardless of the other parameters.
- * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
- * In this case, the buffer elements will also be destructed when this handler will be destructed.
- * Finally, if \a dealloc is true, then the pointer \a ptr is freed.
- **/
- aligned_stack_memory_handler(T* ptr, size_t size, bool dealloc)
- : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
- {
- if(NumTraits<T>::RequireInitialization && m_ptr)
- Eigen::internal::construct_elements_of_array(m_ptr, size);
- }
- ~aligned_stack_memory_handler()
- {
- if(NumTraits<T>::RequireInitialization && m_ptr)
- Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
- if(m_deallocate)
- Eigen::internal::aligned_free(m_ptr);
- }
- protected:
- T* m_ptr;
- size_t m_size;
- bool m_deallocate;
-};
-
-} // end namespace internal
-
-/** \internal
- * Declares, allocates and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack
- * if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform
- * (currently, this is Linux and Visual Studio only). Otherwise the memory is allocated on the heap.
- * The allocated buffer is automatically deleted when exiting the scope of this declaration.
- * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs.
- * Here is an example:
- * \code
- * {
- * ei_declare_aligned_stack_constructed_variable(float,data,size,0);
- * // use data[0] to data[size-1]
- * }
- * \endcode
- * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token.
- */
-#ifdef EIGEN_ALLOCA
-
- #if defined(__arm__) || defined(_WIN32)
- #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+16)) & ~(size_t(15))) + 16)
- #else
- #define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA
- #endif
-
- #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
- Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
- TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
- : reinterpret_cast<TYPE*>( \
- (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
- : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \
- Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
-
-#else
-
- #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
- Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
- TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \
- Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
-
-#endif
-
-
-/*****************************************************************************
-*** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] ***
-*****************************************************************************/
-
-#if EIGEN_ALIGN
- #ifdef EIGEN_EXCEPTIONS
- #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
- void* operator new(size_t size, const std::nothrow_t&) throw() { \
- try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
- catch (...) { return 0; } \
- return 0; \
- }
- #else
- #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
- void* operator new(size_t size, const std::nothrow_t&) throw() { \
- return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
- }
- #endif
-
- #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
- void *operator new(size_t size) { \
- return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
- } \
- void *operator new[](size_t size) { \
- return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
- } \
- void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
- void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
- /* in-place new and delete. since (at least afaik) there is no actual */ \
- /* memory allocated we can safely let the default implementation handle */ \
- /* this particular case. */ \
- static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \
- static void *operator new[](size_t size, void* ptr) { return ::operator new[](size,ptr); } \
- void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \
- void operator delete[](void * memory, void *ptr) throw() { return ::operator delete[](memory,ptr); } \
- /* nothrow-new (returns zero instead of std::bad_alloc) */ \
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
- void operator delete(void *ptr, const std::nothrow_t&) throw() { \
- Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
- } \
- typedef void eigen_aligned_operator_new_marker_type;
-#else
- #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
-#endif
-
-#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
-#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0)))
-
-/****************************************************************************/
-
-/** \class aligned_allocator
-* \ingroup Core_Module
-*
-* \brief STL compatible allocator to use with with 16 byte aligned types
-*
-* Example:
-* \code
-* // Matrix4f requires 16 bytes alignment:
-* std::map< int, Matrix4f, std::less<int>,
-* aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4;
-* // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
-* std::map< int, Vector3f > my_map_vec3;
-* \endcode
-*
-* \sa \ref TopicStlContainers.
-*/
-template<class T>
-class aligned_allocator
-{
-public:
- typedef size_t size_type;
- typedef std::ptrdiff_t difference_type;
- typedef T* pointer;
- typedef const T* const_pointer;
- typedef T& reference;
- typedef const T& const_reference;
- typedef T value_type;
-
- template<class U>
- struct rebind
- {
- typedef aligned_allocator<U> other;
- };
-
- pointer address( reference value ) const
- {
- return &value;
- }
-
- const_pointer address( const_reference value ) const
- {
- return &value;
- }
-
- aligned_allocator()
- {
- }
-
- aligned_allocator( const aligned_allocator& )
- {
- }
-
- template<class U>
- aligned_allocator( const aligned_allocator<U>& )
- {
- }
-
- ~aligned_allocator()
- {
- }
-
- size_type max_size() const
- {
- return (std::numeric_limits<size_type>::max)();
- }
-
- pointer allocate( size_type num, const void* hint = 0 )
- {
- EIGEN_UNUSED_VARIABLE(hint);
- internal::check_size_for_overflow<T>(num);
- return static_cast<pointer>( internal::aligned_malloc( num * sizeof(T) ) );
- }
-
- void construct( pointer p, const T& value )
- {
- ::new( p ) T( value );
- }
-
- void destroy( pointer p )
- {
- p->~T();
- }
-
- void deallocate( pointer p, size_type /*num*/ )
- {
- internal::aligned_free( p );
- }
-
- bool operator!=(const aligned_allocator<T>& ) const
- { return false; }
-
- bool operator==(const aligned_allocator<T>& ) const
- { return true; }
-};
-
-//---------- Cache sizes ----------
-
-#if !defined(EIGEN_NO_CPUID)
-# if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
-# if defined(__PIC__) && defined(__i386__)
- // Case for x86 with PIC
-# define EIGEN_CPUID(abcd,func,id) \
- __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
-# elif defined(__PIC__) && defined(__x86_64__)
- // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model.
- // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway.
-# define EIGEN_CPUID(abcd,func,id) \
- __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id));
-# else
- // Case for x86_64 or x86 w/o PIC
-# define EIGEN_CPUID(abcd,func,id) \
- __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) );
-# endif
-# elif defined(_MSC_VER)
-# if (_MSC_VER > 1500) && ( defined(_M_IX86) || defined(_M_X64) )
-# define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
-# endif
-# endif
-#endif
-
-namespace internal {
-
-#ifdef EIGEN_CPUID
-
-inline bool cpuid_is_vendor(int abcd[4], const int vendor[3])
-{
- return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2];
-}
-
-inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
-{
- int abcd[4];
- l1 = l2 = l3 = 0;
- int cache_id = 0;
- int cache_type = 0;
- do {
- abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
- EIGEN_CPUID(abcd,0x4,cache_id);
- cache_type = (abcd[0] & 0x0F) >> 0;
- if(cache_type==1||cache_type==3) // data or unified cache
- {
- int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5]
- int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
- int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
- int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0]
- int sets = (abcd[2]); // C[31:0]
-
- int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
-
- switch(cache_level)
- {
- case 1: l1 = cache_size; break;
- case 2: l2 = cache_size; break;
- case 3: l3 = cache_size; break;
- default: break;
- }
- }
- cache_id++;
- } while(cache_type>0 && cache_id<16);
-}
-
-inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
-{
- int abcd[4];
- abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
- l1 = l2 = l3 = 0;
- EIGEN_CPUID(abcd,0x00000002,0);
- unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
- bool check_for_p2_core2 = false;
- for(int i=0; i<14; ++i)
- {
- switch(bytes[i])
- {
- case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines
- case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines
- case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines
- case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
- case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
- case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines
- case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines
- case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
- case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
- case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
- case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
- case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
- case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
- case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
- case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
- case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
- case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
- case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
- case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
- case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
- case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
- case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
- case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core)
- case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
- case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
- case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
- case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
- case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
- case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
- case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
- case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
- case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
- case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
- case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
- case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
- case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
- case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
- case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
- case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
- case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
- case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
- case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
- case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
- case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
- case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
- case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
- case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
- case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
- case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
- case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
- case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
- case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
- case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
- case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
- case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
- case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
- case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
-
- default: break;
- }
- }
- if(check_for_p2_core2 && l2 == l3)
- l3 = 0;
- l1 *= 1024;
- l2 *= 1024;
- l3 *= 1024;
-}
-
-inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
-{
- if(max_std_funcs>=4)
- queryCacheSizes_intel_direct(l1,l2,l3);
- else
- queryCacheSizes_intel_codes(l1,l2,l3);
-}
-
-inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
-{
- int abcd[4];
- abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
- EIGEN_CPUID(abcd,0x80000005,0);
- l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
- abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
- EIGEN_CPUID(abcd,0x80000006,0);
- l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
- l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
-}
-#endif
-
-/** \internal
- * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */
-inline void queryCacheSizes(int& l1, int& l2, int& l3)
-{
- #ifdef EIGEN_CPUID
- int abcd[4];
- const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
- const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
- const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!"
-
- // identify the CPU vendor
- EIGEN_CPUID(abcd,0x0,0);
- int max_std_funcs = abcd[1];
- if(cpuid_is_vendor(abcd,GenuineIntel))
- queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
- else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_))
- queryCacheSizes_amd(l1,l2,l3);
- else
- // by default let's use Intel's API
- queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
-
- // here is the list of other vendors:
-// ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
-// ||cpuid_is_vendor(abcd,"CyrixInstead")
-// ||cpuid_is_vendor(abcd,"CentaurHauls")
-// ||cpuid_is_vendor(abcd,"GenuineTMx86")
-// ||cpuid_is_vendor(abcd,"TransmetaCPU")
-// ||cpuid_is_vendor(abcd,"RiseRiseRise")
-// ||cpuid_is_vendor(abcd,"Geode by NSC")
-// ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
-// ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
-// ||cpuid_is_vendor(abcd,"NexGenDriven")
- #else
- l1 = l2 = l3 = -1;
- #endif
-}
-
-/** \internal
- * \returns the size in Bytes of the L1 data cache */
-inline int queryL1CacheSize()
-{
- int l1(-1), l2, l3;
- queryCacheSizes(l1,l2,l3);
- return l1;
-}
-
-/** \internal
- * \returns the size in Bytes of the L2 or L3 cache if this later is present */
-inline int queryTopLevelCacheSize()
-{
- int l1, l2(-1), l3(-1);
- queryCacheSizes(l1,l2,l3);
- return (std::max)(l2,l3);
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_MEMORY_H
diff --git a/src/Eigen/src/Core/util/Meta.h b/src/Eigen/src/Core/util/Meta.h
deleted file mode 100644
index 71d5871..0000000
--- a/src/Eigen/src/Core/util/Meta.h
+++ /dev/null
@@ -1,243 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_META_H
-#define EIGEN_META_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal
- * \file Meta.h
- * This file contains generic metaprogramming classes which are not specifically related to Eigen.
- * \note In case you wonder, yes we're aware that Boost already provides all these features,
- * we however don't want to add a dependency to Boost.
- */
-
-struct true_type { enum { value = 1 }; };
-struct false_type { enum { value = 0 }; };
-
-template<bool Condition, typename Then, typename Else>
-struct conditional { typedef Then type; };
-
-template<typename Then, typename Else>
-struct conditional <false, Then, Else> { typedef Else type; };
-
-template<typename T, typename U> struct is_same { enum { value = 0 }; };
-template<typename T> struct is_same<T,T> { enum { value = 1 }; };
-
-template<typename T> struct remove_reference { typedef T type; };
-template<typename T> struct remove_reference<T&> { typedef T type; };
-
-template<typename T> struct remove_pointer { typedef T type; };
-template<typename T> struct remove_pointer<T*> { typedef T type; };
-template<typename T> struct remove_pointer<T*const> { typedef T type; };
-
-template <class T> struct remove_const { typedef T type; };
-template <class T> struct remove_const<const T> { typedef T type; };
-template <class T> struct remove_const<const T[]> { typedef T type[]; };
-template <class T, unsigned int Size> struct remove_const<const T[Size]> { typedef T type[Size]; };
-
-template<typename T> struct remove_all { typedef T type; };
-template<typename T> struct remove_all<const T> { typedef typename remove_all<T>::type type; };
-template<typename T> struct remove_all<T const&> { typedef typename remove_all<T>::type type; };
-template<typename T> struct remove_all<T&> { typedef typename remove_all<T>::type type; };
-template<typename T> struct remove_all<T const*> { typedef typename remove_all<T>::type type; };
-template<typename T> struct remove_all<T*> { typedef typename remove_all<T>::type type; };
-
-template<typename T> struct is_arithmetic { enum { value = false }; };
-template<> struct is_arithmetic<float> { enum { value = true }; };
-template<> struct is_arithmetic<double> { enum { value = true }; };
-template<> struct is_arithmetic<long double> { enum { value = true }; };
-template<> struct is_arithmetic<bool> { enum { value = true }; };
-template<> struct is_arithmetic<char> { enum { value = true }; };
-template<> struct is_arithmetic<signed char> { enum { value = true }; };
-template<> struct is_arithmetic<unsigned char> { enum { value = true }; };
-template<> struct is_arithmetic<signed short> { enum { value = true }; };
-template<> struct is_arithmetic<unsigned short>{ enum { value = true }; };
-template<> struct is_arithmetic<signed int> { enum { value = true }; };
-template<> struct is_arithmetic<unsigned int> { enum { value = true }; };
-template<> struct is_arithmetic<signed long> { enum { value = true }; };
-template<> struct is_arithmetic<unsigned long> { enum { value = true }; };
-
-template <typename T> struct add_const { typedef const T type; };
-template <typename T> struct add_const<T&> { typedef T& type; };
-
-template <typename T> struct is_const { enum { value = 0 }; };
-template <typename T> struct is_const<T const> { enum { value = 1 }; };
-
-template<typename T> struct add_const_on_value_type { typedef const T type; };
-template<typename T> struct add_const_on_value_type<T&> { typedef T const& type; };
-template<typename T> struct add_const_on_value_type<T*> { typedef T const* type; };
-template<typename T> struct add_const_on_value_type<T* const> { typedef T const* const type; };
-template<typename T> struct add_const_on_value_type<T const* const> { typedef T const* const type; };
-
-/** \internal Allows to enable/disable an overload
- * according to a compile time condition.
- */
-template<bool Condition, typename T> struct enable_if;
-
-template<typename T> struct enable_if<true,T>
-{ typedef T type; };
-
-
-
-/** \internal
- * A base class do disable default copy ctor and copy assignement operator.
- */
-class noncopyable
-{
- noncopyable(const noncopyable&);
- const noncopyable& operator=(const noncopyable&);
-protected:
- noncopyable() {}
- ~noncopyable() {}
-};
-
-
-/** \internal
- * Convenient struct to get the result type of a unary or binary functor.
- *
- * It supports both the current STL mechanism (using the result_type member) as well as
- * upcoming next STL generation (using a templated result member).
- * If none of these members is provided, then the type of the first argument is returned. FIXME, that behavior is a pretty bad hack.
- */
-template<typename T> struct result_of {};
-
-struct has_none {int a[1];};
-struct has_std_result_type {int a[2];};
-struct has_tr1_result {int a[3];};
-
-template<typename Func, typename ArgType, int SizeOf=sizeof(has_none)>
-struct unary_result_of_select {typedef ArgType type;};
-
-template<typename Func, typename ArgType>
-struct unary_result_of_select<Func, ArgType, sizeof(has_std_result_type)> {typedef typename Func::result_type type;};
-
-template<typename Func, typename ArgType>
-struct unary_result_of_select<Func, ArgType, sizeof(has_tr1_result)> {typedef typename Func::template result<Func(ArgType)>::type type;};
-
-template<typename Func, typename ArgType>
-struct result_of<Func(ArgType)> {
- template<typename T>
- static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
- template<typename T>
- static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType)>::type const * = 0);
- static has_none testFunctor(...);
-
- // note that the following indirection is needed for gcc-3.3
- enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
- typedef typename unary_result_of_select<Func, ArgType, FunctorType>::type type;
-};
-
-template<typename Func, typename ArgType0, typename ArgType1, int SizeOf=sizeof(has_none)>
-struct binary_result_of_select {typedef ArgType0 type;};
-
-template<typename Func, typename ArgType0, typename ArgType1>
-struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_std_result_type)>
-{typedef typename Func::result_type type;};
-
-template<typename Func, typename ArgType0, typename ArgType1>
-struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_tr1_result)>
-{typedef typename Func::template result<Func(ArgType0,ArgType1)>::type type;};
-
-template<typename Func, typename ArgType0, typename ArgType1>
-struct result_of<Func(ArgType0,ArgType1)> {
- template<typename T>
- static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
- template<typename T>
- static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1)>::type const * = 0);
- static has_none testFunctor(...);
-
- // note that the following indirection is needed for gcc-3.3
- enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
- typedef typename binary_result_of_select<Func, ArgType0, ArgType1, FunctorType>::type type;
-};
-
-/** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer.
- * Usage example: \code meta_sqrt<1023>::ret \endcode
- */
-template<int Y,
- int InfX = 0,
- int SupX = ((Y==1) ? 1 : Y/2),
- bool Done = ((SupX-InfX)<=1 ? true : ((SupX*SupX <= Y) && ((SupX+1)*(SupX+1) > Y))) >
- // use ?: instead of || just to shut up a stupid gcc 4.3 warning
-class meta_sqrt
-{
- enum {
- MidX = (InfX+SupX)/2,
- TakeInf = MidX*MidX > Y ? 1 : 0,
- NewInf = int(TakeInf) ? InfX : int(MidX),
- NewSup = int(TakeInf) ? int(MidX) : SupX
- };
- public:
- enum { ret = meta_sqrt<Y,NewInf,NewSup>::ret };
-};
-
-template<int Y, int InfX, int SupX>
-class meta_sqrt<Y, InfX, SupX, true> { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; };
-
-/** \internal determines whether the product of two numeric types is allowed and what the return type is */
-template<typename T, typename U> struct scalar_product_traits
-{
- enum { Defined = 0 };
-};
-
-template<typename T> struct scalar_product_traits<T,T>
-{
- enum {
- // Cost = NumTraits<T>::MulCost,
- Defined = 1
- };
- typedef T ReturnType;
-};
-
-template<typename T> struct scalar_product_traits<T,std::complex<T> >
-{
- enum {
- // Cost = 2*NumTraits<T>::MulCost,
- Defined = 1
- };
- typedef std::complex<T> ReturnType;
-};
-
-template<typename T> struct scalar_product_traits<std::complex<T>, T>
-{
- enum {
- // Cost = 2*NumTraits<T>::MulCost,
- Defined = 1
- };
- typedef std::complex<T> ReturnType;
-};
-
-// FIXME quick workaround around current limitation of result_of
-// template<typename Scalar, typename ArgType0, typename ArgType1>
-// struct result_of<scalar_product_op<Scalar>(ArgType0,ArgType1)> {
-// typedef typename scalar_product_traits<typename remove_all<ArgType0>::type, typename remove_all<ArgType1>::type>::ReturnType type;
-// };
-
-template<typename T> struct is_diagonal
-{ enum { ret = false }; };
-
-template<typename T> struct is_diagonal<DiagonalBase<T> >
-{ enum { ret = true }; };
-
-template<typename T> struct is_diagonal<DiagonalWrapper<T> >
-{ enum { ret = true }; };
-
-template<typename T, int S> struct is_diagonal<DiagonalMatrix<T,S> >
-{ enum { ret = true }; };
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_META_H
diff --git a/src/Eigen/src/Core/util/NonMPL2.h b/src/Eigen/src/Core/util/NonMPL2.h
deleted file mode 100644
index 1af67cf..0000000
--- a/src/Eigen/src/Core/util/NonMPL2.h
+++ /dev/null
@@ -1,3 +0,0 @@
-#ifdef EIGEN_MPL2_ONLY
-#error Including non-MPL2 code in EIGEN_MPL2_ONLY mode
-#endif
diff --git a/src/Eigen/src/Core/util/ReenableStupidWarnings.h b/src/Eigen/src/Core/util/ReenableStupidWarnings.h
deleted file mode 100644
index 5ddfbd4..0000000
--- a/src/Eigen/src/Core/util/ReenableStupidWarnings.h
+++ /dev/null
@@ -1,14 +0,0 @@
-#ifdef EIGEN_WARNINGS_DISABLED
-#undef EIGEN_WARNINGS_DISABLED
-
-#ifndef EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS
- #ifdef _MSC_VER
- #pragma warning( pop )
- #elif defined __INTEL_COMPILER
- #pragma warning pop
- #elif defined __clang__
- #pragma clang diagnostic pop
- #endif
-#endif
-
-#endif // EIGEN_WARNINGS_DISABLED
diff --git a/src/Eigen/src/Core/util/StaticAssert.h b/src/Eigen/src/Core/util/StaticAssert.h
deleted file mode 100644
index 8872c5b..0000000
--- a/src/Eigen/src/Core/util/StaticAssert.h
+++ /dev/null
@@ -1,206 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_STATIC_ASSERT_H
-#define EIGEN_STATIC_ASSERT_H
-
-/* Some notes on Eigen's static assertion mechanism:
- *
- * - in EIGEN_STATIC_ASSERT(CONDITION,MSG) the parameter CONDITION must be a compile time boolean
- * expression, and MSG an enum listed in struct internal::static_assertion<true>
- *
- * - define EIGEN_NO_STATIC_ASSERT to disable them (and save compilation time)
- * in that case, the static assertion is converted to the following runtime assert:
- * eigen_assert(CONDITION && "MSG")
- *
- * - currently EIGEN_STATIC_ASSERT can only be used in function scope
- *
- */
-
-#ifndef EIGEN_NO_STATIC_ASSERT
-
- #if defined(__GXX_EXPERIMENTAL_CXX0X__) || (defined(_MSC_VER) && (_MSC_VER >= 1600))
-
- // if native static_assert is enabled, let's use it
- #define EIGEN_STATIC_ASSERT(X,MSG) static_assert(X,#MSG);
-
- #else // not CXX0X
-
- namespace Eigen {
-
- namespace internal {
-
- template<bool condition>
- struct static_assertion {};
-
- template<>
- struct static_assertion<true>
- {
- enum {
- YOU_TRIED_CALLING_A_VECTOR_METHOD_ON_A_MATRIX,
- YOU_MIXED_VECTORS_OF_DIFFERENT_SIZES,
- YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES,
- THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE,
- THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE,
- THIS_METHOD_IS_ONLY_FOR_OBJECTS_OF_A_SPECIFIC_SIZE,
- YOU_MADE_A_PROGRAMMING_MISTAKE,
- EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT,
- EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE,
- YOU_CALLED_A_FIXED_SIZE_METHOD_ON_A_DYNAMIC_SIZE_MATRIX_OR_VECTOR,
- YOU_CALLED_A_DYNAMIC_SIZE_METHOD_ON_A_FIXED_SIZE_MATRIX_OR_VECTOR,
- UNALIGNED_LOAD_AND_STORE_OPERATIONS_UNIMPLEMENTED_ON_ALTIVEC,
- THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES,
- FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED,
- NUMERIC_TYPE_MUST_BE_REAL,
- COEFFICIENT_WRITE_ACCESS_TO_SELFADJOINT_NOT_SUPPORTED,
- WRITING_TO_TRIANGULAR_PART_WITH_UNIT_DIAGONAL_IS_NOT_SUPPORTED,
- THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE,
- INVALID_MATRIX_PRODUCT,
- INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS,
- INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION,
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY,
- THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES,
- THIS_METHOD_IS_ONLY_FOR_ROW_MAJOR_MATRICES,
- INVALID_MATRIX_TEMPLATE_PARAMETERS,
- INVALID_MATRIXBASE_TEMPLATE_PARAMETERS,
- BOTH_MATRICES_MUST_HAVE_THE_SAME_STORAGE_ORDER,
- THIS_METHOD_IS_ONLY_FOR_DIAGONAL_MATRIX,
- THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE,
- THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES,
- YOU_ALREADY_SPECIFIED_THIS_STRIDE,
- INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION,
- THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD,
- PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1,
- THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS,
- YOU_CANNOT_MIX_ARRAYS_AND_MATRICES,
- YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION,
- THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY,
- YOU_ARE_TRYING_TO_USE_AN_INDEX_BASED_ACCESSOR_ON_AN_EXPRESSION_THAT_DOES_NOT_SUPPORT_THAT,
- THIS_METHOD_IS_ONLY_FOR_1x1_EXPRESSIONS,
- THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_OF_BOOL,
- THIS_METHOD_IS_ONLY_FOR_ARRAYS_NOT_MATRICES,
- YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED,
- YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED,
- THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE,
- THE_STORAGE_ORDER_OF_BOTH_SIDES_MUST_MATCH,
- OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG
- };
- };
-
- } // end namespace internal
-
- } // end namespace Eigen
-
- // Specialized implementation for MSVC to avoid "conditional
- // expression is constant" warnings. This implementation doesn't
- // appear to work under GCC, hence the multiple implementations.
- #ifdef _MSC_VER
-
- #define EIGEN_STATIC_ASSERT(CONDITION,MSG) \
- {Eigen::internal::static_assertion<bool(CONDITION)>::MSG;}
-
- #else
-
- #define EIGEN_STATIC_ASSERT(CONDITION,MSG) \
- if (Eigen::internal::static_assertion<bool(CONDITION)>::MSG) {}
-
- #endif
-
- #endif // not CXX0X
-
-#else // EIGEN_NO_STATIC_ASSERT
-
- #define EIGEN_STATIC_ASSERT(CONDITION,MSG) eigen_assert((CONDITION) && #MSG);
-
-#endif // EIGEN_NO_STATIC_ASSERT
-
-
-// static assertion failing if the type \a TYPE is not a vector type
-#define EIGEN_STATIC_ASSERT_VECTOR_ONLY(TYPE) \
- EIGEN_STATIC_ASSERT(TYPE::IsVectorAtCompileTime, \
- YOU_TRIED_CALLING_A_VECTOR_METHOD_ON_A_MATRIX)
-
-// static assertion failing if the type \a TYPE is not fixed-size
-#define EIGEN_STATIC_ASSERT_FIXED_SIZE(TYPE) \
- EIGEN_STATIC_ASSERT(TYPE::SizeAtCompileTime!=Eigen::Dynamic, \
- YOU_CALLED_A_FIXED_SIZE_METHOD_ON_A_DYNAMIC_SIZE_MATRIX_OR_VECTOR)
-
-// static assertion failing if the type \a TYPE is not dynamic-size
-#define EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(TYPE) \
- EIGEN_STATIC_ASSERT(TYPE::SizeAtCompileTime==Eigen::Dynamic, \
- YOU_CALLED_A_DYNAMIC_SIZE_METHOD_ON_A_FIXED_SIZE_MATRIX_OR_VECTOR)
-
-// static assertion failing if the type \a TYPE is not a vector type of the given size
-#define EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(TYPE, SIZE) \
- EIGEN_STATIC_ASSERT(TYPE::IsVectorAtCompileTime && TYPE::SizeAtCompileTime==SIZE, \
- THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE)
-
-// static assertion failing if the type \a TYPE is not a vector type of the given size
-#define EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(TYPE, ROWS, COLS) \
- EIGEN_STATIC_ASSERT(TYPE::RowsAtCompileTime==ROWS && TYPE::ColsAtCompileTime==COLS, \
- THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE)
-
-// static assertion failing if the two vector expression types are not compatible (same fixed-size or dynamic size)
-#define EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(TYPE0,TYPE1) \
- EIGEN_STATIC_ASSERT( \
- (int(TYPE0::SizeAtCompileTime)==Eigen::Dynamic \
- || int(TYPE1::SizeAtCompileTime)==Eigen::Dynamic \
- || int(TYPE0::SizeAtCompileTime)==int(TYPE1::SizeAtCompileTime)),\
- YOU_MIXED_VECTORS_OF_DIFFERENT_SIZES)
-
-#define EIGEN_PREDICATE_SAME_MATRIX_SIZE(TYPE0,TYPE1) \
- ( \
- (int(TYPE0::SizeAtCompileTime)==0 && int(TYPE1::SizeAtCompileTime)==0) \
- || (\
- (int(TYPE0::RowsAtCompileTime)==Eigen::Dynamic \
- || int(TYPE1::RowsAtCompileTime)==Eigen::Dynamic \
- || int(TYPE0::RowsAtCompileTime)==int(TYPE1::RowsAtCompileTime)) \
- && (int(TYPE0::ColsAtCompileTime)==Eigen::Dynamic \
- || int(TYPE1::ColsAtCompileTime)==Eigen::Dynamic \
- || int(TYPE0::ColsAtCompileTime)==int(TYPE1::ColsAtCompileTime))\
- ) \
- )
-
-#ifdef EIGEN2_SUPPORT
- #define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE) \
- eigen_assert(!NumTraits<Scalar>::IsInteger);
-#else
- #define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE) \
- EIGEN_STATIC_ASSERT(!NumTraits<TYPE>::IsInteger, THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
-#endif
-
-
-// static assertion failing if it is guaranteed at compile-time that the two matrix expression types have different sizes
-#define EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(TYPE0,TYPE1) \
- EIGEN_STATIC_ASSERT( \
- EIGEN_PREDICATE_SAME_MATRIX_SIZE(TYPE0,TYPE1),\
- YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES)
-
-#define EIGEN_STATIC_ASSERT_SIZE_1x1(TYPE) \
- EIGEN_STATIC_ASSERT((TYPE::RowsAtCompileTime == 1 || TYPE::RowsAtCompileTime == Dynamic) && \
- (TYPE::ColsAtCompileTime == 1 || TYPE::ColsAtCompileTime == Dynamic), \
- THIS_METHOD_IS_ONLY_FOR_1x1_EXPRESSIONS)
-
-#define EIGEN_STATIC_ASSERT_LVALUE(Derived) \
- EIGEN_STATIC_ASSERT(internal::is_lvalue<Derived>::value, \
- THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY)
-
-#define EIGEN_STATIC_ASSERT_ARRAYXPR(Derived) \
- EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Derived>::XprKind, ArrayXpr>::value), \
- THIS_METHOD_IS_ONLY_FOR_ARRAYS_NOT_MATRICES)
-
-#define EIGEN_STATIC_ASSERT_SAME_XPR_KIND(Derived1, Derived2) \
- EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Derived1>::XprKind, \
- typename internal::traits<Derived2>::XprKind \
- >::value), \
- YOU_CANNOT_MIX_ARRAYS_AND_MATRICES)
-
-
-#endif // EIGEN_STATIC_ASSERT_H
diff --git a/src/Eigen/src/Core/util/XprHelper.h b/src/Eigen/src/Core/util/XprHelper.h
deleted file mode 100644
index 3c47730..0000000
--- a/src/Eigen/src/Core/util/XprHelper.h
+++ /dev/null
@@ -1,469 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_XPRHELPER_H
-#define EIGEN_XPRHELPER_H
-
-// just a workaround because GCC seems to not really like empty structs
-// FIXME: gcc 4.3 generates bad code when strict-aliasing is enabled
-// so currently we simply disable this optimization for gcc 4.3
-#if (defined __GNUG__) && !((__GNUC__==4) && (__GNUC_MINOR__==3))
- #define EIGEN_EMPTY_STRUCT_CTOR(X) \
- EIGEN_STRONG_INLINE X() {} \
- EIGEN_STRONG_INLINE X(const X& ) {}
-#else
- #define EIGEN_EMPTY_STRUCT_CTOR(X)
-#endif
-
-namespace Eigen {
-
-typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex;
-
-namespace internal {
-
-//classes inheriting no_assignment_operator don't generate a default operator=.
-class no_assignment_operator
-{
- private:
- no_assignment_operator& operator=(const no_assignment_operator&);
-};
-
-/** \internal return the index type with the largest number of bits */
-template<typename I1, typename I2>
-struct promote_index_type
-{
- typedef typename conditional<(sizeof(I1)<sizeof(I2)), I2, I1>::type type;
-};
-
-/** \internal If the template parameter Value is Dynamic, this class is just a wrapper around a T variable that
- * can be accessed using value() and setValue().
- * Otherwise, this class is an empty structure and value() just returns the template parameter Value.
- */
-template<typename T, int Value> class variable_if_dynamic
-{
- public:
- EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamic)
- explicit variable_if_dynamic(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); assert(v == T(Value)); }
- static T value() { return T(Value); }
- void setValue(T) {}
-};
-
-template<typename T> class variable_if_dynamic<T, Dynamic>
-{
- T m_value;
- variable_if_dynamic() { assert(false); }
- public:
- explicit variable_if_dynamic(T value) : m_value(value) {}
- T value() const { return m_value; }
- void setValue(T value) { m_value = value; }
-};
-
-/** \internal like variable_if_dynamic but for DynamicIndex
- */
-template<typename T, int Value> class variable_if_dynamicindex
-{
- public:
- EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamicindex)
- explicit variable_if_dynamicindex(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); assert(v == T(Value)); }
- static T value() { return T(Value); }
- void setValue(T) {}
-};
-
-template<typename T> class variable_if_dynamicindex<T, DynamicIndex>
-{
- T m_value;
- variable_if_dynamicindex() { assert(false); }
- public:
- explicit variable_if_dynamicindex(T value) : m_value(value) {}
- T value() const { return m_value; }
- void setValue(T value) { m_value = value; }
-};
-
-template<typename T> struct functor_traits
-{
- enum
- {
- Cost = 10,
- PacketAccess = false,
- IsRepeatable = false
- };
-};
-
-template<typename T> struct packet_traits;
-
-template<typename T> struct unpacket_traits
-{
- typedef T type;
- enum {size=1};
-};
-
-template<typename _Scalar, int _Rows, int _Cols,
- int _Options = AutoAlign |
- ( (_Rows==1 && _Cols!=1) ? RowMajor
- : (_Cols==1 && _Rows!=1) ? ColMajor
- : EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
- int _MaxRows = _Rows,
- int _MaxCols = _Cols
-> class make_proper_matrix_type
-{
- enum {
- IsColVector = _Cols==1 && _Rows!=1,
- IsRowVector = _Rows==1 && _Cols!=1,
- Options = IsColVector ? (_Options | ColMajor) & ~RowMajor
- : IsRowVector ? (_Options | RowMajor) & ~ColMajor
- : _Options
- };
- public:
- typedef Matrix<_Scalar, _Rows, _Cols, Options, _MaxRows, _MaxCols> type;
-};
-
-template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
-class compute_matrix_flags
-{
- enum {
- row_major_bit = Options&RowMajor ? RowMajorBit : 0,
- is_dynamic_size_storage = MaxRows==Dynamic || MaxCols==Dynamic,
-
- aligned_bit =
- (
- ((Options&DontAlign)==0)
- && (
-#if EIGEN_ALIGN_STATICALLY
- ((!is_dynamic_size_storage) && (((MaxCols*MaxRows*int(sizeof(Scalar))) % 16) == 0))
-#else
- 0
-#endif
-
- ||
-
-#if EIGEN_ALIGN
- is_dynamic_size_storage
-#else
- 0
-#endif
-
- )
- ) ? AlignedBit : 0,
- packet_access_bit = packet_traits<Scalar>::Vectorizable && aligned_bit ? PacketAccessBit : 0
- };
-
- public:
- enum { ret = LinearAccessBit | LvalueBit | DirectAccessBit | NestByRefBit | packet_access_bit | row_major_bit | aligned_bit };
-};
-
-template<int _Rows, int _Cols> struct size_at_compile_time
-{
- enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
-};
-
-/* plain_matrix_type : the difference from eval is that plain_matrix_type is always a plain matrix type,
- * whereas eval is a const reference in the case of a matrix
- */
-
-template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct plain_matrix_type;
-template<typename T, typename BaseClassType> struct plain_matrix_type_dense;
-template<typename T> struct plain_matrix_type<T,Dense>
-{
- typedef typename plain_matrix_type_dense<T,typename traits<T>::XprKind>::type type;
-};
-
-template<typename T> struct plain_matrix_type_dense<T,MatrixXpr>
-{
- typedef Matrix<typename traits<T>::Scalar,
- traits<T>::RowsAtCompileTime,
- traits<T>::ColsAtCompileTime,
- AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
- traits<T>::MaxRowsAtCompileTime,
- traits<T>::MaxColsAtCompileTime
- > type;
-};
-
-template<typename T> struct plain_matrix_type_dense<T,ArrayXpr>
-{
- typedef Array<typename traits<T>::Scalar,
- traits<T>::RowsAtCompileTime,
- traits<T>::ColsAtCompileTime,
- AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
- traits<T>::MaxRowsAtCompileTime,
- traits<T>::MaxColsAtCompileTime
- > type;
-};
-
-/* eval : the return type of eval(). For matrices, this is just a const reference
- * in order to avoid a useless copy
- */
-
-template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct eval;
-
-template<typename T> struct eval<T,Dense>
-{
- typedef typename plain_matrix_type<T>::type type;
-// typedef typename T::PlainObject type;
-// typedef T::Matrix<typename traits<T>::Scalar,
-// traits<T>::RowsAtCompileTime,
-// traits<T>::ColsAtCompileTime,
-// AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
-// traits<T>::MaxRowsAtCompileTime,
-// traits<T>::MaxColsAtCompileTime
-// > type;
-};
-
-// for matrices, no need to evaluate, just use a const reference to avoid a useless copy
-template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
-struct eval<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
-{
- typedef const Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
-};
-
-template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
-struct eval<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
-{
- typedef const Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
-};
-
-
-
-/* plain_matrix_type_column_major : same as plain_matrix_type but guaranteed to be column-major
- */
-template<typename T> struct plain_matrix_type_column_major
-{
- enum { Rows = traits<T>::RowsAtCompileTime,
- Cols = traits<T>::ColsAtCompileTime,
- MaxRows = traits<T>::MaxRowsAtCompileTime,
- MaxCols = traits<T>::MaxColsAtCompileTime
- };
- typedef Matrix<typename traits<T>::Scalar,
- Rows,
- Cols,
- (MaxRows==1&&MaxCols!=1) ? RowMajor : ColMajor,
- MaxRows,
- MaxCols
- > type;
-};
-
-/* plain_matrix_type_row_major : same as plain_matrix_type but guaranteed to be row-major
- */
-template<typename T> struct plain_matrix_type_row_major
-{
- enum { Rows = traits<T>::RowsAtCompileTime,
- Cols = traits<T>::ColsAtCompileTime,
- MaxRows = traits<T>::MaxRowsAtCompileTime,
- MaxCols = traits<T>::MaxColsAtCompileTime
- };
- typedef Matrix<typename traits<T>::Scalar,
- Rows,
- Cols,
- (MaxCols==1&&MaxRows!=1) ? RowMajor : ColMajor,
- MaxRows,
- MaxCols
- > type;
-};
-
-// we should be able to get rid of this one too
-template<typename T> struct must_nest_by_value { enum { ret = false }; };
-
-/** \internal The reference selector for template expressions. The idea is that we don't
- * need to use references for expressions since they are light weight proxy
- * objects which should generate no copying overhead. */
-template <typename T>
-struct ref_selector
-{
- typedef typename conditional<
- bool(traits<T>::Flags & NestByRefBit),
- T const&,
- const T
- >::type type;
-};
-
-/** \internal Adds the const qualifier on the value-type of T2 if and only if T1 is a const type */
-template<typename T1, typename T2>
-struct transfer_constness
-{
- typedef typename conditional<
- bool(internal::is_const<T1>::value),
- typename internal::add_const_on_value_type<T2>::type,
- T2
- >::type type;
-};
-
-/** \internal Determines how a given expression should be nested into another one.
- * For example, when you do a * (b+c), Eigen will determine how the expression b+c should be
- * nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or
- * evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is
- * a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes
- * many coefficient accesses in the nested expressions -- as is the case with matrix product for example.
- *
- * \param T the type of the expression being nested
- * \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression.
- *
- * Note that if no evaluation occur, then the constness of T is preserved.
- *
- * Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c).
- * b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it,
- * the Product expression uses: nested<S, 3>::ret, which turns out to be Matrix3d because the internal logic of
- * nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand,
- * since a is of type Matrix3d, the Product expression nests it as nested<Matrix3d, 3>::ret, which turns out to be
- * const Matrix3d&, because the internal logic of nested determined that since a was already a matrix, there was no point
- * in copying it into another matrix.
- */
-template<typename T, int n=1, typename PlainObject = typename eval<T>::type> struct nested
-{
- enum {
- // for the purpose of this test, to keep it reasonably simple, we arbitrarily choose a value of Dynamic values.
- // the choice of 10000 makes it larger than any practical fixed value and even most dynamic values.
- // in extreme cases where these assumptions would be wrong, we would still at worst suffer performance issues
- // (poor choice of temporaries).
- // it's important that this value can still be squared without integer overflowing.
- DynamicAsInteger = 10000,
- ScalarReadCost = NumTraits<typename traits<T>::Scalar>::ReadCost,
- ScalarReadCostAsInteger = ScalarReadCost == Dynamic ? int(DynamicAsInteger) : int(ScalarReadCost),
- CoeffReadCost = traits<T>::CoeffReadCost,
- CoeffReadCostAsInteger = CoeffReadCost == Dynamic ? int(DynamicAsInteger) : int(CoeffReadCost),
- NAsInteger = n == Dynamic ? int(DynamicAsInteger) : n,
- CostEvalAsInteger = (NAsInteger+1) * ScalarReadCostAsInteger + CoeffReadCostAsInteger,
- CostNoEvalAsInteger = NAsInteger * CoeffReadCostAsInteger
- };
-
- typedef typename conditional<
- ( (int(traits<T>::Flags) & EvalBeforeNestingBit) ||
- int(CostEvalAsInteger) < int(CostNoEvalAsInteger)
- ),
- PlainObject,
- typename ref_selector<T>::type
- >::type type;
-};
-
-template<typename T>
-T* const_cast_ptr(const T* ptr)
-{
- return const_cast<T*>(ptr);
-}
-
-template<typename Derived, typename XprKind = typename traits<Derived>::XprKind>
-struct dense_xpr_base
-{
- /* dense_xpr_base should only ever be used on dense expressions, thus falling either into the MatrixXpr or into the ArrayXpr cases */
-};
-
-template<typename Derived>
-struct dense_xpr_base<Derived, MatrixXpr>
-{
- typedef MatrixBase<Derived> type;
-};
-
-template<typename Derived>
-struct dense_xpr_base<Derived, ArrayXpr>
-{
- typedef ArrayBase<Derived> type;
-};
-
-/** \internal Helper base class to add a scalar multiple operator
- * overloads for complex types */
-template<typename Derived,typename Scalar,typename OtherScalar,
- bool EnableIt = !is_same<Scalar,OtherScalar>::value >
-struct special_scalar_op_base : public DenseCoeffsBase<Derived>
-{
- // dummy operator* so that the
- // "using special_scalar_op_base::operator*" compiles
- void operator*() const;
-};
-
-template<typename Derived,typename Scalar,typename OtherScalar>
-struct special_scalar_op_base<Derived,Scalar,OtherScalar,true> : public DenseCoeffsBase<Derived>
-{
- const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
- operator*(const OtherScalar& scalar) const
- {
- return CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
- (*static_cast<const Derived*>(this), scalar_multiple2_op<Scalar,OtherScalar>(scalar));
- }
-
- inline friend const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
- operator*(const OtherScalar& scalar, const Derived& matrix)
- { return static_cast<const special_scalar_op_base&>(matrix).operator*(scalar); }
-};
-
-template<typename XprType, typename CastType> struct cast_return_type
-{
- typedef typename XprType::Scalar CurrentScalarType;
- typedef typename remove_all<CastType>::type _CastType;
- typedef typename _CastType::Scalar NewScalarType;
- typedef typename conditional<is_same<CurrentScalarType,NewScalarType>::value,
- const XprType&,CastType>::type type;
-};
-
-template <typename A, typename B> struct promote_storage_type;
-
-template <typename A> struct promote_storage_type<A,A>
-{
- typedef A ret;
-};
-
-/** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type.
- * \param Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType.
- */
-template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
-struct plain_row_type
-{
- typedef Matrix<Scalar, 1, ExpressionType::ColsAtCompileTime,
- ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> MatrixRowType;
- typedef Array<Scalar, 1, ExpressionType::ColsAtCompileTime,
- ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> ArrayRowType;
-
- typedef typename conditional<
- is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
- MatrixRowType,
- ArrayRowType
- >::type type;
-};
-
-template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
-struct plain_col_type
-{
- typedef Matrix<Scalar, ExpressionType::RowsAtCompileTime, 1,
- ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> MatrixColType;
- typedef Array<Scalar, ExpressionType::RowsAtCompileTime, 1,
- ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> ArrayColType;
-
- typedef typename conditional<
- is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
- MatrixColType,
- ArrayColType
- >::type type;
-};
-
-template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
-struct plain_diag_type
-{
- enum { diag_size = EIGEN_SIZE_MIN_PREFER_DYNAMIC(ExpressionType::RowsAtCompileTime, ExpressionType::ColsAtCompileTime),
- max_diag_size = EIGEN_SIZE_MIN_PREFER_FIXED(ExpressionType::MaxRowsAtCompileTime, ExpressionType::MaxColsAtCompileTime)
- };
- typedef Matrix<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> MatrixDiagType;
- typedef Array<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> ArrayDiagType;
-
- typedef typename conditional<
- is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
- MatrixDiagType,
- ArrayDiagType
- >::type type;
-};
-
-template<typename ExpressionType>
-struct is_lvalue
-{
- enum { value = !bool(is_const<ExpressionType>::value) &&
- bool(traits<ExpressionType>::Flags & LvalueBit) };
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_XPRHELPER_H
diff --git a/src/Eigen/src/Eigen2Support/Block.h b/src/Eigen/src/Eigen2Support/Block.h
deleted file mode 100644
index 604456f..0000000
--- a/src/Eigen/src/Eigen2Support/Block.h
+++ /dev/null
@@ -1,126 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_BLOCK2_H
-#define EIGEN_BLOCK2_H
-
-namespace Eigen {
-
-/** \returns a dynamic-size expression of a corner of *this.
- *
- * \param type the type of corner. Can be \a Eigen::TopLeft, \a Eigen::TopRight,
- * \a Eigen::BottomLeft, \a Eigen::BottomRight.
- * \param cRows the number of rows in the corner
- * \param cCols the number of columns in the corner
- *
- * Example: \include MatrixBase_corner_enum_int_int.cpp
- * Output: \verbinclude MatrixBase_corner_enum_int_int.out
- *
- * \note Even though the returned expression has dynamic size, in the case
- * when it is applied to a fixed-size matrix, it inherits a fixed maximal size,
- * which means that evaluating it does not cause a dynamic memory allocation.
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-template<typename Derived>
-inline Block<Derived> DenseBase<Derived>
- ::corner(CornerType type, Index cRows, Index cCols)
-{
- switch(type)
- {
- default:
- eigen_assert(false && "Bad corner type.");
- case TopLeft:
- return Block<Derived>(derived(), 0, 0, cRows, cCols);
- case TopRight:
- return Block<Derived>(derived(), 0, cols() - cCols, cRows, cCols);
- case BottomLeft:
- return Block<Derived>(derived(), rows() - cRows, 0, cRows, cCols);
- case BottomRight:
- return Block<Derived>(derived(), rows() - cRows, cols() - cCols, cRows, cCols);
- }
-}
-
-/** This is the const version of corner(CornerType, Index, Index).*/
-template<typename Derived>
-inline const Block<Derived>
-DenseBase<Derived>::corner(CornerType type, Index cRows, Index cCols) const
-{
- switch(type)
- {
- default:
- eigen_assert(false && "Bad corner type.");
- case TopLeft:
- return Block<Derived>(derived(), 0, 0, cRows, cCols);
- case TopRight:
- return Block<Derived>(derived(), 0, cols() - cCols, cRows, cCols);
- case BottomLeft:
- return Block<Derived>(derived(), rows() - cRows, 0, cRows, cCols);
- case BottomRight:
- return Block<Derived>(derived(), rows() - cRows, cols() - cCols, cRows, cCols);
- }
-}
-
-/** \returns a fixed-size expression of a corner of *this.
- *
- * \param type the type of corner. Can be \a Eigen::TopLeft, \a Eigen::TopRight,
- * \a Eigen::BottomLeft, \a Eigen::BottomRight.
- *
- * The template parameters CRows and CCols arethe number of rows and columns in the corner.
- *
- * Example: \include MatrixBase_template_int_int_corner_enum.cpp
- * Output: \verbinclude MatrixBase_template_int_int_corner_enum.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-template<typename Derived>
-template<int CRows, int CCols>
-inline Block<Derived, CRows, CCols>
-DenseBase<Derived>::corner(CornerType type)
-{
- switch(type)
- {
- default:
- eigen_assert(false && "Bad corner type.");
- case TopLeft:
- return Block<Derived, CRows, CCols>(derived(), 0, 0);
- case TopRight:
- return Block<Derived, CRows, CCols>(derived(), 0, cols() - CCols);
- case BottomLeft:
- return Block<Derived, CRows, CCols>(derived(), rows() - CRows, 0);
- case BottomRight:
- return Block<Derived, CRows, CCols>(derived(), rows() - CRows, cols() - CCols);
- }
-}
-
-/** This is the const version of corner<int, int>(CornerType).*/
-template<typename Derived>
-template<int CRows, int CCols>
-inline const Block<Derived, CRows, CCols>
-DenseBase<Derived>::corner(CornerType type) const
-{
- switch(type)
- {
- default:
- eigen_assert(false && "Bad corner type.");
- case TopLeft:
- return Block<Derived, CRows, CCols>(derived(), 0, 0);
- case TopRight:
- return Block<Derived, CRows, CCols>(derived(), 0, cols() - CCols);
- case BottomLeft:
- return Block<Derived, CRows, CCols>(derived(), rows() - CRows, 0);
- case BottomRight:
- return Block<Derived, CRows, CCols>(derived(), rows() - CRows, cols() - CCols);
- }
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_BLOCK2_H
diff --git a/src/Eigen/src/Eigen2Support/CMakeLists.txt b/src/Eigen/src/Eigen2Support/CMakeLists.txt
deleted file mode 100644
index 7ae41b3..0000000
--- a/src/Eigen/src/Eigen2Support/CMakeLists.txt
+++ /dev/null
@@ -1,8 +0,0 @@
-FILE(GLOB Eigen_Eigen2Support_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Eigen2Support_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Eigen2Support COMPONENT Devel
- )
-
-ADD_SUBDIRECTORY(Geometry) \ No newline at end of file
diff --git a/src/Eigen/src/Eigen2Support/Cwise.h b/src/Eigen/src/Eigen2Support/Cwise.h
deleted file mode 100644
index d95009b..0000000
--- a/src/Eigen/src/Eigen2Support/Cwise.h
+++ /dev/null
@@ -1,192 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CWISE_H
-#define EIGEN_CWISE_H
-
-namespace Eigen {
-
-/** \internal
- * convenient macro to defined the return type of a cwise binary operation */
-#define EIGEN_CWISE_BINOP_RETURN_TYPE(OP) \
- CwiseBinaryOp<OP<typename internal::traits<ExpressionType>::Scalar>, ExpressionType, OtherDerived>
-
-/** \internal
- * convenient macro to defined the return type of a cwise unary operation */
-#define EIGEN_CWISE_UNOP_RETURN_TYPE(OP) \
- CwiseUnaryOp<OP<typename internal::traits<ExpressionType>::Scalar>, ExpressionType>
-
-/** \internal
- * convenient macro to defined the return type of a cwise comparison to a scalar */
-#define EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(OP) \
- CwiseBinaryOp<OP<typename internal::traits<ExpressionType>::Scalar>, ExpressionType, \
- typename ExpressionType::ConstantReturnType >
-
-/** \class Cwise
- *
- * \brief Pseudo expression providing additional coefficient-wise operations
- *
- * \param ExpressionType the type of the object on which to do coefficient-wise operations
- *
- * This class represents an expression with additional coefficient-wise features.
- * It is the return type of MatrixBase::cwise()
- * and most of the time this is the only way it is used.
- *
- * Example: \include MatrixBase_cwise_const.cpp
- * Output: \verbinclude MatrixBase_cwise_const.out
- *
- * This class can be extended with the help of the plugin mechanism described on the page
- * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_CWISE_PLUGIN.
- *
- * \sa MatrixBase::cwise() const, MatrixBase::cwise()
- */
-template<typename ExpressionType> class Cwise
-{
- public:
-
- typedef typename internal::traits<ExpressionType>::Scalar Scalar;
- typedef typename internal::conditional<internal::must_nest_by_value<ExpressionType>::ret,
- ExpressionType, const ExpressionType&>::type ExpressionTypeNested;
- typedef CwiseUnaryOp<internal::scalar_add_op<Scalar>, ExpressionType> ScalarAddReturnType;
-
- inline Cwise(const ExpressionType& matrix) : m_matrix(matrix) {}
-
- /** \internal */
- inline const ExpressionType& _expression() const { return m_matrix; }
-
- template<typename OtherDerived>
- const EIGEN_CWISE_PRODUCT_RETURN_TYPE(ExpressionType,OtherDerived)
- operator*(const MatrixBase<OtherDerived> &other) const;
-
- template<typename OtherDerived>
- const EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_quotient_op)
- operator/(const MatrixBase<OtherDerived> &other) const;
-
- /** \deprecated ArrayBase::min() */
- template<typename OtherDerived>
- const EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_min_op)
- (min)(const MatrixBase<OtherDerived> &other) const
- { return EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_min_op)(_expression(), other.derived()); }
-
- /** \deprecated ArrayBase::max() */
- template<typename OtherDerived>
- const EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_max_op)
- (max)(const MatrixBase<OtherDerived> &other) const
- { return EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_max_op)(_expression(), other.derived()); }
-
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_abs_op) abs() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_abs2_op) abs2() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_square_op) square() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_cube_op) cube() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_inverse_op) inverse() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_sqrt_op) sqrt() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_exp_op) exp() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_log_op) log() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_cos_op) cos() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_sin_op) sin() const;
- const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_pow_op) pow(const Scalar& exponent) const;
-
- const ScalarAddReturnType
- operator+(const Scalar& scalar) const;
-
- /** \relates Cwise */
- friend const ScalarAddReturnType
- operator+(const Scalar& scalar, const Cwise& mat)
- { return mat + scalar; }
-
- ExpressionType& operator+=(const Scalar& scalar);
-
- const ScalarAddReturnType
- operator-(const Scalar& scalar) const;
-
- ExpressionType& operator-=(const Scalar& scalar);
-
- template<typename OtherDerived>
- inline ExpressionType& operator*=(const MatrixBase<OtherDerived> &other);
-
- template<typename OtherDerived>
- inline ExpressionType& operator/=(const MatrixBase<OtherDerived> &other);
-
- template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less)
- operator<(const MatrixBase<OtherDerived>& other) const;
-
- template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less_equal)
- operator<=(const MatrixBase<OtherDerived>& other) const;
-
- template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater)
- operator>(const MatrixBase<OtherDerived>& other) const;
-
- template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater_equal)
- operator>=(const MatrixBase<OtherDerived>& other) const;
-
- template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::equal_to)
- operator==(const MatrixBase<OtherDerived>& other) const;
-
- template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::not_equal_to)
- operator!=(const MatrixBase<OtherDerived>& other) const;
-
- // comparisons to a scalar value
- const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less)
- operator<(Scalar s) const;
-
- const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less_equal)
- operator<=(Scalar s) const;
-
- const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater)
- operator>(Scalar s) const;
-
- const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater_equal)
- operator>=(Scalar s) const;
-
- const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::equal_to)
- operator==(Scalar s) const;
-
- const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::not_equal_to)
- operator!=(Scalar s) const;
-
- // allow to extend Cwise outside Eigen
- #ifdef EIGEN_CWISE_PLUGIN
- #include EIGEN_CWISE_PLUGIN
- #endif
-
- protected:
- ExpressionTypeNested m_matrix;
-};
-
-
-/** \returns a Cwise wrapper of *this providing additional coefficient-wise operations
- *
- * Example: \include MatrixBase_cwise_const.cpp
- * Output: \verbinclude MatrixBase_cwise_const.out
- *
- * \sa class Cwise, cwise()
- */
-template<typename Derived>
-inline const Cwise<Derived> MatrixBase<Derived>::cwise() const
-{
- return derived();
-}
-
-/** \returns a Cwise wrapper of *this providing additional coefficient-wise operations
- *
- * Example: \include MatrixBase_cwise.cpp
- * Output: \verbinclude MatrixBase_cwise.out
- *
- * \sa class Cwise, cwise() const
- */
-template<typename Derived>
-inline Cwise<Derived> MatrixBase<Derived>::cwise()
-{
- return derived();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_CWISE_H
diff --git a/src/Eigen/src/Eigen2Support/CwiseOperators.h b/src/Eigen/src/Eigen2Support/CwiseOperators.h
deleted file mode 100644
index 482f306..0000000
--- a/src/Eigen/src/Eigen2Support/CwiseOperators.h
+++ /dev/null
@@ -1,298 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ARRAY_CWISE_OPERATORS_H
-#define EIGEN_ARRAY_CWISE_OPERATORS_H
-
-namespace Eigen {
-
-/***************************************************************************
-* The following functions were defined in Core
-***************************************************************************/
-
-
-/** \deprecated ArrayBase::abs() */
-template<typename ExpressionType>
-EIGEN_STRONG_INLINE const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_abs_op)
-Cwise<ExpressionType>::abs() const
-{
- return _expression();
-}
-
-/** \deprecated ArrayBase::abs2() */
-template<typename ExpressionType>
-EIGEN_STRONG_INLINE const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_abs2_op)
-Cwise<ExpressionType>::abs2() const
-{
- return _expression();
-}
-
-/** \deprecated ArrayBase::exp() */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_exp_op)
-Cwise<ExpressionType>::exp() const
-{
- return _expression();
-}
-
-/** \deprecated ArrayBase::log() */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_log_op)
-Cwise<ExpressionType>::log() const
-{
- return _expression();
-}
-
-/** \deprecated ArrayBase::operator*() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE(ExpressionType,OtherDerived)
-Cwise<ExpressionType>::operator*(const MatrixBase<OtherDerived> &other) const
-{
- return EIGEN_CWISE_PRODUCT_RETURN_TYPE(ExpressionType,OtherDerived)(_expression(), other.derived());
-}
-
-/** \deprecated ArrayBase::operator/() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE const EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_quotient_op)
-Cwise<ExpressionType>::operator/(const MatrixBase<OtherDerived> &other) const
-{
- return EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_quotient_op)(_expression(), other.derived());
-}
-
-/** \deprecated ArrayBase::operator*=() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-inline ExpressionType& Cwise<ExpressionType>::operator*=(const MatrixBase<OtherDerived> &other)
-{
- return m_matrix.const_cast_derived() = *this * other;
-}
-
-/** \deprecated ArrayBase::operator/=() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-inline ExpressionType& Cwise<ExpressionType>::operator/=(const MatrixBase<OtherDerived> &other)
-{
- return m_matrix.const_cast_derived() = *this / other;
-}
-
-/***************************************************************************
-* The following functions were defined in Array
-***************************************************************************/
-
-// -- unary operators --
-
-/** \deprecated ArrayBase::sqrt() */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_sqrt_op)
-Cwise<ExpressionType>::sqrt() const
-{
- return _expression();
-}
-
-/** \deprecated ArrayBase::cos() */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_cos_op)
-Cwise<ExpressionType>::cos() const
-{
- return _expression();
-}
-
-
-/** \deprecated ArrayBase::sin() */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_sin_op)
-Cwise<ExpressionType>::sin() const
-{
- return _expression();
-}
-
-
-/** \deprecated ArrayBase::log() */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_pow_op)
-Cwise<ExpressionType>::pow(const Scalar& exponent) const
-{
- return EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_pow_op)(_expression(), internal::scalar_pow_op<Scalar>(exponent));
-}
-
-
-/** \deprecated ArrayBase::inverse() */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_inverse_op)
-Cwise<ExpressionType>::inverse() const
-{
- return _expression();
-}
-
-/** \deprecated ArrayBase::square() */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_square_op)
-Cwise<ExpressionType>::square() const
-{
- return _expression();
-}
-
-/** \deprecated ArrayBase::cube() */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_cube_op)
-Cwise<ExpressionType>::cube() const
-{
- return _expression();
-}
-
-
-// -- binary operators --
-
-/** \deprecated ArrayBase::operator<() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less)
-Cwise<ExpressionType>::operator<(const MatrixBase<OtherDerived> &other) const
-{
- return EIGEN_CWISE_BINOP_RETURN_TYPE(std::less)(_expression(), other.derived());
-}
-
-/** \deprecated ArrayBase::<=() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less_equal)
-Cwise<ExpressionType>::operator<=(const MatrixBase<OtherDerived> &other) const
-{
- return EIGEN_CWISE_BINOP_RETURN_TYPE(std::less_equal)(_expression(), other.derived());
-}
-
-/** \deprecated ArrayBase::operator>() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater)
-Cwise<ExpressionType>::operator>(const MatrixBase<OtherDerived> &other) const
-{
- return EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater)(_expression(), other.derived());
-}
-
-/** \deprecated ArrayBase::operator>=() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater_equal)
-Cwise<ExpressionType>::operator>=(const MatrixBase<OtherDerived> &other) const
-{
- return EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater_equal)(_expression(), other.derived());
-}
-
-/** \deprecated ArrayBase::operator==() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::equal_to)
-Cwise<ExpressionType>::operator==(const MatrixBase<OtherDerived> &other) const
-{
- return EIGEN_CWISE_BINOP_RETURN_TYPE(std::equal_to)(_expression(), other.derived());
-}
-
-/** \deprecated ArrayBase::operator!=() */
-template<typename ExpressionType>
-template<typename OtherDerived>
-inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::not_equal_to)
-Cwise<ExpressionType>::operator!=(const MatrixBase<OtherDerived> &other) const
-{
- return EIGEN_CWISE_BINOP_RETURN_TYPE(std::not_equal_to)(_expression(), other.derived());
-}
-
-// comparisons to scalar value
-
-/** \deprecated ArrayBase::operator<(Scalar) */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less)
-Cwise<ExpressionType>::operator<(Scalar s) const
-{
- return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less)(_expression(),
- typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
-}
-
-/** \deprecated ArrayBase::operator<=(Scalar) */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less_equal)
-Cwise<ExpressionType>::operator<=(Scalar s) const
-{
- return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less_equal)(_expression(),
- typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
-}
-
-/** \deprecated ArrayBase::operator>(Scalar) */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater)
-Cwise<ExpressionType>::operator>(Scalar s) const
-{
- return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater)(_expression(),
- typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
-}
-
-/** \deprecated ArrayBase::operator>=(Scalar) */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater_equal)
-Cwise<ExpressionType>::operator>=(Scalar s) const
-{
- return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater_equal)(_expression(),
- typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
-}
-
-/** \deprecated ArrayBase::operator==(Scalar) */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::equal_to)
-Cwise<ExpressionType>::operator==(Scalar s) const
-{
- return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::equal_to)(_expression(),
- typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
-}
-
-/** \deprecated ArrayBase::operator!=(Scalar) */
-template<typename ExpressionType>
-inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::not_equal_to)
-Cwise<ExpressionType>::operator!=(Scalar s) const
-{
- return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::not_equal_to)(_expression(),
- typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
-}
-
-// scalar addition
-
-/** \deprecated ArrayBase::operator+(Scalar) */
-template<typename ExpressionType>
-inline const typename Cwise<ExpressionType>::ScalarAddReturnType
-Cwise<ExpressionType>::operator+(const Scalar& scalar) const
-{
- return typename Cwise<ExpressionType>::ScalarAddReturnType(m_matrix, internal::scalar_add_op<Scalar>(scalar));
-}
-
-/** \deprecated ArrayBase::operator+=(Scalar) */
-template<typename ExpressionType>
-inline ExpressionType& Cwise<ExpressionType>::operator+=(const Scalar& scalar)
-{
- return m_matrix.const_cast_derived() = *this + scalar;
-}
-
-/** \deprecated ArrayBase::operator-(Scalar) */
-template<typename ExpressionType>
-inline const typename Cwise<ExpressionType>::ScalarAddReturnType
-Cwise<ExpressionType>::operator-(const Scalar& scalar) const
-{
- return *this + (-scalar);
-}
-
-/** \deprecated ArrayBase::operator-=(Scalar) */
-template<typename ExpressionType>
-inline ExpressionType& Cwise<ExpressionType>::operator-=(const Scalar& scalar)
-{
- return m_matrix.const_cast_derived() = *this - scalar;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_ARRAY_CWISE_OPERATORS_H
diff --git a/src/Eigen/src/Eigen2Support/Geometry/AlignedBox.h b/src/Eigen/src/Eigen2Support/Geometry/AlignedBox.h
deleted file mode 100644
index 2e4309d..0000000
--- a/src/Eigen/src/Eigen2Support/Geometry/AlignedBox.h
+++ /dev/null
@@ -1,159 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- * \nonstableyet
- *
- * \class AlignedBox
- *
- * \brief An axis aligned box
- *
- * \param _Scalar the type of the scalar coefficients
- * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
- *
- * This class represents an axis aligned box as a pair of the minimal and maximal corners.
- */
-template <typename _Scalar, int _AmbientDim>
-class AlignedBox
-{
-public:
-EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
- enum { AmbientDimAtCompileTime = _AmbientDim };
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
-
- /** Default constructor initializing a null box. */
- inline AlignedBox()
- { if (AmbientDimAtCompileTime!=Dynamic) setNull(); }
-
- /** Constructs a null box with \a _dim the dimension of the ambient space. */
- inline explicit AlignedBox(int _dim) : m_min(_dim), m_max(_dim)
- { setNull(); }
-
- /** Constructs a box with extremities \a _min and \a _max. */
- inline AlignedBox(const VectorType& _min, const VectorType& _max) : m_min(_min), m_max(_max) {}
-
- /** Constructs a box containing a single point \a p. */
- inline explicit AlignedBox(const VectorType& p) : m_min(p), m_max(p) {}
-
- ~AlignedBox() {}
-
- /** \returns the dimension in which the box holds */
- inline int dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size()-1 : AmbientDimAtCompileTime; }
-
- /** \returns true if the box is null, i.e, empty. */
- inline bool isNull() const { return (m_min.cwise() > m_max).any(); }
-
- /** Makes \c *this a null/empty box. */
- inline void setNull()
- {
- m_min.setConstant( (std::numeric_limits<Scalar>::max)());
- m_max.setConstant(-(std::numeric_limits<Scalar>::max)());
- }
-
- /** \returns the minimal corner */
- inline const VectorType& (min)() const { return m_min; }
- /** \returns a non const reference to the minimal corner */
- inline VectorType& (min)() { return m_min; }
- /** \returns the maximal corner */
- inline const VectorType& (max)() const { return m_max; }
- /** \returns a non const reference to the maximal corner */
- inline VectorType& (max)() { return m_max; }
-
- /** \returns true if the point \a p is inside the box \c *this. */
- inline bool contains(const VectorType& p) const
- { return (m_min.cwise()<=p).all() && (p.cwise()<=m_max).all(); }
-
- /** \returns true if the box \a b is entirely inside the box \c *this. */
- inline bool contains(const AlignedBox& b) const
- { return (m_min.cwise()<=(b.min)()).all() && ((b.max)().cwise()<=m_max).all(); }
-
- /** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. */
- inline AlignedBox& extend(const VectorType& p)
- { m_min = (m_min.cwise().min)(p); m_max = (m_max.cwise().max)(p); return *this; }
-
- /** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. */
- inline AlignedBox& extend(const AlignedBox& b)
- { m_min = (m_min.cwise().min)(b.m_min); m_max = (m_max.cwise().max)(b.m_max); return *this; }
-
- /** Clamps \c *this by the box \a b and returns a reference to \c *this. */
- inline AlignedBox& clamp(const AlignedBox& b)
- { m_min = (m_min.cwise().max)(b.m_min); m_max = (m_max.cwise().min)(b.m_max); return *this; }
-
- /** Translate \c *this by the vector \a t and returns a reference to \c *this. */
- inline AlignedBox& translate(const VectorType& t)
- { m_min += t; m_max += t; return *this; }
-
- /** \returns the squared distance between the point \a p and the box \c *this,
- * and zero if \a p is inside the box.
- * \sa exteriorDistance()
- */
- inline Scalar squaredExteriorDistance(const VectorType& p) const;
-
- /** \returns the distance between the point \a p and the box \c *this,
- * and zero if \a p is inside the box.
- * \sa squaredExteriorDistance()
- */
- inline Scalar exteriorDistance(const VectorType& p) const
- { return ei_sqrt(squaredExteriorDistance(p)); }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<AlignedBox,
- AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
- {
- return typename internal::cast_return_type<AlignedBox,
- AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
- }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime>& other)
- {
- m_min = (other.min)().template cast<Scalar>();
- m_max = (other.max)().template cast<Scalar>();
- }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const AlignedBox& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); }
-
-protected:
-
- VectorType m_min, m_max;
-};
-
-template<typename Scalar,int AmbiantDim>
-inline Scalar AlignedBox<Scalar,AmbiantDim>::squaredExteriorDistance(const VectorType& p) const
-{
- Scalar dist2(0);
- Scalar aux;
- for (int k=0; k<dim(); ++k)
- {
- if ((aux = (p[k]-m_min[k]))<Scalar(0))
- dist2 += aux*aux;
- else if ( (aux = (m_max[k]-p[k]))<Scalar(0))
- dist2 += aux*aux;
- }
- return dist2;
-}
-
-} // end namespace Eigen
diff --git a/src/Eigen/src/Eigen2Support/Geometry/All.h b/src/Eigen/src/Eigen2Support/Geometry/All.h
deleted file mode 100644
index e0b00fc..0000000
--- a/src/Eigen/src/Eigen2Support/Geometry/All.h
+++ /dev/null
@@ -1,115 +0,0 @@
-#ifndef EIGEN2_GEOMETRY_MODULE_H
-#define EIGEN2_GEOMETRY_MODULE_H
-
-#include <limits>
-
-#ifndef M_PI
-#define M_PI 3.14159265358979323846
-#endif
-
-#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
-#include "RotationBase.h"
-#include "Rotation2D.h"
-#include "Quaternion.h"
-#include "AngleAxis.h"
-#include "Transform.h"
-#include "Translation.h"
-#include "Scaling.h"
-#include "AlignedBox.h"
-#include "Hyperplane.h"
-#include "ParametrizedLine.h"
-#endif
-
-
-#define RotationBase eigen2_RotationBase
-#define Rotation2D eigen2_Rotation2D
-#define Rotation2Df eigen2_Rotation2Df
-#define Rotation2Dd eigen2_Rotation2Dd
-
-#define Quaternion eigen2_Quaternion
-#define Quaternionf eigen2_Quaternionf
-#define Quaterniond eigen2_Quaterniond
-
-#define AngleAxis eigen2_AngleAxis
-#define AngleAxisf eigen2_AngleAxisf
-#define AngleAxisd eigen2_AngleAxisd
-
-#define Transform eigen2_Transform
-#define Transform2f eigen2_Transform2f
-#define Transform2d eigen2_Transform2d
-#define Transform3f eigen2_Transform3f
-#define Transform3d eigen2_Transform3d
-
-#define Translation eigen2_Translation
-#define Translation2f eigen2_Translation2f
-#define Translation2d eigen2_Translation2d
-#define Translation3f eigen2_Translation3f
-#define Translation3d eigen2_Translation3d
-
-#define Scaling eigen2_Scaling
-#define Scaling2f eigen2_Scaling2f
-#define Scaling2d eigen2_Scaling2d
-#define Scaling3f eigen2_Scaling3f
-#define Scaling3d eigen2_Scaling3d
-
-#define AlignedBox eigen2_AlignedBox
-
-#define Hyperplane eigen2_Hyperplane
-#define ParametrizedLine eigen2_ParametrizedLine
-
-#define ei_toRotationMatrix eigen2_ei_toRotationMatrix
-#define ei_quaternion_assign_impl eigen2_ei_quaternion_assign_impl
-#define ei_transform_product_impl eigen2_ei_transform_product_impl
-
-#include "RotationBase.h"
-#include "Rotation2D.h"
-#include "Quaternion.h"
-#include "AngleAxis.h"
-#include "Transform.h"
-#include "Translation.h"
-#include "Scaling.h"
-#include "AlignedBox.h"
-#include "Hyperplane.h"
-#include "ParametrizedLine.h"
-
-#undef ei_toRotationMatrix
-#undef ei_quaternion_assign_impl
-#undef ei_transform_product_impl
-
-#undef RotationBase
-#undef Rotation2D
-#undef Rotation2Df
-#undef Rotation2Dd
-
-#undef Quaternion
-#undef Quaternionf
-#undef Quaterniond
-
-#undef AngleAxis
-#undef AngleAxisf
-#undef AngleAxisd
-
-#undef Transform
-#undef Transform2f
-#undef Transform2d
-#undef Transform3f
-#undef Transform3d
-
-#undef Translation
-#undef Translation2f
-#undef Translation2d
-#undef Translation3f
-#undef Translation3d
-
-#undef Scaling
-#undef Scaling2f
-#undef Scaling2d
-#undef Scaling3f
-#undef Scaling3d
-
-#undef AlignedBox
-
-#undef Hyperplane
-#undef ParametrizedLine
-
-#endif // EIGEN2_GEOMETRY_MODULE_H
diff --git a/src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h b/src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h
deleted file mode 100644
index af598a4..0000000
--- a/src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h
+++ /dev/null
@@ -1,214 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class AngleAxis
- *
- * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients.
- *
- * The following two typedefs are provided for convenience:
- * \li \c AngleAxisf for \c float
- * \li \c AngleAxisd for \c double
- *
- * \addexample AngleAxisForEuler \label How to define a rotation from Euler-angles
- *
- * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
- * mimic Euler-angles. Here is an example:
- * \include AngleAxis_mimic_euler.cpp
- * Output: \verbinclude AngleAxis_mimic_euler.out
- *
- * \note This class is not aimed to be used to store a rotation transformation,
- * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
- * and transformation objects.
- *
- * \sa class Quaternion, class Transform, MatrixBase::UnitX()
- */
-
-template<typename _Scalar> struct ei_traits<AngleAxis<_Scalar> >
-{
- typedef _Scalar Scalar;
-};
-
-template<typename _Scalar>
-class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
-{
- typedef RotationBase<AngleAxis<_Scalar>,3> Base;
-
-public:
-
- using Base::operator*;
-
- enum { Dim = 3 };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- typedef Matrix<Scalar,3,3> Matrix3;
- typedef Matrix<Scalar,3,1> Vector3;
- typedef Quaternion<Scalar> QuaternionType;
-
-protected:
-
- Vector3 m_axis;
- Scalar m_angle;
-
-public:
-
- /** Default constructor without initialization. */
- AngleAxis() {}
- /** Constructs and initialize the angle-axis rotation from an \a angle in radian
- * and an \a axis which must be normalized. */
- template<typename Derived>
- inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
- /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
- inline AngleAxis(const QuaternionType& q) { *this = q; }
- /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
- template<typename Derived>
- inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
-
- Scalar angle() const { return m_angle; }
- Scalar& angle() { return m_angle; }
-
- const Vector3& axis() const { return m_axis; }
- Vector3& axis() { return m_axis; }
-
- /** Concatenates two rotations */
- inline QuaternionType operator* (const AngleAxis& other) const
- { return QuaternionType(*this) * QuaternionType(other); }
-
- /** Concatenates two rotations */
- inline QuaternionType operator* (const QuaternionType& other) const
- { return QuaternionType(*this) * other; }
-
- /** Concatenates two rotations */
- friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
- { return a * QuaternionType(b); }
-
- /** Concatenates two rotations */
- inline Matrix3 operator* (const Matrix3& other) const
- { return toRotationMatrix() * other; }
-
- /** Concatenates two rotations */
- inline friend Matrix3 operator* (const Matrix3& a, const AngleAxis& b)
- { return a * b.toRotationMatrix(); }
-
- /** Applies rotation to vector */
- inline Vector3 operator* (const Vector3& other) const
- { return toRotationMatrix() * other; }
-
- /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
- AngleAxis inverse() const
- { return AngleAxis(-m_angle, m_axis); }
-
- AngleAxis& operator=(const QuaternionType& q);
- template<typename Derived>
- AngleAxis& operator=(const MatrixBase<Derived>& m);
-
- template<typename Derived>
- AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
- Matrix3 toRotationMatrix(void) const;
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
- { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
- {
- m_axis = other.axis().template cast<Scalar>();
- m_angle = Scalar(other.angle());
- }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_axis.isApprox(other.m_axis, prec) && ei_isApprox(m_angle,other.m_angle, prec); }
-};
-
-/** \ingroup Geometry_Module
- * single precision angle-axis type */
-typedef AngleAxis<float> AngleAxisf;
-/** \ingroup Geometry_Module
- * double precision angle-axis type */
-typedef AngleAxis<double> AngleAxisd;
-
-/** Set \c *this from a quaternion.
- * The axis is normalized.
- */
-template<typename Scalar>
-AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionType& q)
-{
- Scalar n2 = q.vec().squaredNorm();
- if (n2 < precision<Scalar>()*precision<Scalar>())
- {
- m_angle = 0;
- m_axis << 1, 0, 0;
- }
- else
- {
- m_angle = 2*std::acos(q.w());
- m_axis = q.vec() / ei_sqrt(n2);
- }
- return *this;
-}
-
-/** Set \c *this from a 3x3 rotation matrix \a mat.
- */
-template<typename Scalar>
-template<typename Derived>
-AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
-{
- // Since a direct conversion would not be really faster,
- // let's use the robust Quaternion implementation:
- return *this = QuaternionType(mat);
-}
-
-/** Constructs and \returns an equivalent 3x3 rotation matrix.
- */
-template<typename Scalar>
-typename AngleAxis<Scalar>::Matrix3
-AngleAxis<Scalar>::toRotationMatrix(void) const
-{
- Matrix3 res;
- Vector3 sin_axis = ei_sin(m_angle) * m_axis;
- Scalar c = ei_cos(m_angle);
- Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
-
- Scalar tmp;
- tmp = cos1_axis.x() * m_axis.y();
- res.coeffRef(0,1) = tmp - sin_axis.z();
- res.coeffRef(1,0) = tmp + sin_axis.z();
-
- tmp = cos1_axis.x() * m_axis.z();
- res.coeffRef(0,2) = tmp + sin_axis.y();
- res.coeffRef(2,0) = tmp - sin_axis.y();
-
- tmp = cos1_axis.y() * m_axis.z();
- res.coeffRef(1,2) = tmp - sin_axis.x();
- res.coeffRef(2,1) = tmp + sin_axis.x();
-
- res.diagonal() = (cos1_axis.cwise() * m_axis).cwise() + c;
-
- return res;
-}
-
-} // end namespace Eigen
diff --git a/src/Eigen/src/Eigen2Support/Geometry/CMakeLists.txt b/src/Eigen/src/Eigen2Support/Geometry/CMakeLists.txt
deleted file mode 100644
index c347a8f..0000000
--- a/src/Eigen/src/Eigen2Support/Geometry/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_Eigen2Support_Geometry_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Eigen2Support_Geometry_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Eigen2Support/Geometry
- )
diff --git a/src/Eigen/src/Eigen2Support/Geometry/Hyperplane.h b/src/Eigen/src/Eigen2Support/Geometry/Hyperplane.h
deleted file mode 100644
index b95bf00..0000000
--- a/src/Eigen/src/Eigen2Support/Geometry/Hyperplane.h
+++ /dev/null
@@ -1,254 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Hyperplane
- *
- * \brief A hyperplane
- *
- * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
- * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
- * Notice that the dimension of the hyperplane is _AmbientDim-1.
- *
- * This class represents an hyperplane as the zero set of the implicit equation
- * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
- * and \f$ d \f$ is the distance (offset) to the origin.
- */
-template <typename _Scalar, int _AmbientDim>
-class Hyperplane
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
- enum { AmbientDimAtCompileTime = _AmbientDim };
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
- typedef Matrix<Scalar,int(AmbientDimAtCompileTime)==Dynamic
- ? Dynamic
- : int(AmbientDimAtCompileTime)+1,1> Coefficients;
- typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
-
- /** Default constructor without initialization */
- inline Hyperplane() {}
-
- /** Constructs a dynamic-size hyperplane with \a _dim the dimension
- * of the ambient space */
- inline explicit Hyperplane(int _dim) : m_coeffs(_dim+1) {}
-
- /** Construct a plane from its normal \a n and a point \a e onto the plane.
- * \warning the vector normal is assumed to be normalized.
- */
- inline Hyperplane(const VectorType& n, const VectorType& e)
- : m_coeffs(n.size()+1)
- {
- normal() = n;
- offset() = -e.eigen2_dot(n);
- }
-
- /** Constructs a plane from its normal \a n and distance to the origin \a d
- * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
- * \warning the vector normal is assumed to be normalized.
- */
- inline Hyperplane(const VectorType& n, Scalar d)
- : m_coeffs(n.size()+1)
- {
- normal() = n;
- offset() = d;
- }
-
- /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
- * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
- */
- static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
- {
- Hyperplane result(p0.size());
- result.normal() = (p1 - p0).unitOrthogonal();
- result.offset() = -result.normal().eigen2_dot(p0);
- return result;
- }
-
- /** Constructs a hyperplane passing through the three points. The dimension of the ambient space
- * is required to be exactly 3.
- */
- static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
- {
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
- Hyperplane result(p0.size());
- result.normal() = (p2 - p0).cross(p1 - p0).normalized();
- result.offset() = -result.normal().eigen2_dot(p0);
- return result;
- }
-
- /** Constructs a hyperplane passing through the parametrized line \a parametrized.
- * If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
- * so an arbitrary choice is made.
- */
- // FIXME to be consitent with the rest this could be implemented as a static Through function ??
- explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
- {
- normal() = parametrized.direction().unitOrthogonal();
- offset() = -normal().eigen2_dot(parametrized.origin());
- }
-
- ~Hyperplane() {}
-
- /** \returns the dimension in which the plane holds */
- inline int dim() const { return int(AmbientDimAtCompileTime)==Dynamic ? m_coeffs.size()-1 : int(AmbientDimAtCompileTime); }
-
- /** normalizes \c *this */
- void normalize(void)
- {
- m_coeffs /= normal().norm();
- }
-
- /** \returns the signed distance between the plane \c *this and a point \a p.
- * \sa absDistance()
- */
- inline Scalar signedDistance(const VectorType& p) const { return p.eigen2_dot(normal()) + offset(); }
-
- /** \returns the absolute distance between the plane \c *this and a point \a p.
- * \sa signedDistance()
- */
- inline Scalar absDistance(const VectorType& p) const { return ei_abs(signedDistance(p)); }
-
- /** \returns the projection of a point \a p onto the plane \c *this.
- */
- inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
-
- /** \returns a constant reference to the unit normal vector of the plane, which corresponds
- * to the linear part of the implicit equation.
- */
- inline const NormalReturnType normal() const { return NormalReturnType(*const_cast<Coefficients*>(&m_coeffs),0,0,dim(),1); }
-
- /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
- * to the linear part of the implicit equation.
- */
- inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
-
- /** \returns the distance to the origin, which is also the "constant term" of the implicit equation
- * \warning the vector normal is assumed to be normalized.
- */
- inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
-
- /** \returns a non-constant reference to the distance to the origin, which is also the constant part
- * of the implicit equation */
- inline Scalar& offset() { return m_coeffs(dim()); }
-
- /** \returns a constant reference to the coefficients c_i of the plane equation:
- * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
- */
- inline const Coefficients& coeffs() const { return m_coeffs; }
-
- /** \returns a non-constant reference to the coefficients c_i of the plane equation:
- * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
- */
- inline Coefficients& coeffs() { return m_coeffs; }
-
- /** \returns the intersection of *this with \a other.
- *
- * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
- *
- * \note If \a other is approximately parallel to *this, this method will return any point on *this.
- */
- VectorType intersection(const Hyperplane& other)
- {
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
- Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
- // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
- // whether the two lines are approximately parallel.
- if(ei_isMuchSmallerThan(det, Scalar(1)))
- { // special case where the two lines are approximately parallel. Pick any point on the first line.
- if(ei_abs(coeffs().coeff(1))>ei_abs(coeffs().coeff(0)))
- return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
- else
- return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
- }
- else
- { // general case
- Scalar invdet = Scalar(1) / det;
- return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
- invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
- }
- }
-
- /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
- *
- * \param mat the Dim x Dim transformation matrix
- * \param traits specifies whether the matrix \a mat represents an Isometry
- * or a more generic Affine transformation. The default is Affine.
- */
- template<typename XprType>
- inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
- {
- if (traits==Affine)
- normal() = mat.inverse().transpose() * normal();
- else if (traits==Isometry)
- normal() = mat * normal();
- else
- {
- ei_assert("invalid traits value in Hyperplane::transform()");
- }
- return *this;
- }
-
- /** Applies the transformation \a t to \c *this and returns a reference to \c *this.
- *
- * \param t the transformation of dimension Dim
- * \param traits specifies whether the transformation \a t represents an Isometry
- * or a more generic Affine transformation. The default is Affine.
- * Other kind of transformations are not supported.
- */
- inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime>& t,
- TransformTraits traits = Affine)
- {
- transform(t.linear(), traits);
- offset() -= t.translation().eigen2_dot(normal());
- return *this;
- }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Hyperplane,
- Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
- {
- return typename internal::cast_return_type<Hyperplane,
- Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
- }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime>& other)
- { m_coeffs = other.coeffs().template cast<Scalar>(); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Hyperplane& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_coeffs.isApprox(other.m_coeffs, prec); }
-
-protected:
-
- Coefficients m_coeffs;
-};
-
-} // end namespace Eigen
diff --git a/src/Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h b/src/Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h
deleted file mode 100644
index 9b57b7e..0000000
--- a/src/Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h
+++ /dev/null
@@ -1,141 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class ParametrizedLine
- *
- * \brief A parametrized line
- *
- * A parametrized line is defined by an origin point \f$ \mathbf{o} \f$ and a unit
- * direction vector \f$ \mathbf{d} \f$ such that the line corresponds to
- * the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ l \in \mathbf{R} \f$.
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
- */
-template <typename _Scalar, int _AmbientDim>
-class ParametrizedLine
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
- enum { AmbientDimAtCompileTime = _AmbientDim };
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
-
- /** Default constructor without initialization */
- inline ParametrizedLine() {}
-
- /** Constructs a dynamic-size line with \a _dim the dimension
- * of the ambient space */
- inline explicit ParametrizedLine(int _dim) : m_origin(_dim), m_direction(_dim) {}
-
- /** Initializes a parametrized line of direction \a direction and origin \a origin.
- * \warning the vector direction is assumed to be normalized.
- */
- ParametrizedLine(const VectorType& origin, const VectorType& direction)
- : m_origin(origin), m_direction(direction) {}
-
- explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
-
- /** Constructs a parametrized line going from \a p0 to \a p1. */
- static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1)
- { return ParametrizedLine(p0, (p1-p0).normalized()); }
-
- ~ParametrizedLine() {}
-
- /** \returns the dimension in which the line holds */
- inline int dim() const { return m_direction.size(); }
-
- const VectorType& origin() const { return m_origin; }
- VectorType& origin() { return m_origin; }
-
- const VectorType& direction() const { return m_direction; }
- VectorType& direction() { return m_direction; }
-
- /** \returns the squared distance of a point \a p to its projection onto the line \c *this.
- * \sa distance()
- */
- RealScalar squaredDistance(const VectorType& p) const
- {
- VectorType diff = p-origin();
- return (diff - diff.eigen2_dot(direction())* direction()).squaredNorm();
- }
- /** \returns the distance of a point \a p to its projection onto the line \c *this.
- * \sa squaredDistance()
- */
- RealScalar distance(const VectorType& p) const { return ei_sqrt(squaredDistance(p)); }
-
- /** \returns the projection of a point \a p onto the line \c *this. */
- VectorType projection(const VectorType& p) const
- { return origin() + (p-origin()).eigen2_dot(direction()) * direction(); }
-
- Scalar intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<ParametrizedLine,
- ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
- {
- return typename internal::cast_return_type<ParametrizedLine,
- ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
- }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit ParametrizedLine(const ParametrizedLine<OtherScalarType,AmbientDimAtCompileTime>& other)
- {
- m_origin = other.origin().template cast<Scalar>();
- m_direction = other.direction().template cast<Scalar>();
- }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const ParametrizedLine& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); }
-
-protected:
-
- VectorType m_origin, m_direction;
-};
-
-/** Constructs a parametrized line from a 2D hyperplane
- *
- * \warning the ambient space must have dimension 2 such that the hyperplane actually describes a line
- */
-template <typename _Scalar, int _AmbientDim>
-inline ParametrizedLine<_Scalar, _AmbientDim>::ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
- direction() = hyperplane.normal().unitOrthogonal();
- origin() = -hyperplane.normal()*hyperplane.offset();
-}
-
-/** \returns the parameter value of the intersection between \c *this and the given hyperplane
- */
-template <typename _Scalar, int _AmbientDim>
-inline _Scalar ParametrizedLine<_Scalar, _AmbientDim>::intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane)
-{
- return -(hyperplane.offset()+origin().eigen2_dot(hyperplane.normal()))
- /(direction().eigen2_dot(hyperplane.normal()));
-}
-
-} // end namespace Eigen
diff --git a/src/Eigen/src/Eigen2Support/Geometry/Quaternion.h b/src/Eigen/src/Eigen2Support/Geometry/Quaternion.h
deleted file mode 100644
index 4b6390c..0000000
--- a/src/Eigen/src/Eigen2Support/Geometry/Quaternion.h
+++ /dev/null
@@ -1,495 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-template<typename Other,
- int OtherRows=Other::RowsAtCompileTime,
- int OtherCols=Other::ColsAtCompileTime>
-struct ei_quaternion_assign_impl;
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Quaternion
- *
- * \brief The quaternion class used to represent 3D orientations and rotations
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- *
- * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
- * orientations and rotations of objects in three dimensions. Compared to other representations
- * like Euler angles or 3x3 matrices, quatertions offer the following advantages:
- * \li \b compact storage (4 scalars)
- * \li \b efficient to compose (28 flops),
- * \li \b stable spherical interpolation
- *
- * The following two typedefs are provided for convenience:
- * \li \c Quaternionf for \c float
- * \li \c Quaterniond for \c double
- *
- * \sa class AngleAxis, class Transform
- */
-
-template<typename _Scalar> struct ei_traits<Quaternion<_Scalar> >
-{
- typedef _Scalar Scalar;
-};
-
-template<typename _Scalar>
-class Quaternion : public RotationBase<Quaternion<_Scalar>,3>
-{
- typedef RotationBase<Quaternion<_Scalar>,3> Base;
-
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,4)
-
- using Base::operator*;
-
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
-
- /** the type of the Coefficients 4-vector */
- typedef Matrix<Scalar, 4, 1> Coefficients;
- /** the type of a 3D vector */
- typedef Matrix<Scalar,3,1> Vector3;
- /** the equivalent rotation matrix type */
- typedef Matrix<Scalar,3,3> Matrix3;
- /** the equivalent angle-axis type */
- typedef AngleAxis<Scalar> AngleAxisType;
-
- /** \returns the \c x coefficient */
- inline Scalar x() const { return m_coeffs.coeff(0); }
- /** \returns the \c y coefficient */
- inline Scalar y() const { return m_coeffs.coeff(1); }
- /** \returns the \c z coefficient */
- inline Scalar z() const { return m_coeffs.coeff(2); }
- /** \returns the \c w coefficient */
- inline Scalar w() const { return m_coeffs.coeff(3); }
-
- /** \returns a reference to the \c x coefficient */
- inline Scalar& x() { return m_coeffs.coeffRef(0); }
- /** \returns a reference to the \c y coefficient */
- inline Scalar& y() { return m_coeffs.coeffRef(1); }
- /** \returns a reference to the \c z coefficient */
- inline Scalar& z() { return m_coeffs.coeffRef(2); }
- /** \returns a reference to the \c w coefficient */
- inline Scalar& w() { return m_coeffs.coeffRef(3); }
-
- /** \returns a read-only vector expression of the imaginary part (x,y,z) */
- inline const Block<const Coefficients,3,1> vec() const { return m_coeffs.template start<3>(); }
-
- /** \returns a vector expression of the imaginary part (x,y,z) */
- inline Block<Coefficients,3,1> vec() { return m_coeffs.template start<3>(); }
-
- /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
- inline const Coefficients& coeffs() const { return m_coeffs; }
-
- /** \returns a vector expression of the coefficients (x,y,z,w) */
- inline Coefficients& coeffs() { return m_coeffs; }
-
- /** Default constructor leaving the quaternion uninitialized. */
- inline Quaternion() {}
-
- /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
- * its four coefficients \a w, \a x, \a y and \a z.
- *
- * \warning Note the order of the arguments: the real \a w coefficient first,
- * while internally the coefficients are stored in the following order:
- * [\c x, \c y, \c z, \c w]
- */
- inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z)
- { m_coeffs << x, y, z, w; }
-
- /** Copy constructor */
- inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; }
-
- /** Constructs and initializes a quaternion from the angle-axis \a aa */
- explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
-
- /** Constructs and initializes a quaternion from either:
- * - a rotation matrix expression,
- * - a 4D vector expression representing quaternion coefficients.
- * \sa operator=(MatrixBase<Derived>)
- */
- template<typename Derived>
- explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
-
- Quaternion& operator=(const Quaternion& other);
- Quaternion& operator=(const AngleAxisType& aa);
- template<typename Derived>
- Quaternion& operator=(const MatrixBase<Derived>& m);
-
- /** \returns a quaternion representing an identity rotation
- * \sa MatrixBase::Identity()
- */
- static inline Quaternion Identity() { return Quaternion(1, 0, 0, 0); }
-
- /** \sa Quaternion::Identity(), MatrixBase::setIdentity()
- */
- inline Quaternion& setIdentity() { m_coeffs << 0, 0, 0, 1; return *this; }
-
- /** \returns the squared norm of the quaternion's coefficients
- * \sa Quaternion::norm(), MatrixBase::squaredNorm()
- */
- inline Scalar squaredNorm() const { return m_coeffs.squaredNorm(); }
-
- /** \returns the norm of the quaternion's coefficients
- * \sa Quaternion::squaredNorm(), MatrixBase::norm()
- */
- inline Scalar norm() const { return m_coeffs.norm(); }
-
- /** Normalizes the quaternion \c *this
- * \sa normalized(), MatrixBase::normalize() */
- inline void normalize() { m_coeffs.normalize(); }
- /** \returns a normalized version of \c *this
- * \sa normalize(), MatrixBase::normalized() */
- inline Quaternion normalized() const { return Quaternion(m_coeffs.normalized()); }
-
- /** \returns the dot product of \c *this and \a other
- * Geometrically speaking, the dot product of two unit quaternions
- * corresponds to the cosine of half the angle between the two rotations.
- * \sa angularDistance()
- */
- inline Scalar eigen2_dot(const Quaternion& other) const { return m_coeffs.eigen2_dot(other.m_coeffs); }
-
- inline Scalar angularDistance(const Quaternion& other) const;
-
- Matrix3 toRotationMatrix(void) const;
-
- template<typename Derived1, typename Derived2>
- Quaternion& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
-
- inline Quaternion operator* (const Quaternion& q) const;
- inline Quaternion& operator*= (const Quaternion& q);
-
- Quaternion inverse(void) const;
- Quaternion conjugate(void) const;
-
- Quaternion slerp(Scalar t, const Quaternion& other) const;
-
- template<typename Derived>
- Vector3 operator* (const MatrixBase<Derived>& vec) const;
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type cast() const
- { return typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Quaternion(const Quaternion<OtherScalarType>& other)
- { m_coeffs = other.coeffs().template cast<Scalar>(); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Quaternion& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_coeffs.isApprox(other.m_coeffs, prec); }
-
-protected:
- Coefficients m_coeffs;
-};
-
-/** \ingroup Geometry_Module
- * single precision quaternion type */
-typedef Quaternion<float> Quaternionf;
-/** \ingroup Geometry_Module
- * double precision quaternion type */
-typedef Quaternion<double> Quaterniond;
-
-// Generic Quaternion * Quaternion product
-template<typename Scalar> inline Quaternion<Scalar>
-ei_quaternion_product(const Quaternion<Scalar>& a, const Quaternion<Scalar>& b)
-{
- return Quaternion<Scalar>
- (
- a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
- a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
- a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
- a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
- );
-}
-
-/** \returns the concatenation of two rotations as a quaternion-quaternion product */
-template <typename Scalar>
-inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const
-{
- return ei_quaternion_product(*this,other);
-}
-
-/** \sa operator*(Quaternion) */
-template <typename Scalar>
-inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other)
-{
- return (*this = *this * other);
-}
-
-/** Rotation of a vector by a quaternion.
- * \remarks If the quaternion is used to rotate several points (>1)
- * then it is much more efficient to first convert it to a 3x3 Matrix.
- * Comparison of the operation cost for n transformations:
- * - Quaternion: 30n
- * - Via a Matrix3: 24 + 15n
- */
-template <typename Scalar>
-template<typename Derived>
-inline typename Quaternion<Scalar>::Vector3
-Quaternion<Scalar>::operator* (const MatrixBase<Derived>& v) const
-{
- // Note that this algorithm comes from the optimization by hand
- // of the conversion to a Matrix followed by a Matrix/Vector product.
- // It appears to be much faster than the common algorithm found
- // in the litterature (30 versus 39 flops). It also requires two
- // Vector3 as temporaries.
- Vector3 uv;
- uv = 2 * this->vec().cross(v);
- return v + this->w() * uv + this->vec().cross(uv);
-}
-
-template<typename Scalar>
-inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const Quaternion& other)
-{
- m_coeffs = other.m_coeffs;
- return *this;
-}
-
-/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
- */
-template<typename Scalar>
-inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const AngleAxisType& aa)
-{
- Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
- this->w() = ei_cos(ha);
- this->vec() = ei_sin(ha) * aa.axis();
- return *this;
-}
-
-/** Set \c *this from the expression \a xpr:
- * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
- * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
- * and \a xpr is converted to a quaternion
- */
-template<typename Scalar>
-template<typename Derived>
-inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const MatrixBase<Derived>& xpr)
-{
- ei_quaternion_assign_impl<Derived>::run(*this, xpr.derived());
- return *this;
-}
-
-/** Convert the quaternion to a 3x3 rotation matrix */
-template<typename Scalar>
-inline typename Quaternion<Scalar>::Matrix3
-Quaternion<Scalar>::toRotationMatrix(void) const
-{
- // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
- // if not inlined then the cost of the return by value is huge ~ +35%,
- // however, not inlining this function is an order of magnitude slower, so
- // it has to be inlined, and so the return by value is not an issue
- Matrix3 res;
-
- const Scalar tx = Scalar(2)*this->x();
- const Scalar ty = Scalar(2)*this->y();
- const Scalar tz = Scalar(2)*this->z();
- const Scalar twx = tx*this->w();
- const Scalar twy = ty*this->w();
- const Scalar twz = tz*this->w();
- const Scalar txx = tx*this->x();
- const Scalar txy = ty*this->x();
- const Scalar txz = tz*this->x();
- const Scalar tyy = ty*this->y();
- const Scalar tyz = tz*this->y();
- const Scalar tzz = tz*this->z();
-
- res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
- res.coeffRef(0,1) = txy-twz;
- res.coeffRef(0,2) = txz+twy;
- res.coeffRef(1,0) = txy+twz;
- res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
- res.coeffRef(1,2) = tyz-twx;
- res.coeffRef(2,0) = txz-twy;
- res.coeffRef(2,1) = tyz+twx;
- res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
-
- return res;
-}
-
-/** Sets *this to be a quaternion representing a rotation sending the vector \a a to the vector \a b.
- *
- * \returns a reference to *this.
- *
- * Note that the two input vectors do \b not have to be normalized.
- */
-template<typename Scalar>
-template<typename Derived1, typename Derived2>
-inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
-{
- Vector3 v0 = a.normalized();
- Vector3 v1 = b.normalized();
- Scalar c = v0.eigen2_dot(v1);
-
- // if dot == 1, vectors are the same
- if (ei_isApprox(c,Scalar(1)))
- {
- // set to identity
- this->w() = 1; this->vec().setZero();
- return *this;
- }
- // if dot == -1, vectors are opposites
- if (ei_isApprox(c,Scalar(-1)))
- {
- this->vec() = v0.unitOrthogonal();
- this->w() = 0;
- return *this;
- }
-
- Vector3 axis = v0.cross(v1);
- Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2));
- Scalar invs = Scalar(1)/s;
- this->vec() = axis * invs;
- this->w() = s * Scalar(0.5);
-
- return *this;
-}
-
-/** \returns the multiplicative inverse of \c *this
- * Note that in most cases, i.e., if you simply want the opposite rotation,
- * and/or the quaternion is normalized, then it is enough to use the conjugate.
- *
- * \sa Quaternion::conjugate()
- */
-template <typename Scalar>
-inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const
-{
- // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
- Scalar n2 = this->squaredNorm();
- if (n2 > 0)
- return Quaternion(conjugate().coeffs() / n2);
- else
- {
- // return an invalid result to flag the error
- return Quaternion(Coefficients::Zero());
- }
-}
-
-/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
- * if the quaternion is normalized.
- * The conjugate of a quaternion represents the opposite rotation.
- *
- * \sa Quaternion::inverse()
- */
-template <typename Scalar>
-inline Quaternion<Scalar> Quaternion<Scalar>::conjugate() const
-{
- return Quaternion(this->w(),-this->x(),-this->y(),-this->z());
-}
-
-/** \returns the angle (in radian) between two rotations
- * \sa eigen2_dot()
- */
-template <typename Scalar>
-inline Scalar Quaternion<Scalar>::angularDistance(const Quaternion& other) const
-{
- double d = ei_abs(this->eigen2_dot(other));
- if (d>=1.0)
- return 0;
- return Scalar(2) * std::acos(d);
-}
-
-/** \returns the spherical linear interpolation between the two quaternions
- * \c *this and \a other at the parameter \a t
- */
-template <typename Scalar>
-Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const
-{
- static const Scalar one = Scalar(1) - machine_epsilon<Scalar>();
- Scalar d = this->eigen2_dot(other);
- Scalar absD = ei_abs(d);
-
- Scalar scale0;
- Scalar scale1;
-
- if (absD>=one)
- {
- scale0 = Scalar(1) - t;
- scale1 = t;
- }
- else
- {
- // theta is the angle between the 2 quaternions
- Scalar theta = std::acos(absD);
- Scalar sinTheta = ei_sin(theta);
-
- scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta;
- scale1 = ei_sin( ( t * theta) ) / sinTheta;
- if (d<0)
- scale1 = -scale1;
- }
-
- return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
-}
-
-// set from a rotation matrix
-template<typename Other>
-struct ei_quaternion_assign_impl<Other,3,3>
-{
- typedef typename Other::Scalar Scalar;
- static inline void run(Quaternion<Scalar>& q, const Other& mat)
- {
- // This algorithm comes from "Quaternion Calculus and Fast Animation",
- // Ken Shoemake, 1987 SIGGRAPH course notes
- Scalar t = mat.trace();
- if (t > 0)
- {
- t = ei_sqrt(t + Scalar(1.0));
- q.w() = Scalar(0.5)*t;
- t = Scalar(0.5)/t;
- q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
- q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
- q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
- }
- else
- {
- int i = 0;
- if (mat.coeff(1,1) > mat.coeff(0,0))
- i = 1;
- if (mat.coeff(2,2) > mat.coeff(i,i))
- i = 2;
- int j = (i+1)%3;
- int k = (j+1)%3;
-
- t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
- q.coeffs().coeffRef(i) = Scalar(0.5) * t;
- t = Scalar(0.5)/t;
- q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
- q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
- q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
- }
- }
-};
-
-// set from a vector of coefficients assumed to be a quaternion
-template<typename Other>
-struct ei_quaternion_assign_impl<Other,4,1>
-{
- typedef typename Other::Scalar Scalar;
- static inline void run(Quaternion<Scalar>& q, const Other& vec)
- {
- q.coeffs() = vec;
- }
-};
-
-} // end namespace Eigen
diff --git a/src/Eigen/src/Eigen2Support/Geometry/Rotation2D.h b/src/Eigen/src/Eigen2Support/Geometry/Rotation2D.h
deleted file mode 100644
index 19b8582..0000000
--- a/src/Eigen/src/Eigen2Support/Geometry/Rotation2D.h
+++ /dev/null
@@ -1,145 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Rotation2D
- *
- * \brief Represents a rotation/orientation in a 2 dimensional space.
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- *
- * This class is equivalent to a single scalar representing a counter clock wise rotation
- * as a single angle in radian. It provides some additional features such as the automatic
- * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
- * interface to Quaternion in order to facilitate the writing of generic algorithms
- * dealing with rotations.
- *
- * \sa class Quaternion, class Transform
- */
-template<typename _Scalar> struct ei_traits<Rotation2D<_Scalar> >
-{
- typedef _Scalar Scalar;
-};
-
-template<typename _Scalar>
-class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
-{
- typedef RotationBase<Rotation2D<_Scalar>,2> Base;
-
-public:
-
- using Base::operator*;
-
- enum { Dim = 2 };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- typedef Matrix<Scalar,2,1> Vector2;
- typedef Matrix<Scalar,2,2> Matrix2;
-
-protected:
-
- Scalar m_angle;
-
-public:
-
- /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
- inline Rotation2D(Scalar a) : m_angle(a) {}
-
- /** \returns the rotation angle */
- inline Scalar angle() const { return m_angle; }
-
- /** \returns a read-write reference to the rotation angle */
- inline Scalar& angle() { return m_angle; }
-
- /** \returns the inverse rotation */
- inline Rotation2D inverse() const { return -m_angle; }
-
- /** Concatenates two rotations */
- inline Rotation2D operator*(const Rotation2D& other) const
- { return m_angle + other.m_angle; }
-
- /** Concatenates two rotations */
- inline Rotation2D& operator*=(const Rotation2D& other)
- { return m_angle += other.m_angle; return *this; }
-
- /** Applies the rotation to a 2D vector */
- Vector2 operator* (const Vector2& vec) const
- { return toRotationMatrix() * vec; }
-
- template<typename Derived>
- Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
- Matrix2 toRotationMatrix(void) const;
-
- /** \returns the spherical interpolation between \c *this and \a other using
- * parameter \a t. It is in fact equivalent to a linear interpolation.
- */
- inline Rotation2D slerp(Scalar t, const Rotation2D& other) const
- { return m_angle * (1-t) + other.angle() * t; }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
- { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
- {
- m_angle = Scalar(other.angle());
- }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Rotation2D& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return ei_isApprox(m_angle,other.m_angle, prec); }
-};
-
-/** \ingroup Geometry_Module
- * single precision 2D rotation type */
-typedef Rotation2D<float> Rotation2Df;
-/** \ingroup Geometry_Module
- * double precision 2D rotation type */
-typedef Rotation2D<double> Rotation2Dd;
-
-/** Set \c *this from a 2x2 rotation matrix \a mat.
- * In other words, this function extract the rotation angle
- * from the rotation matrix.
- */
-template<typename Scalar>
-template<typename Derived>
-Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
-{
- EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
- m_angle = ei_atan2(mat.coeff(1,0), mat.coeff(0,0));
- return *this;
-}
-
-/** Constructs and \returns an equivalent 2x2 rotation matrix.
- */
-template<typename Scalar>
-typename Rotation2D<Scalar>::Matrix2
-Rotation2D<Scalar>::toRotationMatrix(void) const
-{
- Scalar sinA = ei_sin(m_angle);
- Scalar cosA = ei_cos(m_angle);
- return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
-}
-
-} // end namespace Eigen
diff --git a/src/Eigen/src/Eigen2Support/Geometry/RotationBase.h b/src/Eigen/src/Eigen2Support/Geometry/RotationBase.h
deleted file mode 100644
index b1c8f38..0000000
--- a/src/Eigen/src/Eigen2Support/Geometry/RotationBase.h
+++ /dev/null
@@ -1,123 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-// this file aims to contains the various representations of rotation/orientation
-// in 2D and 3D space excepted Matrix and Quaternion.
-
-/** \class RotationBase
- *
- * \brief Common base class for compact rotation representations
- *
- * \param Derived is the derived type, i.e., a rotation type
- * \param _Dim the dimension of the space
- */
-template<typename Derived, int _Dim>
-class RotationBase
-{
- public:
- enum { Dim = _Dim };
- /** the scalar type of the coefficients */
- typedef typename ei_traits<Derived>::Scalar Scalar;
-
- /** corresponding linear transformation matrix type */
- typedef Matrix<Scalar,Dim,Dim> RotationMatrixType;
-
- inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
- inline Derived& derived() { return *static_cast<Derived*>(this); }
-
- /** \returns an equivalent rotation matrix */
- inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); }
-
- /** \returns the inverse rotation */
- inline Derived inverse() const { return derived().inverse(); }
-
- /** \returns the concatenation of the rotation \c *this with a translation \a t */
- inline Transform<Scalar,Dim> operator*(const Translation<Scalar,Dim>& t) const
- { return toRotationMatrix() * t; }
-
- /** \returns the concatenation of the rotation \c *this with a scaling \a s */
- inline RotationMatrixType operator*(const Scaling<Scalar,Dim>& s) const
- { return toRotationMatrix() * s; }
-
- /** \returns the concatenation of the rotation \c *this with an affine transformation \a t */
- inline Transform<Scalar,Dim> operator*(const Transform<Scalar,Dim>& t) const
- { return toRotationMatrix() * t; }
-};
-
-/** \geometry_module
- *
- * Constructs a Dim x Dim rotation matrix from the rotation \a r
- */
-template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
-template<typename OtherDerived>
-Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
-::Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
-{
- EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
- *this = r.toRotationMatrix();
-}
-
-/** \geometry_module
- *
- * Set a Dim x Dim rotation matrix from the rotation \a r
- */
-template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
-template<typename OtherDerived>
-Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>&
-Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
-::operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
-{
- EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
- return *this = r.toRotationMatrix();
-}
-
-/** \internal
- *
- * Helper function to return an arbitrary rotation object to a rotation matrix.
- *
- * \param Scalar the numeric type of the matrix coefficients
- * \param Dim the dimension of the current space
- *
- * It returns a Dim x Dim fixed size matrix.
- *
- * Default specializations are provided for:
- * - any scalar type (2D),
- * - any matrix expression,
- * - any type based on RotationBase (e.g., Quaternion, AngleAxis, Rotation2D)
- *
- * Currently ei_toRotationMatrix is only used by Transform.
- *
- * \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis
- */
-template<typename Scalar, int Dim>
-static inline Matrix<Scalar,2,2> ei_toRotationMatrix(const Scalar& s)
-{
- EIGEN_STATIC_ASSERT(Dim==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
- return Rotation2D<Scalar>(s).toRotationMatrix();
-}
-
-template<typename Scalar, int Dim, typename OtherDerived>
-static inline Matrix<Scalar,Dim,Dim> ei_toRotationMatrix(const RotationBase<OtherDerived,Dim>& r)
-{
- return r.toRotationMatrix();
-}
-
-template<typename Scalar, int Dim, typename OtherDerived>
-static inline const MatrixBase<OtherDerived>& ei_toRotationMatrix(const MatrixBase<OtherDerived>& mat)
-{
- EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim,
- YOU_MADE_A_PROGRAMMING_MISTAKE)
- return mat;
-}
-
-} // end namespace Eigen
diff --git a/src/Eigen/src/Eigen2Support/Geometry/Scaling.h b/src/Eigen/src/Eigen2Support/Geometry/Scaling.h
deleted file mode 100644
index b8fa6cd..0000000
--- a/src/Eigen/src/Eigen2Support/Geometry/Scaling.h
+++ /dev/null
@@ -1,167 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Scaling
- *
- * \brief Represents a possibly non uniform scaling transformation
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients.
- * \param _Dim the dimension of the space, can be a compile time value or Dynamic
- *
- * \note This class is not aimed to be used to store a scaling transformation,
- * but rather to make easier the constructions and updates of Transform objects.
- *
- * \sa class Translation, class Transform
- */
-template<typename _Scalar, int _Dim>
-class Scaling
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
- /** dimension of the space */
- enum { Dim = _Dim };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- /** corresponding vector type */
- typedef Matrix<Scalar,Dim,1> VectorType;
- /** corresponding linear transformation matrix type */
- typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
- /** corresponding translation type */
- typedef Translation<Scalar,Dim> TranslationType;
- /** corresponding affine transformation type */
- typedef Transform<Scalar,Dim> TransformType;
-
-protected:
-
- VectorType m_coeffs;
-
-public:
-
- /** Default constructor without initialization. */
- Scaling() {}
- /** Constructs and initialize a uniform scaling transformation */
- explicit inline Scaling(const Scalar& s) { m_coeffs.setConstant(s); }
- /** 2D only */
- inline Scaling(const Scalar& sx, const Scalar& sy)
- {
- ei_assert(Dim==2);
- m_coeffs.x() = sx;
- m_coeffs.y() = sy;
- }
- /** 3D only */
- inline Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz)
- {
- ei_assert(Dim==3);
- m_coeffs.x() = sx;
- m_coeffs.y() = sy;
- m_coeffs.z() = sz;
- }
- /** Constructs and initialize the scaling transformation from a vector of scaling coefficients */
- explicit inline Scaling(const VectorType& coeffs) : m_coeffs(coeffs) {}
-
- const VectorType& coeffs() const { return m_coeffs; }
- VectorType& coeffs() { return m_coeffs; }
-
- /** Concatenates two scaling */
- inline Scaling operator* (const Scaling& other) const
- { return Scaling(coeffs().cwise() * other.coeffs()); }
-
- /** Concatenates a scaling and a translation */
- inline TransformType operator* (const TranslationType& t) const;
-
- /** Concatenates a scaling and an affine transformation */
- inline TransformType operator* (const TransformType& t) const;
-
- /** Concatenates a scaling and a linear transformation matrix */
- // TODO returns an expression
- inline LinearMatrixType operator* (const LinearMatrixType& other) const
- { return coeffs().asDiagonal() * other; }
-
- /** Concatenates a linear transformation matrix and a scaling */
- // TODO returns an expression
- friend inline LinearMatrixType operator* (const LinearMatrixType& other, const Scaling& s)
- { return other * s.coeffs().asDiagonal(); }
-
- template<typename Derived>
- inline LinearMatrixType operator*(const RotationBase<Derived,Dim>& r) const
- { return *this * r.toRotationMatrix(); }
-
- /** Applies scaling to vector */
- inline VectorType operator* (const VectorType& other) const
- { return coeffs().asDiagonal() * other; }
-
- /** \returns the inverse scaling */
- inline Scaling inverse() const
- { return Scaling(coeffs().cwise().inverse()); }
-
- inline Scaling& operator=(const Scaling& other)
- {
- m_coeffs = other.m_coeffs;
- return *this;
- }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type cast() const
- { return typename internal::cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Scaling(const Scaling<OtherScalarType,Dim>& other)
- { m_coeffs = other.coeffs().template cast<Scalar>(); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Scaling& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_coeffs.isApprox(other.m_coeffs, prec); }
-
-};
-
-/** \addtogroup Geometry_Module */
-//@{
-typedef Scaling<float, 2> Scaling2f;
-typedef Scaling<double,2> Scaling2d;
-typedef Scaling<float, 3> Scaling3f;
-typedef Scaling<double,3> Scaling3d;
-//@}
-
-template<typename Scalar, int Dim>
-inline typename Scaling<Scalar,Dim>::TransformType
-Scaling<Scalar,Dim>::operator* (const TranslationType& t) const
-{
- TransformType res;
- res.matrix().setZero();
- res.linear().diagonal() = coeffs();
- res.translation() = m_coeffs.cwise() * t.vector();
- res(Dim,Dim) = Scalar(1);
- return res;
-}
-
-template<typename Scalar, int Dim>
-inline typename Scaling<Scalar,Dim>::TransformType
-Scaling<Scalar,Dim>::operator* (const TransformType& t) const
-{
- TransformType res = t;
- res.prescale(m_coeffs);
- return res;
-}
-
-} // end namespace Eigen
diff --git a/src/Eigen/src/Eigen2Support/Geometry/Transform.h b/src/Eigen/src/Eigen2Support/Geometry/Transform.h
deleted file mode 100644
index fab60b2..0000000
--- a/src/Eigen/src/Eigen2Support/Geometry/Transform.h
+++ /dev/null
@@ -1,786 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-// Note that we have to pass Dim and HDim because it is not allowed to use a template
-// parameter to define a template specialization. To be more precise, in the following
-// specializations, it is not allowed to use Dim+1 instead of HDim.
-template< typename Other,
- int Dim,
- int HDim,
- int OtherRows=Other::RowsAtCompileTime,
- int OtherCols=Other::ColsAtCompileTime>
-struct ei_transform_product_impl;
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Transform
- *
- * \brief Represents an homogeneous transformation in a N dimensional space
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- * \param _Dim the dimension of the space
- *
- * The homography is internally represented and stored as a (Dim+1)^2 matrix which
- * is available through the matrix() method.
- *
- * Conversion methods from/to Qt's QMatrix and QTransform are available if the
- * preprocessor token EIGEN_QT_SUPPORT is defined.
- *
- * \sa class Matrix, class Quaternion
- */
-template<typename _Scalar, int _Dim>
-class Transform
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
- enum {
- Dim = _Dim, ///< space dimension in which the transformation holds
- HDim = _Dim+1 ///< size of a respective homogeneous vector
- };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- /** type of the matrix used to represent the transformation */
- typedef Matrix<Scalar,HDim,HDim> MatrixType;
- /** type of the matrix used to represent the linear part of the transformation */
- typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
- /** type of read/write reference to the linear part of the transformation */
- typedef Block<MatrixType,Dim,Dim> LinearPart;
- /** type of read/write reference to the linear part of the transformation */
- typedef const Block<const MatrixType,Dim,Dim> ConstLinearPart;
- /** type of a vector */
- typedef Matrix<Scalar,Dim,1> VectorType;
- /** type of a read/write reference to the translation part of the rotation */
- typedef Block<MatrixType,Dim,1> TranslationPart;
- /** type of a read/write reference to the translation part of the rotation */
- typedef const Block<const MatrixType,Dim,1> ConstTranslationPart;
- /** corresponding translation type */
- typedef Translation<Scalar,Dim> TranslationType;
- /** corresponding scaling transformation type */
- typedef Scaling<Scalar,Dim> ScalingType;
-
-protected:
-
- MatrixType m_matrix;
-
-public:
-
- /** Default constructor without initialization of the coefficients. */
- inline Transform() { }
-
- inline Transform(const Transform& other)
- {
- m_matrix = other.m_matrix;
- }
-
- inline explicit Transform(const TranslationType& t) { *this = t; }
- inline explicit Transform(const ScalingType& s) { *this = s; }
- template<typename Derived>
- inline explicit Transform(const RotationBase<Derived, Dim>& r) { *this = r; }
-
- inline Transform& operator=(const Transform& other)
- { m_matrix = other.m_matrix; return *this; }
-
- template<typename OtherDerived, bool BigMatrix> // MSVC 2005 will commit suicide if BigMatrix has a default value
- struct construct_from_matrix
- {
- static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
- {
- transform->matrix() = other;
- }
- };
-
- template<typename OtherDerived> struct construct_from_matrix<OtherDerived, true>
- {
- static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
- {
- transform->linear() = other;
- transform->translation().setZero();
- transform->matrix()(Dim,Dim) = Scalar(1);
- transform->matrix().template block<1,Dim>(Dim,0).setZero();
- }
- };
-
- /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
- template<typename OtherDerived>
- inline explicit Transform(const MatrixBase<OtherDerived>& other)
- {
- construct_from_matrix<OtherDerived, int(OtherDerived::RowsAtCompileTime) == Dim>::run(this, other);
- }
-
- /** Set \c *this from a (Dim+1)^2 matrix. */
- template<typename OtherDerived>
- inline Transform& operator=(const MatrixBase<OtherDerived>& other)
- { m_matrix = other; return *this; }
-
- #ifdef EIGEN_QT_SUPPORT
- inline Transform(const QMatrix& other);
- inline Transform& operator=(const QMatrix& other);
- inline QMatrix toQMatrix(void) const;
- inline Transform(const QTransform& other);
- inline Transform& operator=(const QTransform& other);
- inline QTransform toQTransform(void) const;
- #endif
-
- /** shortcut for m_matrix(row,col);
- * \sa MatrixBase::operaror(int,int) const */
- inline Scalar operator() (int row, int col) const { return m_matrix(row,col); }
- /** shortcut for m_matrix(row,col);
- * \sa MatrixBase::operaror(int,int) */
- inline Scalar& operator() (int row, int col) { return m_matrix(row,col); }
-
- /** \returns a read-only expression of the transformation matrix */
- inline const MatrixType& matrix() const { return m_matrix; }
- /** \returns a writable expression of the transformation matrix */
- inline MatrixType& matrix() { return m_matrix; }
-
- /** \returns a read-only expression of the linear (linear) part of the transformation */
- inline ConstLinearPart linear() const { return m_matrix.template block<Dim,Dim>(0,0); }
- /** \returns a writable expression of the linear (linear) part of the transformation */
- inline LinearPart linear() { return m_matrix.template block<Dim,Dim>(0,0); }
-
- /** \returns a read-only expression of the translation vector of the transformation */
- inline ConstTranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
- /** \returns a writable expression of the translation vector of the transformation */
- inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); }
-
- /** \returns an expression of the product between the transform \c *this and a matrix expression \a other
- *
- * The right hand side \a other might be either:
- * \li a vector of size Dim,
- * \li an homogeneous vector of size Dim+1,
- * \li a transformation matrix of size Dim+1 x Dim+1.
- */
- // note: this function is defined here because some compilers cannot find the respective declaration
- template<typename OtherDerived>
- inline const typename ei_transform_product_impl<OtherDerived,_Dim,_Dim+1>::ResultType
- operator * (const MatrixBase<OtherDerived> &other) const
- { return ei_transform_product_impl<OtherDerived,Dim,HDim>::run(*this,other.derived()); }
-
- /** \returns the product expression of a transformation matrix \a a times a transform \a b
- * The transformation matrix \a a must have a Dim+1 x Dim+1 sizes. */
- template<typename OtherDerived>
- friend inline const typename ProductReturnType<OtherDerived,MatrixType>::Type
- operator * (const MatrixBase<OtherDerived> &a, const Transform &b)
- { return a.derived() * b.matrix(); }
-
- /** Contatenates two transformations */
- inline const Transform
- operator * (const Transform& other) const
- { return Transform(m_matrix * other.matrix()); }
-
- /** \sa MatrixBase::setIdentity() */
- void setIdentity() { m_matrix.setIdentity(); }
- static const typename MatrixType::IdentityReturnType Identity()
- {
- return MatrixType::Identity();
- }
-
- template<typename OtherDerived>
- inline Transform& scale(const MatrixBase<OtherDerived> &other);
-
- template<typename OtherDerived>
- inline Transform& prescale(const MatrixBase<OtherDerived> &other);
-
- inline Transform& scale(Scalar s);
- inline Transform& prescale(Scalar s);
-
- template<typename OtherDerived>
- inline Transform& translate(const MatrixBase<OtherDerived> &other);
-
- template<typename OtherDerived>
- inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
-
- template<typename RotationType>
- inline Transform& rotate(const RotationType& rotation);
-
- template<typename RotationType>
- inline Transform& prerotate(const RotationType& rotation);
-
- Transform& shear(Scalar sx, Scalar sy);
- Transform& preshear(Scalar sx, Scalar sy);
-
- inline Transform& operator=(const TranslationType& t);
- inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
- inline Transform operator*(const TranslationType& t) const;
-
- inline Transform& operator=(const ScalingType& t);
- inline Transform& operator*=(const ScalingType& s) { return scale(s.coeffs()); }
- inline Transform operator*(const ScalingType& s) const;
- friend inline Transform operator*(const LinearMatrixType& mat, const Transform& t)
- {
- Transform res = t;
- res.matrix().row(Dim) = t.matrix().row(Dim);
- res.matrix().template block<Dim,HDim>(0,0) = (mat * t.matrix().template block<Dim,HDim>(0,0)).lazy();
- return res;
- }
-
- template<typename Derived>
- inline Transform& operator=(const RotationBase<Derived,Dim>& r);
- template<typename Derived>
- inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
- template<typename Derived>
- inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
-
- LinearMatrixType rotation() const;
- template<typename RotationMatrixType, typename ScalingMatrixType>
- void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
- template<typename ScalingMatrixType, typename RotationMatrixType>
- void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
-
- template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
- Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
- const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
-
- inline const MatrixType inverse(TransformTraits traits = Affine) const;
-
- /** \returns a const pointer to the column major internal matrix */
- const Scalar* data() const { return m_matrix.data(); }
- /** \returns a non-const pointer to the column major internal matrix */
- Scalar* data() { return m_matrix.data(); }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type cast() const
- { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Transform(const Transform<OtherScalarType,Dim>& other)
- { m_matrix = other.matrix().template cast<Scalar>(); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_matrix.isApprox(other.m_matrix, prec); }
-
- #ifdef EIGEN_TRANSFORM_PLUGIN
- #include EIGEN_TRANSFORM_PLUGIN
- #endif
-
-protected:
-
-};
-
-/** \ingroup Geometry_Module */
-typedef Transform<float,2> Transform2f;
-/** \ingroup Geometry_Module */
-typedef Transform<float,3> Transform3f;
-/** \ingroup Geometry_Module */
-typedef Transform<double,2> Transform2d;
-/** \ingroup Geometry_Module */
-typedef Transform<double,3> Transform3d;
-
-/**************************
-*** Optional QT support ***
-**************************/
-
-#ifdef EIGEN_QT_SUPPORT
-/** Initialises \c *this from a QMatrix assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim>
-Transform<Scalar,Dim>::Transform(const QMatrix& other)
-{
- *this = other;
-}
-
-/** Set \c *this from a QMatrix assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim>
-Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other)
-{
- EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- m_matrix << other.m11(), other.m21(), other.dx(),
- other.m12(), other.m22(), other.dy(),
- 0, 0, 1;
- return *this;
-}
-
-/** \returns a QMatrix from \c *this assuming the dimension is 2.
- *
- * \warning this convertion might loss data if \c *this is not affine
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim>
-QMatrix Transform<Scalar,Dim>::toQMatrix(void) const
-{
- EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
- m_matrix.coeff(0,1), m_matrix.coeff(1,1),
- m_matrix.coeff(0,2), m_matrix.coeff(1,2));
-}
-
-/** Initialises \c *this from a QTransform assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim>
-Transform<Scalar,Dim>::Transform(const QTransform& other)
-{
- *this = other;
-}
-
-/** Set \c *this from a QTransform assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim>
-Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QTransform& other)
-{
- EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- m_matrix << other.m11(), other.m21(), other.dx(),
- other.m12(), other.m22(), other.dy(),
- other.m13(), other.m23(), other.m33();
- return *this;
-}
-
-/** \returns a QTransform from \c *this assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim>
-QTransform Transform<Scalar,Dim>::toQTransform(void) const
-{
- EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
- m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
- m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
-}
-#endif
-
-/*********************
-*** Procedural API ***
-*********************/
-
-/** Applies on the right the non uniform scale transformation represented
- * by the vector \a other to \c *this and returns a reference to \c *this.
- * \sa prescale()
- */
-template<typename Scalar, int Dim>
-template<typename OtherDerived>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
- linear() = (linear() * other.asDiagonal()).lazy();
- return *this;
-}
-
-/** Applies on the right a uniform scale of a factor \a c to \c *this
- * and returns a reference to \c *this.
- * \sa prescale(Scalar)
- */
-template<typename Scalar, int Dim>
-inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::scale(Scalar s)
-{
- linear() *= s;
- return *this;
-}
-
-/** Applies on the left the non uniform scale transformation represented
- * by the vector \a other to \c *this and returns a reference to \c *this.
- * \sa scale()
- */
-template<typename Scalar, int Dim>
-template<typename OtherDerived>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
- m_matrix.template block<Dim,HDim>(0,0) = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)).lazy();
- return *this;
-}
-
-/** Applies on the left a uniform scale of a factor \a c to \c *this
- * and returns a reference to \c *this.
- * \sa scale(Scalar)
- */
-template<typename Scalar, int Dim>
-inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::prescale(Scalar s)
-{
- m_matrix.template corner<Dim,HDim>(TopLeft) *= s;
- return *this;
-}
-
-/** Applies on the right the translation matrix represented by the vector \a other
- * to \c *this and returns a reference to \c *this.
- * \sa pretranslate()
- */
-template<typename Scalar, int Dim>
-template<typename OtherDerived>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
- translation() += linear() * other;
- return *this;
-}
-
-/** Applies on the left the translation matrix represented by the vector \a other
- * to \c *this and returns a reference to \c *this.
- * \sa translate()
- */
-template<typename Scalar, int Dim>
-template<typename OtherDerived>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
- translation() += other;
- return *this;
-}
-
-/** Applies on the right the rotation represented by the rotation \a rotation
- * to \c *this and returns a reference to \c *this.
- *
- * The template parameter \a RotationType is the type of the rotation which
- * must be known by ei_toRotationMatrix<>.
- *
- * Natively supported types includes:
- * - any scalar (2D),
- * - a Dim x Dim matrix expression,
- * - a Quaternion (3D),
- * - a AngleAxis (3D)
- *
- * This mechanism is easily extendable to support user types such as Euler angles,
- * or a pair of Quaternion for 4D rotations.
- *
- * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
- */
-template<typename Scalar, int Dim>
-template<typename RotationType>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::rotate(const RotationType& rotation)
-{
- linear() *= ei_toRotationMatrix<Scalar,Dim>(rotation);
- return *this;
-}
-
-/** Applies on the left the rotation represented by the rotation \a rotation
- * to \c *this and returns a reference to \c *this.
- *
- * See rotate() for further details.
- *
- * \sa rotate()
- */
-template<typename Scalar, int Dim>
-template<typename RotationType>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::prerotate(const RotationType& rotation)
-{
- m_matrix.template block<Dim,HDim>(0,0) = ei_toRotationMatrix<Scalar,Dim>(rotation)
- * m_matrix.template block<Dim,HDim>(0,0);
- return *this;
-}
-
-/** Applies on the right the shear transformation represented
- * by the vector \a other to \c *this and returns a reference to \c *this.
- * \warning 2D only.
- * \sa preshear()
- */
-template<typename Scalar, int Dim>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
-{
- EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- VectorType tmp = linear().col(0)*sy + linear().col(1);
- linear() << linear().col(0) + linear().col(1)*sx, tmp;
- return *this;
-}
-
-/** Applies on the left the shear transformation represented
- * by the vector \a other to \c *this and returns a reference to \c *this.
- * \warning 2D only.
- * \sa shear()
- */
-template<typename Scalar, int Dim>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy)
-{
- EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
- return *this;
-}
-
-/******************************************************
-*** Scaling, Translation and Rotation compatibility ***
-******************************************************/
-
-template<typename Scalar, int Dim>
-inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const TranslationType& t)
-{
- linear().setIdentity();
- translation() = t.vector();
- m_matrix.template block<1,Dim>(Dim,0).setZero();
- m_matrix(Dim,Dim) = Scalar(1);
- return *this;
-}
-
-template<typename Scalar, int Dim>
-inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const TranslationType& t) const
-{
- Transform res = *this;
- res.translate(t.vector());
- return res;
-}
-
-template<typename Scalar, int Dim>
-inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const ScalingType& s)
-{
- m_matrix.setZero();
- linear().diagonal() = s.coeffs();
- m_matrix.coeffRef(Dim,Dim) = Scalar(1);
- return *this;
-}
-
-template<typename Scalar, int Dim>
-inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const ScalingType& s) const
-{
- Transform res = *this;
- res.scale(s.coeffs());
- return res;
-}
-
-template<typename Scalar, int Dim>
-template<typename Derived>
-inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const RotationBase<Derived,Dim>& r)
-{
- linear() = ei_toRotationMatrix<Scalar,Dim>(r);
- translation().setZero();
- m_matrix.template block<1,Dim>(Dim,0).setZero();
- m_matrix.coeffRef(Dim,Dim) = Scalar(1);
- return *this;
-}
-
-template<typename Scalar, int Dim>
-template<typename Derived>
-inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const RotationBase<Derived,Dim>& r) const
-{
- Transform res = *this;
- res.rotate(r.derived());
- return res;
-}
-
-/************************
-*** Special functions ***
-************************/
-
-/** \returns the rotation part of the transformation
- * \nonstableyet
- *
- * \svd_module
- *
- * \sa computeRotationScaling(), computeScalingRotation(), class SVD
- */
-template<typename Scalar, int Dim>
-typename Transform<Scalar,Dim>::LinearMatrixType
-Transform<Scalar,Dim>::rotation() const
-{
- LinearMatrixType result;
- computeRotationScaling(&result, (LinearMatrixType*)0);
- return result;
-}
-
-
-/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
- * not necessarily positive.
- *
- * If either pointer is zero, the corresponding computation is skipped.
- *
- * \nonstableyet
- *
- * \svd_module
- *
- * \sa computeScalingRotation(), rotation(), class SVD
- */
-template<typename Scalar, int Dim>
-template<typename RotationMatrixType, typename ScalingMatrixType>
-void Transform<Scalar,Dim>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
-{
- JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV);
- Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
- Matrix<Scalar, Dim, 1> sv(svd.singularValues());
- sv.coeffRef(0) *= x;
- if(scaling)
- {
- scaling->noalias() = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint();
- }
- if(rotation)
- {
- LinearMatrixType m(svd.matrixU());
- m.col(0) /= x;
- rotation->noalias() = m * svd.matrixV().adjoint();
- }
-}
-
-/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
- * not necessarily positive.
- *
- * If either pointer is zero, the corresponding computation is skipped.
- *
- * \nonstableyet
- *
- * \svd_module
- *
- * \sa computeRotationScaling(), rotation(), class SVD
- */
-template<typename Scalar, int Dim>
-template<typename ScalingMatrixType, typename RotationMatrixType>
-void Transform<Scalar,Dim>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
-{
- JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV);
- Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
- Matrix<Scalar, Dim, 1> sv(svd.singularValues());
- sv.coeffRef(0) *= x;
- if(scaling)
- {
- scaling->noalias() = svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint();
- }
- if(rotation)
- {
- LinearMatrixType m(svd.matrixU());
- m.col(0) /= x;
- rotation->noalias() = m * svd.matrixV().adjoint();
- }
-}
-
-/** Convenient method to set \c *this from a position, orientation and scale
- * of a 3D object.
- */
-template<typename Scalar, int Dim>
-template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
- const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
-{
- linear() = ei_toRotationMatrix<Scalar,Dim>(orientation);
- linear() *= scale.asDiagonal();
- translation() = position;
- m_matrix.template block<1,Dim>(Dim,0).setZero();
- m_matrix(Dim,Dim) = Scalar(1);
- return *this;
-}
-
-/** \nonstableyet
- *
- * \returns the inverse transformation matrix according to some given knowledge
- * on \c *this.
- *
- * \param traits allows to optimize the inversion process when the transformion
- * is known to be not a general transformation. The possible values are:
- * - Projective if the transformation is not necessarily affine, i.e., if the
- * last row is not guaranteed to be [0 ... 0 1]
- * - Affine is the default, the last row is assumed to be [0 ... 0 1]
- * - Isometry if the transformation is only a concatenations of translations
- * and rotations.
- *
- * \warning unless \a traits is always set to NoShear or NoScaling, this function
- * requires the generic inverse method of MatrixBase defined in the LU module. If
- * you forget to include this module, then you will get hard to debug linking errors.
- *
- * \sa MatrixBase::inverse()
- */
-template<typename Scalar, int Dim>
-inline const typename Transform<Scalar,Dim>::MatrixType
-Transform<Scalar,Dim>::inverse(TransformTraits traits) const
-{
- if (traits == Projective)
- {
- return m_matrix.inverse();
- }
- else
- {
- MatrixType res;
- if (traits == Affine)
- {
- res.template corner<Dim,Dim>(TopLeft) = linear().inverse();
- }
- else if (traits == Isometry)
- {
- res.template corner<Dim,Dim>(TopLeft) = linear().transpose();
- }
- else
- {
- ei_assert("invalid traits value in Transform::inverse()");
- }
- // translation and remaining parts
- res.template corner<Dim,1>(TopRight) = - res.template corner<Dim,Dim>(TopLeft) * translation();
- res.template corner<1,Dim>(BottomLeft).setZero();
- res.coeffRef(Dim,Dim) = Scalar(1);
- return res;
- }
-}
-
-/*****************************************************
-*** Specializations of operator* with a MatrixBase ***
-*****************************************************/
-
-template<typename Other, int Dim, int HDim>
-struct ei_transform_product_impl<Other,Dim,HDim, HDim,HDim>
-{
- typedef Transform<typename Other::Scalar,Dim> TransformType;
- typedef typename TransformType::MatrixType MatrixType;
- typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
- static ResultType run(const TransformType& tr, const Other& other)
- { return tr.matrix() * other; }
-};
-
-template<typename Other, int Dim, int HDim>
-struct ei_transform_product_impl<Other,Dim,HDim, Dim,Dim>
-{
- typedef Transform<typename Other::Scalar,Dim> TransformType;
- typedef typename TransformType::MatrixType MatrixType;
- typedef TransformType ResultType;
- static ResultType run(const TransformType& tr, const Other& other)
- {
- TransformType res;
- res.translation() = tr.translation();
- res.matrix().row(Dim) = tr.matrix().row(Dim);
- res.linear() = (tr.linear() * other).lazy();
- return res;
- }
-};
-
-template<typename Other, int Dim, int HDim>
-struct ei_transform_product_impl<Other,Dim,HDim, HDim,1>
-{
- typedef Transform<typename Other::Scalar,Dim> TransformType;
- typedef typename TransformType::MatrixType MatrixType;
- typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
- static ResultType run(const TransformType& tr, const Other& other)
- { return tr.matrix() * other; }
-};
-
-template<typename Other, int Dim, int HDim>
-struct ei_transform_product_impl<Other,Dim,HDim, Dim,1>
-{
- typedef typename Other::Scalar Scalar;
- typedef Transform<Scalar,Dim> TransformType;
- typedef Matrix<Scalar,Dim,1> ResultType;
- static ResultType run(const TransformType& tr, const Other& other)
- { return ((tr.linear() * other) + tr.translation())
- * (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); }
-};
-
-} // end namespace Eigen
diff --git a/src/Eigen/src/Eigen2Support/Geometry/Translation.h b/src/Eigen/src/Eigen2Support/Geometry/Translation.h
deleted file mode 100644
index 2b9859f..0000000
--- a/src/Eigen/src/Eigen2Support/Geometry/Translation.h
+++ /dev/null
@@ -1,184 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Translation
- *
- * \brief Represents a translation transformation
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients.
- * \param _Dim the dimension of the space, can be a compile time value or Dynamic
- *
- * \note This class is not aimed to be used to store a translation transformation,
- * but rather to make easier the constructions and updates of Transform objects.
- *
- * \sa class Scaling, class Transform
- */
-template<typename _Scalar, int _Dim>
-class Translation
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
- /** dimension of the space */
- enum { Dim = _Dim };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- /** corresponding vector type */
- typedef Matrix<Scalar,Dim,1> VectorType;
- /** corresponding linear transformation matrix type */
- typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
- /** corresponding scaling transformation type */
- typedef Scaling<Scalar,Dim> ScalingType;
- /** corresponding affine transformation type */
- typedef Transform<Scalar,Dim> TransformType;
-
-protected:
-
- VectorType m_coeffs;
-
-public:
-
- /** Default constructor without initialization. */
- Translation() {}
- /** */
- inline Translation(const Scalar& sx, const Scalar& sy)
- {
- ei_assert(Dim==2);
- m_coeffs.x() = sx;
- m_coeffs.y() = sy;
- }
- /** */
- inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz)
- {
- ei_assert(Dim==3);
- m_coeffs.x() = sx;
- m_coeffs.y() = sy;
- m_coeffs.z() = sz;
- }
- /** Constructs and initialize the scaling transformation from a vector of scaling coefficients */
- explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {}
-
- const VectorType& vector() const { return m_coeffs; }
- VectorType& vector() { return m_coeffs; }
-
- /** Concatenates two translation */
- inline Translation operator* (const Translation& other) const
- { return Translation(m_coeffs + other.m_coeffs); }
-
- /** Concatenates a translation and a scaling */
- inline TransformType operator* (const ScalingType& other) const;
-
- /** Concatenates a translation and a linear transformation */
- inline TransformType operator* (const LinearMatrixType& linear) const;
-
- template<typename Derived>
- inline TransformType operator*(const RotationBase<Derived,Dim>& r) const
- { return *this * r.toRotationMatrix(); }
-
- /** Concatenates a linear transformation and a translation */
- // its a nightmare to define a templated friend function outside its declaration
- friend inline TransformType operator* (const LinearMatrixType& linear, const Translation& t)
- {
- TransformType res;
- res.matrix().setZero();
- res.linear() = linear;
- res.translation() = linear * t.m_coeffs;
- res.matrix().row(Dim).setZero();
- res(Dim,Dim) = Scalar(1);
- return res;
- }
-
- /** Concatenates a translation and an affine transformation */
- inline TransformType operator* (const TransformType& t) const;
-
- /** Applies translation to vector */
- inline VectorType operator* (const VectorType& other) const
- { return m_coeffs + other; }
-
- /** \returns the inverse translation (opposite) */
- Translation inverse() const { return Translation(-m_coeffs); }
-
- Translation& operator=(const Translation& other)
- {
- m_coeffs = other.m_coeffs;
- return *this;
- }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const
- { return typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Translation(const Translation<OtherScalarType,Dim>& other)
- { m_coeffs = other.vector().template cast<Scalar>(); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Translation& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_coeffs.isApprox(other.m_coeffs, prec); }
-
-};
-
-/** \addtogroup Geometry_Module */
-//@{
-typedef Translation<float, 2> Translation2f;
-typedef Translation<double,2> Translation2d;
-typedef Translation<float, 3> Translation3f;
-typedef Translation<double,3> Translation3d;
-//@}
-
-
-template<typename Scalar, int Dim>
-inline typename Translation<Scalar,Dim>::TransformType
-Translation<Scalar,Dim>::operator* (const ScalingType& other) const
-{
- TransformType res;
- res.matrix().setZero();
- res.linear().diagonal() = other.coeffs();
- res.translation() = m_coeffs;
- res(Dim,Dim) = Scalar(1);
- return res;
-}
-
-template<typename Scalar, int Dim>
-inline typename Translation<Scalar,Dim>::TransformType
-Translation<Scalar,Dim>::operator* (const LinearMatrixType& linear) const
-{
- TransformType res;
- res.matrix().setZero();
- res.linear() = linear;
- res.translation() = m_coeffs;
- res.matrix().row(Dim).setZero();
- res(Dim,Dim) = Scalar(1);
- return res;
-}
-
-template<typename Scalar, int Dim>
-inline typename Translation<Scalar,Dim>::TransformType
-Translation<Scalar,Dim>::operator* (const TransformType& t) const
-{
- TransformType res = t;
- res.pretranslate(m_coeffs);
- return res;
-}
-
-} // end namespace Eigen
diff --git a/src/Eigen/src/Eigen2Support/LU.h b/src/Eigen/src/Eigen2Support/LU.h
deleted file mode 100644
index 49f19ad..0000000
--- a/src/Eigen/src/Eigen2Support/LU.h
+++ /dev/null
@@ -1,120 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2_LU_H
-#define EIGEN2_LU_H
-
-namespace Eigen {
-
-template<typename MatrixType>
-class LU : public FullPivLU<MatrixType>
-{
- public:
-
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef Matrix<int, 1, MatrixType::ColsAtCompileTime, MatrixType::Options, 1, MatrixType::MaxColsAtCompileTime> IntRowVectorType;
- typedef Matrix<int, MatrixType::RowsAtCompileTime, 1, MatrixType::Options, MatrixType::MaxRowsAtCompileTime, 1> IntColVectorType;
- typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime, MatrixType::Options, 1, MatrixType::MaxColsAtCompileTime> RowVectorType;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1, MatrixType::Options, MatrixType::MaxRowsAtCompileTime, 1> ColVectorType;
-
- typedef Matrix<typename MatrixType::Scalar,
- MatrixType::ColsAtCompileTime, // the number of rows in the "kernel matrix" is the number of cols of the original matrix
- // so that the product "matrix * kernel = zero" makes sense
- Dynamic, // we don't know at compile-time the dimension of the kernel
- MatrixType::Options,
- MatrixType::MaxColsAtCompileTime, // see explanation for 2nd template parameter
- MatrixType::MaxColsAtCompileTime // the kernel is a subspace of the domain space, whose dimension is the number
- // of columns of the original matrix
- > KernelResultType;
-
- typedef Matrix<typename MatrixType::Scalar,
- MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose dimension is the number
- // of rows of the original matrix
- Dynamic, // we don't know at compile time the dimension of the image (the rank)
- MatrixType::Options,
- MatrixType::MaxRowsAtCompileTime, // the image matrix will consist of columns from the original matrix,
- MatrixType::MaxColsAtCompileTime // so it has the same number of rows and at most as many columns.
- > ImageResultType;
-
- typedef FullPivLU<MatrixType> Base;
-
- template<typename T>
- explicit LU(const T& t) : Base(t), m_originalMatrix(t) {}
-
- template<typename OtherDerived, typename ResultType>
- bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
- {
- *result = static_cast<const Base*>(this)->solve(b);
- return true;
- }
-
- template<typename ResultType>
- inline void computeInverse(ResultType *result) const
- {
- solve(MatrixType::Identity(this->rows(), this->cols()), result);
- }
-
- template<typename KernelMatrixType>
- void computeKernel(KernelMatrixType *result) const
- {
- *result = static_cast<const Base*>(this)->kernel();
- }
-
- template<typename ImageMatrixType>
- void computeImage(ImageMatrixType *result) const
- {
- *result = static_cast<const Base*>(this)->image(m_originalMatrix);
- }
-
- const ImageResultType image() const
- {
- return static_cast<const Base*>(this)->image(m_originalMatrix);
- }
-
- const MatrixType& m_originalMatrix;
-};
-
-#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
-/** \lu_module
- *
- * Synonym of partialPivLu().
- *
- * \return the partial-pivoting LU decomposition of \c *this.
- *
- * \sa class PartialPivLU
- */
-template<typename Derived>
-inline const LU<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::lu() const
-{
- return LU<PlainObject>(eval());
-}
-#endif
-
-#ifdef EIGEN2_SUPPORT
-/** \lu_module
- *
- * Synonym of partialPivLu().
- *
- * \return the partial-pivoting LU decomposition of \c *this.
- *
- * \sa class PartialPivLU
- */
-template<typename Derived>
-inline const LU<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::eigen2_lu() const
-{
- return LU<PlainObject>(eval());
-}
-#endif
-
-} // end namespace Eigen
-
-#endif // EIGEN2_LU_H
diff --git a/src/Eigen/src/Eigen2Support/Lazy.h b/src/Eigen/src/Eigen2Support/Lazy.h
deleted file mode 100644
index 593fc78..0000000
--- a/src/Eigen/src/Eigen2Support/Lazy.h
+++ /dev/null
@@ -1,71 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_LAZY_H
-#define EIGEN_LAZY_H
-
-namespace Eigen {
-
-/** \deprecated it is only used by lazy() which is deprecated
- *
- * \returns an expression of *this with added flags
- *
- * Example: \include MatrixBase_marked.cpp
- * Output: \verbinclude MatrixBase_marked.out
- *
- * \sa class Flagged, extract(), part()
- */
-template<typename Derived>
-template<unsigned int Added>
-inline const Flagged<Derived, Added, 0>
-MatrixBase<Derived>::marked() const
-{
- return derived();
-}
-
-/** \deprecated use MatrixBase::noalias()
- *
- * \returns an expression of *this with the EvalBeforeAssigningBit flag removed.
- *
- * Example: \include MatrixBase_lazy.cpp
- * Output: \verbinclude MatrixBase_lazy.out
- *
- * \sa class Flagged, marked()
- */
-template<typename Derived>
-inline const Flagged<Derived, 0, EvalBeforeAssigningBit>
-MatrixBase<Derived>::lazy() const
-{
- return derived();
-}
-
-
-/** \internal
- * Overloaded to perform an efficient C += (A*B).lazy() */
-template<typename Derived>
-template<typename ProductDerived, typename Lhs, typename Rhs>
-Derived& MatrixBase<Derived>::operator+=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
- EvalBeforeAssigningBit>& other)
-{
- other._expression().derived().addTo(derived()); return derived();
-}
-
-/** \internal
- * Overloaded to perform an efficient C -= (A*B).lazy() */
-template<typename Derived>
-template<typename ProductDerived, typename Lhs, typename Rhs>
-Derived& MatrixBase<Derived>::operator-=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
- EvalBeforeAssigningBit>& other)
-{
- other._expression().derived().subTo(derived()); return derived();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_LAZY_H
diff --git a/src/Eigen/src/Eigen2Support/LeastSquares.h b/src/Eigen/src/Eigen2Support/LeastSquares.h
deleted file mode 100644
index 0e6fdb4..0000000
--- a/src/Eigen/src/Eigen2Support/LeastSquares.h
+++ /dev/null
@@ -1,170 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2_LEASTSQUARES_H
-#define EIGEN2_LEASTSQUARES_H
-
-namespace Eigen {
-
-/** \ingroup LeastSquares_Module
- *
- * \leastsquares_module
- *
- * For a set of points, this function tries to express
- * one of the coords as a linear (affine) function of the other coords.
- *
- * This is best explained by an example. This function works in full
- * generality, for points in a space of arbitrary dimension, and also over
- * the complex numbers, but for this example we will work in dimension 3
- * over the real numbers (doubles).
- *
- * So let us work with the following set of 5 points given by their
- * \f$(x,y,z)\f$ coordinates:
- * @code
- Vector3d points[5];
- points[0] = Vector3d( 3.02, 6.89, -4.32 );
- points[1] = Vector3d( 2.01, 5.39, -3.79 );
- points[2] = Vector3d( 2.41, 6.01, -4.01 );
- points[3] = Vector3d( 2.09, 5.55, -3.86 );
- points[4] = Vector3d( 2.58, 6.32, -4.10 );
- * @endcode
- * Suppose that we want to express the second coordinate (\f$y\f$) as a linear
- * expression in \f$x\f$ and \f$z\f$, that is,
- * \f[ y=ax+bz+c \f]
- * for some constants \f$a,b,c\f$. Thus, we want to find the best possible
- * constants \f$a,b,c\f$ so that the plane of equation \f$y=ax+bz+c\f$ fits
- * best the five above points. To do that, call this function as follows:
- * @code
- Vector3d coeffs; // will store the coefficients a, b, c
- linearRegression(
- 5,
- &points,
- &coeffs,
- 1 // the coord to express as a function of
- // the other ones. 0 means x, 1 means y, 2 means z.
- );
- * @endcode
- * Now the vector \a coeffs is approximately
- * \f$( 0.495 , -1.927 , -2.906 )\f$.
- * Thus, we get \f$a=0.495, b = -1.927, c = -2.906\f$. Let us check for
- * instance how near points[0] is from the plane of equation \f$y=ax+bz+c\f$.
- * Looking at the coords of points[0], we see that:
- * \f[ax+bz+c = 0.495 * 3.02 + (-1.927) * (-4.32) + (-2.906) = 6.91.\f]
- * On the other hand, we have \f$y=6.89\f$. We see that the values
- * \f$6.91\f$ and \f$6.89\f$
- * are near, so points[0] is very near the plane of equation \f$y=ax+bz+c\f$.
- *
- * Let's now describe precisely the parameters:
- * @param numPoints the number of points
- * @param points the array of pointers to the points on which to perform the linear regression
- * @param result pointer to the vector in which to store the result.
- This vector must be of the same type and size as the
- data points. The meaning of its coords is as follows.
- For brevity, let \f$n=Size\f$,
- \f$r_i=result[i]\f$,
- and \f$f=funcOfOthers\f$. Denote by
- \f$x_0,\ldots,x_{n-1}\f$
- the n coordinates in the n-dimensional space.
- Then the resulting equation is:
- \f[ x_f = r_0 x_0 + \cdots + r_{f-1}x_{f-1}
- + r_{f+1}x_{f+1} + \cdots + r_{n-1}x_{n-1} + r_n. \f]
- * @param funcOfOthers Determines which coord to express as a function of the
- others. Coords are numbered starting from 0, so that a
- value of 0 means \f$x\f$, 1 means \f$y\f$,
- 2 means \f$z\f$, ...
- *
- * \sa fitHyperplane()
- */
-template<typename VectorType>
-void linearRegression(int numPoints,
- VectorType **points,
- VectorType *result,
- int funcOfOthers )
-{
- typedef typename VectorType::Scalar Scalar;
- typedef Hyperplane<Scalar, VectorType::SizeAtCompileTime> HyperplaneType;
- const int size = points[0]->size();
- result->resize(size);
- HyperplaneType h(size);
- fitHyperplane(numPoints, points, &h);
- for(int i = 0; i < funcOfOthers; i++)
- result->coeffRef(i) = - h.coeffs()[i] / h.coeffs()[funcOfOthers];
- for(int i = funcOfOthers; i < size; i++)
- result->coeffRef(i) = - h.coeffs()[i+1] / h.coeffs()[funcOfOthers];
-}
-
-/** \ingroup LeastSquares_Module
- *
- * \leastsquares_module
- *
- * This function is quite similar to linearRegression(), so we refer to the
- * documentation of this function and only list here the differences.
- *
- * The main difference from linearRegression() is that this function doesn't
- * take a \a funcOfOthers argument. Instead, it finds a general equation
- * of the form
- * \f[ r_0 x_0 + \cdots + r_{n-1}x_{n-1} + r_n = 0, \f]
- * where \f$n=Size\f$, \f$r_i=retCoefficients[i]\f$, and we denote by
- * \f$x_0,\ldots,x_{n-1}\f$ the n coordinates in the n-dimensional space.
- *
- * Thus, the vector \a retCoefficients has size \f$n+1\f$, which is another
- * difference from linearRegression().
- *
- * In practice, this function performs an hyper-plane fit in a total least square sense
- * via the following steps:
- * 1 - center the data to the mean
- * 2 - compute the covariance matrix
- * 3 - pick the eigenvector corresponding to the smallest eigenvalue of the covariance matrix
- * The ratio of the smallest eigenvalue and the second one gives us a hint about the relevance
- * of the solution. This value is optionally returned in \a soundness.
- *
- * \sa linearRegression()
- */
-template<typename VectorType, typename HyperplaneType>
-void fitHyperplane(int numPoints,
- VectorType **points,
- HyperplaneType *result,
- typename NumTraits<typename VectorType::Scalar>::Real* soundness = 0)
-{
- typedef typename VectorType::Scalar Scalar;
- typedef Matrix<Scalar,VectorType::SizeAtCompileTime,VectorType::SizeAtCompileTime> CovMatrixType;
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType)
- ei_assert(numPoints >= 1);
- int size = points[0]->size();
- ei_assert(size+1 == result->coeffs().size());
-
- // compute the mean of the data
- VectorType mean = VectorType::Zero(size);
- for(int i = 0; i < numPoints; ++i)
- mean += *(points[i]);
- mean /= numPoints;
-
- // compute the covariance matrix
- CovMatrixType covMat = CovMatrixType::Zero(size, size);
- VectorType remean = VectorType::Zero(size);
- for(int i = 0; i < numPoints; ++i)
- {
- VectorType diff = (*(points[i]) - mean).conjugate();
- covMat += diff * diff.adjoint();
- }
-
- // now we just have to pick the eigen vector with smallest eigen value
- SelfAdjointEigenSolver<CovMatrixType> eig(covMat);
- result->normal() = eig.eigenvectors().col(0);
- if (soundness)
- *soundness = eig.eigenvalues().coeff(0)/eig.eigenvalues().coeff(1);
-
- // let's compute the constant coefficient such that the
- // plane pass trough the mean point:
- result->offset() = - (result->normal().cwise()* mean).sum();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN2_LEASTSQUARES_H
diff --git a/src/Eigen/src/Eigen2Support/Macros.h b/src/Eigen/src/Eigen2Support/Macros.h
deleted file mode 100644
index 351c32a..0000000
--- a/src/Eigen/src/Eigen2Support/Macros.h
+++ /dev/null
@@ -1,20 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2_MACROS_H
-#define EIGEN2_MACROS_H
-
-#define ei_assert eigen_assert
-#define ei_internal_assert eigen_internal_assert
-
-#define EIGEN_ALIGN_128 EIGEN_ALIGN16
-
-#define EIGEN_ARCH_WANTS_ALIGNMENT EIGEN_ALIGN_STATICALLY
-
-#endif // EIGEN2_MACROS_H
diff --git a/src/Eigen/src/Eigen2Support/MathFunctions.h b/src/Eigen/src/Eigen2Support/MathFunctions.h
deleted file mode 100644
index 3544af2..0000000
--- a/src/Eigen/src/Eigen2Support/MathFunctions.h
+++ /dev/null
@@ -1,57 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2_MATH_FUNCTIONS_H
-#define EIGEN2_MATH_FUNCTIONS_H
-
-namespace Eigen {
-
-template<typename T> inline typename NumTraits<T>::Real ei_real(const T& x) { return numext::real(x); }
-template<typename T> inline typename NumTraits<T>::Real ei_imag(const T& x) { return numext::imag(x); }
-template<typename T> inline T ei_conj(const T& x) { return numext::conj(x); }
-template<typename T> inline typename NumTraits<T>::Real ei_abs (const T& x) { using std::abs; return abs(x); }
-template<typename T> inline typename NumTraits<T>::Real ei_abs2(const T& x) { return numext::abs2(x); }
-template<typename T> inline T ei_sqrt(const T& x) { using std::sqrt; return sqrt(x); }
-template<typename T> inline T ei_exp (const T& x) { using std::exp; return exp(x); }
-template<typename T> inline T ei_log (const T& x) { using std::log; return log(x); }
-template<typename T> inline T ei_sin (const T& x) { using std::sin; return sin(x); }
-template<typename T> inline T ei_cos (const T& x) { using std::cos; return cos(x); }
-template<typename T> inline T ei_atan2(const T& x,const T& y) { using std::atan2; return atan2(x,y); }
-template<typename T> inline T ei_pow (const T& x,const T& y) { return numext::pow(x,y); }
-template<typename T> inline T ei_random () { return internal::random<T>(); }
-template<typename T> inline T ei_random (const T& x, const T& y) { return internal::random(x, y); }
-
-template<typename T> inline T precision () { return NumTraits<T>::dummy_precision(); }
-template<typename T> inline T machine_epsilon () { return NumTraits<T>::epsilon(); }
-
-
-template<typename Scalar, typename OtherScalar>
-inline bool ei_isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
- typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
-{
- return internal::isMuchSmallerThan(x, y, precision);
-}
-
-template<typename Scalar>
-inline bool ei_isApprox(const Scalar& x, const Scalar& y,
- typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
-{
- return internal::isApprox(x, y, precision);
-}
-
-template<typename Scalar>
-inline bool ei_isApproxOrLessThan(const Scalar& x, const Scalar& y,
- typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
-{
- return internal::isApproxOrLessThan(x, y, precision);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN2_MATH_FUNCTIONS_H
diff --git a/src/Eigen/src/Eigen2Support/Memory.h b/src/Eigen/src/Eigen2Support/Memory.h
deleted file mode 100644
index f86372b..0000000
--- a/src/Eigen/src/Eigen2Support/Memory.h
+++ /dev/null
@@ -1,45 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2_MEMORY_H
-#define EIGEN2_MEMORY_H
-
-namespace Eigen {
-
-inline void* ei_aligned_malloc(size_t size) { return internal::aligned_malloc(size); }
-inline void ei_aligned_free(void *ptr) { internal::aligned_free(ptr); }
-inline void* ei_aligned_realloc(void *ptr, size_t new_size, size_t old_size) { return internal::aligned_realloc(ptr, new_size, old_size); }
-inline void* ei_handmade_aligned_malloc(size_t size) { return internal::handmade_aligned_malloc(size); }
-inline void ei_handmade_aligned_free(void *ptr) { internal::handmade_aligned_free(ptr); }
-
-template<bool Align> inline void* ei_conditional_aligned_malloc(size_t size)
-{
- return internal::conditional_aligned_malloc<Align>(size);
-}
-template<bool Align> inline void ei_conditional_aligned_free(void *ptr)
-{
- internal::conditional_aligned_free<Align>(ptr);
-}
-template<bool Align> inline void* ei_conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
-{
- return internal::conditional_aligned_realloc<Align>(ptr, new_size, old_size);
-}
-
-template<typename T> inline T* ei_aligned_new(size_t size)
-{
- return internal::aligned_new<T>(size);
-}
-template<typename T> inline void ei_aligned_delete(T *ptr, size_t size)
-{
- return internal::aligned_delete(ptr, size);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN2_MACROS_H
diff --git a/src/Eigen/src/Eigen2Support/Meta.h b/src/Eigen/src/Eigen2Support/Meta.h
deleted file mode 100644
index fa37cfc..0000000
--- a/src/Eigen/src/Eigen2Support/Meta.h
+++ /dev/null
@@ -1,75 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2_META_H
-#define EIGEN2_META_H
-
-namespace Eigen {
-
-template<typename T>
-struct ei_traits : internal::traits<T>
-{};
-
-struct ei_meta_true { enum { ret = 1 }; };
-struct ei_meta_false { enum { ret = 0 }; };
-
-template<bool Condition, typename Then, typename Else>
-struct ei_meta_if { typedef Then ret; };
-
-template<typename Then, typename Else>
-struct ei_meta_if <false, Then, Else> { typedef Else ret; };
-
-template<typename T, typename U> struct ei_is_same_type { enum { ret = 0 }; };
-template<typename T> struct ei_is_same_type<T,T> { enum { ret = 1 }; };
-
-template<typename T> struct ei_unref { typedef T type; };
-template<typename T> struct ei_unref<T&> { typedef T type; };
-
-template<typename T> struct ei_unpointer { typedef T type; };
-template<typename T> struct ei_unpointer<T*> { typedef T type; };
-template<typename T> struct ei_unpointer<T*const> { typedef T type; };
-
-template<typename T> struct ei_unconst { typedef T type; };
-template<typename T> struct ei_unconst<const T> { typedef T type; };
-template<typename T> struct ei_unconst<T const &> { typedef T & type; };
-template<typename T> struct ei_unconst<T const *> { typedef T * type; };
-
-template<typename T> struct ei_cleantype { typedef T type; };
-template<typename T> struct ei_cleantype<const T> { typedef typename ei_cleantype<T>::type type; };
-template<typename T> struct ei_cleantype<const T&> { typedef typename ei_cleantype<T>::type type; };
-template<typename T> struct ei_cleantype<T&> { typedef typename ei_cleantype<T>::type type; };
-template<typename T> struct ei_cleantype<const T*> { typedef typename ei_cleantype<T>::type type; };
-template<typename T> struct ei_cleantype<T*> { typedef typename ei_cleantype<T>::type type; };
-
-/** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer.
- * Usage example: \code ei_meta_sqrt<1023>::ret \endcode
- */
-template<int Y,
- int InfX = 0,
- int SupX = ((Y==1) ? 1 : Y/2),
- bool Done = ((SupX-InfX)<=1 ? true : ((SupX*SupX <= Y) && ((SupX+1)*(SupX+1) > Y))) >
- // use ?: instead of || just to shut up a stupid gcc 4.3 warning
-class ei_meta_sqrt
-{
- enum {
- MidX = (InfX+SupX)/2,
- TakeInf = MidX*MidX > Y ? 1 : 0,
- NewInf = int(TakeInf) ? InfX : int(MidX),
- NewSup = int(TakeInf) ? int(MidX) : SupX
- };
- public:
- enum { ret = ei_meta_sqrt<Y,NewInf,NewSup>::ret };
-};
-
-template<int Y, int InfX, int SupX>
-class ei_meta_sqrt<Y, InfX, SupX, true> { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; };
-
-} // end namespace Eigen
-
-#endif // EIGEN2_META_H
diff --git a/src/Eigen/src/Eigen2Support/Minor.h b/src/Eigen/src/Eigen2Support/Minor.h
deleted file mode 100644
index 4cded57..0000000
--- a/src/Eigen/src/Eigen2Support/Minor.h
+++ /dev/null
@@ -1,117 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MINOR_H
-#define EIGEN_MINOR_H
-
-namespace Eigen {
-
-/**
- * \class Minor
- *
- * \brief Expression of a minor
- *
- * \param MatrixType the type of the object in which we are taking a minor
- *
- * This class represents an expression of a minor. It is the return
- * type of MatrixBase::minor() and most of the time this is the only way it
- * is used.
- *
- * \sa MatrixBase::minor()
- */
-
-namespace internal {
-template<typename MatrixType>
-struct traits<Minor<MatrixType> >
- : traits<MatrixType>
-{
- typedef typename nested<MatrixType>::type MatrixTypeNested;
- typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
- typedef typename MatrixType::StorageKind StorageKind;
- enum {
- RowsAtCompileTime = (MatrixType::RowsAtCompileTime != Dynamic) ?
- int(MatrixType::RowsAtCompileTime) - 1 : Dynamic,
- ColsAtCompileTime = (MatrixType::ColsAtCompileTime != Dynamic) ?
- int(MatrixType::ColsAtCompileTime) - 1 : Dynamic,
- MaxRowsAtCompileTime = (MatrixType::MaxRowsAtCompileTime != Dynamic) ?
- int(MatrixType::MaxRowsAtCompileTime) - 1 : Dynamic,
- MaxColsAtCompileTime = (MatrixType::MaxColsAtCompileTime != Dynamic) ?
- int(MatrixType::MaxColsAtCompileTime) - 1 : Dynamic,
- Flags = _MatrixTypeNested::Flags & (HereditaryBits | LvalueBit),
- CoeffReadCost = _MatrixTypeNested::CoeffReadCost // minor is used typically on tiny matrices,
- // where loops are unrolled and the 'if' evaluates at compile time
- };
-};
-}
-
-template<typename MatrixType> class Minor
- : public MatrixBase<Minor<MatrixType> >
-{
- public:
-
- typedef MatrixBase<Minor> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(Minor)
-
- inline Minor(const MatrixType& matrix,
- Index row, Index col)
- : m_matrix(matrix), m_row(row), m_col(col)
- {
- eigen_assert(row >= 0 && row < matrix.rows()
- && col >= 0 && col < matrix.cols());
- }
-
- EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Minor)
-
- inline Index rows() const { return m_matrix.rows() - 1; }
- inline Index cols() const { return m_matrix.cols() - 1; }
-
- inline Scalar& coeffRef(Index row, Index col)
- {
- return m_matrix.const_cast_derived().coeffRef(row + (row >= m_row), col + (col >= m_col));
- }
-
- inline const Scalar coeff(Index row, Index col) const
- {
- return m_matrix.coeff(row + (row >= m_row), col + (col >= m_col));
- }
-
- protected:
- const typename MatrixType::Nested m_matrix;
- const Index m_row, m_col;
-};
-
-/**
- * \return an expression of the (\a row, \a col)-minor of *this,
- * i.e. an expression constructed from *this by removing the specified
- * row and column.
- *
- * Example: \include MatrixBase_minor.cpp
- * Output: \verbinclude MatrixBase_minor.out
- *
- * \sa class Minor
- */
-template<typename Derived>
-inline Minor<Derived>
-MatrixBase<Derived>::minor(Index row, Index col)
-{
- return Minor<Derived>(derived(), row, col);
-}
-
-/**
- * This is the const version of minor(). */
-template<typename Derived>
-inline const Minor<Derived>
-MatrixBase<Derived>::minor(Index row, Index col) const
-{
- return Minor<Derived>(derived(), row, col);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MINOR_H
diff --git a/src/Eigen/src/Eigen2Support/QR.h b/src/Eigen/src/Eigen2Support/QR.h
deleted file mode 100644
index 2042c98..0000000
--- a/src/Eigen/src/Eigen2Support/QR.h
+++ /dev/null
@@ -1,67 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2_QR_H
-#define EIGEN2_QR_H
-
-namespace Eigen {
-
-template<typename MatrixType>
-class QR : public HouseholderQR<MatrixType>
-{
- public:
-
- typedef HouseholderQR<MatrixType> Base;
- typedef Block<const MatrixType, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixRBlockType;
-
- QR() : Base() {}
-
- template<typename T>
- explicit QR(const T& t) : Base(t) {}
-
- template<typename OtherDerived, typename ResultType>
- bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
- {
- *result = static_cast<const Base*>(this)->solve(b);
- return true;
- }
-
- MatrixType matrixQ(void) const {
- MatrixType ret = MatrixType::Identity(this->rows(), this->cols());
- ret = this->householderQ() * ret;
- return ret;
- }
-
- bool isFullRank() const {
- return true;
- }
-
- const TriangularView<MatrixRBlockType, UpperTriangular>
- matrixR(void) const
- {
- int cols = this->cols();
- return MatrixRBlockType(this->matrixQR(), 0, 0, cols, cols).template triangularView<UpperTriangular>();
- }
-};
-
-/** \return the QR decomposition of \c *this.
- *
- * \sa class QR
- */
-template<typename Derived>
-const QR<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::qr() const
-{
- return QR<PlainObject>(eval());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN2_QR_H
diff --git a/src/Eigen/src/Eigen2Support/SVD.h b/src/Eigen/src/Eigen2Support/SVD.h
deleted file mode 100644
index 3d03d22..0000000
--- a/src/Eigen/src/Eigen2Support/SVD.h
+++ /dev/null
@@ -1,637 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2_SVD_H
-#define EIGEN2_SVD_H
-
-namespace Eigen {
-
-/** \ingroup SVD_Module
- * \nonstableyet
- *
- * \class SVD
- *
- * \brief Standard SVD decomposition of a matrix and associated features
- *
- * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
- *
- * This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N
- * with \c M \>= \c N.
- *
- *
- * \sa MatrixBase::SVD()
- */
-template<typename MatrixType> class SVD
-{
- private:
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
-
- enum {
- PacketSize = internal::packet_traits<Scalar>::size,
- AlignmentMask = int(PacketSize)-1,
- MinSize = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime)
- };
-
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVector;
- typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> RowVector;
-
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MinSize> MatrixUType;
- typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixVType;
- typedef Matrix<Scalar, MinSize, 1> SingularValuesType;
-
- public:
-
- SVD() {} // a user who relied on compiler-generated default compiler reported problems with MSVC in 2.0.7
-
- SVD(const MatrixType& matrix)
- : m_matU(matrix.rows(), (std::min)(matrix.rows(), matrix.cols())),
- m_matV(matrix.cols(),matrix.cols()),
- m_sigma((std::min)(matrix.rows(),matrix.cols()))
- {
- compute(matrix);
- }
-
- template<typename OtherDerived, typename ResultType>
- bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const;
-
- const MatrixUType& matrixU() const { return m_matU; }
- const SingularValuesType& singularValues() const { return m_sigma; }
- const MatrixVType& matrixV() const { return m_matV; }
-
- void compute(const MatrixType& matrix);
- SVD& sort();
-
- template<typename UnitaryType, typename PositiveType>
- void computeUnitaryPositive(UnitaryType *unitary, PositiveType *positive) const;
- template<typename PositiveType, typename UnitaryType>
- void computePositiveUnitary(PositiveType *positive, UnitaryType *unitary) const;
- template<typename RotationType, typename ScalingType>
- void computeRotationScaling(RotationType *unitary, ScalingType *positive) const;
- template<typename ScalingType, typename RotationType>
- void computeScalingRotation(ScalingType *positive, RotationType *unitary) const;
-
- protected:
- /** \internal */
- MatrixUType m_matU;
- /** \internal */
- MatrixVType m_matV;
- /** \internal */
- SingularValuesType m_sigma;
-};
-
-/** Computes / recomputes the SVD decomposition A = U S V^* of \a matrix
- *
- * \note this code has been adapted from JAMA (public domain)
- */
-template<typename MatrixType>
-void SVD<MatrixType>::compute(const MatrixType& matrix)
-{
- const int m = matrix.rows();
- const int n = matrix.cols();
- const int nu = (std::min)(m,n);
- ei_assert(m>=n && "In Eigen 2.0, SVD only works for MxN matrices with M>=N. Sorry!");
- ei_assert(m>1 && "In Eigen 2.0, SVD doesn't work on 1x1 matrices");
-
- m_matU.resize(m, nu);
- m_matU.setZero();
- m_sigma.resize((std::min)(m,n));
- m_matV.resize(n,n);
-
- RowVector e(n);
- ColVector work(m);
- MatrixType matA(matrix);
- const bool wantu = true;
- const bool wantv = true;
- int i=0, j=0, k=0;
-
- // Reduce A to bidiagonal form, storing the diagonal elements
- // in s and the super-diagonal elements in e.
- int nct = (std::min)(m-1,n);
- int nrt = (std::max)(0,(std::min)(n-2,m));
- for (k = 0; k < (std::max)(nct,nrt); ++k)
- {
- if (k < nct)
- {
- // Compute the transformation for the k-th column and
- // place the k-th diagonal in m_sigma[k].
- m_sigma[k] = matA.col(k).end(m-k).norm();
- if (m_sigma[k] != 0.0) // FIXME
- {
- if (matA(k,k) < 0.0)
- m_sigma[k] = -m_sigma[k];
- matA.col(k).end(m-k) /= m_sigma[k];
- matA(k,k) += 1.0;
- }
- m_sigma[k] = -m_sigma[k];
- }
-
- for (j = k+1; j < n; ++j)
- {
- if ((k < nct) && (m_sigma[k] != 0.0))
- {
- // Apply the transformation.
- Scalar t = matA.col(k).end(m-k).eigen2_dot(matA.col(j).end(m-k)); // FIXME dot product or cwise prod + .sum() ??
- t = -t/matA(k,k);
- matA.col(j).end(m-k) += t * matA.col(k).end(m-k);
- }
-
- // Place the k-th row of A into e for the
- // subsequent calculation of the row transformation.
- e[j] = matA(k,j);
- }
-
- // Place the transformation in U for subsequent back multiplication.
- if (wantu & (k < nct))
- m_matU.col(k).end(m-k) = matA.col(k).end(m-k);
-
- if (k < nrt)
- {
- // Compute the k-th row transformation and place the
- // k-th super-diagonal in e[k].
- e[k] = e.end(n-k-1).norm();
- if (e[k] != 0.0)
- {
- if (e[k+1] < 0.0)
- e[k] = -e[k];
- e.end(n-k-1) /= e[k];
- e[k+1] += 1.0;
- }
- e[k] = -e[k];
- if ((k+1 < m) & (e[k] != 0.0))
- {
- // Apply the transformation.
- work.end(m-k-1) = matA.corner(BottomRight,m-k-1,n-k-1) * e.end(n-k-1);
- for (j = k+1; j < n; ++j)
- matA.col(j).end(m-k-1) += (-e[j]/e[k+1]) * work.end(m-k-1);
- }
-
- // Place the transformation in V for subsequent back multiplication.
- if (wantv)
- m_matV.col(k).end(n-k-1) = e.end(n-k-1);
- }
- }
-
-
- // Set up the final bidiagonal matrix or order p.
- int p = (std::min)(n,m+1);
- if (nct < n)
- m_sigma[nct] = matA(nct,nct);
- if (m < p)
- m_sigma[p-1] = 0.0;
- if (nrt+1 < p)
- e[nrt] = matA(nrt,p-1);
- e[p-1] = 0.0;
-
- // If required, generate U.
- if (wantu)
- {
- for (j = nct; j < nu; ++j)
- {
- m_matU.col(j).setZero();
- m_matU(j,j) = 1.0;
- }
- for (k = nct-1; k >= 0; k--)
- {
- if (m_sigma[k] != 0.0)
- {
- for (j = k+1; j < nu; ++j)
- {
- Scalar t = m_matU.col(k).end(m-k).eigen2_dot(m_matU.col(j).end(m-k)); // FIXME is it really a dot product we want ?
- t = -t/m_matU(k,k);
- m_matU.col(j).end(m-k) += t * m_matU.col(k).end(m-k);
- }
- m_matU.col(k).end(m-k) = - m_matU.col(k).end(m-k);
- m_matU(k,k) = Scalar(1) + m_matU(k,k);
- if (k-1>0)
- m_matU.col(k).start(k-1).setZero();
- }
- else
- {
- m_matU.col(k).setZero();
- m_matU(k,k) = 1.0;
- }
- }
- }
-
- // If required, generate V.
- if (wantv)
- {
- for (k = n-1; k >= 0; k--)
- {
- if ((k < nrt) & (e[k] != 0.0))
- {
- for (j = k+1; j < nu; ++j)
- {
- Scalar t = m_matV.col(k).end(n-k-1).eigen2_dot(m_matV.col(j).end(n-k-1)); // FIXME is it really a dot product we want ?
- t = -t/m_matV(k+1,k);
- m_matV.col(j).end(n-k-1) += t * m_matV.col(k).end(n-k-1);
- }
- }
- m_matV.col(k).setZero();
- m_matV(k,k) = 1.0;
- }
- }
-
- // Main iteration loop for the singular values.
- int pp = p-1;
- int iter = 0;
- Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
- while (p > 0)
- {
- int k=0;
- int kase=0;
-
- // Here is where a test for too many iterations would go.
-
- // This section of the program inspects for
- // negligible elements in the s and e arrays. On
- // completion the variables kase and k are set as follows.
-
- // kase = 1 if s(p) and e[k-1] are negligible and k<p
- // kase = 2 if s(k) is negligible and k<p
- // kase = 3 if e[k-1] is negligible, k<p, and
- // s(k), ..., s(p) are not negligible (qr step).
- // kase = 4 if e(p-1) is negligible (convergence).
-
- for (k = p-2; k >= -1; --k)
- {
- if (k == -1)
- break;
- if (ei_abs(e[k]) <= eps*(ei_abs(m_sigma[k]) + ei_abs(m_sigma[k+1])))
- {
- e[k] = 0.0;
- break;
- }
- }
- if (k == p-2)
- {
- kase = 4;
- }
- else
- {
- int ks;
- for (ks = p-1; ks >= k; --ks)
- {
- if (ks == k)
- break;
- Scalar t = (ks != p ? ei_abs(e[ks]) : Scalar(0)) + (ks != k+1 ? ei_abs(e[ks-1]) : Scalar(0));
- if (ei_abs(m_sigma[ks]) <= eps*t)
- {
- m_sigma[ks] = 0.0;
- break;
- }
- }
- if (ks == k)
- {
- kase = 3;
- }
- else if (ks == p-1)
- {
- kase = 1;
- }
- else
- {
- kase = 2;
- k = ks;
- }
- }
- ++k;
-
- // Perform the task indicated by kase.
- switch (kase)
- {
-
- // Deflate negligible s(p).
- case 1:
- {
- Scalar f(e[p-2]);
- e[p-2] = 0.0;
- for (j = p-2; j >= k; --j)
- {
- Scalar t(numext::hypot(m_sigma[j],f));
- Scalar cs(m_sigma[j]/t);
- Scalar sn(f/t);
- m_sigma[j] = t;
- if (j != k)
- {
- f = -sn*e[j-1];
- e[j-1] = cs*e[j-1];
- }
- if (wantv)
- {
- for (i = 0; i < n; ++i)
- {
- t = cs*m_matV(i,j) + sn*m_matV(i,p-1);
- m_matV(i,p-1) = -sn*m_matV(i,j) + cs*m_matV(i,p-1);
- m_matV(i,j) = t;
- }
- }
- }
- }
- break;
-
- // Split at negligible s(k).
- case 2:
- {
- Scalar f(e[k-1]);
- e[k-1] = 0.0;
- for (j = k; j < p; ++j)
- {
- Scalar t(numext::hypot(m_sigma[j],f));
- Scalar cs( m_sigma[j]/t);
- Scalar sn(f/t);
- m_sigma[j] = t;
- f = -sn*e[j];
- e[j] = cs*e[j];
- if (wantu)
- {
- for (i = 0; i < m; ++i)
- {
- t = cs*m_matU(i,j) + sn*m_matU(i,k-1);
- m_matU(i,k-1) = -sn*m_matU(i,j) + cs*m_matU(i,k-1);
- m_matU(i,j) = t;
- }
- }
- }
- }
- break;
-
- // Perform one qr step.
- case 3:
- {
- // Calculate the shift.
- Scalar scale = (std::max)((std::max)((std::max)((std::max)(
- ei_abs(m_sigma[p-1]),ei_abs(m_sigma[p-2])),ei_abs(e[p-2])),
- ei_abs(m_sigma[k])),ei_abs(e[k]));
- Scalar sp = m_sigma[p-1]/scale;
- Scalar spm1 = m_sigma[p-2]/scale;
- Scalar epm1 = e[p-2]/scale;
- Scalar sk = m_sigma[k]/scale;
- Scalar ek = e[k]/scale;
- Scalar b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/Scalar(2);
- Scalar c = (sp*epm1)*(sp*epm1);
- Scalar shift(0);
- if ((b != 0.0) || (c != 0.0))
- {
- shift = ei_sqrt(b*b + c);
- if (b < 0.0)
- shift = -shift;
- shift = c/(b + shift);
- }
- Scalar f = (sk + sp)*(sk - sp) + shift;
- Scalar g = sk*ek;
-
- // Chase zeros.
-
- for (j = k; j < p-1; ++j)
- {
- Scalar t = numext::hypot(f,g);
- Scalar cs = f/t;
- Scalar sn = g/t;
- if (j != k)
- e[j-1] = t;
- f = cs*m_sigma[j] + sn*e[j];
- e[j] = cs*e[j] - sn*m_sigma[j];
- g = sn*m_sigma[j+1];
- m_sigma[j+1] = cs*m_sigma[j+1];
- if (wantv)
- {
- for (i = 0; i < n; ++i)
- {
- t = cs*m_matV(i,j) + sn*m_matV(i,j+1);
- m_matV(i,j+1) = -sn*m_matV(i,j) + cs*m_matV(i,j+1);
- m_matV(i,j) = t;
- }
- }
- t = numext::hypot(f,g);
- cs = f/t;
- sn = g/t;
- m_sigma[j] = t;
- f = cs*e[j] + sn*m_sigma[j+1];
- m_sigma[j+1] = -sn*e[j] + cs*m_sigma[j+1];
- g = sn*e[j+1];
- e[j+1] = cs*e[j+1];
- if (wantu && (j < m-1))
- {
- for (i = 0; i < m; ++i)
- {
- t = cs*m_matU(i,j) + sn*m_matU(i,j+1);
- m_matU(i,j+1) = -sn*m_matU(i,j) + cs*m_matU(i,j+1);
- m_matU(i,j) = t;
- }
- }
- }
- e[p-2] = f;
- iter = iter + 1;
- }
- break;
-
- // Convergence.
- case 4:
- {
- // Make the singular values positive.
- if (m_sigma[k] <= 0.0)
- {
- m_sigma[k] = m_sigma[k] < Scalar(0) ? -m_sigma[k] : Scalar(0);
- if (wantv)
- m_matV.col(k).start(pp+1) = -m_matV.col(k).start(pp+1);
- }
-
- // Order the singular values.
- while (k < pp)
- {
- if (m_sigma[k] >= m_sigma[k+1])
- break;
- Scalar t = m_sigma[k];
- m_sigma[k] = m_sigma[k+1];
- m_sigma[k+1] = t;
- if (wantv && (k < n-1))
- m_matV.col(k).swap(m_matV.col(k+1));
- if (wantu && (k < m-1))
- m_matU.col(k).swap(m_matU.col(k+1));
- ++k;
- }
- iter = 0;
- p--;
- }
- break;
- } // end big switch
- } // end iterations
-}
-
-template<typename MatrixType>
-SVD<MatrixType>& SVD<MatrixType>::sort()
-{
- int mu = m_matU.rows();
- int mv = m_matV.rows();
- int n = m_matU.cols();
-
- for (int i=0; i<n; ++i)
- {
- int k = i;
- Scalar p = m_sigma.coeff(i);
-
- for (int j=i+1; j<n; ++j)
- {
- if (m_sigma.coeff(j) > p)
- {
- k = j;
- p = m_sigma.coeff(j);
- }
- }
- if (k != i)
- {
- m_sigma.coeffRef(k) = m_sigma.coeff(i); // i.e.
- m_sigma.coeffRef(i) = p; // swaps the i-th and the k-th elements
-
- int j = mu;
- for(int s=0; j!=0; ++s, --j)
- std::swap(m_matU.coeffRef(s,i), m_matU.coeffRef(s,k));
-
- j = mv;
- for (int s=0; j!=0; ++s, --j)
- std::swap(m_matV.coeffRef(s,i), m_matV.coeffRef(s,k));
- }
- }
- return *this;
-}
-
-/** \returns the solution of \f$ A x = b \f$ using the current SVD decomposition of A.
- * The parts of the solution corresponding to zero singular values are ignored.
- *
- * \sa MatrixBase::svd(), LU::solve(), LLT::solve()
- */
-template<typename MatrixType>
-template<typename OtherDerived, typename ResultType>
-bool SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const
-{
- ei_assert(b.rows() == m_matU.rows());
-
- Scalar maxVal = m_sigma.cwise().abs().maxCoeff();
- for (int j=0; j<b.cols(); ++j)
- {
- Matrix<Scalar,MatrixUType::RowsAtCompileTime,1> aux = m_matU.transpose() * b.col(j);
-
- for (int i = 0; i <m_matU.cols(); ++i)
- {
- Scalar si = m_sigma.coeff(i);
- if (ei_isMuchSmallerThan(ei_abs(si),maxVal))
- aux.coeffRef(i) = 0;
- else
- aux.coeffRef(i) /= si;
- }
-
- result->col(j) = m_matV * aux;
- }
- return true;
-}
-
-/** Computes the polar decomposition of the matrix, as a product unitary x positive.
- *
- * If either pointer is zero, the corresponding computation is skipped.
- *
- * Only for square matrices.
- *
- * \sa computePositiveUnitary(), computeRotationScaling()
- */
-template<typename MatrixType>
-template<typename UnitaryType, typename PositiveType>
-void SVD<MatrixType>::computeUnitaryPositive(UnitaryType *unitary,
- PositiveType *positive) const
-{
- ei_assert(m_matU.cols() == m_matV.cols() && "Polar decomposition is only for square matrices");
- if(unitary) *unitary = m_matU * m_matV.adjoint();
- if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint();
-}
-
-/** Computes the polar decomposition of the matrix, as a product positive x unitary.
- *
- * If either pointer is zero, the corresponding computation is skipped.
- *
- * Only for square matrices.
- *
- * \sa computeUnitaryPositive(), computeRotationScaling()
- */
-template<typename MatrixType>
-template<typename UnitaryType, typename PositiveType>
-void SVD<MatrixType>::computePositiveUnitary(UnitaryType *positive,
- PositiveType *unitary) const
-{
- ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
- if(unitary) *unitary = m_matU * m_matV.adjoint();
- if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint();
-}
-
-/** decomposes the matrix as a product rotation x scaling, the scaling being
- * not necessarily positive.
- *
- * If either pointer is zero, the corresponding computation is skipped.
- *
- * This method requires the Geometry module.
- *
- * \sa computeScalingRotation(), computeUnitaryPositive()
- */
-template<typename MatrixType>
-template<typename RotationType, typename ScalingType>
-void SVD<MatrixType>::computeRotationScaling(RotationType *rotation, ScalingType *scaling) const
-{
- ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
- Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
- Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
- sv.coeffRef(0) *= x;
- if(scaling) scaling->lazyAssign(m_matV * sv.asDiagonal() * m_matV.adjoint());
- if(rotation)
- {
- MatrixType m(m_matU);
- m.col(0) /= x;
- rotation->lazyAssign(m * m_matV.adjoint());
- }
-}
-
-/** decomposes the matrix as a product scaling x rotation, the scaling being
- * not necessarily positive.
- *
- * If either pointer is zero, the corresponding computation is skipped.
- *
- * This method requires the Geometry module.
- *
- * \sa computeRotationScaling(), computeUnitaryPositive()
- */
-template<typename MatrixType>
-template<typename ScalingType, typename RotationType>
-void SVD<MatrixType>::computeScalingRotation(ScalingType *scaling, RotationType *rotation) const
-{
- ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
- Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
- Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
- sv.coeffRef(0) *= x;
- if(scaling) scaling->lazyAssign(m_matU * sv.asDiagonal() * m_matU.adjoint());
- if(rotation)
- {
- MatrixType m(m_matU);
- m.col(0) /= x;
- rotation->lazyAssign(m * m_matV.adjoint());
- }
-}
-
-
-/** \svd_module
- * \returns the SVD decomposition of \c *this
- */
-template<typename Derived>
-inline SVD<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::svd() const
-{
- return SVD<PlainObject>(derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN2_SVD_H
diff --git a/src/Eigen/src/Eigen2Support/TriangularSolver.h b/src/Eigen/src/Eigen2Support/TriangularSolver.h
deleted file mode 100644
index ebbeb3b..0000000
--- a/src/Eigen/src/Eigen2Support/TriangularSolver.h
+++ /dev/null
@@ -1,42 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_TRIANGULAR_SOLVER2_H
-#define EIGEN_TRIANGULAR_SOLVER2_H
-
-namespace Eigen {
-
-const unsigned int UnitDiagBit = UnitDiag;
-const unsigned int SelfAdjointBit = SelfAdjoint;
-const unsigned int UpperTriangularBit = Upper;
-const unsigned int LowerTriangularBit = Lower;
-
-const unsigned int UpperTriangular = Upper;
-const unsigned int LowerTriangular = Lower;
-const unsigned int UnitUpperTriangular = UnitUpper;
-const unsigned int UnitLowerTriangular = UnitLower;
-
-template<typename ExpressionType, unsigned int Added, unsigned int Removed>
-template<typename OtherDerived>
-typename ExpressionType::PlainObject
-Flagged<ExpressionType,Added,Removed>::solveTriangular(const MatrixBase<OtherDerived>& other) const
-{
- return m_matrix.template triangularView<Added>().solve(other.derived());
-}
-
-template<typename ExpressionType, unsigned int Added, unsigned int Removed>
-template<typename OtherDerived>
-void Flagged<ExpressionType,Added,Removed>::solveTriangularInPlace(const MatrixBase<OtherDerived>& other) const
-{
- m_matrix.template triangularView<Added>().solveInPlace(other.derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_TRIANGULAR_SOLVER2_H
diff --git a/src/Eigen/src/Eigen2Support/VectorBlock.h b/src/Eigen/src/Eigen2Support/VectorBlock.h
deleted file mode 100644
index 71a8080..0000000
--- a/src/Eigen/src/Eigen2Support/VectorBlock.h
+++ /dev/null
@@ -1,94 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN2_VECTORBLOCK_H
-#define EIGEN2_VECTORBLOCK_H
-
-namespace Eigen {
-
-/** \deprecated use DenseMase::head(Index) */
-template<typename Derived>
-inline VectorBlock<Derived>
-MatrixBase<Derived>::start(Index size)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return VectorBlock<Derived>(derived(), 0, size);
-}
-
-/** \deprecated use DenseMase::head(Index) */
-template<typename Derived>
-inline const VectorBlock<const Derived>
-MatrixBase<Derived>::start(Index size) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return VectorBlock<const Derived>(derived(), 0, size);
-}
-
-/** \deprecated use DenseMase::tail(Index) */
-template<typename Derived>
-inline VectorBlock<Derived>
-MatrixBase<Derived>::end(Index size)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return VectorBlock<Derived>(derived(), this->size() - size, size);
-}
-
-/** \deprecated use DenseMase::tail(Index) */
-template<typename Derived>
-inline const VectorBlock<const Derived>
-MatrixBase<Derived>::end(Index size) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return VectorBlock<const Derived>(derived(), this->size() - size, size);
-}
-
-/** \deprecated use DenseMase::head() */
-template<typename Derived>
-template<int Size>
-inline VectorBlock<Derived,Size>
-MatrixBase<Derived>::start()
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return VectorBlock<Derived,Size>(derived(), 0);
-}
-
-/** \deprecated use DenseMase::head() */
-template<typename Derived>
-template<int Size>
-inline const VectorBlock<const Derived,Size>
-MatrixBase<Derived>::start() const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return VectorBlock<const Derived,Size>(derived(), 0);
-}
-
-/** \deprecated use DenseMase::tail() */
-template<typename Derived>
-template<int Size>
-inline VectorBlock<Derived,Size>
-MatrixBase<Derived>::end()
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return VectorBlock<Derived, Size>(derived(), size() - Size);
-}
-
-/** \deprecated use DenseMase::tail() */
-template<typename Derived>
-template<int Size>
-inline const VectorBlock<const Derived,Size>
-MatrixBase<Derived>::end() const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return VectorBlock<const Derived, Size>(derived(), size() - Size);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN2_VECTORBLOCK_H
diff --git a/src/Eigen/src/Eigenvalues/CMakeLists.txt b/src/Eigen/src/Eigenvalues/CMakeLists.txt
deleted file mode 100644
index 193e026..0000000
--- a/src/Eigen/src/Eigenvalues/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_EIGENVALUES_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_EIGENVALUES_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Eigenvalues COMPONENT Devel
- )
diff --git a/src/Eigen/src/Eigenvalues/ComplexEigenSolver.h b/src/Eigen/src/Eigenvalues/ComplexEigenSolver.h
deleted file mode 100644
index af434bc..0000000
--- a/src/Eigen/src/Eigenvalues/ComplexEigenSolver.h
+++ /dev/null
@@ -1,333 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Claire Maurice
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
-#define EIGEN_COMPLEX_EIGEN_SOLVER_H
-
-#include "./ComplexSchur.h"
-
-namespace Eigen {
-
-/** \eigenvalues_module \ingroup Eigenvalues_Module
- *
- *
- * \class ComplexEigenSolver
- *
- * \brief Computes eigenvalues and eigenvectors of general complex matrices
- *
- * \tparam _MatrixType the type of the matrix of which we are
- * computing the eigendecomposition; this is expected to be an
- * instantiation of the Matrix class template.
- *
- * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
- * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v
- * \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on
- * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as
- * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is
- * almost always invertible, in which case we have \f$ A = V D V^{-1}
- * \f$. This is called the eigendecomposition.
- *
- * The main function in this class is compute(), which computes the
- * eigenvalues and eigenvectors of a given function. The
- * documentation for that function contains an example showing the
- * main features of the class.
- *
- * \sa class EigenSolver, class SelfAdjointEigenSolver
- */
-template<typename _MatrixType> class ComplexEigenSolver
-{
- public:
-
- /** \brief Synonym for the template parameter \p _MatrixType. */
- typedef _MatrixType MatrixType;
-
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
-
- /** \brief Scalar type for matrices of type #MatrixType. */
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
-
- /** \brief Complex scalar type for #MatrixType.
- *
- * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
- * \c float or \c double) and just \c Scalar if #Scalar is
- * complex.
- */
- typedef std::complex<RealScalar> ComplexScalar;
-
- /** \brief Type for vector of eigenvalues as returned by eigenvalues().
- *
- * This is a column vector with entries of type #ComplexScalar.
- * The length of the vector is the size of #MatrixType.
- */
- typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> EigenvalueType;
-
- /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
- *
- * This is a square matrix with entries of type #ComplexScalar.
- * The size is the same as the size of #MatrixType.
- */
- typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorType;
-
- /** \brief Default constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via compute().
- */
- ComplexEigenSolver()
- : m_eivec(),
- m_eivalues(),
- m_schur(),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_matX()
- {}
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa ComplexEigenSolver()
- */
- ComplexEigenSolver(Index size)
- : m_eivec(size, size),
- m_eivalues(size),
- m_schur(size),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_matX(size, size)
- {}
-
- /** \brief Constructor; computes eigendecomposition of given matrix.
- *
- * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
- * \param[in] computeEigenvectors If true, both the eigenvectors and the
- * eigenvalues are computed; if false, only the eigenvalues are
- * computed.
- *
- * This constructor calls compute() to compute the eigendecomposition.
- */
- ComplexEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
- : m_eivec(matrix.rows(),matrix.cols()),
- m_eivalues(matrix.cols()),
- m_schur(matrix.rows()),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_matX(matrix.rows(),matrix.cols())
- {
- compute(matrix, computeEigenvectors);
- }
-
- /** \brief Returns the eigenvectors of given matrix.
- *
- * \returns A const reference to the matrix whose columns are the eigenvectors.
- *
- * \pre Either the constructor
- * ComplexEigenSolver(const MatrixType& matrix, bool) or the member
- * function compute(const MatrixType& matrix, bool) has been called before
- * to compute the eigendecomposition of a matrix, and
- * \p computeEigenvectors was set to true (the default).
- *
- * This function returns a matrix whose columns are the eigenvectors. Column
- * \f$ k \f$ is an eigenvector corresponding to eigenvalue number \f$ k
- * \f$ as returned by eigenvalues(). The eigenvectors are normalized to
- * have (Euclidean) norm equal to one. The matrix returned by this
- * function is the matrix \f$ V \f$ in the eigendecomposition \f$ A = V D
- * V^{-1} \f$, if it exists.
- *
- * Example: \include ComplexEigenSolver_eigenvectors.cpp
- * Output: \verbinclude ComplexEigenSolver_eigenvectors.out
- */
- const EigenvectorType& eigenvectors() const
- {
- eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
- return m_eivec;
- }
-
- /** \brief Returns the eigenvalues of given matrix.
- *
- * \returns A const reference to the column vector containing the eigenvalues.
- *
- * \pre Either the constructor
- * ComplexEigenSolver(const MatrixType& matrix, bool) or the member
- * function compute(const MatrixType& matrix, bool) has been called before
- * to compute the eigendecomposition of a matrix.
- *
- * This function returns a column vector containing the
- * eigenvalues. Eigenvalues are repeated according to their
- * algebraic multiplicity, so there are as many eigenvalues as
- * rows in the matrix. The eigenvalues are not sorted in any particular
- * order.
- *
- * Example: \include ComplexEigenSolver_eigenvalues.cpp
- * Output: \verbinclude ComplexEigenSolver_eigenvalues.out
- */
- const EigenvalueType& eigenvalues() const
- {
- eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
- return m_eivalues;
- }
-
- /** \brief Computes eigendecomposition of given matrix.
- *
- * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
- * \param[in] computeEigenvectors If true, both the eigenvectors and the
- * eigenvalues are computed; if false, only the eigenvalues are
- * computed.
- * \returns Reference to \c *this
- *
- * This function computes the eigenvalues of the complex matrix \p matrix.
- * The eigenvalues() function can be used to retrieve them. If
- * \p computeEigenvectors is true, then the eigenvectors are also computed
- * and can be retrieved by calling eigenvectors().
- *
- * The matrix is first reduced to Schur form using the
- * ComplexSchur class. The Schur decomposition is then used to
- * compute the eigenvalues and eigenvectors.
- *
- * The cost of the computation is dominated by the cost of the
- * Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$
- * is the size of the matrix.
- *
- * Example: \include ComplexEigenSolver_compute.cpp
- * Output: \verbinclude ComplexEigenSolver_compute.out
- */
- ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
- return m_schur.info();
- }
-
- /** \brief Sets the maximum number of iterations allowed. */
- ComplexEigenSolver& setMaxIterations(Index maxIters)
- {
- m_schur.setMaxIterations(maxIters);
- return *this;
- }
-
- /** \brief Returns the maximum number of iterations. */
- Index getMaxIterations()
- {
- return m_schur.getMaxIterations();
- }
-
- protected:
- EigenvectorType m_eivec;
- EigenvalueType m_eivalues;
- ComplexSchur<MatrixType> m_schur;
- bool m_isInitialized;
- bool m_eigenvectorsOk;
- EigenvectorType m_matX;
-
- private:
- void doComputeEigenvectors(const RealScalar& matrixnorm);
- void sortEigenvalues(bool computeEigenvectors);
-};
-
-
-template<typename MatrixType>
-ComplexEigenSolver<MatrixType>&
-ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
-{
- // this code is inspired from Jampack
- eigen_assert(matrix.cols() == matrix.rows());
-
- // Do a complex Schur decomposition, A = U T U^*
- // The eigenvalues are on the diagonal of T.
- m_schur.compute(matrix, computeEigenvectors);
-
- if(m_schur.info() == Success)
- {
- m_eivalues = m_schur.matrixT().diagonal();
- if(computeEigenvectors)
- doComputeEigenvectors(matrix.norm());
- sortEigenvalues(computeEigenvectors);
- }
-
- m_isInitialized = true;
- m_eigenvectorsOk = computeEigenvectors;
- return *this;
-}
-
-
-template<typename MatrixType>
-void ComplexEigenSolver<MatrixType>::doComputeEigenvectors(const RealScalar& matrixnorm)
-{
- const Index n = m_eivalues.size();
-
- // Compute X such that T = X D X^(-1), where D is the diagonal of T.
- // The matrix X is unit triangular.
- m_matX = EigenvectorType::Zero(n, n);
- for(Index k=n-1 ; k>=0 ; k--)
- {
- m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0);
- // Compute X(i,k) using the (i,k) entry of the equation X T = D X
- for(Index i=k-1 ; i>=0 ; i--)
- {
- m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k);
- if(k-i-1>0)
- m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value();
- ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k);
- if(z==ComplexScalar(0))
- {
- // If the i-th and k-th eigenvalue are equal, then z equals 0.
- // Use a small value instead, to prevent division by zero.
- numext::real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm;
- }
- m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z;
- }
- }
-
- // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1)
- m_eivec.noalias() = m_schur.matrixU() * m_matX;
- // .. and normalize the eigenvectors
- for(Index k=0 ; k<n ; k++)
- {
- m_eivec.col(k).normalize();
- }
-}
-
-
-template<typename MatrixType>
-void ComplexEigenSolver<MatrixType>::sortEigenvalues(bool computeEigenvectors)
-{
- const Index n = m_eivalues.size();
- for (Index i=0; i<n; i++)
- {
- Index k;
- m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k);
- if (k != 0)
- {
- k += i;
- std::swap(m_eivalues[k],m_eivalues[i]);
- if(computeEigenvectors)
- m_eivec.col(i).swap(m_eivec.col(k));
- }
- }
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_COMPLEX_EIGEN_SOLVER_H
diff --git a/src/Eigen/src/Eigenvalues/ComplexSchur.h b/src/Eigen/src/Eigenvalues/ComplexSchur.h
deleted file mode 100644
index 89e6cad..0000000
--- a/src/Eigen/src/Eigenvalues/ComplexSchur.h
+++ /dev/null
@@ -1,456 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Claire Maurice
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COMPLEX_SCHUR_H
-#define EIGEN_COMPLEX_SCHUR_H
-
-#include "./HessenbergDecomposition.h"
-
-namespace Eigen {
-
-namespace internal {
-template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
-}
-
-/** \eigenvalues_module \ingroup Eigenvalues_Module
- *
- *
- * \class ComplexSchur
- *
- * \brief Performs a complex Schur decomposition of a real or complex square matrix
- *
- * \tparam _MatrixType the type of the matrix of which we are
- * computing the Schur decomposition; this is expected to be an
- * instantiation of the Matrix class template.
- *
- * Given a real or complex square matrix A, this class computes the
- * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary
- * complex matrix, and T is a complex upper triangular matrix. The
- * diagonal of the matrix T corresponds to the eigenvalues of the
- * matrix A.
- *
- * Call the function compute() to compute the Schur decomposition of
- * a given matrix. Alternatively, you can use the
- * ComplexSchur(const MatrixType&, bool) constructor which computes
- * the Schur decomposition at construction time. Once the
- * decomposition is computed, you can use the matrixU() and matrixT()
- * functions to retrieve the matrices U and V in the decomposition.
- *
- * \note This code is inspired from Jampack
- *
- * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver
- */
-template<typename _MatrixType> class ComplexSchur
-{
- public:
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
-
- /** \brief Scalar type for matrices of type \p _MatrixType. */
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
-
- /** \brief Complex scalar type for \p _MatrixType.
- *
- * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
- * \c float or \c double) and just \c Scalar if #Scalar is
- * complex.
- */
- typedef std::complex<RealScalar> ComplexScalar;
-
- /** \brief Type for the matrices in the Schur decomposition.
- *
- * This is a square matrix with entries of type #ComplexScalar.
- * The size is the same as the size of \p _MatrixType.
- */
- typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;
-
- /** \brief Default constructor.
- *
- * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed.
- *
- * The default constructor is useful in cases in which the user
- * intends to perform decompositions via compute(). The \p size
- * parameter is only used as a hint. It is not an error to give a
- * wrong \p size, but it may impair performance.
- *
- * \sa compute() for an example.
- */
- ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
- : m_matT(size,size),
- m_matU(size,size),
- m_hess(size),
- m_isInitialized(false),
- m_matUisUptodate(false),
- m_maxIters(-1)
- {}
-
- /** \brief Constructor; computes Schur decomposition of given matrix.
- *
- * \param[in] matrix Square matrix whose Schur decomposition is to be computed.
- * \param[in] computeU If true, both T and U are computed; if false, only T is computed.
- *
- * This constructor calls compute() to compute the Schur decomposition.
- *
- * \sa matrixT() and matrixU() for examples.
- */
- ComplexSchur(const MatrixType& matrix, bool computeU = true)
- : m_matT(matrix.rows(),matrix.cols()),
- m_matU(matrix.rows(),matrix.cols()),
- m_hess(matrix.rows()),
- m_isInitialized(false),
- m_matUisUptodate(false),
- m_maxIters(-1)
- {
- compute(matrix, computeU);
- }
-
- /** \brief Returns the unitary matrix in the Schur decomposition.
- *
- * \returns A const reference to the matrix U.
- *
- * It is assumed that either the constructor
- * ComplexSchur(const MatrixType& matrix, bool computeU) or the
- * member function compute(const MatrixType& matrix, bool computeU)
- * has been called before to compute the Schur decomposition of a
- * matrix, and that \p computeU was set to true (the default
- * value).
- *
- * Example: \include ComplexSchur_matrixU.cpp
- * Output: \verbinclude ComplexSchur_matrixU.out
- */
- const ComplexMatrixType& matrixU() const
- {
- eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
- eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
- return m_matU;
- }
-
- /** \brief Returns the triangular matrix in the Schur decomposition.
- *
- * \returns A const reference to the matrix T.
- *
- * It is assumed that either the constructor
- * ComplexSchur(const MatrixType& matrix, bool computeU) or the
- * member function compute(const MatrixType& matrix, bool computeU)
- * has been called before to compute the Schur decomposition of a
- * matrix.
- *
- * Note that this function returns a plain square matrix. If you want to reference
- * only the upper triangular part, use:
- * \code schur.matrixT().triangularView<Upper>() \endcode
- *
- * Example: \include ComplexSchur_matrixT.cpp
- * Output: \verbinclude ComplexSchur_matrixT.out
- */
- const ComplexMatrixType& matrixT() const
- {
- eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
- return m_matT;
- }
-
- /** \brief Computes Schur decomposition of given matrix.
- *
- * \param[in] matrix Square matrix whose Schur decomposition is to be computed.
- * \param[in] computeU If true, both T and U are computed; if false, only T is computed.
-
- * \returns Reference to \c *this
- *
- * The Schur decomposition is computed by first reducing the
- * matrix to Hessenberg form using the class
- * HessenbergDecomposition. The Hessenberg matrix is then reduced
- * to triangular form by performing QR iterations with a single
- * shift. The cost of computing the Schur decomposition depends
- * on the number of iterations; as a rough guide, it may be taken
- * on the number of iterations; as a rough guide, it may be taken
- * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops
- * if \a computeU is false.
- *
- * Example: \include ComplexSchur_compute.cpp
- * Output: \verbinclude ComplexSchur_compute.out
- *
- * \sa compute(const MatrixType&, bool, Index)
- */
- ComplexSchur& compute(const MatrixType& matrix, bool computeU = true);
-
- /** \brief Compute Schur decomposition from a given Hessenberg matrix
- * \param[in] matrixH Matrix in Hessenberg form H
- * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
- * \param computeU Computes the matriX U of the Schur vectors
- * \return Reference to \c *this
- *
- * This routine assumes that the matrix is already reduced in Hessenberg form matrixH
- * using either the class HessenbergDecomposition or another mean.
- * It computes the upper quasi-triangular matrix T of the Schur decomposition of H
- * When computeU is true, this routine computes the matrix U such that
- * A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
- *
- * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
- * is not available, the user should give an identity matrix (Q.setIdentity())
- *
- * \sa compute(const MatrixType&, bool)
- */
- template<typename HessMatrixType, typename OrthMatrixType>
- ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU=true);
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
- return m_info;
- }
-
- /** \brief Sets the maximum number of iterations allowed.
- *
- * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
- * of the matrix.
- */
- ComplexSchur& setMaxIterations(Index maxIters)
- {
- m_maxIters = maxIters;
- return *this;
- }
-
- /** \brief Returns the maximum number of iterations. */
- Index getMaxIterations()
- {
- return m_maxIters;
- }
-
- /** \brief Maximum number of iterations per row.
- *
- * If not otherwise specified, the maximum number of iterations is this number times the size of the
- * matrix. It is currently set to 30.
- */
- static const int m_maxIterationsPerRow = 30;
-
- protected:
- ComplexMatrixType m_matT, m_matU;
- HessenbergDecomposition<MatrixType> m_hess;
- ComputationInfo m_info;
- bool m_isInitialized;
- bool m_matUisUptodate;
- Index m_maxIters;
-
- private:
- bool subdiagonalEntryIsNeglegible(Index i);
- ComplexScalar computeShift(Index iu, Index iter);
- void reduceToTriangularForm(bool computeU);
- friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
-};
-
-/** If m_matT(i+1,i) is neglegible in floating point arithmetic
- * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and
- * return true, else return false. */
-template<typename MatrixType>
-inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
-{
- RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1));
- RealScalar sd = numext::norm1(m_matT.coeff(i+1,i));
- if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
- {
- m_matT.coeffRef(i+1,i) = ComplexScalar(0);
- return true;
- }
- return false;
-}
-
-
-/** Compute the shift in the current QR iteration. */
-template<typename MatrixType>
-typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
-{
- using std::abs;
- if (iter == 10 || iter == 20)
- {
- // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
- return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2)));
- }
-
- // compute the shift as one of the eigenvalues of t, the 2x2
- // diagonal block on the bottom of the active submatrix
- Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
- RealScalar normt = t.cwiseAbs().sum();
- t /= normt; // the normalization by sf is to avoid under/overflow
-
- ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
- ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
- ComplexScalar disc = sqrt(c*c + RealScalar(4)*b);
- ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
- ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
- ComplexScalar eival1 = (trace + disc) / RealScalar(2);
- ComplexScalar eival2 = (trace - disc) / RealScalar(2);
-
- if(numext::norm1(eival1) > numext::norm1(eival2))
- eival2 = det / eival1;
- else
- eival1 = det / eival2;
-
- // choose the eigenvalue closest to the bottom entry of the diagonal
- if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1)))
- return normt * eival1;
- else
- return normt * eival2;
-}
-
-
-template<typename MatrixType>
-ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
-{
- m_matUisUptodate = false;
- eigen_assert(matrix.cols() == matrix.rows());
-
- if(matrix.cols() == 1)
- {
- m_matT = matrix.template cast<ComplexScalar>();
- if(computeU) m_matU = ComplexMatrixType::Identity(1,1);
- m_info = Success;
- m_isInitialized = true;
- m_matUisUptodate = computeU;
- return *this;
- }
-
- internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix, computeU);
- computeFromHessenberg(m_matT, m_matU, computeU);
- return *this;
-}
-
-template<typename MatrixType>
-template<typename HessMatrixType, typename OrthMatrixType>
-ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
-{
- m_matT = matrixH;
- if(computeU)
- m_matU = matrixQ;
- reduceToTriangularForm(computeU);
- return *this;
-}
-namespace internal {
-
-/* Reduce given matrix to Hessenberg form */
-template<typename MatrixType, bool IsComplex>
-struct complex_schur_reduce_to_hessenberg
-{
- // this is the implementation for the case IsComplex = true
- static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
- {
- _this.m_hess.compute(matrix);
- _this.m_matT = _this.m_hess.matrixH();
- if(computeU) _this.m_matU = _this.m_hess.matrixQ();
- }
-};
-
-template<typename MatrixType>
-struct complex_schur_reduce_to_hessenberg<MatrixType, false>
-{
- static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
- {
- typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
-
- // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
- _this.m_hess.compute(matrix);
- _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
- if(computeU)
- {
- // This may cause an allocation which seems to be avoidable
- MatrixType Q = _this.m_hess.matrixQ();
- _this.m_matU = Q.template cast<ComplexScalar>();
- }
- }
-};
-
-} // end namespace internal
-
-// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
-template<typename MatrixType>
-void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
-{
- Index maxIters = m_maxIters;
- if (maxIters == -1)
- maxIters = m_maxIterationsPerRow * m_matT.rows();
-
- // The matrix m_matT is divided in three parts.
- // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
- // Rows il,...,iu is the part we are working on (the active submatrix).
- // Rows iu+1,...,end are already brought in triangular form.
- Index iu = m_matT.cols() - 1;
- Index il;
- Index iter = 0; // number of iterations we are working on the (iu,iu) element
- Index totalIter = 0; // number of iterations for whole matrix
-
- while(true)
- {
- // find iu, the bottom row of the active submatrix
- while(iu > 0)
- {
- if(!subdiagonalEntryIsNeglegible(iu-1)) break;
- iter = 0;
- --iu;
- }
-
- // if iu is zero then we are done; the whole matrix is triangularized
- if(iu==0) break;
-
- // if we spent too many iterations, we give up
- iter++;
- totalIter++;
- if(totalIter > maxIters) break;
-
- // find il, the top row of the active submatrix
- il = iu-1;
- while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
- {
- --il;
- }
-
- /* perform the QR step using Givens rotations. The first rotation
- creates a bulge; the (il+2,il) element becomes nonzero. This
- bulge is chased down to the bottom of the active submatrix. */
-
- ComplexScalar shift = computeShift(iu, iter);
- JacobiRotation<ComplexScalar> rot;
- rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
- m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
- m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
- if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
-
- for(Index i=il+1 ; i<iu ; i++)
- {
- rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
- m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
- m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
- m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
- if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
- }
- }
-
- if(totalIter <= maxIters)
- m_info = Success;
- else
- m_info = NoConvergence;
-
- m_isInitialized = true;
- m_matUisUptodate = computeU;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_COMPLEX_SCHUR_H
diff --git a/src/Eigen/src/Eigenvalues/ComplexSchur_MKL.h b/src/Eigen/src/Eigenvalues/ComplexSchur_MKL.h
deleted file mode 100644
index 91496ae..0000000
--- a/src/Eigen/src/Eigenvalues/ComplexSchur_MKL.h
+++ /dev/null
@@ -1,94 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * Complex Schur needed to complex unsymmetrical eigenvalues/eigenvectors.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_COMPLEX_SCHUR_MKL_H
-#define EIGEN_COMPLEX_SCHUR_MKL_H
-
-#include "Eigen/src/Core/util/MKL_support.h"
-
-namespace Eigen {
-
-/** \internal Specialization for the data types supported by MKL */
-
-#define EIGEN_MKL_SCHUR_COMPLEX(EIGTYPE, MKLTYPE, MKLPREFIX, MKLPREFIX_U, EIGCOLROW, MKLCOLROW) \
-template<> inline \
-ComplexSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
-ComplexSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW>& matrix, bool computeU) \
-{ \
- typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> MatrixType; \
- typedef MatrixType::Scalar Scalar; \
- typedef MatrixType::RealScalar RealScalar; \
- typedef std::complex<RealScalar> ComplexScalar; \
-\
- eigen_assert(matrix.cols() == matrix.rows()); \
-\
- m_matUisUptodate = false; \
- if(matrix.cols() == 1) \
- { \
- m_matT = matrix.cast<ComplexScalar>(); \
- if(computeU) m_matU = ComplexMatrixType::Identity(1,1); \
- m_info = Success; \
- m_isInitialized = true; \
- m_matUisUptodate = computeU; \
- return *this; \
- } \
- lapack_int n = matrix.cols(), sdim, info; \
- lapack_int lda = matrix.outerStride(); \
- lapack_int matrix_order = MKLCOLROW; \
- char jobvs, sort='N'; \
- LAPACK_##MKLPREFIX_U##_SELECT1 select = 0; \
- jobvs = (computeU) ? 'V' : 'N'; \
- m_matU.resize(n, n); \
- lapack_int ldvs = m_matU.outerStride(); \
- m_matT = matrix; \
- Matrix<EIGTYPE, Dynamic, Dynamic> w; \
- w.resize(n, 1);\
- info = LAPACKE_##MKLPREFIX##gees( matrix_order, jobvs, sort, select, n, (MKLTYPE*)m_matT.data(), lda, &sdim, (MKLTYPE*)w.data(), (MKLTYPE*)m_matU.data(), ldvs ); \
- if(info == 0) \
- m_info = Success; \
- else \
- m_info = NoConvergence; \
-\
- m_isInitialized = true; \
- m_matUisUptodate = computeU; \
- return *this; \
-\
-}
-
-EIGEN_MKL_SCHUR_COMPLEX(dcomplex, MKL_Complex16, z, Z, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_SCHUR_COMPLEX(scomplex, MKL_Complex8, c, C, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_SCHUR_COMPLEX(dcomplex, MKL_Complex16, z, Z, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_MKL_SCHUR_COMPLEX(scomplex, MKL_Complex8, c, C, RowMajor, LAPACK_ROW_MAJOR)
-
-} // end namespace Eigen
-
-#endif // EIGEN_COMPLEX_SCHUR_MKL_H
diff --git a/src/Eigen/src/Eigenvalues/EigenSolver.h b/src/Eigen/src/Eigenvalues/EigenSolver.h
deleted file mode 100644
index 6e71506..0000000
--- a/src/Eigen/src/Eigenvalues/EigenSolver.h
+++ /dev/null
@@ -1,598 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_EIGENSOLVER_H
-#define EIGEN_EIGENSOLVER_H
-
-#include "./RealSchur.h"
-
-namespace Eigen {
-
-/** \eigenvalues_module \ingroup Eigenvalues_Module
- *
- *
- * \class EigenSolver
- *
- * \brief Computes eigenvalues and eigenvectors of general matrices
- *
- * \tparam _MatrixType the type of the matrix of which we are computing the
- * eigendecomposition; this is expected to be an instantiation of the Matrix
- * class template. Currently, only real matrices are supported.
- *
- * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
- * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$. If
- * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
- * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
- * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
- * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition.
- *
- * The eigenvalues and eigenvectors of a matrix may be complex, even when the
- * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D
- * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the
- * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to
- * have blocks of the form
- * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f]
- * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal. These
- * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call
- * this variant of the eigendecomposition the pseudo-eigendecomposition.
- *
- * Call the function compute() to compute the eigenvalues and eigenvectors of
- * a given matrix. Alternatively, you can use the
- * EigenSolver(const MatrixType&, bool) constructor which computes the
- * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
- * eigenvectors are computed, they can be retrieved with the eigenvalues() and
- * eigenvectors() functions. The pseudoEigenvalueMatrix() and
- * pseudoEigenvectors() methods allow the construction of the
- * pseudo-eigendecomposition.
- *
- * The documentation for EigenSolver(const MatrixType&, bool) contains an
- * example of the typical use of this class.
- *
- * \note The implementation is adapted from
- * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
- * Their code is based on EISPACK.
- *
- * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
- */
-template<typename _MatrixType> class EigenSolver
-{
- public:
-
- /** \brief Synonym for the template parameter \p _MatrixType. */
- typedef _MatrixType MatrixType;
-
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
-
- /** \brief Scalar type for matrices of type #MatrixType. */
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
-
- /** \brief Complex scalar type for #MatrixType.
- *
- * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
- * \c float or \c double) and just \c Scalar if #Scalar is
- * complex.
- */
- typedef std::complex<RealScalar> ComplexScalar;
-
- /** \brief Type for vector of eigenvalues as returned by eigenvalues().
- *
- * This is a column vector with entries of type #ComplexScalar.
- * The length of the vector is the size of #MatrixType.
- */
- typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
-
- /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
- *
- * This is a square matrix with entries of type #ComplexScalar.
- * The size is the same as the size of #MatrixType.
- */
- typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
-
- /** \brief Default constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
- *
- * \sa compute() for an example.
- */
- EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {}
-
- /** \brief Default constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa EigenSolver()
- */
- EigenSolver(Index size)
- : m_eivec(size, size),
- m_eivalues(size),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_realSchur(size),
- m_matT(size, size),
- m_tmp(size)
- {}
-
- /** \brief Constructor; computes eigendecomposition of given matrix.
- *
- * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
- * \param[in] computeEigenvectors If true, both the eigenvectors and the
- * eigenvalues are computed; if false, only the eigenvalues are
- * computed.
- *
- * This constructor calls compute() to compute the eigenvalues
- * and eigenvectors.
- *
- * Example: \include EigenSolver_EigenSolver_MatrixType.cpp
- * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out
- *
- * \sa compute()
- */
- EigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
- : m_eivec(matrix.rows(), matrix.cols()),
- m_eivalues(matrix.cols()),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_realSchur(matrix.cols()),
- m_matT(matrix.rows(), matrix.cols()),
- m_tmp(matrix.cols())
- {
- compute(matrix, computeEigenvectors);
- }
-
- /** \brief Returns the eigenvectors of given matrix.
- *
- * \returns %Matrix whose columns are the (possibly complex) eigenvectors.
- *
- * \pre Either the constructor
- * EigenSolver(const MatrixType&,bool) or the member function
- * compute(const MatrixType&, bool) has been called before, and
- * \p computeEigenvectors was set to true (the default).
- *
- * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
- * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
- * eigenvectors are normalized to have (Euclidean) norm equal to one. The
- * matrix returned by this function is the matrix \f$ V \f$ in the
- * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists.
- *
- * Example: \include EigenSolver_eigenvectors.cpp
- * Output: \verbinclude EigenSolver_eigenvectors.out
- *
- * \sa eigenvalues(), pseudoEigenvectors()
- */
- EigenvectorsType eigenvectors() const;
-
- /** \brief Returns the pseudo-eigenvectors of given matrix.
- *
- * \returns Const reference to matrix whose columns are the pseudo-eigenvectors.
- *
- * \pre Either the constructor
- * EigenSolver(const MatrixType&,bool) or the member function
- * compute(const MatrixType&, bool) has been called before, and
- * \p computeEigenvectors was set to true (the default).
- *
- * The real matrix \f$ V \f$ returned by this function and the
- * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix()
- * satisfy \f$ AV = VD \f$.
- *
- * Example: \include EigenSolver_pseudoEigenvectors.cpp
- * Output: \verbinclude EigenSolver_pseudoEigenvectors.out
- *
- * \sa pseudoEigenvalueMatrix(), eigenvectors()
- */
- const MatrixType& pseudoEigenvectors() const
- {
- eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
- return m_eivec;
- }
-
- /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition.
- *
- * \returns A block-diagonal matrix.
- *
- * \pre Either the constructor
- * EigenSolver(const MatrixType&,bool) or the member function
- * compute(const MatrixType&, bool) has been called before.
- *
- * The matrix \f$ D \f$ returned by this function is real and
- * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2
- * blocks of the form
- * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$.
- * These blocks are not sorted in any particular order.
- * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by
- * pseudoEigenvectors() satisfy \f$ AV = VD \f$.
- *
- * \sa pseudoEigenvectors() for an example, eigenvalues()
- */
- MatrixType pseudoEigenvalueMatrix() const;
-
- /** \brief Returns the eigenvalues of given matrix.
- *
- * \returns A const reference to the column vector containing the eigenvalues.
- *
- * \pre Either the constructor
- * EigenSolver(const MatrixType&,bool) or the member function
- * compute(const MatrixType&, bool) has been called before.
- *
- * The eigenvalues are repeated according to their algebraic multiplicity,
- * so there are as many eigenvalues as rows in the matrix. The eigenvalues
- * are not sorted in any particular order.
- *
- * Example: \include EigenSolver_eigenvalues.cpp
- * Output: \verbinclude EigenSolver_eigenvalues.out
- *
- * \sa eigenvectors(), pseudoEigenvalueMatrix(),
- * MatrixBase::eigenvalues()
- */
- const EigenvalueType& eigenvalues() const
- {
- eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
- return m_eivalues;
- }
-
- /** \brief Computes eigendecomposition of given matrix.
- *
- * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
- * \param[in] computeEigenvectors If true, both the eigenvectors and the
- * eigenvalues are computed; if false, only the eigenvalues are
- * computed.
- * \returns Reference to \c *this
- *
- * This function computes the eigenvalues of the real matrix \p matrix.
- * The eigenvalues() function can be used to retrieve them. If
- * \p computeEigenvectors is true, then the eigenvectors are also computed
- * and can be retrieved by calling eigenvectors().
- *
- * The matrix is first reduced to real Schur form using the RealSchur
- * class. The Schur decomposition is then used to compute the eigenvalues
- * and eigenvectors.
- *
- * The cost of the computation is dominated by the cost of the
- * Schur decomposition, which is very approximately \f$ 25n^3 \f$
- * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors
- * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false.
- *
- * This method reuses of the allocated data in the EigenSolver object.
- *
- * Example: \include EigenSolver_compute.cpp
- * Output: \verbinclude EigenSolver_compute.out
- */
- EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
-
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
- return m_realSchur.info();
- }
-
- /** \brief Sets the maximum number of iterations allowed. */
- EigenSolver& setMaxIterations(Index maxIters)
- {
- m_realSchur.setMaxIterations(maxIters);
- return *this;
- }
-
- /** \brief Returns the maximum number of iterations. */
- Index getMaxIterations()
- {
- return m_realSchur.getMaxIterations();
- }
-
- private:
- void doComputeEigenvectors();
-
- protected:
- MatrixType m_eivec;
- EigenvalueType m_eivalues;
- bool m_isInitialized;
- bool m_eigenvectorsOk;
- RealSchur<MatrixType> m_realSchur;
- MatrixType m_matT;
-
- typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
- ColumnVectorType m_tmp;
-};
-
-template<typename MatrixType>
-MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
-{
- eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
- Index n = m_eivalues.rows();
- MatrixType matD = MatrixType::Zero(n,n);
- for (Index i=0; i<n; ++i)
- {
- if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i))))
- matD.coeffRef(i,i) = numext::real(m_eivalues.coeff(i));
- else
- {
- matD.template block<2,2>(i,i) << numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)),
- -numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i));
- ++i;
- }
- }
- return matD;
-}
-
-template<typename MatrixType>
-typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const
-{
- eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
- Index n = m_eivec.cols();
- EigenvectorsType matV(n,n);
- for (Index j=0; j<n; ++j)
- {
- if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j))) || j+1==n)
- {
- // we have a real eigen value
- matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
- matV.col(j).normalize();
- }
- else
- {
- // we have a pair of complex eigen values
- for (Index i=0; i<n; ++i)
- {
- matV.coeffRef(i,j) = ComplexScalar(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1));
- matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
- }
- matV.col(j).normalize();
- matV.col(j+1).normalize();
- ++j;
- }
- }
- return matV;
-}
-
-template<typename MatrixType>
-EigenSolver<MatrixType>&
-EigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
-{
- using std::sqrt;
- using std::abs;
- eigen_assert(matrix.cols() == matrix.rows());
-
- // Reduce to real Schur form.
- m_realSchur.compute(matrix, computeEigenvectors);
-
- if (m_realSchur.info() == Success)
- {
- m_matT = m_realSchur.matrixT();
- if (computeEigenvectors)
- m_eivec = m_realSchur.matrixU();
-
- // Compute eigenvalues from matT
- m_eivalues.resize(matrix.cols());
- Index i = 0;
- while (i < matrix.cols())
- {
- if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0))
- {
- m_eivalues.coeffRef(i) = m_matT.coeff(i, i);
- ++i;
- }
- else
- {
- Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1));
- Scalar z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1)));
- m_eivalues.coeffRef(i) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z);
- m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z);
- i += 2;
- }
- }
-
- // Compute eigenvectors.
- if (computeEigenvectors)
- doComputeEigenvectors();
- }
-
- m_isInitialized = true;
- m_eigenvectorsOk = computeEigenvectors;
-
- return *this;
-}
-
-// Complex scalar division.
-template<typename Scalar>
-std::complex<Scalar> cdiv(const Scalar& xr, const Scalar& xi, const Scalar& yr, const Scalar& yi)
-{
- using std::abs;
- Scalar r,d;
- if (abs(yr) > abs(yi))
- {
- r = yi/yr;
- d = yr + r*yi;
- return std::complex<Scalar>((xr + r*xi)/d, (xi - r*xr)/d);
- }
- else
- {
- r = yr/yi;
- d = yi + r*yr;
- return std::complex<Scalar>((r*xr + xi)/d, (r*xi - xr)/d);
- }
-}
-
-
-template<typename MatrixType>
-void EigenSolver<MatrixType>::doComputeEigenvectors()
-{
- using std::abs;
- const Index size = m_eivec.cols();
- const Scalar eps = NumTraits<Scalar>::epsilon();
-
- // inefficient! this is already computed in RealSchur
- Scalar norm(0);
- for (Index j = 0; j < size; ++j)
- {
- norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum();
- }
-
- // Backsubstitute to find vectors of upper triangular form
- if (norm == 0.0)
- {
- return;
- }
-
- for (Index n = size-1; n >= 0; n--)
- {
- Scalar p = m_eivalues.coeff(n).real();
- Scalar q = m_eivalues.coeff(n).imag();
-
- // Scalar vector
- if (q == Scalar(0))
- {
- Scalar lastr(0), lastw(0);
- Index l = n;
-
- m_matT.coeffRef(n,n) = 1.0;
- for (Index i = n-1; i >= 0; i--)
- {
- Scalar w = m_matT.coeff(i,i) - p;
- Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
-
- if (m_eivalues.coeff(i).imag() < 0.0)
- {
- lastw = w;
- lastr = r;
- }
- else
- {
- l = i;
- if (m_eivalues.coeff(i).imag() == 0.0)
- {
- if (w != 0.0)
- m_matT.coeffRef(i,n) = -r / w;
- else
- m_matT.coeffRef(i,n) = -r / (eps * norm);
- }
- else // Solve real equations
- {
- Scalar x = m_matT.coeff(i,i+1);
- Scalar y = m_matT.coeff(i+1,i);
- Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
- Scalar t = (x * lastr - lastw * r) / denom;
- m_matT.coeffRef(i,n) = t;
- if (abs(x) > abs(lastw))
- m_matT.coeffRef(i+1,n) = (-r - w * t) / x;
- else
- m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw;
- }
-
- // Overflow control
- Scalar t = abs(m_matT.coeff(i,n));
- if ((eps * t) * t > Scalar(1))
- m_matT.col(n).tail(size-i) /= t;
- }
- }
- }
- else if (q < Scalar(0) && n > 0) // Complex vector
- {
- Scalar lastra(0), lastsa(0), lastw(0);
- Index l = n-1;
-
- // Last vector component imaginary so matrix is triangular
- if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n)))
- {
- m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1);
- m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1);
- }
- else
- {
- std::complex<Scalar> cc = cdiv<Scalar>(0.0,-m_matT.coeff(n-1,n),m_matT.coeff(n-1,n-1)-p,q);
- m_matT.coeffRef(n-1,n-1) = numext::real(cc);
- m_matT.coeffRef(n-1,n) = numext::imag(cc);
- }
- m_matT.coeffRef(n,n-1) = 0.0;
- m_matT.coeffRef(n,n) = 1.0;
- for (Index i = n-2; i >= 0; i--)
- {
- Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1));
- Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
- Scalar w = m_matT.coeff(i,i) - p;
-
- if (m_eivalues.coeff(i).imag() < 0.0)
- {
- lastw = w;
- lastra = ra;
- lastsa = sa;
- }
- else
- {
- l = i;
- if (m_eivalues.coeff(i).imag() == RealScalar(0))
- {
- std::complex<Scalar> cc = cdiv(-ra,-sa,w,q);
- m_matT.coeffRef(i,n-1) = numext::real(cc);
- m_matT.coeffRef(i,n) = numext::imag(cc);
- }
- else
- {
- // Solve complex equations
- Scalar x = m_matT.coeff(i,i+1);
- Scalar y = m_matT.coeff(i+1,i);
- Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
- Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
- if ((vr == 0.0) && (vi == 0.0))
- vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw));
-
- std::complex<Scalar> cc = cdiv(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra,vr,vi);
- m_matT.coeffRef(i,n-1) = numext::real(cc);
- m_matT.coeffRef(i,n) = numext::imag(cc);
- if (abs(x) > (abs(lastw) + abs(q)))
- {
- m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x;
- m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x;
- }
- else
- {
- cc = cdiv(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n),lastw,q);
- m_matT.coeffRef(i+1,n-1) = numext::real(cc);
- m_matT.coeffRef(i+1,n) = numext::imag(cc);
- }
- }
-
- // Overflow control
- using std::max;
- Scalar t = (max)(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n)));
- if ((eps * t) * t > Scalar(1))
- m_matT.block(i, n-1, size-i, 2) /= t;
-
- }
- }
-
- // We handled a pair of complex conjugate eigenvalues, so need to skip them both
- n--;
- }
- else
- {
- eigen_assert(0 && "Internal bug in EigenSolver"); // this should not happen
- }
- }
-
- // Back transformation to get eigenvectors of original matrix
- for (Index j = size-1; j >= 0; j--)
- {
- m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1);
- m_eivec.col(j) = m_tmp;
- }
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_EIGENSOLVER_H
diff --git a/src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h b/src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
deleted file mode 100644
index dc240e1..0000000
--- a/src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
+++ /dev/null
@@ -1,341 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_GENERALIZEDEIGENSOLVER_H
-#define EIGEN_GENERALIZEDEIGENSOLVER_H
-
-#include "./RealQZ.h"
-
-namespace Eigen {
-
-/** \eigenvalues_module \ingroup Eigenvalues_Module
- *
- *
- * \class GeneralizedEigenSolver
- *
- * \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices
- *
- * \tparam _MatrixType the type of the matrices of which we are computing the
- * eigen-decomposition; this is expected to be an instantiation of the Matrix
- * class template. Currently, only real matrices are supported.
- *
- * The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars
- * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$. If
- * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
- * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
- * B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
- * have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition.
- *
- * The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the
- * matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is
- * singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$
- * and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero,
- * then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that:
- * \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A = u_i^T B \f$ where \f$ u_i \f$ is
- * called the left eigenvector.
- *
- * Call the function compute() to compute the generalized eigenvalues and eigenvectors of
- * a given matrix pair. Alternatively, you can use the
- * GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the
- * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
- * eigenvectors are computed, they can be retrieved with the eigenvalues() and
- * eigenvectors() functions.
- *
- * Here is an usage example of this class:
- * Example: \include GeneralizedEigenSolver.cpp
- * Output: \verbinclude GeneralizedEigenSolver.out
- *
- * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
- */
-template<typename _MatrixType> class GeneralizedEigenSolver
-{
- public:
-
- /** \brief Synonym for the template parameter \p _MatrixType. */
- typedef _MatrixType MatrixType;
-
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
-
- /** \brief Scalar type for matrices of type #MatrixType. */
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
-
- /** \brief Complex scalar type for #MatrixType.
- *
- * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
- * \c float or \c double) and just \c Scalar if #Scalar is
- * complex.
- */
- typedef std::complex<RealScalar> ComplexScalar;
-
- /** \brief Type for vector of real scalar values eigenvalues as returned by betas().
- *
- * This is a column vector with entries of type #Scalar.
- * The length of the vector is the size of #MatrixType.
- */
- typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType;
-
- /** \brief Type for vector of complex scalar values eigenvalues as returned by betas().
- *
- * This is a column vector with entries of type #ComplexScalar.
- * The length of the vector is the size of #MatrixType.
- */
- typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType;
-
- /** \brief Expression type for the eigenvalues as returned by eigenvalues().
- */
- typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType;
-
- /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
- *
- * This is a square matrix with entries of type #ComplexScalar.
- * The size is the same as the size of #MatrixType.
- */
- typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
-
- /** \brief Default constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
- *
- * \sa compute() for an example.
- */
- GeneralizedEigenSolver() : m_eivec(), m_alphas(), m_betas(), m_isInitialized(false), m_realQZ(), m_matS(), m_tmp() {}
-
- /** \brief Default constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa GeneralizedEigenSolver()
- */
- GeneralizedEigenSolver(Index size)
- : m_eivec(size, size),
- m_alphas(size),
- m_betas(size),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_realQZ(size),
- m_matS(size, size),
- m_tmp(size)
- {}
-
- /** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
- *
- * \param[in] A Square matrix whose eigendecomposition is to be computed.
- * \param[in] B Square matrix whose eigendecomposition is to be computed.
- * \param[in] computeEigenvectors If true, both the eigenvectors and the
- * eigenvalues are computed; if false, only the eigenvalues are computed.
- *
- * This constructor calls compute() to compute the generalized eigenvalues
- * and eigenvectors.
- *
- * \sa compute()
- */
- GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true)
- : m_eivec(A.rows(), A.cols()),
- m_alphas(A.cols()),
- m_betas(A.cols()),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_realQZ(A.cols()),
- m_matS(A.rows(), A.cols()),
- m_tmp(A.cols())
- {
- compute(A, B, computeEigenvectors);
- }
-
- /* \brief Returns the computed generalized eigenvectors.
- *
- * \returns %Matrix whose columns are the (possibly complex) eigenvectors.
- *
- * \pre Either the constructor
- * GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function
- * compute(const MatrixType&, const MatrixType& bool) has been called before, and
- * \p computeEigenvectors was set to true (the default).
- *
- * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
- * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
- * eigenvectors are normalized to have (Euclidean) norm equal to one. The
- * matrix returned by this function is the matrix \f$ V \f$ in the
- * generalized eigendecomposition \f$ A = B V D V^{-1} \f$, if it exists.
- *
- * \sa eigenvalues()
- */
-// EigenvectorsType eigenvectors() const;
-
- /** \brief Returns an expression of the computed generalized eigenvalues.
- *
- * \returns An expression of the column vector containing the eigenvalues.
- *
- * It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode
- * Not that betas might contain zeros. It is therefore not recommended to use this function,
- * but rather directly deal with the alphas and betas vectors.
- *
- * \pre Either the constructor
- * GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function
- * compute(const MatrixType&,const MatrixType&,bool) has been called before.
- *
- * The eigenvalues are repeated according to their algebraic multiplicity,
- * so there are as many eigenvalues as rows in the matrix. The eigenvalues
- * are not sorted in any particular order.
- *
- * \sa alphas(), betas(), eigenvectors()
- */
- EigenvalueType eigenvalues() const
- {
- eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
- return EigenvalueType(m_alphas,m_betas);
- }
-
- /** \returns A const reference to the vectors containing the alpha values
- *
- * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
- *
- * \sa betas(), eigenvalues() */
- ComplexVectorType alphas() const
- {
- eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
- return m_alphas;
- }
-
- /** \returns A const reference to the vectors containing the beta values
- *
- * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
- *
- * \sa alphas(), eigenvalues() */
- VectorType betas() const
- {
- eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
- return m_betas;
- }
-
- /** \brief Computes generalized eigendecomposition of given matrix.
- *
- * \param[in] A Square matrix whose eigendecomposition is to be computed.
- * \param[in] B Square matrix whose eigendecomposition is to be computed.
- * \param[in] computeEigenvectors If true, both the eigenvectors and the
- * eigenvalues are computed; if false, only the eigenvalues are
- * computed.
- * \returns Reference to \c *this
- *
- * This function computes the eigenvalues of the real matrix \p matrix.
- * The eigenvalues() function can be used to retrieve them. If
- * \p computeEigenvectors is true, then the eigenvectors are also computed
- * and can be retrieved by calling eigenvectors().
- *
- * The matrix is first reduced to real generalized Schur form using the RealQZ
- * class. The generalized Schur decomposition is then used to compute the eigenvalues
- * and eigenvectors.
- *
- * The cost of the computation is dominated by the cost of the
- * generalized Schur decomposition.
- *
- * This method reuses of the allocated data in the GeneralizedEigenSolver object.
- */
- GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true);
-
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
- return m_realQZ.info();
- }
-
- /** Sets the maximal number of iterations allowed.
- */
- GeneralizedEigenSolver& setMaxIterations(Index maxIters)
- {
- m_realQZ.setMaxIterations(maxIters);
- return *this;
- }
-
- protected:
- MatrixType m_eivec;
- ComplexVectorType m_alphas;
- VectorType m_betas;
- bool m_isInitialized;
- bool m_eigenvectorsOk;
- RealQZ<MatrixType> m_realQZ;
- MatrixType m_matS;
-
- typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
- ColumnVectorType m_tmp;
-};
-
-//template<typename MatrixType>
-//typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType GeneralizedEigenSolver<MatrixType>::eigenvectors() const
-//{
-// eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
-// eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
-// Index n = m_eivec.cols();
-// EigenvectorsType matV(n,n);
-// // TODO
-// return matV;
-//}
-
-template<typename MatrixType>
-GeneralizedEigenSolver<MatrixType>&
-GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
-{
- using std::sqrt;
- using std::abs;
- eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
-
- // Reduce to generalized real Schur form:
- // A = Q S Z and B = Q T Z
- m_realQZ.compute(A, B, computeEigenvectors);
-
- if (m_realQZ.info() == Success)
- {
- m_matS = m_realQZ.matrixS();
- if (computeEigenvectors)
- m_eivec = m_realQZ.matrixZ().transpose();
-
- // Compute eigenvalues from matS
- m_alphas.resize(A.cols());
- m_betas.resize(A.cols());
- Index i = 0;
- while (i < A.cols())
- {
- if (i == A.cols() - 1 || m_matS.coeff(i+1, i) == Scalar(0))
- {
- m_alphas.coeffRef(i) = m_matS.coeff(i, i);
- m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
- ++i;
- }
- else
- {
- Scalar p = Scalar(0.5) * (m_matS.coeff(i, i) - m_matS.coeff(i+1, i+1));
- Scalar z = sqrt(abs(p * p + m_matS.coeff(i+1, i) * m_matS.coeff(i, i+1)));
- m_alphas.coeffRef(i) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, z);
- m_alphas.coeffRef(i+1) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, -z);
-
- m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
- m_betas.coeffRef(i+1) = m_realQZ.matrixT().coeff(i,i);
- i += 2;
- }
- }
- }
-
- m_isInitialized = true;
- m_eigenvectorsOk = false;//computeEigenvectors;
-
- return *this;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_GENERALIZEDEIGENSOLVER_H
diff --git a/src/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h b/src/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h
deleted file mode 100644
index 07bf1ea..0000000
--- a/src/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h
+++ /dev/null
@@ -1,227 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
-#define EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
-
-#include "./Tridiagonalization.h"
-
-namespace Eigen {
-
-/** \eigenvalues_module \ingroup Eigenvalues_Module
- *
- *
- * \class GeneralizedSelfAdjointEigenSolver
- *
- * \brief Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem
- *
- * \tparam _MatrixType the type of the matrix of which we are computing the
- * eigendecomposition; this is expected to be an instantiation of the Matrix
- * class template.
- *
- * This class solves the generalized eigenvalue problem
- * \f$ Av = \lambda Bv \f$. In this case, the matrix \f$ A \f$ should be
- * selfadjoint and the matrix \f$ B \f$ should be positive definite.
- *
- * Only the \b lower \b triangular \b part of the input matrix is referenced.
- *
- * Call the function compute() to compute the eigenvalues and eigenvectors of
- * a given matrix. Alternatively, you can use the
- * GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
- * constructor which computes the eigenvalues and eigenvectors at construction time.
- * Once the eigenvalue and eigenvectors are computed, they can be retrieved with the eigenvalues()
- * and eigenvectors() functions.
- *
- * The documentation for GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
- * contains an example of the typical use of this class.
- *
- * \sa class SelfAdjointEigenSolver, class EigenSolver, class ComplexEigenSolver
- */
-template<typename _MatrixType>
-class GeneralizedSelfAdjointEigenSolver : public SelfAdjointEigenSolver<_MatrixType>
-{
- typedef SelfAdjointEigenSolver<_MatrixType> Base;
- public:
-
- typedef typename Base::Index Index;
- typedef _MatrixType MatrixType;
-
- /** \brief Default constructor for fixed-size matrices.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via compute(). This constructor
- * can only be used if \p _MatrixType is a fixed-size matrix; use
- * GeneralizedSelfAdjointEigenSolver(Index) for dynamic-size matrices.
- */
- GeneralizedSelfAdjointEigenSolver() : Base() {}
-
- /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
- *
- * \param [in] size Positive integer, size of the matrix whose
- * eigenvalues and eigenvectors will be computed.
- *
- * This constructor is useful for dynamic-size matrices, when the user
- * intends to perform decompositions via compute(). The \p size
- * parameter is only used as a hint. It is not an error to give a wrong
- * \p size, but it may impair performance.
- *
- * \sa compute() for an example
- */
- GeneralizedSelfAdjointEigenSolver(Index size)
- : Base(size)
- {}
-
- /** \brief Constructor; computes generalized eigendecomposition of given matrix pencil.
- *
- * \param[in] matA Selfadjoint matrix in matrix pencil.
- * Only the lower triangular part of the matrix is referenced.
- * \param[in] matB Positive-definite matrix in matrix pencil.
- * Only the lower triangular part of the matrix is referenced.
- * \param[in] options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}.
- * Default is #ComputeEigenvectors|#Ax_lBx.
- *
- * This constructor calls compute(const MatrixType&, const MatrixType&, int)
- * to compute the eigenvalues and (if requested) the eigenvectors of the
- * generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA the
- * selfadjoint matrix \f$ A \f$ and \a matB the positive definite matrix
- * \f$ B \f$. Each eigenvector \f$ x \f$ satisfies the property
- * \f$ x^* B x = 1 \f$. The eigenvectors are computed if
- * \a options contains ComputeEigenvectors.
- *
- * In addition, the two following variants can be solved via \p options:
- * - \c ABx_lx: \f$ ABx = \lambda x \f$
- * - \c BAx_lx: \f$ BAx = \lambda x \f$
- *
- * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp
- * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.out
- *
- * \sa compute(const MatrixType&, const MatrixType&, int)
- */
- GeneralizedSelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB,
- int options = ComputeEigenvectors|Ax_lBx)
- : Base(matA.cols())
- {
- compute(matA, matB, options);
- }
-
- /** \brief Computes generalized eigendecomposition of given matrix pencil.
- *
- * \param[in] matA Selfadjoint matrix in matrix pencil.
- * Only the lower triangular part of the matrix is referenced.
- * \param[in] matB Positive-definite matrix in matrix pencil.
- * Only the lower triangular part of the matrix is referenced.
- * \param[in] options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}.
- * Default is #ComputeEigenvectors|#Ax_lBx.
- *
- * \returns Reference to \c *this
- *
- * Accoring to \p options, this function computes eigenvalues and (if requested)
- * the eigenvectors of one of the following three generalized eigenproblems:
- * - \c Ax_lBx: \f$ Ax = \lambda B x \f$
- * - \c ABx_lx: \f$ ABx = \lambda x \f$
- * - \c BAx_lx: \f$ BAx = \lambda x \f$
- * with \a matA the selfadjoint matrix \f$ A \f$ and \a matB the positive definite
- * matrix \f$ B \f$.
- * In addition, each eigenvector \f$ x \f$ satisfies the property \f$ x^* B x = 1 \f$.
- *
- * The eigenvalues() function can be used to retrieve
- * the eigenvalues. If \p options contains ComputeEigenvectors, then the
- * eigenvectors are also computed and can be retrieved by calling
- * eigenvectors().
- *
- * The implementation uses LLT to compute the Cholesky decomposition
- * \f$ B = LL^* \f$ and computes the classical eigendecomposition
- * of the selfadjoint matrix \f$ L^{-1} A (L^*)^{-1} \f$ if \p options contains Ax_lBx
- * and of \f$ L^{*} A L \f$ otherwise. This solves the
- * generalized eigenproblem, because any solution of the generalized
- * eigenproblem \f$ Ax = \lambda B x \f$ corresponds to a solution
- * \f$ L^{-1} A (L^*)^{-1} (L^* x) = \lambda (L^* x) \f$ of the
- * eigenproblem for \f$ L^{-1} A (L^*)^{-1} \f$. Similar statements
- * can be made for the two other variants.
- *
- * Example: \include SelfAdjointEigenSolver_compute_MatrixType2.cpp
- * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType2.out
- *
- * \sa GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
- */
- GeneralizedSelfAdjointEigenSolver& compute(const MatrixType& matA, const MatrixType& matB,
- int options = ComputeEigenvectors|Ax_lBx);
-
- protected:
-
-};
-
-
-template<typename MatrixType>
-GeneralizedSelfAdjointEigenSolver<MatrixType>& GeneralizedSelfAdjointEigenSolver<MatrixType>::
-compute(const MatrixType& matA, const MatrixType& matB, int options)
-{
- eigen_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows());
- eigen_assert((options&~(EigVecMask|GenEigMask))==0
- && (options&EigVecMask)!=EigVecMask
- && ((options&GenEigMask)==0 || (options&GenEigMask)==Ax_lBx
- || (options&GenEigMask)==ABx_lx || (options&GenEigMask)==BAx_lx)
- && "invalid option parameter");
-
- bool computeEigVecs = ((options&EigVecMask)==0) || ((options&EigVecMask)==ComputeEigenvectors);
-
- // Compute the cholesky decomposition of matB = L L' = U'U
- LLT<MatrixType> cholB(matB);
-
- int type = (options&GenEigMask);
- if(type==0)
- type = Ax_lBx;
-
- if(type==Ax_lBx)
- {
- // compute C = inv(L) A inv(L')
- MatrixType matC = matA.template selfadjointView<Lower>();
- cholB.matrixL().template solveInPlace<OnTheLeft>(matC);
- cholB.matrixU().template solveInPlace<OnTheRight>(matC);
-
- Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly );
-
- // transform back the eigen vectors: evecs = inv(U) * evecs
- if(computeEigVecs)
- cholB.matrixU().solveInPlace(Base::m_eivec);
- }
- else if(type==ABx_lx)
- {
- // compute C = L' A L
- MatrixType matC = matA.template selfadjointView<Lower>();
- matC = matC * cholB.matrixL();
- matC = cholB.matrixU() * matC;
-
- Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly);
-
- // transform back the eigen vectors: evecs = inv(U) * evecs
- if(computeEigVecs)
- cholB.matrixU().solveInPlace(Base::m_eivec);
- }
- else if(type==BAx_lx)
- {
- // compute C = L' A L
- MatrixType matC = matA.template selfadjointView<Lower>();
- matC = matC * cholB.matrixL();
- matC = cholB.matrixU() * matC;
-
- Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly);
-
- // transform back the eigen vectors: evecs = L * evecs
- if(computeEigVecs)
- Base::m_eivec = cholB.matrixL() * Base::m_eivec;
- }
-
- return *this;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
diff --git a/src/Eigen/src/Eigenvalues/HessenbergDecomposition.h b/src/Eigen/src/Eigenvalues/HessenbergDecomposition.h
deleted file mode 100644
index 3db0c01..0000000
--- a/src/Eigen/src/Eigenvalues/HessenbergDecomposition.h
+++ /dev/null
@@ -1,373 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_HESSENBERGDECOMPOSITION_H
-#define EIGEN_HESSENBERGDECOMPOSITION_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename MatrixType> struct HessenbergDecompositionMatrixHReturnType;
-template<typename MatrixType>
-struct traits<HessenbergDecompositionMatrixHReturnType<MatrixType> >
-{
- typedef MatrixType ReturnType;
-};
-
-}
-
-/** \eigenvalues_module \ingroup Eigenvalues_Module
- *
- *
- * \class HessenbergDecomposition
- *
- * \brief Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation
- *
- * \tparam _MatrixType the type of the matrix of which we are computing the Hessenberg decomposition
- *
- * This class performs an Hessenberg decomposition of a matrix \f$ A \f$. In
- * the real case, the Hessenberg decomposition consists of an orthogonal
- * matrix \f$ Q \f$ and a Hessenberg matrix \f$ H \f$ such that \f$ A = Q H
- * Q^T \f$. An orthogonal matrix is a matrix whose inverse equals its
- * transpose (\f$ Q^{-1} = Q^T \f$). A Hessenberg matrix has zeros below the
- * subdiagonal, so it is almost upper triangular. The Hessenberg decomposition
- * of a complex matrix is \f$ A = Q H Q^* \f$ with \f$ Q \f$ unitary (that is,
- * \f$ Q^{-1} = Q^* \f$).
- *
- * Call the function compute() to compute the Hessenberg decomposition of a
- * given matrix. Alternatively, you can use the
- * HessenbergDecomposition(const MatrixType&) constructor which computes the
- * Hessenberg decomposition at construction time. Once the decomposition is
- * computed, you can use the matrixH() and matrixQ() functions to construct
- * the matrices H and Q in the decomposition.
- *
- * The documentation for matrixH() contains an example of the typical use of
- * this class.
- *
- * \sa class ComplexSchur, class Tridiagonalization, \ref QR_Module "QR Module"
- */
-template<typename _MatrixType> class HessenbergDecomposition
-{
- public:
-
- /** \brief Synonym for the template parameter \p _MatrixType. */
- typedef _MatrixType MatrixType;
-
- enum {
- Size = MatrixType::RowsAtCompileTime,
- SizeMinusOne = Size == Dynamic ? Dynamic : Size - 1,
- Options = MatrixType::Options,
- MaxSize = MatrixType::MaxRowsAtCompileTime,
- MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : MaxSize - 1
- };
-
- /** \brief Scalar type for matrices of type #MatrixType. */
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
-
- /** \brief Type for vector of Householder coefficients.
- *
- * This is column vector with entries of type #Scalar. The length of the
- * vector is one less than the size of #MatrixType, if it is a fixed-side
- * type.
- */
- typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType;
-
- /** \brief Return type of matrixQ() */
- typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType;
-
- typedef internal::HessenbergDecompositionMatrixHReturnType<MatrixType> MatrixHReturnType;
-
- /** \brief Default constructor; the decomposition will be computed later.
- *
- * \param [in] size The size of the matrix whose Hessenberg decomposition will be computed.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via compute(). The \p size parameter is only
- * used as a hint. It is not an error to give a wrong \p size, but it may
- * impair performance.
- *
- * \sa compute() for an example.
- */
- HessenbergDecomposition(Index size = Size==Dynamic ? 2 : Size)
- : m_matrix(size,size),
- m_temp(size),
- m_isInitialized(false)
- {
- if(size>1)
- m_hCoeffs.resize(size-1);
- }
-
- /** \brief Constructor; computes Hessenberg decomposition of given matrix.
- *
- * \param[in] matrix Square matrix whose Hessenberg decomposition is to be computed.
- *
- * This constructor calls compute() to compute the Hessenberg
- * decomposition.
- *
- * \sa matrixH() for an example.
- */
- HessenbergDecomposition(const MatrixType& matrix)
- : m_matrix(matrix),
- m_temp(matrix.rows()),
- m_isInitialized(false)
- {
- if(matrix.rows()<2)
- {
- m_isInitialized = true;
- return;
- }
- m_hCoeffs.resize(matrix.rows()-1,1);
- _compute(m_matrix, m_hCoeffs, m_temp);
- m_isInitialized = true;
- }
-
- /** \brief Computes Hessenberg decomposition of given matrix.
- *
- * \param[in] matrix Square matrix whose Hessenberg decomposition is to be computed.
- * \returns Reference to \c *this
- *
- * The Hessenberg decomposition is computed by bringing the columns of the
- * matrix successively in the required form using Householder reflections
- * (see, e.g., Algorithm 7.4.2 in Golub \& Van Loan, <i>%Matrix
- * Computations</i>). The cost is \f$ 10n^3/3 \f$ flops, where \f$ n \f$
- * denotes the size of the given matrix.
- *
- * This method reuses of the allocated data in the HessenbergDecomposition
- * object.
- *
- * Example: \include HessenbergDecomposition_compute.cpp
- * Output: \verbinclude HessenbergDecomposition_compute.out
- */
- HessenbergDecomposition& compute(const MatrixType& matrix)
- {
- m_matrix = matrix;
- if(matrix.rows()<2)
- {
- m_isInitialized = true;
- return *this;
- }
- m_hCoeffs.resize(matrix.rows()-1,1);
- _compute(m_matrix, m_hCoeffs, m_temp);
- m_isInitialized = true;
- return *this;
- }
-
- /** \brief Returns the Householder coefficients.
- *
- * \returns a const reference to the vector of Householder coefficients
- *
- * \pre Either the constructor HessenbergDecomposition(const MatrixType&)
- * or the member function compute(const MatrixType&) has been called
- * before to compute the Hessenberg decomposition of a matrix.
- *
- * The Householder coefficients allow the reconstruction of the matrix
- * \f$ Q \f$ in the Hessenberg decomposition from the packed data.
- *
- * \sa packedMatrix(), \ref Householder_Module "Householder module"
- */
- const CoeffVectorType& householderCoefficients() const
- {
- eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
- return m_hCoeffs;
- }
-
- /** \brief Returns the internal representation of the decomposition
- *
- * \returns a const reference to a matrix with the internal representation
- * of the decomposition.
- *
- * \pre Either the constructor HessenbergDecomposition(const MatrixType&)
- * or the member function compute(const MatrixType&) has been called
- * before to compute the Hessenberg decomposition of a matrix.
- *
- * The returned matrix contains the following information:
- * - the upper part and lower sub-diagonal represent the Hessenberg matrix H
- * - the rest of the lower part contains the Householder vectors that, combined with
- * Householder coefficients returned by householderCoefficients(),
- * allows to reconstruct the matrix Q as
- * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
- * Here, the matrices \f$ H_i \f$ are the Householder transformations
- * \f$ H_i = (I - h_i v_i v_i^T) \f$
- * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and
- * \f$ v_i \f$ is the Householder vector defined by
- * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$
- * with M the matrix returned by this function.
- *
- * See LAPACK for further details on this packed storage.
- *
- * Example: \include HessenbergDecomposition_packedMatrix.cpp
- * Output: \verbinclude HessenbergDecomposition_packedMatrix.out
- *
- * \sa householderCoefficients()
- */
- const MatrixType& packedMatrix() const
- {
- eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
- return m_matrix;
- }
-
- /** \brief Reconstructs the orthogonal matrix Q in the decomposition
- *
- * \returns object representing the matrix Q
- *
- * \pre Either the constructor HessenbergDecomposition(const MatrixType&)
- * or the member function compute(const MatrixType&) has been called
- * before to compute the Hessenberg decomposition of a matrix.
- *
- * This function returns a light-weight object of template class
- * HouseholderSequence. You can either apply it directly to a matrix or
- * you can convert it to a matrix of type #MatrixType.
- *
- * \sa matrixH() for an example, class HouseholderSequence
- */
- HouseholderSequenceType matrixQ() const
- {
- eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
- return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
- .setLength(m_matrix.rows() - 1)
- .setShift(1);
- }
-
- /** \brief Constructs the Hessenberg matrix H in the decomposition
- *
- * \returns expression object representing the matrix H
- *
- * \pre Either the constructor HessenbergDecomposition(const MatrixType&)
- * or the member function compute(const MatrixType&) has been called
- * before to compute the Hessenberg decomposition of a matrix.
- *
- * The object returned by this function constructs the Hessenberg matrix H
- * when it is assigned to a matrix or otherwise evaluated. The matrix H is
- * constructed from the packed matrix as returned by packedMatrix(): The
- * upper part (including the subdiagonal) of the packed matrix contains
- * the matrix H. It may sometimes be better to directly use the packed
- * matrix instead of constructing the matrix H.
- *
- * Example: \include HessenbergDecomposition_matrixH.cpp
- * Output: \verbinclude HessenbergDecomposition_matrixH.out
- *
- * \sa matrixQ(), packedMatrix()
- */
- MatrixHReturnType matrixH() const
- {
- eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
- return MatrixHReturnType(*this);
- }
-
- private:
-
- typedef Matrix<Scalar, 1, Size, Options | RowMajor, 1, MaxSize> VectorType;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp);
-
- protected:
- MatrixType m_matrix;
- CoeffVectorType m_hCoeffs;
- VectorType m_temp;
- bool m_isInitialized;
-};
-
-/** \internal
- * Performs a tridiagonal decomposition of \a matA in place.
- *
- * \param matA the input selfadjoint matrix
- * \param hCoeffs returned Householder coefficients
- *
- * The result is written in the lower triangular part of \a matA.
- *
- * Implemented from Golub's "%Matrix Computations", algorithm 8.3.1.
- *
- * \sa packedMatrix()
- */
-template<typename MatrixType>
-void HessenbergDecomposition<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp)
-{
- eigen_assert(matA.rows()==matA.cols());
- Index n = matA.rows();
- temp.resize(n);
- for (Index i = 0; i<n-1; ++i)
- {
- // let's consider the vector v = i-th column starting at position i+1
- Index remainingSize = n-i-1;
- RealScalar beta;
- Scalar h;
- matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
- matA.col(i).coeffRef(i+1) = beta;
- hCoeffs.coeffRef(i) = h;
-
- // Apply similarity transformation to remaining columns,
- // i.e., compute A = H A H'
-
- // A = H A
- matA.bottomRightCorner(remainingSize, remainingSize)
- .applyHouseholderOnTheLeft(matA.col(i).tail(remainingSize-1), h, &temp.coeffRef(0));
-
- // A = A H'
- matA.rightCols(remainingSize)
- .applyHouseholderOnTheRight(matA.col(i).tail(remainingSize-1).conjugate(), numext::conj(h), &temp.coeffRef(0));
- }
-}
-
-namespace internal {
-
-/** \eigenvalues_module \ingroup Eigenvalues_Module
- *
- *
- * \brief Expression type for return value of HessenbergDecomposition::matrixH()
- *
- * \tparam MatrixType type of matrix in the Hessenberg decomposition
- *
- * Objects of this type represent the Hessenberg matrix in the Hessenberg
- * decomposition of some matrix. The object holds a reference to the
- * HessenbergDecomposition class until the it is assigned or evaluated for
- * some other reason (the reference should remain valid during the life time
- * of this object). This class is the return type of
- * HessenbergDecomposition::matrixH(); there is probably no other use for this
- * class.
- */
-template<typename MatrixType> struct HessenbergDecompositionMatrixHReturnType
-: public ReturnByValue<HessenbergDecompositionMatrixHReturnType<MatrixType> >
-{
- typedef typename MatrixType::Index Index;
- public:
- /** \brief Constructor.
- *
- * \param[in] hess Hessenberg decomposition
- */
- HessenbergDecompositionMatrixHReturnType(const HessenbergDecomposition<MatrixType>& hess) : m_hess(hess) { }
-
- /** \brief Hessenberg matrix in decomposition.
- *
- * \param[out] result Hessenberg matrix in decomposition \p hess which
- * was passed to the constructor
- */
- template <typename ResultType>
- inline void evalTo(ResultType& result) const
- {
- result = m_hess.packedMatrix();
- Index n = result.rows();
- if (n>2)
- result.bottomLeftCorner(n-2, n-2).template triangularView<Lower>().setZero();
- }
-
- Index rows() const { return m_hess.packedMatrix().rows(); }
- Index cols() const { return m_hess.packedMatrix().cols(); }
-
- protected:
- const HessenbergDecomposition<MatrixType>& m_hess;
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_HESSENBERGDECOMPOSITION_H
diff --git a/src/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h b/src/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h
deleted file mode 100644
index 4fec8af..0000000
--- a/src/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h
+++ /dev/null
@@ -1,160 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIXBASEEIGENVALUES_H
-#define EIGEN_MATRIXBASEEIGENVALUES_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename Derived, bool IsComplex>
-struct eigenvalues_selector
-{
- // this is the implementation for the case IsComplex = true
- static inline typename MatrixBase<Derived>::EigenvaluesReturnType const
- run(const MatrixBase<Derived>& m)
- {
- typedef typename Derived::PlainObject PlainObject;
- PlainObject m_eval(m);
- return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues();
- }
-};
-
-template<typename Derived>
-struct eigenvalues_selector<Derived, false>
-{
- static inline typename MatrixBase<Derived>::EigenvaluesReturnType const
- run(const MatrixBase<Derived>& m)
- {
- typedef typename Derived::PlainObject PlainObject;
- PlainObject m_eval(m);
- return EigenSolver<PlainObject>(m_eval, false).eigenvalues();
- }
-};
-
-} // end namespace internal
-
-/** \brief Computes the eigenvalues of a matrix
- * \returns Column vector containing the eigenvalues.
- *
- * \eigenvalues_module
- * This function computes the eigenvalues with the help of the EigenSolver
- * class (for real matrices) or the ComplexEigenSolver class (for complex
- * matrices).
- *
- * The eigenvalues are repeated according to their algebraic multiplicity,
- * so there are as many eigenvalues as rows in the matrix.
- *
- * The SelfAdjointView class provides a better algorithm for selfadjoint
- * matrices.
- *
- * Example: \include MatrixBase_eigenvalues.cpp
- * Output: \verbinclude MatrixBase_eigenvalues.out
- *
- * \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(),
- * SelfAdjointView::eigenvalues()
- */
-template<typename Derived>
-inline typename MatrixBase<Derived>::EigenvaluesReturnType
-MatrixBase<Derived>::eigenvalues() const
-{
- typedef typename internal::traits<Derived>::Scalar Scalar;
- return internal::eigenvalues_selector<Derived, NumTraits<Scalar>::IsComplex>::run(derived());
-}
-
-/** \brief Computes the eigenvalues of a matrix
- * \returns Column vector containing the eigenvalues.
- *
- * \eigenvalues_module
- * This function computes the eigenvalues with the help of the
- * SelfAdjointEigenSolver class. The eigenvalues are repeated according to
- * their algebraic multiplicity, so there are as many eigenvalues as rows in
- * the matrix.
- *
- * Example: \include SelfAdjointView_eigenvalues.cpp
- * Output: \verbinclude SelfAdjointView_eigenvalues.out
- *
- * \sa SelfAdjointEigenSolver::eigenvalues(), MatrixBase::eigenvalues()
- */
-template<typename MatrixType, unsigned int UpLo>
-inline typename SelfAdjointView<MatrixType, UpLo>::EigenvaluesReturnType
-SelfAdjointView<MatrixType, UpLo>::eigenvalues() const
-{
- typedef typename SelfAdjointView<MatrixType, UpLo>::PlainObject PlainObject;
- PlainObject thisAsMatrix(*this);
- return SelfAdjointEigenSolver<PlainObject>(thisAsMatrix, false).eigenvalues();
-}
-
-
-
-/** \brief Computes the L2 operator norm
- * \returns Operator norm of the matrix.
- *
- * \eigenvalues_module
- * This function computes the L2 operator norm of a matrix, which is also
- * known as the spectral norm. The norm of a matrix \f$ A \f$ is defined to be
- * \f[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \f]
- * where the maximum is over all vectors and the norm on the right is the
- * Euclidean vector norm. The norm equals the largest singular value, which is
- * the square root of the largest eigenvalue of the positive semi-definite
- * matrix \f$ A^*A \f$.
- *
- * The current implementation uses the eigenvalues of \f$ A^*A \f$, as computed
- * by SelfAdjointView::eigenvalues(), to compute the operator norm of a
- * matrix. The SelfAdjointView class provides a better algorithm for
- * selfadjoint matrices.
- *
- * Example: \include MatrixBase_operatorNorm.cpp
- * Output: \verbinclude MatrixBase_operatorNorm.out
- *
- * \sa SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm()
- */
-template<typename Derived>
-inline typename MatrixBase<Derived>::RealScalar
-MatrixBase<Derived>::operatorNorm() const
-{
- using std::sqrt;
- typename Derived::PlainObject m_eval(derived());
- // FIXME if it is really guaranteed that the eigenvalues are already sorted,
- // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough.
- return sqrt((m_eval*m_eval.adjoint())
- .eval()
- .template selfadjointView<Lower>()
- .eigenvalues()
- .maxCoeff()
- );
-}
-
-/** \brief Computes the L2 operator norm
- * \returns Operator norm of the matrix.
- *
- * \eigenvalues_module
- * This function computes the L2 operator norm of a self-adjoint matrix. For a
- * self-adjoint matrix, the operator norm is the largest eigenvalue.
- *
- * The current implementation uses the eigenvalues of the matrix, as computed
- * by eigenvalues(), to compute the operator norm of the matrix.
- *
- * Example: \include SelfAdjointView_operatorNorm.cpp
- * Output: \verbinclude SelfAdjointView_operatorNorm.out
- *
- * \sa eigenvalues(), MatrixBase::operatorNorm()
- */
-template<typename MatrixType, unsigned int UpLo>
-inline typename SelfAdjointView<MatrixType, UpLo>::RealScalar
-SelfAdjointView<MatrixType, UpLo>::operatorNorm() const
-{
- return eigenvalues().cwiseAbs().maxCoeff();
-}
-
-} // end namespace Eigen
-
-#endif
diff --git a/src/Eigen/src/Eigenvalues/RealQZ.h b/src/Eigen/src/Eigenvalues/RealQZ.h
deleted file mode 100644
index 5706eee..0000000
--- a/src/Eigen/src/Eigenvalues/RealQZ.h
+++ /dev/null
@@ -1,624 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_REAL_QZ_H
-#define EIGEN_REAL_QZ_H
-
-namespace Eigen {
-
- /** \eigenvalues_module \ingroup Eigenvalues_Module
- *
- *
- * \class RealQZ
- *
- * \brief Performs a real QZ decomposition of a pair of square matrices
- *
- * \tparam _MatrixType the type of the matrix of which we are computing the
- * real QZ decomposition; this is expected to be an instantiation of the
- * Matrix class template.
- *
- * Given a real square matrices A and B, this class computes the real QZ
- * decomposition: \f$ A = Q S Z \f$, \f$ B = Q T Z \f$ where Q and Z are
- * real orthogonal matrixes, T is upper-triangular matrix, and S is upper
- * quasi-triangular matrix. An orthogonal matrix is a matrix whose
- * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
- * matrix is a block-triangular matrix whose diagonal consists of 1-by-1
- * blocks and 2-by-2 blocks where further reduction is impossible due to
- * complex eigenvalues.
- *
- * The eigenvalues of the pencil \f$ A - z B \f$ can be obtained from
- * 1x1 and 2x2 blocks on the diagonals of S and T.
- *
- * Call the function compute() to compute the real QZ decomposition of a
- * given pair of matrices. Alternatively, you can use the
- * RealQZ(const MatrixType& B, const MatrixType& B, bool computeQZ)
- * constructor which computes the real QZ decomposition at construction
- * time. Once the decomposition is computed, you can use the matrixS(),
- * matrixT(), matrixQ() and matrixZ() functions to retrieve the matrices
- * S, T, Q and Z in the decomposition. If computeQZ==false, some time
- * is saved by not computing matrices Q and Z.
- *
- * Example: \include RealQZ_compute.cpp
- * Output: \include RealQZ_compute.out
- *
- * \note The implementation is based on the algorithm in "Matrix Computations"
- * by Gene H. Golub and Charles F. Van Loan, and a paper "An algorithm for
- * generalized eigenvalue problems" by C.B.Moler and G.W.Stewart.
- *
- * \sa class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver
- */
-
- template<typename _MatrixType> class RealQZ
- {
- public:
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
- typedef typename MatrixType::Index Index;
-
- typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
- typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
-
- /** \brief Default constructor.
- *
- * \param [in] size Positive integer, size of the matrix whose QZ decomposition will be computed.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via compute(). The \p size parameter is only
- * used as a hint. It is not an error to give a wrong \p size, but it may
- * impair performance.
- *
- * \sa compute() for an example.
- */
- RealQZ(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) :
- m_S(size, size),
- m_T(size, size),
- m_Q(size, size),
- m_Z(size, size),
- m_workspace(size*2),
- m_maxIters(400),
- m_isInitialized(false)
- { }
-
- /** \brief Constructor; computes real QZ decomposition of given matrices
- *
- * \param[in] A Matrix A.
- * \param[in] B Matrix B.
- * \param[in] computeQZ If false, A and Z are not computed.
- *
- * This constructor calls compute() to compute the QZ decomposition.
- */
- RealQZ(const MatrixType& A, const MatrixType& B, bool computeQZ = true) :
- m_S(A.rows(),A.cols()),
- m_T(A.rows(),A.cols()),
- m_Q(A.rows(),A.cols()),
- m_Z(A.rows(),A.cols()),
- m_workspace(A.rows()*2),
- m_maxIters(400),
- m_isInitialized(false) {
- compute(A, B, computeQZ);
- }
-
- /** \brief Returns matrix Q in the QZ decomposition.
- *
- * \returns A const reference to the matrix Q.
- */
- const MatrixType& matrixQ() const {
- eigen_assert(m_isInitialized && "RealQZ is not initialized.");
- eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
- return m_Q;
- }
-
- /** \brief Returns matrix Z in the QZ decomposition.
- *
- * \returns A const reference to the matrix Z.
- */
- const MatrixType& matrixZ() const {
- eigen_assert(m_isInitialized && "RealQZ is not initialized.");
- eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
- return m_Z;
- }
-
- /** \brief Returns matrix S in the QZ decomposition.
- *
- * \returns A const reference to the matrix S.
- */
- const MatrixType& matrixS() const {
- eigen_assert(m_isInitialized && "RealQZ is not initialized.");
- return m_S;
- }
-
- /** \brief Returns matrix S in the QZ decomposition.
- *
- * \returns A const reference to the matrix S.
- */
- const MatrixType& matrixT() const {
- eigen_assert(m_isInitialized && "RealQZ is not initialized.");
- return m_T;
- }
-
- /** \brief Computes QZ decomposition of given matrix.
- *
- * \param[in] A Matrix A.
- * \param[in] B Matrix B.
- * \param[in] computeQZ If false, A and Z are not computed.
- * \returns Reference to \c *this
- */
- RealQZ& compute(const MatrixType& A, const MatrixType& B, bool computeQZ = true);
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "RealQZ is not initialized.");
- return m_info;
- }
-
- /** \brief Returns number of performed QR-like iterations.
- */
- Index iterations() const
- {
- eigen_assert(m_isInitialized && "RealQZ is not initialized.");
- return m_global_iter;
- }
-
- /** Sets the maximal number of iterations allowed to converge to one eigenvalue
- * or decouple the problem.
- */
- RealQZ& setMaxIterations(Index maxIters)
- {
- m_maxIters = maxIters;
- return *this;
- }
-
- private:
-
- MatrixType m_S, m_T, m_Q, m_Z;
- Matrix<Scalar,Dynamic,1> m_workspace;
- ComputationInfo m_info;
- Index m_maxIters;
- bool m_isInitialized;
- bool m_computeQZ;
- Scalar m_normOfT, m_normOfS;
- Index m_global_iter;
-
- typedef Matrix<Scalar,3,1> Vector3s;
- typedef Matrix<Scalar,2,1> Vector2s;
- typedef Matrix<Scalar,2,2> Matrix2s;
- typedef JacobiRotation<Scalar> JRs;
-
- void hessenbergTriangular();
- void computeNorms();
- Index findSmallSubdiagEntry(Index iu);
- Index findSmallDiagEntry(Index f, Index l);
- void splitOffTwoRows(Index i);
- void pushDownZero(Index z, Index f, Index l);
- void step(Index f, Index l, Index iter);
-
- }; // RealQZ
-
- /** \internal Reduces S and T to upper Hessenberg - triangular form */
- template<typename MatrixType>
- void RealQZ<MatrixType>::hessenbergTriangular()
- {
-
- const Index dim = m_S.cols();
-
- // perform QR decomposition of T, overwrite T with R, save Q
- HouseholderQR<MatrixType> qrT(m_T);
- m_T = qrT.matrixQR();
- m_T.template triangularView<StrictlyLower>().setZero();
- m_Q = qrT.householderQ();
- // overwrite S with Q* S
- m_S.applyOnTheLeft(m_Q.adjoint());
- // init Z as Identity
- if (m_computeQZ)
- m_Z = MatrixType::Identity(dim,dim);
- // reduce S to upper Hessenberg with Givens rotations
- for (Index j=0; j<=dim-3; j++) {
- for (Index i=dim-1; i>=j+2; i--) {
- JRs G;
- // kill S(i,j)
- if(m_S.coeff(i,j) != 0)
- {
- G.makeGivens(m_S.coeff(i-1,j), m_S.coeff(i,j), &m_S.coeffRef(i-1, j));
- m_S.coeffRef(i,j) = Scalar(0.0);
- m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint());
- m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint());
- }
- // update Q
- if (m_computeQZ)
- m_Q.applyOnTheRight(i-1,i,G);
- // kill T(i,i-1)
- if(m_T.coeff(i,i-1)!=Scalar(0))
- {
- G.makeGivens(m_T.coeff(i,i), m_T.coeff(i,i-1), &m_T.coeffRef(i,i));
- m_T.coeffRef(i,i-1) = Scalar(0.0);
- m_S.applyOnTheRight(i,i-1,G);
- m_T.topRows(i).applyOnTheRight(i,i-1,G);
- }
- // update Z
- if (m_computeQZ)
- m_Z.applyOnTheLeft(i,i-1,G.adjoint());
- }
- }
- }
-
- /** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */
- template<typename MatrixType>
- inline void RealQZ<MatrixType>::computeNorms()
- {
- const Index size = m_S.cols();
- m_normOfS = Scalar(0.0);
- m_normOfT = Scalar(0.0);
- for (Index j = 0; j < size; ++j)
- {
- m_normOfS += m_S.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
- m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum();
- }
- }
-
-
- /** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0) */
- template<typename MatrixType>
- inline typename MatrixType::Index RealQZ<MatrixType>::findSmallSubdiagEntry(Index iu)
- {
- using std::abs;
- Index res = iu;
- while (res > 0)
- {
- Scalar s = abs(m_S.coeff(res-1,res-1)) + abs(m_S.coeff(res,res));
- if (s == Scalar(0.0))
- s = m_normOfS;
- if (abs(m_S.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s)
- break;
- res--;
- }
- return res;
- }
-
- /** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1) */
- template<typename MatrixType>
- inline typename MatrixType::Index RealQZ<MatrixType>::findSmallDiagEntry(Index f, Index l)
- {
- using std::abs;
- Index res = l;
- while (res >= f) {
- if (abs(m_T.coeff(res,res)) <= NumTraits<Scalar>::epsilon() * m_normOfT)
- break;
- res--;
- }
- return res;
- }
-
- /** \internal decouple 2x2 diagonal block in rows i, i+1 if eigenvalues are real */
- template<typename MatrixType>
- inline void RealQZ<MatrixType>::splitOffTwoRows(Index i)
- {
- using std::abs;
- using std::sqrt;
- const Index dim=m_S.cols();
- if (abs(m_S.coeff(i+1,i)==Scalar(0)))
- return;
- Index z = findSmallDiagEntry(i,i+1);
- if (z==i-1)
- {
- // block of (S T^{-1})
- Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView<Upper>().
- template solve<OnTheRight>(m_S.template block<2,2>(i,i));
- Scalar p = Scalar(0.5)*(STi(0,0)-STi(1,1));
- Scalar q = p*p + STi(1,0)*STi(0,1);
- if (q>=0) {
- Scalar z = sqrt(q);
- // one QR-like iteration for ABi - lambda I
- // is enough - when we know exact eigenvalue in advance,
- // convergence is immediate
- JRs G;
- if (p>=0)
- G.makeGivens(p + z, STi(1,0));
- else
- G.makeGivens(p - z, STi(1,0));
- m_S.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint());
- m_T.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint());
- // update Q
- if (m_computeQZ)
- m_Q.applyOnTheRight(i,i+1,G);
-
- G.makeGivens(m_T.coeff(i+1,i+1), m_T.coeff(i+1,i));
- m_S.topRows(i+2).applyOnTheRight(i+1,i,G);
- m_T.topRows(i+2).applyOnTheRight(i+1,i,G);
- // update Z
- if (m_computeQZ)
- m_Z.applyOnTheLeft(i+1,i,G.adjoint());
-
- m_S.coeffRef(i+1,i) = Scalar(0.0);
- m_T.coeffRef(i+1,i) = Scalar(0.0);
- }
- }
- else
- {
- pushDownZero(z,i,i+1);
- }
- }
-
- /** \internal use zero in T(z,z) to zero S(l,l-1), working in block f..l */
- template<typename MatrixType>
- inline void RealQZ<MatrixType>::pushDownZero(Index z, Index f, Index l)
- {
- JRs G;
- const Index dim = m_S.cols();
- for (Index zz=z; zz<l; zz++)
- {
- // push 0 down
- Index firstColS = zz>f ? (zz-1) : zz;
- G.makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1));
- m_S.rightCols(dim-firstColS).applyOnTheLeft(zz,zz+1,G.adjoint());
- m_T.rightCols(dim-zz).applyOnTheLeft(zz,zz+1,G.adjoint());
- m_T.coeffRef(zz+1,zz+1) = Scalar(0.0);
- // update Q
- if (m_computeQZ)
- m_Q.applyOnTheRight(zz,zz+1,G);
- // kill S(zz+1, zz-1)
- if (zz>f)
- {
- G.makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1));
- m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G);
- m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G);
- m_S.coeffRef(zz+1,zz-1) = Scalar(0.0);
- // update Z
- if (m_computeQZ)
- m_Z.applyOnTheLeft(zz,zz-1,G.adjoint());
- }
- }
- // finally kill S(l,l-1)
- G.makeGivens(m_S.coeff(l,l), m_S.coeff(l,l-1));
- m_S.applyOnTheRight(l,l-1,G);
- m_T.applyOnTheRight(l,l-1,G);
- m_S.coeffRef(l,l-1)=Scalar(0.0);
- // update Z
- if (m_computeQZ)
- m_Z.applyOnTheLeft(l,l-1,G.adjoint());
- }
-
- /** \internal QR-like iterative step for block f..l */
- template<typename MatrixType>
- inline void RealQZ<MatrixType>::step(Index f, Index l, Index iter)
- {
- using std::abs;
- const Index dim = m_S.cols();
-
- // x, y, z
- Scalar x, y, z;
- if (iter==10)
- {
- // Wilkinson ad hoc shift
- const Scalar
- a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1),
- a21=m_S.coeff(f+1,f+0), a22=m_S.coeff(f+1,f+1), a32=m_S.coeff(f+2,f+1),
- b12=m_T.coeff(f+0,f+1),
- b11i=Scalar(1.0)/m_T.coeff(f+0,f+0),
- b22i=Scalar(1.0)/m_T.coeff(f+1,f+1),
- a87=m_S.coeff(l-1,l-2),
- a98=m_S.coeff(l-0,l-1),
- b77i=Scalar(1.0)/m_T.coeff(l-2,l-2),
- b88i=Scalar(1.0)/m_T.coeff(l-1,l-1);
- Scalar ss = abs(a87*b77i) + abs(a98*b88i),
- lpl = Scalar(1.5)*ss,
- ll = ss*ss;
- x = ll + a11*a11*b11i*b11i - lpl*a11*b11i + a12*a21*b11i*b22i
- - a11*a21*b12*b11i*b11i*b22i;
- y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i
- - a21*a21*b12*b11i*b11i*b22i;
- z = a21*a32*b11i*b22i;
- }
- else if (iter==16)
- {
- // another exceptional shift
- x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) /
- (m_T.coeff(l-1,l-1)*m_T.coeff(l,l));
- y = m_S.coeff(f+1,f)/m_T.coeff(f,f);
- z = 0;
- }
- else if (iter>23 && !(iter%8))
- {
- // extremely exceptional shift
- x = internal::random<Scalar>(-1.0,1.0);
- y = internal::random<Scalar>(-1.0,1.0);
- z = internal::random<Scalar>(-1.0,1.0);
- }
- else
- {
- // Compute the shifts: (x,y,z,0...) = (AB^-1 - l1 I) (AB^-1 - l2 I) e1
- // where l1 and l2 are the eigenvalues of the 2x2 matrix C = U V^-1 where
- // U and V are 2x2 bottom right sub matrices of A and B. Thus:
- // = AB^-1AB^-1 + l1 l2 I - (l1+l2)(AB^-1)
- // = AB^-1AB^-1 + det(M) - tr(M)(AB^-1)
- // Since we are only interested in having x, y, z with a correct ratio, we have:
- const Scalar
- a11 = m_S.coeff(f,f), a12 = m_S.coeff(f,f+1),
- a21 = m_S.coeff(f+1,f), a22 = m_S.coeff(f+1,f+1),
- a32 = m_S.coeff(f+2,f+1),
-
- a88 = m_S.coeff(l-1,l-1), a89 = m_S.coeff(l-1,l),
- a98 = m_S.coeff(l,l-1), a99 = m_S.coeff(l,l),
-
- b11 = m_T.coeff(f,f), b12 = m_T.coeff(f,f+1),
- b22 = m_T.coeff(f+1,f+1),
-
- b88 = m_T.coeff(l-1,l-1), b89 = m_T.coeff(l-1,l),
- b99 = m_T.coeff(l,l);
-
- x = ( (a88/b88 - a11/b11)*(a99/b99 - a11/b11) - (a89/b99)*(a98/b88) + (a98/b88)*(b89/b99)*(a11/b11) ) * (b11/a21)
- + a12/b22 - (a11/b11)*(b12/b22);
- y = (a22/b22-a11/b11) - (a21/b11)*(b12/b22) - (a88/b88-a11/b11) - (a99/b99-a11/b11) + (a98/b88)*(b89/b99);
- z = a32/b22;
- }
-
- JRs G;
-
- for (Index k=f; k<=l-2; k++)
- {
- // variables for Householder reflections
- Vector2s essential2;
- Scalar tau, beta;
-
- Vector3s hr(x,y,z);
-
- // Q_k to annihilate S(k+1,k-1) and S(k+2,k-1)
- hr.makeHouseholderInPlace(tau, beta);
- essential2 = hr.template bottomRows<2>();
- Index fc=(std::max)(k-1,Index(0)); // first col to update
- m_S.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
- m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
- if (m_computeQZ)
- m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data());
- if (k>f)
- m_S.coeffRef(k+2,k-1) = m_S.coeffRef(k+1,k-1) = Scalar(0.0);
-
- // Z_{k1} to annihilate T(k+2,k+1) and T(k+2,k)
- hr << m_T.coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1);
- hr.makeHouseholderInPlace(tau, beta);
- essential2 = hr.template bottomRows<2>();
- {
- Index lr = (std::min)(k+4,dim); // last row to update
- Map<Matrix<Scalar,Dynamic,1> > tmp(m_workspace.data(),lr);
- // S
- tmp = m_S.template middleCols<2>(k).topRows(lr) * essential2;
- tmp += m_S.col(k+2).head(lr);
- m_S.col(k+2).head(lr) -= tau*tmp;
- m_S.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
- // T
- tmp = m_T.template middleCols<2>(k).topRows(lr) * essential2;
- tmp += m_T.col(k+2).head(lr);
- m_T.col(k+2).head(lr) -= tau*tmp;
- m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
- }
- if (m_computeQZ)
- {
- // Z
- Map<Matrix<Scalar,1,Dynamic> > tmp(m_workspace.data(),dim);
- tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k));
- tmp += m_Z.row(k+2);
- m_Z.row(k+2) -= tau*tmp;
- m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp);
- }
- m_T.coeffRef(k+2,k) = m_T.coeffRef(k+2,k+1) = Scalar(0.0);
-
- // Z_{k2} to annihilate T(k+1,k)
- G.makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k));
- m_S.applyOnTheRight(k+1,k,G);
- m_T.applyOnTheRight(k+1,k,G);
- // update Z
- if (m_computeQZ)
- m_Z.applyOnTheLeft(k+1,k,G.adjoint());
- m_T.coeffRef(k+1,k) = Scalar(0.0);
-
- // update x,y,z
- x = m_S.coeff(k+1,k);
- y = m_S.coeff(k+2,k);
- if (k < l-2)
- z = m_S.coeff(k+3,k);
- } // loop over k
-
- // Q_{n-1} to annihilate y = S(l,l-2)
- G.makeGivens(x,y);
- m_S.applyOnTheLeft(l-1,l,G.adjoint());
- m_T.applyOnTheLeft(l-1,l,G.adjoint());
- if (m_computeQZ)
- m_Q.applyOnTheRight(l-1,l,G);
- m_S.coeffRef(l,l-2) = Scalar(0.0);
-
- // Z_{n-1} to annihilate T(l,l-1)
- G.makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1));
- m_S.applyOnTheRight(l,l-1,G);
- m_T.applyOnTheRight(l,l-1,G);
- if (m_computeQZ)
- m_Z.applyOnTheLeft(l,l-1,G.adjoint());
- m_T.coeffRef(l,l-1) = Scalar(0.0);
- }
-
-
- template<typename MatrixType>
- RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ)
- {
-
- const Index dim = A_in.cols();
-
- eigen_assert (A_in.rows()==dim && A_in.cols()==dim
- && B_in.rows()==dim && B_in.cols()==dim
- && "Need square matrices of the same dimension");
-
- m_isInitialized = true;
- m_computeQZ = computeQZ;
- m_S = A_in; m_T = B_in;
- m_workspace.resize(dim*2);
- m_global_iter = 0;
-
- // entrance point: hessenberg triangular decomposition
- hessenbergTriangular();
- // compute L1 vector norms of T, S into m_normOfS, m_normOfT
- computeNorms();
-
- Index l = dim-1,
- f,
- local_iter = 0;
-
- while (l>0 && local_iter<m_maxIters)
- {
- f = findSmallSubdiagEntry(l);
- // now rows and columns f..l (including) decouple from the rest of the problem
- if (f>0) m_S.coeffRef(f,f-1) = Scalar(0.0);
- if (f == l) // One root found
- {
- l--;
- local_iter = 0;
- }
- else if (f == l-1) // Two roots found
- {
- splitOffTwoRows(f);
- l -= 2;
- local_iter = 0;
- }
- else // No convergence yet
- {
- // if there's zero on diagonal of T, we can isolate an eigenvalue with Givens rotations
- Index z = findSmallDiagEntry(f,l);
- if (z>=f)
- {
- // zero found
- pushDownZero(z,f,l);
- }
- else
- {
- // We are sure now that S.block(f,f, l-f+1,l-f+1) is underuced upper-Hessenberg
- // and T.block(f,f, l-f+1,l-f+1) is invertible uper-triangular, which allows to
- // apply a QR-like iteration to rows and columns f..l.
- step(f,l, local_iter);
- local_iter++;
- m_global_iter++;
- }
- }
- }
- // check if we converged before reaching iterations limit
- m_info = (local_iter<m_maxIters) ? Success : NoConvergence;
- return *this;
- } // end compute
-
-} // end namespace Eigen
-
-#endif //EIGEN_REAL_QZ
diff --git a/src/Eigen/src/Eigenvalues/RealSchur.h b/src/Eigen/src/Eigenvalues/RealSchur.h
deleted file mode 100644
index 64d1363..0000000
--- a/src/Eigen/src/Eigenvalues/RealSchur.h
+++ /dev/null
@@ -1,529 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_REAL_SCHUR_H
-#define EIGEN_REAL_SCHUR_H
-
-#include "./HessenbergDecomposition.h"
-
-namespace Eigen {
-
-/** \eigenvalues_module \ingroup Eigenvalues_Module
- *
- *
- * \class RealSchur
- *
- * \brief Performs a real Schur decomposition of a square matrix
- *
- * \tparam _MatrixType the type of the matrix of which we are computing the
- * real Schur decomposition; this is expected to be an instantiation of the
- * Matrix class template.
- *
- * Given a real square matrix A, this class computes the real Schur
- * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and
- * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose
- * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
- * matrix is a block-triangular matrix whose diagonal consists of 1-by-1
- * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the
- * blocks on the diagonal of T are the same as the eigenvalues of the matrix
- * A, and thus the real Schur decomposition is used in EigenSolver to compute
- * the eigendecomposition of a matrix.
- *
- * Call the function compute() to compute the real Schur decomposition of a
- * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool)
- * constructor which computes the real Schur decomposition at construction
- * time. Once the decomposition is computed, you can use the matrixU() and
- * matrixT() functions to retrieve the matrices U and T in the decomposition.
- *
- * The documentation of RealSchur(const MatrixType&, bool) contains an example
- * of the typical use of this class.
- *
- * \note The implementation is adapted from
- * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
- * Their code is based on EISPACK.
- *
- * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver
- */
-template<typename _MatrixType> class RealSchur
-{
- public:
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
- typedef typename MatrixType::Index Index;
-
- typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
- typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
-
- /** \brief Default constructor.
- *
- * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via compute(). The \p size parameter is only
- * used as a hint. It is not an error to give a wrong \p size, but it may
- * impair performance.
- *
- * \sa compute() for an example.
- */
- RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
- : m_matT(size, size),
- m_matU(size, size),
- m_workspaceVector(size),
- m_hess(size),
- m_isInitialized(false),
- m_matUisUptodate(false),
- m_maxIters(-1)
- { }
-
- /** \brief Constructor; computes real Schur decomposition of given matrix.
- *
- * \param[in] matrix Square matrix whose Schur decomposition is to be computed.
- * \param[in] computeU If true, both T and U are computed; if false, only T is computed.
- *
- * This constructor calls compute() to compute the Schur decomposition.
- *
- * Example: \include RealSchur_RealSchur_MatrixType.cpp
- * Output: \verbinclude RealSchur_RealSchur_MatrixType.out
- */
- RealSchur(const MatrixType& matrix, bool computeU = true)
- : m_matT(matrix.rows(),matrix.cols()),
- m_matU(matrix.rows(),matrix.cols()),
- m_workspaceVector(matrix.rows()),
- m_hess(matrix.rows()),
- m_isInitialized(false),
- m_matUisUptodate(false),
- m_maxIters(-1)
- {
- compute(matrix, computeU);
- }
-
- /** \brief Returns the orthogonal matrix in the Schur decomposition.
- *
- * \returns A const reference to the matrix U.
- *
- * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
- * member function compute(const MatrixType&, bool) has been called before
- * to compute the Schur decomposition of a matrix, and \p computeU was set
- * to true (the default value).
- *
- * \sa RealSchur(const MatrixType&, bool) for an example
- */
- const MatrixType& matrixU() const
- {
- eigen_assert(m_isInitialized && "RealSchur is not initialized.");
- eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition.");
- return m_matU;
- }
-
- /** \brief Returns the quasi-triangular matrix in the Schur decomposition.
- *
- * \returns A const reference to the matrix T.
- *
- * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
- * member function compute(const MatrixType&, bool) has been called before
- * to compute the Schur decomposition of a matrix.
- *
- * \sa RealSchur(const MatrixType&, bool) for an example
- */
- const MatrixType& matrixT() const
- {
- eigen_assert(m_isInitialized && "RealSchur is not initialized.");
- return m_matT;
- }
-
- /** \brief Computes Schur decomposition of given matrix.
- *
- * \param[in] matrix Square matrix whose Schur decomposition is to be computed.
- * \param[in] computeU If true, both T and U are computed; if false, only T is computed.
- * \returns Reference to \c *this
- *
- * The Schur decomposition is computed by first reducing the matrix to
- * Hessenberg form using the class HessenbergDecomposition. The Hessenberg
- * matrix is then reduced to triangular form by performing Francis QR
- * iterations with implicit double shift. The cost of computing the Schur
- * decomposition depends on the number of iterations; as a rough guide, it
- * may be taken to be \f$25n^3\f$ flops if \a computeU is true and
- * \f$10n^3\f$ flops if \a computeU is false.
- *
- * Example: \include RealSchur_compute.cpp
- * Output: \verbinclude RealSchur_compute.out
- *
- * \sa compute(const MatrixType&, bool, Index)
- */
- RealSchur& compute(const MatrixType& matrix, bool computeU = true);
-
- /** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T
- * \param[in] matrixH Matrix in Hessenberg form H
- * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
- * \param computeU Computes the matriX U of the Schur vectors
- * \return Reference to \c *this
- *
- * This routine assumes that the matrix is already reduced in Hessenberg form matrixH
- * using either the class HessenbergDecomposition or another mean.
- * It computes the upper quasi-triangular matrix T of the Schur decomposition of H
- * When computeU is true, this routine computes the matrix U such that
- * A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
- *
- * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
- * is not available, the user should give an identity matrix (Q.setIdentity())
- *
- * \sa compute(const MatrixType&, bool)
- */
- template<typename HessMatrixType, typename OrthMatrixType>
- RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU);
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "RealSchur is not initialized.");
- return m_info;
- }
-
- /** \brief Sets the maximum number of iterations allowed.
- *
- * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
- * of the matrix.
- */
- RealSchur& setMaxIterations(Index maxIters)
- {
- m_maxIters = maxIters;
- return *this;
- }
-
- /** \brief Returns the maximum number of iterations. */
- Index getMaxIterations()
- {
- return m_maxIters;
- }
-
- /** \brief Maximum number of iterations per row.
- *
- * If not otherwise specified, the maximum number of iterations is this number times the size of the
- * matrix. It is currently set to 40.
- */
- static const int m_maxIterationsPerRow = 40;
-
- private:
-
- MatrixType m_matT;
- MatrixType m_matU;
- ColumnVectorType m_workspaceVector;
- HessenbergDecomposition<MatrixType> m_hess;
- ComputationInfo m_info;
- bool m_isInitialized;
- bool m_matUisUptodate;
- Index m_maxIters;
-
- typedef Matrix<Scalar,3,1> Vector3s;
-
- Scalar computeNormOfT();
- Index findSmallSubdiagEntry(Index iu, const Scalar& norm);
- void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
- void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
- void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
- void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace);
-};
-
-
-template<typename MatrixType>
-RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
-{
- eigen_assert(matrix.cols() == matrix.rows());
- Index maxIters = m_maxIters;
- if (maxIters == -1)
- maxIters = m_maxIterationsPerRow * matrix.rows();
-
- // Step 1. Reduce to Hessenberg form
- m_hess.compute(matrix);
-
- // Step 2. Reduce to real Schur form
- computeFromHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);
-
- return *this;
-}
-template<typename MatrixType>
-template<typename HessMatrixType, typename OrthMatrixType>
-RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
-{
- m_matT = matrixH;
- if(computeU)
- m_matU = matrixQ;
-
- Index maxIters = m_maxIters;
- if (maxIters == -1)
- maxIters = m_maxIterationsPerRow * matrixH.rows();
- m_workspaceVector.resize(m_matT.cols());
- Scalar* workspace = &m_workspaceVector.coeffRef(0);
-
- // The matrix m_matT is divided in three parts.
- // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
- // Rows il,...,iu is the part we are working on (the active window).
- // Rows iu+1,...,end are already brought in triangular form.
- Index iu = m_matT.cols() - 1;
- Index iter = 0; // iteration count for current eigenvalue
- Index totalIter = 0; // iteration count for whole matrix
- Scalar exshift(0); // sum of exceptional shifts
- Scalar norm = computeNormOfT();
-
- if(norm!=0)
- {
- while (iu >= 0)
- {
- Index il = findSmallSubdiagEntry(iu, norm);
-
- // Check for convergence
- if (il == iu) // One root found
- {
- m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
- if (iu > 0)
- m_matT.coeffRef(iu, iu-1) = Scalar(0);
- iu--;
- iter = 0;
- }
- else if (il == iu-1) // Two roots found
- {
- splitOffTwoRows(iu, computeU, exshift);
- iu -= 2;
- iter = 0;
- }
- else // No convergence yet
- {
- // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
- Vector3s firstHouseholderVector(0,0,0), shiftInfo;
- computeShift(iu, iter, exshift, shiftInfo);
- iter = iter + 1;
- totalIter = totalIter + 1;
- if (totalIter > maxIters) break;
- Index im;
- initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
- performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
- }
- }
- }
- if(totalIter <= maxIters)
- m_info = Success;
- else
- m_info = NoConvergence;
-
- m_isInitialized = true;
- m_matUisUptodate = computeU;
- return *this;
-}
-
-/** \internal Computes and returns vector L1 norm of T */
-template<typename MatrixType>
-inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
-{
- const Index size = m_matT.cols();
- // FIXME to be efficient the following would requires a triangular reduxion code
- // Scalar norm = m_matT.upper().cwiseAbs().sum()
- // + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum();
- Scalar norm(0);
- for (Index j = 0; j < size; ++j)
- norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
- return norm;
-}
-
-/** \internal Look for single small sub-diagonal element and returns its index */
-template<typename MatrixType>
-inline typename MatrixType::Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu, const Scalar& norm)
-{
- using std::abs;
- Index res = iu;
- while (res > 0)
- {
- Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
- if (s == 0.0)
- s = norm;
- if (abs(m_matT.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s)
- break;
- res--;
- }
- return res;
-}
-
-/** \internal Update T given that rows iu-1 and iu decouple from the rest. */
-template<typename MatrixType>
-inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift)
-{
- using std::sqrt;
- using std::abs;
- const Index size = m_matT.cols();
-
- // The eigenvalues of the 2x2 matrix [a b; c d] are
- // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
- Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
- Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4
- m_matT.coeffRef(iu,iu) += exshift;
- m_matT.coeffRef(iu-1,iu-1) += exshift;
-
- if (q >= Scalar(0)) // Two real eigenvalues
- {
- Scalar z = sqrt(abs(q));
- JacobiRotation<Scalar> rot;
- if (p >= Scalar(0))
- rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
- else
- rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));
-
- m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
- m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
- m_matT.coeffRef(iu, iu-1) = Scalar(0);
- if (computeU)
- m_matU.applyOnTheRight(iu-1, iu, rot);
- }
-
- if (iu > 1)
- m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
-}
-
-/** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */
-template<typename MatrixType>
-inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
-{
- using std::sqrt;
- using std::abs;
- shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
- shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
- shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
-
- // Wilkinson's original ad hoc shift
- if (iter == 10)
- {
- exshift += shiftInfo.coeff(0);
- for (Index i = 0; i <= iu; ++i)
- m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
- Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
- shiftInfo.coeffRef(0) = Scalar(0.75) * s;
- shiftInfo.coeffRef(1) = Scalar(0.75) * s;
- shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
- }
-
- // MATLAB's new ad hoc shift
- if (iter == 30)
- {
- Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
- s = s * s + shiftInfo.coeff(2);
- if (s > Scalar(0))
- {
- s = sqrt(s);
- if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
- s = -s;
- s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
- s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
- exshift += s;
- for (Index i = 0; i <= iu; ++i)
- m_matT.coeffRef(i,i) -= s;
- shiftInfo.setConstant(Scalar(0.964));
- }
- }
-}
-
-/** \internal Compute index im at which Francis QR step starts and the first Householder vector. */
-template<typename MatrixType>
-inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
-{
- using std::abs;
- Vector3s& v = firstHouseholderVector; // alias to save typing
-
- for (im = iu-2; im >= il; --im)
- {
- const Scalar Tmm = m_matT.coeff(im,im);
- const Scalar r = shiftInfo.coeff(0) - Tmm;
- const Scalar s = shiftInfo.coeff(1) - Tmm;
- v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
- v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
- v.coeffRef(2) = m_matT.coeff(im+2,im+1);
- if (im == il) {
- break;
- }
- const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
- const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
- if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
- {
- break;
- }
- }
-}
-
-/** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */
-template<typename MatrixType>
-inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace)
-{
- eigen_assert(im >= il);
- eigen_assert(im <= iu-2);
-
- const Index size = m_matT.cols();
-
- for (Index k = im; k <= iu-2; ++k)
- {
- bool firstIteration = (k == im);
-
- Vector3s v;
- if (firstIteration)
- v = firstHouseholderVector;
- else
- v = m_matT.template block<3,1>(k,k-1);
-
- Scalar tau, beta;
- Matrix<Scalar, 2, 1> ess;
- v.makeHouseholder(ess, tau, beta);
-
- if (beta != Scalar(0)) // if v is not zero
- {
- if (firstIteration && k > il)
- m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
- else if (!firstIteration)
- m_matT.coeffRef(k,k-1) = beta;
-
- // These Householder transformations form the O(n^3) part of the algorithm
- m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
- m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
- if (computeU)
- m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
- }
- }
-
- Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2);
- Scalar tau, beta;
- Matrix<Scalar, 1, 1> ess;
- v.makeHouseholder(ess, tau, beta);
-
- if (beta != Scalar(0)) // if v is not zero
- {
- m_matT.coeffRef(iu-1, iu-2) = beta;
- m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
- m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
- if (computeU)
- m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
- }
-
- // clean up pollution due to round-off errors
- for (Index i = im+2; i <= iu; ++i)
- {
- m_matT.coeffRef(i,i-2) = Scalar(0);
- if (i > im+2)
- m_matT.coeffRef(i,i-3) = Scalar(0);
- }
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_REAL_SCHUR_H
diff --git a/src/Eigen/src/Eigenvalues/RealSchur_MKL.h b/src/Eigen/src/Eigenvalues/RealSchur_MKL.h
deleted file mode 100644
index ad97364..0000000
--- a/src/Eigen/src/Eigenvalues/RealSchur_MKL.h
+++ /dev/null
@@ -1,83 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * Real Schur needed to real unsymmetrical eigenvalues/eigenvectors.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_REAL_SCHUR_MKL_H
-#define EIGEN_REAL_SCHUR_MKL_H
-
-#include "Eigen/src/Core/util/MKL_support.h"
-
-namespace Eigen {
-
-/** \internal Specialization for the data types supported by MKL */
-
-#define EIGEN_MKL_SCHUR_REAL(EIGTYPE, MKLTYPE, MKLPREFIX, MKLPREFIX_U, EIGCOLROW, MKLCOLROW) \
-template<> inline \
-RealSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
-RealSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW>& matrix, bool computeU) \
-{ \
- typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> MatrixType; \
- typedef MatrixType::Scalar Scalar; \
- typedef MatrixType::RealScalar RealScalar; \
-\
- eigen_assert(matrix.cols() == matrix.rows()); \
-\
- lapack_int n = matrix.cols(), sdim, info; \
- lapack_int lda = matrix.outerStride(); \
- lapack_int matrix_order = MKLCOLROW; \
- char jobvs, sort='N'; \
- LAPACK_##MKLPREFIX_U##_SELECT2 select = 0; \
- jobvs = (computeU) ? 'V' : 'N'; \
- m_matU.resize(n, n); \
- lapack_int ldvs = m_matU.outerStride(); \
- m_matT = matrix; \
- Matrix<EIGTYPE, Dynamic, Dynamic> wr, wi; \
- wr.resize(n, 1); wi.resize(n, 1); \
- info = LAPACKE_##MKLPREFIX##gees( matrix_order, jobvs, sort, select, n, (MKLTYPE*)m_matT.data(), lda, &sdim, (MKLTYPE*)wr.data(), (MKLTYPE*)wi.data(), (MKLTYPE*)m_matU.data(), ldvs ); \
- if(info == 0) \
- m_info = Success; \
- else \
- m_info = NoConvergence; \
-\
- m_isInitialized = true; \
- m_matUisUptodate = computeU; \
- return *this; \
-\
-}
-
-EIGEN_MKL_SCHUR_REAL(double, double, d, D, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_SCHUR_REAL(float, float, s, S, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_SCHUR_REAL(double, double, d, D, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_MKL_SCHUR_REAL(float, float, s, S, RowMajor, LAPACK_ROW_MAJOR)
-
-} // end namespace Eigen
-
-#endif // EIGEN_REAL_SCHUR_MKL_H
diff --git a/src/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h b/src/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
deleted file mode 100644
index 3993046..0000000
--- a/src/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
+++ /dev/null
@@ -1,802 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
-#define EIGEN_SELFADJOINTEIGENSOLVER_H
-
-#include "./Tridiagonalization.h"
-
-namespace Eigen {
-
-template<typename _MatrixType>
-class GeneralizedSelfAdjointEigenSolver;
-
-namespace internal {
-template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;
-}
-
-/** \eigenvalues_module \ingroup Eigenvalues_Module
- *
- *
- * \class SelfAdjointEigenSolver
- *
- * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
- *
- * \tparam _MatrixType the type of the matrix of which we are computing the
- * eigendecomposition; this is expected to be an instantiation of the Matrix
- * class template.
- *
- * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
- * matrices, this means that the matrix is symmetric: it equals its
- * transpose. This class computes the eigenvalues and eigenvectors of a
- * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
- * \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a
- * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
- * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
- * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$ (for selfadjoint
- * matrices, the matrix \f$ V \f$ is always invertible). This is called the
- * eigendecomposition.
- *
- * The algorithm exploits the fact that the matrix is selfadjoint, making it
- * faster and more accurate than the general purpose eigenvalue algorithms
- * implemented in EigenSolver and ComplexEigenSolver.
- *
- * Only the \b lower \b triangular \b part of the input matrix is referenced.
- *
- * Call the function compute() to compute the eigenvalues and eigenvectors of
- * a given matrix. Alternatively, you can use the
- * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes
- * the eigenvalues and eigenvectors at construction time. Once the eigenvalue
- * and eigenvectors are computed, they can be retrieved with the eigenvalues()
- * and eigenvectors() functions.
- *
- * The documentation for SelfAdjointEigenSolver(const MatrixType&, int)
- * contains an example of the typical use of this class.
- *
- * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and
- * the likes, see the class GeneralizedSelfAdjointEigenSolver.
- *
- * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
- */
-template<typename _MatrixType> class SelfAdjointEigenSolver
-{
- public:
-
- typedef _MatrixType MatrixType;
- enum {
- Size = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
-
- /** \brief Scalar type for matrices of type \p _MatrixType. */
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
-
- /** \brief Real scalar type for \p _MatrixType.
- *
- * This is just \c Scalar if #Scalar is real (e.g., \c float or
- * \c double), and the type of the real part of \c Scalar if #Scalar is
- * complex.
- */
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>;
-
- /** \brief Type for vector of eigenvalues as returned by eigenvalues().
- *
- * This is a column vector with entries of type #RealScalar.
- * The length of the vector is the size of \p _MatrixType.
- */
- typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
- typedef Tridiagonalization<MatrixType> TridiagonalizationType;
-
- /** \brief Default constructor for fixed-size matrices.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via compute(). This constructor
- * can only be used if \p _MatrixType is a fixed-size matrix; use
- * SelfAdjointEigenSolver(Index) for dynamic-size matrices.
- *
- * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
- * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
- */
- SelfAdjointEigenSolver()
- : m_eivec(),
- m_eivalues(),
- m_subdiag(),
- m_isInitialized(false)
- { }
-
- /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
- *
- * \param [in] size Positive integer, size of the matrix whose
- * eigenvalues and eigenvectors will be computed.
- *
- * This constructor is useful for dynamic-size matrices, when the user
- * intends to perform decompositions via compute(). The \p size
- * parameter is only used as a hint. It is not an error to give a wrong
- * \p size, but it may impair performance.
- *
- * \sa compute() for an example
- */
- SelfAdjointEigenSolver(Index size)
- : m_eivec(size, size),
- m_eivalues(size),
- m_subdiag(size > 1 ? size - 1 : 1),
- m_isInitialized(false)
- {}
-
- /** \brief Constructor; computes eigendecomposition of given matrix.
- *
- * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
- * be computed. Only the lower triangular part of the matrix is referenced.
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
- *
- * This constructor calls compute(const MatrixType&, int) to compute the
- * eigenvalues of the matrix \p matrix. The eigenvectors are computed if
- * \p options equals #ComputeEigenvectors.
- *
- * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
- * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
- *
- * \sa compute(const MatrixType&, int)
- */
- SelfAdjointEigenSolver(const MatrixType& matrix, int options = ComputeEigenvectors)
- : m_eivec(matrix.rows(), matrix.cols()),
- m_eivalues(matrix.cols()),
- m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
- m_isInitialized(false)
- {
- compute(matrix, options);
- }
-
- /** \brief Computes eigendecomposition of given matrix.
- *
- * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
- * be computed. Only the lower triangular part of the matrix is referenced.
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
- * \returns Reference to \c *this
- *
- * This function computes the eigenvalues of \p matrix. The eigenvalues()
- * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
- * then the eigenvectors are also computed and can be retrieved by
- * calling eigenvectors().
- *
- * This implementation uses a symmetric QR algorithm. The matrix is first
- * reduced to tridiagonal form using the Tridiagonalization class. The
- * tridiagonal matrix is then brought to diagonal form with implicit
- * symmetric QR steps with Wilkinson shift. Details can be found in
- * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
- *
- * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
- * are required and \f$ 4n^3/3 \f$ if they are not required.
- *
- * This method reuses the memory in the SelfAdjointEigenSolver object that
- * was allocated when the object was constructed, if the size of the
- * matrix does not change.
- *
- * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
- * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
- *
- * \sa SelfAdjointEigenSolver(const MatrixType&, int)
- */
- SelfAdjointEigenSolver& compute(const MatrixType& matrix, int options = ComputeEigenvectors);
-
- /** \brief Computes eigendecomposition of given matrix using a direct algorithm
- *
- * This is a variant of compute(const MatrixType&, int options) which
- * directly solves the underlying polynomial equation.
- *
- * Currently only 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d).
- *
- * This method is usually significantly faster than the QR algorithm
- * but it might also be less accurate. It is also worth noting that
- * for 3x3 matrices it involves trigonometric operations which are
- * not necessarily available for all scalar types.
- *
- * \sa compute(const MatrixType&, int options)
- */
- SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors);
-
- /** \brief Returns the eigenvectors of given matrix.
- *
- * \returns A const reference to the matrix whose columns are the eigenvectors.
- *
- * \pre The eigenvectors have been computed before.
- *
- * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
- * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
- * eigenvectors are normalized to have (Euclidean) norm equal to one. If
- * this object was used to solve the eigenproblem for the selfadjoint
- * matrix \f$ A \f$, then the matrix returned by this function is the
- * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
- *
- * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
- *
- * \sa eigenvalues()
- */
- const MatrixType& eigenvectors() const
- {
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
- return m_eivec;
- }
-
- /** \brief Returns the eigenvalues of given matrix.
- *
- * \returns A const reference to the column vector containing the eigenvalues.
- *
- * \pre The eigenvalues have been computed before.
- *
- * The eigenvalues are repeated according to their algebraic multiplicity,
- * so there are as many eigenvalues as rows in the matrix. The eigenvalues
- * are sorted in increasing order.
- *
- * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
- *
- * \sa eigenvectors(), MatrixBase::eigenvalues()
- */
- const RealVectorType& eigenvalues() const
- {
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
- return m_eivalues;
- }
-
- /** \brief Computes the positive-definite square root of the matrix.
- *
- * \returns the positive-definite square root of the matrix
- *
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
- * have been computed before.
- *
- * The square root of a positive-definite matrix \f$ A \f$ is the
- * positive-definite matrix whose square equals \f$ A \f$. This function
- * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
- * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
- *
- * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
- * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
- *
- * \sa operatorInverseSqrt(),
- * \ref MatrixFunctions_Module "MatrixFunctions Module"
- */
- MatrixType operatorSqrt() const
- {
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
- return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
- }
-
- /** \brief Computes the inverse square root of the matrix.
- *
- * \returns the inverse positive-definite square root of the matrix
- *
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
- * have been computed before.
- *
- * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
- * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
- * cheaper than first computing the square root with operatorSqrt() and
- * then its inverse with MatrixBase::inverse().
- *
- * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
- * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
- *
- * \sa operatorSqrt(), MatrixBase::inverse(),
- * \ref MatrixFunctions_Module "MatrixFunctions Module"
- */
- MatrixType operatorInverseSqrt() const
- {
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
- return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
- }
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
- return m_info;
- }
-
- /** \brief Maximum number of iterations.
- *
- * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n
- * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK).
- */
- static const int m_maxIterations = 30;
-
- #ifdef EIGEN2_SUPPORT
- SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors)
- : m_eivec(matrix.rows(), matrix.cols()),
- m_eivalues(matrix.cols()),
- m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
- m_isInitialized(false)
- {
- compute(matrix, computeEigenvectors);
- }
-
- SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
- : m_eivec(matA.cols(), matA.cols()),
- m_eivalues(matA.cols()),
- m_subdiag(matA.cols() > 1 ? matA.cols() - 1 : 1),
- m_isInitialized(false)
- {
- static_cast<GeneralizedSelfAdjointEigenSolver<MatrixType>*>(this)->compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
- }
-
- void compute(const MatrixType& matrix, bool computeEigenvectors)
- {
- compute(matrix, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
- }
-
- void compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
- {
- compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
- }
- #endif // EIGEN2_SUPPORT
-
- protected:
- MatrixType m_eivec;
- RealVectorType m_eivalues;
- typename TridiagonalizationType::SubDiagonalType m_subdiag;
- ComputationInfo m_info;
- bool m_isInitialized;
- bool m_eigenvectorsOk;
-};
-
-/** \internal
- *
- * \eigenvalues_module \ingroup Eigenvalues_Module
- *
- * Performs a QR step on a tridiagonal symmetric matrix represented as a
- * pair of two vectors \a diag and \a subdiag.
- *
- * \param matA the input selfadjoint matrix
- * \param hCoeffs returned Householder coefficients
- *
- * For compilation efficiency reasons, this procedure does not use eigen expression
- * for its arguments.
- *
- * Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
- * "implicit symmetric QR step with Wilkinson shift"
- */
-namespace internal {
-template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
-static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
-}
-
-template<typename MatrixType>
-SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
-::compute(const MatrixType& matrix, int options)
-{
- using std::abs;
- eigen_assert(matrix.cols() == matrix.rows());
- eigen_assert((options&~(EigVecMask|GenEigMask))==0
- && (options&EigVecMask)!=EigVecMask
- && "invalid option parameter");
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
- Index n = matrix.cols();
- m_eivalues.resize(n,1);
-
- if(n==1)
- {
- m_eivalues.coeffRef(0,0) = numext::real(matrix.coeff(0,0));
- if(computeEigenvectors)
- m_eivec.setOnes(n,n);
- m_info = Success;
- m_isInitialized = true;
- m_eigenvectorsOk = computeEigenvectors;
- return *this;
- }
-
- // declare some aliases
- RealVectorType& diag = m_eivalues;
- MatrixType& mat = m_eivec;
-
- // map the matrix coefficients to [-1:1] to avoid over- and underflow.
- mat = matrix.template triangularView<Lower>();
- RealScalar scale = mat.cwiseAbs().maxCoeff();
- if(scale==RealScalar(0)) scale = RealScalar(1);
- mat.template triangularView<Lower>() /= scale;
- m_subdiag.resize(n-1);
- internal::tridiagonalization_inplace(mat, diag, m_subdiag, computeEigenvectors);
-
- Index end = n-1;
- Index start = 0;
- Index iter = 0; // total number of iterations
-
- while (end>0)
- {
- for (Index i = start; i<end; ++i)
- if (internal::isMuchSmallerThan(abs(m_subdiag[i]),(abs(diag[i])+abs(diag[i+1]))))
- m_subdiag[i] = 0;
-
- // find the largest unreduced block
- while (end>0 && m_subdiag[end-1]==0)
- {
- end--;
- }
- if (end<=0)
- break;
-
- // if we spent too many iterations, we give up
- iter++;
- if(iter > m_maxIterations * n) break;
-
- start = end - 1;
- while (start>0 && m_subdiag[start-1]!=0)
- start--;
-
- internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), m_subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n);
- }
-
- if (iter <= m_maxIterations * n)
- m_info = Success;
- else
- m_info = NoConvergence;
-
- // Sort eigenvalues and corresponding vectors.
- // TODO make the sort optional ?
- // TODO use a better sort algorithm !!
- if (m_info == Success)
- {
- for (Index i = 0; i < n-1; ++i)
- {
- Index k;
- m_eivalues.segment(i,n-i).minCoeff(&k);
- if (k > 0)
- {
- std::swap(m_eivalues[i], m_eivalues[k+i]);
- if(computeEigenvectors)
- m_eivec.col(i).swap(m_eivec.col(k+i));
- }
- }
- }
-
- // scale back the eigen values
- m_eivalues *= scale;
-
- m_isInitialized = true;
- m_eigenvectorsOk = computeEigenvectors;
- return *this;
-}
-
-
-namespace internal {
-
-template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues
-{
- static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options)
- { eig.compute(A,options); }
-};
-
-template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false>
-{
- typedef typename SolverType::MatrixType MatrixType;
- typedef typename SolverType::RealVectorType VectorType;
- typedef typename SolverType::Scalar Scalar;
-
- static inline void computeRoots(const MatrixType& m, VectorType& roots)
- {
- using std::sqrt;
- using std::atan2;
- using std::cos;
- using std::sin;
- const Scalar s_inv3 = Scalar(1.0)/Scalar(3.0);
- const Scalar s_sqrt3 = sqrt(Scalar(3.0));
-
- // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
- // eigenvalues are the roots to this equation, all guaranteed to be
- // real-valued, because the matrix is symmetric.
- Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0);
- Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1);
- Scalar c2 = m(0,0) + m(1,1) + m(2,2);
-
- // Construct the parameters used in classifying the roots of the equation
- // and in solving the equation for the roots in closed form.
- Scalar c2_over_3 = c2*s_inv3;
- Scalar a_over_3 = (c1 - c2*c2_over_3)*s_inv3;
- if (a_over_3 > Scalar(0))
- a_over_3 = Scalar(0);
-
- Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
-
- Scalar q = half_b*half_b + a_over_3*a_over_3*a_over_3;
- if (q > Scalar(0))
- q = Scalar(0);
-
- // Compute the eigenvalues by solving for the roots of the polynomial.
- Scalar rho = sqrt(-a_over_3);
- Scalar theta = atan2(sqrt(-q),half_b)*s_inv3;
- Scalar cos_theta = cos(theta);
- Scalar sin_theta = sin(theta);
- roots(0) = c2_over_3 + Scalar(2)*rho*cos_theta;
- roots(1) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta);
- roots(2) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta);
-
- // Sort in increasing order.
- if (roots(0) >= roots(1))
- std::swap(roots(0),roots(1));
- if (roots(1) >= roots(2))
- {
- std::swap(roots(1),roots(2));
- if (roots(0) >= roots(1))
- std::swap(roots(0),roots(1));
- }
- }
-
- static inline void run(SolverType& solver, const MatrixType& mat, int options)
- {
- using std::sqrt;
- eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
- eigen_assert((options&~(EigVecMask|GenEigMask))==0
- && (options&EigVecMask)!=EigVecMask
- && "invalid option parameter");
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
-
- MatrixType& eivecs = solver.m_eivec;
- VectorType& eivals = solver.m_eivalues;
-
- // map the matrix coefficients to [-1:1] to avoid over- and underflow.
- Scalar scale = mat.cwiseAbs().maxCoeff();
- MatrixType scaledMat = mat / scale;
-
- // compute the eigenvalues
- computeRoots(scaledMat,eivals);
-
- // compute the eigen vectors
- if(computeEigenvectors)
- {
- Scalar safeNorm2 = Eigen::NumTraits<Scalar>::epsilon();
- safeNorm2 *= safeNorm2;
- if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
- {
- eivecs.setIdentity();
- }
- else
- {
- scaledMat = scaledMat.template selfadjointView<Lower>();
- MatrixType tmp;
- tmp = scaledMat;
-
- Scalar d0 = eivals(2) - eivals(1);
- Scalar d1 = eivals(1) - eivals(0);
- int k = d0 > d1 ? 2 : 0;
- d0 = d0 > d1 ? d1 : d0;
-
- tmp.diagonal().array () -= eivals(k);
- VectorType cross;
- Scalar n;
- n = (cross = tmp.row(0).cross(tmp.row(1))).squaredNorm();
-
- if(n>safeNorm2)
- eivecs.col(k) = cross / sqrt(n);
- else
- {
- n = (cross = tmp.row(0).cross(tmp.row(2))).squaredNorm();
-
- if(n>safeNorm2)
- eivecs.col(k) = cross / sqrt(n);
- else
- {
- n = (cross = tmp.row(1).cross(tmp.row(2))).squaredNorm();
-
- if(n>safeNorm2)
- eivecs.col(k) = cross / sqrt(n);
- else
- {
- // the input matrix and/or the eigenvaues probably contains some inf/NaN,
- // => exit
- // scale back to the original size.
- eivals *= scale;
-
- solver.m_info = NumericalIssue;
- solver.m_isInitialized = true;
- solver.m_eigenvectorsOk = computeEigenvectors;
- return;
- }
- }
- }
-
- tmp = scaledMat;
- tmp.diagonal().array() -= eivals(1);
-
- if(d0<=Eigen::NumTraits<Scalar>::epsilon())
- eivecs.col(1) = eivecs.col(k).unitOrthogonal();
- else
- {
- n = (cross = eivecs.col(k).cross(tmp.row(0).normalized())).squaredNorm();
- if(n>safeNorm2)
- eivecs.col(1) = cross / sqrt(n);
- else
- {
- n = (cross = eivecs.col(k).cross(tmp.row(1))).squaredNorm();
- if(n>safeNorm2)
- eivecs.col(1) = cross / sqrt(n);
- else
- {
- n = (cross = eivecs.col(k).cross(tmp.row(2))).squaredNorm();
- if(n>safeNorm2)
- eivecs.col(1) = cross / sqrt(n);
- else
- {
- // we should never reach this point,
- // if so the last two eigenvalues are likely to ve very closed to each other
- eivecs.col(1) = eivecs.col(k).unitOrthogonal();
- }
- }
- }
-
- // make sure that eivecs[1] is orthogonal to eivecs[2]
- Scalar d = eivecs.col(1).dot(eivecs.col(k));
- eivecs.col(1) = (eivecs.col(1) - d * eivecs.col(k)).normalized();
- }
-
- eivecs.col(k==2 ? 0 : 2) = eivecs.col(k).cross(eivecs.col(1)).normalized();
- }
- }
- // Rescale back to the original size.
- eivals *= scale;
-
- solver.m_info = Success;
- solver.m_isInitialized = true;
- solver.m_eigenvectorsOk = computeEigenvectors;
- }
-};
-
-// 2x2 direct eigenvalues decomposition, code from Hauke Heibel
-template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,2,false>
-{
- typedef typename SolverType::MatrixType MatrixType;
- typedef typename SolverType::RealVectorType VectorType;
- typedef typename SolverType::Scalar Scalar;
-
- static inline void computeRoots(const MatrixType& m, VectorType& roots)
- {
- using std::sqrt;
- const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*m(1,0)*m(1,0));
- const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
- roots(0) = t1 - t0;
- roots(1) = t1 + t0;
- }
-
- static inline void run(SolverType& solver, const MatrixType& mat, int options)
- {
- using std::sqrt;
- eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
- eigen_assert((options&~(EigVecMask|GenEigMask))==0
- && (options&EigVecMask)!=EigVecMask
- && "invalid option parameter");
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
-
- MatrixType& eivecs = solver.m_eivec;
- VectorType& eivals = solver.m_eivalues;
-
- // map the matrix coefficients to [-1:1] to avoid over- and underflow.
- Scalar scale = mat.cwiseAbs().maxCoeff();
- scale = (std::max)(scale,Scalar(1));
- MatrixType scaledMat = mat / scale;
-
- // Compute the eigenvalues
- computeRoots(scaledMat,eivals);
-
- // compute the eigen vectors
- if(computeEigenvectors)
- {
- scaledMat.diagonal().array () -= eivals(1);
- Scalar a2 = numext::abs2(scaledMat(0,0));
- Scalar c2 = numext::abs2(scaledMat(1,1));
- Scalar b2 = numext::abs2(scaledMat(1,0));
- if(a2>c2)
- {
- eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
- eivecs.col(1) /= sqrt(a2+b2);
- }
- else
- {
- eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
- eivecs.col(1) /= sqrt(c2+b2);
- }
-
- eivecs.col(0) << eivecs.col(1).unitOrthogonal();
- }
-
- // Rescale back to the original size.
- eivals *= scale;
-
- solver.m_info = Success;
- solver.m_isInitialized = true;
- solver.m_eigenvectorsOk = computeEigenvectors;
- }
-};
-
-}
-
-template<typename MatrixType>
-SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
-::computeDirect(const MatrixType& matrix, int options)
-{
- internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options);
- return *this;
-}
-
-namespace internal {
-template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
-static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
-{
- using std::abs;
- RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
- RealScalar e = subdiag[end-1];
- // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
- // underflow thus leading to inf/NaN values when using the following commented code:
-// RealScalar e2 = numext::abs2(subdiag[end-1]);
-// RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
- // This explain the following, somewhat more complicated, version:
- RealScalar mu = diag[end];
- if(td==0)
- mu -= abs(e);
- else
- {
- RealScalar e2 = numext::abs2(subdiag[end-1]);
- RealScalar h = numext::hypot(td,e);
- if(e2==0) mu -= (e / (td + (td>0 ? 1 : -1))) * (e / h);
- else mu -= e2 / (td + (td>0 ? h : -h));
- }
-
- RealScalar x = diag[start] - mu;
- RealScalar z = subdiag[start];
- for (Index k = start; k < end; ++k)
- {
- JacobiRotation<RealScalar> rot;
- rot.makeGivens(x, z);
-
- // do T = G' T G
- RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
- RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
-
- diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
- diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
- subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
-
-
- if (k > start)
- subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
-
- x = subdiag[k];
-
- if (k < end - 1)
- {
- z = -rot.s() * subdiag[k+1];
- subdiag[k + 1] = rot.c() * subdiag[k+1];
- }
-
- // apply the givens rotation to the unit matrix Q = Q * G
- if (matrixQ)
- {
- // FIXME if StorageOrder == RowMajor this operation is not very efficient
- Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n);
- q.applyOnTheRight(k,k+1,rot);
- }
- }
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_SELFADJOINTEIGENSOLVER_H
diff --git a/src/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_MKL.h b/src/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_MKL.h
deleted file mode 100644
index 17c0dad..0000000
--- a/src/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_MKL.h
+++ /dev/null
@@ -1,92 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * Self-adjoint eigenvalues/eigenvectors.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_SAEIGENSOLVER_MKL_H
-#define EIGEN_SAEIGENSOLVER_MKL_H
-
-#include "Eigen/src/Core/util/MKL_support.h"
-
-namespace Eigen {
-
-/** \internal Specialization for the data types supported by MKL */
-
-#define EIGEN_MKL_EIG_SELFADJ(EIGTYPE, MKLTYPE, MKLRTYPE, MKLNAME, EIGCOLROW, MKLCOLROW ) \
-template<> inline \
-SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
-SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW>& matrix, int options) \
-{ \
- eigen_assert(matrix.cols() == matrix.rows()); \
- eigen_assert((options&~(EigVecMask|GenEigMask))==0 \
- && (options&EigVecMask)!=EigVecMask \
- && "invalid option parameter"); \
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; \
- lapack_int n = matrix.cols(), lda, matrix_order, info; \
- m_eivalues.resize(n,1); \
- m_subdiag.resize(n-1); \
- m_eivec = matrix; \
-\
- if(n==1) \
- { \
- m_eivalues.coeffRef(0,0) = numext::real(matrix.coeff(0,0)); \
- if(computeEigenvectors) m_eivec.setOnes(n,n); \
- m_info = Success; \
- m_isInitialized = true; \
- m_eigenvectorsOk = computeEigenvectors; \
- return *this; \
- } \
-\
- lda = matrix.outerStride(); \
- matrix_order=MKLCOLROW; \
- char jobz, uplo='L'/*, range='A'*/; \
- jobz = computeEigenvectors ? 'V' : 'N'; \
-\
- info = LAPACKE_##MKLNAME( matrix_order, jobz, uplo, n, (MKLTYPE*)m_eivec.data(), lda, (MKLRTYPE*)m_eivalues.data() ); \
- m_info = (info==0) ? Success : NoConvergence; \
- m_isInitialized = true; \
- m_eigenvectorsOk = computeEigenvectors; \
- return *this; \
-}
-
-
-EIGEN_MKL_EIG_SELFADJ(double, double, double, dsyev, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_EIG_SELFADJ(float, float, float, ssyev, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_EIG_SELFADJ(dcomplex, MKL_Complex16, double, zheev, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_EIG_SELFADJ(scomplex, MKL_Complex8, float, cheev, ColMajor, LAPACK_COL_MAJOR)
-
-EIGEN_MKL_EIG_SELFADJ(double, double, double, dsyev, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_MKL_EIG_SELFADJ(float, float, float, ssyev, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_MKL_EIG_SELFADJ(dcomplex, MKL_Complex16, double, zheev, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_MKL_EIG_SELFADJ(scomplex, MKL_Complex8, float, cheev, RowMajor, LAPACK_ROW_MAJOR)
-
-} // end namespace Eigen
-
-#endif // EIGEN_SAEIGENSOLVER_H
diff --git a/src/Eigen/src/Eigenvalues/Tridiagonalization.h b/src/Eigen/src/Eigenvalues/Tridiagonalization.h
deleted file mode 100644
index 192278d..0000000
--- a/src/Eigen/src/Eigenvalues/Tridiagonalization.h
+++ /dev/null
@@ -1,557 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_TRIDIAGONALIZATION_H
-#define EIGEN_TRIDIAGONALIZATION_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename MatrixType> struct TridiagonalizationMatrixTReturnType;
-template<typename MatrixType>
-struct traits<TridiagonalizationMatrixTReturnType<MatrixType> >
-{
- typedef typename MatrixType::PlainObject ReturnType;
-};
-
-template<typename MatrixType, typename CoeffVectorType>
-void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs);
-}
-
-/** \eigenvalues_module \ingroup Eigenvalues_Module
- *
- *
- * \class Tridiagonalization
- *
- * \brief Tridiagonal decomposition of a selfadjoint matrix
- *
- * \tparam _MatrixType the type of the matrix of which we are computing the
- * tridiagonal decomposition; this is expected to be an instantiation of the
- * Matrix class template.
- *
- * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
- * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix.
- *
- * A tridiagonal matrix is a matrix which has nonzero elements only on the
- * main diagonal and the first diagonal below and above it. The Hessenberg
- * decomposition of a selfadjoint matrix is in fact a tridiagonal
- * decomposition. This class is used in SelfAdjointEigenSolver to compute the
- * eigenvalues and eigenvectors of a selfadjoint matrix.
- *
- * Call the function compute() to compute the tridiagonal decomposition of a
- * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&)
- * constructor which computes the tridiagonal Schur decomposition at
- * construction time. Once the decomposition is computed, you can use the
- * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the
- * decomposition.
- *
- * The documentation of Tridiagonalization(const MatrixType&) contains an
- * example of the typical use of this class.
- *
- * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver
- */
-template<typename _MatrixType> class Tridiagonalization
-{
- public:
-
- /** \brief Synonym for the template parameter \p _MatrixType. */
- typedef _MatrixType MatrixType;
-
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
-
- enum {
- Size = MatrixType::RowsAtCompileTime,
- SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1),
- Options = MatrixType::Options,
- MaxSize = MatrixType::MaxRowsAtCompileTime,
- MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1)
- };
-
- typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType;
- typedef typename internal::plain_col_type<MatrixType, RealScalar>::type DiagonalType;
- typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> SubDiagonalType;
- typedef typename internal::remove_all<typename MatrixType::RealReturnType>::type MatrixTypeRealView;
- typedef internal::TridiagonalizationMatrixTReturnType<MatrixTypeRealView> MatrixTReturnType;
-
- typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
- typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type,
- const Diagonal<const MatrixType>
- >::type DiagonalReturnType;
-
- typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
- typename internal::add_const_on_value_type<typename Diagonal<
- Block<const MatrixType,SizeMinusOne,SizeMinusOne> >::RealReturnType>::type,
- const Diagonal<
- Block<const MatrixType,SizeMinusOne,SizeMinusOne> >
- >::type SubDiagonalReturnType;
-
- /** \brief Return type of matrixQ() */
- typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType;
-
- /** \brief Default constructor.
- *
- * \param [in] size Positive integer, size of the matrix whose tridiagonal
- * decomposition will be computed.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via compute(). The \p size parameter is only
- * used as a hint. It is not an error to give a wrong \p size, but it may
- * impair performance.
- *
- * \sa compute() for an example.
- */
- Tridiagonalization(Index size = Size==Dynamic ? 2 : Size)
- : m_matrix(size,size),
- m_hCoeffs(size > 1 ? size-1 : 1),
- m_isInitialized(false)
- {}
-
- /** \brief Constructor; computes tridiagonal decomposition of given matrix.
- *
- * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition
- * is to be computed.
- *
- * This constructor calls compute() to compute the tridiagonal decomposition.
- *
- * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp
- * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out
- */
- Tridiagonalization(const MatrixType& matrix)
- : m_matrix(matrix),
- m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1),
- m_isInitialized(false)
- {
- internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
- m_isInitialized = true;
- }
-
- /** \brief Computes tridiagonal decomposition of given matrix.
- *
- * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition
- * is to be computed.
- * \returns Reference to \c *this
- *
- * The tridiagonal decomposition is computed by bringing the columns of
- * the matrix successively in the required form using Householder
- * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes
- * the size of the given matrix.
- *
- * This method reuses of the allocated data in the Tridiagonalization
- * object, if the size of the matrix does not change.
- *
- * Example: \include Tridiagonalization_compute.cpp
- * Output: \verbinclude Tridiagonalization_compute.out
- */
- Tridiagonalization& compute(const MatrixType& matrix)
- {
- m_matrix = matrix;
- m_hCoeffs.resize(matrix.rows()-1, 1);
- internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
- m_isInitialized = true;
- return *this;
- }
-
- /** \brief Returns the Householder coefficients.
- *
- * \returns a const reference to the vector of Householder coefficients
- *
- * \pre Either the constructor Tridiagonalization(const MatrixType&) or
- * the member function compute(const MatrixType&) has been called before
- * to compute the tridiagonal decomposition of a matrix.
- *
- * The Householder coefficients allow the reconstruction of the matrix
- * \f$ Q \f$ in the tridiagonal decomposition from the packed data.
- *
- * Example: \include Tridiagonalization_householderCoefficients.cpp
- * Output: \verbinclude Tridiagonalization_householderCoefficients.out
- *
- * \sa packedMatrix(), \ref Householder_Module "Householder module"
- */
- inline CoeffVectorType householderCoefficients() const
- {
- eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
- return m_hCoeffs;
- }
-
- /** \brief Returns the internal representation of the decomposition
- *
- * \returns a const reference to a matrix with the internal representation
- * of the decomposition.
- *
- * \pre Either the constructor Tridiagonalization(const MatrixType&) or
- * the member function compute(const MatrixType&) has been called before
- * to compute the tridiagonal decomposition of a matrix.
- *
- * The returned matrix contains the following information:
- * - the strict upper triangular part is equal to the input matrix A.
- * - the diagonal and lower sub-diagonal represent the real tridiagonal
- * symmetric matrix T.
- * - the rest of the lower part contains the Householder vectors that,
- * combined with Householder coefficients returned by
- * householderCoefficients(), allows to reconstruct the matrix Q as
- * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
- * Here, the matrices \f$ H_i \f$ are the Householder transformations
- * \f$ H_i = (I - h_i v_i v_i^T) \f$
- * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and
- * \f$ v_i \f$ is the Householder vector defined by
- * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$
- * with M the matrix returned by this function.
- *
- * See LAPACK for further details on this packed storage.
- *
- * Example: \include Tridiagonalization_packedMatrix.cpp
- * Output: \verbinclude Tridiagonalization_packedMatrix.out
- *
- * \sa householderCoefficients()
- */
- inline const MatrixType& packedMatrix() const
- {
- eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
- return m_matrix;
- }
-
- /** \brief Returns the unitary matrix Q in the decomposition
- *
- * \returns object representing the matrix Q
- *
- * \pre Either the constructor Tridiagonalization(const MatrixType&) or
- * the member function compute(const MatrixType&) has been called before
- * to compute the tridiagonal decomposition of a matrix.
- *
- * This function returns a light-weight object of template class
- * HouseholderSequence. You can either apply it directly to a matrix or
- * you can convert it to a matrix of type #MatrixType.
- *
- * \sa Tridiagonalization(const MatrixType&) for an example,
- * matrixT(), class HouseholderSequence
- */
- HouseholderSequenceType matrixQ() const
- {
- eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
- return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
- .setLength(m_matrix.rows() - 1)
- .setShift(1);
- }
-
- /** \brief Returns an expression of the tridiagonal matrix T in the decomposition
- *
- * \returns expression object representing the matrix T
- *
- * \pre Either the constructor Tridiagonalization(const MatrixType&) or
- * the member function compute(const MatrixType&) has been called before
- * to compute the tridiagonal decomposition of a matrix.
- *
- * Currently, this function can be used to extract the matrix T from internal
- * data and copy it to a dense matrix object. In most cases, it may be
- * sufficient to directly use the packed matrix or the vector expressions
- * returned by diagonal() and subDiagonal() instead of creating a new
- * dense copy matrix with this function.
- *
- * \sa Tridiagonalization(const MatrixType&) for an example,
- * matrixQ(), packedMatrix(), diagonal(), subDiagonal()
- */
- MatrixTReturnType matrixT() const
- {
- eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
- return MatrixTReturnType(m_matrix.real());
- }
-
- /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition.
- *
- * \returns expression representing the diagonal of T
- *
- * \pre Either the constructor Tridiagonalization(const MatrixType&) or
- * the member function compute(const MatrixType&) has been called before
- * to compute the tridiagonal decomposition of a matrix.
- *
- * Example: \include Tridiagonalization_diagonal.cpp
- * Output: \verbinclude Tridiagonalization_diagonal.out
- *
- * \sa matrixT(), subDiagonal()
- */
- DiagonalReturnType diagonal() const;
-
- /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
- *
- * \returns expression representing the subdiagonal of T
- *
- * \pre Either the constructor Tridiagonalization(const MatrixType&) or
- * the member function compute(const MatrixType&) has been called before
- * to compute the tridiagonal decomposition of a matrix.
- *
- * \sa diagonal() for an example, matrixT()
- */
- SubDiagonalReturnType subDiagonal() const;
-
- protected:
-
- MatrixType m_matrix;
- CoeffVectorType m_hCoeffs;
- bool m_isInitialized;
-};
-
-template<typename MatrixType>
-typename Tridiagonalization<MatrixType>::DiagonalReturnType
-Tridiagonalization<MatrixType>::diagonal() const
-{
- eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
- return m_matrix.diagonal();
-}
-
-template<typename MatrixType>
-typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
-Tridiagonalization<MatrixType>::subDiagonal() const
-{
- eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
- Index n = m_matrix.rows();
- return Block<const MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1).diagonal();
-}
-
-namespace internal {
-
-/** \internal
- * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place.
- *
- * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced.
- * On output, the strict upper part is left unchanged, and the lower triangular part
- * represents the T and Q matrices in packed format has detailed below.
- * \param[out] hCoeffs returned Householder coefficients (see below)
- *
- * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal
- * and lower sub-diagonal of the matrix \a matA.
- * The unitary matrix Q is represented in a compact way as a product of
- * Householder reflectors \f$ H_i \f$ such that:
- * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
- * The Householder reflectors are defined as
- * \f$ H_i = (I - h_i v_i v_i^T) \f$
- * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and
- * \f$ v_i \f$ is the Householder vector defined by
- * \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$.
- *
- * Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
- *
- * \sa Tridiagonalization::packedMatrix()
- */
-template<typename MatrixType, typename CoeffVectorType>
-void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
-{
- using numext::conj;
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- Index n = matA.rows();
- eigen_assert(n==matA.cols());
- eigen_assert(n==hCoeffs.size()+1 || n==1);
-
- for (Index i = 0; i<n-1; ++i)
- {
- Index remainingSize = n-i-1;
- RealScalar beta;
- Scalar h;
- matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
-
- // Apply similarity transformation to remaining columns,
- // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1)
- matA.col(i).coeffRef(i+1) = 1;
-
- hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>()
- * (conj(h) * matA.col(i).tail(remainingSize)));
-
- hCoeffs.tail(n-i-1) += (conj(h)*Scalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);
-
- matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>()
- .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), -1);
-
- matA.col(i).coeffRef(i+1) = beta;
- hCoeffs.coeffRef(i) = h;
- }
-}
-
-// forward declaration, implementation at the end of this file
-template<typename MatrixType,
- int Size=MatrixType::ColsAtCompileTime,
- bool IsComplex=NumTraits<typename MatrixType::Scalar>::IsComplex>
-struct tridiagonalization_inplace_selector;
-
-/** \brief Performs a full tridiagonalization in place
- *
- * \param[in,out] mat On input, the selfadjoint matrix whose tridiagonal
- * decomposition is to be computed. Only the lower triangular part referenced.
- * The rest is left unchanged. On output, the orthogonal matrix Q
- * in the decomposition if \p extractQ is true.
- * \param[out] diag The diagonal of the tridiagonal matrix T in the
- * decomposition.
- * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in
- * the decomposition.
- * \param[in] extractQ If true, the orthogonal matrix Q in the
- * decomposition is computed and stored in \p mat.
- *
- * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place
- * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real
- * symmetric tridiagonal matrix.
- *
- * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If
- * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower
- * part of the matrix \p mat is destroyed.
- *
- * The vectors \p diag and \p subdiag are not resized. The function
- * assumes that they are already of the correct size. The length of the
- * vector \p diag should equal the number of rows in \p mat, and the
- * length of the vector \p subdiag should be one left.
- *
- * This implementation contains an optimized path for 3-by-3 matrices
- * which is especially useful for plane fitting.
- *
- * \note Currently, it requires two temporary vectors to hold the intermediate
- * Householder coefficients, and to reconstruct the matrix Q from the Householder
- * reflectors.
- *
- * Example (this uses the same matrix as the example in
- * Tridiagonalization::Tridiagonalization(const MatrixType&)):
- * \include Tridiagonalization_decomposeInPlace.cpp
- * Output: \verbinclude Tridiagonalization_decomposeInPlace.out
- *
- * \sa class Tridiagonalization
- */
-template<typename MatrixType, typename DiagonalType, typename SubDiagonalType>
-void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
-{
- eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1);
- tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ);
-}
-
-/** \internal
- * General full tridiagonalization
- */
-template<typename MatrixType, int Size, bool IsComplex>
-struct tridiagonalization_inplace_selector
-{
- typedef typename Tridiagonalization<MatrixType>::CoeffVectorType CoeffVectorType;
- typedef typename Tridiagonalization<MatrixType>::HouseholderSequenceType HouseholderSequenceType;
- typedef typename MatrixType::Index Index;
- template<typename DiagonalType, typename SubDiagonalType>
- static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
- {
- CoeffVectorType hCoeffs(mat.cols()-1);
- tridiagonalization_inplace(mat,hCoeffs);
- diag = mat.diagonal().real();
- subdiag = mat.template diagonal<-1>().real();
- if(extractQ)
- mat = HouseholderSequenceType(mat, hCoeffs.conjugate())
- .setLength(mat.rows() - 1)
- .setShift(1);
- }
-};
-
-/** \internal
- * Specialization for 3x3 real matrices.
- * Especially useful for plane fitting.
- */
-template<typename MatrixType>
-struct tridiagonalization_inplace_selector<MatrixType,3,false>
-{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
-
- template<typename DiagonalType, typename SubDiagonalType>
- static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
- {
- using std::sqrt;
- diag[0] = mat(0,0);
- RealScalar v1norm2 = numext::abs2(mat(2,0));
- if(v1norm2 == RealScalar(0))
- {
- diag[1] = mat(1,1);
- diag[2] = mat(2,2);
- subdiag[0] = mat(1,0);
- subdiag[1] = mat(2,1);
- if (extractQ)
- mat.setIdentity();
- }
- else
- {
- RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2);
- RealScalar invBeta = RealScalar(1)/beta;
- Scalar m01 = mat(1,0) * invBeta;
- Scalar m02 = mat(2,0) * invBeta;
- Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1));
- diag[1] = mat(1,1) + m02*q;
- diag[2] = mat(2,2) - m02*q;
- subdiag[0] = beta;
- subdiag[1] = mat(2,1) - m01 * q;
- if (extractQ)
- {
- mat << 1, 0, 0,
- 0, m01, m02,
- 0, m02, -m01;
- }
- }
- }
-};
-
-/** \internal
- * Trivial specialization for 1x1 matrices
- */
-template<typename MatrixType, bool IsComplex>
-struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex>
-{
- typedef typename MatrixType::Scalar Scalar;
-
- template<typename DiagonalType, typename SubDiagonalType>
- static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, bool extractQ)
- {
- diag(0,0) = numext::real(mat(0,0));
- if(extractQ)
- mat(0,0) = Scalar(1);
- }
-};
-
-/** \internal
- * \eigenvalues_module \ingroup Eigenvalues_Module
- *
- * \brief Expression type for return value of Tridiagonalization::matrixT()
- *
- * \tparam MatrixType type of underlying dense matrix
- */
-template<typename MatrixType> struct TridiagonalizationMatrixTReturnType
-: public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> >
-{
- typedef typename MatrixType::Index Index;
- public:
- /** \brief Constructor.
- *
- * \param[in] mat The underlying dense matrix
- */
- TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { }
-
- template <typename ResultType>
- inline void evalTo(ResultType& result) const
- {
- result.setZero();
- result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate();
- result.diagonal() = m_matrix.diagonal();
- result.template diagonal<-1>() = m_matrix.template diagonal<-1>();
- }
-
- Index rows() const { return m_matrix.rows(); }
- Index cols() const { return m_matrix.cols(); }
-
- protected:
- typename MatrixType::Nested m_matrix;
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_TRIDIAGONALIZATION_H
diff --git a/src/Eigen/src/Geometry/AlignedBox.h b/src/Eigen/src/Geometry/AlignedBox.h
deleted file mode 100644
index 8e186d5..0000000
--- a/src/Eigen/src/Geometry/AlignedBox.h
+++ /dev/null
@@ -1,375 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ALIGNEDBOX_H
-#define EIGEN_ALIGNEDBOX_H
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- *
- * \class AlignedBox
- *
- * \brief An axis aligned box
- *
- * \param _Scalar the type of the scalar coefficients
- * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
- *
- * This class represents an axis aligned box as a pair of the minimal and maximal corners.
- */
-template <typename _Scalar, int _AmbientDim>
-class AlignedBox
-{
-public:
-EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
- enum { AmbientDimAtCompileTime = _AmbientDim };
- typedef _Scalar Scalar;
- typedef NumTraits<Scalar> ScalarTraits;
- typedef DenseIndex Index;
- typedef typename ScalarTraits::Real RealScalar;
- typedef typename ScalarTraits::NonInteger NonInteger;
- typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
-
- /** Define constants to name the corners of a 1D, 2D or 3D axis aligned bounding box */
- enum CornerType
- {
- /** 1D names */
- Min=0, Max=1,
-
- /** Added names for 2D */
- BottomLeft=0, BottomRight=1,
- TopLeft=2, TopRight=3,
-
- /** Added names for 3D */
- BottomLeftFloor=0, BottomRightFloor=1,
- TopLeftFloor=2, TopRightFloor=3,
- BottomLeftCeil=4, BottomRightCeil=5,
- TopLeftCeil=6, TopRightCeil=7
- };
-
-
- /** Default constructor initializing a null box. */
- inline AlignedBox()
- { if (AmbientDimAtCompileTime!=Dynamic) setEmpty(); }
-
- /** Constructs a null box with \a _dim the dimension of the ambient space. */
- inline explicit AlignedBox(Index _dim) : m_min(_dim), m_max(_dim)
- { setEmpty(); }
-
- /** Constructs a box with extremities \a _min and \a _max. */
- template<typename OtherVectorType1, typename OtherVectorType2>
- inline AlignedBox(const OtherVectorType1& _min, const OtherVectorType2& _max) : m_min(_min), m_max(_max) {}
-
- /** Constructs a box containing a single point \a p. */
- template<typename Derived>
- inline explicit AlignedBox(const MatrixBase<Derived>& a_p)
- {
- typename internal::nested<Derived,2>::type p(a_p.derived());
- m_min = p;
- m_max = p;
- }
-
- ~AlignedBox() {}
-
- /** \returns the dimension in which the box holds */
- inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size() : Index(AmbientDimAtCompileTime); }
-
- /** \deprecated use isEmpty */
- inline bool isNull() const { return isEmpty(); }
-
- /** \deprecated use setEmpty */
- inline void setNull() { setEmpty(); }
-
- /** \returns true if the box is empty. */
- inline bool isEmpty() const { return (m_min.array() > m_max.array()).any(); }
-
- /** Makes \c *this an empty box. */
- inline void setEmpty()
- {
- m_min.setConstant( ScalarTraits::highest() );
- m_max.setConstant( ScalarTraits::lowest() );
- }
-
- /** \returns the minimal corner */
- inline const VectorType& (min)() const { return m_min; }
- /** \returns a non const reference to the minimal corner */
- inline VectorType& (min)() { return m_min; }
- /** \returns the maximal corner */
- inline const VectorType& (max)() const { return m_max; }
- /** \returns a non const reference to the maximal corner */
- inline VectorType& (max)() { return m_max; }
-
- /** \returns the center of the box */
- inline const CwiseUnaryOp<internal::scalar_quotient1_op<Scalar>,
- const CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const VectorType, const VectorType> >
- center() const
- { return (m_min+m_max)/2; }
-
- /** \returns the lengths of the sides of the bounding box.
- * Note that this function does not get the same
- * result for integral or floating scalar types: see
- */
- inline const CwiseBinaryOp< internal::scalar_difference_op<Scalar>, const VectorType, const VectorType> sizes() const
- { return m_max - m_min; }
-
- /** \returns the volume of the bounding box */
- inline Scalar volume() const
- { return sizes().prod(); }
-
- /** \returns an expression for the bounding box diagonal vector
- * if the length of the diagonal is needed: diagonal().norm()
- * will provide it.
- */
- inline CwiseBinaryOp< internal::scalar_difference_op<Scalar>, const VectorType, const VectorType> diagonal() const
- { return sizes(); }
-
- /** \returns the vertex of the bounding box at the corner defined by
- * the corner-id corner. It works only for a 1D, 2D or 3D bounding box.
- * For 1D bounding boxes corners are named by 2 enum constants:
- * BottomLeft and BottomRight.
- * For 2D bounding boxes, corners are named by 4 enum constants:
- * BottomLeft, BottomRight, TopLeft, TopRight.
- * For 3D bounding boxes, the following names are added:
- * BottomLeftCeil, BottomRightCeil, TopLeftCeil, TopRightCeil.
- */
- inline VectorType corner(CornerType corner) const
- {
- EIGEN_STATIC_ASSERT(_AmbientDim <= 3, THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE);
-
- VectorType res;
-
- Index mult = 1;
- for(Index d=0; d<dim(); ++d)
- {
- if( mult & corner ) res[d] = m_max[d];
- else res[d] = m_min[d];
- mult *= 2;
- }
- return res;
- }
-
- /** \returns a random point inside the bounding box sampled with
- * a uniform distribution */
- inline VectorType sample() const
- {
- VectorType r;
- for(Index d=0; d<dim(); ++d)
- {
- if(!ScalarTraits::IsInteger)
- {
- r[d] = m_min[d] + (m_max[d]-m_min[d])
- * internal::random<Scalar>(Scalar(0), Scalar(1));
- }
- else
- r[d] = internal::random(m_min[d], m_max[d]);
- }
- return r;
- }
-
- /** \returns true if the point \a p is inside the box \c *this. */
- template<typename Derived>
- inline bool contains(const MatrixBase<Derived>& a_p) const
- {
- typename internal::nested<Derived,2>::type p(a_p.derived());
- return (m_min.array()<=p.array()).all() && (p.array()<=m_max.array()).all();
- }
-
- /** \returns true if the box \a b is entirely inside the box \c *this. */
- inline bool contains(const AlignedBox& b) const
- { return (m_min.array()<=(b.min)().array()).all() && ((b.max)().array()<=m_max.array()).all(); }
-
- /** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. */
- template<typename Derived>
- inline AlignedBox& extend(const MatrixBase<Derived>& a_p)
- {
- typename internal::nested<Derived,2>::type p(a_p.derived());
- m_min = m_min.cwiseMin(p);
- m_max = m_max.cwiseMax(p);
- return *this;
- }
-
- /** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. */
- inline AlignedBox& extend(const AlignedBox& b)
- {
- m_min = m_min.cwiseMin(b.m_min);
- m_max = m_max.cwiseMax(b.m_max);
- return *this;
- }
-
- /** Clamps \c *this by the box \a b and returns a reference to \c *this. */
- inline AlignedBox& clamp(const AlignedBox& b)
- {
- m_min = m_min.cwiseMax(b.m_min);
- m_max = m_max.cwiseMin(b.m_max);
- return *this;
- }
-
- /** Returns an AlignedBox that is the intersection of \a b and \c *this */
- inline AlignedBox intersection(const AlignedBox& b) const
- {return AlignedBox(m_min.cwiseMax(b.m_min), m_max.cwiseMin(b.m_max)); }
-
- /** Returns an AlignedBox that is the union of \a b and \c *this */
- inline AlignedBox merged(const AlignedBox& b) const
- { return AlignedBox(m_min.cwiseMin(b.m_min), m_max.cwiseMax(b.m_max)); }
-
- /** Translate \c *this by the vector \a t and returns a reference to \c *this. */
- template<typename Derived>
- inline AlignedBox& translate(const MatrixBase<Derived>& a_t)
- {
- const typename internal::nested<Derived,2>::type t(a_t.derived());
- m_min += t;
- m_max += t;
- return *this;
- }
-
- /** \returns the squared distance between the point \a p and the box \c *this,
- * and zero if \a p is inside the box.
- * \sa exteriorDistance()
- */
- template<typename Derived>
- inline Scalar squaredExteriorDistance(const MatrixBase<Derived>& a_p) const;
-
- /** \returns the squared distance between the boxes \a b and \c *this,
- * and zero if the boxes intersect.
- * \sa exteriorDistance()
- */
- inline Scalar squaredExteriorDistance(const AlignedBox& b) const;
-
- /** \returns the distance between the point \a p and the box \c *this,
- * and zero if \a p is inside the box.
- * \sa squaredExteriorDistance()
- */
- template<typename Derived>
- inline NonInteger exteriorDistance(const MatrixBase<Derived>& p) const
- { using std::sqrt; return sqrt(NonInteger(squaredExteriorDistance(p))); }
-
- /** \returns the distance between the boxes \a b and \c *this,
- * and zero if the boxes intersect.
- * \sa squaredExteriorDistance()
- */
- inline NonInteger exteriorDistance(const AlignedBox& b) const
- { using std::sqrt; return sqrt(NonInteger(squaredExteriorDistance(b))); }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<AlignedBox,
- AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
- {
- return typename internal::cast_return_type<AlignedBox,
- AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
- }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime>& other)
- {
- m_min = (other.min)().template cast<Scalar>();
- m_max = (other.max)().template cast<Scalar>();
- }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const AlignedBox& other, const RealScalar& prec = ScalarTraits::dummy_precision()) const
- { return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); }
-
-protected:
-
- VectorType m_min, m_max;
-};
-
-
-
-template<typename Scalar,int AmbientDim>
-template<typename Derived>
-inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const MatrixBase<Derived>& a_p) const
-{
- typename internal::nested<Derived,2*AmbientDim>::type p(a_p.derived());
- Scalar dist2(0);
- Scalar aux;
- for (Index k=0; k<dim(); ++k)
- {
- if( m_min[k] > p[k] )
- {
- aux = m_min[k] - p[k];
- dist2 += aux*aux;
- }
- else if( p[k] > m_max[k] )
- {
- aux = p[k] - m_max[k];
- dist2 += aux*aux;
- }
- }
- return dist2;
-}
-
-template<typename Scalar,int AmbientDim>
-inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const AlignedBox& b) const
-{
- Scalar dist2(0);
- Scalar aux;
- for (Index k=0; k<dim(); ++k)
- {
- if( m_min[k] > b.m_max[k] )
- {
- aux = m_min[k] - b.m_max[k];
- dist2 += aux*aux;
- }
- else if( b.m_min[k] > m_max[k] )
- {
- aux = b.m_min[k] - m_max[k];
- dist2 += aux*aux;
- }
- }
- return dist2;
-}
-
-/** \defgroup alignedboxtypedefs Global aligned box typedefs
- *
- * \ingroup Geometry_Module
- *
- * Eigen defines several typedef shortcuts for most common aligned box types.
- *
- * The general patterns are the following:
- *
- * \c AlignedBoxSizeType where \c Size can be \c 1, \c 2,\c 3,\c 4 for fixed size boxes or \c X for dynamic size,
- * and where \c Type can be \c i for integer, \c f for float, \c d for double.
- *
- * For example, \c AlignedBox3d is a fixed-size 3x3 aligned box type of doubles, and \c AlignedBoxXf is a dynamic-size aligned box of floats.
- *
- * \sa class AlignedBox
- */
-
-#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
-/** \ingroup alignedboxtypedefs */ \
-typedef AlignedBox<Type, Size> AlignedBox##SizeSuffix##TypeSuffix;
-
-#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
-EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 1, 1) \
-EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \
-EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \
-EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \
-EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X)
-
-EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i)
-EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f)
-EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d)
-
-#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES
-#undef EIGEN_MAKE_TYPEDEFS
-
-} // end namespace Eigen
-
-#endif // EIGEN_ALIGNEDBOX_H
diff --git a/src/Eigen/src/Geometry/AngleAxis.h b/src/Eigen/src/Geometry/AngleAxis.h
deleted file mode 100644
index 553d38c..0000000
--- a/src/Eigen/src/Geometry/AngleAxis.h
+++ /dev/null
@@ -1,233 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ANGLEAXIS_H
-#define EIGEN_ANGLEAXIS_H
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class AngleAxis
- *
- * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients.
- *
- * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized.
- *
- * The following two typedefs are provided for convenience:
- * \li \c AngleAxisf for \c float
- * \li \c AngleAxisd for \c double
- *
- * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
- * mimic Euler-angles. Here is an example:
- * \include AngleAxis_mimic_euler.cpp
- * Output: \verbinclude AngleAxis_mimic_euler.out
- *
- * \note This class is not aimed to be used to store a rotation transformation,
- * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
- * and transformation objects.
- *
- * \sa class Quaternion, class Transform, MatrixBase::UnitX()
- */
-
-namespace internal {
-template<typename _Scalar> struct traits<AngleAxis<_Scalar> >
-{
- typedef _Scalar Scalar;
-};
-}
-
-template<typename _Scalar>
-class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
-{
- typedef RotationBase<AngleAxis<_Scalar>,3> Base;
-
-public:
-
- using Base::operator*;
-
- enum { Dim = 3 };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- typedef Matrix<Scalar,3,3> Matrix3;
- typedef Matrix<Scalar,3,1> Vector3;
- typedef Quaternion<Scalar> QuaternionType;
-
-protected:
-
- Vector3 m_axis;
- Scalar m_angle;
-
-public:
-
- /** Default constructor without initialization. */
- AngleAxis() {}
- /** Constructs and initialize the angle-axis rotation from an \a angle in radian
- * and an \a axis which \b must \b be \b normalized.
- *
- * \warning If the \a axis vector is not normalized, then the angle-axis object
- * represents an invalid rotation. */
- template<typename Derived>
- inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
- /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
- template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
- /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
- template<typename Derived>
- inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
-
- Scalar angle() const { return m_angle; }
- Scalar& angle() { return m_angle; }
-
- const Vector3& axis() const { return m_axis; }
- Vector3& axis() { return m_axis; }
-
- /** Concatenates two rotations */
- inline QuaternionType operator* (const AngleAxis& other) const
- { return QuaternionType(*this) * QuaternionType(other); }
-
- /** Concatenates two rotations */
- inline QuaternionType operator* (const QuaternionType& other) const
- { return QuaternionType(*this) * other; }
-
- /** Concatenates two rotations */
- friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
- { return a * QuaternionType(b); }
-
- /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
- AngleAxis inverse() const
- { return AngleAxis(-m_angle, m_axis); }
-
- template<class QuatDerived>
- AngleAxis& operator=(const QuaternionBase<QuatDerived>& q);
- template<typename Derived>
- AngleAxis& operator=(const MatrixBase<Derived>& m);
-
- template<typename Derived>
- AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
- Matrix3 toRotationMatrix(void) const;
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
- { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
- {
- m_axis = other.axis().template cast<Scalar>();
- m_angle = Scalar(other.angle());
- }
-
- static inline const AngleAxis Identity() { return AngleAxis(0, Vector3::UnitX()); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
- { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); }
-};
-
-/** \ingroup Geometry_Module
- * single precision angle-axis type */
-typedef AngleAxis<float> AngleAxisf;
-/** \ingroup Geometry_Module
- * double precision angle-axis type */
-typedef AngleAxis<double> AngleAxisd;
-
-/** Set \c *this from a \b unit quaternion.
- * The axis is normalized.
- *
- * \warning As any other method dealing with quaternion, if the input quaternion
- * is not normalized then the result is undefined.
- */
-template<typename Scalar>
-template<typename QuatDerived>
-AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
-{
- using std::acos;
- using std::min;
- using std::max;
- using std::sqrt;
- Scalar n2 = q.vec().squaredNorm();
- if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision())
- {
- m_angle = 0;
- m_axis << 1, 0, 0;
- }
- else
- {
- m_angle = Scalar(2)*acos((min)((max)(Scalar(-1),q.w()),Scalar(1)));
- m_axis = q.vec() / sqrt(n2);
- }
- return *this;
-}
-
-/** Set \c *this from a 3x3 rotation matrix \a mat.
- */
-template<typename Scalar>
-template<typename Derived>
-AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
-{
- // Since a direct conversion would not be really faster,
- // let's use the robust Quaternion implementation:
- return *this = QuaternionType(mat);
-}
-
-/**
-* \brief Sets \c *this from a 3x3 rotation matrix.
-**/
-template<typename Scalar>
-template<typename Derived>
-AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
-{
- return *this = QuaternionType(mat);
-}
-
-/** Constructs and \returns an equivalent 3x3 rotation matrix.
- */
-template<typename Scalar>
-typename AngleAxis<Scalar>::Matrix3
-AngleAxis<Scalar>::toRotationMatrix(void) const
-{
- using std::sin;
- using std::cos;
- Matrix3 res;
- Vector3 sin_axis = sin(m_angle) * m_axis;
- Scalar c = cos(m_angle);
- Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
-
- Scalar tmp;
- tmp = cos1_axis.x() * m_axis.y();
- res.coeffRef(0,1) = tmp - sin_axis.z();
- res.coeffRef(1,0) = tmp + sin_axis.z();
-
- tmp = cos1_axis.x() * m_axis.z();
- res.coeffRef(0,2) = tmp + sin_axis.y();
- res.coeffRef(2,0) = tmp - sin_axis.y();
-
- tmp = cos1_axis.y() * m_axis.z();
- res.coeffRef(1,2) = tmp - sin_axis.x();
- res.coeffRef(2,1) = tmp + sin_axis.x();
-
- res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c;
-
- return res;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_ANGLEAXIS_H
diff --git a/src/Eigen/src/Geometry/CMakeLists.txt b/src/Eigen/src/Geometry/CMakeLists.txt
deleted file mode 100644
index f8f728b..0000000
--- a/src/Eigen/src/Geometry/CMakeLists.txt
+++ /dev/null
@@ -1,8 +0,0 @@
-FILE(GLOB Eigen_Geometry_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Geometry_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Geometry COMPONENT Devel
- )
-
-ADD_SUBDIRECTORY(arch)
diff --git a/src/Eigen/src/Geometry/EulerAngles.h b/src/Eigen/src/Geometry/EulerAngles.h
deleted file mode 100644
index 82802fb..0000000
--- a/src/Eigen/src/Geometry/EulerAngles.h
+++ /dev/null
@@ -1,104 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_EULERANGLES_H
-#define EIGEN_EULERANGLES_H
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- *
- * \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2)
- *
- * Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}.
- * For instance, in:
- * \code Vector3f ea = mat.eulerAngles(2, 0, 2); \endcode
- * "2" represents the z axis and "0" the x axis, etc. The returned angles are such that
- * we have the following equality:
- * \code
- * mat == AngleAxisf(ea[0], Vector3f::UnitZ())
- * * AngleAxisf(ea[1], Vector3f::UnitX())
- * * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode
- * This corresponds to the right-multiply conventions (with right hand side frames).
- *
- * The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi].
- *
- * \sa class AngleAxis
- */
-template<typename Derived>
-inline Matrix<typename MatrixBase<Derived>::Scalar,3,1>
-MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const
-{
- using std::atan2;
- using std::sin;
- using std::cos;
- /* Implemented from Graphics Gems IV */
- EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived,3,3)
-
- Matrix<Scalar,3,1> res;
- typedef Matrix<typename Derived::Scalar,2,1> Vector2;
-
- const Index odd = ((a0+1)%3 == a1) ? 0 : 1;
- const Index i = a0;
- const Index j = (a0 + 1 + odd)%3;
- const Index k = (a0 + 2 - odd)%3;
-
- if (a0==a2)
- {
- res[0] = atan2(coeff(j,i), coeff(k,i));
- if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0)))
- {
- res[0] = (res[0] > Scalar(0)) ? res[0] - Scalar(M_PI) : res[0] + Scalar(M_PI);
- Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm();
- res[1] = -atan2(s2, coeff(i,i));
- }
- else
- {
- Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm();
- res[1] = atan2(s2, coeff(i,i));
- }
-
- // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
- // we can compute their respective rotation, and apply its inverse to M. Since the result must
- // be a rotation around x, we have:
- //
- // c2 s1.s2 c1.s2 1 0 0
- // 0 c1 -s1 * M = 0 c3 s3
- // -s2 s1.c2 c1.c2 0 -s3 c3
- //
- // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3
-
- Scalar s1 = sin(res[0]);
- Scalar c1 = cos(res[0]);
- res[2] = atan2(c1*coeff(j,k)-s1*coeff(k,k), c1*coeff(j,j) - s1 * coeff(k,j));
- }
- else
- {
- res[0] = atan2(coeff(j,k), coeff(k,k));
- Scalar c2 = Vector2(coeff(i,i), coeff(i,j)).norm();
- if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0))) {
- res[0] = (res[0] > Scalar(0)) ? res[0] - Scalar(M_PI) : res[0] + Scalar(M_PI);
- res[1] = atan2(-coeff(i,k), -c2);
- }
- else
- res[1] = atan2(-coeff(i,k), c2);
- Scalar s1 = sin(res[0]);
- Scalar c1 = cos(res[0]);
- res[2] = atan2(s1*coeff(k,i)-c1*coeff(j,i), c1*coeff(j,j) - s1 * coeff(k,j));
- }
- if (!odd)
- res = -res;
-
- return res;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_EULERANGLES_H
diff --git a/src/Eigen/src/Geometry/Homogeneous.h b/src/Eigen/src/Geometry/Homogeneous.h
deleted file mode 100644
index 00e71d1..0000000
--- a/src/Eigen/src/Geometry/Homogeneous.h
+++ /dev/null
@@ -1,307 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_HOMOGENEOUS_H
-#define EIGEN_HOMOGENEOUS_H
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Homogeneous
- *
- * \brief Expression of one (or a set of) homogeneous vector(s)
- *
- * \param MatrixType the type of the object in which we are making homogeneous
- *
- * This class represents an expression of one (or a set of) homogeneous vector(s).
- * It is the return type of MatrixBase::homogeneous() and most of the time
- * this is the only way it is used.
- *
- * \sa MatrixBase::homogeneous()
- */
-
-namespace internal {
-
-template<typename MatrixType,int Direction>
-struct traits<Homogeneous<MatrixType,Direction> >
- : traits<MatrixType>
-{
- typedef typename traits<MatrixType>::StorageKind StorageKind;
- typedef typename nested<MatrixType>::type MatrixTypeNested;
- typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
- enum {
- RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ?
- int(MatrixType::RowsAtCompileTime) + 1 : Dynamic,
- ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ?
- int(MatrixType::ColsAtCompileTime) + 1 : Dynamic,
- RowsAtCompileTime = Direction==Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = RowsAtCompileTime,
- MaxColsAtCompileTime = ColsAtCompileTime,
- TmpFlags = _MatrixTypeNested::Flags & HereditaryBits,
- Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit)
- : RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit)
- : TmpFlags,
- CoeffReadCost = _MatrixTypeNested::CoeffReadCost
- };
-};
-
-template<typename MatrixType,typename Lhs> struct homogeneous_left_product_impl;
-template<typename MatrixType,typename Rhs> struct homogeneous_right_product_impl;
-
-} // end namespace internal
-
-template<typename MatrixType,int _Direction> class Homogeneous
- : internal::no_assignment_operator, public MatrixBase<Homogeneous<MatrixType,_Direction> >
-{
- public:
-
- enum { Direction = _Direction };
-
- typedef MatrixBase<Homogeneous> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous)
-
- inline Homogeneous(const MatrixType& matrix)
- : m_matrix(matrix)
- {}
-
- inline Index rows() const { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); }
- inline Index cols() const { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); }
-
- inline Scalar coeff(Index row, Index col) const
- {
- if( (int(Direction)==Vertical && row==m_matrix.rows())
- || (int(Direction)==Horizontal && col==m_matrix.cols()))
- return 1;
- return m_matrix.coeff(row, col);
- }
-
- template<typename Rhs>
- inline const internal::homogeneous_right_product_impl<Homogeneous,Rhs>
- operator* (const MatrixBase<Rhs>& rhs) const
- {
- eigen_assert(int(Direction)==Horizontal);
- return internal::homogeneous_right_product_impl<Homogeneous,Rhs>(m_matrix,rhs.derived());
- }
-
- template<typename Lhs> friend
- inline const internal::homogeneous_left_product_impl<Homogeneous,Lhs>
- operator* (const MatrixBase<Lhs>& lhs, const Homogeneous& rhs)
- {
- eigen_assert(int(Direction)==Vertical);
- return internal::homogeneous_left_product_impl<Homogeneous,Lhs>(lhs.derived(),rhs.m_matrix);
- }
-
- template<typename Scalar, int Dim, int Mode, int Options> friend
- inline const internal::homogeneous_left_product_impl<Homogeneous,Transform<Scalar,Dim,Mode,Options> >
- operator* (const Transform<Scalar,Dim,Mode,Options>& lhs, const Homogeneous& rhs)
- {
- eigen_assert(int(Direction)==Vertical);
- return internal::homogeneous_left_product_impl<Homogeneous,Transform<Scalar,Dim,Mode,Options> >(lhs,rhs.m_matrix);
- }
-
- protected:
- typename MatrixType::Nested m_matrix;
-};
-
-/** \geometry_module
- *
- * \return an expression of the equivalent homogeneous vector
- *
- * \only_for_vectors
- *
- * Example: \include MatrixBase_homogeneous.cpp
- * Output: \verbinclude MatrixBase_homogeneous.out
- *
- * \sa class Homogeneous
- */
-template<typename Derived>
-inline typename MatrixBase<Derived>::HomogeneousReturnType
-MatrixBase<Derived>::homogeneous() const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
- return derived();
-}
-
-/** \geometry_module
- *
- * \returns a matrix expression of homogeneous column (or row) vectors
- *
- * Example: \include VectorwiseOp_homogeneous.cpp
- * Output: \verbinclude VectorwiseOp_homogeneous.out
- *
- * \sa MatrixBase::homogeneous() */
-template<typename ExpressionType, int Direction>
-inline Homogeneous<ExpressionType,Direction>
-VectorwiseOp<ExpressionType,Direction>::homogeneous() const
-{
- return _expression();
-}
-
-/** \geometry_module
- *
- * \returns an expression of the homogeneous normalized vector of \c *this
- *
- * Example: \include MatrixBase_hnormalized.cpp
- * Output: \verbinclude MatrixBase_hnormalized.out
- *
- * \sa VectorwiseOp::hnormalized() */
-template<typename Derived>
-inline const typename MatrixBase<Derived>::HNormalizedReturnType
-MatrixBase<Derived>::hnormalized() const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
- return ConstStartMinusOne(derived(),0,0,
- ColsAtCompileTime==1?size()-1:1,
- ColsAtCompileTime==1?1:size()-1) / coeff(size()-1);
-}
-
-/** \geometry_module
- *
- * \returns an expression of the homogeneous normalized vector of \c *this
- *
- * Example: \include DirectionWise_hnormalized.cpp
- * Output: \verbinclude DirectionWise_hnormalized.out
- *
- * \sa MatrixBase::hnormalized() */
-template<typename ExpressionType, int Direction>
-inline const typename VectorwiseOp<ExpressionType,Direction>::HNormalizedReturnType
-VectorwiseOp<ExpressionType,Direction>::hnormalized() const
-{
- return HNormalized_Block(_expression(),0,0,
- Direction==Vertical ? _expression().rows()-1 : _expression().rows(),
- Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).cwiseQuotient(
- Replicate<HNormalized_Factors,
- Direction==Vertical ? HNormalized_SizeMinusOne : 1,
- Direction==Horizontal ? HNormalized_SizeMinusOne : 1>
- (HNormalized_Factors(_expression(),
- Direction==Vertical ? _expression().rows()-1:0,
- Direction==Horizontal ? _expression().cols()-1:0,
- Direction==Vertical ? 1 : _expression().rows(),
- Direction==Horizontal ? 1 : _expression().cols()),
- Direction==Vertical ? _expression().rows()-1 : 1,
- Direction==Horizontal ? _expression().cols()-1 : 1));
-}
-
-namespace internal {
-
-template<typename MatrixOrTransformType>
-struct take_matrix_for_product
-{
- typedef MatrixOrTransformType type;
- static const type& run(const type &x) { return x; }
-};
-
-template<typename Scalar, int Dim, int Mode,int Options>
-struct take_matrix_for_product<Transform<Scalar, Dim, Mode, Options> >
-{
- typedef Transform<Scalar, Dim, Mode, Options> TransformType;
- typedef typename internal::add_const<typename TransformType::ConstAffinePart>::type type;
- static type run (const TransformType& x) { return x.affine(); }
-};
-
-template<typename Scalar, int Dim, int Options>
-struct take_matrix_for_product<Transform<Scalar, Dim, Projective, Options> >
-{
- typedef Transform<Scalar, Dim, Projective, Options> TransformType;
- typedef typename TransformType::MatrixType type;
- static const type& run (const TransformType& x) { return x.matrix(); }
-};
-
-template<typename MatrixType,typename Lhs>
-struct traits<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
-{
- typedef typename take_matrix_for_product<Lhs>::type LhsMatrixType;
- typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
- typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
- typedef typename make_proper_matrix_type<
- typename traits<MatrixTypeCleaned>::Scalar,
- LhsMatrixTypeCleaned::RowsAtCompileTime,
- MatrixTypeCleaned::ColsAtCompileTime,
- MatrixTypeCleaned::PlainObject::Options,
- LhsMatrixTypeCleaned::MaxRowsAtCompileTime,
- MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType;
-};
-
-template<typename MatrixType,typename Lhs>
-struct homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs>
- : public ReturnByValue<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
-{
- typedef typename traits<homogeneous_left_product_impl>::LhsMatrixType LhsMatrixType;
- typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
- typedef typename remove_all<typename LhsMatrixTypeCleaned::Nested>::type LhsMatrixTypeNested;
- typedef typename MatrixType::Index Index;
- homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs)
- : m_lhs(take_matrix_for_product<Lhs>::run(lhs)),
- m_rhs(rhs)
- {}
-
- inline Index rows() const { return m_lhs.rows(); }
- inline Index cols() const { return m_rhs.cols(); }
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- // FIXME investigate how to allow lazy evaluation of this product when possible
- dst = Block<const LhsMatrixTypeNested,
- LhsMatrixTypeNested::RowsAtCompileTime,
- LhsMatrixTypeNested::ColsAtCompileTime==Dynamic?Dynamic:LhsMatrixTypeNested::ColsAtCompileTime-1>
- (m_lhs,0,0,m_lhs.rows(),m_lhs.cols()-1) * m_rhs;
- dst += m_lhs.col(m_lhs.cols()-1).rowwise()
- .template replicate<MatrixType::ColsAtCompileTime>(m_rhs.cols());
- }
-
- typename LhsMatrixTypeCleaned::Nested m_lhs;
- typename MatrixType::Nested m_rhs;
-};
-
-template<typename MatrixType,typename Rhs>
-struct traits<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
-{
- typedef typename make_proper_matrix_type<typename traits<MatrixType>::Scalar,
- MatrixType::RowsAtCompileTime,
- Rhs::ColsAtCompileTime,
- MatrixType::PlainObject::Options,
- MatrixType::MaxRowsAtCompileTime,
- Rhs::MaxColsAtCompileTime>::type ReturnType;
-};
-
-template<typename MatrixType,typename Rhs>
-struct homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs>
- : public ReturnByValue<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
-{
- typedef typename remove_all<typename Rhs::Nested>::type RhsNested;
- typedef typename MatrixType::Index Index;
- homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs)
- : m_lhs(lhs), m_rhs(rhs)
- {}
-
- inline Index rows() const { return m_lhs.rows(); }
- inline Index cols() const { return m_rhs.cols(); }
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- // FIXME investigate how to allow lazy evaluation of this product when possible
- dst = m_lhs * Block<const RhsNested,
- RhsNested::RowsAtCompileTime==Dynamic?Dynamic:RhsNested::RowsAtCompileTime-1,
- RhsNested::ColsAtCompileTime>
- (m_rhs,0,0,m_rhs.rows()-1,m_rhs.cols());
- dst += m_rhs.row(m_rhs.rows()-1).colwise()
- .template replicate<MatrixType::RowsAtCompileTime>(m_lhs.rows());
- }
-
- typename MatrixType::Nested m_lhs;
- typename Rhs::Nested m_rhs;
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_HOMOGENEOUS_H
diff --git a/src/Eigen/src/Geometry/Hyperplane.h b/src/Eigen/src/Geometry/Hyperplane.h
deleted file mode 100644
index aeff43f..0000000
--- a/src/Eigen/src/Geometry/Hyperplane.h
+++ /dev/null
@@ -1,270 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_HYPERPLANE_H
-#define EIGEN_HYPERPLANE_H
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Hyperplane
- *
- * \brief A hyperplane
- *
- * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
- * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
- * Notice that the dimension of the hyperplane is _AmbientDim-1.
- *
- * This class represents an hyperplane as the zero set of the implicit equation
- * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
- * and \f$ d \f$ is the distance (offset) to the origin.
- */
-template <typename _Scalar, int _AmbientDim, int _Options>
-class Hyperplane
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
- enum {
- AmbientDimAtCompileTime = _AmbientDim,
- Options = _Options
- };
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef DenseIndex Index;
- typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
- typedef Matrix<Scalar,Index(AmbientDimAtCompileTime)==Dynamic
- ? Dynamic
- : Index(AmbientDimAtCompileTime)+1,1,Options> Coefficients;
- typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
- typedef const Block<const Coefficients,AmbientDimAtCompileTime,1> ConstNormalReturnType;
-
- /** Default constructor without initialization */
- inline Hyperplane() {}
-
- template<int OtherOptions>
- Hyperplane(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other)
- : m_coeffs(other.coeffs())
- {}
-
- /** Constructs a dynamic-size hyperplane with \a _dim the dimension
- * of the ambient space */
- inline explicit Hyperplane(Index _dim) : m_coeffs(_dim+1) {}
-
- /** Construct a plane from its normal \a n and a point \a e onto the plane.
- * \warning the vector normal is assumed to be normalized.
- */
- inline Hyperplane(const VectorType& n, const VectorType& e)
- : m_coeffs(n.size()+1)
- {
- normal() = n;
- offset() = -n.dot(e);
- }
-
- /** Constructs a plane from its normal \a n and distance to the origin \a d
- * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
- * \warning the vector normal is assumed to be normalized.
- */
- inline Hyperplane(const VectorType& n, const Scalar& d)
- : m_coeffs(n.size()+1)
- {
- normal() = n;
- offset() = d;
- }
-
- /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
- * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
- */
- static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
- {
- Hyperplane result(p0.size());
- result.normal() = (p1 - p0).unitOrthogonal();
- result.offset() = -p0.dot(result.normal());
- return result;
- }
-
- /** Constructs a hyperplane passing through the three points. The dimension of the ambient space
- * is required to be exactly 3.
- */
- static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
- {
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
- Hyperplane result(p0.size());
- result.normal() = (p2 - p0).cross(p1 - p0).normalized();
- result.offset() = -p0.dot(result.normal());
- return result;
- }
-
- /** Constructs a hyperplane passing through the parametrized line \a parametrized.
- * If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
- * so an arbitrary choice is made.
- */
- // FIXME to be consitent with the rest this could be implemented as a static Through function ??
- explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
- {
- normal() = parametrized.direction().unitOrthogonal();
- offset() = -parametrized.origin().dot(normal());
- }
-
- ~Hyperplane() {}
-
- /** \returns the dimension in which the plane holds */
- inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : Index(AmbientDimAtCompileTime); }
-
- /** normalizes \c *this */
- void normalize(void)
- {
- m_coeffs /= normal().norm();
- }
-
- /** \returns the signed distance between the plane \c *this and a point \a p.
- * \sa absDistance()
- */
- inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); }
-
- /** \returns the absolute distance between the plane \c *this and a point \a p.
- * \sa signedDistance()
- */
- inline Scalar absDistance(const VectorType& p) const { using std::abs; return abs(signedDistance(p)); }
-
- /** \returns the projection of a point \a p onto the plane \c *this.
- */
- inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
-
- /** \returns a constant reference to the unit normal vector of the plane, which corresponds
- * to the linear part of the implicit equation.
- */
- inline ConstNormalReturnType normal() const { return ConstNormalReturnType(m_coeffs,0,0,dim(),1); }
-
- /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
- * to the linear part of the implicit equation.
- */
- inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
-
- /** \returns the distance to the origin, which is also the "constant term" of the implicit equation
- * \warning the vector normal is assumed to be normalized.
- */
- inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
-
- /** \returns a non-constant reference to the distance to the origin, which is also the constant part
- * of the implicit equation */
- inline Scalar& offset() { return m_coeffs(dim()); }
-
- /** \returns a constant reference to the coefficients c_i of the plane equation:
- * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
- */
- inline const Coefficients& coeffs() const { return m_coeffs; }
-
- /** \returns a non-constant reference to the coefficients c_i of the plane equation:
- * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
- */
- inline Coefficients& coeffs() { return m_coeffs; }
-
- /** \returns the intersection of *this with \a other.
- *
- * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
- *
- * \note If \a other is approximately parallel to *this, this method will return any point on *this.
- */
- VectorType intersection(const Hyperplane& other) const
- {
- using std::abs;
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
- Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
- // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
- // whether the two lines are approximately parallel.
- if(internal::isMuchSmallerThan(det, Scalar(1)))
- { // special case where the two lines are approximately parallel. Pick any point on the first line.
- if(abs(coeffs().coeff(1))>abs(coeffs().coeff(0)))
- return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
- else
- return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
- }
- else
- { // general case
- Scalar invdet = Scalar(1) / det;
- return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
- invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
- }
- }
-
- /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
- *
- * \param mat the Dim x Dim transformation matrix
- * \param traits specifies whether the matrix \a mat represents an #Isometry
- * or a more generic #Affine transformation. The default is #Affine.
- */
- template<typename XprType>
- inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
- {
- if (traits==Affine)
- normal() = mat.inverse().transpose() * normal();
- else if (traits==Isometry)
- normal() = mat * normal();
- else
- {
- eigen_assert(0 && "invalid traits value in Hyperplane::transform()");
- }
- return *this;
- }
-
- /** Applies the transformation \a t to \c *this and returns a reference to \c *this.
- *
- * \param t the transformation of dimension Dim
- * \param traits specifies whether the transformation \a t represents an #Isometry
- * or a more generic #Affine transformation. The default is #Affine.
- * Other kind of transformations are not supported.
- */
- template<int TrOptions>
- inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime,Affine,TrOptions>& t,
- TransformTraits traits = Affine)
- {
- transform(t.linear(), traits);
- offset() -= normal().dot(t.translation());
- return *this;
- }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Hyperplane,
- Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type cast() const
- {
- return typename internal::cast_return_type<Hyperplane,
- Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type(*this);
- }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType,int OtherOptions>
- inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other)
- { m_coeffs = other.coeffs().template cast<Scalar>(); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- template<int OtherOptions>
- bool isApprox(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
- { return m_coeffs.isApprox(other.m_coeffs, prec); }
-
-protected:
-
- Coefficients m_coeffs;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_HYPERPLANE_H
diff --git a/src/Eigen/src/Geometry/OrthoMethods.h b/src/Eigen/src/Geometry/OrthoMethods.h
deleted file mode 100644
index 556bc81..0000000
--- a/src/Eigen/src/Geometry/OrthoMethods.h
+++ /dev/null
@@ -1,218 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ORTHOMETHODS_H
-#define EIGEN_ORTHOMETHODS_H
-
-namespace Eigen {
-
-/** \geometry_module
- *
- * \returns the cross product of \c *this and \a other
- *
- * Here is a very good explanation of cross-product: http://xkcd.com/199/
- * \sa MatrixBase::cross3()
- */
-template<typename Derived>
-template<typename OtherDerived>
-inline typename MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type
-MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3)
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3)
-
- // Note that there is no need for an expression here since the compiler
- // optimize such a small temporary very well (even within a complex expression)
- typename internal::nested<Derived,2>::type lhs(derived());
- typename internal::nested<OtherDerived,2>::type rhs(other.derived());
- return typename cross_product_return_type<OtherDerived>::type(
- numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
- numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
- numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0))
- );
-}
-
-namespace internal {
-
-template< int Arch,typename VectorLhs,typename VectorRhs,
- typename Scalar = typename VectorLhs::Scalar,
- bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&PacketAccessBit)>
-struct cross3_impl {
- static inline typename internal::plain_matrix_type<VectorLhs>::type
- run(const VectorLhs& lhs, const VectorRhs& rhs)
- {
- return typename internal::plain_matrix_type<VectorLhs>::type(
- numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
- numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
- numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)),
- 0
- );
- }
-};
-
-}
-
-/** \geometry_module
- *
- * \returns the cross product of \c *this and \a other using only the x, y, and z coefficients
- *
- * The size of \c *this and \a other must be four. This function is especially useful
- * when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization.
- *
- * \sa MatrixBase::cross()
- */
-template<typename Derived>
-template<typename OtherDerived>
-inline typename MatrixBase<Derived>::PlainObject
-MatrixBase<Derived>::cross3(const MatrixBase<OtherDerived>& other) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4)
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4)
-
- typedef typename internal::nested<Derived,2>::type DerivedNested;
- typedef typename internal::nested<OtherDerived,2>::type OtherDerivedNested;
- DerivedNested lhs(derived());
- OtherDerivedNested rhs(other.derived());
-
- return internal::cross3_impl<Architecture::Target,
- typename internal::remove_all<DerivedNested>::type,
- typename internal::remove_all<OtherDerivedNested>::type>::run(lhs,rhs);
-}
-
-/** \returns a matrix expression of the cross product of each column or row
- * of the referenced expression with the \a other vector.
- *
- * The referenced matrix must have one dimension equal to 3.
- * The result matrix has the same dimensions than the referenced one.
- *
- * \geometry_module
- *
- * \sa MatrixBase::cross() */
-template<typename ExpressionType, int Direction>
-template<typename OtherDerived>
-const typename VectorwiseOp<ExpressionType,Direction>::CrossReturnType
-VectorwiseOp<ExpressionType,Direction>::cross(const MatrixBase<OtherDerived>& other) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3)
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-
- CrossReturnType res(_expression().rows(),_expression().cols());
- if(Direction==Vertical)
- {
- eigen_assert(CrossReturnType::RowsAtCompileTime==3 && "the matrix must have exactly 3 rows");
- res.row(0) = (_expression().row(1) * other.coeff(2) - _expression().row(2) * other.coeff(1)).conjugate();
- res.row(1) = (_expression().row(2) * other.coeff(0) - _expression().row(0) * other.coeff(2)).conjugate();
- res.row(2) = (_expression().row(0) * other.coeff(1) - _expression().row(1) * other.coeff(0)).conjugate();
- }
- else
- {
- eigen_assert(CrossReturnType::ColsAtCompileTime==3 && "the matrix must have exactly 3 columns");
- res.col(0) = (_expression().col(1) * other.coeff(2) - _expression().col(2) * other.coeff(1)).conjugate();
- res.col(1) = (_expression().col(2) * other.coeff(0) - _expression().col(0) * other.coeff(2)).conjugate();
- res.col(2) = (_expression().col(0) * other.coeff(1) - _expression().col(1) * other.coeff(0)).conjugate();
- }
- return res;
-}
-
-namespace internal {
-
-template<typename Derived, int Size = Derived::SizeAtCompileTime>
-struct unitOrthogonal_selector
-{
- typedef typename plain_matrix_type<Derived>::type VectorType;
- typedef typename traits<Derived>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename Derived::Index Index;
- typedef Matrix<Scalar,2,1> Vector2;
- static inline VectorType run(const Derived& src)
- {
- VectorType perp = VectorType::Zero(src.size());
- Index maxi = 0;
- Index sndi = 0;
- src.cwiseAbs().maxCoeff(&maxi);
- if (maxi==0)
- sndi = 1;
- RealScalar invnm = RealScalar(1)/(Vector2() << src.coeff(sndi),src.coeff(maxi)).finished().norm();
- perp.coeffRef(maxi) = -numext::conj(src.coeff(sndi)) * invnm;
- perp.coeffRef(sndi) = numext::conj(src.coeff(maxi)) * invnm;
-
- return perp;
- }
-};
-
-template<typename Derived>
-struct unitOrthogonal_selector<Derived,3>
-{
- typedef typename plain_matrix_type<Derived>::type VectorType;
- typedef typename traits<Derived>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- static inline VectorType run(const Derived& src)
- {
- VectorType perp;
- /* Let us compute the crossed product of *this with a vector
- * that is not too close to being colinear to *this.
- */
-
- /* unless the x and y coords are both close to zero, we can
- * simply take ( -y, x, 0 ) and normalize it.
- */
- if((!isMuchSmallerThan(src.x(), src.z()))
- || (!isMuchSmallerThan(src.y(), src.z())))
- {
- RealScalar invnm = RealScalar(1)/src.template head<2>().norm();
- perp.coeffRef(0) = -numext::conj(src.y())*invnm;
- perp.coeffRef(1) = numext::conj(src.x())*invnm;
- perp.coeffRef(2) = 0;
- }
- /* if both x and y are close to zero, then the vector is close
- * to the z-axis, so it's far from colinear to the x-axis for instance.
- * So we take the crossed product with (1,0,0) and normalize it.
- */
- else
- {
- RealScalar invnm = RealScalar(1)/src.template tail<2>().norm();
- perp.coeffRef(0) = 0;
- perp.coeffRef(1) = -numext::conj(src.z())*invnm;
- perp.coeffRef(2) = numext::conj(src.y())*invnm;
- }
-
- return perp;
- }
-};
-
-template<typename Derived>
-struct unitOrthogonal_selector<Derived,2>
-{
- typedef typename plain_matrix_type<Derived>::type VectorType;
- static inline VectorType run(const Derived& src)
- { return VectorType(-numext::conj(src.y()), numext::conj(src.x())).normalized(); }
-};
-
-} // end namespace internal
-
-/** \returns a unit vector which is orthogonal to \c *this
- *
- * The size of \c *this must be at least 2. If the size is exactly 2,
- * then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized().
- *
- * \sa cross()
- */
-template<typename Derived>
-typename MatrixBase<Derived>::PlainObject
-MatrixBase<Derived>::unitOrthogonal() const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return internal::unitOrthogonal_selector<Derived>::run(derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_ORTHOMETHODS_H
diff --git a/src/Eigen/src/Geometry/ParametrizedLine.h b/src/Eigen/src/Geometry/ParametrizedLine.h
deleted file mode 100644
index 77fa228..0000000
--- a/src/Eigen/src/Geometry/ParametrizedLine.h
+++ /dev/null
@@ -1,195 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_PARAMETRIZEDLINE_H
-#define EIGEN_PARAMETRIZEDLINE_H
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class ParametrizedLine
- *
- * \brief A parametrized line
- *
- * A parametrized line is defined by an origin point \f$ \mathbf{o} \f$ and a unit
- * direction vector \f$ \mathbf{d} \f$ such that the line corresponds to
- * the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ t \in \mathbf{R} \f$.
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
- */
-template <typename _Scalar, int _AmbientDim, int _Options>
-class ParametrizedLine
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
- enum {
- AmbientDimAtCompileTime = _AmbientDim,
- Options = _Options
- };
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef DenseIndex Index;
- typedef Matrix<Scalar,AmbientDimAtCompileTime,1,Options> VectorType;
-
- /** Default constructor without initialization */
- inline ParametrizedLine() {}
-
- template<int OtherOptions>
- ParametrizedLine(const ParametrizedLine<Scalar,AmbientDimAtCompileTime,OtherOptions>& other)
- : m_origin(other.origin()), m_direction(other.direction())
- {}
-
- /** Constructs a dynamic-size line with \a _dim the dimension
- * of the ambient space */
- inline explicit ParametrizedLine(Index _dim) : m_origin(_dim), m_direction(_dim) {}
-
- /** Initializes a parametrized line of direction \a direction and origin \a origin.
- * \warning the vector direction is assumed to be normalized.
- */
- ParametrizedLine(const VectorType& origin, const VectorType& direction)
- : m_origin(origin), m_direction(direction) {}
-
- template <int OtherOptions>
- explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane);
-
- /** Constructs a parametrized line going from \a p0 to \a p1. */
- static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1)
- { return ParametrizedLine(p0, (p1-p0).normalized()); }
-
- ~ParametrizedLine() {}
-
- /** \returns the dimension in which the line holds */
- inline Index dim() const { return m_direction.size(); }
-
- const VectorType& origin() const { return m_origin; }
- VectorType& origin() { return m_origin; }
-
- const VectorType& direction() const { return m_direction; }
- VectorType& direction() { return m_direction; }
-
- /** \returns the squared distance of a point \a p to its projection onto the line \c *this.
- * \sa distance()
- */
- RealScalar squaredDistance(const VectorType& p) const
- {
- VectorType diff = p - origin();
- return (diff - direction().dot(diff) * direction()).squaredNorm();
- }
- /** \returns the distance of a point \a p to its projection onto the line \c *this.
- * \sa squaredDistance()
- */
- RealScalar distance(const VectorType& p) const { using std::sqrt; return sqrt(squaredDistance(p)); }
-
- /** \returns the projection of a point \a p onto the line \c *this. */
- VectorType projection(const VectorType& p) const
- { return origin() + direction().dot(p-origin()) * direction(); }
-
- VectorType pointAt(const Scalar& t) const;
-
- template <int OtherOptions>
- Scalar intersectionParameter(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const;
-
- template <int OtherOptions>
- Scalar intersection(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const;
-
- template <int OtherOptions>
- VectorType intersectionPoint(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const;
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<ParametrizedLine,
- ParametrizedLine<NewScalarType,AmbientDimAtCompileTime,Options> >::type cast() const
- {
- return typename internal::cast_return_type<ParametrizedLine,
- ParametrizedLine<NewScalarType,AmbientDimAtCompileTime,Options> >::type(*this);
- }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType,int OtherOptions>
- inline explicit ParametrizedLine(const ParametrizedLine<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other)
- {
- m_origin = other.origin().template cast<Scalar>();
- m_direction = other.direction().template cast<Scalar>();
- }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const ParametrizedLine& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
- { return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); }
-
-protected:
-
- VectorType m_origin, m_direction;
-};
-
-/** Constructs a parametrized line from a 2D hyperplane
- *
- * \warning the ambient space must have dimension 2 such that the hyperplane actually describes a line
- */
-template <typename _Scalar, int _AmbientDim, int _Options>
-template <int OtherOptions>
-inline ParametrizedLine<_Scalar, _AmbientDim,_Options>::ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim,OtherOptions>& hyperplane)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
- direction() = hyperplane.normal().unitOrthogonal();
- origin() = -hyperplane.normal()*hyperplane.offset();
-}
-
-/** \returns the point at \a t along this line
- */
-template <typename _Scalar, int _AmbientDim, int _Options>
-inline typename ParametrizedLine<_Scalar, _AmbientDim,_Options>::VectorType
-ParametrizedLine<_Scalar, _AmbientDim,_Options>::pointAt(const _Scalar& t) const
-{
- return origin() + (direction()*t);
-}
-
-/** \returns the parameter value of the intersection between \c *this and the given \a hyperplane
- */
-template <typename _Scalar, int _AmbientDim, int _Options>
-template <int OtherOptions>
-inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersectionParameter(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const
-{
- return -(hyperplane.offset()+hyperplane.normal().dot(origin()))
- / hyperplane.normal().dot(direction());
-}
-
-
-/** \deprecated use intersectionParameter()
- * \returns the parameter value of the intersection between \c *this and the given \a hyperplane
- */
-template <typename _Scalar, int _AmbientDim, int _Options>
-template <int OtherOptions>
-inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersection(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const
-{
- return intersectionParameter(hyperplane);
-}
-
-/** \returns the point of the intersection between \c *this and the given hyperplane
- */
-template <typename _Scalar, int _AmbientDim, int _Options>
-template <int OtherOptions>
-inline typename ParametrizedLine<_Scalar, _AmbientDim,_Options>::VectorType
-ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersectionPoint(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const
-{
- return pointAt(intersectionParameter(hyperplane));
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_PARAMETRIZEDLINE_H
diff --git a/src/Eigen/src/Geometry/Quaternion.h b/src/Eigen/src/Geometry/Quaternion.h
deleted file mode 100644
index f06653f..0000000
--- a/src/Eigen/src/Geometry/Quaternion.h
+++ /dev/null
@@ -1,778 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_QUATERNION_H
-#define EIGEN_QUATERNION_H
-namespace Eigen {
-
-
-/***************************************************************************
-* Definition of QuaternionBase<Derived>
-* The implementation is at the end of the file
-***************************************************************************/
-
-namespace internal {
-template<typename Other,
- int OtherRows=Other::RowsAtCompileTime,
- int OtherCols=Other::ColsAtCompileTime>
-struct quaternionbase_assign_impl;
-}
-
-/** \geometry_module \ingroup Geometry_Module
- * \class QuaternionBase
- * \brief Base class for quaternion expressions
- * \tparam Derived derived type (CRTP)
- * \sa class Quaternion
- */
-template<class Derived>
-class QuaternionBase : public RotationBase<Derived, 3>
-{
- typedef RotationBase<Derived, 3> Base;
-public:
- using Base::operator*;
- using Base::derived;
-
- typedef typename internal::traits<Derived>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename internal::traits<Derived>::Coefficients Coefficients;
- enum {
- Flags = Eigen::internal::traits<Derived>::Flags
- };
-
- // typedef typename Matrix<Scalar,4,1> Coefficients;
- /** the type of a 3D vector */
- typedef Matrix<Scalar,3,1> Vector3;
- /** the equivalent rotation matrix type */
- typedef Matrix<Scalar,3,3> Matrix3;
- /** the equivalent angle-axis type */
- typedef AngleAxis<Scalar> AngleAxisType;
-
-
-
- /** \returns the \c x coefficient */
- inline Scalar x() const { return this->derived().coeffs().coeff(0); }
- /** \returns the \c y coefficient */
- inline Scalar y() const { return this->derived().coeffs().coeff(1); }
- /** \returns the \c z coefficient */
- inline Scalar z() const { return this->derived().coeffs().coeff(2); }
- /** \returns the \c w coefficient */
- inline Scalar w() const { return this->derived().coeffs().coeff(3); }
-
- /** \returns a reference to the \c x coefficient */
- inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
- /** \returns a reference to the \c y coefficient */
- inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
- /** \returns a reference to the \c z coefficient */
- inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
- /** \returns a reference to the \c w coefficient */
- inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
-
- /** \returns a read-only vector expression of the imaginary part (x,y,z) */
- inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
-
- /** \returns a vector expression of the imaginary part (x,y,z) */
- inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
-
- /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
- inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
-
- /** \returns a vector expression of the coefficients (x,y,z,w) */
- inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
-
- EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
- template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
-
-// disabled this copy operator as it is giving very strange compilation errors when compiling
-// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
-// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
-// we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
-// Derived& operator=(const QuaternionBase& other)
-// { return operator=<Derived>(other); }
-
- Derived& operator=(const AngleAxisType& aa);
- template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m);
-
- /** \returns a quaternion representing an identity rotation
- * \sa MatrixBase::Identity()
- */
- static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
-
- /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
- */
- inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
-
- /** \returns the squared norm of the quaternion's coefficients
- * \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
- */
- inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
-
- /** \returns the norm of the quaternion's coefficients
- * \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
- */
- inline Scalar norm() const { return coeffs().norm(); }
-
- /** Normalizes the quaternion \c *this
- * \sa normalized(), MatrixBase::normalize() */
- inline void normalize() { coeffs().normalize(); }
- /** \returns a normalized copy of \c *this
- * \sa normalize(), MatrixBase::normalized() */
- inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
-
- /** \returns the dot product of \c *this and \a other
- * Geometrically speaking, the dot product of two unit quaternions
- * corresponds to the cosine of half the angle between the two rotations.
- * \sa angularDistance()
- */
- template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
-
- template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
-
- /** \returns an equivalent 3x3 rotation matrix */
- Matrix3 toRotationMatrix() const;
-
- /** \returns the quaternion which transform \a a into \a b through a rotation */
- template<typename Derived1, typename Derived2>
- Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
-
- template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
- template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
-
- /** \returns the quaternion describing the inverse rotation */
- Quaternion<Scalar> inverse() const;
-
- /** \returns the conjugated quaternion */
- Quaternion<Scalar> conjugate() const;
-
- template<class OtherDerived> Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- template<class OtherDerived>
- bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
- { return coeffs().isApprox(other.coeffs(), prec); }
-
- /** return the result vector of \a v through the rotation*/
- EIGEN_STRONG_INLINE Vector3 _transformVector(Vector3 v) const;
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
- {
- return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived());
- }
-
-#ifdef EIGEN_QUATERNIONBASE_PLUGIN
-# include EIGEN_QUATERNIONBASE_PLUGIN
-#endif
-};
-
-/***************************************************************************
-* Definition/implementation of Quaternion<Scalar>
-***************************************************************************/
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Quaternion
- *
- * \brief The quaternion class used to represent 3D orientations and rotations
- *
- * \tparam _Scalar the scalar type, i.e., the type of the coefficients
- * \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign.
- *
- * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
- * orientations and rotations of objects in three dimensions. Compared to other representations
- * like Euler angles or 3x3 matrices, quaternions offer the following advantages:
- * \li \b compact storage (4 scalars)
- * \li \b efficient to compose (28 flops),
- * \li \b stable spherical interpolation
- *
- * The following two typedefs are provided for convenience:
- * \li \c Quaternionf for \c float
- * \li \c Quaterniond for \c double
- *
- * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized.
- *
- * \sa class AngleAxis, class Transform
- */
-
-namespace internal {
-template<typename _Scalar,int _Options>
-struct traits<Quaternion<_Scalar,_Options> >
-{
- typedef Quaternion<_Scalar,_Options> PlainObject;
- typedef _Scalar Scalar;
- typedef Matrix<_Scalar,4,1,_Options> Coefficients;
- enum{
- IsAligned = internal::traits<Coefficients>::Flags & AlignedBit,
- Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit
- };
-};
-}
-
-template<typename _Scalar, int _Options>
-class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
-{
- typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
- enum { IsAligned = internal::traits<Quaternion>::IsAligned };
-
-public:
- typedef _Scalar Scalar;
-
- EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Quaternion)
- using Base::operator*=;
-
- typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
- typedef typename Base::AngleAxisType AngleAxisType;
-
- /** Default constructor leaving the quaternion uninitialized. */
- inline Quaternion() {}
-
- /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
- * its four coefficients \a w, \a x, \a y and \a z.
- *
- * \warning Note the order of the arguments: the real \a w coefficient first,
- * while internally the coefficients are stored in the following order:
- * [\c x, \c y, \c z, \c w]
- */
- inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){}
-
- /** Constructs and initialize a quaternion from the array data */
- inline Quaternion(const Scalar* data) : m_coeffs(data) {}
-
- /** Copy constructor */
- template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
-
- /** Constructs and initializes a quaternion from the angle-axis \a aa */
- explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
-
- /** Constructs and initializes a quaternion from either:
- * - a rotation matrix expression,
- * - a 4D vector expression representing quaternion coefficients.
- */
- template<typename Derived>
- explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
-
- /** Explicit copy constructor with scalar conversion */
- template<typename OtherScalar, int OtherOptions>
- explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
- { m_coeffs = other.coeffs().template cast<Scalar>(); }
-
- template<typename Derived1, typename Derived2>
- static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
-
- inline Coefficients& coeffs() { return m_coeffs;}
- inline const Coefficients& coeffs() const { return m_coeffs;}
-
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(IsAligned)
-
-protected:
- Coefficients m_coeffs;
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- static EIGEN_STRONG_INLINE void _check_template_params()
- {
- EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
- INVALID_MATRIX_TEMPLATE_PARAMETERS)
- }
-#endif
-};
-
-/** \ingroup Geometry_Module
- * single precision quaternion type */
-typedef Quaternion<float> Quaternionf;
-/** \ingroup Geometry_Module
- * double precision quaternion type */
-typedef Quaternion<double> Quaterniond;
-
-/***************************************************************************
-* Specialization of Map<Quaternion<Scalar>>
-***************************************************************************/
-
-namespace internal {
- template<typename _Scalar, int _Options>
- struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
- {
- typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
- };
-}
-
-namespace internal {
- template<typename _Scalar, int _Options>
- struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
- {
- typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
- typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase;
- enum {
- Flags = TraitsBase::Flags & ~LvalueBit
- };
- };
-}
-
-/** \ingroup Geometry_Module
- * \brief Quaternion expression mapping a constant memory buffer
- *
- * \tparam _Scalar the type of the Quaternion coefficients
- * \tparam _Options see class Map
- *
- * This is a specialization of class Map for Quaternion. This class allows to view
- * a 4 scalar memory buffer as an Eigen's Quaternion object.
- *
- * \sa class Map, class Quaternion, class QuaternionBase
- */
-template<typename _Scalar, int _Options>
-class Map<const Quaternion<_Scalar>, _Options >
- : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
-{
- typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
-
- public:
- typedef _Scalar Scalar;
- typedef typename internal::traits<Map>::Coefficients Coefficients;
- EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
- using Base::operator*=;
-
- /** Constructs a Mapped Quaternion object from the pointer \a coeffs
- *
- * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
- * \code *coeffs == {x, y, z, w} \endcode
- *
- * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
- EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
-
- inline const Coefficients& coeffs() const { return m_coeffs;}
-
- protected:
- const Coefficients m_coeffs;
-};
-
-/** \ingroup Geometry_Module
- * \brief Expression of a quaternion from a memory buffer
- *
- * \tparam _Scalar the type of the Quaternion coefficients
- * \tparam _Options see class Map
- *
- * This is a specialization of class Map for Quaternion. This class allows to view
- * a 4 scalar memory buffer as an Eigen's Quaternion object.
- *
- * \sa class Map, class Quaternion, class QuaternionBase
- */
-template<typename _Scalar, int _Options>
-class Map<Quaternion<_Scalar>, _Options >
- : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
-{
- typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
-
- public:
- typedef _Scalar Scalar;
- typedef typename internal::traits<Map>::Coefficients Coefficients;
- EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
- using Base::operator*=;
-
- /** Constructs a Mapped Quaternion object from the pointer \a coeffs
- *
- * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
- * \code *coeffs == {x, y, z, w} \endcode
- *
- * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
- EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
-
- inline Coefficients& coeffs() { return m_coeffs; }
- inline const Coefficients& coeffs() const { return m_coeffs; }
-
- protected:
- Coefficients m_coeffs;
-};
-
-/** \ingroup Geometry_Module
- * Map an unaligned array of single precision scalars as a quaternion */
-typedef Map<Quaternion<float>, 0> QuaternionMapf;
-/** \ingroup Geometry_Module
- * Map an unaligned array of double precision scalars as a quaternion */
-typedef Map<Quaternion<double>, 0> QuaternionMapd;
-/** \ingroup Geometry_Module
- * Map a 16-byte aligned array of single precision scalars as a quaternion */
-typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
-/** \ingroup Geometry_Module
- * Map a 16-byte aligned array of double precision scalars as a quaternion */
-typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
-
-/***************************************************************************
-* Implementation of QuaternionBase methods
-***************************************************************************/
-
-// Generic Quaternion * Quaternion product
-// This product can be specialized for a given architecture via the Arch template argument.
-namespace internal {
-template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product
-{
- static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
- return Quaternion<Scalar>
- (
- a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
- a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
- a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
- a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
- );
- }
-};
-}
-
-/** \returns the concatenation of two rotations as a quaternion-quaternion product */
-template <class Derived>
-template <class OtherDerived>
-EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
-QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
-{
- EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- return internal::quat_product<Architecture::Target, Derived, OtherDerived,
- typename internal::traits<Derived>::Scalar,
- internal::traits<Derived>::IsAligned && internal::traits<OtherDerived>::IsAligned>::run(*this, other);
-}
-
-/** \sa operator*(Quaternion) */
-template <class Derived>
-template <class OtherDerived>
-EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
-{
- derived() = derived() * other.derived();
- return derived();
-}
-
-/** Rotation of a vector by a quaternion.
- * \remarks If the quaternion is used to rotate several points (>1)
- * then it is much more efficient to first convert it to a 3x3 Matrix.
- * Comparison of the operation cost for n transformations:
- * - Quaternion2: 30n
- * - Via a Matrix3: 24 + 15n
- */
-template <class Derived>
-EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
-QuaternionBase<Derived>::_transformVector(Vector3 v) const
-{
- // Note that this algorithm comes from the optimization by hand
- // of the conversion to a Matrix followed by a Matrix/Vector product.
- // It appears to be much faster than the common algorithm found
- // in the literature (30 versus 39 flops). It also requires two
- // Vector3 as temporaries.
- Vector3 uv = this->vec().cross(v);
- uv += uv;
- return v + this->w() * uv + this->vec().cross(uv);
-}
-
-template<class Derived>
-EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
-{
- coeffs() = other.coeffs();
- return derived();
-}
-
-template<class Derived>
-template<class OtherDerived>
-EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
-{
- coeffs() = other.coeffs();
- return derived();
-}
-
-/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
- */
-template<class Derived>
-EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
-{
- using std::cos;
- using std::sin;
- Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
- this->w() = cos(ha);
- this->vec() = sin(ha) * aa.axis();
- return derived();
-}
-
-/** Set \c *this from the expression \a xpr:
- * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
- * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
- * and \a xpr is converted to a quaternion
- */
-
-template<class Derived>
-template<class MatrixDerived>
-inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
-{
- EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
- return derived();
-}
-
-/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
- * be normalized, otherwise the result is undefined.
- */
-template<class Derived>
-inline typename QuaternionBase<Derived>::Matrix3
-QuaternionBase<Derived>::toRotationMatrix(void) const
-{
- // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
- // if not inlined then the cost of the return by value is huge ~ +35%,
- // however, not inlining this function is an order of magnitude slower, so
- // it has to be inlined, and so the return by value is not an issue
- Matrix3 res;
-
- const Scalar tx = Scalar(2)*this->x();
- const Scalar ty = Scalar(2)*this->y();
- const Scalar tz = Scalar(2)*this->z();
- const Scalar twx = tx*this->w();
- const Scalar twy = ty*this->w();
- const Scalar twz = tz*this->w();
- const Scalar txx = tx*this->x();
- const Scalar txy = ty*this->x();
- const Scalar txz = tz*this->x();
- const Scalar tyy = ty*this->y();
- const Scalar tyz = tz*this->y();
- const Scalar tzz = tz*this->z();
-
- res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
- res.coeffRef(0,1) = txy-twz;
- res.coeffRef(0,2) = txz+twy;
- res.coeffRef(1,0) = txy+twz;
- res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
- res.coeffRef(1,2) = tyz-twx;
- res.coeffRef(2,0) = txz-twy;
- res.coeffRef(2,1) = tyz+twx;
- res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
-
- return res;
-}
-
-/** Sets \c *this to be a quaternion representing a rotation between
- * the two arbitrary vectors \a a and \a b. In other words, the built
- * rotation represent a rotation sending the line of direction \a a
- * to the line of direction \a b, both lines passing through the origin.
- *
- * \returns a reference to \c *this.
- *
- * Note that the two input vectors do \b not have to be normalized, and
- * do not need to have the same norm.
- */
-template<class Derived>
-template<typename Derived1, typename Derived2>
-inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
-{
- using std::max;
- using std::sqrt;
- Vector3 v0 = a.normalized();
- Vector3 v1 = b.normalized();
- Scalar c = v1.dot(v0);
-
- // if dot == -1, vectors are nearly opposites
- // => accurately compute the rotation axis by computing the
- // intersection of the two planes. This is done by solving:
- // x^T v0 = 0
- // x^T v1 = 0
- // under the constraint:
- // ||x|| = 1
- // which yields a singular value problem
- if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
- {
- c = (max)(c,Scalar(-1));
- Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
- JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
- Vector3 axis = svd.matrixV().col(2);
-
- Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
- this->w() = sqrt(w2);
- this->vec() = axis * sqrt(Scalar(1) - w2);
- return derived();
- }
- Vector3 axis = v0.cross(v1);
- Scalar s = sqrt((Scalar(1)+c)*Scalar(2));
- Scalar invs = Scalar(1)/s;
- this->vec() = axis * invs;
- this->w() = s * Scalar(0.5);
-
- return derived();
-}
-
-
-/** Returns a quaternion representing a rotation between
- * the two arbitrary vectors \a a and \a b. In other words, the built
- * rotation represent a rotation sending the line of direction \a a
- * to the line of direction \a b, both lines passing through the origin.
- *
- * \returns resulting quaternion
- *
- * Note that the two input vectors do \b not have to be normalized, and
- * do not need to have the same norm.
- */
-template<typename Scalar, int Options>
-template<typename Derived1, typename Derived2>
-Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
-{
- Quaternion quat;
- quat.setFromTwoVectors(a, b);
- return quat;
-}
-
-
-/** \returns the multiplicative inverse of \c *this
- * Note that in most cases, i.e., if you simply want the opposite rotation,
- * and/or the quaternion is normalized, then it is enough to use the conjugate.
- *
- * \sa QuaternionBase::conjugate()
- */
-template <class Derived>
-inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
-{
- // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
- Scalar n2 = this->squaredNorm();
- if (n2 > 0)
- return Quaternion<Scalar>(conjugate().coeffs() / n2);
- else
- {
- // return an invalid result to flag the error
- return Quaternion<Scalar>(Coefficients::Zero());
- }
-}
-
-/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
- * if the quaternion is normalized.
- * The conjugate of a quaternion represents the opposite rotation.
- *
- * \sa Quaternion2::inverse()
- */
-template <class Derived>
-inline Quaternion<typename internal::traits<Derived>::Scalar>
-QuaternionBase<Derived>::conjugate() const
-{
- return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
-}
-
-/** \returns the angle (in radian) between two rotations
- * \sa dot()
- */
-template <class Derived>
-template <class OtherDerived>
-inline typename internal::traits<Derived>::Scalar
-QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
-{
- using std::acos;
- using std::abs;
- Scalar d = abs(this->dot(other));
- if (d>=Scalar(1))
- return Scalar(0);
- return Scalar(2) * acos(d);
-}
-
-
-
-/** \returns the spherical linear interpolation between the two quaternions
- * \c *this and \a other at the parameter \a t in [0;1].
- *
- * This represents an interpolation for a constant motion between \c *this and \a other,
- * see also http://en.wikipedia.org/wiki/Slerp.
- */
-template <class Derived>
-template <class OtherDerived>
-Quaternion<typename internal::traits<Derived>::Scalar>
-QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const
-{
- using std::acos;
- using std::sin;
- using std::abs;
- static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
- Scalar d = this->dot(other);
- Scalar absD = abs(d);
-
- Scalar scale0;
- Scalar scale1;
-
- if(absD>=one)
- {
- scale0 = Scalar(1) - t;
- scale1 = t;
- }
- else
- {
- // theta is the angle between the 2 quaternions
- Scalar theta = acos(absD);
- Scalar sinTheta = sin(theta);
-
- scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta;
- scale1 = sin( ( t * theta) ) / sinTheta;
- }
- if(d<0) scale1 = -scale1;
-
- return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
-}
-
-namespace internal {
-
-// set from a rotation matrix
-template<typename Other>
-struct quaternionbase_assign_impl<Other,3,3>
-{
- typedef typename Other::Scalar Scalar;
- typedef DenseIndex Index;
- template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& mat)
- {
- using std::sqrt;
- // This algorithm comes from "Quaternion Calculus and Fast Animation",
- // Ken Shoemake, 1987 SIGGRAPH course notes
- Scalar t = mat.trace();
- if (t > Scalar(0))
- {
- t = sqrt(t + Scalar(1.0));
- q.w() = Scalar(0.5)*t;
- t = Scalar(0.5)/t;
- q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
- q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
- q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
- }
- else
- {
- DenseIndex i = 0;
- if (mat.coeff(1,1) > mat.coeff(0,0))
- i = 1;
- if (mat.coeff(2,2) > mat.coeff(i,i))
- i = 2;
- DenseIndex j = (i+1)%3;
- DenseIndex k = (j+1)%3;
-
- t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
- q.coeffs().coeffRef(i) = Scalar(0.5) * t;
- t = Scalar(0.5)/t;
- q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
- q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
- q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
- }
- }
-};
-
-// set from a vector of coefficients assumed to be a quaternion
-template<typename Other>
-struct quaternionbase_assign_impl<Other,4,1>
-{
- typedef typename Other::Scalar Scalar;
- template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& vec)
- {
- q.coeffs() = vec;
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_QUATERNION_H
diff --git a/src/Eigen/src/Geometry/Rotation2D.h b/src/Eigen/src/Geometry/Rotation2D.h
deleted file mode 100644
index 1cac343..0000000
--- a/src/Eigen/src/Geometry/Rotation2D.h
+++ /dev/null
@@ -1,157 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ROTATION2D_H
-#define EIGEN_ROTATION2D_H
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Rotation2D
- *
- * \brief Represents a rotation/orientation in a 2 dimensional space.
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- *
- * This class is equivalent to a single scalar representing a counter clock wise rotation
- * as a single angle in radian. It provides some additional features such as the automatic
- * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
- * interface to Quaternion in order to facilitate the writing of generic algorithms
- * dealing with rotations.
- *
- * \sa class Quaternion, class Transform
- */
-
-namespace internal {
-
-template<typename _Scalar> struct traits<Rotation2D<_Scalar> >
-{
- typedef _Scalar Scalar;
-};
-} // end namespace internal
-
-template<typename _Scalar>
-class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
-{
- typedef RotationBase<Rotation2D<_Scalar>,2> Base;
-
-public:
-
- using Base::operator*;
-
- enum { Dim = 2 };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- typedef Matrix<Scalar,2,1> Vector2;
- typedef Matrix<Scalar,2,2> Matrix2;
-
-protected:
-
- Scalar m_angle;
-
-public:
-
- /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
- inline Rotation2D(const Scalar& a) : m_angle(a) {}
-
- /** \returns the rotation angle */
- inline Scalar angle() const { return m_angle; }
-
- /** \returns a read-write reference to the rotation angle */
- inline Scalar& angle() { return m_angle; }
-
- /** \returns the inverse rotation */
- inline Rotation2D inverse() const { return -m_angle; }
-
- /** Concatenates two rotations */
- inline Rotation2D operator*(const Rotation2D& other) const
- { return m_angle + other.m_angle; }
-
- /** Concatenates two rotations */
- inline Rotation2D& operator*=(const Rotation2D& other)
- { m_angle += other.m_angle; return *this; }
-
- /** Applies the rotation to a 2D vector */
- Vector2 operator* (const Vector2& vec) const
- { return toRotationMatrix() * vec; }
-
- template<typename Derived>
- Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
- Matrix2 toRotationMatrix(void) const;
-
- /** \returns the spherical interpolation between \c *this and \a other using
- * parameter \a t. It is in fact equivalent to a linear interpolation.
- */
- inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const
- { return m_angle * (1-t) + other.angle() * t; }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
- { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
- {
- m_angle = Scalar(other.angle());
- }
-
- static inline Rotation2D Identity() { return Rotation2D(0); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
- { return internal::isApprox(m_angle,other.m_angle, prec); }
-};
-
-/** \ingroup Geometry_Module
- * single precision 2D rotation type */
-typedef Rotation2D<float> Rotation2Df;
-/** \ingroup Geometry_Module
- * double precision 2D rotation type */
-typedef Rotation2D<double> Rotation2Dd;
-
-/** Set \c *this from a 2x2 rotation matrix \a mat.
- * In other words, this function extract the rotation angle
- * from the rotation matrix.
- */
-template<typename Scalar>
-template<typename Derived>
-Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
-{
- using std::atan2;
- EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
- m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0));
- return *this;
-}
-
-/** Constructs and \returns an equivalent 2x2 rotation matrix.
- */
-template<typename Scalar>
-typename Rotation2D<Scalar>::Matrix2
-Rotation2D<Scalar>::toRotationMatrix(void) const
-{
- using std::sin;
- using std::cos;
- Scalar sinA = sin(m_angle);
- Scalar cosA = cos(m_angle);
- return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_ROTATION2D_H
diff --git a/src/Eigen/src/Geometry/RotationBase.h b/src/Eigen/src/Geometry/RotationBase.h
deleted file mode 100644
index b88661d..0000000
--- a/src/Eigen/src/Geometry/RotationBase.h
+++ /dev/null
@@ -1,206 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ROTATIONBASE_H
-#define EIGEN_ROTATIONBASE_H
-
-namespace Eigen {
-
-// forward declaration
-namespace internal {
-template<typename RotationDerived, typename MatrixType, bool IsVector=MatrixType::IsVectorAtCompileTime>
-struct rotation_base_generic_product_selector;
-}
-
-/** \class RotationBase
- *
- * \brief Common base class for compact rotation representations
- *
- * \param Derived is the derived type, i.e., a rotation type
- * \param _Dim the dimension of the space
- */
-template<typename Derived, int _Dim>
-class RotationBase
-{
- public:
- enum { Dim = _Dim };
- /** the scalar type of the coefficients */
- typedef typename internal::traits<Derived>::Scalar Scalar;
-
- /** corresponding linear transformation matrix type */
- typedef Matrix<Scalar,Dim,Dim> RotationMatrixType;
- typedef Matrix<Scalar,Dim,1> VectorType;
-
- public:
- inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
- inline Derived& derived() { return *static_cast<Derived*>(this); }
-
- /** \returns an equivalent rotation matrix */
- inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); }
-
- /** \returns an equivalent rotation matrix
- * This function is added to be conform with the Transform class' naming scheme.
- */
- inline RotationMatrixType matrix() const { return derived().toRotationMatrix(); }
-
- /** \returns the inverse rotation */
- inline Derived inverse() const { return derived().inverse(); }
-
- /** \returns the concatenation of the rotation \c *this with a translation \a t */
- inline Transform<Scalar,Dim,Isometry> operator*(const Translation<Scalar,Dim>& t) const
- { return Transform<Scalar,Dim,Isometry>(*this) * t; }
-
- /** \returns the concatenation of the rotation \c *this with a uniform scaling \a s */
- inline RotationMatrixType operator*(const UniformScaling<Scalar>& s) const
- { return toRotationMatrix() * s.factor(); }
-
- /** \returns the concatenation of the rotation \c *this with a generic expression \a e
- * \a e can be:
- * - a DimxDim linear transformation matrix
- * - a DimxDim diagonal matrix (axis aligned scaling)
- * - a vector of size Dim
- */
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE typename internal::rotation_base_generic_product_selector<Derived,OtherDerived,OtherDerived::IsVectorAtCompileTime>::ReturnType
- operator*(const EigenBase<OtherDerived>& e) const
- { return internal::rotation_base_generic_product_selector<Derived,OtherDerived>::run(derived(), e.derived()); }
-
- /** \returns the concatenation of a linear transformation \a l with the rotation \a r */
- template<typename OtherDerived> friend
- inline RotationMatrixType operator*(const EigenBase<OtherDerived>& l, const Derived& r)
- { return l.derived() * r.toRotationMatrix(); }
-
- /** \returns the concatenation of a scaling \a l with the rotation \a r */
- friend inline Transform<Scalar,Dim,Affine> operator*(const DiagonalMatrix<Scalar,Dim>& l, const Derived& r)
- {
- Transform<Scalar,Dim,Affine> res(r);
- res.linear().applyOnTheLeft(l);
- return res;
- }
-
- /** \returns the concatenation of the rotation \c *this with a transformation \a t */
- template<int Mode, int Options>
- inline Transform<Scalar,Dim,Mode> operator*(const Transform<Scalar,Dim,Mode,Options>& t) const
- { return toRotationMatrix() * t; }
-
- template<typename OtherVectorType>
- inline VectorType _transformVector(const OtherVectorType& v) const
- { return toRotationMatrix() * v; }
-};
-
-namespace internal {
-
-// implementation of the generic product rotation * matrix
-template<typename RotationDerived, typename MatrixType>
-struct rotation_base_generic_product_selector<RotationDerived,MatrixType,false>
-{
- enum { Dim = RotationDerived::Dim };
- typedef Matrix<typename RotationDerived::Scalar,Dim,Dim> ReturnType;
- static inline ReturnType run(const RotationDerived& r, const MatrixType& m)
- { return r.toRotationMatrix() * m; }
-};
-
-template<typename RotationDerived, typename Scalar, int Dim, int MaxDim>
-struct rotation_base_generic_product_selector< RotationDerived, DiagonalMatrix<Scalar,Dim,MaxDim>, false >
-{
- typedef Transform<Scalar,Dim,Affine> ReturnType;
- static inline ReturnType run(const RotationDerived& r, const DiagonalMatrix<Scalar,Dim,MaxDim>& m)
- {
- ReturnType res(r);
- res.linear() *= m;
- return res;
- }
-};
-
-template<typename RotationDerived,typename OtherVectorType>
-struct rotation_base_generic_product_selector<RotationDerived,OtherVectorType,true>
-{
- enum { Dim = RotationDerived::Dim };
- typedef Matrix<typename RotationDerived::Scalar,Dim,1> ReturnType;
- static EIGEN_STRONG_INLINE ReturnType run(const RotationDerived& r, const OtherVectorType& v)
- {
- return r._transformVector(v);
- }
-};
-
-} // end namespace internal
-
-/** \geometry_module
- *
- * \brief Constructs a Dim x Dim rotation matrix from the rotation \a r
- */
-template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
-template<typename OtherDerived>
-Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
-::Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
-{
- EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
- *this = r.toRotationMatrix();
-}
-
-/** \geometry_module
- *
- * \brief Set a Dim x Dim rotation matrix from the rotation \a r
- */
-template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
-template<typename OtherDerived>
-Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>&
-Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
-::operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
-{
- EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
- return *this = r.toRotationMatrix();
-}
-
-namespace internal {
-
-/** \internal
- *
- * Helper function to return an arbitrary rotation object to a rotation matrix.
- *
- * \param Scalar the numeric type of the matrix coefficients
- * \param Dim the dimension of the current space
- *
- * It returns a Dim x Dim fixed size matrix.
- *
- * Default specializations are provided for:
- * - any scalar type (2D),
- * - any matrix expression,
- * - any type based on RotationBase (e.g., Quaternion, AngleAxis, Rotation2D)
- *
- * Currently toRotationMatrix is only used by Transform.
- *
- * \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis
- */
-template<typename Scalar, int Dim>
-static inline Matrix<Scalar,2,2> toRotationMatrix(const Scalar& s)
-{
- EIGEN_STATIC_ASSERT(Dim==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
- return Rotation2D<Scalar>(s).toRotationMatrix();
-}
-
-template<typename Scalar, int Dim, typename OtherDerived>
-static inline Matrix<Scalar,Dim,Dim> toRotationMatrix(const RotationBase<OtherDerived,Dim>& r)
-{
- return r.toRotationMatrix();
-}
-
-template<typename Scalar, int Dim, typename OtherDerived>
-static inline const MatrixBase<OtherDerived>& toRotationMatrix(const MatrixBase<OtherDerived>& mat)
-{
- EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim,
- YOU_MADE_A_PROGRAMMING_MISTAKE)
- return mat;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_ROTATIONBASE_H
diff --git a/src/Eigen/src/Geometry/Scaling.h b/src/Eigen/src/Geometry/Scaling.h
deleted file mode 100644
index 1c25f36..0000000
--- a/src/Eigen/src/Geometry/Scaling.h
+++ /dev/null
@@ -1,166 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SCALING_H
-#define EIGEN_SCALING_H
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Scaling
- *
- * \brief Represents a generic uniform scaling transformation
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients.
- *
- * This class represent a uniform scaling transformation. It is the return
- * type of Scaling(Scalar), and most of the time this is the only way it
- * is used. In particular, this class is not aimed to be used to store a scaling transformation,
- * but rather to make easier the constructions and updates of Transform objects.
- *
- * To represent an axis aligned scaling, use the DiagonalMatrix class.
- *
- * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform
- */
-template<typename _Scalar>
-class UniformScaling
-{
-public:
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
-
-protected:
-
- Scalar m_factor;
-
-public:
-
- /** Default constructor without initialization. */
- UniformScaling() {}
- /** Constructs and initialize a uniform scaling transformation */
- explicit inline UniformScaling(const Scalar& s) : m_factor(s) {}
-
- inline const Scalar& factor() const { return m_factor; }
- inline Scalar& factor() { return m_factor; }
-
- /** Concatenates two uniform scaling */
- inline UniformScaling operator* (const UniformScaling& other) const
- { return UniformScaling(m_factor * other.factor()); }
-
- /** Concatenates a uniform scaling and a translation */
- template<int Dim>
- inline Transform<Scalar,Dim,Affine> operator* (const Translation<Scalar,Dim>& t) const;
-
- /** Concatenates a uniform scaling and an affine transformation */
- template<int Dim, int Mode, int Options>
- inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> operator* (const Transform<Scalar,Dim, Mode, Options>& t) const
- {
- Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> res = t;
- res.prescale(factor());
- return res;
-}
-
- /** Concatenates a uniform scaling and a linear transformation matrix */
- // TODO returns an expression
- template<typename Derived>
- inline typename internal::plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const
- { return other * m_factor; }
-
- template<typename Derived,int Dim>
- inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const
- { return r.toRotationMatrix() * m_factor; }
-
- /** \returns the inverse scaling */
- inline UniformScaling inverse() const
- { return UniformScaling(Scalar(1)/m_factor); }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline UniformScaling<NewScalarType> cast() const
- { return UniformScaling<NewScalarType>(NewScalarType(m_factor)); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other)
- { m_factor = Scalar(other.factor()); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const UniformScaling& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
- { return internal::isApprox(m_factor, other.factor(), prec); }
-
-};
-
-/** Concatenates a linear transformation matrix and a uniform scaling */
-// NOTE this operator is defiend in MatrixBase and not as a friend function
-// of UniformScaling to fix an internal crash of Intel's ICC
-template<typename Derived> typename MatrixBase<Derived>::ScalarMultipleReturnType
-MatrixBase<Derived>::operator*(const UniformScaling<Scalar>& s) const
-{ return derived() * s.factor(); }
-
-/** Constructs a uniform scaling from scale factor \a s */
-static inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); }
-/** Constructs a uniform scaling from scale factor \a s */
-static inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); }
-/** Constructs a uniform scaling from scale factor \a s */
-template<typename RealScalar>
-static inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s)
-{ return UniformScaling<std::complex<RealScalar> >(s); }
-
-/** Constructs a 2D axis aligned scaling */
-template<typename Scalar>
-static inline DiagonalMatrix<Scalar,2> Scaling(const Scalar& sx, const Scalar& sy)
-{ return DiagonalMatrix<Scalar,2>(sx, sy); }
-/** Constructs a 3D axis aligned scaling */
-template<typename Scalar>
-static inline DiagonalMatrix<Scalar,3> Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz)
-{ return DiagonalMatrix<Scalar,3>(sx, sy, sz); }
-
-/** Constructs an axis aligned scaling expression from vector expression \a coeffs
- * This is an alias for coeffs.asDiagonal()
- */
-template<typename Derived>
-static inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs)
-{ return coeffs.asDiagonal(); }
-
-/** \addtogroup Geometry_Module */
-//@{
-/** \deprecated */
-typedef DiagonalMatrix<float, 2> AlignedScaling2f;
-/** \deprecated */
-typedef DiagonalMatrix<double,2> AlignedScaling2d;
-/** \deprecated */
-typedef DiagonalMatrix<float, 3> AlignedScaling3f;
-/** \deprecated */
-typedef DiagonalMatrix<double,3> AlignedScaling3d;
-//@}
-
-template<typename Scalar>
-template<int Dim>
-inline Transform<Scalar,Dim,Affine>
-UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const
-{
- Transform<Scalar,Dim,Affine> res;
- res.matrix().setZero();
- res.linear().diagonal().fill(factor());
- res.translation() = factor() * t.vector();
- res(Dim,Dim) = Scalar(1);
- return res;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SCALING_H
diff --git a/src/Eigen/src/Geometry/Transform.h b/src/Eigen/src/Geometry/Transform.h
deleted file mode 100644
index 56f3615..0000000
--- a/src/Eigen/src/Geometry/Transform.h
+++ /dev/null
@@ -1,1440 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_TRANSFORM_H
-#define EIGEN_TRANSFORM_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename Transform>
-struct transform_traits
-{
- enum
- {
- Dim = Transform::Dim,
- HDim = Transform::HDim,
- Mode = Transform::Mode,
- IsProjective = (int(Mode)==int(Projective))
- };
-};
-
-template< typename TransformType,
- typename MatrixType,
- int Case = transform_traits<TransformType>::IsProjective ? 0
- : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1
- : 2>
-struct transform_right_product_impl;
-
-template< typename Other,
- int Mode,
- int Options,
- int Dim,
- int HDim,
- int OtherRows=Other::RowsAtCompileTime,
- int OtherCols=Other::ColsAtCompileTime>
-struct transform_left_product_impl;
-
-template< typename Lhs,
- typename Rhs,
- bool AnyProjective =
- transform_traits<Lhs>::IsProjective ||
- transform_traits<Rhs>::IsProjective>
-struct transform_transform_product_impl;
-
-template< typename Other,
- int Mode,
- int Options,
- int Dim,
- int HDim,
- int OtherRows=Other::RowsAtCompileTime,
- int OtherCols=Other::ColsAtCompileTime>
-struct transform_construct_from_matrix;
-
-template<typename TransformType> struct transform_take_affine_part;
-
-} // end namespace internal
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Transform
- *
- * \brief Represents an homogeneous transformation in a N dimensional space
- *
- * \tparam _Scalar the scalar type, i.e., the type of the coefficients
- * \tparam _Dim the dimension of the space
- * \tparam _Mode the type of the transformation. Can be:
- * - #Affine: the transformation is stored as a (Dim+1)^2 matrix,
- * where the last row is assumed to be [0 ... 0 1].
- * - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix.
- * - #Projective: the transformation is stored as a (Dim+1)^2 matrix
- * without any assumption.
- * \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor.
- * These Options are passed directly to the underlying matrix type.
- *
- * The homography is internally represented and stored by a matrix which
- * is available through the matrix() method. To understand the behavior of
- * this class you have to think a Transform object as its internal
- * matrix representation. The chosen convention is right multiply:
- *
- * \code v' = T * v \endcode
- *
- * Therefore, an affine transformation matrix M is shaped like this:
- *
- * \f$ \left( \begin{array}{cc}
- * linear & translation\\
- * 0 ... 0 & 1
- * \end{array} \right) \f$
- *
- * Note that for a projective transformation the last row can be anything,
- * and then the interpretation of different parts might be sightly different.
- *
- * However, unlike a plain matrix, the Transform class provides many features
- * simplifying both its assembly and usage. In particular, it can be composed
- * with any other transformations (Transform,Translation,RotationBase,Matrix)
- * and can be directly used to transform implicit homogeneous vectors. All these
- * operations are handled via the operator*. For the composition of transformations,
- * its principle consists to first convert the right/left hand sides of the product
- * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product.
- * Of course, internally, operator* tries to perform the minimal number of operations
- * according to the nature of each terms. Likewise, when applying the transform
- * to non homogeneous vectors, the latters are automatically promoted to homogeneous
- * one before doing the matrix product. The convertions to homogeneous representations
- * are performed as follow:
- *
- * \b Translation t (Dim)x(1):
- * \f$ \left( \begin{array}{cc}
- * I & t \\
- * 0\,...\,0 & 1
- * \end{array} \right) \f$
- *
- * \b Rotation R (Dim)x(Dim):
- * \f$ \left( \begin{array}{cc}
- * R & 0\\
- * 0\,...\,0 & 1
- * \end{array} \right) \f$
- *
- * \b Linear \b Matrix L (Dim)x(Dim):
- * \f$ \left( \begin{array}{cc}
- * L & 0\\
- * 0\,...\,0 & 1
- * \end{array} \right) \f$
- *
- * \b Affine \b Matrix A (Dim)x(Dim+1):
- * \f$ \left( \begin{array}{c}
- * A\\
- * 0\,...\,0\,1
- * \end{array} \right) \f$
- *
- * \b Column \b vector v (Dim)x(1):
- * \f$ \left( \begin{array}{c}
- * v\\
- * 1
- * \end{array} \right) \f$
- *
- * \b Set \b of \b column \b vectors V1...Vn (Dim)x(n):
- * \f$ \left( \begin{array}{ccc}
- * v_1 & ... & v_n\\
- * 1 & ... & 1
- * \end{array} \right) \f$
- *
- * The concatenation of a Transform object with any kind of other transformation
- * always returns a Transform object.
- *
- * A little exception to the "as pure matrix product" rule is the case of the
- * transformation of non homogeneous vectors by an affine transformation. In
- * that case the last matrix row can be ignored, and the product returns non
- * homogeneous vectors.
- *
- * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation,
- * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix.
- * The solution is either to use a Dim x Dynamic matrix or explicitly request a
- * vector transformation by making the vector homogeneous:
- * \code
- * m' = T * m.colwise().homogeneous();
- * \endcode
- * Note that there is zero overhead.
- *
- * Conversion methods from/to Qt's QMatrix and QTransform are available if the
- * preprocessor token EIGEN_QT_SUPPORT is defined.
- *
- * This class can be extended with the help of the plugin mechanism described on the page
- * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN.
- *
- * \sa class Matrix, class Quaternion
- */
-template<typename _Scalar, int _Dim, int _Mode, int _Options>
-class Transform
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
- enum {
- Mode = _Mode,
- Options = _Options,
- Dim = _Dim, ///< space dimension in which the transformation holds
- HDim = _Dim+1, ///< size of a respective homogeneous vector
- Rows = int(Mode)==(AffineCompact) ? Dim : HDim
- };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- typedef DenseIndex Index;
- /** type of the matrix used to represent the transformation */
- typedef typename internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type MatrixType;
- /** constified MatrixType */
- typedef const MatrixType ConstMatrixType;
- /** type of the matrix used to represent the linear part of the transformation */
- typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType;
- /** type of read/write reference to the linear part of the transformation */
- typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> LinearPart;
- /** type of read reference to the linear part of the transformation */
- typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> ConstLinearPart;
- /** type of read/write reference to the affine part of the transformation */
- typedef typename internal::conditional<int(Mode)==int(AffineCompact),
- MatrixType&,
- Block<MatrixType,Dim,HDim> >::type AffinePart;
- /** type of read reference to the affine part of the transformation */
- typedef typename internal::conditional<int(Mode)==int(AffineCompact),
- const MatrixType&,
- const Block<const MatrixType,Dim,HDim> >::type ConstAffinePart;
- /** type of a vector */
- typedef Matrix<Scalar,Dim,1> VectorType;
- /** type of a read/write reference to the translation part of the rotation */
- typedef Block<MatrixType,Dim,1,int(Mode)==(AffineCompact)> TranslationPart;
- /** type of a read reference to the translation part of the rotation */
- typedef const Block<ConstMatrixType,Dim,1,int(Mode)==(AffineCompact)> ConstTranslationPart;
- /** corresponding translation type */
- typedef Translation<Scalar,Dim> TranslationType;
-
- // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0
- enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) };
- /** The return type of the product between a diagonal matrix and a transform */
- typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> TransformTimeDiagonalReturnType;
-
-protected:
-
- MatrixType m_matrix;
-
-public:
-
- /** Default constructor without initialization of the meaningful coefficients.
- * If Mode==Affine, then the last row is set to [0 ... 0 1] */
- inline Transform()
- {
- check_template_params();
- if (int(Mode)==Affine)
- makeAffine();
- }
-
- inline Transform(const Transform& other)
- {
- check_template_params();
- m_matrix = other.m_matrix;
- }
-
- inline explicit Transform(const TranslationType& t)
- {
- check_template_params();
- *this = t;
- }
- inline explicit Transform(const UniformScaling<Scalar>& s)
- {
- check_template_params();
- *this = s;
- }
- template<typename Derived>
- inline explicit Transform(const RotationBase<Derived, Dim>& r)
- {
- check_template_params();
- *this = r;
- }
-
- inline Transform& operator=(const Transform& other)
- { m_matrix = other.m_matrix; return *this; }
-
- typedef internal::transform_take_affine_part<Transform> take_affine_part;
-
- /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
- template<typename OtherDerived>
- inline explicit Transform(const EigenBase<OtherDerived>& other)
- {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
-
- check_template_params();
- internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
- }
-
- /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */
- template<typename OtherDerived>
- inline Transform& operator=(const EigenBase<OtherDerived>& other)
- {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
-
- internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
- return *this;
- }
-
- template<int OtherOptions>
- inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other)
- {
- check_template_params();
- // only the options change, we can directly copy the matrices
- m_matrix = other.matrix();
- }
-
- template<int OtherMode,int OtherOptions>
- inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other)
- {
- check_template_params();
- // prevent conversions as:
- // Affine | AffineCompact | Isometry = Projective
- EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)),
- YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
-
- // prevent conversions as:
- // Isometry = Affine | AffineCompact
- EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)),
- YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
-
- enum { ModeIsAffineCompact = Mode == int(AffineCompact),
- OtherModeIsAffineCompact = OtherMode == int(AffineCompact)
- };
-
- if(ModeIsAffineCompact == OtherModeIsAffineCompact)
- {
- // We need the block expression because the code is compiled for all
- // combinations of transformations and will trigger a compile time error
- // if one tries to assign the matrices directly
- m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0);
- makeAffine();
- }
- else if(OtherModeIsAffineCompact)
- {
- typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType;
- internal::transform_construct_from_matrix<OtherMatrixType,Mode,Options,Dim,HDim>::run(this, other.matrix());
- }
- else
- {
- // here we know that Mode == AffineCompact and OtherMode != AffineCompact.
- // if OtherMode were Projective, the static assert above would already have caught it.
- // So the only possibility is that OtherMode == Affine
- linear() = other.linear();
- translation() = other.translation();
- }
- }
-
- template<typename OtherDerived>
- Transform(const ReturnByValue<OtherDerived>& other)
- {
- check_template_params();
- other.evalTo(*this);
- }
-
- template<typename OtherDerived>
- Transform& operator=(const ReturnByValue<OtherDerived>& other)
- {
- other.evalTo(*this);
- return *this;
- }
-
- #ifdef EIGEN_QT_SUPPORT
- inline Transform(const QMatrix& other);
- inline Transform& operator=(const QMatrix& other);
- inline QMatrix toQMatrix(void) const;
- inline Transform(const QTransform& other);
- inline Transform& operator=(const QTransform& other);
- inline QTransform toQTransform(void) const;
- #endif
-
- /** shortcut for m_matrix(row,col);
- * \sa MatrixBase::operator(Index,Index) const */
- inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); }
- /** shortcut for m_matrix(row,col);
- * \sa MatrixBase::operator(Index,Index) */
- inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); }
-
- /** \returns a read-only expression of the transformation matrix */
- inline const MatrixType& matrix() const { return m_matrix; }
- /** \returns a writable expression of the transformation matrix */
- inline MatrixType& matrix() { return m_matrix; }
-
- /** \returns a read-only expression of the linear part of the transformation */
- inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); }
- /** \returns a writable expression of the linear part of the transformation */
- inline LinearPart linear() { return LinearPart(m_matrix,0,0); }
-
- /** \returns a read-only expression of the Dim x HDim affine part of the transformation */
- inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); }
- /** \returns a writable expression of the Dim x HDim affine part of the transformation */
- inline AffinePart affine() { return take_affine_part::run(m_matrix); }
-
- /** \returns a read-only expression of the translation vector of the transformation */
- inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); }
- /** \returns a writable expression of the translation vector of the transformation */
- inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); }
-
- /** \returns an expression of the product between the transform \c *this and a matrix expression \a other
- *
- * The right hand side \a other might be either:
- * \li a vector of size Dim,
- * \li an homogeneous vector of size Dim+1,
- * \li a set of vectors of size Dim x Dynamic,
- * \li a set of homogeneous vectors of size Dim+1 x Dynamic,
- * \li a linear transformation matrix of size Dim x Dim,
- * \li an affine transformation matrix of size Dim x Dim+1,
- * \li a transformation matrix of size Dim+1 x Dim+1.
- */
- // note: this function is defined here because some compilers cannot find the respective declaration
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl<Transform, OtherDerived>::ResultType
- operator * (const EigenBase<OtherDerived> &other) const
- { return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); }
-
- /** \returns the product expression of a transformation matrix \a a times a transform \a b
- *
- * The left hand side \a other might be either:
- * \li a linear transformation matrix of size Dim x Dim,
- * \li an affine transformation matrix of size Dim x Dim+1,
- * \li a general transformation matrix of size Dim+1 x Dim+1.
- */
- template<typename OtherDerived> friend
- inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType
- operator * (const EigenBase<OtherDerived> &a, const Transform &b)
- { return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); }
-
- /** \returns The product expression of a transform \a a times a diagonal matrix \a b
- *
- * The rhs diagonal matrix is interpreted as an affine scaling transformation. The
- * product results in a Transform of the same type (mode) as the lhs only if the lhs
- * mode is no isometry. In that case, the returned transform is an affinity.
- */
- template<typename DiagonalDerived>
- inline const TransformTimeDiagonalReturnType
- operator * (const DiagonalBase<DiagonalDerived> &b) const
- {
- TransformTimeDiagonalReturnType res(*this);
- res.linear() *= b;
- return res;
- }
-
- /** \returns The product expression of a diagonal matrix \a a times a transform \a b
- *
- * The lhs diagonal matrix is interpreted as an affine scaling transformation. The
- * product results in a Transform of the same type (mode) as the lhs only if the lhs
- * mode is no isometry. In that case, the returned transform is an affinity.
- */
- template<typename DiagonalDerived>
- friend inline TransformTimeDiagonalReturnType
- operator * (const DiagonalBase<DiagonalDerived> &a, const Transform &b)
- {
- TransformTimeDiagonalReturnType res;
- res.linear().noalias() = a*b.linear();
- res.translation().noalias() = a*b.translation();
- if (Mode!=int(AffineCompact))
- res.matrix().row(Dim) = b.matrix().row(Dim);
- return res;
- }
-
- template<typename OtherDerived>
- inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; }
-
- /** Concatenates two transformations */
- inline const Transform operator * (const Transform& other) const
- {
- return internal::transform_transform_product_impl<Transform,Transform>::run(*this,other);
- }
-
- #ifdef __INTEL_COMPILER
-private:
- // this intermediate structure permits to workaround a bug in ICC 11:
- // error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0>
- // (const Eigen::Transform<double, 3, 2, 0> &) const"
- // (the meaning of a name may have changed since the template declaration -- the type of the template is:
- // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>,
- // Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, Options> &) const")
- //
- template<int OtherMode,int OtherOptions> struct icc_11_workaround
- {
- typedef internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> > ProductType;
- typedef typename ProductType::ResultType ResultType;
- };
-
-public:
- /** Concatenates two different transformations */
- template<int OtherMode,int OtherOptions>
- inline typename icc_11_workaround<OtherMode,OtherOptions>::ResultType
- operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
- {
- typedef typename icc_11_workaround<OtherMode,OtherOptions>::ProductType ProductType;
- return ProductType::run(*this,other);
- }
- #else
- /** Concatenates two different transformations */
- template<int OtherMode,int OtherOptions>
- inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType
- operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
- {
- return internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::run(*this,other);
- }
- #endif
-
- /** \sa MatrixBase::setIdentity() */
- void setIdentity() { m_matrix.setIdentity(); }
-
- /**
- * \brief Returns an identity transformation.
- * \todo In the future this function should be returning a Transform expression.
- */
- static const Transform Identity()
- {
- return Transform(MatrixType::Identity());
- }
-
- template<typename OtherDerived>
- inline Transform& scale(const MatrixBase<OtherDerived> &other);
-
- template<typename OtherDerived>
- inline Transform& prescale(const MatrixBase<OtherDerived> &other);
-
- inline Transform& scale(const Scalar& s);
- inline Transform& prescale(const Scalar& s);
-
- template<typename OtherDerived>
- inline Transform& translate(const MatrixBase<OtherDerived> &other);
-
- template<typename OtherDerived>
- inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
-
- template<typename RotationType>
- inline Transform& rotate(const RotationType& rotation);
-
- template<typename RotationType>
- inline Transform& prerotate(const RotationType& rotation);
-
- Transform& shear(const Scalar& sx, const Scalar& sy);
- Transform& preshear(const Scalar& sx, const Scalar& sy);
-
- inline Transform& operator=(const TranslationType& t);
- inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
- inline Transform operator*(const TranslationType& t) const;
-
- inline Transform& operator=(const UniformScaling<Scalar>& t);
- inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); }
- inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?int(Affine):int(Mode))> operator*(const UniformScaling<Scalar>& s) const
- {
- Transform<Scalar,Dim,(int(Mode)==int(Isometry)?int(Affine):int(Mode)),Options> res = *this;
- res.scale(s.factor());
- return res;
- }
-
- inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linear() *= s; return *this; }
-
- template<typename Derived>
- inline Transform& operator=(const RotationBase<Derived,Dim>& r);
- template<typename Derived>
- inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
- template<typename Derived>
- inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
-
- const LinearMatrixType rotation() const;
- template<typename RotationMatrixType, typename ScalingMatrixType>
- void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
- template<typename ScalingMatrixType, typename RotationMatrixType>
- void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
-
- template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
- Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
- const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
-
- inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const;
-
- /** \returns a const pointer to the column major internal matrix */
- const Scalar* data() const { return m_matrix.data(); }
- /** \returns a non-const pointer to the column major internal matrix */
- Scalar* data() { return m_matrix.data(); }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const
- { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other)
- {
- check_template_params();
- m_matrix = other.matrix().template cast<Scalar>();
- }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
- { return m_matrix.isApprox(other.m_matrix, prec); }
-
- /** Sets the last row to [0 ... 0 1]
- */
- void makeAffine()
- {
- if(int(Mode)!=int(AffineCompact))
- {
- matrix().template block<1,Dim>(Dim,0).setZero();
- matrix().coeffRef(Dim,Dim) = Scalar(1);
- }
- }
-
- /** \internal
- * \returns the Dim x Dim linear part if the transformation is affine,
- * and the HDim x Dim part for projective transformations.
- */
- inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt()
- { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
- /** \internal
- * \returns the Dim x Dim linear part if the transformation is affine,
- * and the HDim x Dim part for projective transformations.
- */
- inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const
- { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
-
- /** \internal
- * \returns the translation part if the transformation is affine,
- * and the last column for projective transformations.
- */
- inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt()
- { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
- /** \internal
- * \returns the translation part if the transformation is affine,
- * and the last column for projective transformations.
- */
- inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const
- { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
-
-
- #ifdef EIGEN_TRANSFORM_PLUGIN
- #include EIGEN_TRANSFORM_PLUGIN
- #endif
-
-protected:
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- static EIGEN_STRONG_INLINE void check_template_params()
- {
- EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS)
- }
- #endif
-
-};
-
-/** \ingroup Geometry_Module */
-typedef Transform<float,2,Isometry> Isometry2f;
-/** \ingroup Geometry_Module */
-typedef Transform<float,3,Isometry> Isometry3f;
-/** \ingroup Geometry_Module */
-typedef Transform<double,2,Isometry> Isometry2d;
-/** \ingroup Geometry_Module */
-typedef Transform<double,3,Isometry> Isometry3d;
-
-/** \ingroup Geometry_Module */
-typedef Transform<float,2,Affine> Affine2f;
-/** \ingroup Geometry_Module */
-typedef Transform<float,3,Affine> Affine3f;
-/** \ingroup Geometry_Module */
-typedef Transform<double,2,Affine> Affine2d;
-/** \ingroup Geometry_Module */
-typedef Transform<double,3,Affine> Affine3d;
-
-/** \ingroup Geometry_Module */
-typedef Transform<float,2,AffineCompact> AffineCompact2f;
-/** \ingroup Geometry_Module */
-typedef Transform<float,3,AffineCompact> AffineCompact3f;
-/** \ingroup Geometry_Module */
-typedef Transform<double,2,AffineCompact> AffineCompact2d;
-/** \ingroup Geometry_Module */
-typedef Transform<double,3,AffineCompact> AffineCompact3d;
-
-/** \ingroup Geometry_Module */
-typedef Transform<float,2,Projective> Projective2f;
-/** \ingroup Geometry_Module */
-typedef Transform<float,3,Projective> Projective3f;
-/** \ingroup Geometry_Module */
-typedef Transform<double,2,Projective> Projective2d;
-/** \ingroup Geometry_Module */
-typedef Transform<double,3,Projective> Projective3d;
-
-/**************************
-*** Optional QT support ***
-**************************/
-
-#ifdef EIGEN_QT_SUPPORT
-/** Initializes \c *this from a QMatrix assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim, int Mode,int Options>
-Transform<Scalar,Dim,Mode,Options>::Transform(const QMatrix& other)
-{
- check_template_params();
- *this = other;
-}
-
-/** Set \c *this from a QMatrix assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim, int Mode,int Options>
-Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QMatrix& other)
-{
- EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- m_matrix << other.m11(), other.m21(), other.dx(),
- other.m12(), other.m22(), other.dy(),
- 0, 0, 1;
- return *this;
-}
-
-/** \returns a QMatrix from \c *this assuming the dimension is 2.
- *
- * \warning this conversion might loss data if \c *this is not affine
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim, int Mode, int Options>
-QMatrix Transform<Scalar,Dim,Mode,Options>::toQMatrix(void) const
-{
- check_template_params();
- EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
- m_matrix.coeff(0,1), m_matrix.coeff(1,1),
- m_matrix.coeff(0,2), m_matrix.coeff(1,2));
-}
-
-/** Initializes \c *this from a QTransform assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim, int Mode,int Options>
-Transform<Scalar,Dim,Mode,Options>::Transform(const QTransform& other)
-{
- check_template_params();
- *this = other;
-}
-
-/** Set \c *this from a QTransform assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim, int Mode, int Options>
-Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QTransform& other)
-{
- check_template_params();
- EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- if (Mode == int(AffineCompact))
- m_matrix << other.m11(), other.m21(), other.dx(),
- other.m12(), other.m22(), other.dy();
- else
- m_matrix << other.m11(), other.m21(), other.dx(),
- other.m12(), other.m22(), other.dy(),
- other.m13(), other.m23(), other.m33();
- return *this;
-}
-
-/** \returns a QTransform from \c *this assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim, int Mode, int Options>
-QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const
-{
- EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- if (Mode == int(AffineCompact))
- return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
- m_matrix.coeff(0,1), m_matrix.coeff(1,1),
- m_matrix.coeff(0,2), m_matrix.coeff(1,2));
- else
- return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
- m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
- m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
-}
-#endif
-
-/*********************
-*** Procedural API ***
-*********************/
-
-/** Applies on the right the non uniform scale transformation represented
- * by the vector \a other to \c *this and returns a reference to \c *this.
- * \sa prescale()
- */
-template<typename Scalar, int Dim, int Mode, int Options>
-template<typename OtherDerived>
-Transform<Scalar,Dim,Mode,Options>&
-Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
- EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
- linearExt().noalias() = (linearExt() * other.asDiagonal());
- return *this;
-}
-
-/** Applies on the right a uniform scale of a factor \a c to \c *this
- * and returns a reference to \c *this.
- * \sa prescale(Scalar)
- */
-template<typename Scalar, int Dim, int Mode, int Options>
-inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(const Scalar& s)
-{
- EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
- linearExt() *= s;
- return *this;
-}
-
-/** Applies on the left the non uniform scale transformation represented
- * by the vector \a other to \c *this and returns a reference to \c *this.
- * \sa scale()
- */
-template<typename Scalar, int Dim, int Mode, int Options>
-template<typename OtherDerived>
-Transform<Scalar,Dim,Mode,Options>&
-Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &other)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
- EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
- m_matrix.template block<Dim,HDim>(0,0).noalias() = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0));
- return *this;
-}
-
-/** Applies on the left a uniform scale of a factor \a c to \c *this
- * and returns a reference to \c *this.
- * \sa scale(Scalar)
- */
-template<typename Scalar, int Dim, int Mode, int Options>
-inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(const Scalar& s)
-{
- EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
- m_matrix.template topRows<Dim>() *= s;
- return *this;
-}
-
-/** Applies on the right the translation matrix represented by the vector \a other
- * to \c *this and returns a reference to \c *this.
- * \sa pretranslate()
- */
-template<typename Scalar, int Dim, int Mode, int Options>
-template<typename OtherDerived>
-Transform<Scalar,Dim,Mode,Options>&
-Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &other)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
- translationExt() += linearExt() * other;
- return *this;
-}
-
-/** Applies on the left the translation matrix represented by the vector \a other
- * to \c *this and returns a reference to \c *this.
- * \sa translate()
- */
-template<typename Scalar, int Dim, int Mode, int Options>
-template<typename OtherDerived>
-Transform<Scalar,Dim,Mode,Options>&
-Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived> &other)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
- if(int(Mode)==int(Projective))
- affine() += other * m_matrix.row(Dim);
- else
- translation() += other;
- return *this;
-}
-
-/** Applies on the right the rotation represented by the rotation \a rotation
- * to \c *this and returns a reference to \c *this.
- *
- * The template parameter \a RotationType is the type of the rotation which
- * must be known by internal::toRotationMatrix<>.
- *
- * Natively supported types includes:
- * - any scalar (2D),
- * - a Dim x Dim matrix expression,
- * - a Quaternion (3D),
- * - a AngleAxis (3D)
- *
- * This mechanism is easily extendable to support user types such as Euler angles,
- * or a pair of Quaternion for 4D rotations.
- *
- * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
- */
-template<typename Scalar, int Dim, int Mode, int Options>
-template<typename RotationType>
-Transform<Scalar,Dim,Mode,Options>&
-Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation)
-{
- linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation);
- return *this;
-}
-
-/** Applies on the left the rotation represented by the rotation \a rotation
- * to \c *this and returns a reference to \c *this.
- *
- * See rotate() for further details.
- *
- * \sa rotate()
- */
-template<typename Scalar, int Dim, int Mode, int Options>
-template<typename RotationType>
-Transform<Scalar,Dim,Mode,Options>&
-Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation)
-{
- m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation)
- * m_matrix.template block<Dim,HDim>(0,0);
- return *this;
-}
-
-/** Applies on the right the shear transformation represented
- * by the vector \a other to \c *this and returns a reference to \c *this.
- * \warning 2D only.
- * \sa preshear()
- */
-template<typename Scalar, int Dim, int Mode, int Options>
-Transform<Scalar,Dim,Mode,Options>&
-Transform<Scalar,Dim,Mode,Options>::shear(const Scalar& sx, const Scalar& sy)
-{
- EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
- VectorType tmp = linear().col(0)*sy + linear().col(1);
- linear() << linear().col(0) + linear().col(1)*sx, tmp;
- return *this;
-}
-
-/** Applies on the left the shear transformation represented
- * by the vector \a other to \c *this and returns a reference to \c *this.
- * \warning 2D only.
- * \sa shear()
- */
-template<typename Scalar, int Dim, int Mode, int Options>
-Transform<Scalar,Dim,Mode,Options>&
-Transform<Scalar,Dim,Mode,Options>::preshear(const Scalar& sx, const Scalar& sy)
-{
- EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
- m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
- return *this;
-}
-
-/******************************************************
-*** Scaling, Translation and Rotation compatibility ***
-******************************************************/
-
-template<typename Scalar, int Dim, int Mode, int Options>
-inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const TranslationType& t)
-{
- linear().setIdentity();
- translation() = t.vector();
- makeAffine();
- return *this;
-}
-
-template<typename Scalar, int Dim, int Mode, int Options>
-inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const
-{
- Transform res = *this;
- res.translate(t.vector());
- return res;
-}
-
-template<typename Scalar, int Dim, int Mode, int Options>
-inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const UniformScaling<Scalar>& s)
-{
- m_matrix.setZero();
- linear().diagonal().fill(s.factor());
- makeAffine();
- return *this;
-}
-
-template<typename Scalar, int Dim, int Mode, int Options>
-template<typename Derived>
-inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const RotationBase<Derived,Dim>& r)
-{
- linear() = internal::toRotationMatrix<Scalar,Dim>(r);
- translation().setZero();
- makeAffine();
- return *this;
-}
-
-template<typename Scalar, int Dim, int Mode, int Options>
-template<typename Derived>
-inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const RotationBase<Derived,Dim>& r) const
-{
- Transform res = *this;
- res.rotate(r.derived());
- return res;
-}
-
-/************************
-*** Special functions ***
-************************/
-
-/** \returns the rotation part of the transformation
- *
- *
- * \svd_module
- *
- * \sa computeRotationScaling(), computeScalingRotation(), class SVD
- */
-template<typename Scalar, int Dim, int Mode, int Options>
-const typename Transform<Scalar,Dim,Mode,Options>::LinearMatrixType
-Transform<Scalar,Dim,Mode,Options>::rotation() const
-{
- LinearMatrixType result;
- computeRotationScaling(&result, (LinearMatrixType*)0);
- return result;
-}
-
-
-/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
- * not necessarily positive.
- *
- * If either pointer is zero, the corresponding computation is skipped.
- *
- *
- *
- * \svd_module
- *
- * \sa computeScalingRotation(), rotation(), class SVD
- */
-template<typename Scalar, int Dim, int Mode, int Options>
-template<typename RotationMatrixType, typename ScalingMatrixType>
-void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
-{
- JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
-
- Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
- VectorType sv(svd.singularValues());
- sv.coeffRef(0) *= x;
- if(scaling) scaling->lazyAssign(svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint());
- if(rotation)
- {
- LinearMatrixType m(svd.matrixU());
- m.col(0) /= x;
- rotation->lazyAssign(m * svd.matrixV().adjoint());
- }
-}
-
-/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
- * not necessarily positive.
- *
- * If either pointer is zero, the corresponding computation is skipped.
- *
- *
- *
- * \svd_module
- *
- * \sa computeRotationScaling(), rotation(), class SVD
- */
-template<typename Scalar, int Dim, int Mode, int Options>
-template<typename ScalingMatrixType, typename RotationMatrixType>
-void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
-{
- JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
-
- Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
- VectorType sv(svd.singularValues());
- sv.coeffRef(0) *= x;
- if(scaling) scaling->lazyAssign(svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint());
- if(rotation)
- {
- LinearMatrixType m(svd.matrixU());
- m.col(0) /= x;
- rotation->lazyAssign(m * svd.matrixV().adjoint());
- }
-}
-
-/** Convenient method to set \c *this from a position, orientation and scale
- * of a 3D object.
- */
-template<typename Scalar, int Dim, int Mode, int Options>
-template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
-Transform<Scalar,Dim,Mode,Options>&
-Transform<Scalar,Dim,Mode,Options>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
- const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
-{
- linear() = internal::toRotationMatrix<Scalar,Dim>(orientation);
- linear() *= scale.asDiagonal();
- translation() = position;
- makeAffine();
- return *this;
-}
-
-namespace internal {
-
-// selector needed to avoid taking the inverse of a 3x4 matrix
-template<typename TransformType, int Mode=TransformType::Mode>
-struct projective_transform_inverse
-{
- static inline void run(const TransformType&, TransformType&)
- {}
-};
-
-template<typename TransformType>
-struct projective_transform_inverse<TransformType, Projective>
-{
- static inline void run(const TransformType& m, TransformType& res)
- {
- res.matrix() = m.matrix().inverse();
- }
-};
-
-} // end namespace internal
-
-
-/**
- *
- * \returns the inverse transformation according to some given knowledge
- * on \c *this.
- *
- * \param hint allows to optimize the inversion process when the transformation
- * is known to be not a general transformation (optional). The possible values are:
- * - #Projective if the transformation is not necessarily affine, i.e., if the
- * last row is not guaranteed to be [0 ... 0 1]
- * - #Affine if the last row can be assumed to be [0 ... 0 1]
- * - #Isometry if the transformation is only a concatenations of translations
- * and rotations.
- * The default is the template class parameter \c Mode.
- *
- * \warning unless \a traits is always set to NoShear or NoScaling, this function
- * requires the generic inverse method of MatrixBase defined in the LU module. If
- * you forget to include this module, then you will get hard to debug linking errors.
- *
- * \sa MatrixBase::inverse()
- */
-template<typename Scalar, int Dim, int Mode, int Options>
-Transform<Scalar,Dim,Mode,Options>
-Transform<Scalar,Dim,Mode,Options>::inverse(TransformTraits hint) const
-{
- Transform res;
- if (hint == Projective)
- {
- internal::projective_transform_inverse<Transform>::run(*this, res);
- }
- else
- {
- if (hint == Isometry)
- {
- res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose();
- }
- else if(hint&Affine)
- {
- res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse();
- }
- else
- {
- eigen_assert(false && "Invalid transform traits in Transform::Inverse");
- }
- // translation and remaining parts
- res.matrix().template topRightCorner<Dim,1>()
- = - res.matrix().template topLeftCorner<Dim,Dim>() * translation();
- res.makeAffine(); // we do need this, because in the beginning res is uninitialized
- }
- return res;
-}
-
-namespace internal {
-
-/*****************************************************
-*** Specializations of take affine part ***
-*****************************************************/
-
-template<typename TransformType> struct transform_take_affine_part {
- typedef typename TransformType::MatrixType MatrixType;
- typedef typename TransformType::AffinePart AffinePart;
- typedef typename TransformType::ConstAffinePart ConstAffinePart;
- static inline AffinePart run(MatrixType& m)
- { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
- static inline ConstAffinePart run(const MatrixType& m)
- { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
-};
-
-template<typename Scalar, int Dim, int Options>
-struct transform_take_affine_part<Transform<Scalar,Dim,AffineCompact, Options> > {
- typedef typename Transform<Scalar,Dim,AffineCompact,Options>::MatrixType MatrixType;
- static inline MatrixType& run(MatrixType& m) { return m; }
- static inline const MatrixType& run(const MatrixType& m) { return m; }
-};
-
-/*****************************************************
-*** Specializations of construct from matrix ***
-*****************************************************/
-
-template<typename Other, int Mode, int Options, int Dim, int HDim>
-struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,Dim>
-{
- static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
- {
- transform->linear() = other;
- transform->translation().setZero();
- transform->makeAffine();
- }
-};
-
-template<typename Other, int Mode, int Options, int Dim, int HDim>
-struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,HDim>
-{
- static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
- {
- transform->affine() = other;
- transform->makeAffine();
- }
-};
-
-template<typename Other, int Mode, int Options, int Dim, int HDim>
-struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, HDim,HDim>
-{
- static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
- { transform->matrix() = other; }
-};
-
-template<typename Other, int Options, int Dim, int HDim>
-struct transform_construct_from_matrix<Other, AffineCompact,Options,Dim,HDim, HDim,HDim>
-{
- static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact,Options> *transform, const Other& other)
- { transform->matrix() = other.template block<Dim,HDim>(0,0); }
-};
-
-/**********************************************************
-*** Specializations of operator* with rhs EigenBase ***
-**********************************************************/
-
-template<int LhsMode,int RhsMode>
-struct transform_product_result
-{
- enum
- {
- Mode =
- (LhsMode == (int)Projective || RhsMode == (int)Projective ) ? Projective :
- (LhsMode == (int)Affine || RhsMode == (int)Affine ) ? Affine :
- (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact :
- (LhsMode == (int)Isometry || RhsMode == (int)Isometry ) ? Isometry : Projective
- };
-};
-
-template< typename TransformType, typename MatrixType >
-struct transform_right_product_impl< TransformType, MatrixType, 0 >
-{
- typedef typename MatrixType::PlainObject ResultType;
-
- static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
- {
- return T.matrix() * other;
- }
-};
-
-template< typename TransformType, typename MatrixType >
-struct transform_right_product_impl< TransformType, MatrixType, 1 >
-{
- enum {
- Dim = TransformType::Dim,
- HDim = TransformType::HDim,
- OtherRows = MatrixType::RowsAtCompileTime,
- OtherCols = MatrixType::ColsAtCompileTime
- };
-
- typedef typename MatrixType::PlainObject ResultType;
-
- static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
- {
- EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
-
- typedef Block<ResultType, Dim, OtherCols, int(MatrixType::RowsAtCompileTime)==Dim> TopLeftLhs;
-
- ResultType res(other.rows(),other.cols());
- TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other;
- res.row(OtherRows-1) = other.row(OtherRows-1);
-
- return res;
- }
-};
-
-template< typename TransformType, typename MatrixType >
-struct transform_right_product_impl< TransformType, MatrixType, 2 >
-{
- enum {
- Dim = TransformType::Dim,
- HDim = TransformType::HDim,
- OtherRows = MatrixType::RowsAtCompileTime,
- OtherCols = MatrixType::ColsAtCompileTime
- };
-
- typedef typename MatrixType::PlainObject ResultType;
-
- static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
- {
- EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
-
- typedef Block<ResultType, Dim, OtherCols, true> TopLeftLhs;
- ResultType res(Replicate<typename TransformType::ConstTranslationPart, 1, OtherCols>(T.translation(),1,other.cols()));
- TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other;
-
- return res;
- }
-};
-
-/**********************************************************
-*** Specializations of operator* with lhs EigenBase ***
-**********************************************************/
-
-// generic HDim x HDim matrix * T => Projective
-template<typename Other,int Mode, int Options, int Dim, int HDim>
-struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, HDim,HDim>
-{
- typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
- typedef typename TransformType::MatrixType MatrixType;
- typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
- static ResultType run(const Other& other,const TransformType& tr)
- { return ResultType(other * tr.matrix()); }
-};
-
-// generic HDim x HDim matrix * AffineCompact => Projective
-template<typename Other, int Options, int Dim, int HDim>
-struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, HDim,HDim>
-{
- typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
- typedef typename TransformType::MatrixType MatrixType;
- typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
- static ResultType run(const Other& other,const TransformType& tr)
- {
- ResultType res;
- res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix();
- res.matrix().col(Dim) += other.col(Dim);
- return res;
- }
-};
-
-// affine matrix * T
-template<typename Other,int Mode, int Options, int Dim, int HDim>
-struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,HDim>
-{
- typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
- typedef typename TransformType::MatrixType MatrixType;
- typedef TransformType ResultType;
- static ResultType run(const Other& other,const TransformType& tr)
- {
- ResultType res;
- res.affine().noalias() = other * tr.matrix();
- res.matrix().row(Dim) = tr.matrix().row(Dim);
- return res;
- }
-};
-
-// affine matrix * AffineCompact
-template<typename Other, int Options, int Dim, int HDim>
-struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, Dim,HDim>
-{
- typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
- typedef typename TransformType::MatrixType MatrixType;
- typedef TransformType ResultType;
- static ResultType run(const Other& other,const TransformType& tr)
- {
- ResultType res;
- res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix();
- res.translation() += other.col(Dim);
- return res;
- }
-};
-
-// linear matrix * T
-template<typename Other,int Mode, int Options, int Dim, int HDim>
-struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,Dim>
-{
- typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
- typedef typename TransformType::MatrixType MatrixType;
- typedef TransformType ResultType;
- static ResultType run(const Other& other, const TransformType& tr)
- {
- TransformType res;
- if(Mode!=int(AffineCompact))
- res.matrix().row(Dim) = tr.matrix().row(Dim);
- res.matrix().template topRows<Dim>().noalias()
- = other * tr.matrix().template topRows<Dim>();
- return res;
- }
-};
-
-/**********************************************************
-*** Specializations of operator* with another Transform ***
-**********************************************************/
-
-template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
-struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,false >
-{
- enum { ResultMode = transform_product_result<LhsMode,RhsMode>::Mode };
- typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
- typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
- typedef Transform<Scalar,Dim,ResultMode,LhsOptions> ResultType;
- static ResultType run(const Lhs& lhs, const Rhs& rhs)
- {
- ResultType res;
- res.linear() = lhs.linear() * rhs.linear();
- res.translation() = lhs.linear() * rhs.translation() + lhs.translation();
- res.makeAffine();
- return res;
- }
-};
-
-template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
-struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,true >
-{
- typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
- typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
- typedef Transform<Scalar,Dim,Projective> ResultType;
- static ResultType run(const Lhs& lhs, const Rhs& rhs)
- {
- return ResultType( lhs.matrix() * rhs.matrix() );
- }
-};
-
-template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
-struct transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact,LhsOptions>,Transform<Scalar,Dim,Projective,RhsOptions>,true >
-{
- typedef Transform<Scalar,Dim,AffineCompact,LhsOptions> Lhs;
- typedef Transform<Scalar,Dim,Projective,RhsOptions> Rhs;
- typedef Transform<Scalar,Dim,Projective> ResultType;
- static ResultType run(const Lhs& lhs, const Rhs& rhs)
- {
- ResultType res;
- res.matrix().template topRows<Dim>() = lhs.matrix() * rhs.matrix();
- res.matrix().row(Dim) = rhs.matrix().row(Dim);
- return res;
- }
-};
-
-template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
-struct transform_transform_product_impl<Transform<Scalar,Dim,Projective,LhsOptions>,Transform<Scalar,Dim,AffineCompact,RhsOptions>,true >
-{
- typedef Transform<Scalar,Dim,Projective,LhsOptions> Lhs;
- typedef Transform<Scalar,Dim,AffineCompact,RhsOptions> Rhs;
- typedef Transform<Scalar,Dim,Projective> ResultType;
- static ResultType run(const Lhs& lhs, const Rhs& rhs)
- {
- ResultType res(lhs.matrix().template leftCols<Dim>() * rhs.matrix());
- res.matrix().col(Dim) += lhs.matrix().col(Dim);
- return res;
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_TRANSFORM_H
diff --git a/src/Eigen/src/Geometry/Translation.h b/src/Eigen/src/Geometry/Translation.h
deleted file mode 100644
index 7fda179..0000000
--- a/src/Eigen/src/Geometry/Translation.h
+++ /dev/null
@@ -1,206 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_TRANSLATION_H
-#define EIGEN_TRANSLATION_H
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Translation
- *
- * \brief Represents a translation transformation
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients.
- * \param _Dim the dimension of the space, can be a compile time value or Dynamic
- *
- * \note This class is not aimed to be used to store a translation transformation,
- * but rather to make easier the constructions and updates of Transform objects.
- *
- * \sa class Scaling, class Transform
- */
-template<typename _Scalar, int _Dim>
-class Translation
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
- /** dimension of the space */
- enum { Dim = _Dim };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- /** corresponding vector type */
- typedef Matrix<Scalar,Dim,1> VectorType;
- /** corresponding linear transformation matrix type */
- typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
- /** corresponding affine transformation type */
- typedef Transform<Scalar,Dim,Affine> AffineTransformType;
- /** corresponding isometric transformation type */
- typedef Transform<Scalar,Dim,Isometry> IsometryTransformType;
-
-protected:
-
- VectorType m_coeffs;
-
-public:
-
- /** Default constructor without initialization. */
- Translation() {}
- /** */
- inline Translation(const Scalar& sx, const Scalar& sy)
- {
- eigen_assert(Dim==2);
- m_coeffs.x() = sx;
- m_coeffs.y() = sy;
- }
- /** */
- inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz)
- {
- eigen_assert(Dim==3);
- m_coeffs.x() = sx;
- m_coeffs.y() = sy;
- m_coeffs.z() = sz;
- }
- /** Constructs and initialize the translation transformation from a vector of translation coefficients */
- explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {}
-
- /** \brief Retruns the x-translation by value. **/
- inline Scalar x() const { return m_coeffs.x(); }
- /** \brief Retruns the y-translation by value. **/
- inline Scalar y() const { return m_coeffs.y(); }
- /** \brief Retruns the z-translation by value. **/
- inline Scalar z() const { return m_coeffs.z(); }
-
- /** \brief Retruns the x-translation as a reference. **/
- inline Scalar& x() { return m_coeffs.x(); }
- /** \brief Retruns the y-translation as a reference. **/
- inline Scalar& y() { return m_coeffs.y(); }
- /** \brief Retruns the z-translation as a reference. **/
- inline Scalar& z() { return m_coeffs.z(); }
-
- const VectorType& vector() const { return m_coeffs; }
- VectorType& vector() { return m_coeffs; }
-
- const VectorType& translation() const { return m_coeffs; }
- VectorType& translation() { return m_coeffs; }
-
- /** Concatenates two translation */
- inline Translation operator* (const Translation& other) const
- { return Translation(m_coeffs + other.m_coeffs); }
-
- /** Concatenates a translation and a uniform scaling */
- inline AffineTransformType operator* (const UniformScaling<Scalar>& other) const;
-
- /** Concatenates a translation and a linear transformation */
- template<typename OtherDerived>
- inline AffineTransformType operator* (const EigenBase<OtherDerived>& linear) const;
-
- /** Concatenates a translation and a rotation */
- template<typename Derived>
- inline IsometryTransformType operator*(const RotationBase<Derived,Dim>& r) const
- { return *this * IsometryTransformType(r); }
-
- /** \returns the concatenation of a linear transformation \a l with the translation \a t */
- // its a nightmare to define a templated friend function outside its declaration
- template<typename OtherDerived> friend
- inline AffineTransformType operator*(const EigenBase<OtherDerived>& linear, const Translation& t)
- {
- AffineTransformType res;
- res.matrix().setZero();
- res.linear() = linear.derived();
- res.translation() = linear.derived() * t.m_coeffs;
- res.matrix().row(Dim).setZero();
- res(Dim,Dim) = Scalar(1);
- return res;
- }
-
- /** Concatenates a translation and a transformation */
- template<int Mode, int Options>
- inline Transform<Scalar,Dim,Mode> operator* (const Transform<Scalar,Dim,Mode,Options>& t) const
- {
- Transform<Scalar,Dim,Mode> res = t;
- res.pretranslate(m_coeffs);
- return res;
- }
-
- /** Applies translation to vector */
- inline VectorType operator* (const VectorType& other) const
- { return m_coeffs + other; }
-
- /** \returns the inverse translation (opposite) */
- Translation inverse() const { return Translation(-m_coeffs); }
-
- Translation& operator=(const Translation& other)
- {
- m_coeffs = other.m_coeffs;
- return *this;
- }
-
- static const Translation Identity() { return Translation(VectorType::Zero()); }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const
- { return typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Translation(const Translation<OtherScalarType,Dim>& other)
- { m_coeffs = other.vector().template cast<Scalar>(); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Translation& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
- { return m_coeffs.isApprox(other.m_coeffs, prec); }
-
-};
-
-/** \addtogroup Geometry_Module */
-//@{
-typedef Translation<float, 2> Translation2f;
-typedef Translation<double,2> Translation2d;
-typedef Translation<float, 3> Translation3f;
-typedef Translation<double,3> Translation3d;
-//@}
-
-template<typename Scalar, int Dim>
-inline typename Translation<Scalar,Dim>::AffineTransformType
-Translation<Scalar,Dim>::operator* (const UniformScaling<Scalar>& other) const
-{
- AffineTransformType res;
- res.matrix().setZero();
- res.linear().diagonal().fill(other.factor());
- res.translation() = m_coeffs;
- res(Dim,Dim) = Scalar(1);
- return res;
-}
-
-template<typename Scalar, int Dim>
-template<typename OtherDerived>
-inline typename Translation<Scalar,Dim>::AffineTransformType
-Translation<Scalar,Dim>::operator* (const EigenBase<OtherDerived>& linear) const
-{
- AffineTransformType res;
- res.matrix().setZero();
- res.linear() = linear.derived();
- res.translation() = m_coeffs;
- res.matrix().row(Dim).setZero();
- res(Dim,Dim) = Scalar(1);
- return res;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_TRANSLATION_H
diff --git a/src/Eigen/src/Geometry/Umeyama.h b/src/Eigen/src/Geometry/Umeyama.h
deleted file mode 100644
index 5e20662..0000000
--- a/src/Eigen/src/Geometry/Umeyama.h
+++ /dev/null
@@ -1,177 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_UMEYAMA_H
-#define EIGEN_UMEYAMA_H
-
-// This file requires the user to include
-// * Eigen/Core
-// * Eigen/LU
-// * Eigen/SVD
-// * Eigen/Array
-
-namespace Eigen {
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-
-// These helpers are required since it allows to use mixed types as parameters
-// for the Umeyama. The problem with mixed parameters is that the return type
-// cannot trivially be deduced when float and double types are mixed.
-namespace internal {
-
-// Compile time return type deduction for different MatrixBase types.
-// Different means here different alignment and parameters but the same underlying
-// real scalar type.
-template<typename MatrixType, typename OtherMatrixType>
-struct umeyama_transform_matrix_type
-{
- enum {
- MinRowsAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime),
-
- // When possible we want to choose some small fixed size value since the result
- // is likely to fit on the stack. So here, EIGEN_SIZE_MIN_PREFER_DYNAMIC is not what we want.
- HomogeneousDimension = int(MinRowsAtCompileTime) == Dynamic ? Dynamic : int(MinRowsAtCompileTime)+1
- };
-
- typedef Matrix<typename traits<MatrixType>::Scalar,
- HomogeneousDimension,
- HomogeneousDimension,
- AutoAlign | (traits<MatrixType>::Flags & RowMajorBit ? RowMajor : ColMajor),
- HomogeneousDimension,
- HomogeneousDimension
- > type;
-};
-
-}
-
-#endif
-
-/**
-* \geometry_module \ingroup Geometry_Module
-*
-* \brief Returns the transformation between two point sets.
-*
-* The algorithm is based on:
-* "Least-squares estimation of transformation parameters between two point patterns",
-* Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
-*
-* It estimates parameters \f$ c, \mathbf{R}, \f$ and \f$ \mathbf{t} \f$ such that
-* \f{align*}
-* \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2
-* \f}
-* is minimized.
-*
-* The algorithm is based on the analysis of the covariance matrix
-* \f$ \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \f$
-* of the input point sets \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$ where
-* \f$d\f$ is corresponding to the dimension (which is typically small).
-* The analysis is involving the SVD having a complexity of \f$O(d^3)\f$
-* though the actual computational effort lies in the covariance
-* matrix computation which has an asymptotic lower bound of \f$O(dm)\f$ when
-* the input point sets have dimension \f$d \times m\f$.
-*
-* Currently the method is working only for floating point matrices.
-*
-* \todo Should the return type of umeyama() become a Transform?
-*
-* \param src Source points \f$ \mathbf{x} = \left( x_1, \hdots, x_n \right) \f$.
-* \param dst Destination points \f$ \mathbf{y} = \left( y_1, \hdots, y_n \right) \f$.
-* \param with_scaling Sets \f$ c=1 \f$ when <code>false</code> is passed.
-* \return The homogeneous transformation
-* \f{align*}
-* T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}
-* \f}
-* minimizing the resudiual above. This transformation is always returned as an
-* Eigen::Matrix.
-*/
-template <typename Derived, typename OtherDerived>
-typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type
-umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, bool with_scaling = true)
-{
- typedef typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type TransformationMatrixType;
- typedef typename internal::traits<TransformationMatrixType>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename Derived::Index Index;
-
- EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename internal::traits<OtherDerived>::Scalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-
- enum { Dimension = EIGEN_SIZE_MIN_PREFER_DYNAMIC(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) };
-
- typedef Matrix<Scalar, Dimension, 1> VectorType;
- typedef Matrix<Scalar, Dimension, Dimension> MatrixType;
- typedef typename internal::plain_matrix_type_row_major<Derived>::type RowMajorMatrixType;
-
- const Index m = src.rows(); // dimension
- const Index n = src.cols(); // number of measurements
-
- // required for demeaning ...
- const RealScalar one_over_n = RealScalar(1) / static_cast<RealScalar>(n);
-
- // computation of mean
- const VectorType src_mean = src.rowwise().sum() * one_over_n;
- const VectorType dst_mean = dst.rowwise().sum() * one_over_n;
-
- // demeaning of src and dst points
- const RowMajorMatrixType src_demean = src.colwise() - src_mean;
- const RowMajorMatrixType dst_demean = dst.colwise() - dst_mean;
-
- // Eq. (36)-(37)
- const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n;
-
- // Eq. (38)
- const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose();
-
- JacobiSVD<MatrixType> svd(sigma, ComputeFullU | ComputeFullV);
-
- // Initialize the resulting transformation with an identity matrix...
- TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1);
-
- // Eq. (39)
- VectorType S = VectorType::Ones(m);
- if (sigma.determinant()<Scalar(0)) S(m-1) = Scalar(-1);
-
- // Eq. (40) and (43)
- const VectorType& d = svd.singularValues();
- Index rank = 0; for (Index i=0; i<m; ++i) if (!internal::isMuchSmallerThan(d.coeff(i),d.coeff(0))) ++rank;
- if (rank == m-1) {
- if ( svd.matrixU().determinant() * svd.matrixV().determinant() > Scalar(0) ) {
- Rt.block(0,0,m,m).noalias() = svd.matrixU()*svd.matrixV().transpose();
- } else {
- const Scalar s = S(m-1); S(m-1) = Scalar(-1);
- Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
- S(m-1) = s;
- }
- } else {
- Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
- }
-
- if (with_scaling)
- {
- // Eq. (42)
- const Scalar c = Scalar(1)/src_var * svd.singularValues().dot(S);
-
- // Eq. (41)
- Rt.col(m).head(m) = dst_mean;
- Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean;
- Rt.block(0,0,m,m) *= c;
- }
- else
- {
- Rt.col(m).head(m) = dst_mean;
- Rt.col(m).head(m).noalias() -= Rt.topLeftCorner(m,m)*src_mean;
- }
-
- return Rt;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_UMEYAMA_H
diff --git a/src/Eigen/src/Geometry/arch/CMakeLists.txt b/src/Eigen/src/Geometry/arch/CMakeLists.txt
deleted file mode 100644
index 1267a79..0000000
--- a/src/Eigen/src/Geometry/arch/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_Geometry_arch_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Geometry_arch_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Geometry/arch COMPONENT Devel
- )
diff --git a/src/Eigen/src/Geometry/arch/Geometry_SSE.h b/src/Eigen/src/Geometry/arch/Geometry_SSE.h
deleted file mode 100644
index 3d8284f..0000000
--- a/src/Eigen/src/Geometry/arch/Geometry_SSE.h
+++ /dev/null
@@ -1,115 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Rohit Garg <rpg.314@gmail.com>
-// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_GEOMETRY_SSE_H
-#define EIGEN_GEOMETRY_SSE_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<class Derived, class OtherDerived>
-struct quat_product<Architecture::SSE, Derived, OtherDerived, float, Aligned>
-{
- static inline Quaternion<float> run(const QuaternionBase<Derived>& _a, const QuaternionBase<OtherDerived>& _b)
- {
- const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0,0,0,0x80000000));
- Quaternion<float> res;
- __m128 a = _a.coeffs().template packet<Aligned>(0);
- __m128 b = _b.coeffs().template packet<Aligned>(0);
- __m128 flip1 = _mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a,1,2,0,2),
- vec4f_swizzle1(b,2,0,1,2)),mask);
- __m128 flip2 = _mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a,3,3,3,1),
- vec4f_swizzle1(b,0,1,2,1)),mask);
- pstore(&res.x(),
- _mm_add_ps(_mm_sub_ps(_mm_mul_ps(a,vec4f_swizzle1(b,3,3,3,3)),
- _mm_mul_ps(vec4f_swizzle1(a,2,0,1,0),
- vec4f_swizzle1(b,1,2,0,0))),
- _mm_add_ps(flip1,flip2)));
- return res;
- }
-};
-
-template<typename VectorLhs,typename VectorRhs>
-struct cross3_impl<Architecture::SSE,VectorLhs,VectorRhs,float,true>
-{
- static inline typename plain_matrix_type<VectorLhs>::type
- run(const VectorLhs& lhs, const VectorRhs& rhs)
- {
- __m128 a = lhs.template packet<VectorLhs::Flags&AlignedBit ? Aligned : Unaligned>(0);
- __m128 b = rhs.template packet<VectorRhs::Flags&AlignedBit ? Aligned : Unaligned>(0);
- __m128 mul1=_mm_mul_ps(vec4f_swizzle1(a,1,2,0,3),vec4f_swizzle1(b,2,0,1,3));
- __m128 mul2=_mm_mul_ps(vec4f_swizzle1(a,2,0,1,3),vec4f_swizzle1(b,1,2,0,3));
- typename plain_matrix_type<VectorLhs>::type res;
- pstore(&res.x(),_mm_sub_ps(mul1,mul2));
- return res;
- }
-};
-
-
-
-
-template<class Derived, class OtherDerived>
-struct quat_product<Architecture::SSE, Derived, OtherDerived, double, Aligned>
-{
- static inline Quaternion<double> run(const QuaternionBase<Derived>& _a, const QuaternionBase<OtherDerived>& _b)
- {
- const Packet2d mask = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0));
-
- Quaternion<double> res;
-
- const double* a = _a.coeffs().data();
- Packet2d b_xy = _b.coeffs().template packet<Aligned>(0);
- Packet2d b_zw = _b.coeffs().template packet<Aligned>(2);
- Packet2d a_xx = pset1<Packet2d>(a[0]);
- Packet2d a_yy = pset1<Packet2d>(a[1]);
- Packet2d a_zz = pset1<Packet2d>(a[2]);
- Packet2d a_ww = pset1<Packet2d>(a[3]);
-
- // two temporaries:
- Packet2d t1, t2;
-
- /*
- * t1 = ww*xy + yy*zw
- * t2 = zz*xy - xx*zw
- * res.xy = t1 +/- swap(t2)
- */
- t1 = padd(pmul(a_ww, b_xy), pmul(a_yy, b_zw));
- t2 = psub(pmul(a_zz, b_xy), pmul(a_xx, b_zw));
-#ifdef EIGEN_VECTORIZE_SSE3
- EIGEN_UNUSED_VARIABLE(mask)
- pstore(&res.x(), _mm_addsub_pd(t1, preverse(t2)));
-#else
- pstore(&res.x(), padd(t1, pxor(mask,preverse(t2))));
-#endif
-
- /*
- * t1 = ww*zw - yy*xy
- * t2 = zz*zw + xx*xy
- * res.zw = t1 -/+ swap(t2) = swap( swap(t1) +/- t2)
- */
- t1 = psub(pmul(a_ww, b_zw), pmul(a_yy, b_xy));
- t2 = padd(pmul(a_zz, b_zw), pmul(a_xx, b_xy));
-#ifdef EIGEN_VECTORIZE_SSE3
- EIGEN_UNUSED_VARIABLE(mask)
- pstore(&res.z(), preverse(_mm_addsub_pd(preverse(t1), t2)));
-#else
- pstore(&res.z(), psub(t1, pxor(mask,preverse(t2))));
-#endif
-
- return res;
-}
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_GEOMETRY_SSE_H
diff --git a/src/Eigen/src/Householder/BlockHouseholder.h b/src/Eigen/src/Householder/BlockHouseholder.h
deleted file mode 100644
index 60dbea5..0000000
--- a/src/Eigen/src/Householder/BlockHouseholder.h
+++ /dev/null
@@ -1,68 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Vincent Lejeune
-// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_BLOCK_HOUSEHOLDER_H
-#define EIGEN_BLOCK_HOUSEHOLDER_H
-
-// This file contains some helper function to deal with block householder reflectors
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal */
-template<typename TriangularFactorType,typename VectorsType,typename CoeffsType>
-void make_block_householder_triangular_factor(TriangularFactorType& triFactor, const VectorsType& vectors, const CoeffsType& hCoeffs)
-{
- typedef typename TriangularFactorType::Index Index;
- typedef typename VectorsType::Scalar Scalar;
- const Index nbVecs = vectors.cols();
- eigen_assert(triFactor.rows() == nbVecs && triFactor.cols() == nbVecs && vectors.rows()>=nbVecs);
-
- for(Index i = 0; i < nbVecs; i++)
- {
- Index rs = vectors.rows() - i;
- Scalar Vii = vectors(i,i);
- vectors.const_cast_derived().coeffRef(i,i) = Scalar(1);
- triFactor.col(i).head(i).noalias() = -hCoeffs(i) * vectors.block(i, 0, rs, i).adjoint()
- * vectors.col(i).tail(rs);
- vectors.const_cast_derived().coeffRef(i, i) = Vii;
- // FIXME add .noalias() once the triangular product can work inplace
- triFactor.col(i).head(i) = triFactor.block(0,0,i,i).template triangularView<Upper>()
- * triFactor.col(i).head(i);
- triFactor(i,i) = hCoeffs(i);
- }
-}
-
-/** \internal */
-template<typename MatrixType,typename VectorsType,typename CoeffsType>
-void apply_block_householder_on_the_left(MatrixType& mat, const VectorsType& vectors, const CoeffsType& hCoeffs)
-{
- typedef typename MatrixType::Index Index;
- enum { TFactorSize = MatrixType::ColsAtCompileTime };
- Index nbVecs = vectors.cols();
- Matrix<typename MatrixType::Scalar, TFactorSize, TFactorSize, ColMajor> T(nbVecs,nbVecs);
- make_block_householder_triangular_factor(T, vectors, hCoeffs);
-
- const TriangularView<const VectorsType, UnitLower>& V(vectors);
-
- // A -= V T V^* A
- Matrix<typename MatrixType::Scalar,VectorsType::ColsAtCompileTime,MatrixType::ColsAtCompileTime,0,
- VectorsType::MaxColsAtCompileTime,MatrixType::MaxColsAtCompileTime> tmp = V.adjoint() * mat;
- // FIXME add .noalias() once the triangular product can work inplace
- tmp = T.template triangularView<Upper>().adjoint() * tmp;
- mat.noalias() -= V * tmp;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_BLOCK_HOUSEHOLDER_H
diff --git a/src/Eigen/src/Householder/CMakeLists.txt b/src/Eigen/src/Householder/CMakeLists.txt
deleted file mode 100644
index ce4937d..0000000
--- a/src/Eigen/src/Householder/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_Householder_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Householder_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Householder COMPONENT Devel
- )
diff --git a/src/Eigen/src/Householder/Householder.h b/src/Eigen/src/Householder/Householder.h
deleted file mode 100644
index 32112af..0000000
--- a/src/Eigen/src/Householder/Householder.h
+++ /dev/null
@@ -1,171 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_HOUSEHOLDER_H
-#define EIGEN_HOUSEHOLDER_H
-
-namespace Eigen {
-
-namespace internal {
-template<int n> struct decrement_size
-{
- enum {
- ret = n==Dynamic ? n : n-1
- };
-};
-}
-
-/** Computes the elementary reflector H such that:
- * \f$ H *this = [ beta 0 ... 0]^T \f$
- * where the transformation H is:
- * \f$ H = I - tau v v^*\f$
- * and the vector v is:
- * \f$ v^T = [1 essential^T] \f$
- *
- * The essential part of the vector \c v is stored in *this.
- *
- * On output:
- * \param tau the scaling factor of the Householder transformation
- * \param beta the result of H * \c *this
- *
- * \sa MatrixBase::makeHouseholder(), MatrixBase::applyHouseholderOnTheLeft(),
- * MatrixBase::applyHouseholderOnTheRight()
- */
-template<typename Derived>
-void MatrixBase<Derived>::makeHouseholderInPlace(Scalar& tau, RealScalar& beta)
-{
- VectorBlock<Derived, internal::decrement_size<Base::SizeAtCompileTime>::ret> essentialPart(derived(), 1, size()-1);
- makeHouseholder(essentialPart, tau, beta);
-}
-
-/** Computes the elementary reflector H such that:
- * \f$ H *this = [ beta 0 ... 0]^T \f$
- * where the transformation H is:
- * \f$ H = I - tau v v^*\f$
- * and the vector v is:
- * \f$ v^T = [1 essential^T] \f$
- *
- * On output:
- * \param essential the essential part of the vector \c v
- * \param tau the scaling factor of the Householder transformation
- * \param beta the result of H * \c *this
- *
- * \sa MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheLeft(),
- * MatrixBase::applyHouseholderOnTheRight()
- */
-template<typename Derived>
-template<typename EssentialPart>
-void MatrixBase<Derived>::makeHouseholder(
- EssentialPart& essential,
- Scalar& tau,
- RealScalar& beta) const
-{
- using std::sqrt;
- using numext::conj;
-
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(EssentialPart)
- VectorBlock<const Derived, EssentialPart::SizeAtCompileTime> tail(derived(), 1, size()-1);
-
- RealScalar tailSqNorm = size()==1 ? RealScalar(0) : tail.squaredNorm();
- Scalar c0 = coeff(0);
-
- if(tailSqNorm == RealScalar(0) && numext::imag(c0)==RealScalar(0))
- {
- tau = RealScalar(0);
- beta = numext::real(c0);
- essential.setZero();
- }
- else
- {
- beta = sqrt(numext::abs2(c0) + tailSqNorm);
- if (numext::real(c0)>=RealScalar(0))
- beta = -beta;
- essential = tail / (c0 - beta);
- tau = conj((beta - c0) / beta);
- }
-}
-
-/** Apply the elementary reflector H given by
- * \f$ H = I - tau v v^*\f$
- * with
- * \f$ v^T = [1 essential^T] \f$
- * from the left to a vector or matrix.
- *
- * On input:
- * \param essential the essential part of the vector \c v
- * \param tau the scaling factor of the Householder transformation
- * \param workspace a pointer to working space with at least
- * this->cols() * essential.size() entries
- *
- * \sa MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(),
- * MatrixBase::applyHouseholderOnTheRight()
- */
-template<typename Derived>
-template<typename EssentialPart>
-void MatrixBase<Derived>::applyHouseholderOnTheLeft(
- const EssentialPart& essential,
- const Scalar& tau,
- Scalar* workspace)
-{
- if(rows() == 1)
- {
- *this *= Scalar(1)-tau;
- }
- else
- {
- Map<typename internal::plain_row_type<PlainObject>::type> tmp(workspace,cols());
- Block<Derived, EssentialPart::SizeAtCompileTime, Derived::ColsAtCompileTime> bottom(derived(), 1, 0, rows()-1, cols());
- tmp.noalias() = essential.adjoint() * bottom;
- tmp += this->row(0);
- this->row(0) -= tau * tmp;
- bottom.noalias() -= tau * essential * tmp;
- }
-}
-
-/** Apply the elementary reflector H given by
- * \f$ H = I - tau v v^*\f$
- * with
- * \f$ v^T = [1 essential^T] \f$
- * from the right to a vector or matrix.
- *
- * On input:
- * \param essential the essential part of the vector \c v
- * \param tau the scaling factor of the Householder transformation
- * \param workspace a pointer to working space with at least
- * this->cols() * essential.size() entries
- *
- * \sa MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(),
- * MatrixBase::applyHouseholderOnTheLeft()
- */
-template<typename Derived>
-template<typename EssentialPart>
-void MatrixBase<Derived>::applyHouseholderOnTheRight(
- const EssentialPart& essential,
- const Scalar& tau,
- Scalar* workspace)
-{
- if(cols() == 1)
- {
- *this *= Scalar(1)-tau;
- }
- else
- {
- Map<typename internal::plain_col_type<PlainObject>::type> tmp(workspace,rows());
- Block<Derived, Derived::RowsAtCompileTime, EssentialPart::SizeAtCompileTime> right(derived(), 0, 1, rows(), cols()-1);
- tmp.noalias() = right * essential.conjugate();
- tmp += this->col(0);
- this->col(0) -= tau * tmp;
- right.noalias() -= tau * tmp * essential.transpose();
- }
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_HOUSEHOLDER_H
diff --git a/src/Eigen/src/Householder/HouseholderSequence.h b/src/Eigen/src/Householder/HouseholderSequence.h
deleted file mode 100644
index d800ca1..0000000
--- a/src/Eigen/src/Householder/HouseholderSequence.h
+++ /dev/null
@@ -1,441 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H
-#define EIGEN_HOUSEHOLDER_SEQUENCE_H
-
-namespace Eigen {
-
-/** \ingroup Householder_Module
- * \householder_module
- * \class HouseholderSequence
- * \brief Sequence of Householder reflections acting on subspaces with decreasing size
- * \tparam VectorsType type of matrix containing the Householder vectors
- * \tparam CoeffsType type of vector containing the Householder coefficients
- * \tparam Side either OnTheLeft (the default) or OnTheRight
- *
- * This class represents a product sequence of Householder reflections where the first Householder reflection
- * acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by
- * the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace
- * spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but
- * one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections
- * are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods
- * HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(),
- * and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence.
- *
- * More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the
- * form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i
- * v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$
- * v_i \f$ is a vector of the form
- * \f[
- * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
- * \f]
- * The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector.
- *
- * Typical usages are listed below, where H is a HouseholderSequence:
- * \code
- * A.applyOnTheRight(H); // A = A * H
- * A.applyOnTheLeft(H); // A = H * A
- * A.applyOnTheRight(H.adjoint()); // A = A * H^*
- * A.applyOnTheLeft(H.adjoint()); // A = H^* * A
- * MatrixXd Q = H; // conversion to a dense matrix
- * \endcode
- * In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators.
- *
- * See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example.
- *
- * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
- */
-
-namespace internal {
-
-template<typename VectorsType, typename CoeffsType, int Side>
-struct traits<HouseholderSequence<VectorsType,CoeffsType,Side> >
-{
- typedef typename VectorsType::Scalar Scalar;
- typedef typename VectorsType::Index Index;
- typedef typename VectorsType::StorageKind StorageKind;
- enum {
- RowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::RowsAtCompileTime
- : traits<VectorsType>::ColsAtCompileTime,
- ColsAtCompileTime = RowsAtCompileTime,
- MaxRowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::MaxRowsAtCompileTime
- : traits<VectorsType>::MaxColsAtCompileTime,
- MaxColsAtCompileTime = MaxRowsAtCompileTime,
- Flags = 0
- };
-};
-
-template<typename VectorsType, typename CoeffsType, int Side>
-struct hseq_side_dependent_impl
-{
- typedef Block<const VectorsType, Dynamic, 1> EssentialVectorType;
- typedef HouseholderSequence<VectorsType, CoeffsType, OnTheLeft> HouseholderSequenceType;
- typedef typename VectorsType::Index Index;
- static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k)
- {
- Index start = k+1+h.m_shift;
- return Block<const VectorsType,Dynamic,1>(h.m_vectors, start, k, h.rows()-start, 1);
- }
-};
-
-template<typename VectorsType, typename CoeffsType>
-struct hseq_side_dependent_impl<VectorsType, CoeffsType, OnTheRight>
-{
- typedef Transpose<Block<const VectorsType, 1, Dynamic> > EssentialVectorType;
- typedef HouseholderSequence<VectorsType, CoeffsType, OnTheRight> HouseholderSequenceType;
- typedef typename VectorsType::Index Index;
- static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k)
- {
- Index start = k+1+h.m_shift;
- return Block<const VectorsType,1,Dynamic>(h.m_vectors, k, start, 1, h.rows()-start).transpose();
- }
-};
-
-template<typename OtherScalarType, typename MatrixType> struct matrix_type_times_scalar_type
-{
- typedef typename scalar_product_traits<OtherScalarType, typename MatrixType::Scalar>::ReturnType
- ResultScalar;
- typedef Matrix<ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
- 0, MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime> Type;
-};
-
-} // end namespace internal
-
-template<typename VectorsType, typename CoeffsType, int Side> class HouseholderSequence
- : public EigenBase<HouseholderSequence<VectorsType,CoeffsType,Side> >
-{
- typedef typename internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::EssentialVectorType EssentialVectorType;
-
- public:
- enum {
- RowsAtCompileTime = internal::traits<HouseholderSequence>::RowsAtCompileTime,
- ColsAtCompileTime = internal::traits<HouseholderSequence>::ColsAtCompileTime,
- MaxRowsAtCompileTime = internal::traits<HouseholderSequence>::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = internal::traits<HouseholderSequence>::MaxColsAtCompileTime
- };
- typedef typename internal::traits<HouseholderSequence>::Scalar Scalar;
- typedef typename VectorsType::Index Index;
-
- typedef HouseholderSequence<
- typename internal::conditional<NumTraits<Scalar>::IsComplex,
- typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type,
- VectorsType>::type,
- typename internal::conditional<NumTraits<Scalar>::IsComplex,
- typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type,
- CoeffsType>::type,
- Side
- > ConjugateReturnType;
-
- /** \brief Constructor.
- * \param[in] v %Matrix containing the essential parts of the Householder vectors
- * \param[in] h Vector containing the Householder coefficients
- *
- * Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The
- * i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th
- * Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the
- * i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many
- * Householder reflections as there are columns.
- *
- * \note The %HouseholderSequence object stores \p v and \p h by reference.
- *
- * Example: \include HouseholderSequence_HouseholderSequence.cpp
- * Output: \verbinclude HouseholderSequence_HouseholderSequence.out
- *
- * \sa setLength(), setShift()
- */
- HouseholderSequence(const VectorsType& v, const CoeffsType& h)
- : m_vectors(v), m_coeffs(h), m_trans(false), m_length(v.diagonalSize()),
- m_shift(0)
- {
- }
-
- /** \brief Copy constructor. */
- HouseholderSequence(const HouseholderSequence& other)
- : m_vectors(other.m_vectors),
- m_coeffs(other.m_coeffs),
- m_trans(other.m_trans),
- m_length(other.m_length),
- m_shift(other.m_shift)
- {
- }
-
- /** \brief Number of rows of transformation viewed as a matrix.
- * \returns Number of rows
- * \details This equals the dimension of the space that the transformation acts on.
- */
- Index rows() const { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); }
-
- /** \brief Number of columns of transformation viewed as a matrix.
- * \returns Number of columns
- * \details This equals the dimension of the space that the transformation acts on.
- */
- Index cols() const { return rows(); }
-
- /** \brief Essential part of a Householder vector.
- * \param[in] k Index of Householder reflection
- * \returns Vector containing non-trivial entries of k-th Householder vector
- *
- * This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of
- * length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector
- * \f[
- * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
- * \f]
- * The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v
- * passed to the constructor.
- *
- * \sa setShift(), shift()
- */
- const EssentialVectorType essentialVector(Index k) const
- {
- eigen_assert(k >= 0 && k < m_length);
- return internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::essentialVector(*this, k);
- }
-
- /** \brief %Transpose of the Householder sequence. */
- HouseholderSequence transpose() const
- {
- return HouseholderSequence(*this).setTrans(!m_trans);
- }
-
- /** \brief Complex conjugate of the Householder sequence. */
- ConjugateReturnType conjugate() const
- {
- return ConjugateReturnType(m_vectors.conjugate(), m_coeffs.conjugate())
- .setTrans(m_trans)
- .setLength(m_length)
- .setShift(m_shift);
- }
-
- /** \brief Adjoint (conjugate transpose) of the Householder sequence. */
- ConjugateReturnType adjoint() const
- {
- return conjugate().setTrans(!m_trans);
- }
-
- /** \brief Inverse of the Householder sequence (equals the adjoint). */
- ConjugateReturnType inverse() const { return adjoint(); }
-
- /** \internal */
- template<typename DestType> inline void evalTo(DestType& dst) const
- {
- Matrix<Scalar, DestType::RowsAtCompileTime, 1,
- AutoAlign|ColMajor, DestType::MaxRowsAtCompileTime, 1> workspace(rows());
- evalTo(dst, workspace);
- }
-
- /** \internal */
- template<typename Dest, typename Workspace>
- void evalTo(Dest& dst, Workspace& workspace) const
- {
- workspace.resize(rows());
- Index vecs = m_length;
- if( internal::is_same<typename internal::remove_all<VectorsType>::type,Dest>::value
- && internal::extract_data(dst) == internal::extract_data(m_vectors))
- {
- // in-place
- dst.diagonal().setOnes();
- dst.template triangularView<StrictlyUpper>().setZero();
- for(Index k = vecs-1; k >= 0; --k)
- {
- Index cornerSize = rows() - k - m_shift;
- if(m_trans)
- dst.bottomRightCorner(cornerSize, cornerSize)
- .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data());
- else
- dst.bottomRightCorner(cornerSize, cornerSize)
- .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data());
-
- // clear the off diagonal vector
- dst.col(k).tail(rows()-k-1).setZero();
- }
- // clear the remaining columns if needed
- for(Index k = 0; k<cols()-vecs ; ++k)
- dst.col(k).tail(rows()-k-1).setZero();
- }
- else
- {
- dst.setIdentity(rows(), rows());
- for(Index k = vecs-1; k >= 0; --k)
- {
- Index cornerSize = rows() - k - m_shift;
- if(m_trans)
- dst.bottomRightCorner(cornerSize, cornerSize)
- .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0));
- else
- dst.bottomRightCorner(cornerSize, cornerSize)
- .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0));
- }
- }
- }
-
- /** \internal */
- template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const
- {
- Matrix<Scalar,1,Dest::RowsAtCompileTime,RowMajor,1,Dest::MaxRowsAtCompileTime> workspace(dst.rows());
- applyThisOnTheRight(dst, workspace);
- }
-
- /** \internal */
- template<typename Dest, typename Workspace>
- inline void applyThisOnTheRight(Dest& dst, Workspace& workspace) const
- {
- workspace.resize(dst.rows());
- for(Index k = 0; k < m_length; ++k)
- {
- Index actual_k = m_trans ? m_length-k-1 : k;
- dst.rightCols(rows()-m_shift-actual_k)
- .applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
- }
- }
-
- /** \internal */
- template<typename Dest> inline void applyThisOnTheLeft(Dest& dst) const
- {
- Matrix<Scalar,1,Dest::ColsAtCompileTime,RowMajor,1,Dest::MaxColsAtCompileTime> workspace(dst.cols());
- applyThisOnTheLeft(dst, workspace);
- }
-
- /** \internal */
- template<typename Dest, typename Workspace>
- inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace) const
- {
- workspace.resize(dst.cols());
- for(Index k = 0; k < m_length; ++k)
- {
- Index actual_k = m_trans ? k : m_length-k-1;
- dst.bottomRows(rows()-m_shift-actual_k)
- .applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
- }
- }
-
- /** \brief Computes the product of a Householder sequence with a matrix.
- * \param[in] other %Matrix being multiplied.
- * \returns Expression object representing the product.
- *
- * This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this
- * and \f$ M \f$ is the matrix \p other.
- */
- template<typename OtherDerived>
- typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other) const
- {
- typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type
- res(other.template cast<typename internal::matrix_type_times_scalar_type<Scalar,OtherDerived>::ResultScalar>());
- applyThisOnTheLeft(res);
- return res;
- }
-
- template<typename _VectorsType, typename _CoeffsType, int _Side> friend struct internal::hseq_side_dependent_impl;
-
- /** \brief Sets the length of the Householder sequence.
- * \param [in] length New value for the length.
- *
- * By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set
- * to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that
- * is smaller. After this function is called, the length equals \p length.
- *
- * \sa length()
- */
- HouseholderSequence& setLength(Index length)
- {
- m_length = length;
- return *this;
- }
-
- /** \brief Sets the shift of the Householder sequence.
- * \param [in] shift New value for the shift.
- *
- * By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th
- * column of the matrix \p v passed to the constructor corresponds to the i-th Householder
- * reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}}
- * H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th
- * Householder reflection.
- *
- * \sa shift()
- */
- HouseholderSequence& setShift(Index shift)
- {
- m_shift = shift;
- return *this;
- }
-
- Index length() const { return m_length; } /**< \brief Returns the length of the Householder sequence. */
- Index shift() const { return m_shift; } /**< \brief Returns the shift of the Householder sequence. */
-
- /* Necessary for .adjoint() and .conjugate() */
- template <typename VectorsType2, typename CoeffsType2, int Side2> friend class HouseholderSequence;
-
- protected:
-
- /** \brief Sets the transpose flag.
- * \param [in] trans New value of the transpose flag.
- *
- * By default, the transpose flag is not set. If the transpose flag is set, then this object represents
- * \f$ H^T = H_{n-1}^T \ldots H_1^T H_0^T \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$.
- *
- * \sa trans()
- */
- HouseholderSequence& setTrans(bool trans)
- {
- m_trans = trans;
- return *this;
- }
-
- bool trans() const { return m_trans; } /**< \brief Returns the transpose flag. */
-
- typename VectorsType::Nested m_vectors;
- typename CoeffsType::Nested m_coeffs;
- bool m_trans;
- Index m_length;
- Index m_shift;
-};
-
-/** \brief Computes the product of a matrix with a Householder sequence.
- * \param[in] other %Matrix being multiplied.
- * \param[in] h %HouseholderSequence being multiplied.
- * \returns Expression object representing the product.
- *
- * This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the
- * Householder sequence represented by \p h.
- */
-template<typename OtherDerived, typename VectorsType, typename CoeffsType, int Side>
-typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other, const HouseholderSequence<VectorsType,CoeffsType,Side>& h)
-{
- typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type
- res(other.template cast<typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::ResultScalar>());
- h.applyThisOnTheRight(res);
- return res;
-}
-
-/** \ingroup Householder_Module \householder_module
- * \brief Convenience function for constructing a Householder sequence.
- * \returns A HouseholderSequence constructed from the specified arguments.
- */
-template<typename VectorsType, typename CoeffsType>
-HouseholderSequence<VectorsType,CoeffsType> householderSequence(const VectorsType& v, const CoeffsType& h)
-{
- return HouseholderSequence<VectorsType,CoeffsType,OnTheLeft>(v, h);
-}
-
-/** \ingroup Householder_Module \householder_module
- * \brief Convenience function for constructing a Householder sequence.
- * \returns A HouseholderSequence constructed from the specified arguments.
- * \details This function differs from householderSequence() in that the template argument \p OnTheSide of
- * the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft.
- */
-template<typename VectorsType, typename CoeffsType>
-HouseholderSequence<VectorsType,CoeffsType,OnTheRight> rightHouseholderSequence(const VectorsType& v, const CoeffsType& h)
-{
- return HouseholderSequence<VectorsType,CoeffsType,OnTheRight>(v, h);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_HOUSEHOLDER_SEQUENCE_H
diff --git a/src/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h b/src/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
deleted file mode 100644
index 73ca9bf..0000000
--- a/src/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
+++ /dev/null
@@ -1,149 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_BASIC_PRECONDITIONERS_H
-#define EIGEN_BASIC_PRECONDITIONERS_H
-
-namespace Eigen {
-
-/** \ingroup IterativeLinearSolvers_Module
- * \brief A preconditioner based on the digonal entries
- *
- * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix.
- * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
- * \code
- * A.diagonal().asDiagonal() . x = b
- * \endcode
- *
- * \tparam _Scalar the type of the scalar.
- *
- * This preconditioner is suitable for both selfadjoint and general problems.
- * The diagonal entries are pre-inverted and stored into a dense vector.
- *
- * \note A variant that has yet to be implemented would attempt to preserve the norm of each column.
- *
- */
-template <typename _Scalar>
-class DiagonalPreconditioner
-{
- typedef _Scalar Scalar;
- typedef Matrix<Scalar,Dynamic,1> Vector;
- typedef typename Vector::Index Index;
-
- public:
- // this typedef is only to export the scalar type and compile-time dimensions to solve_retval
- typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
-
- DiagonalPreconditioner() : m_isInitialized(false) {}
-
- template<typename MatType>
- DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols())
- {
- compute(mat);
- }
-
- Index rows() const { return m_invdiag.size(); }
- Index cols() const { return m_invdiag.size(); }
-
- template<typename MatType>
- DiagonalPreconditioner& analyzePattern(const MatType& )
- {
- return *this;
- }
-
- template<typename MatType>
- DiagonalPreconditioner& factorize(const MatType& mat)
- {
- m_invdiag.resize(mat.cols());
- for(int j=0; j<mat.outerSize(); ++j)
- {
- typename MatType::InnerIterator it(mat,j);
- while(it && it.index()!=j) ++it;
- if(it && it.index()==j)
- m_invdiag(j) = Scalar(1)/it.value();
- else
- m_invdiag(j) = 0;
- }
- m_isInitialized = true;
- return *this;
- }
-
- template<typename MatType>
- DiagonalPreconditioner& compute(const MatType& mat)
- {
- return factorize(mat);
- }
-
- template<typename Rhs, typename Dest>
- void _solve(const Rhs& b, Dest& x) const
- {
- x = m_invdiag.array() * b.array() ;
- }
-
- template<typename Rhs> inline const internal::solve_retval<DiagonalPreconditioner, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized.");
- eigen_assert(m_invdiag.size()==b.rows()
- && "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<DiagonalPreconditioner, Rhs>(*this, b.derived());
- }
-
- protected:
- Vector m_invdiag;
- bool m_isInitialized;
-};
-
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<DiagonalPreconditioner<_MatrixType>, Rhs>
- : solve_retval_base<DiagonalPreconditioner<_MatrixType>, Rhs>
-{
- typedef DiagonalPreconditioner<_MatrixType> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-}
-
-/** \ingroup IterativeLinearSolvers_Module
- * \brief A naive preconditioner which approximates any matrix as the identity matrix
- *
- * \sa class DiagonalPreconditioner
- */
-class IdentityPreconditioner
-{
- public:
-
- IdentityPreconditioner() {}
-
- template<typename MatrixType>
- IdentityPreconditioner(const MatrixType& ) {}
-
- template<typename MatrixType>
- IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; }
-
- template<typename MatrixType>
- IdentityPreconditioner& factorize(const MatrixType& ) { return *this; }
-
- template<typename MatrixType>
- IdentityPreconditioner& compute(const MatrixType& ) { return *this; }
-
- template<typename Rhs>
- inline const Rhs& solve(const Rhs& b) const { return b; }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_BASIC_PRECONDITIONERS_H
diff --git a/src/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h b/src/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
deleted file mode 100644
index 2b9fb7f..0000000
--- a/src/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
+++ /dev/null
@@ -1,276 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_BICGSTAB_H
-#define EIGEN_BICGSTAB_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal Low-level bi conjugate gradient stabilized algorithm
- * \param mat The matrix A
- * \param rhs The right hand side vector b
- * \param x On input and initial solution, on output the computed solution.
- * \param precond A preconditioner being able to efficiently solve for an
- * approximation of Ax=b (regardless of b)
- * \param iters On input the max number of iteration, on output the number of performed iterations.
- * \param tol_error On input the tolerance error, on output an estimation of the relative error.
- * \return false in the case of numerical issue, for example a break down of BiCGSTAB.
- */
-template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
-bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
- const Preconditioner& precond, int& iters,
- typename Dest::RealScalar& tol_error)
-{
- using std::sqrt;
- using std::abs;
- typedef typename Dest::RealScalar RealScalar;
- typedef typename Dest::Scalar Scalar;
- typedef Matrix<Scalar,Dynamic,1> VectorType;
- RealScalar tol = tol_error;
- int maxIters = iters;
-
- int n = mat.cols();
- x = precond.solve(x);
- VectorType r = rhs - mat * x;
- VectorType r0 = r;
-
- RealScalar r0_sqnorm = r0.squaredNorm();
- RealScalar rhs_sqnorm = rhs.squaredNorm();
- if(rhs_sqnorm == 0)
- {
- x.setZero();
- return true;
- }
- Scalar rho = 1;
- Scalar alpha = 1;
- Scalar w = 1;
-
- VectorType v = VectorType::Zero(n), p = VectorType::Zero(n);
- VectorType y(n), z(n);
- VectorType kt(n), ks(n);
-
- VectorType s(n), t(n);
-
- RealScalar tol2 = tol*tol;
- RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon();
- int i = 0;
- int restarts = 0;
-
- while ( r.squaredNorm()/rhs_sqnorm > tol2 && i<maxIters )
- {
- Scalar rho_old = rho;
-
- rho = r0.dot(r);
- if (abs(rho) < eps2*r0_sqnorm)
- {
- // The new residual vector became too orthogonal to the arbitrarily choosen direction r0
- // Let's restart with a new r0:
- r0 = r;
- rho = r0_sqnorm = r.squaredNorm();
- if(restarts++ == 0)
- i = 0;
- }
- Scalar beta = (rho/rho_old) * (alpha / w);
- p = r + beta * (p - w * v);
-
- y = precond.solve(p);
-
- v.noalias() = mat * y;
-
- alpha = rho / r0.dot(v);
- s = r - alpha * v;
-
- z = precond.solve(s);
- t.noalias() = mat * z;
-
- RealScalar tmp = t.squaredNorm();
- if(tmp>RealScalar(0))
- w = t.dot(s) / tmp;
- else
- w = Scalar(0);
- x += alpha * y + w * z;
- r = s - w * t;
- ++i;
- }
- tol_error = sqrt(r.squaredNorm()/rhs_sqnorm);
- iters = i;
- return true;
-}
-
-}
-
-template< typename _MatrixType,
- typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
-class BiCGSTAB;
-
-namespace internal {
-
-template< typename _MatrixType, typename _Preconditioner>
-struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
-{
- typedef _MatrixType MatrixType;
- typedef _Preconditioner Preconditioner;
-};
-
-}
-
-/** \ingroup IterativeLinearSolvers_Module
- * \brief A bi conjugate gradient stabilized solver for sparse square problems
- *
- * This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient
- * stabilized algorithm. The vectors x and b can be either dense or sparse.
- *
- * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
- * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
- *
- * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
- * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
- * and NumTraits<Scalar>::epsilon() for the tolerance.
- *
- * This class can be used as the direct solver classes. Here is a typical usage example:
- * \code
- * int n = 10000;
- * VectorXd x(n), b(n);
- * SparseMatrix<double> A(n,n);
- * // fill A and b
- * BiCGSTAB<SparseMatrix<double> > solver;
- * solver(A);
- * x = solver.solve(b);
- * std::cout << "#iterations: " << solver.iterations() << std::endl;
- * std::cout << "estimated error: " << solver.error() << std::endl;
- * // update b, and solve again
- * x = solver.solve(b);
- * \endcode
- *
- * By default the iterations start with x=0 as an initial guess of the solution.
- * One can control the start using the solveWithGuess() method. Here is a step by
- * step execution example starting with a random guess and printing the evolution
- * of the estimated error:
- * * \code
- * x = VectorXd::Random(n);
- * solver.setMaxIterations(1);
- * int i = 0;
- * do {
- * x = solver.solveWithGuess(b,x);
- * std::cout << i << " : " << solver.error() << std::endl;
- * ++i;
- * } while (solver.info()!=Success && i<100);
- * \endcode
- * Note that such a step by step excution is slightly slower.
- *
- * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
- */
-template< typename _MatrixType, typename _Preconditioner>
-class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
-{
- typedef IterativeSolverBase<BiCGSTAB> Base;
- using Base::mp_matrix;
- using Base::m_error;
- using Base::m_iterations;
- using Base::m_info;
- using Base::m_isInitialized;
-public:
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef _Preconditioner Preconditioner;
-
-public:
-
- /** Default constructor. */
- BiCGSTAB() : Base() {}
-
- /** Initialize the solver with matrix \a A for further \c Ax=b solving.
- *
- * This constructor is a shortcut for the default constructor followed
- * by a call to compute().
- *
- * \warning this class stores a reference to the matrix A as well as some
- * precomputed values that depend on it. Therefore, if \a A is changed
- * this class becomes invalid. Call compute() to update it with the new
- * matrix A, or modify a copy of A.
- */
- BiCGSTAB(const MatrixType& A) : Base(A) {}
-
- ~BiCGSTAB() {}
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
- * \a x0 as an initial solution.
- *
- * \sa compute()
- */
- template<typename Rhs,typename Guess>
- inline const internal::solve_retval_with_guess<BiCGSTAB, Rhs, Guess>
- solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
- {
- eigen_assert(m_isInitialized && "BiCGSTAB is not initialized.");
- eigen_assert(Base::rows()==b.rows()
- && "BiCGSTAB::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval_with_guess
- <BiCGSTAB, Rhs, Guess>(*this, b.derived(), x0);
- }
-
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solveWithGuess(const Rhs& b, Dest& x) const
- {
- bool failed = false;
- for(int j=0; j<b.cols(); ++j)
- {
- m_iterations = Base::maxIterations();
- m_error = Base::m_tolerance;
-
- typename Dest::ColXpr xj(x,j);
- if(!internal::bicgstab(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
- failed = true;
- }
- m_info = failed ? NumericalIssue
- : m_error <= Base::m_tolerance ? Success
- : NoConvergence;
- m_isInitialized = true;
- }
-
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve(const Rhs& b, Dest& x) const
- {
-// x.setZero();
- x = b;
- _solveWithGuess(b,x);
- }
-
-protected:
-
-};
-
-
-namespace internal {
-
- template<typename _MatrixType, typename _Preconditioner, typename Rhs>
-struct solve_retval<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
- : solve_retval_base<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
-{
- typedef BiCGSTAB<_MatrixType, _Preconditioner> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_BICGSTAB_H
diff --git a/src/Eigen/src/IterativeLinearSolvers/CMakeLists.txt b/src/Eigen/src/IterativeLinearSolvers/CMakeLists.txt
deleted file mode 100644
index 59ccc00..0000000
--- a/src/Eigen/src/IterativeLinearSolvers/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_IterativeLinearSolvers_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_IterativeLinearSolvers_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/IterativeLinearSolvers COMPONENT Devel
- )
diff --git a/src/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h b/src/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h
deleted file mode 100644
index a74a815..0000000
--- a/src/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h
+++ /dev/null
@@ -1,265 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CONJUGATE_GRADIENT_H
-#define EIGEN_CONJUGATE_GRADIENT_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal Low-level conjugate gradient algorithm
- * \param mat The matrix A
- * \param rhs The right hand side vector b
- * \param x On input and initial solution, on output the computed solution.
- * \param precond A preconditioner being able to efficiently solve for an
- * approximation of Ax=b (regardless of b)
- * \param iters On input the max number of iteration, on output the number of performed iterations.
- * \param tol_error On input the tolerance error, on output an estimation of the relative error.
- */
-template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
-EIGEN_DONT_INLINE
-void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
- const Preconditioner& precond, int& iters,
- typename Dest::RealScalar& tol_error)
-{
- using std::sqrt;
- using std::abs;
- typedef typename Dest::RealScalar RealScalar;
- typedef typename Dest::Scalar Scalar;
- typedef Matrix<Scalar,Dynamic,1> VectorType;
-
- RealScalar tol = tol_error;
- int maxIters = iters;
-
- int n = mat.cols();
-
- VectorType residual = rhs - mat * x; //initial residual
-
- RealScalar rhsNorm2 = rhs.squaredNorm();
- if(rhsNorm2 == 0)
- {
- x.setZero();
- iters = 0;
- tol_error = 0;
- return;
- }
- RealScalar threshold = tol*tol*rhsNorm2;
- RealScalar residualNorm2 = residual.squaredNorm();
- if (residualNorm2 < threshold)
- {
- iters = 0;
- tol_error = sqrt(residualNorm2 / rhsNorm2);
- return;
- }
-
- VectorType p(n);
- p = precond.solve(residual); //initial search direction
-
- VectorType z(n), tmp(n);
- RealScalar absNew = numext::real(residual.dot(p)); // the square of the absolute value of r scaled by invM
- int i = 0;
- while(i < maxIters)
- {
- tmp.noalias() = mat * p; // the bottleneck of the algorithm
-
- Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
- x += alpha * p; // update solution
- residual -= alpha * tmp; // update residue
-
- residualNorm2 = residual.squaredNorm();
- if(residualNorm2 < threshold)
- break;
-
- z = precond.solve(residual); // approximately solve for "A z = residual"
-
- RealScalar absOld = absNew;
- absNew = numext::real(residual.dot(z)); // update the absolute value of r
- RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
- p = z + beta * p; // update search direction
- i++;
- }
- tol_error = sqrt(residualNorm2 / rhsNorm2);
- iters = i;
-}
-
-}
-
-template< typename _MatrixType, int _UpLo=Lower,
- typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
-class ConjugateGradient;
-
-namespace internal {
-
-template< typename _MatrixType, int _UpLo, typename _Preconditioner>
-struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
-{
- typedef _MatrixType MatrixType;
- typedef _Preconditioner Preconditioner;
-};
-
-}
-
-/** \ingroup IterativeLinearSolvers_Module
- * \brief A conjugate gradient solver for sparse self-adjoint problems
- *
- * This class allows to solve for A.x = b sparse linear problems using a conjugate gradient algorithm.
- * The sparse matrix A must be selfadjoint. The vectors x and b can be either dense or sparse.
- *
- * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
- * or Upper. Default is Lower.
- * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
- *
- * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
- * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
- * and NumTraits<Scalar>::epsilon() for the tolerance.
- *
- * This class can be used as the direct solver classes. Here is a typical usage example:
- * \code
- * int n = 10000;
- * VectorXd x(n), b(n);
- * SparseMatrix<double> A(n,n);
- * // fill A and b
- * ConjugateGradient<SparseMatrix<double> > cg;
- * cg.compute(A);
- * x = cg.solve(b);
- * std::cout << "#iterations: " << cg.iterations() << std::endl;
- * std::cout << "estimated error: " << cg.error() << std::endl;
- * // update b, and solve again
- * x = cg.solve(b);
- * \endcode
- *
- * By default the iterations start with x=0 as an initial guess of the solution.
- * One can control the start using the solveWithGuess() method. Here is a step by
- * step execution example starting with a random guess and printing the evolution
- * of the estimated error:
- * * \code
- * x = VectorXd::Random(n);
- * cg.setMaxIterations(1);
- * int i = 0;
- * do {
- * x = cg.solveWithGuess(b,x);
- * std::cout << i << " : " << cg.error() << std::endl;
- * ++i;
- * } while (cg.info()!=Success && i<100);
- * \endcode
- * Note that such a step by step excution is slightly slower.
- *
- * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
- */
-template< typename _MatrixType, int _UpLo, typename _Preconditioner>
-class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
-{
- typedef IterativeSolverBase<ConjugateGradient> Base;
- using Base::mp_matrix;
- using Base::m_error;
- using Base::m_iterations;
- using Base::m_info;
- using Base::m_isInitialized;
-public:
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef _Preconditioner Preconditioner;
-
- enum {
- UpLo = _UpLo
- };
-
-public:
-
- /** Default constructor. */
- ConjugateGradient() : Base() {}
-
- /** Initialize the solver with matrix \a A for further \c Ax=b solving.
- *
- * This constructor is a shortcut for the default constructor followed
- * by a call to compute().
- *
- * \warning this class stores a reference to the matrix A as well as some
- * precomputed values that depend on it. Therefore, if \a A is changed
- * this class becomes invalid. Call compute() to update it with the new
- * matrix A, or modify a copy of A.
- */
- ConjugateGradient(const MatrixType& A) : Base(A) {}
-
- ~ConjugateGradient() {}
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
- * \a x0 as an initial solution.
- *
- * \sa compute()
- */
- template<typename Rhs,typename Guess>
- inline const internal::solve_retval_with_guess<ConjugateGradient, Rhs, Guess>
- solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
- {
- eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
- eigen_assert(Base::rows()==b.rows()
- && "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval_with_guess
- <ConjugateGradient, Rhs, Guess>(*this, b.derived(), x0);
- }
-
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solveWithGuess(const Rhs& b, Dest& x) const
- {
- m_iterations = Base::maxIterations();
- m_error = Base::m_tolerance;
-
- for(int j=0; j<b.cols(); ++j)
- {
- m_iterations = Base::maxIterations();
- m_error = Base::m_tolerance;
-
- typename Dest::ColXpr xj(x,j);
- internal::conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(), b.col(j), xj,
- Base::m_preconditioner, m_iterations, m_error);
- }
-
- m_isInitialized = true;
- m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
- }
-
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve(const Rhs& b, Dest& x) const
- {
- x.setOnes();
- _solveWithGuess(b,x);
- }
-
-protected:
-
-};
-
-
-namespace internal {
-
-template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs>
-struct solve_retval<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
- : solve_retval_base<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
-{
- typedef ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_CONJUGATE_GRADIENT_H
diff --git a/src/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h b/src/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
deleted file mode 100644
index b55afc1..0000000
--- a/src/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
+++ /dev/null
@@ -1,467 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_INCOMPLETE_LUT_H
-#define EIGEN_INCOMPLETE_LUT_H
-
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal
- * Compute a quick-sort split of a vector
- * On output, the vector row is permuted such that its elements satisfy
- * abs(row(i)) >= abs(row(ncut)) if i<ncut
- * abs(row(i)) <= abs(row(ncut)) if i>ncut
- * \param row The vector of values
- * \param ind The array of index for the elements in @p row
- * \param ncut The number of largest elements to keep
- **/
-template <typename VectorV, typename VectorI, typename Index>
-Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
-{
- typedef typename VectorV::RealScalar RealScalar;
- using std::swap;
- using std::abs;
- Index mid;
- Index n = row.size(); /* length of the vector */
- Index first, last ;
-
- ncut--; /* to fit the zero-based indices */
- first = 0;
- last = n-1;
- if (ncut < first || ncut > last ) return 0;
-
- do {
- mid = first;
- RealScalar abskey = abs(row(mid));
- for (Index j = first + 1; j <= last; j++) {
- if ( abs(row(j)) > abskey) {
- ++mid;
- swap(row(mid), row(j));
- swap(ind(mid), ind(j));
- }
- }
- /* Interchange for the pivot element */
- swap(row(mid), row(first));
- swap(ind(mid), ind(first));
-
- if (mid > ncut) last = mid - 1;
- else if (mid < ncut ) first = mid + 1;
- } while (mid != ncut );
-
- return 0; /* mid is equal to ncut */
-}
-
-}// end namespace internal
-
-/** \ingroup IterativeLinearSolvers_Module
- * \class IncompleteLUT
- * \brief Incomplete LU factorization with dual-threshold strategy
- *
- * During the numerical factorization, two dropping rules are used :
- * 1) any element whose magnitude is less than some tolerance is dropped.
- * This tolerance is obtained by multiplying the input tolerance @p droptol
- * by the average magnitude of all the original elements in the current row.
- * 2) After the elimination of the row, only the @p fill largest elements in
- * the L part and the @p fill largest elements in the U part are kept
- * (in addition to the diagonal element ). Note that @p fill is computed from
- * the input parameter @p fillfactor which is used the ratio to control the fill_in
- * relatively to the initial number of nonzero elements.
- *
- * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
- * and when @p fill=n/2 with @p droptol being different to zero.
- *
- * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
- * Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
- *
- * NOTE : The following implementation is derived from the ILUT implementation
- * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
- * released under the terms of the GNU LGPL:
- * http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
- * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
- * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
- * http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
- * alternatively, on GMANE:
- * http://comments.gmane.org/gmane.comp.lib.eigen/3302
- */
-template <typename _Scalar>
-class IncompleteLUT : internal::noncopyable
-{
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar,Dynamic,1> Vector;
- typedef SparseMatrix<Scalar,RowMajor> FactorType;
- typedef SparseMatrix<Scalar,ColMajor> PermutType;
- typedef typename FactorType::Index Index;
-
- public:
- typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
-
- IncompleteLUT()
- : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
- m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
- {}
-
- template<typename MatrixType>
- IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
- : m_droptol(droptol),m_fillfactor(fillfactor),
- m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
- {
- eigen_assert(fillfactor != 0);
- compute(mat);
- }
-
- Index rows() const { return m_lu.rows(); }
-
- Index cols() const { return m_lu.cols(); }
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful,
- * \c NumericalIssue if the matrix.appears to be negative.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
- return m_info;
- }
-
- template<typename MatrixType>
- void analyzePattern(const MatrixType& amat);
-
- template<typename MatrixType>
- void factorize(const MatrixType& amat);
-
- /**
- * Compute an incomplete LU factorization with dual threshold on the matrix mat
- * No pivoting is done in this version
- *
- **/
- template<typename MatrixType>
- IncompleteLUT<Scalar>& compute(const MatrixType& amat)
- {
- analyzePattern(amat);
- factorize(amat);
- m_isInitialized = m_factorizationIsOk;
- return *this;
- }
-
- void setDroptol(const RealScalar& droptol);
- void setFillfactor(int fillfactor);
-
- template<typename Rhs, typename Dest>
- void _solve(const Rhs& b, Dest& x) const
- {
- x = m_Pinv * b;
- x = m_lu.template triangularView<UnitLower>().solve(x);
- x = m_lu.template triangularView<Upper>().solve(x);
- x = m_P * x;
- }
-
- template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
- eigen_assert(cols()==b.rows()
- && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
- }
-
-protected:
-
- /** keeps off-diagonal entries; drops diagonal entries */
- struct keep_diag {
- inline bool operator() (const Index& row, const Index& col, const Scalar&) const
- {
- return row!=col;
- }
- };
-
-protected:
-
- FactorType m_lu;
- RealScalar m_droptol;
- int m_fillfactor;
- bool m_analysisIsOk;
- bool m_factorizationIsOk;
- bool m_isInitialized;
- ComputationInfo m_info;
- PermutationMatrix<Dynamic,Dynamic,Index> m_P; // Fill-reducing permutation
- PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // Inverse permutation
-};
-
-/**
- * Set control parameter droptol
- * \param droptol Drop any element whose magnitude is less than this tolerance
- **/
-template<typename Scalar>
-void IncompleteLUT<Scalar>::setDroptol(const RealScalar& droptol)
-{
- this->m_droptol = droptol;
-}
-
-/**
- * Set control parameter fillfactor
- * \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row.
- **/
-template<typename Scalar>
-void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
-{
- this->m_fillfactor = fillfactor;
-}
-
-template <typename Scalar>
-template<typename _MatrixType>
-void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
-{
- // Compute the Fill-reducing permutation
- SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
- SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
- // Symmetrize the pattern
- // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
- // on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
- SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
- AtA.prune(keep_diag());
- internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); // Then compute the AMD ordering...
-
- m_Pinv = m_P.inverse(); // ... and the inverse permutation
-
- m_analysisIsOk = true;
-}
-
-template <typename Scalar>
-template<typename _MatrixType>
-void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
-{
- using std::sqrt;
- using std::swap;
- using std::abs;
-
- eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
- Index n = amat.cols(); // Size of the matrix
- m_lu.resize(n,n);
- // Declare Working vectors and variables
- Vector u(n) ; // real values of the row -- maximum size is n --
- VectorXi ju(n); // column position of the values in u -- maximum size is n
- VectorXi jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
-
- // Apply the fill-reducing permutation
- eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
- SparseMatrix<Scalar,RowMajor, Index> mat;
- mat = amat.twistedBy(m_Pinv);
-
- // Initialization
- jr.fill(-1);
- ju.fill(0);
- u.fill(0);
-
- // number of largest elements to keep in each row:
- Index fill_in = static_cast<Index> (amat.nonZeros()*m_fillfactor)/n+1;
- if (fill_in > n) fill_in = n;
-
- // number of largest nonzero elements to keep in the L and the U part of the current row:
- Index nnzL = fill_in/2;
- Index nnzU = nnzL;
- m_lu.reserve(n * (nnzL + nnzU + 1));
-
- // global loop over the rows of the sparse matrix
- for (Index ii = 0; ii < n; ii++)
- {
- // 1 - copy the lower and the upper part of the row i of mat in the working vector u
-
- Index sizeu = 1; // number of nonzero elements in the upper part of the current row
- Index sizel = 0; // number of nonzero elements in the lower part of the current row
- ju(ii) = ii;
- u(ii) = 0;
- jr(ii) = ii;
- RealScalar rownorm = 0;
-
- typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
- for (; j_it; ++j_it)
- {
- Index k = j_it.index();
- if (k < ii)
- {
- // copy the lower part
- ju(sizel) = k;
- u(sizel) = j_it.value();
- jr(k) = sizel;
- ++sizel;
- }
- else if (k == ii)
- {
- u(ii) = j_it.value();
- }
- else
- {
- // copy the upper part
- Index jpos = ii + sizeu;
- ju(jpos) = k;
- u(jpos) = j_it.value();
- jr(k) = jpos;
- ++sizeu;
- }
- rownorm += numext::abs2(j_it.value());
- }
-
- // 2 - detect possible zero row
- if(rownorm==0)
- {
- m_info = NumericalIssue;
- return;
- }
- // Take the 2-norm of the current row as a relative tolerance
- rownorm = sqrt(rownorm);
-
- // 3 - eliminate the previous nonzero rows
- Index jj = 0;
- Index len = 0;
- while (jj < sizel)
- {
- // In order to eliminate in the correct order,
- // we must select first the smallest column index among ju(jj:sizel)
- Index k;
- Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
- k += jj;
- if (minrow != ju(jj))
- {
- // swap the two locations
- Index j = ju(jj);
- swap(ju(jj), ju(k));
- jr(minrow) = jj; jr(j) = k;
- swap(u(jj), u(k));
- }
- // Reset this location
- jr(minrow) = -1;
-
- // Start elimination
- typename FactorType::InnerIterator ki_it(m_lu, minrow);
- while (ki_it && ki_it.index() < minrow) ++ki_it;
- eigen_internal_assert(ki_it && ki_it.col()==minrow);
- Scalar fact = u(jj) / ki_it.value();
-
- // drop too small elements
- if(abs(fact) <= m_droptol)
- {
- jj++;
- continue;
- }
-
- // linear combination of the current row ii and the row minrow
- ++ki_it;
- for (; ki_it; ++ki_it)
- {
- Scalar prod = fact * ki_it.value();
- Index j = ki_it.index();
- Index jpos = jr(j);
- if (jpos == -1) // fill-in element
- {
- Index newpos;
- if (j >= ii) // dealing with the upper part
- {
- newpos = ii + sizeu;
- sizeu++;
- eigen_internal_assert(sizeu<=n);
- }
- else // dealing with the lower part
- {
- newpos = sizel;
- sizel++;
- eigen_internal_assert(sizel<=ii);
- }
- ju(newpos) = j;
- u(newpos) = -prod;
- jr(j) = newpos;
- }
- else
- u(jpos) -= prod;
- }
- // store the pivot element
- u(len) = fact;
- ju(len) = minrow;
- ++len;
-
- jj++;
- } // end of the elimination on the row ii
-
- // reset the upper part of the pointer jr to zero
- for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
-
- // 4 - partially sort and insert the elements in the m_lu matrix
-
- // sort the L-part of the row
- sizel = len;
- len = (std::min)(sizel, nnzL);
- typename Vector::SegmentReturnType ul(u.segment(0, sizel));
- typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
- internal::QuickSplit(ul, jul, len);
-
- // store the largest m_fill elements of the L part
- m_lu.startVec(ii);
- for(Index k = 0; k < len; k++)
- m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
-
- // store the diagonal element
- // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
- if (u(ii) == Scalar(0))
- u(ii) = sqrt(m_droptol) * rownorm;
- m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
-
- // sort the U-part of the row
- // apply the dropping rule first
- len = 0;
- for(Index k = 1; k < sizeu; k++)
- {
- if(abs(u(ii+k)) > m_droptol * rownorm )
- {
- ++len;
- u(ii + len) = u(ii + k);
- ju(ii + len) = ju(ii + k);
- }
- }
- sizeu = len + 1; // +1 to take into account the diagonal element
- len = (std::min)(sizeu, nnzU);
- typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
- typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
- internal::QuickSplit(uu, juu, len);
-
- // store the largest elements of the U part
- for(Index k = ii + 1; k < ii + len; k++)
- m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
- }
-
- m_lu.finalize();
- m_lu.makeCompressed();
-
- m_factorizationIsOk = true;
- m_info = Success;
-}
-
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
- : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
-{
- typedef IncompleteLUT<_MatrixType> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_INCOMPLETE_LUT_H
diff --git a/src/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h b/src/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h
deleted file mode 100644
index 2036922..0000000
--- a/src/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h
+++ /dev/null
@@ -1,254 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ITERATIVE_SOLVER_BASE_H
-#define EIGEN_ITERATIVE_SOLVER_BASE_H
-
-namespace Eigen {
-
-/** \ingroup IterativeLinearSolvers_Module
- * \brief Base class for linear iterative solvers
- *
- * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
- */
-template< typename Derived>
-class IterativeSolverBase : internal::noncopyable
-{
-public:
- typedef typename internal::traits<Derived>::MatrixType MatrixType;
- typedef typename internal::traits<Derived>::Preconditioner Preconditioner;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::RealScalar RealScalar;
-
-public:
-
- Derived& derived() { return *static_cast<Derived*>(this); }
- const Derived& derived() const { return *static_cast<const Derived*>(this); }
-
- /** Default constructor. */
- IterativeSolverBase()
- : mp_matrix(0)
- {
- init();
- }
-
- /** Initialize the solver with matrix \a A for further \c Ax=b solving.
- *
- * This constructor is a shortcut for the default constructor followed
- * by a call to compute().
- *
- * \warning this class stores a reference to the matrix A as well as some
- * precomputed values that depend on it. Therefore, if \a A is changed
- * this class becomes invalid. Call compute() to update it with the new
- * matrix A, or modify a copy of A.
- */
- IterativeSolverBase(const MatrixType& A)
- {
- init();
- compute(A);
- }
-
- ~IterativeSolverBase() {}
-
- /** Initializes the iterative solver for the sparcity pattern of the matrix \a A for further solving \c Ax=b problems.
- *
- * Currently, this function mostly call analyzePattern on the preconditioner. In the future
- * we might, for instance, implement column reodering for faster matrix vector products.
- */
- Derived& analyzePattern(const MatrixType& A)
- {
- m_preconditioner.analyzePattern(A);
- m_isInitialized = true;
- m_analysisIsOk = true;
- m_info = Success;
- return derived();
- }
-
- /** Initializes the iterative solver with the numerical values of the matrix \a A for further solving \c Ax=b problems.
- *
- * Currently, this function mostly call factorize on the preconditioner.
- *
- * \warning this class stores a reference to the matrix A as well as some
- * precomputed values that depend on it. Therefore, if \a A is changed
- * this class becomes invalid. Call compute() to update it with the new
- * matrix A, or modify a copy of A.
- */
- Derived& factorize(const MatrixType& A)
- {
- eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
- mp_matrix = &A;
- m_preconditioner.factorize(A);
- m_factorizationIsOk = true;
- m_info = Success;
- return derived();
- }
-
- /** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems.
- *
- * Currently, this function mostly initialized/compute the preconditioner. In the future
- * we might, for instance, implement column reodering for faster matrix vector products.
- *
- * \warning this class stores a reference to the matrix A as well as some
- * precomputed values that depend on it. Therefore, if \a A is changed
- * this class becomes invalid. Call compute() to update it with the new
- * matrix A, or modify a copy of A.
- */
- Derived& compute(const MatrixType& A)
- {
- mp_matrix = &A;
- m_preconditioner.compute(A);
- m_isInitialized = true;
- m_analysisIsOk = true;
- m_factorizationIsOk = true;
- m_info = Success;
- return derived();
- }
-
- /** \internal */
- Index rows() const { return mp_matrix ? mp_matrix->rows() : 0; }
- /** \internal */
- Index cols() const { return mp_matrix ? mp_matrix->cols() : 0; }
-
- /** \returns the tolerance threshold used by the stopping criteria */
- RealScalar tolerance() const { return m_tolerance; }
-
- /** Sets the tolerance threshold used by the stopping criteria */
- Derived& setTolerance(const RealScalar& tolerance)
- {
- m_tolerance = tolerance;
- return derived();
- }
-
- /** \returns a read-write reference to the preconditioner for custom configuration. */
- Preconditioner& preconditioner() { return m_preconditioner; }
-
- /** \returns a read-only reference to the preconditioner. */
- const Preconditioner& preconditioner() const { return m_preconditioner; }
-
- /** \returns the max number of iterations */
- int maxIterations() const
- {
- return (mp_matrix && m_maxIterations<0) ? mp_matrix->cols() : m_maxIterations;
- }
-
- /** Sets the max number of iterations */
- Derived& setMaxIterations(int maxIters)
- {
- m_maxIterations = maxIters;
- return derived();
- }
-
- /** \returns the number of iterations performed during the last solve */
- int iterations() const
- {
- eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
- return m_iterations;
- }
-
- /** \returns the tolerance error reached during the last solve */
- RealScalar error() const
- {
- eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
- return m_error;
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs> inline const internal::solve_retval<Derived, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
- eigen_assert(rows()==b.rows()
- && "IterativeSolverBase::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<Derived, Rhs>(derived(), b.derived());
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::sparse_solve_retval<IterativeSolverBase, Rhs>
- solve(const SparseMatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
- eigen_assert(rows()==b.rows()
- && "IterativeSolverBase::solve(): invalid number of rows of the right hand side matrix b");
- return internal::sparse_solve_retval<IterativeSolverBase, Rhs>(*this, b.derived());
- }
-
- /** \returns Success if the iterations converged, and NoConvergence otherwise. */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
- return m_info;
- }
-
- /** \internal */
- template<typename Rhs, typename DestScalar, int DestOptions, typename DestIndex>
- void _solve_sparse(const Rhs& b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
- {
- eigen_assert(rows()==b.rows());
-
- int rhsCols = b.cols();
- int size = b.rows();
- Eigen::Matrix<DestScalar,Dynamic,1> tb(size);
- Eigen::Matrix<DestScalar,Dynamic,1> tx(size);
- for(int k=0; k<rhsCols; ++k)
- {
- tb = b.col(k);
- tx = derived().solve(tb);
- dest.col(k) = tx.sparseView(0);
- }
- }
-
-protected:
- void init()
- {
- m_isInitialized = false;
- m_analysisIsOk = false;
- m_factorizationIsOk = false;
- m_maxIterations = -1;
- m_tolerance = NumTraits<Scalar>::epsilon();
- }
- const MatrixType* mp_matrix;
- Preconditioner m_preconditioner;
-
- int m_maxIterations;
- RealScalar m_tolerance;
-
- mutable RealScalar m_error;
- mutable int m_iterations;
- mutable ComputationInfo m_info;
- mutable bool m_isInitialized, m_analysisIsOk, m_factorizationIsOk;
-};
-
-namespace internal {
-
-template<typename Derived, typename Rhs>
-struct sparse_solve_retval<IterativeSolverBase<Derived>, Rhs>
- : sparse_solve_retval_base<IterativeSolverBase<Derived>, Rhs>
-{
- typedef IterativeSolverBase<Derived> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec().derived()._solve_sparse(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_ITERATIVE_SOLVER_BASE_H
diff --git a/src/Eigen/src/Jacobi/CMakeLists.txt b/src/Eigen/src/Jacobi/CMakeLists.txt
deleted file mode 100644
index 490dac6..0000000
--- a/src/Eigen/src/Jacobi/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_Jacobi_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Jacobi_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Jacobi COMPONENT Devel
- )
diff --git a/src/Eigen/src/Jacobi/Jacobi.h b/src/Eigen/src/Jacobi/Jacobi.h
deleted file mode 100644
index 956f72d..0000000
--- a/src/Eigen/src/Jacobi/Jacobi.h
+++ /dev/null
@@ -1,433 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_JACOBI_H
-#define EIGEN_JACOBI_H
-
-namespace Eigen {
-
-/** \ingroup Jacobi_Module
- * \jacobi_module
- * \class JacobiRotation
- * \brief Rotation given by a cosine-sine pair.
- *
- * This class represents a Jacobi or Givens rotation.
- * This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by
- * its cosine \c c and sine \c s as follow:
- * \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} \right ) \f$
- *
- * You can apply the respective counter-clockwise rotation to a column vector \c v by
- * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code:
- * \code
- * v.applyOnTheLeft(J.adjoint());
- * \endcode
- *
- * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
- */
-template<typename Scalar> class JacobiRotation
-{
- public:
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- /** Default constructor without any initialization. */
- JacobiRotation() {}
-
- /** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */
- JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {}
-
- Scalar& c() { return m_c; }
- Scalar c() const { return m_c; }
- Scalar& s() { return m_s; }
- Scalar s() const { return m_s; }
-
- /** Concatenates two planar rotation */
- JacobiRotation operator*(const JacobiRotation& other)
- {
- using numext::conj;
- return JacobiRotation(m_c * other.m_c - conj(m_s) * other.m_s,
- conj(m_c * conj(other.m_s) + conj(m_s) * conj(other.m_c)));
- }
-
- /** Returns the transposed transformation */
- JacobiRotation transpose() const { using numext::conj; return JacobiRotation(m_c, -conj(m_s)); }
-
- /** Returns the adjoint transformation */
- JacobiRotation adjoint() const { using numext::conj; return JacobiRotation(conj(m_c), -m_s); }
-
- template<typename Derived>
- bool makeJacobi(const MatrixBase<Derived>&, typename Derived::Index p, typename Derived::Index q);
- bool makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z);
-
- void makeGivens(const Scalar& p, const Scalar& q, Scalar* z=0);
-
- protected:
- void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::true_type);
- void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::false_type);
-
- Scalar m_c, m_s;
-};
-
-/** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix
- * \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$
- *
- * \sa MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
- */
-template<typename Scalar>
-bool JacobiRotation<Scalar>::makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z)
-{
- using std::sqrt;
- using std::abs;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- if(y == Scalar(0))
- {
- m_c = Scalar(1);
- m_s = Scalar(0);
- return false;
- }
- else
- {
- RealScalar tau = (x-z)/(RealScalar(2)*abs(y));
- RealScalar w = sqrt(numext::abs2(tau) + RealScalar(1));
- RealScalar t;
- if(tau>RealScalar(0))
- {
- t = RealScalar(1) / (tau + w);
- }
- else
- {
- t = RealScalar(1) / (tau - w);
- }
- RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
- RealScalar n = RealScalar(1) / sqrt(numext::abs2(t)+RealScalar(1));
- m_s = - sign_t * (numext::conj(y) / abs(y)) * abs(t) * n;
- m_c = n;
- return true;
- }
-}
-
-/** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix
- * \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields
- * a diagonal matrix \f$ A = J^* B J \f$
- *
- * Example: \include Jacobi_makeJacobi.cpp
- * Output: \verbinclude Jacobi_makeJacobi.out
- *
- * \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
- */
-template<typename Scalar>
-template<typename Derived>
-inline bool JacobiRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, typename Derived::Index p, typename Derived::Index q)
-{
- return makeJacobi(numext::real(m.coeff(p,p)), m.coeff(p,q), numext::real(m.coeff(q,q)));
-}
-
-/** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector
- * \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields:
- * \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$.
- *
- * The value of \a z is returned if \a z is not null (the default is null).
- * Also note that G is built such that the cosine is always real.
- *
- * Example: \include Jacobi_makeGivens.cpp
- * Output: \verbinclude Jacobi_makeGivens.out
- *
- * This function implements the continuous Givens rotation generation algorithm
- * found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem.
- * LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000.
- *
- * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
- */
-template<typename Scalar>
-void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* z)
-{
- makeGivens(p, q, z, typename internal::conditional<NumTraits<Scalar>::IsComplex, internal::true_type, internal::false_type>::type());
-}
-
-
-// specialization for complexes
-template<typename Scalar>
-void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type)
-{
- using std::sqrt;
- using std::abs;
- using numext::conj;
-
- if(q==Scalar(0))
- {
- m_c = numext::real(p)<0 ? Scalar(-1) : Scalar(1);
- m_s = 0;
- if(r) *r = m_c * p;
- }
- else if(p==Scalar(0))
- {
- m_c = 0;
- m_s = -q/abs(q);
- if(r) *r = abs(q);
- }
- else
- {
- RealScalar p1 = numext::norm1(p);
- RealScalar q1 = numext::norm1(q);
- if(p1>=q1)
- {
- Scalar ps = p / p1;
- RealScalar p2 = numext::abs2(ps);
- Scalar qs = q / p1;
- RealScalar q2 = numext::abs2(qs);
-
- RealScalar u = sqrt(RealScalar(1) + q2/p2);
- if(numext::real(p)<RealScalar(0))
- u = -u;
-
- m_c = Scalar(1)/u;
- m_s = -qs*conj(ps)*(m_c/p2);
- if(r) *r = p * u;
- }
- else
- {
- Scalar ps = p / q1;
- RealScalar p2 = numext::abs2(ps);
- Scalar qs = q / q1;
- RealScalar q2 = numext::abs2(qs);
-
- RealScalar u = q1 * sqrt(p2 + q2);
- if(numext::real(p)<RealScalar(0))
- u = -u;
-
- p1 = abs(p);
- ps = p/p1;
- m_c = p1/u;
- m_s = -conj(ps) * (q/u);
- if(r) *r = ps * u;
- }
- }
-}
-
-// specialization for reals
-template<typename Scalar>
-void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type)
-{
- using std::sqrt;
- using std::abs;
- if(q==Scalar(0))
- {
- m_c = p<Scalar(0) ? Scalar(-1) : Scalar(1);
- m_s = Scalar(0);
- if(r) *r = abs(p);
- }
- else if(p==Scalar(0))
- {
- m_c = Scalar(0);
- m_s = q<Scalar(0) ? Scalar(1) : Scalar(-1);
- if(r) *r = abs(q);
- }
- else if(abs(p) > abs(q))
- {
- Scalar t = q/p;
- Scalar u = sqrt(Scalar(1) + numext::abs2(t));
- if(p<Scalar(0))
- u = -u;
- m_c = Scalar(1)/u;
- m_s = -t * m_c;
- if(r) *r = p * u;
- }
- else
- {
- Scalar t = p/q;
- Scalar u = sqrt(Scalar(1) + numext::abs2(t));
- if(q<Scalar(0))
- u = -u;
- m_s = -Scalar(1)/u;
- m_c = -t * m_s;
- if(r) *r = q * u;
- }
-
-}
-
-/****************************************************************************************
-* Implementation of MatrixBase methods
-****************************************************************************************/
-
-/** \jacobi_module
- * Applies the clock wise 2D rotation \a j to the set of 2D vectors of cordinates \a x and \a y:
- * \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right ) = J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$
- *
- * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
- */
-namespace internal {
-template<typename VectorX, typename VectorY, typename OtherScalar>
-void apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j);
-}
-
-/** \jacobi_module
- * Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B,
- * with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$.
- *
- * \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane()
- */
-template<typename Derived>
-template<typename OtherScalar>
-inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j)
-{
- RowXpr x(this->row(p));
- RowXpr y(this->row(q));
- internal::apply_rotation_in_the_plane(x, y, j);
-}
-
-/** \ingroup Jacobi_Module
- * Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J
- * with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$.
- *
- * \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane()
- */
-template<typename Derived>
-template<typename OtherScalar>
-inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j)
-{
- ColXpr x(this->col(p));
- ColXpr y(this->col(q));
- internal::apply_rotation_in_the_plane(x, y, j.transpose());
-}
-
-namespace internal {
-template<typename VectorX, typename VectorY, typename OtherScalar>
-void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j)
-{
- typedef typename VectorX::Index Index;
- typedef typename VectorX::Scalar Scalar;
- enum { PacketSize = packet_traits<Scalar>::size };
- typedef typename packet_traits<Scalar>::type Packet;
- eigen_assert(_x.size() == _y.size());
- Index size = _x.size();
- Index incrx = _x.innerStride();
- Index incry = _y.innerStride();
-
- Scalar* EIGEN_RESTRICT x = &_x.coeffRef(0);
- Scalar* EIGEN_RESTRICT y = &_y.coeffRef(0);
-
- OtherScalar c = j.c();
- OtherScalar s = j.s();
- if (c==OtherScalar(1) && s==OtherScalar(0))
- return;
-
- /*** dynamic-size vectorized paths ***/
-
- if(VectorX::SizeAtCompileTime == Dynamic &&
- (VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
- ((incrx==1 && incry==1) || PacketSize == 1))
- {
- // both vectors are sequentially stored in memory => vectorization
- enum { Peeling = 2 };
-
- Index alignedStart = internal::first_aligned(y, size);
- Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize;
-
- const Packet pc = pset1<Packet>(c);
- const Packet ps = pset1<Packet>(s);
- conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj;
-
- for(Index i=0; i<alignedStart; ++i)
- {
- Scalar xi = x[i];
- Scalar yi = y[i];
- x[i] = c * xi + numext::conj(s) * yi;
- y[i] = -s * xi + numext::conj(c) * yi;
- }
-
- Scalar* EIGEN_RESTRICT px = x + alignedStart;
- Scalar* EIGEN_RESTRICT py = y + alignedStart;
-
- if(internal::first_aligned(x, size)==alignedStart)
- {
- for(Index i=alignedStart; i<alignedEnd; i+=PacketSize)
- {
- Packet xi = pload<Packet>(px);
- Packet yi = pload<Packet>(py);
- pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
- pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
- px += PacketSize;
- py += PacketSize;
- }
- }
- else
- {
- Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize);
- for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize)
- {
- Packet xi = ploadu<Packet>(px);
- Packet xi1 = ploadu<Packet>(px+PacketSize);
- Packet yi = pload <Packet>(py);
- Packet yi1 = pload <Packet>(py+PacketSize);
- pstoreu(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
- pstoreu(px+PacketSize, padd(pmul(pc,xi1),pcj.pmul(ps,yi1)));
- pstore (py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
- pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pmul(ps,xi1)));
- px += Peeling*PacketSize;
- py += Peeling*PacketSize;
- }
- if(alignedEnd!=peelingEnd)
- {
- Packet xi = ploadu<Packet>(x+peelingEnd);
- Packet yi = pload <Packet>(y+peelingEnd);
- pstoreu(x+peelingEnd, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
- pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
- }
- }
-
- for(Index i=alignedEnd; i<size; ++i)
- {
- Scalar xi = x[i];
- Scalar yi = y[i];
- x[i] = c * xi + numext::conj(s) * yi;
- y[i] = -s * xi + numext::conj(c) * yi;
- }
- }
-
- /*** fixed-size vectorized path ***/
- else if(VectorX::SizeAtCompileTime != Dynamic &&
- (VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
- (VectorX::Flags & VectorY::Flags & AlignedBit))
- {
- const Packet pc = pset1<Packet>(c);
- const Packet ps = pset1<Packet>(s);
- conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj;
- Scalar* EIGEN_RESTRICT px = x;
- Scalar* EIGEN_RESTRICT py = y;
- for(Index i=0; i<size; i+=PacketSize)
- {
- Packet xi = pload<Packet>(px);
- Packet yi = pload<Packet>(py);
- pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
- pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
- px += PacketSize;
- py += PacketSize;
- }
- }
-
- /*** non-vectorized path ***/
- else
- {
- for(Index i=0; i<size; ++i)
- {
- Scalar xi = *x;
- Scalar yi = *y;
- *x = c * xi + numext::conj(s) * yi;
- *y = -s * xi + numext::conj(c) * yi;
- x += incrx;
- y += incry;
- }
- }
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_JACOBI_H
diff --git a/src/Eigen/src/LU/CMakeLists.txt b/src/Eigen/src/LU/CMakeLists.txt
deleted file mode 100644
index e0d8d78..0000000
--- a/src/Eigen/src/LU/CMakeLists.txt
+++ /dev/null
@@ -1,8 +0,0 @@
-FILE(GLOB Eigen_LU_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_LU_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/LU COMPONENT Devel
- )
-
-ADD_SUBDIRECTORY(arch)
diff --git a/src/Eigen/src/LU/Determinant.h b/src/Eigen/src/LU/Determinant.h
deleted file mode 100644
index bb8e78a..0000000
--- a/src/Eigen/src/LU/Determinant.h
+++ /dev/null
@@ -1,101 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_DETERMINANT_H
-#define EIGEN_DETERMINANT_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename Derived>
-inline const typename Derived::Scalar bruteforce_det3_helper
-(const MatrixBase<Derived>& matrix, int a, int b, int c)
-{
- return matrix.coeff(0,a)
- * (matrix.coeff(1,b) * matrix.coeff(2,c) - matrix.coeff(1,c) * matrix.coeff(2,b));
-}
-
-template<typename Derived>
-const typename Derived::Scalar bruteforce_det4_helper
-(const MatrixBase<Derived>& matrix, int j, int k, int m, int n)
-{
- return (matrix.coeff(j,0) * matrix.coeff(k,1) - matrix.coeff(k,0) * matrix.coeff(j,1))
- * (matrix.coeff(m,2) * matrix.coeff(n,3) - matrix.coeff(n,2) * matrix.coeff(m,3));
-}
-
-template<typename Derived,
- int DeterminantType = Derived::RowsAtCompileTime
-> struct determinant_impl
-{
- static inline typename traits<Derived>::Scalar run(const Derived& m)
- {
- if(Derived::ColsAtCompileTime==Dynamic && m.rows()==0)
- return typename traits<Derived>::Scalar(1);
- return m.partialPivLu().determinant();
- }
-};
-
-template<typename Derived> struct determinant_impl<Derived, 1>
-{
- static inline typename traits<Derived>::Scalar run(const Derived& m)
- {
- return m.coeff(0,0);
- }
-};
-
-template<typename Derived> struct determinant_impl<Derived, 2>
-{
- static inline typename traits<Derived>::Scalar run(const Derived& m)
- {
- return m.coeff(0,0) * m.coeff(1,1) - m.coeff(1,0) * m.coeff(0,1);
- }
-};
-
-template<typename Derived> struct determinant_impl<Derived, 3>
-{
- static inline typename traits<Derived>::Scalar run(const Derived& m)
- {
- return bruteforce_det3_helper(m,0,1,2)
- - bruteforce_det3_helper(m,1,0,2)
- + bruteforce_det3_helper(m,2,0,1);
- }
-};
-
-template<typename Derived> struct determinant_impl<Derived, 4>
-{
- static typename traits<Derived>::Scalar run(const Derived& m)
- {
- // trick by Martin Costabel to compute 4x4 det with only 30 muls
- return bruteforce_det4_helper(m,0,1,2,3)
- - bruteforce_det4_helper(m,0,2,1,3)
- + bruteforce_det4_helper(m,0,3,1,2)
- + bruteforce_det4_helper(m,1,2,0,3)
- - bruteforce_det4_helper(m,1,3,0,2)
- + bruteforce_det4_helper(m,2,3,0,1);
- }
-};
-
-} // end namespace internal
-
-/** \lu_module
- *
- * \returns the determinant of this matrix
- */
-template<typename Derived>
-inline typename internal::traits<Derived>::Scalar MatrixBase<Derived>::determinant() const
-{
- eigen_assert(rows() == cols());
- typedef typename internal::nested<Derived,Base::RowsAtCompileTime>::type Nested;
- return internal::determinant_impl<typename internal::remove_all<Nested>::type>::run(derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_DETERMINANT_H
diff --git a/src/Eigen/src/LU/FullPivLU.h b/src/Eigen/src/LU/FullPivLU.h
deleted file mode 100644
index 79ab6a8..0000000
--- a/src/Eigen/src/LU/FullPivLU.h
+++ /dev/null
@@ -1,743 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_LU_H
-#define EIGEN_LU_H
-
-namespace Eigen {
-
-/** \ingroup LU_Module
- *
- * \class FullPivLU
- *
- * \brief LU decomposition of a matrix with complete pivoting, and related features
- *
- * \param MatrixType the type of the matrix of which we are computing the LU decomposition
- *
- * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
- * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
- * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU
- * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
- * zeros are at the end.
- *
- * This decomposition provides the generic approach to solving systems of linear equations, computing
- * the rank, invertibility, inverse, kernel, and determinant.
- *
- * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD
- * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix,
- * working with the SVD allows to select the smallest singular values of the matrix, something that
- * the LU decomposition doesn't see.
- *
- * The data of the LU decomposition can be directly accessed through the methods matrixLU(),
- * permutationP(), permutationQ().
- *
- * As an exemple, here is how the original matrix can be retrieved:
- * \include class_FullPivLU.cpp
- * Output: \verbinclude class_FullPivLU.out
- *
- * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse()
- */
-template<typename _MatrixType> class FullPivLU
-{
- public:
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef typename internal::traits<MatrixType>::StorageKind StorageKind;
- typedef typename MatrixType::Index Index;
- typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
- typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
- typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType;
- typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType;
-
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via LU::compute(const MatrixType&).
- */
- FullPivLU();
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa FullPivLU()
- */
- FullPivLU(Index rows, Index cols);
-
- /** Constructor.
- *
- * \param matrix the matrix of which to compute the LU decomposition.
- * It is required to be nonzero.
- */
- FullPivLU(const MatrixType& matrix);
-
- /** Computes the LU decomposition of the given matrix.
- *
- * \param matrix the matrix of which to compute the LU decomposition.
- * It is required to be nonzero.
- *
- * \returns a reference to *this
- */
- FullPivLU& compute(const MatrixType& matrix);
-
- /** \returns the LU decomposition matrix: the upper-triangular part is U, the
- * unit-lower-triangular part is L (at least for square matrices; in the non-square
- * case, special care is needed, see the documentation of class FullPivLU).
- *
- * \sa matrixL(), matrixU()
- */
- inline const MatrixType& matrixLU() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return m_lu;
- }
-
- /** \returns the number of nonzero pivots in the LU decomposition.
- * Here nonzero is meant in the exact sense, not in a fuzzy sense.
- * So that notion isn't really intrinsically interesting, but it is
- * still useful when implementing algorithms.
- *
- * \sa rank()
- */
- inline Index nonzeroPivots() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return m_nonzero_pivots;
- }
-
- /** \returns the absolute value of the biggest pivot, i.e. the biggest
- * diagonal coefficient of U.
- */
- RealScalar maxPivot() const { return m_maxpivot; }
-
- /** \returns the permutation matrix P
- *
- * \sa permutationQ()
- */
- inline const PermutationPType& permutationP() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return m_p;
- }
-
- /** \returns the permutation matrix Q
- *
- * \sa permutationP()
- */
- inline const PermutationQType& permutationQ() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return m_q;
- }
-
- /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
- * will form a basis of the kernel.
- *
- * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- *
- * Example: \include FullPivLU_kernel.cpp
- * Output: \verbinclude FullPivLU_kernel.out
- *
- * \sa image()
- */
- inline const internal::kernel_retval<FullPivLU> kernel() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return internal::kernel_retval<FullPivLU>(*this);
- }
-
- /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
- * will form a basis of the kernel.
- *
- * \param originalMatrix the original matrix, of which *this is the LU decomposition.
- * The reason why it is needed to pass it here, is that this allows
- * a large optimization, as otherwise this method would need to reconstruct it
- * from the LU decomposition.
- *
- * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- *
- * Example: \include FullPivLU_image.cpp
- * Output: \verbinclude FullPivLU_image.out
- *
- * \sa kernel()
- */
- inline const internal::image_retval<FullPivLU>
- image(const MatrixType& originalMatrix) const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return internal::image_retval<FullPivLU>(*this, originalMatrix);
- }
-
- /** \return a solution x to the equation Ax=b, where A is the matrix of which
- * *this is the LU decomposition.
- *
- * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
- * the only requirement in order for the equation to make sense is that
- * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
- *
- * \returns a solution.
- *
- * \note_about_checking_solutions
- *
- * \note_about_arbitrary_choice_of_solution
- * \note_about_using_kernel_to_study_multiple_solutions
- *
- * Example: \include FullPivLU_solve.cpp
- * Output: \verbinclude FullPivLU_solve.out
- *
- * \sa TriangularView::solve(), kernel(), inverse()
- */
- template<typename Rhs>
- inline const internal::solve_retval<FullPivLU, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return internal::solve_retval<FullPivLU, Rhs>(*this, b.derived());
- }
-
- /** \returns the determinant of the matrix of which
- * *this is the LU decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the LU decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
- * optimized paths.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- *
- * \sa MatrixBase::determinant()
- */
- typename internal::traits<MatrixType>::Scalar determinant() const;
-
- /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
- * who need to determine when pivots are to be considered nonzero. This is not used for the
- * LU decomposition itself.
- *
- * When it needs to get the threshold value, Eigen calls threshold(). By default, this
- * uses a formula to automatically determine a reasonable threshold.
- * Once you have called the present method setThreshold(const RealScalar&),
- * your value is used instead.
- *
- * \param threshold The new value to use as the threshold.
- *
- * A pivot will be considered nonzero if its absolute value is strictly greater than
- * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
- * where maxpivot is the biggest pivot.
- *
- * If you want to come back to the default behavior, call setThreshold(Default_t)
- */
- FullPivLU& setThreshold(const RealScalar& threshold)
- {
- m_usePrescribedThreshold = true;
- m_prescribedThreshold = threshold;
- return *this;
- }
-
- /** Allows to come back to the default behavior, letting Eigen use its default formula for
- * determining the threshold.
- *
- * You should pass the special object Eigen::Default as parameter here.
- * \code lu.setThreshold(Eigen::Default); \endcode
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- FullPivLU& setThreshold(Default_t)
- {
- m_usePrescribedThreshold = false;
- return *this;
- }
-
- /** Returns the threshold that will be used by certain methods such as rank().
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- RealScalar threshold() const
- {
- eigen_assert(m_isInitialized || m_usePrescribedThreshold);
- return m_usePrescribedThreshold ? m_prescribedThreshold
- // this formula comes from experimenting (see "LU precision tuning" thread on the list)
- // and turns out to be identical to Higham's formula used already in LDLt.
- : NumTraits<Scalar>::epsilon() * m_lu.diagonalSize();
- }
-
- /** \returns the rank of the matrix of which *this is the LU decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index rank() const
- {
- using std::abs;
- eigen_assert(m_isInitialized && "LU is not initialized.");
- RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
- Index result = 0;
- for(Index i = 0; i < m_nonzero_pivots; ++i)
- result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold);
- return result;
- }
-
- /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index dimensionOfKernel() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return cols() - rank();
- }
-
- /** \returns true if the matrix of which *this is the LU decomposition represents an injective
- * linear map, i.e. has trivial kernel; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInjective() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return rank() == cols();
- }
-
- /** \returns true if the matrix of which *this is the LU decomposition represents a surjective
- * linear map; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isSurjective() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return rank() == rows();
- }
-
- /** \returns true if the matrix of which *this is the LU decomposition is invertible.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInvertible() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return isInjective() && (m_lu.rows() == m_lu.cols());
- }
-
- /** \returns the inverse of the matrix of which *this is the LU decomposition.
- *
- * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
- * Use isInvertible() to first determine whether this matrix is invertible.
- *
- * \sa MatrixBase::inverse()
- */
- inline const internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType> inverse() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
- return internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType>
- (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
- }
-
- MatrixType reconstructedMatrix() const;
-
- inline Index rows() const { return m_lu.rows(); }
- inline Index cols() const { return m_lu.cols(); }
-
- protected:
- MatrixType m_lu;
- PermutationPType m_p;
- PermutationQType m_q;
- IntColVectorType m_rowsTranspositions;
- IntRowVectorType m_colsTranspositions;
- Index m_det_pq, m_nonzero_pivots;
- RealScalar m_maxpivot, m_prescribedThreshold;
- bool m_isInitialized, m_usePrescribedThreshold;
-};
-
-template<typename MatrixType>
-FullPivLU<MatrixType>::FullPivLU()
- : m_isInitialized(false), m_usePrescribedThreshold(false)
-{
-}
-
-template<typename MatrixType>
-FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols)
- : m_lu(rows, cols),
- m_p(rows),
- m_q(cols),
- m_rowsTranspositions(rows),
- m_colsTranspositions(cols),
- m_isInitialized(false),
- m_usePrescribedThreshold(false)
-{
-}
-
-template<typename MatrixType>
-FullPivLU<MatrixType>::FullPivLU(const MatrixType& matrix)
- : m_lu(matrix.rows(), matrix.cols()),
- m_p(matrix.rows()),
- m_q(matrix.cols()),
- m_rowsTranspositions(matrix.rows()),
- m_colsTranspositions(matrix.cols()),
- m_isInitialized(false),
- m_usePrescribedThreshold(false)
-{
- compute(matrix);
-}
-
-template<typename MatrixType>
-FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const MatrixType& matrix)
-{
- // the permutations are stored as int indices, so just to be sure:
- eigen_assert(matrix.rows()<=NumTraits<int>::highest() && matrix.cols()<=NumTraits<int>::highest());
-
- m_isInitialized = true;
- m_lu = matrix;
-
- const Index size = matrix.diagonalSize();
- const Index rows = matrix.rows();
- const Index cols = matrix.cols();
-
- // will store the transpositions, before we accumulate them at the end.
- // can't accumulate on-the-fly because that will be done in reverse order for the rows.
- m_rowsTranspositions.resize(matrix.rows());
- m_colsTranspositions.resize(matrix.cols());
- Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i
-
- m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
- m_maxpivot = RealScalar(0);
-
- for(Index k = 0; k < size; ++k)
- {
- // First, we need to find the pivot.
-
- // biggest coefficient in the remaining bottom-right corner (starting at row k, col k)
- Index row_of_biggest_in_corner, col_of_biggest_in_corner;
- RealScalar biggest_in_corner;
- biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k)
- .cwiseAbs()
- .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
- row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
- col_of_biggest_in_corner += k; // need to add k to them.
-
- if(biggest_in_corner==RealScalar(0))
- {
- // before exiting, make sure to initialize the still uninitialized transpositions
- // in a sane state without destroying what we already have.
- m_nonzero_pivots = k;
- for(Index i = k; i < size; ++i)
- {
- m_rowsTranspositions.coeffRef(i) = i;
- m_colsTranspositions.coeffRef(i) = i;
- }
- break;
- }
-
- if(biggest_in_corner > m_maxpivot) m_maxpivot = biggest_in_corner;
-
- // Now that we've found the pivot, we need to apply the row/col swaps to
- // bring it to the location (k,k).
-
- m_rowsTranspositions.coeffRef(k) = row_of_biggest_in_corner;
- m_colsTranspositions.coeffRef(k) = col_of_biggest_in_corner;
- if(k != row_of_biggest_in_corner) {
- m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
- ++number_of_transpositions;
- }
- if(k != col_of_biggest_in_corner) {
- m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
- ++number_of_transpositions;
- }
-
- // Now that the pivot is at the right location, we update the remaining
- // bottom-right corner by Gaussian elimination.
-
- if(k<rows-1)
- m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k);
- if(k<size-1)
- m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1);
- }
-
- // the main loop is over, we still have to accumulate the transpositions to find the
- // permutations P and Q
-
- m_p.setIdentity(rows);
- for(Index k = size-1; k >= 0; --k)
- m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k));
-
- m_q.setIdentity(cols);
- for(Index k = 0; k < size; ++k)
- m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));
-
- m_det_pq = (number_of_transpositions%2) ? -1 : 1;
- return *this;
-}
-
-template<typename MatrixType>
-typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const
-{
- eigen_assert(m_isInitialized && "LU is not initialized.");
- eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!");
- return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod());
-}
-
-/** \returns the matrix represented by the decomposition,
- * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$.
- * This function is provided for debug purposes. */
-template<typename MatrixType>
-MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
-{
- eigen_assert(m_isInitialized && "LU is not initialized.");
- const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols());
- // LU
- MatrixType res(m_lu.rows(),m_lu.cols());
- // FIXME the .toDenseMatrix() should not be needed...
- res = m_lu.leftCols(smalldim)
- .template triangularView<UnitLower>().toDenseMatrix()
- * m_lu.topRows(smalldim)
- .template triangularView<Upper>().toDenseMatrix();
-
- // P^{-1}(LU)
- res = m_p.inverse() * res;
-
- // (P^{-1}LU)Q^{-1}
- res = res * m_q.inverse();
-
- return res;
-}
-
-/********* Implementation of kernel() **************************************************/
-
-namespace internal {
-template<typename _MatrixType>
-struct kernel_retval<FullPivLU<_MatrixType> >
- : kernel_retval_base<FullPivLU<_MatrixType> >
-{
- EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>)
-
- enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
- MatrixType::MaxColsAtCompileTime,
- MatrixType::MaxRowsAtCompileTime)
- };
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- using std::abs;
- const Index cols = dec().matrixLU().cols(), dimker = cols - rank();
- if(dimker == 0)
- {
- // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's
- // avoid crashing/asserting as that depends on floating point calculations. Let's
- // just return a single column vector filled with zeros.
- dst.setZero();
- return;
- }
-
- /* Let us use the following lemma:
- *
- * Lemma: If the matrix A has the LU decomposition PAQ = LU,
- * then Ker A = Q(Ker U).
- *
- * Proof: trivial: just keep in mind that P, Q, L are invertible.
- */
-
- /* Thus, all we need to do is to compute Ker U, and then apply Q.
- *
- * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
- * Thus, the diagonal of U ends with exactly
- * dimKer zero's. Let us use that to construct dimKer linearly
- * independent vectors in Ker U.
- */
-
- Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
- RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
- Index p = 0;
- for(Index i = 0; i < dec().nonzeroPivots(); ++i)
- if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
- pivots.coeffRef(p++) = i;
- eigen_internal_assert(p == rank());
-
- // we construct a temporaty trapezoid matrix m, by taking the U matrix and
- // permuting the rows and cols to bring the nonnegligible pivots to the top of
- // the main diagonal. We need that to be able to apply our triangular solvers.
- // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified
- Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options,
- MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime>
- m(dec().matrixLU().block(0, 0, rank(), cols));
- for(Index i = 0; i < rank(); ++i)
- {
- if(i) m.row(i).head(i).setZero();
- m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i);
- }
- m.block(0, 0, rank(), rank());
- m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero();
- for(Index i = 0; i < rank(); ++i)
- m.col(i).swap(m.col(pivots.coeff(i)));
-
- // ok, we have our trapezoid matrix, we can apply the triangular solver.
- // notice that the math behind this suggests that we should apply this to the
- // negative of the RHS, but for performance we just put the negative sign elsewhere, see below.
- m.topLeftCorner(rank(), rank())
- .template triangularView<Upper>().solveInPlace(
- m.topRightCorner(rank(), dimker)
- );
-
- // now we must undo the column permutation that we had applied!
- for(Index i = rank()-1; i >= 0; --i)
- m.col(i).swap(m.col(pivots.coeff(i)));
-
- // see the negative sign in the next line, that's what we were talking about above.
- for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker);
- for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero();
- for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1);
- }
-};
-
-/***** Implementation of image() *****************************************************/
-
-template<typename _MatrixType>
-struct image_retval<FullPivLU<_MatrixType> >
- : image_retval_base<FullPivLU<_MatrixType> >
-{
- EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>)
-
- enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
- MatrixType::MaxColsAtCompileTime,
- MatrixType::MaxRowsAtCompileTime)
- };
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- using std::abs;
- if(rank() == 0)
- {
- // The Image is just {0}, so it doesn't have a basis properly speaking, but let's
- // avoid crashing/asserting as that depends on floating point calculations. Let's
- // just return a single column vector filled with zeros.
- dst.setZero();
- return;
- }
-
- Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
- RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
- Index p = 0;
- for(Index i = 0; i < dec().nonzeroPivots(); ++i)
- if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
- pivots.coeffRef(p++) = i;
- eigen_internal_assert(p == rank());
-
- for(Index i = 0; i < rank(); ++i)
- dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i)));
- }
-};
-
-/***** Implementation of solve() *****************************************************/
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<FullPivLU<_MatrixType>, Rhs>
- : solve_retval_base<FullPivLU<_MatrixType>, Rhs>
-{
- EIGEN_MAKE_SOLVE_HELPERS(FullPivLU<_MatrixType>,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
- * So we proceed as follows:
- * Step 1: compute c = P * rhs.
- * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
- * Step 3: replace c by the solution x to Ux = c. May or may not exist.
- * Step 4: result = Q * c;
- */
-
- const Index rows = dec().rows(), cols = dec().cols(),
- nonzero_pivots = dec().nonzeroPivots();
- eigen_assert(rhs().rows() == rows);
- const Index smalldim = (std::min)(rows, cols);
-
- if(nonzero_pivots == 0)
- {
- dst.setZero();
- return;
- }
-
- typename Rhs::PlainObject c(rhs().rows(), rhs().cols());
-
- // Step 1
- c = dec().permutationP() * rhs();
-
- // Step 2
- dec().matrixLU()
- .topLeftCorner(smalldim,smalldim)
- .template triangularView<UnitLower>()
- .solveInPlace(c.topRows(smalldim));
- if(rows>cols)
- {
- c.bottomRows(rows-cols)
- -= dec().matrixLU().bottomRows(rows-cols)
- * c.topRows(cols);
- }
-
- // Step 3
- dec().matrixLU()
- .topLeftCorner(nonzero_pivots, nonzero_pivots)
- .template triangularView<Upper>()
- .solveInPlace(c.topRows(nonzero_pivots));
-
- // Step 4
- for(Index i = 0; i < nonzero_pivots; ++i)
- dst.row(dec().permutationQ().indices().coeff(i)) = c.row(i);
- for(Index i = nonzero_pivots; i < dec().matrixLU().cols(); ++i)
- dst.row(dec().permutationQ().indices().coeff(i)).setZero();
- }
-};
-
-} // end namespace internal
-
-/******* MatrixBase methods *****************************************************************/
-
-/** \lu_module
- *
- * \return the full-pivoting LU decomposition of \c *this.
- *
- * \sa class FullPivLU
- */
-template<typename Derived>
-inline const FullPivLU<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::fullPivLu() const
-{
- return FullPivLU<PlainObject>(eval());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_LU_H
diff --git a/src/Eigen/src/LU/Inverse.h b/src/Eigen/src/LU/Inverse.h
deleted file mode 100644
index 3cf8871..0000000
--- a/src/Eigen/src/LU/Inverse.h
+++ /dev/null
@@ -1,400 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_INVERSE_H
-#define EIGEN_INVERSE_H
-
-namespace Eigen {
-
-namespace internal {
-
-/**********************************
-*** General case implementation ***
-**********************************/
-
-template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
-struct compute_inverse
-{
- static inline void run(const MatrixType& matrix, ResultType& result)
- {
- result = matrix.partialPivLu().inverse();
- }
-};
-
-template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
-struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ };
-
-/****************************
-*** Size 1 implementation ***
-****************************/
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse<MatrixType, ResultType, 1>
-{
- static inline void run(const MatrixType& matrix, ResultType& result)
- {
- typedef typename MatrixType::Scalar Scalar;
- result.coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0);
- }
-};
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1>
-{
- static inline void run(
- const MatrixType& matrix,
- const typename MatrixType::RealScalar& absDeterminantThreshold,
- ResultType& result,
- typename ResultType::Scalar& determinant,
- bool& invertible
- )
- {
- using std::abs;
- determinant = matrix.coeff(0,0);
- invertible = abs(determinant) > absDeterminantThreshold;
- if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant;
- }
-};
-
-/****************************
-*** Size 2 implementation ***
-****************************/
-
-template<typename MatrixType, typename ResultType>
-inline void compute_inverse_size2_helper(
- const MatrixType& matrix, const typename ResultType::Scalar& invdet,
- ResultType& result)
-{
- result.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
- result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
- result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
- result.coeffRef(1,1) = matrix.coeff(0,0) * invdet;
-}
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse<MatrixType, ResultType, 2>
-{
- static inline void run(const MatrixType& matrix, ResultType& result)
- {
- typedef typename ResultType::Scalar Scalar;
- const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant();
- compute_inverse_size2_helper(matrix, invdet, result);
- }
-};
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2>
-{
- static inline void run(
- const MatrixType& matrix,
- const typename MatrixType::RealScalar& absDeterminantThreshold,
- ResultType& inverse,
- typename ResultType::Scalar& determinant,
- bool& invertible
- )
- {
- using std::abs;
- typedef typename ResultType::Scalar Scalar;
- determinant = matrix.determinant();
- invertible = abs(determinant) > absDeterminantThreshold;
- if(!invertible) return;
- const Scalar invdet = Scalar(1) / determinant;
- compute_inverse_size2_helper(matrix, invdet, inverse);
- }
-};
-
-/****************************
-*** Size 3 implementation ***
-****************************/
-
-template<typename MatrixType, int i, int j>
-inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m)
-{
- enum {
- i1 = (i+1) % 3,
- i2 = (i+2) % 3,
- j1 = (j+1) % 3,
- j2 = (j+2) % 3
- };
- return m.coeff(i1, j1) * m.coeff(i2, j2)
- - m.coeff(i1, j2) * m.coeff(i2, j1);
-}
-
-template<typename MatrixType, typename ResultType>
-inline void compute_inverse_size3_helper(
- const MatrixType& matrix,
- const typename ResultType::Scalar& invdet,
- const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0,
- ResultType& result)
-{
- result.row(0) = cofactors_col0 * invdet;
- result.coeffRef(1,0) = cofactor_3x3<MatrixType,0,1>(matrix) * invdet;
- result.coeffRef(1,1) = cofactor_3x3<MatrixType,1,1>(matrix) * invdet;
- result.coeffRef(1,2) = cofactor_3x3<MatrixType,2,1>(matrix) * invdet;
- result.coeffRef(2,0) = cofactor_3x3<MatrixType,0,2>(matrix) * invdet;
- result.coeffRef(2,1) = cofactor_3x3<MatrixType,1,2>(matrix) * invdet;
- result.coeffRef(2,2) = cofactor_3x3<MatrixType,2,2>(matrix) * invdet;
-}
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse<MatrixType, ResultType, 3>
-{
- static inline void run(const MatrixType& matrix, ResultType& result)
- {
- typedef typename ResultType::Scalar Scalar;
- Matrix<typename MatrixType::Scalar,3,1> cofactors_col0;
- cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
- cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
- cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
- const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
- const Scalar invdet = Scalar(1) / det;
- compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result);
- }
-};
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3>
-{
- static inline void run(
- const MatrixType& matrix,
- const typename MatrixType::RealScalar& absDeterminantThreshold,
- ResultType& inverse,
- typename ResultType::Scalar& determinant,
- bool& invertible
- )
- {
- using std::abs;
- typedef typename ResultType::Scalar Scalar;
- Matrix<Scalar,3,1> cofactors_col0;
- cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
- cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
- cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
- determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
- invertible = abs(determinant) > absDeterminantThreshold;
- if(!invertible) return;
- const Scalar invdet = Scalar(1) / determinant;
- compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse);
- }
-};
-
-/****************************
-*** Size 4 implementation ***
-****************************/
-
-template<typename Derived>
-inline const typename Derived::Scalar general_det3_helper
-(const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3)
-{
- return matrix.coeff(i1,j1)
- * (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2));
-}
-
-template<typename MatrixType, int i, int j>
-inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix)
-{
- enum {
- i1 = (i+1) % 4,
- i2 = (i+2) % 4,
- i3 = (i+3) % 4,
- j1 = (j+1) % 4,
- j2 = (j+2) % 4,
- j3 = (j+3) % 4
- };
- return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3)
- + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3)
- + general_det3_helper(matrix, i3, i1, i2, j1, j2, j3);
-}
-
-template<int Arch, typename Scalar, typename MatrixType, typename ResultType>
-struct compute_inverse_size4
-{
- static void run(const MatrixType& matrix, ResultType& result)
- {
- result.coeffRef(0,0) = cofactor_4x4<MatrixType,0,0>(matrix);
- result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix);
- result.coeffRef(2,0) = cofactor_4x4<MatrixType,0,2>(matrix);
- result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix);
- result.coeffRef(0,2) = cofactor_4x4<MatrixType,2,0>(matrix);
- result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix);
- result.coeffRef(2,2) = cofactor_4x4<MatrixType,2,2>(matrix);
- result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix);
- result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix);
- result.coeffRef(1,1) = cofactor_4x4<MatrixType,1,1>(matrix);
- result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix);
- result.coeffRef(3,1) = cofactor_4x4<MatrixType,1,3>(matrix);
- result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix);
- result.coeffRef(1,3) = cofactor_4x4<MatrixType,3,1>(matrix);
- result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix);
- result.coeffRef(3,3) = cofactor_4x4<MatrixType,3,3>(matrix);
- result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum();
- }
-};
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse<MatrixType, ResultType, 4>
- : compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar,
- MatrixType, ResultType>
-{
-};
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
-{
- static inline void run(
- const MatrixType& matrix,
- const typename MatrixType::RealScalar& absDeterminantThreshold,
- ResultType& inverse,
- typename ResultType::Scalar& determinant,
- bool& invertible
- )
- {
- using std::abs;
- determinant = matrix.determinant();
- invertible = abs(determinant) > absDeterminantThreshold;
- if(invertible) compute_inverse<MatrixType, ResultType>::run(matrix, inverse);
- }
-};
-
-/*************************
-*** MatrixBase methods ***
-*************************/
-
-template<typename MatrixType>
-struct traits<inverse_impl<MatrixType> >
-{
- typedef typename MatrixType::PlainObject ReturnType;
-};
-
-template<typename MatrixType>
-struct inverse_impl : public ReturnByValue<inverse_impl<MatrixType> >
-{
- typedef typename MatrixType::Index Index;
- typedef typename internal::eval<MatrixType>::type MatrixTypeNested;
- typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
- MatrixTypeNested m_matrix;
-
- inverse_impl(const MatrixType& matrix)
- : m_matrix(matrix)
- {}
-
- inline Index rows() const { return m_matrix.rows(); }
- inline Index cols() const { return m_matrix.cols(); }
-
- template<typename Dest> inline void evalTo(Dest& dst) const
- {
- const int Size = EIGEN_PLAIN_ENUM_MIN(MatrixType::ColsAtCompileTime,Dest::ColsAtCompileTime);
- EIGEN_ONLY_USED_FOR_DEBUG(Size);
- eigen_assert(( (Size<=1) || (Size>4) || (extract_data(m_matrix)!=extract_data(dst)))
- && "Aliasing problem detected in inverse(), you need to do inverse().eval() here.");
-
- compute_inverse<MatrixTypeNestedCleaned, Dest>::run(m_matrix, dst);
- }
-};
-
-} // end namespace internal
-
-/** \lu_module
- *
- * \returns the matrix inverse of this matrix.
- *
- * For small fixed sizes up to 4x4, this method uses cofactors.
- * In the general case, this method uses class PartialPivLU.
- *
- * \note This matrix must be invertible, otherwise the result is undefined. If you need an
- * invertibility check, do the following:
- * \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck().
- * \li for the general case, use class FullPivLU.
- *
- * Example: \include MatrixBase_inverse.cpp
- * Output: \verbinclude MatrixBase_inverse.out
- *
- * \sa computeInverseAndDetWithCheck()
- */
-template<typename Derived>
-inline const internal::inverse_impl<Derived> MatrixBase<Derived>::inverse() const
-{
- EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
- eigen_assert(rows() == cols());
- return internal::inverse_impl<Derived>(derived());
-}
-
-/** \lu_module
- *
- * Computation of matrix inverse and determinant, with invertibility check.
- *
- * This is only for fixed-size square matrices of size up to 4x4.
- *
- * \param inverse Reference to the matrix in which to store the inverse.
- * \param determinant Reference to the variable in which to store the determinant.
- * \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
- * \param absDeterminantThreshold Optional parameter controlling the invertibility check.
- * The matrix will be declared invertible if the absolute value of its
- * determinant is greater than this threshold.
- *
- * Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp
- * Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out
- *
- * \sa inverse(), computeInverseWithCheck()
- */
-template<typename Derived>
-template<typename ResultType>
-inline void MatrixBase<Derived>::computeInverseAndDetWithCheck(
- ResultType& inverse,
- typename ResultType::Scalar& determinant,
- bool& invertible,
- const RealScalar& absDeterminantThreshold
- ) const
-{
- // i'd love to put some static assertions there, but SFINAE means that they have no effect...
- eigen_assert(rows() == cols());
- // for 2x2, it's worth giving a chance to avoid evaluating.
- // for larger sizes, evaluating has negligible cost and limits code size.
- typedef typename internal::conditional<
- RowsAtCompileTime == 2,
- typename internal::remove_all<typename internal::nested<Derived, 2>::type>::type,
- PlainObject
- >::type MatrixType;
- internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run
- (derived(), absDeterminantThreshold, inverse, determinant, invertible);
-}
-
-/** \lu_module
- *
- * Computation of matrix inverse, with invertibility check.
- *
- * This is only for fixed-size square matrices of size up to 4x4.
- *
- * \param inverse Reference to the matrix in which to store the inverse.
- * \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
- * \param absDeterminantThreshold Optional parameter controlling the invertibility check.
- * The matrix will be declared invertible if the absolute value of its
- * determinant is greater than this threshold.
- *
- * Example: \include MatrixBase_computeInverseWithCheck.cpp
- * Output: \verbinclude MatrixBase_computeInverseWithCheck.out
- *
- * \sa inverse(), computeInverseAndDetWithCheck()
- */
-template<typename Derived>
-template<typename ResultType>
-inline void MatrixBase<Derived>::computeInverseWithCheck(
- ResultType& inverse,
- bool& invertible,
- const RealScalar& absDeterminantThreshold
- ) const
-{
- RealScalar determinant;
- // i'd love to put some static assertions there, but SFINAE means that they have no effect...
- eigen_assert(rows() == cols());
- computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_INVERSE_H
diff --git a/src/Eigen/src/LU/PartialPivLU.h b/src/Eigen/src/LU/PartialPivLU.h
deleted file mode 100644
index 740ee69..0000000
--- a/src/Eigen/src/LU/PartialPivLU.h
+++ /dev/null
@@ -1,501 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_PARTIALLU_H
-#define EIGEN_PARTIALLU_H
-
-namespace Eigen {
-
-/** \ingroup LU_Module
- *
- * \class PartialPivLU
- *
- * \brief LU decomposition of a matrix with partial pivoting, and related features
- *
- * \param MatrixType the type of the matrix of which we are computing the LU decomposition
- *
- * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
- * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
- * is a permutation matrix.
- *
- * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible
- * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class
- * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the
- * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices.
- *
- * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided
- * by class FullPivLU.
- *
- * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class,
- * such as rank computation. If you need these features, use class FullPivLU.
- *
- * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses
- * in the general case.
- * On the other hand, it is \b not suitable to determine whether a given matrix is invertible.
- *
- * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
- *
- * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU
- */
-template<typename _MatrixType> class PartialPivLU
-{
- public:
-
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef typename internal::traits<MatrixType>::StorageKind StorageKind;
- typedef typename MatrixType::Index Index;
- typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
- typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
-
-
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via PartialPivLU::compute(const MatrixType&).
- */
- PartialPivLU();
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa PartialPivLU()
- */
- PartialPivLU(Index size);
-
- /** Constructor.
- *
- * \param matrix the matrix of which to compute the LU decomposition.
- *
- * \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
- * If you need to deal with non-full rank, use class FullPivLU instead.
- */
- PartialPivLU(const MatrixType& matrix);
-
- PartialPivLU& compute(const MatrixType& matrix);
-
- /** \returns the LU decomposition matrix: the upper-triangular part is U, the
- * unit-lower-triangular part is L (at least for square matrices; in the non-square
- * case, special care is needed, see the documentation of class FullPivLU).
- *
- * \sa matrixL(), matrixU()
- */
- inline const MatrixType& matrixLU() const
- {
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return m_lu;
- }
-
- /** \returns the permutation matrix P.
- */
- inline const PermutationType& permutationP() const
- {
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return m_p;
- }
-
- /** This method returns the solution x to the equation Ax=b, where A is the matrix of which
- * *this is the LU decomposition.
- *
- * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
- * the only requirement in order for the equation to make sense is that
- * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
- *
- * \returns the solution.
- *
- * Example: \include PartialPivLU_solve.cpp
- * Output: \verbinclude PartialPivLU_solve.out
- *
- * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution
- * theoretically exists and is unique regardless of b.
- *
- * \sa TriangularView::solve(), inverse(), computeInverse()
- */
- template<typename Rhs>
- inline const internal::solve_retval<PartialPivLU, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return internal::solve_retval<PartialPivLU, Rhs>(*this, b.derived());
- }
-
- /** \returns the inverse of the matrix of which *this is the LU decomposition.
- *
- * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
- * invertibility, use class FullPivLU instead.
- *
- * \sa MatrixBase::inverse(), LU::inverse()
- */
- inline const internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const
- {
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType>
- (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
- }
-
- /** \returns the determinant of the matrix of which
- * *this is the LU decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the LU decomposition has already been computed.
- *
- * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
- * optimized paths.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- *
- * \sa MatrixBase::determinant()
- */
- typename internal::traits<MatrixType>::Scalar determinant() const;
-
- MatrixType reconstructedMatrix() const;
-
- inline Index rows() const { return m_lu.rows(); }
- inline Index cols() const { return m_lu.cols(); }
-
- protected:
- MatrixType m_lu;
- PermutationType m_p;
- TranspositionType m_rowsTranspositions;
- Index m_det_p;
- bool m_isInitialized;
-};
-
-template<typename MatrixType>
-PartialPivLU<MatrixType>::PartialPivLU()
- : m_lu(),
- m_p(),
- m_rowsTranspositions(),
- m_det_p(0),
- m_isInitialized(false)
-{
-}
-
-template<typename MatrixType>
-PartialPivLU<MatrixType>::PartialPivLU(Index size)
- : m_lu(size, size),
- m_p(size),
- m_rowsTranspositions(size),
- m_det_p(0),
- m_isInitialized(false)
-{
-}
-
-template<typename MatrixType>
-PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix)
- : m_lu(matrix.rows(), matrix.rows()),
- m_p(matrix.rows()),
- m_rowsTranspositions(matrix.rows()),
- m_det_p(0),
- m_isInitialized(false)
-{
- compute(matrix);
-}
-
-namespace internal {
-
-/** \internal This is the blocked version of fullpivlu_unblocked() */
-template<typename Scalar, int StorageOrder, typename PivIndex>
-struct partial_lu_impl
-{
- // FIXME add a stride to Map, so that the following mapping becomes easier,
- // another option would be to create an expression being able to automatically
- // warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly
- // a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix,
- // and Block.
- typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU;
- typedef Block<MapLU, Dynamic, Dynamic> MatrixType;
- typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
-
- /** \internal performs the LU decomposition in-place of the matrix \a lu
- * using an unblocked algorithm.
- *
- * In addition, this function returns the row transpositions in the
- * vector \a row_transpositions which must have a size equal to the number
- * of columns of the matrix \a lu, and an integer \a nb_transpositions
- * which returns the actual number of transpositions.
- *
- * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
- */
- static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions)
- {
- const Index rows = lu.rows();
- const Index cols = lu.cols();
- const Index size = (std::min)(rows,cols);
- nb_transpositions = 0;
- Index first_zero_pivot = -1;
- for(Index k = 0; k < size; ++k)
- {
- Index rrows = rows-k-1;
- Index rcols = cols-k-1;
-
- Index row_of_biggest_in_col;
- RealScalar biggest_in_corner
- = lu.col(k).tail(rows-k).cwiseAbs().maxCoeff(&row_of_biggest_in_col);
- row_of_biggest_in_col += k;
-
- row_transpositions[k] = PivIndex(row_of_biggest_in_col);
-
- if(biggest_in_corner != RealScalar(0))
- {
- if(k != row_of_biggest_in_col)
- {
- lu.row(k).swap(lu.row(row_of_biggest_in_col));
- ++nb_transpositions;
- }
-
- // FIXME shall we introduce a safe quotient expression in cas 1/lu.coeff(k,k)
- // overflow but not the actual quotient?
- lu.col(k).tail(rrows) /= lu.coeff(k,k);
- }
- else if(first_zero_pivot==-1)
- {
- // the pivot is exactly zero, we record the index of the first pivot which is exactly 0,
- // and continue the factorization such we still have A = PLU
- first_zero_pivot = k;
- }
-
- if(k<rows-1)
- lu.bottomRightCorner(rrows,rcols).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rcols);
- }
- return first_zero_pivot;
- }
-
- /** \internal performs the LU decomposition in-place of the matrix represented
- * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a
- * recursive, blocked algorithm.
- *
- * In addition, this function returns the row transpositions in the
- * vector \a row_transpositions which must have a size equal to the number
- * of columns of the matrix \a lu, and an integer \a nb_transpositions
- * which returns the actual number of transpositions.
- *
- * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
- *
- * \note This very low level interface using pointers, etc. is to:
- * 1 - reduce the number of instanciations to the strict minimum
- * 2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > >
- */
- static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256)
- {
- MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols);
- MatrixType lu(lu1,0,0,rows,cols);
-
- const Index size = (std::min)(rows,cols);
-
- // if the matrix is too small, no blocking:
- if(size<=16)
- {
- return unblocked_lu(lu, row_transpositions, nb_transpositions);
- }
-
- // automatically adjust the number of subdivisions to the size
- // of the matrix so that there is enough sub blocks:
- Index blockSize;
- {
- blockSize = size/8;
- blockSize = (blockSize/16)*16;
- blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize);
- }
-
- nb_transpositions = 0;
- Index first_zero_pivot = -1;
- for(Index k = 0; k < size; k+=blockSize)
- {
- Index bs = (std::min)(size-k,blockSize); // actual size of the block
- Index trows = rows - k - bs; // trailing rows
- Index tsize = size - k - bs; // trailing size
-
- // partition the matrix:
- // A00 | A01 | A02
- // lu = A_0 | A_1 | A_2 = A10 | A11 | A12
- // A20 | A21 | A22
- BlockType A_0(lu,0,0,rows,k);
- BlockType A_2(lu,0,k+bs,rows,tsize);
- BlockType A11(lu,k,k,bs,bs);
- BlockType A12(lu,k,k+bs,bs,tsize);
- BlockType A21(lu,k+bs,k,trows,bs);
- BlockType A22(lu,k+bs,k+bs,trows,tsize);
-
- PivIndex nb_transpositions_in_panel;
- // recursively call the blocked LU algorithm on [A11^T A21^T]^T
- // with a very small blocking size:
- Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride,
- row_transpositions+k, nb_transpositions_in_panel, 16);
- if(ret>=0 && first_zero_pivot==-1)
- first_zero_pivot = k+ret;
-
- nb_transpositions += nb_transpositions_in_panel;
- // update permutations and apply them to A_0
- for(Index i=k; i<k+bs; ++i)
- {
- Index piv = (row_transpositions[i] += k);
- A_0.row(i).swap(A_0.row(piv));
- }
-
- if(trows)
- {
- // apply permutations to A_2
- for(Index i=k;i<k+bs; ++i)
- A_2.row(i).swap(A_2.row(row_transpositions[i]));
-
- // A12 = A11^-1 A12
- A11.template triangularView<UnitLower>().solveInPlace(A12);
-
- A22.noalias() -= A21 * A12;
- }
- }
- return first_zero_pivot;
- }
-};
-
-/** \internal performs the LU decomposition with partial pivoting in-place.
- */
-template<typename MatrixType, typename TranspositionType>
-void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::Index& nb_transpositions)
-{
- eigen_assert(lu.cols() == row_transpositions.size());
- eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
-
- partial_lu_impl
- <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::Index>
- ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
-}
-
-} // end namespace internal
-
-template<typename MatrixType>
-PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix)
-{
- // the row permutation is stored as int indices, so just to be sure:
- eigen_assert(matrix.rows()<NumTraits<int>::highest());
-
- m_lu = matrix;
-
- eigen_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
- const Index size = matrix.rows();
-
- m_rowsTranspositions.resize(size);
-
- typename TranspositionType::Index nb_transpositions;
- internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
- m_det_p = (nb_transpositions%2) ? -1 : 1;
-
- m_p = m_rowsTranspositions;
-
- m_isInitialized = true;
- return *this;
-}
-
-template<typename MatrixType>
-typename internal::traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
-{
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return Scalar(m_det_p) * m_lu.diagonal().prod();
-}
-
-/** \returns the matrix represented by the decomposition,
- * i.e., it returns the product: P^{-1} L U.
- * This function is provided for debug purpose. */
-template<typename MatrixType>
-MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
-{
- eigen_assert(m_isInitialized && "LU is not initialized.");
- // LU
- MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix()
- * m_lu.template triangularView<Upper>();
-
- // P^{-1}(LU)
- res = m_p.inverse() * res;
-
- return res;
-}
-
-/***** Implementation of solve() *****************************************************/
-
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<PartialPivLU<_MatrixType>, Rhs>
- : solve_retval_base<PartialPivLU<_MatrixType>, Rhs>
-{
- EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- /* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
- * So we proceed as follows:
- * Step 1: compute c = Pb.
- * Step 2: replace c by the solution x to Lx = c.
- * Step 3: replace c by the solution x to Ux = c.
- */
-
- eigen_assert(rhs().rows() == dec().matrixLU().rows());
-
- // Step 1
- dst = dec().permutationP() * rhs();
-
- // Step 2
- dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst);
-
- // Step 3
- dec().matrixLU().template triangularView<Upper>().solveInPlace(dst);
- }
-};
-
-} // end namespace internal
-
-/******** MatrixBase methods *******/
-
-/** \lu_module
- *
- * \return the partial-pivoting LU decomposition of \c *this.
- *
- * \sa class PartialPivLU
- */
-template<typename Derived>
-inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::partialPivLu() const
-{
- return PartialPivLU<PlainObject>(eval());
-}
-
-#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
-/** \lu_module
- *
- * Synonym of partialPivLu().
- *
- * \return the partial-pivoting LU decomposition of \c *this.
- *
- * \sa class PartialPivLU
- */
-template<typename Derived>
-inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::lu() const
-{
- return PartialPivLU<PlainObject>(eval());
-}
-#endif
-
-} // end namespace Eigen
-
-#endif // EIGEN_PARTIALLU_H
diff --git a/src/Eigen/src/LU/PartialPivLU_MKL.h b/src/Eigen/src/LU/PartialPivLU_MKL.h
deleted file mode 100644
index 9035953..0000000
--- a/src/Eigen/src/LU/PartialPivLU_MKL.h
+++ /dev/null
@@ -1,85 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * LU decomposition with partial pivoting based on LAPACKE_?getrf function.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_PARTIALLU_LAPACK_H
-#define EIGEN_PARTIALLU_LAPACK_H
-
-#include "Eigen/src/Core/util/MKL_support.h"
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal Specialization for the data types supported by MKL */
-
-#define EIGEN_MKL_LU_PARTPIV(EIGTYPE, MKLTYPE, MKLPREFIX) \
-template<int StorageOrder> \
-struct partial_lu_impl<EIGTYPE, StorageOrder, lapack_int> \
-{ \
- /* \internal performs the LU decomposition in-place of the matrix represented */ \
- static lapack_int blocked_lu(lapack_int rows, lapack_int cols, EIGTYPE* lu_data, lapack_int luStride, lapack_int* row_transpositions, lapack_int& nb_transpositions, lapack_int maxBlockSize=256) \
- { \
- EIGEN_UNUSED_VARIABLE(maxBlockSize);\
- lapack_int matrix_order, first_zero_pivot; \
- lapack_int m, n, lda, *ipiv, info; \
- EIGTYPE* a; \
-/* Set up parameters for ?getrf */ \
- matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \
- lda = luStride; \
- a = lu_data; \
- ipiv = row_transpositions; \
- m = rows; \
- n = cols; \
- nb_transpositions = 0; \
-\
- info = LAPACKE_##MKLPREFIX##getrf( matrix_order, m, n, (MKLTYPE*)a, lda, ipiv ); \
-\
- for(int i=0;i<m;i++) { ipiv[i]--; if (ipiv[i]!=i) nb_transpositions++; } \
-\
- eigen_assert(info >= 0); \
-/* something should be done with nb_transpositions */ \
-\
- first_zero_pivot = info; \
- return first_zero_pivot; \
- } \
-};
-
-EIGEN_MKL_LU_PARTPIV(double, double, d)
-EIGEN_MKL_LU_PARTPIV(float, float, s)
-EIGEN_MKL_LU_PARTPIV(dcomplex, MKL_Complex16, z)
-EIGEN_MKL_LU_PARTPIV(scomplex, MKL_Complex8, c)
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_PARTIALLU_LAPACK_H
diff --git a/src/Eigen/src/LU/arch/CMakeLists.txt b/src/Eigen/src/LU/arch/CMakeLists.txt
deleted file mode 100644
index f6b7ed9..0000000
--- a/src/Eigen/src/LU/arch/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_LU_arch_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_LU_arch_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/LU/arch COMPONENT Devel
- )
diff --git a/src/Eigen/src/LU/arch/Inverse_SSE.h b/src/Eigen/src/LU/arch/Inverse_SSE.h
deleted file mode 100644
index 60b7a23..0000000
--- a/src/Eigen/src/LU/arch/Inverse_SSE.h
+++ /dev/null
@@ -1,329 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2001 Intel Corporation
-// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// The SSE code for the 4x4 float and double matrix inverse in this file
-// comes from the following Intel's library:
-// http://software.intel.com/en-us/articles/optimized-matrix-library-for-use-with-the-intel-pentiumr-4-processors-sse2-instructions/
-//
-// Here is the respective copyright and license statement:
-//
-// Copyright (c) 2001 Intel Corporation.
-//
-// Permition is granted to use, copy, distribute and prepare derivative works
-// of this library for any purpose and without fee, provided, that the above
-// copyright notice and this statement appear in all copies.
-// Intel makes no representations about the suitability of this software for
-// any purpose, and specifically disclaims all warranties.
-// See LEGAL.TXT for all the legal information.
-
-#ifndef EIGEN_INVERSE_SSE_H
-#define EIGEN_INVERSE_SSE_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse_size4<Architecture::SSE, float, MatrixType, ResultType>
-{
- enum {
- MatrixAlignment = bool(MatrixType::Flags&AlignedBit),
- ResultAlignment = bool(ResultType::Flags&AlignedBit),
- StorageOrdersMatch = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit)
- };
-
- static void run(const MatrixType& matrix, ResultType& result)
- {
- EIGEN_ALIGN16 const unsigned int _Sign_PNNP[4] = { 0x00000000, 0x80000000, 0x80000000, 0x00000000 };
-
- // Load the full matrix into registers
- __m128 _L1 = matrix.template packet<MatrixAlignment>( 0);
- __m128 _L2 = matrix.template packet<MatrixAlignment>( 4);
- __m128 _L3 = matrix.template packet<MatrixAlignment>( 8);
- __m128 _L4 = matrix.template packet<MatrixAlignment>(12);
-
- // The inverse is calculated using "Divide and Conquer" technique. The
- // original matrix is divide into four 2x2 sub-matrices. Since each
- // register holds four matrix element, the smaller matrices are
- // represented as a registers. Hence we get a better locality of the
- // calculations.
-
- __m128 A, B, C, D; // the four sub-matrices
- if(!StorageOrdersMatch)
- {
- A = _mm_unpacklo_ps(_L1, _L2);
- B = _mm_unpacklo_ps(_L3, _L4);
- C = _mm_unpackhi_ps(_L1, _L2);
- D = _mm_unpackhi_ps(_L3, _L4);
- }
- else
- {
- A = _mm_movelh_ps(_L1, _L2);
- B = _mm_movehl_ps(_L2, _L1);
- C = _mm_movelh_ps(_L3, _L4);
- D = _mm_movehl_ps(_L4, _L3);
- }
-
- __m128 iA, iB, iC, iD, // partial inverse of the sub-matrices
- DC, AB;
- __m128 dA, dB, dC, dD; // determinant of the sub-matrices
- __m128 det, d, d1, d2;
- __m128 rd; // reciprocal of the determinant
-
- // AB = A# * B
- AB = _mm_mul_ps(_mm_shuffle_ps(A,A,0x0F), B);
- AB = _mm_sub_ps(AB,_mm_mul_ps(_mm_shuffle_ps(A,A,0xA5), _mm_shuffle_ps(B,B,0x4E)));
- // DC = D# * C
- DC = _mm_mul_ps(_mm_shuffle_ps(D,D,0x0F), C);
- DC = _mm_sub_ps(DC,_mm_mul_ps(_mm_shuffle_ps(D,D,0xA5), _mm_shuffle_ps(C,C,0x4E)));
-
- // dA = |A|
- dA = _mm_mul_ps(_mm_shuffle_ps(A, A, 0x5F),A);
- dA = _mm_sub_ss(dA, _mm_movehl_ps(dA,dA));
- // dB = |B|
- dB = _mm_mul_ps(_mm_shuffle_ps(B, B, 0x5F),B);
- dB = _mm_sub_ss(dB, _mm_movehl_ps(dB,dB));
-
- // dC = |C|
- dC = _mm_mul_ps(_mm_shuffle_ps(C, C, 0x5F),C);
- dC = _mm_sub_ss(dC, _mm_movehl_ps(dC,dC));
- // dD = |D|
- dD = _mm_mul_ps(_mm_shuffle_ps(D, D, 0x5F),D);
- dD = _mm_sub_ss(dD, _mm_movehl_ps(dD,dD));
-
- // d = trace(AB*DC) = trace(A#*B*D#*C)
- d = _mm_mul_ps(_mm_shuffle_ps(DC,DC,0xD8),AB);
-
- // iD = C*A#*B
- iD = _mm_mul_ps(_mm_shuffle_ps(C,C,0xA0), _mm_movelh_ps(AB,AB));
- iD = _mm_add_ps(iD,_mm_mul_ps(_mm_shuffle_ps(C,C,0xF5), _mm_movehl_ps(AB,AB)));
- // iA = B*D#*C
- iA = _mm_mul_ps(_mm_shuffle_ps(B,B,0xA0), _mm_movelh_ps(DC,DC));
- iA = _mm_add_ps(iA,_mm_mul_ps(_mm_shuffle_ps(B,B,0xF5), _mm_movehl_ps(DC,DC)));
-
- // d = trace(AB*DC) = trace(A#*B*D#*C) [continue]
- d = _mm_add_ps(d, _mm_movehl_ps(d, d));
- d = _mm_add_ss(d, _mm_shuffle_ps(d, d, 1));
- d1 = _mm_mul_ss(dA,dD);
- d2 = _mm_mul_ss(dB,dC);
-
- // iD = D*|A| - C*A#*B
- iD = _mm_sub_ps(_mm_mul_ps(D,_mm_shuffle_ps(dA,dA,0)), iD);
-
- // iA = A*|D| - B*D#*C;
- iA = _mm_sub_ps(_mm_mul_ps(A,_mm_shuffle_ps(dD,dD,0)), iA);
-
- // det = |A|*|D| + |B|*|C| - trace(A#*B*D#*C)
- det = _mm_sub_ss(_mm_add_ss(d1,d2),d);
- rd = _mm_div_ss(_mm_set_ss(1.0f), det);
-
-// #ifdef ZERO_SINGULAR
-// rd = _mm_and_ps(_mm_cmpneq_ss(det,_mm_setzero_ps()), rd);
-// #endif
-
- // iB = D * (A#B)# = D*B#*A
- iB = _mm_mul_ps(D, _mm_shuffle_ps(AB,AB,0x33));
- iB = _mm_sub_ps(iB, _mm_mul_ps(_mm_shuffle_ps(D,D,0xB1), _mm_shuffle_ps(AB,AB,0x66)));
- // iC = A * (D#C)# = A*C#*D
- iC = _mm_mul_ps(A, _mm_shuffle_ps(DC,DC,0x33));
- iC = _mm_sub_ps(iC, _mm_mul_ps(_mm_shuffle_ps(A,A,0xB1), _mm_shuffle_ps(DC,DC,0x66)));
-
- rd = _mm_shuffle_ps(rd,rd,0);
- rd = _mm_xor_ps(rd, _mm_load_ps((float*)_Sign_PNNP));
-
- // iB = C*|B| - D*B#*A
- iB = _mm_sub_ps(_mm_mul_ps(C,_mm_shuffle_ps(dB,dB,0)), iB);
-
- // iC = B*|C| - A*C#*D;
- iC = _mm_sub_ps(_mm_mul_ps(B,_mm_shuffle_ps(dC,dC,0)), iC);
-
- // iX = iX / det
- iA = _mm_mul_ps(rd,iA);
- iB = _mm_mul_ps(rd,iB);
- iC = _mm_mul_ps(rd,iC);
- iD = _mm_mul_ps(rd,iD);
-
- result.template writePacket<ResultAlignment>( 0, _mm_shuffle_ps(iA,iB,0x77));
- result.template writePacket<ResultAlignment>( 4, _mm_shuffle_ps(iA,iB,0x22));
- result.template writePacket<ResultAlignment>( 8, _mm_shuffle_ps(iC,iD,0x77));
- result.template writePacket<ResultAlignment>(12, _mm_shuffle_ps(iC,iD,0x22));
- }
-
-};
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse_size4<Architecture::SSE, double, MatrixType, ResultType>
-{
- enum {
- MatrixAlignment = bool(MatrixType::Flags&AlignedBit),
- ResultAlignment = bool(ResultType::Flags&AlignedBit),
- StorageOrdersMatch = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit)
- };
- static void run(const MatrixType& matrix, ResultType& result)
- {
- const __m128d _Sign_NP = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0));
- const __m128d _Sign_PN = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
-
- // The inverse is calculated using "Divide and Conquer" technique. The
- // original matrix is divide into four 2x2 sub-matrices. Since each
- // register of the matrix holds two element, the smaller matrices are
- // consisted of two registers. Hence we get a better locality of the
- // calculations.
-
- // the four sub-matrices
- __m128d A1, A2, B1, B2, C1, C2, D1, D2;
-
- if(StorageOrdersMatch)
- {
- A1 = matrix.template packet<MatrixAlignment>( 0); B1 = matrix.template packet<MatrixAlignment>( 2);
- A2 = matrix.template packet<MatrixAlignment>( 4); B2 = matrix.template packet<MatrixAlignment>( 6);
- C1 = matrix.template packet<MatrixAlignment>( 8); D1 = matrix.template packet<MatrixAlignment>(10);
- C2 = matrix.template packet<MatrixAlignment>(12); D2 = matrix.template packet<MatrixAlignment>(14);
- }
- else
- {
- __m128d tmp;
- A1 = matrix.template packet<MatrixAlignment>( 0); C1 = matrix.template packet<MatrixAlignment>( 2);
- A2 = matrix.template packet<MatrixAlignment>( 4); C2 = matrix.template packet<MatrixAlignment>( 6);
- tmp = A1;
- A1 = _mm_unpacklo_pd(A1,A2);
- A2 = _mm_unpackhi_pd(tmp,A2);
- tmp = C1;
- C1 = _mm_unpacklo_pd(C1,C2);
- C2 = _mm_unpackhi_pd(tmp,C2);
-
- B1 = matrix.template packet<MatrixAlignment>( 8); D1 = matrix.template packet<MatrixAlignment>(10);
- B2 = matrix.template packet<MatrixAlignment>(12); D2 = matrix.template packet<MatrixAlignment>(14);
- tmp = B1;
- B1 = _mm_unpacklo_pd(B1,B2);
- B2 = _mm_unpackhi_pd(tmp,B2);
- tmp = D1;
- D1 = _mm_unpacklo_pd(D1,D2);
- D2 = _mm_unpackhi_pd(tmp,D2);
- }
-
- __m128d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2, // partial invese of the sub-matrices
- DC1, DC2, AB1, AB2;
- __m128d dA, dB, dC, dD; // determinant of the sub-matrices
- __m128d det, d1, d2, rd;
-
- // dA = |A|
- dA = _mm_shuffle_pd(A2, A2, 1);
- dA = _mm_mul_pd(A1, dA);
- dA = _mm_sub_sd(dA, _mm_shuffle_pd(dA,dA,3));
- // dB = |B|
- dB = _mm_shuffle_pd(B2, B2, 1);
- dB = _mm_mul_pd(B1, dB);
- dB = _mm_sub_sd(dB, _mm_shuffle_pd(dB,dB,3));
-
- // AB = A# * B
- AB1 = _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,3));
- AB2 = _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,0));
- AB1 = _mm_sub_pd(AB1, _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,3)));
- AB2 = _mm_sub_pd(AB2, _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,0)));
-
- // dC = |C|
- dC = _mm_shuffle_pd(C2, C2, 1);
- dC = _mm_mul_pd(C1, dC);
- dC = _mm_sub_sd(dC, _mm_shuffle_pd(dC,dC,3));
- // dD = |D|
- dD = _mm_shuffle_pd(D2, D2, 1);
- dD = _mm_mul_pd(D1, dD);
- dD = _mm_sub_sd(dD, _mm_shuffle_pd(dD,dD,3));
-
- // DC = D# * C
- DC1 = _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,3));
- DC2 = _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,0));
- DC1 = _mm_sub_pd(DC1, _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,3)));
- DC2 = _mm_sub_pd(DC2, _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,0)));
-
- // rd = trace(AB*DC) = trace(A#*B*D#*C)
- d1 = _mm_mul_pd(AB1, _mm_shuffle_pd(DC1, DC2, 0));
- d2 = _mm_mul_pd(AB2, _mm_shuffle_pd(DC1, DC2, 3));
- rd = _mm_add_pd(d1, d2);
- rd = _mm_add_sd(rd, _mm_shuffle_pd(rd, rd,3));
-
- // iD = C*A#*B
- iD1 = _mm_mul_pd(AB1, _mm_shuffle_pd(C1,C1,0));
- iD2 = _mm_mul_pd(AB1, _mm_shuffle_pd(C2,C2,0));
- iD1 = _mm_add_pd(iD1, _mm_mul_pd(AB2, _mm_shuffle_pd(C1,C1,3)));
- iD2 = _mm_add_pd(iD2, _mm_mul_pd(AB2, _mm_shuffle_pd(C2,C2,3)));
-
- // iA = B*D#*C
- iA1 = _mm_mul_pd(DC1, _mm_shuffle_pd(B1,B1,0));
- iA2 = _mm_mul_pd(DC1, _mm_shuffle_pd(B2,B2,0));
- iA1 = _mm_add_pd(iA1, _mm_mul_pd(DC2, _mm_shuffle_pd(B1,B1,3)));
- iA2 = _mm_add_pd(iA2, _mm_mul_pd(DC2, _mm_shuffle_pd(B2,B2,3)));
-
- // iD = D*|A| - C*A#*B
- dA = _mm_shuffle_pd(dA,dA,0);
- iD1 = _mm_sub_pd(_mm_mul_pd(D1, dA), iD1);
- iD2 = _mm_sub_pd(_mm_mul_pd(D2, dA), iD2);
-
- // iA = A*|D| - B*D#*C;
- dD = _mm_shuffle_pd(dD,dD,0);
- iA1 = _mm_sub_pd(_mm_mul_pd(A1, dD), iA1);
- iA2 = _mm_sub_pd(_mm_mul_pd(A2, dD), iA2);
-
- d1 = _mm_mul_sd(dA, dD);
- d2 = _mm_mul_sd(dB, dC);
-
- // iB = D * (A#B)# = D*B#*A
- iB1 = _mm_mul_pd(D1, _mm_shuffle_pd(AB2,AB1,1));
- iB2 = _mm_mul_pd(D2, _mm_shuffle_pd(AB2,AB1,1));
- iB1 = _mm_sub_pd(iB1, _mm_mul_pd(_mm_shuffle_pd(D1,D1,1), _mm_shuffle_pd(AB2,AB1,2)));
- iB2 = _mm_sub_pd(iB2, _mm_mul_pd(_mm_shuffle_pd(D2,D2,1), _mm_shuffle_pd(AB2,AB1,2)));
-
- // det = |A|*|D| + |B|*|C| - trace(A#*B*D#*C)
- det = _mm_add_sd(d1, d2);
- det = _mm_sub_sd(det, rd);
-
- // iC = A * (D#C)# = A*C#*D
- iC1 = _mm_mul_pd(A1, _mm_shuffle_pd(DC2,DC1,1));
- iC2 = _mm_mul_pd(A2, _mm_shuffle_pd(DC2,DC1,1));
- iC1 = _mm_sub_pd(iC1, _mm_mul_pd(_mm_shuffle_pd(A1,A1,1), _mm_shuffle_pd(DC2,DC1,2)));
- iC2 = _mm_sub_pd(iC2, _mm_mul_pd(_mm_shuffle_pd(A2,A2,1), _mm_shuffle_pd(DC2,DC1,2)));
-
- rd = _mm_div_sd(_mm_set_sd(1.0), det);
-// #ifdef ZERO_SINGULAR
-// rd = _mm_and_pd(_mm_cmpneq_sd(det,_mm_setzero_pd()), rd);
-// #endif
- rd = _mm_shuffle_pd(rd,rd,0);
-
- // iB = C*|B| - D*B#*A
- dB = _mm_shuffle_pd(dB,dB,0);
- iB1 = _mm_sub_pd(_mm_mul_pd(C1, dB), iB1);
- iB2 = _mm_sub_pd(_mm_mul_pd(C2, dB), iB2);
-
- d1 = _mm_xor_pd(rd, _Sign_PN);
- d2 = _mm_xor_pd(rd, _Sign_NP);
-
- // iC = B*|C| - A*C#*D;
- dC = _mm_shuffle_pd(dC,dC,0);
- iC1 = _mm_sub_pd(_mm_mul_pd(B1, dC), iC1);
- iC2 = _mm_sub_pd(_mm_mul_pd(B2, dC), iC2);
-
- result.template writePacket<ResultAlignment>( 0, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 3), d1)); // iA# / det
- result.template writePacket<ResultAlignment>( 4, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 0), d2));
- result.template writePacket<ResultAlignment>( 2, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 3), d1)); // iB# / det
- result.template writePacket<ResultAlignment>( 6, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 0), d2));
- result.template writePacket<ResultAlignment>( 8, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 3), d1)); // iC# / det
- result.template writePacket<ResultAlignment>(12, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 0), d2));
- result.template writePacket<ResultAlignment>(10, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 3), d1)); // iD# / det
- result.template writePacket<ResultAlignment>(14, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 0), d2));
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_INVERSE_SSE_H
diff --git a/src/Eigen/src/MetisSupport/CMakeLists.txt b/src/Eigen/src/MetisSupport/CMakeLists.txt
deleted file mode 100644
index 2bad314..0000000
--- a/src/Eigen/src/MetisSupport/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_MetisSupport_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_MetisSupport_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/MetisSupport COMPONENT Devel
- )
diff --git a/src/Eigen/src/MetisSupport/MetisSupport.h b/src/Eigen/src/MetisSupport/MetisSupport.h
deleted file mode 100644
index f2bbef2..0000000
--- a/src/Eigen/src/MetisSupport/MetisSupport.h
+++ /dev/null
@@ -1,137 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-#ifndef METIS_SUPPORT_H
-#define METIS_SUPPORT_H
-
-namespace Eigen {
-/**
- * Get the fill-reducing ordering from the METIS package
- *
- * If A is the original matrix and Ap is the permuted matrix,
- * the fill-reducing permutation is defined as follows :
- * Row (column) i of A is the matperm(i) row (column) of Ap.
- * WARNING: As computed by METIS, this corresponds to the vector iperm (instead of perm)
- */
-template <typename Index>
-class MetisOrdering
-{
-public:
- typedef PermutationMatrix<Dynamic,Dynamic,Index> PermutationType;
- typedef Matrix<Index,Dynamic,1> IndexVector;
-
- template <typename MatrixType>
- void get_symmetrized_graph(const MatrixType& A)
- {
- Index m = A.cols();
- eigen_assert((A.rows() == A.cols()) && "ONLY FOR SQUARED MATRICES");
- // Get the transpose of the input matrix
- MatrixType At = A.transpose();
- // Get the number of nonzeros elements in each row/col of At+A
- Index TotNz = 0;
- IndexVector visited(m);
- visited.setConstant(-1);
- for (int j = 0; j < m; j++)
- {
- // Compute the union structure of of A(j,:) and At(j,:)
- visited(j) = j; // Do not include the diagonal element
- // Get the nonzeros in row/column j of A
- for (typename MatrixType::InnerIterator it(A, j); it; ++it)
- {
- Index idx = it.index(); // Get the row index (for column major) or column index (for row major)
- if (visited(idx) != j )
- {
- visited(idx) = j;
- ++TotNz;
- }
- }
- //Get the nonzeros in row/column j of At
- for (typename MatrixType::InnerIterator it(At, j); it; ++it)
- {
- Index idx = it.index();
- if(visited(idx) != j)
- {
- visited(idx) = j;
- ++TotNz;
- }
- }
- }
- // Reserve place for A + At
- m_indexPtr.resize(m+1);
- m_innerIndices.resize(TotNz);
-
- // Now compute the real adjacency list of each column/row
- visited.setConstant(-1);
- Index CurNz = 0;
- for (int j = 0; j < m; j++)
- {
- m_indexPtr(j) = CurNz;
-
- visited(j) = j; // Do not include the diagonal element
- // Add the pattern of row/column j of A to A+At
- for (typename MatrixType::InnerIterator it(A,j); it; ++it)
- {
- Index idx = it.index(); // Get the row index (for column major) or column index (for row major)
- if (visited(idx) != j )
- {
- visited(idx) = j;
- m_innerIndices(CurNz) = idx;
- CurNz++;
- }
- }
- //Add the pattern of row/column j of At to A+At
- for (typename MatrixType::InnerIterator it(At, j); it; ++it)
- {
- Index idx = it.index();
- if(visited(idx) != j)
- {
- visited(idx) = j;
- m_innerIndices(CurNz) = idx;
- ++CurNz;
- }
- }
- }
- m_indexPtr(m) = CurNz;
- }
-
- template <typename MatrixType>
- void operator() (const MatrixType& A, PermutationType& matperm)
- {
- Index m = A.cols();
- IndexVector perm(m),iperm(m);
- // First, symmetrize the matrix graph.
- get_symmetrized_graph(A);
- int output_error;
-
- // Call the fill-reducing routine from METIS
- output_error = METIS_NodeND(&m, m_indexPtr.data(), m_innerIndices.data(), NULL, NULL, perm.data(), iperm.data());
-
- if(output_error != METIS_OK)
- {
- //FIXME The ordering interface should define a class of possible errors
- std::cerr << "ERROR WHILE CALLING THE METIS PACKAGE \n";
- return;
- }
-
- // Get the fill-reducing permutation
- //NOTE: If Ap is the permuted matrix then perm and iperm vectors are defined as follows
- // Row (column) i of Ap is the perm(i) row(column) of A, and row (column) i of A is the iperm(i) row(column) of Ap
-
- matperm.resize(m);
- for (int j = 0; j < m; j++)
- matperm.indices()(iperm(j)) = j;
-
- }
-
- protected:
- IndexVector m_indexPtr; // Pointer to the adjacenccy list of each row/column
- IndexVector m_innerIndices; // Adjacency list
-};
-
-}// end namespace eigen
-#endif
diff --git a/src/Eigen/src/OrderingMethods/Amd.h b/src/Eigen/src/OrderingMethods/Amd.h
deleted file mode 100644
index 41b4fd7..0000000
--- a/src/Eigen/src/OrderingMethods/Amd.h
+++ /dev/null
@@ -1,435 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-
-/*
-
-NOTE: this routine has been adapted from the CSparse library:
-
-Copyright (c) 2006, Timothy A. Davis.
-http://www.cise.ufl.edu/research/sparse/CSparse
-
-CSparse is free software; you can redistribute it and/or
-modify it under the terms of the GNU Lesser General Public
-License as published by the Free Software Foundation; either
-version 2.1 of the License, or (at your option) any later version.
-
-CSparse is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-Lesser General Public License for more details.
-
-You should have received a copy of the GNU Lesser General Public
-License along with this Module; if not, write to the Free Software
-Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
-
-*/
-
-#include "../Core/util/NonMPL2.h"
-
-#ifndef EIGEN_SPARSE_AMD_H
-#define EIGEN_SPARSE_AMD_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename T> inline T amd_flip(const T& i) { return -i-2; }
-template<typename T> inline T amd_unflip(const T& i) { return i<0 ? amd_flip(i) : i; }
-template<typename T0, typename T1> inline bool amd_marked(const T0* w, const T1& j) { return w[j]<0; }
-template<typename T0, typename T1> inline void amd_mark(const T0* w, const T1& j) { return w[j] = amd_flip(w[j]); }
-
-/* clear w */
-template<typename Index>
-static int cs_wclear (Index mark, Index lemax, Index *w, Index n)
-{
- Index k;
- if(mark < 2 || (mark + lemax < 0))
- {
- for(k = 0; k < n; k++)
- if(w[k] != 0)
- w[k] = 1;
- mark = 2;
- }
- return (mark); /* at this point, w[0..n-1] < mark holds */
-}
-
-/* depth-first search and postorder of a tree rooted at node j */
-template<typename Index>
-Index cs_tdfs(Index j, Index k, Index *head, const Index *next, Index *post, Index *stack)
-{
- int i, p, top = 0;
- if(!head || !next || !post || !stack) return (-1); /* check inputs */
- stack[0] = j; /* place j on the stack */
- while (top >= 0) /* while (stack is not empty) */
- {
- p = stack[top]; /* p = top of stack */
- i = head[p]; /* i = youngest child of p */
- if(i == -1)
- {
- top--; /* p has no unordered children left */
- post[k++] = p; /* node p is the kth postordered node */
- }
- else
- {
- head[p] = next[i]; /* remove i from children of p */
- stack[++top] = i; /* start dfs on child node i */
- }
- }
- return k;
-}
-
-
-/** \internal
- * \ingroup OrderingMethods_Module
- * Approximate minimum degree ordering algorithm.
- * \returns the permutation P reducing the fill-in of the input matrix \a C
- * The input matrix \a C must be a selfadjoint compressed column major SparseMatrix object. Both the upper and lower parts have to be stored, but the diagonal entries are optional.
- * On exit the values of C are destroyed */
-template<typename Scalar, typename Index>
-void minimum_degree_ordering(SparseMatrix<Scalar,ColMajor,Index>& C, PermutationMatrix<Dynamic,Dynamic,Index>& perm)
-{
- using std::sqrt;
-
- int d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1,
- k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi,
- ok, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, t;
- unsigned int h;
-
- Index n = C.cols();
- dense = std::max<Index> (16, Index(10 * sqrt(double(n)))); /* find dense threshold */
- dense = std::min<Index> (n-2, dense);
-
- Index cnz = C.nonZeros();
- perm.resize(n+1);
- t = cnz + cnz/5 + 2*n; /* add elbow room to C */
- C.resizeNonZeros(t);
-
- Index* W = new Index[8*(n+1)]; /* get workspace */
- Index* len = W;
- Index* nv = W + (n+1);
- Index* next = W + 2*(n+1);
- Index* head = W + 3*(n+1);
- Index* elen = W + 4*(n+1);
- Index* degree = W + 5*(n+1);
- Index* w = W + 6*(n+1);
- Index* hhead = W + 7*(n+1);
- Index* last = perm.indices().data(); /* use P as workspace for last */
-
- /* --- Initialize quotient graph ---------------------------------------- */
- Index* Cp = C.outerIndexPtr();
- Index* Ci = C.innerIndexPtr();
- for(k = 0; k < n; k++)
- len[k] = Cp[k+1] - Cp[k];
- len[n] = 0;
- nzmax = t;
-
- for(i = 0; i <= n; i++)
- {
- head[i] = -1; // degree list i is empty
- last[i] = -1;
- next[i] = -1;
- hhead[i] = -1; // hash list i is empty
- nv[i] = 1; // node i is just one node
- w[i] = 1; // node i is alive
- elen[i] = 0; // Ek of node i is empty
- degree[i] = len[i]; // degree of node i
- }
- mark = internal::cs_wclear<Index>(0, 0, w, n); /* clear w */
- elen[n] = -2; /* n is a dead element */
- Cp[n] = -1; /* n is a root of assembly tree */
- w[n] = 0; /* n is a dead element */
-
- /* --- Initialize degree lists ------------------------------------------ */
- for(i = 0; i < n; i++)
- {
- d = degree[i];
- if(d == 0) /* node i is empty */
- {
- elen[i] = -2; /* element i is dead */
- nel++;
- Cp[i] = -1; /* i is a root of assembly tree */
- w[i] = 0;
- }
- else if(d > dense) /* node i is dense */
- {
- nv[i] = 0; /* absorb i into element n */
- elen[i] = -1; /* node i is dead */
- nel++;
- Cp[i] = amd_flip (n);
- nv[n]++;
- }
- else
- {
- if(head[d] != -1) last[head[d]] = i;
- next[i] = head[d]; /* put node i in degree list d */
- head[d] = i;
- }
- }
-
- while (nel < n) /* while (selecting pivots) do */
- {
- /* --- Select node of minimum approximate degree -------------------- */
- for(k = -1; mindeg < n && (k = head[mindeg]) == -1; mindeg++) {}
- if(next[k] != -1) last[next[k]] = -1;
- head[mindeg] = next[k]; /* remove k from degree list */
- elenk = elen[k]; /* elenk = |Ek| */
- nvk = nv[k]; /* # of nodes k represents */
- nel += nvk; /* nv[k] nodes of A eliminated */
-
- /* --- Garbage collection ------------------------------------------- */
- if(elenk > 0 && cnz + mindeg >= nzmax)
- {
- for(j = 0; j < n; j++)
- {
- if((p = Cp[j]) >= 0) /* j is a live node or element */
- {
- Cp[j] = Ci[p]; /* save first entry of object */
- Ci[p] = amd_flip (j); /* first entry is now amd_flip(j) */
- }
- }
- for(q = 0, p = 0; p < cnz; ) /* scan all of memory */
- {
- if((j = amd_flip (Ci[p++])) >= 0) /* found object j */
- {
- Ci[q] = Cp[j]; /* restore first entry of object */
- Cp[j] = q++; /* new pointer to object j */
- for(k3 = 0; k3 < len[j]-1; k3++) Ci[q++] = Ci[p++];
- }
- }
- cnz = q; /* Ci[cnz...nzmax-1] now free */
- }
-
- /* --- Construct new element ---------------------------------------- */
- dk = 0;
- nv[k] = -nvk; /* flag k as in Lk */
- p = Cp[k];
- pk1 = (elenk == 0) ? p : cnz; /* do in place if elen[k] == 0 */
- pk2 = pk1;
- for(k1 = 1; k1 <= elenk + 1; k1++)
- {
- if(k1 > elenk)
- {
- e = k; /* search the nodes in k */
- pj = p; /* list of nodes starts at Ci[pj]*/
- ln = len[k] - elenk; /* length of list of nodes in k */
- }
- else
- {
- e = Ci[p++]; /* search the nodes in e */
- pj = Cp[e];
- ln = len[e]; /* length of list of nodes in e */
- }
- for(k2 = 1; k2 <= ln; k2++)
- {
- i = Ci[pj++];
- if((nvi = nv[i]) <= 0) continue; /* node i dead, or seen */
- dk += nvi; /* degree[Lk] += size of node i */
- nv[i] = -nvi; /* negate nv[i] to denote i in Lk*/
- Ci[pk2++] = i; /* place i in Lk */
- if(next[i] != -1) last[next[i]] = last[i];
- if(last[i] != -1) /* remove i from degree list */
- {
- next[last[i]] = next[i];
- }
- else
- {
- head[degree[i]] = next[i];
- }
- }
- if(e != k)
- {
- Cp[e] = amd_flip (k); /* absorb e into k */
- w[e] = 0; /* e is now a dead element */
- }
- }
- if(elenk != 0) cnz = pk2; /* Ci[cnz...nzmax] is free */
- degree[k] = dk; /* external degree of k - |Lk\i| */
- Cp[k] = pk1; /* element k is in Ci[pk1..pk2-1] */
- len[k] = pk2 - pk1;
- elen[k] = -2; /* k is now an element */
-
- /* --- Find set differences ----------------------------------------- */
- mark = internal::cs_wclear<Index>(mark, lemax, w, n); /* clear w if necessary */
- for(pk = pk1; pk < pk2; pk++) /* scan 1: find |Le\Lk| */
- {
- i = Ci[pk];
- if((eln = elen[i]) <= 0) continue;/* skip if elen[i] empty */
- nvi = -nv[i]; /* nv[i] was negated */
- wnvi = mark - nvi;
- for(p = Cp[i]; p <= Cp[i] + eln - 1; p++) /* scan Ei */
- {
- e = Ci[p];
- if(w[e] >= mark)
- {
- w[e] -= nvi; /* decrement |Le\Lk| */
- }
- else if(w[e] != 0) /* ensure e is a live element */
- {
- w[e] = degree[e] + wnvi; /* 1st time e seen in scan 1 */
- }
- }
- }
-
- /* --- Degree update ------------------------------------------------ */
- for(pk = pk1; pk < pk2; pk++) /* scan2: degree update */
- {
- i = Ci[pk]; /* consider node i in Lk */
- p1 = Cp[i];
- p2 = p1 + elen[i] - 1;
- pn = p1;
- for(h = 0, d = 0, p = p1; p <= p2; p++) /* scan Ei */
- {
- e = Ci[p];
- if(w[e] != 0) /* e is an unabsorbed element */
- {
- dext = w[e] - mark; /* dext = |Le\Lk| */
- if(dext > 0)
- {
- d += dext; /* sum up the set differences */
- Ci[pn++] = e; /* keep e in Ei */
- h += e; /* compute the hash of node i */
- }
- else
- {
- Cp[e] = amd_flip (k); /* aggressive absorb. e->k */
- w[e] = 0; /* e is a dead element */
- }
- }
- }
- elen[i] = pn - p1 + 1; /* elen[i] = |Ei| */
- p3 = pn;
- p4 = p1 + len[i];
- for(p = p2 + 1; p < p4; p++) /* prune edges in Ai */
- {
- j = Ci[p];
- if((nvj = nv[j]) <= 0) continue; /* node j dead or in Lk */
- d += nvj; /* degree(i) += |j| */
- Ci[pn++] = j; /* place j in node list of i */
- h += j; /* compute hash for node i */
- }
- if(d == 0) /* check for mass elimination */
- {
- Cp[i] = amd_flip (k); /* absorb i into k */
- nvi = -nv[i];
- dk -= nvi; /* |Lk| -= |i| */
- nvk += nvi; /* |k| += nv[i] */
- nel += nvi;
- nv[i] = 0;
- elen[i] = -1; /* node i is dead */
- }
- else
- {
- degree[i] = std::min<Index> (degree[i], d); /* update degree(i) */
- Ci[pn] = Ci[p3]; /* move first node to end */
- Ci[p3] = Ci[p1]; /* move 1st el. to end of Ei */
- Ci[p1] = k; /* add k as 1st element in of Ei */
- len[i] = pn - p1 + 1; /* new len of adj. list of node i */
- h %= n; /* finalize hash of i */
- next[i] = hhead[h]; /* place i in hash bucket */
- hhead[h] = i;
- last[i] = h; /* save hash of i in last[i] */
- }
- } /* scan2 is done */
- degree[k] = dk; /* finalize |Lk| */
- lemax = std::max<Index>(lemax, dk);
- mark = internal::cs_wclear<Index>(mark+lemax, lemax, w, n); /* clear w */
-
- /* --- Supernode detection ------------------------------------------ */
- for(pk = pk1; pk < pk2; pk++)
- {
- i = Ci[pk];
- if(nv[i] >= 0) continue; /* skip if i is dead */
- h = last[i]; /* scan hash bucket of node i */
- i = hhead[h];
- hhead[h] = -1; /* hash bucket will be empty */
- for(; i != -1 && next[i] != -1; i = next[i], mark++)
- {
- ln = len[i];
- eln = elen[i];
- for(p = Cp[i]+1; p <= Cp[i] + ln-1; p++) w[Ci[p]] = mark;
- jlast = i;
- for(j = next[i]; j != -1; ) /* compare i with all j */
- {
- ok = (len[j] == ln) && (elen[j] == eln);
- for(p = Cp[j] + 1; ok && p <= Cp[j] + ln - 1; p++)
- {
- if(w[Ci[p]] != mark) ok = 0; /* compare i and j*/
- }
- if(ok) /* i and j are identical */
- {
- Cp[j] = amd_flip (i); /* absorb j into i */
- nv[i] += nv[j];
- nv[j] = 0;
- elen[j] = -1; /* node j is dead */
- j = next[j]; /* delete j from hash bucket */
- next[jlast] = j;
- }
- else
- {
- jlast = j; /* j and i are different */
- j = next[j];
- }
- }
- }
- }
-
- /* --- Finalize new element------------------------------------------ */
- for(p = pk1, pk = pk1; pk < pk2; pk++) /* finalize Lk */
- {
- i = Ci[pk];
- if((nvi = -nv[i]) <= 0) continue;/* skip if i is dead */
- nv[i] = nvi; /* restore nv[i] */
- d = degree[i] + dk - nvi; /* compute external degree(i) */
- d = std::min<Index> (d, n - nel - nvi);
- if(head[d] != -1) last[head[d]] = i;
- next[i] = head[d]; /* put i back in degree list */
- last[i] = -1;
- head[d] = i;
- mindeg = std::min<Index> (mindeg, d); /* find new minimum degree */
- degree[i] = d;
- Ci[p++] = i; /* place i in Lk */
- }
- nv[k] = nvk; /* # nodes absorbed into k */
- if((len[k] = p-pk1) == 0) /* length of adj list of element k*/
- {
- Cp[k] = -1; /* k is a root of the tree */
- w[k] = 0; /* k is now a dead element */
- }
- if(elenk != 0) cnz = p; /* free unused space in Lk */
- }
-
- /* --- Postordering ----------------------------------------------------- */
- for(i = 0; i < n; i++) Cp[i] = amd_flip (Cp[i]);/* fix assembly tree */
- for(j = 0; j <= n; j++) head[j] = -1;
- for(j = n; j >= 0; j--) /* place unordered nodes in lists */
- {
- if(nv[j] > 0) continue; /* skip if j is an element */
- next[j] = head[Cp[j]]; /* place j in list of its parent */
- head[Cp[j]] = j;
- }
- for(e = n; e >= 0; e--) /* place elements in lists */
- {
- if(nv[e] <= 0) continue; /* skip unless e is an element */
- if(Cp[e] != -1)
- {
- next[e] = head[Cp[e]]; /* place e in list of its parent */
- head[Cp[e]] = e;
- }
- }
- for(k = 0, i = 0; i <= n; i++) /* postorder the assembly tree */
- {
- if(Cp[i] == -1) k = internal::cs_tdfs<Index>(i, k, head, next, perm.indices().data(), w);
- }
-
- perm.indices().conservativeResize(n);
-
- delete[] W;
-}
-
-} // namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSE_AMD_H
diff --git a/src/Eigen/src/OrderingMethods/CMakeLists.txt b/src/Eigen/src/OrderingMethods/CMakeLists.txt
deleted file mode 100644
index 9f4bb27..0000000
--- a/src/Eigen/src/OrderingMethods/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_OrderingMethods_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_OrderingMethods_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/OrderingMethods COMPONENT Devel
- )
diff --git a/src/Eigen/src/OrderingMethods/Eigen_Colamd.h b/src/Eigen/src/OrderingMethods/Eigen_Colamd.h
deleted file mode 100644
index 44548f6..0000000
--- a/src/Eigen/src/OrderingMethods/Eigen_Colamd.h
+++ /dev/null
@@ -1,1850 +0,0 @@
-// // This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// This file is modified from the colamd/symamd library. The copyright is below
-
-// The authors of the code itself are Stefan I. Larimore and Timothy A.
-// Davis (davis@cise.ufl.edu), University of Florida. The algorithm was
-// developed in collaboration with John Gilbert, Xerox PARC, and Esmond
-// Ng, Oak Ridge National Laboratory.
-//
-// Date:
-//
-// September 8, 2003. Version 2.3.
-//
-// Acknowledgements:
-//
-// This work was supported by the National Science Foundation, under
-// grants DMS-9504974 and DMS-9803599.
-//
-// Notice:
-//
-// Copyright (c) 1998-2003 by the University of Florida.
-// All Rights Reserved.
-//
-// THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
-// EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-//
-// Permission is hereby granted to use, copy, modify, and/or distribute
-// this program, provided that the Copyright, this License, and the
-// Availability of the original version is retained on all copies and made
-// accessible to the end-user of any code or package that includes COLAMD
-// or any modified version of COLAMD.
-//
-// Availability:
-//
-// The colamd/symamd library is available at
-//
-// http://www.cise.ufl.edu/research/sparse/colamd/
-
-// This is the http://www.cise.ufl.edu/research/sparse/colamd/colamd.h
-// file. It is required by the colamd.c, colamdmex.c, and symamdmex.c
-// files, and by any C code that calls the routines whose prototypes are
-// listed below, or that uses the colamd/symamd definitions listed below.
-
-#ifndef EIGEN_COLAMD_H
-#define EIGEN_COLAMD_H
-
-namespace internal {
-/* Ensure that debugging is turned off: */
-#ifndef COLAMD_NDEBUG
-#define COLAMD_NDEBUG
-#endif /* NDEBUG */
-/* ========================================================================== */
-/* === Knob and statistics definitions ====================================== */
-/* ========================================================================== */
-
-/* size of the knobs [ ] array. Only knobs [0..1] are currently used. */
-#define COLAMD_KNOBS 20
-
-/* number of output statistics. Only stats [0..6] are currently used. */
-#define COLAMD_STATS 20
-
-/* knobs [0] and stats [0]: dense row knob and output statistic. */
-#define COLAMD_DENSE_ROW 0
-
-/* knobs [1] and stats [1]: dense column knob and output statistic. */
-#define COLAMD_DENSE_COL 1
-
-/* stats [2]: memory defragmentation count output statistic */
-#define COLAMD_DEFRAG_COUNT 2
-
-/* stats [3]: colamd status: zero OK, > 0 warning or notice, < 0 error */
-#define COLAMD_STATUS 3
-
-/* stats [4..6]: error info, or info on jumbled columns */
-#define COLAMD_INFO1 4
-#define COLAMD_INFO2 5
-#define COLAMD_INFO3 6
-
-/* error codes returned in stats [3]: */
-#define COLAMD_OK (0)
-#define COLAMD_OK_BUT_JUMBLED (1)
-#define COLAMD_ERROR_A_not_present (-1)
-#define COLAMD_ERROR_p_not_present (-2)
-#define COLAMD_ERROR_nrow_negative (-3)
-#define COLAMD_ERROR_ncol_negative (-4)
-#define COLAMD_ERROR_nnz_negative (-5)
-#define COLAMD_ERROR_p0_nonzero (-6)
-#define COLAMD_ERROR_A_too_small (-7)
-#define COLAMD_ERROR_col_length_negative (-8)
-#define COLAMD_ERROR_row_index_out_of_bounds (-9)
-#define COLAMD_ERROR_out_of_memory (-10)
-#define COLAMD_ERROR_internal_error (-999)
-
-/* ========================================================================== */
-/* === Definitions ========================================================== */
-/* ========================================================================== */
-
-#define COLAMD_MAX(a,b) (((a) > (b)) ? (a) : (b))
-#define COLAMD_MIN(a,b) (((a) < (b)) ? (a) : (b))
-
-#define ONES_COMPLEMENT(r) (-(r)-1)
-
-/* -------------------------------------------------------------------------- */
-
-#define COLAMD_EMPTY (-1)
-
-/* Row and column status */
-#define ALIVE (0)
-#define DEAD (-1)
-
-/* Column status */
-#define DEAD_PRINCIPAL (-1)
-#define DEAD_NON_PRINCIPAL (-2)
-
-/* Macros for row and column status update and checking. */
-#define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark)
-#define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE)
-#define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE)
-#define COL_IS_DEAD(c) (Col [c].start < ALIVE)
-#define COL_IS_ALIVE(c) (Col [c].start >= ALIVE)
-#define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL)
-#define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; }
-#define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; }
-#define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; }
-
-/* ========================================================================== */
-/* === Colamd reporting mechanism =========================================== */
-/* ========================================================================== */
-
-// == Row and Column structures ==
-template <typename Index>
-struct colamd_col
-{
- Index start ; /* index for A of first row in this column, or DEAD */
- /* if column is dead */
- Index length ; /* number of rows in this column */
- union
- {
- Index thickness ; /* number of original columns represented by this */
- /* col, if the column is alive */
- Index parent ; /* parent in parent tree super-column structure, if */
- /* the column is dead */
- } shared1 ;
- union
- {
- Index score ; /* the score used to maintain heap, if col is alive */
- Index order ; /* pivot ordering of this column, if col is dead */
- } shared2 ;
- union
- {
- Index headhash ; /* head of a hash bucket, if col is at the head of */
- /* a degree list */
- Index hash ; /* hash value, if col is not in a degree list */
- Index prev ; /* previous column in degree list, if col is in a */
- /* degree list (but not at the head of a degree list) */
- } shared3 ;
- union
- {
- Index degree_next ; /* next column, if col is in a degree list */
- Index hash_next ; /* next column, if col is in a hash list */
- } shared4 ;
-
-};
-
-template <typename Index>
-struct Colamd_Row
-{
- Index start ; /* index for A of first col in this row */
- Index length ; /* number of principal columns in this row */
- union
- {
- Index degree ; /* number of principal & non-principal columns in row */
- Index p ; /* used as a row pointer in init_rows_cols () */
- } shared1 ;
- union
- {
- Index mark ; /* for computing set differences and marking dead rows*/
- Index first_column ;/* first column in row (used in garbage collection) */
- } shared2 ;
-
-};
-
-/* ========================================================================== */
-/* === Colamd recommended memory size ======================================= */
-/* ========================================================================== */
-
-/*
- The recommended length Alen of the array A passed to colamd is given by
- the COLAMD_RECOMMENDED (nnz, n_row, n_col) macro. It returns -1 if any
- argument is negative. 2*nnz space is required for the row and column
- indices of the matrix. colamd_c (n_col) + colamd_r (n_row) space is
- required for the Col and Row arrays, respectively, which are internal to
- colamd. An additional n_col space is the minimal amount of "elbow room",
- and nnz/5 more space is recommended for run time efficiency.
-
- This macro is not needed when using symamd.
-
- Explicit typecast to Index added Sept. 23, 2002, COLAMD version 2.2, to avoid
- gcc -pedantic warning messages.
-*/
-template <typename Index>
-inline Index colamd_c(Index n_col)
-{ return Index( ((n_col) + 1) * sizeof (colamd_col<Index>) / sizeof (Index) ) ; }
-
-template <typename Index>
-inline Index colamd_r(Index n_row)
-{ return Index(((n_row) + 1) * sizeof (Colamd_Row<Index>) / sizeof (Index)); }
-
-// Prototypes of non-user callable routines
-template <typename Index>
-static Index init_rows_cols (Index n_row, Index n_col, Colamd_Row<Index> Row [], colamd_col<Index> col [], Index A [], Index p [], Index stats[COLAMD_STATS] );
-
-template <typename Index>
-static void init_scoring (Index n_row, Index n_col, Colamd_Row<Index> Row [], colamd_col<Index> Col [], Index A [], Index head [], double knobs[COLAMD_KNOBS], Index *p_n_row2, Index *p_n_col2, Index *p_max_deg);
-
-template <typename Index>
-static Index find_ordering (Index n_row, Index n_col, Index Alen, Colamd_Row<Index> Row [], colamd_col<Index> Col [], Index A [], Index head [], Index n_col2, Index max_deg, Index pfree);
-
-template <typename Index>
-static void order_children (Index n_col, colamd_col<Index> Col [], Index p []);
-
-template <typename Index>
-static void detect_super_cols (colamd_col<Index> Col [], Index A [], Index head [], Index row_start, Index row_length ) ;
-
-template <typename Index>
-static Index garbage_collection (Index n_row, Index n_col, Colamd_Row<Index> Row [], colamd_col<Index> Col [], Index A [], Index *pfree) ;
-
-template <typename Index>
-static inline Index clear_mark (Index n_row, Colamd_Row<Index> Row [] ) ;
-
-/* === No debugging ========================================================= */
-
-#define COLAMD_DEBUG0(params) ;
-#define COLAMD_DEBUG1(params) ;
-#define COLAMD_DEBUG2(params) ;
-#define COLAMD_DEBUG3(params) ;
-#define COLAMD_DEBUG4(params) ;
-
-#define COLAMD_ASSERT(expression) ((void) 0)
-
-
-/**
- * \brief Returns the recommended value of Alen
- *
- * Returns recommended value of Alen for use by colamd.
- * Returns -1 if any input argument is negative.
- * The use of this routine or macro is optional.
- * Note that the macro uses its arguments more than once,
- * so be careful for side effects, if you pass expressions as arguments to COLAMD_RECOMMENDED.
- *
- * \param nnz nonzeros in A
- * \param n_row number of rows in A
- * \param n_col number of columns in A
- * \return recommended value of Alen for use by colamd
- */
-template <typename Index>
-inline Index colamd_recommended ( Index nnz, Index n_row, Index n_col)
-{
- if ((nnz) < 0 || (n_row) < 0 || (n_col) < 0)
- return (-1);
- else
- return (2 * (nnz) + colamd_c (n_col) + colamd_r (n_row) + (n_col) + ((nnz) / 5));
-}
-
-/**
- * \brief set default parameters The use of this routine is optional.
- *
- * Colamd: rows with more than (knobs [COLAMD_DENSE_ROW] * n_col)
- * entries are removed prior to ordering. Columns with more than
- * (knobs [COLAMD_DENSE_COL] * n_row) entries are removed prior to
- * ordering, and placed last in the output column ordering.
- *
- * COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1,
- * respectively, in colamd.h. Default values of these two knobs
- * are both 0.5. Currently, only knobs [0] and knobs [1] are
- * used, but future versions may use more knobs. If so, they will
- * be properly set to their defaults by the future version of
- * colamd_set_defaults, so that the code that calls colamd will
- * not need to change, assuming that you either use
- * colamd_set_defaults, or pass a (double *) NULL pointer as the
- * knobs array to colamd or symamd.
- *
- * \param knobs parameter settings for colamd
- */
-
-static inline void colamd_set_defaults(double knobs[COLAMD_KNOBS])
-{
- /* === Local variables ================================================== */
-
- int i ;
-
- if (!knobs)
- {
- return ; /* no knobs to initialize */
- }
- for (i = 0 ; i < COLAMD_KNOBS ; i++)
- {
- knobs [i] = 0 ;
- }
- knobs [COLAMD_DENSE_ROW] = 0.5 ; /* ignore rows over 50% dense */
- knobs [COLAMD_DENSE_COL] = 0.5 ; /* ignore columns over 50% dense */
-}
-
-/**
- * \brief Computes a column ordering using the column approximate minimum degree ordering
- *
- * Computes a column ordering (Q) of A such that P(AQ)=LU or
- * (AQ)'AQ=LL' have less fill-in and require fewer floating point
- * operations than factorizing the unpermuted matrix A or A'A,
- * respectively.
- *
- *
- * \param n_row number of rows in A
- * \param n_col number of columns in A
- * \param Alen, size of the array A
- * \param A row indices of the matrix, of size ALen
- * \param p column pointers of A, of size n_col+1
- * \param knobs parameter settings for colamd
- * \param stats colamd output statistics and error codes
- */
-template <typename Index>
-static bool colamd(Index n_row, Index n_col, Index Alen, Index *A, Index *p, double knobs[COLAMD_KNOBS], Index stats[COLAMD_STATS])
-{
- /* === Local variables ================================================== */
-
- Index i ; /* loop index */
- Index nnz ; /* nonzeros in A */
- Index Row_size ; /* size of Row [], in integers */
- Index Col_size ; /* size of Col [], in integers */
- Index need ; /* minimum required length of A */
- Colamd_Row<Index> *Row ; /* pointer into A of Row [0..n_row] array */
- colamd_col<Index> *Col ; /* pointer into A of Col [0..n_col] array */
- Index n_col2 ; /* number of non-dense, non-empty columns */
- Index n_row2 ; /* number of non-dense, non-empty rows */
- Index ngarbage ; /* number of garbage collections performed */
- Index max_deg ; /* maximum row degree */
- double default_knobs [COLAMD_KNOBS] ; /* default knobs array */
-
-
- /* === Check the input arguments ======================================== */
-
- if (!stats)
- {
- COLAMD_DEBUG0 (("colamd: stats not present\n")) ;
- return (false) ;
- }
- for (i = 0 ; i < COLAMD_STATS ; i++)
- {
- stats [i] = 0 ;
- }
- stats [COLAMD_STATUS] = COLAMD_OK ;
- stats [COLAMD_INFO1] = -1 ;
- stats [COLAMD_INFO2] = -1 ;
-
- if (!A) /* A is not present */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
- COLAMD_DEBUG0 (("colamd: A not present\n")) ;
- return (false) ;
- }
-
- if (!p) /* p is not present */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
- COLAMD_DEBUG0 (("colamd: p not present\n")) ;
- return (false) ;
- }
-
- if (n_row < 0) /* n_row must be >= 0 */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ;
- stats [COLAMD_INFO1] = n_row ;
- COLAMD_DEBUG0 (("colamd: nrow negative %d\n", n_row)) ;
- return (false) ;
- }
-
- if (n_col < 0) /* n_col must be >= 0 */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
- stats [COLAMD_INFO1] = n_col ;
- COLAMD_DEBUG0 (("colamd: ncol negative %d\n", n_col)) ;
- return (false) ;
- }
-
- nnz = p [n_col] ;
- if (nnz < 0) /* nnz must be >= 0 */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
- stats [COLAMD_INFO1] = nnz ;
- COLAMD_DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ;
- return (false) ;
- }
-
- if (p [0] != 0)
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
- stats [COLAMD_INFO1] = p [0] ;
- COLAMD_DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ;
- return (false) ;
- }
-
- /* === If no knobs, set default knobs =================================== */
-
- if (!knobs)
- {
- colamd_set_defaults (default_knobs) ;
- knobs = default_knobs ;
- }
-
- /* === Allocate the Row and Col arrays from array A ===================== */
-
- Col_size = colamd_c (n_col) ;
- Row_size = colamd_r (n_row) ;
- need = 2*nnz + n_col + Col_size + Row_size ;
-
- if (need > Alen)
- {
- /* not enough space in array A to perform the ordering */
- stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ;
- stats [COLAMD_INFO1] = need ;
- stats [COLAMD_INFO2] = Alen ;
- COLAMD_DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen));
- return (false) ;
- }
-
- Alen -= Col_size + Row_size ;
- Col = (colamd_col<Index> *) &A [Alen] ;
- Row = (Colamd_Row<Index> *) &A [Alen + Col_size] ;
-
- /* === Construct the row and column data structures ===================== */
-
- if (!Eigen::internal::init_rows_cols (n_row, n_col, Row, Col, A, p, stats))
- {
- /* input matrix is invalid */
- COLAMD_DEBUG0 (("colamd: Matrix invalid\n")) ;
- return (false) ;
- }
-
- /* === Initialize scores, kill dense rows/columns ======================= */
-
- Eigen::internal::init_scoring (n_row, n_col, Row, Col, A, p, knobs,
- &n_row2, &n_col2, &max_deg) ;
-
- /* === Order the supercolumns =========================================== */
-
- ngarbage = Eigen::internal::find_ordering (n_row, n_col, Alen, Row, Col, A, p,
- n_col2, max_deg, 2*nnz) ;
-
- /* === Order the non-principal columns ================================== */
-
- Eigen::internal::order_children (n_col, Col, p) ;
-
- /* === Return statistics in stats ======================================= */
-
- stats [COLAMD_DENSE_ROW] = n_row - n_row2 ;
- stats [COLAMD_DENSE_COL] = n_col - n_col2 ;
- stats [COLAMD_DEFRAG_COUNT] = ngarbage ;
- COLAMD_DEBUG0 (("colamd: done.\n")) ;
- return (true) ;
-}
-
-/* ========================================================================== */
-/* === NON-USER-CALLABLE ROUTINES: ========================================== */
-/* ========================================================================== */
-
-/* There are no user-callable routines beyond this point in the file */
-
-
-/* ========================================================================== */
-/* === init_rows_cols ======================================================= */
-/* ========================================================================== */
-
-/*
- Takes the column form of the matrix in A and creates the row form of the
- matrix. Also, row and column attributes are stored in the Col and Row
- structs. If the columns are un-sorted or contain duplicate row indices,
- this routine will also sort and remove duplicate row indices from the
- column form of the matrix. Returns false if the matrix is invalid,
- true otherwise. Not user-callable.
-*/
-template <typename Index>
-static Index init_rows_cols /* returns true if OK, or false otherwise */
- (
- /* === Parameters ======================================================= */
-
- Index n_row, /* number of rows of A */
- Index n_col, /* number of columns of A */
- Colamd_Row<Index> Row [], /* of size n_row+1 */
- colamd_col<Index> Col [], /* of size n_col+1 */
- Index A [], /* row indices of A, of size Alen */
- Index p [], /* pointers to columns in A, of size n_col+1 */
- Index stats [COLAMD_STATS] /* colamd statistics */
- )
-{
- /* === Local variables ================================================== */
-
- Index col ; /* a column index */
- Index row ; /* a row index */
- Index *cp ; /* a column pointer */
- Index *cp_end ; /* a pointer to the end of a column */
- Index *rp ; /* a row pointer */
- Index *rp_end ; /* a pointer to the end of a row */
- Index last_row ; /* previous row */
-
- /* === Initialize columns, and check column pointers ==================== */
-
- for (col = 0 ; col < n_col ; col++)
- {
- Col [col].start = p [col] ;
- Col [col].length = p [col+1] - p [col] ;
-
- if (Col [col].length < 0)
- {
- /* column pointers must be non-decreasing */
- stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
- stats [COLAMD_INFO1] = col ;
- stats [COLAMD_INFO2] = Col [col].length ;
- COLAMD_DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ;
- return (false) ;
- }
-
- Col [col].shared1.thickness = 1 ;
- Col [col].shared2.score = 0 ;
- Col [col].shared3.prev = COLAMD_EMPTY ;
- Col [col].shared4.degree_next = COLAMD_EMPTY ;
- }
-
- /* p [0..n_col] no longer needed, used as "head" in subsequent routines */
-
- /* === Scan columns, compute row degrees, and check row indices ========= */
-
- stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/
-
- for (row = 0 ; row < n_row ; row++)
- {
- Row [row].length = 0 ;
- Row [row].shared2.mark = -1 ;
- }
-
- for (col = 0 ; col < n_col ; col++)
- {
- last_row = -1 ;
-
- cp = &A [p [col]] ;
- cp_end = &A [p [col+1]] ;
-
- while (cp < cp_end)
- {
- row = *cp++ ;
-
- /* make sure row indices within range */
- if (row < 0 || row >= n_row)
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
- stats [COLAMD_INFO1] = col ;
- stats [COLAMD_INFO2] = row ;
- stats [COLAMD_INFO3] = n_row ;
- COLAMD_DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ;
- return (false) ;
- }
-
- if (row <= last_row || Row [row].shared2.mark == col)
- {
- /* row index are unsorted or repeated (or both), thus col */
- /* is jumbled. This is a notice, not an error condition. */
- stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
- stats [COLAMD_INFO1] = col ;
- stats [COLAMD_INFO2] = row ;
- (stats [COLAMD_INFO3]) ++ ;
- COLAMD_DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col));
- }
-
- if (Row [row].shared2.mark != col)
- {
- Row [row].length++ ;
- }
- else
- {
- /* this is a repeated entry in the column, */
- /* it will be removed */
- Col [col].length-- ;
- }
-
- /* mark the row as having been seen in this column */
- Row [row].shared2.mark = col ;
-
- last_row = row ;
- }
- }
-
- /* === Compute row pointers ============================================= */
-
- /* row form of the matrix starts directly after the column */
- /* form of matrix in A */
- Row [0].start = p [n_col] ;
- Row [0].shared1.p = Row [0].start ;
- Row [0].shared2.mark = -1 ;
- for (row = 1 ; row < n_row ; row++)
- {
- Row [row].start = Row [row-1].start + Row [row-1].length ;
- Row [row].shared1.p = Row [row].start ;
- Row [row].shared2.mark = -1 ;
- }
-
- /* === Create row form ================================================== */
-
- if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
- {
- /* if cols jumbled, watch for repeated row indices */
- for (col = 0 ; col < n_col ; col++)
- {
- cp = &A [p [col]] ;
- cp_end = &A [p [col+1]] ;
- while (cp < cp_end)
- {
- row = *cp++ ;
- if (Row [row].shared2.mark != col)
- {
- A [(Row [row].shared1.p)++] = col ;
- Row [row].shared2.mark = col ;
- }
- }
- }
- }
- else
- {
- /* if cols not jumbled, we don't need the mark (this is faster) */
- for (col = 0 ; col < n_col ; col++)
- {
- cp = &A [p [col]] ;
- cp_end = &A [p [col+1]] ;
- while (cp < cp_end)
- {
- A [(Row [*cp++].shared1.p)++] = col ;
- }
- }
- }
-
- /* === Clear the row marks and set row degrees ========================== */
-
- for (row = 0 ; row < n_row ; row++)
- {
- Row [row].shared2.mark = 0 ;
- Row [row].shared1.degree = Row [row].length ;
- }
-
- /* === See if we need to re-create columns ============================== */
-
- if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
- {
- COLAMD_DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ;
-
-
- /* === Compute col pointers ========================================= */
-
- /* col form of the matrix starts at A [0]. */
- /* Note, we may have a gap between the col form and the row */
- /* form if there were duplicate entries, if so, it will be */
- /* removed upon the first garbage collection */
- Col [0].start = 0 ;
- p [0] = Col [0].start ;
- for (col = 1 ; col < n_col ; col++)
- {
- /* note that the lengths here are for pruned columns, i.e. */
- /* no duplicate row indices will exist for these columns */
- Col [col].start = Col [col-1].start + Col [col-1].length ;
- p [col] = Col [col].start ;
- }
-
- /* === Re-create col form =========================================== */
-
- for (row = 0 ; row < n_row ; row++)
- {
- rp = &A [Row [row].start] ;
- rp_end = rp + Row [row].length ;
- while (rp < rp_end)
- {
- A [(p [*rp++])++] = row ;
- }
- }
- }
-
- /* === Done. Matrix is not (or no longer) jumbled ====================== */
-
- return (true) ;
-}
-
-
-/* ========================================================================== */
-/* === init_scoring ========================================================= */
-/* ========================================================================== */
-
-/*
- Kills dense or empty columns and rows, calculates an initial score for
- each column, and places all columns in the degree lists. Not user-callable.
-*/
-template <typename Index>
-static void init_scoring
- (
- /* === Parameters ======================================================= */
-
- Index n_row, /* number of rows of A */
- Index n_col, /* number of columns of A */
- Colamd_Row<Index> Row [], /* of size n_row+1 */
- colamd_col<Index> Col [], /* of size n_col+1 */
- Index A [], /* column form and row form of A */
- Index head [], /* of size n_col+1 */
- double knobs [COLAMD_KNOBS],/* parameters */
- Index *p_n_row2, /* number of non-dense, non-empty rows */
- Index *p_n_col2, /* number of non-dense, non-empty columns */
- Index *p_max_deg /* maximum row degree */
- )
-{
- /* === Local variables ================================================== */
-
- Index c ; /* a column index */
- Index r, row ; /* a row index */
- Index *cp ; /* a column pointer */
- Index deg ; /* degree of a row or column */
- Index *cp_end ; /* a pointer to the end of a column */
- Index *new_cp ; /* new column pointer */
- Index col_length ; /* length of pruned column */
- Index score ; /* current column score */
- Index n_col2 ; /* number of non-dense, non-empty columns */
- Index n_row2 ; /* number of non-dense, non-empty rows */
- Index dense_row_count ; /* remove rows with more entries than this */
- Index dense_col_count ; /* remove cols with more entries than this */
- Index min_score ; /* smallest column score */
- Index max_deg ; /* maximum row degree */
- Index next_col ; /* Used to add to degree list.*/
-
-
- /* === Extract knobs ==================================================== */
-
- dense_row_count = COLAMD_MAX (0, COLAMD_MIN (knobs [COLAMD_DENSE_ROW] * n_col, n_col)) ;
- dense_col_count = COLAMD_MAX (0, COLAMD_MIN (knobs [COLAMD_DENSE_COL] * n_row, n_row)) ;
- COLAMD_DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ;
- max_deg = 0 ;
- n_col2 = n_col ;
- n_row2 = n_row ;
-
- /* === Kill empty columns =============================================== */
-
- /* Put the empty columns at the end in their natural order, so that LU */
- /* factorization can proceed as far as possible. */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- deg = Col [c].length ;
- if (deg == 0)
- {
- /* this is a empty column, kill and order it last */
- Col [c].shared2.order = --n_col2 ;
- KILL_PRINCIPAL_COL (c) ;
- }
- }
- COLAMD_DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ;
-
- /* === Kill dense columns =============================================== */
-
- /* Put the dense columns at the end, in their natural order */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- /* skip any dead columns */
- if (COL_IS_DEAD (c))
- {
- continue ;
- }
- deg = Col [c].length ;
- if (deg > dense_col_count)
- {
- /* this is a dense column, kill and order it last */
- Col [c].shared2.order = --n_col2 ;
- /* decrement the row degrees */
- cp = &A [Col [c].start] ;
- cp_end = cp + Col [c].length ;
- while (cp < cp_end)
- {
- Row [*cp++].shared1.degree-- ;
- }
- KILL_PRINCIPAL_COL (c) ;
- }
- }
- COLAMD_DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ;
-
- /* === Kill dense and empty rows ======================================== */
-
- for (r = 0 ; r < n_row ; r++)
- {
- deg = Row [r].shared1.degree ;
- COLAMD_ASSERT (deg >= 0 && deg <= n_col) ;
- if (deg > dense_row_count || deg == 0)
- {
- /* kill a dense or empty row */
- KILL_ROW (r) ;
- --n_row2 ;
- }
- else
- {
- /* keep track of max degree of remaining rows */
- max_deg = COLAMD_MAX (max_deg, deg) ;
- }
- }
- COLAMD_DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ;
-
- /* === Compute initial column scores ==================================== */
-
- /* At this point the row degrees are accurate. They reflect the number */
- /* of "live" (non-dense) columns in each row. No empty rows exist. */
- /* Some "live" columns may contain only dead rows, however. These are */
- /* pruned in the code below. */
-
- /* now find the initial matlab score for each column */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- /* skip dead column */
- if (COL_IS_DEAD (c))
- {
- continue ;
- }
- score = 0 ;
- cp = &A [Col [c].start] ;
- new_cp = cp ;
- cp_end = cp + Col [c].length ;
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- /* skip if dead */
- if (ROW_IS_DEAD (row))
- {
- continue ;
- }
- /* compact the column */
- *new_cp++ = row ;
- /* add row's external degree */
- score += Row [row].shared1.degree - 1 ;
- /* guard against integer overflow */
- score = COLAMD_MIN (score, n_col) ;
- }
- /* determine pruned column length */
- col_length = (Index) (new_cp - &A [Col [c].start]) ;
- if (col_length == 0)
- {
- /* a newly-made null column (all rows in this col are "dense" */
- /* and have already been killed) */
- COLAMD_DEBUG2 (("Newly null killed: %d\n", c)) ;
- Col [c].shared2.order = --n_col2 ;
- KILL_PRINCIPAL_COL (c) ;
- }
- else
- {
- /* set column length and set score */
- COLAMD_ASSERT (score >= 0) ;
- COLAMD_ASSERT (score <= n_col) ;
- Col [c].length = col_length ;
- Col [c].shared2.score = score ;
- }
- }
- COLAMD_DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n",
- n_col-n_col2)) ;
-
- /* At this point, all empty rows and columns are dead. All live columns */
- /* are "clean" (containing no dead rows) and simplicial (no supercolumns */
- /* yet). Rows may contain dead columns, but all live rows contain at */
- /* least one live column. */
-
- /* === Initialize degree lists ========================================== */
-
-
- /* clear the hash buckets */
- for (c = 0 ; c <= n_col ; c++)
- {
- head [c] = COLAMD_EMPTY ;
- }
- min_score = n_col ;
- /* place in reverse order, so low column indices are at the front */
- /* of the lists. This is to encourage natural tie-breaking */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- /* only add principal columns to degree lists */
- if (COL_IS_ALIVE (c))
- {
- COLAMD_DEBUG4 (("place %d score %d minscore %d ncol %d\n",
- c, Col [c].shared2.score, min_score, n_col)) ;
-
- /* === Add columns score to DList =============================== */
-
- score = Col [c].shared2.score ;
-
- COLAMD_ASSERT (min_score >= 0) ;
- COLAMD_ASSERT (min_score <= n_col) ;
- COLAMD_ASSERT (score >= 0) ;
- COLAMD_ASSERT (score <= n_col) ;
- COLAMD_ASSERT (head [score] >= COLAMD_EMPTY) ;
-
- /* now add this column to dList at proper score location */
- next_col = head [score] ;
- Col [c].shared3.prev = COLAMD_EMPTY ;
- Col [c].shared4.degree_next = next_col ;
-
- /* if there already was a column with the same score, set its */
- /* previous pointer to this new column */
- if (next_col != COLAMD_EMPTY)
- {
- Col [next_col].shared3.prev = c ;
- }
- head [score] = c ;
-
- /* see if this score is less than current min */
- min_score = COLAMD_MIN (min_score, score) ;
-
-
- }
- }
-
-
- /* === Return number of remaining columns, and max row degree =========== */
-
- *p_n_col2 = n_col2 ;
- *p_n_row2 = n_row2 ;
- *p_max_deg = max_deg ;
-}
-
-
-/* ========================================================================== */
-/* === find_ordering ======================================================== */
-/* ========================================================================== */
-
-/*
- Order the principal columns of the supercolumn form of the matrix
- (no supercolumns on input). Uses a minimum approximate column minimum
- degree ordering method. Not user-callable.
-*/
-template <typename Index>
-static Index find_ordering /* return the number of garbage collections */
- (
- /* === Parameters ======================================================= */
-
- Index n_row, /* number of rows of A */
- Index n_col, /* number of columns of A */
- Index Alen, /* size of A, 2*nnz + n_col or larger */
- Colamd_Row<Index> Row [], /* of size n_row+1 */
- colamd_col<Index> Col [], /* of size n_col+1 */
- Index A [], /* column form and row form of A */
- Index head [], /* of size n_col+1 */
- Index n_col2, /* Remaining columns to order */
- Index max_deg, /* Maximum row degree */
- Index pfree /* index of first free slot (2*nnz on entry) */
- )
-{
- /* === Local variables ================================================== */
-
- Index k ; /* current pivot ordering step */
- Index pivot_col ; /* current pivot column */
- Index *cp ; /* a column pointer */
- Index *rp ; /* a row pointer */
- Index pivot_row ; /* current pivot row */
- Index *new_cp ; /* modified column pointer */
- Index *new_rp ; /* modified row pointer */
- Index pivot_row_start ; /* pointer to start of pivot row */
- Index pivot_row_degree ; /* number of columns in pivot row */
- Index pivot_row_length ; /* number of supercolumns in pivot row */
- Index pivot_col_score ; /* score of pivot column */
- Index needed_memory ; /* free space needed for pivot row */
- Index *cp_end ; /* pointer to the end of a column */
- Index *rp_end ; /* pointer to the end of a row */
- Index row ; /* a row index */
- Index col ; /* a column index */
- Index max_score ; /* maximum possible score */
- Index cur_score ; /* score of current column */
- unsigned int hash ; /* hash value for supernode detection */
- Index head_column ; /* head of hash bucket */
- Index first_col ; /* first column in hash bucket */
- Index tag_mark ; /* marker value for mark array */
- Index row_mark ; /* Row [row].shared2.mark */
- Index set_difference ; /* set difference size of row with pivot row */
- Index min_score ; /* smallest column score */
- Index col_thickness ; /* "thickness" (no. of columns in a supercol) */
- Index max_mark ; /* maximum value of tag_mark */
- Index pivot_col_thickness ; /* number of columns represented by pivot col */
- Index prev_col ; /* Used by Dlist operations. */
- Index next_col ; /* Used by Dlist operations. */
- Index ngarbage ; /* number of garbage collections performed */
-
-
- /* === Initialization and clear mark ==================================== */
-
- max_mark = INT_MAX - n_col ; /* INT_MAX defined in <limits.h> */
- tag_mark = Eigen::internal::clear_mark (n_row, Row) ;
- min_score = 0 ;
- ngarbage = 0 ;
- COLAMD_DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ;
-
- /* === Order the columns ================================================ */
-
- for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */)
- {
-
- /* === Select pivot column, and order it ============================ */
-
- /* make sure degree list isn't empty */
- COLAMD_ASSERT (min_score >= 0) ;
- COLAMD_ASSERT (min_score <= n_col) ;
- COLAMD_ASSERT (head [min_score] >= COLAMD_EMPTY) ;
-
- /* get pivot column from head of minimum degree list */
- while (head [min_score] == COLAMD_EMPTY && min_score < n_col)
- {
- min_score++ ;
- }
- pivot_col = head [min_score] ;
- COLAMD_ASSERT (pivot_col >= 0 && pivot_col <= n_col) ;
- next_col = Col [pivot_col].shared4.degree_next ;
- head [min_score] = next_col ;
- if (next_col != COLAMD_EMPTY)
- {
- Col [next_col].shared3.prev = COLAMD_EMPTY ;
- }
-
- COLAMD_ASSERT (COL_IS_ALIVE (pivot_col)) ;
- COLAMD_DEBUG3 (("Pivot col: %d\n", pivot_col)) ;
-
- /* remember score for defrag check */
- pivot_col_score = Col [pivot_col].shared2.score ;
-
- /* the pivot column is the kth column in the pivot order */
- Col [pivot_col].shared2.order = k ;
-
- /* increment order count by column thickness */
- pivot_col_thickness = Col [pivot_col].shared1.thickness ;
- k += pivot_col_thickness ;
- COLAMD_ASSERT (pivot_col_thickness > 0) ;
-
- /* === Garbage_collection, if necessary ============================= */
-
- needed_memory = COLAMD_MIN (pivot_col_score, n_col - k) ;
- if (pfree + needed_memory >= Alen)
- {
- pfree = Eigen::internal::garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ;
- ngarbage++ ;
- /* after garbage collection we will have enough */
- COLAMD_ASSERT (pfree + needed_memory < Alen) ;
- /* garbage collection has wiped out the Row[].shared2.mark array */
- tag_mark = Eigen::internal::clear_mark (n_row, Row) ;
-
- }
-
- /* === Compute pivot row pattern ==================================== */
-
- /* get starting location for this new merged row */
- pivot_row_start = pfree ;
-
- /* initialize new row counts to zero */
- pivot_row_degree = 0 ;
-
- /* tag pivot column as having been visited so it isn't included */
- /* in merged pivot row */
- Col [pivot_col].shared1.thickness = -pivot_col_thickness ;
-
- /* pivot row is the union of all rows in the pivot column pattern */
- cp = &A [Col [pivot_col].start] ;
- cp_end = cp + Col [pivot_col].length ;
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- COLAMD_DEBUG4 (("Pivot col pattern %d %d\n", ROW_IS_ALIVE (row), row)) ;
- /* skip if row is dead */
- if (ROW_IS_DEAD (row))
- {
- continue ;
- }
- rp = &A [Row [row].start] ;
- rp_end = rp + Row [row].length ;
- while (rp < rp_end)
- {
- /* get a column */
- col = *rp++ ;
- /* add the column, if alive and untagged */
- col_thickness = Col [col].shared1.thickness ;
- if (col_thickness > 0 && COL_IS_ALIVE (col))
- {
- /* tag column in pivot row */
- Col [col].shared1.thickness = -col_thickness ;
- COLAMD_ASSERT (pfree < Alen) ;
- /* place column in pivot row */
- A [pfree++] = col ;
- pivot_row_degree += col_thickness ;
- }
- }
- }
-
- /* clear tag on pivot column */
- Col [pivot_col].shared1.thickness = pivot_col_thickness ;
- max_deg = COLAMD_MAX (max_deg, pivot_row_degree) ;
-
-
- /* === Kill all rows used to construct pivot row ==================== */
-
- /* also kill pivot row, temporarily */
- cp = &A [Col [pivot_col].start] ;
- cp_end = cp + Col [pivot_col].length ;
- while (cp < cp_end)
- {
- /* may be killing an already dead row */
- row = *cp++ ;
- COLAMD_DEBUG3 (("Kill row in pivot col: %d\n", row)) ;
- KILL_ROW (row) ;
- }
-
- /* === Select a row index to use as the new pivot row =============== */
-
- pivot_row_length = pfree - pivot_row_start ;
- if (pivot_row_length > 0)
- {
- /* pick the "pivot" row arbitrarily (first row in col) */
- pivot_row = A [Col [pivot_col].start] ;
- COLAMD_DEBUG3 (("Pivotal row is %d\n", pivot_row)) ;
- }
- else
- {
- /* there is no pivot row, since it is of zero length */
- pivot_row = COLAMD_EMPTY ;
- COLAMD_ASSERT (pivot_row_length == 0) ;
- }
- COLAMD_ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ;
-
- /* === Approximate degree computation =============================== */
-
- /* Here begins the computation of the approximate degree. The column */
- /* score is the sum of the pivot row "length", plus the size of the */
- /* set differences of each row in the column minus the pattern of the */
- /* pivot row itself. The column ("thickness") itself is also */
- /* excluded from the column score (we thus use an approximate */
- /* external degree). */
-
- /* The time taken by the following code (compute set differences, and */
- /* add them up) is proportional to the size of the data structure */
- /* being scanned - that is, the sum of the sizes of each column in */
- /* the pivot row. Thus, the amortized time to compute a column score */
- /* is proportional to the size of that column (where size, in this */
- /* context, is the column "length", or the number of row indices */
- /* in that column). The number of row indices in a column is */
- /* monotonically non-decreasing, from the length of the original */
- /* column on input to colamd. */
-
- /* === Compute set differences ====================================== */
-
- COLAMD_DEBUG3 (("** Computing set differences phase. **\n")) ;
-
- /* pivot row is currently dead - it will be revived later. */
-
- COLAMD_DEBUG3 (("Pivot row: ")) ;
- /* for each column in pivot row */
- rp = &A [pivot_row_start] ;
- rp_end = rp + pivot_row_length ;
- while (rp < rp_end)
- {
- col = *rp++ ;
- COLAMD_ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
- COLAMD_DEBUG3 (("Col: %d\n", col)) ;
-
- /* clear tags used to construct pivot row pattern */
- col_thickness = -Col [col].shared1.thickness ;
- COLAMD_ASSERT (col_thickness > 0) ;
- Col [col].shared1.thickness = col_thickness ;
-
- /* === Remove column from degree list =========================== */
-
- cur_score = Col [col].shared2.score ;
- prev_col = Col [col].shared3.prev ;
- next_col = Col [col].shared4.degree_next ;
- COLAMD_ASSERT (cur_score >= 0) ;
- COLAMD_ASSERT (cur_score <= n_col) ;
- COLAMD_ASSERT (cur_score >= COLAMD_EMPTY) ;
- if (prev_col == COLAMD_EMPTY)
- {
- head [cur_score] = next_col ;
- }
- else
- {
- Col [prev_col].shared4.degree_next = next_col ;
- }
- if (next_col != COLAMD_EMPTY)
- {
- Col [next_col].shared3.prev = prev_col ;
- }
-
- /* === Scan the column ========================================== */
-
- cp = &A [Col [col].start] ;
- cp_end = cp + Col [col].length ;
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- row_mark = Row [row].shared2.mark ;
- /* skip if dead */
- if (ROW_IS_MARKED_DEAD (row_mark))
- {
- continue ;
- }
- COLAMD_ASSERT (row != pivot_row) ;
- set_difference = row_mark - tag_mark ;
- /* check if the row has been seen yet */
- if (set_difference < 0)
- {
- COLAMD_ASSERT (Row [row].shared1.degree <= max_deg) ;
- set_difference = Row [row].shared1.degree ;
- }
- /* subtract column thickness from this row's set difference */
- set_difference -= col_thickness ;
- COLAMD_ASSERT (set_difference >= 0) ;
- /* absorb this row if the set difference becomes zero */
- if (set_difference == 0)
- {
- COLAMD_DEBUG3 (("aggressive absorption. Row: %d\n", row)) ;
- KILL_ROW (row) ;
- }
- else
- {
- /* save the new mark */
- Row [row].shared2.mark = set_difference + tag_mark ;
- }
- }
- }
-
-
- /* === Add up set differences for each column ======================= */
-
- COLAMD_DEBUG3 (("** Adding set differences phase. **\n")) ;
-
- /* for each column in pivot row */
- rp = &A [pivot_row_start] ;
- rp_end = rp + pivot_row_length ;
- while (rp < rp_end)
- {
- /* get a column */
- col = *rp++ ;
- COLAMD_ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
- hash = 0 ;
- cur_score = 0 ;
- cp = &A [Col [col].start] ;
- /* compact the column */
- new_cp = cp ;
- cp_end = cp + Col [col].length ;
-
- COLAMD_DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ;
-
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- COLAMD_ASSERT(row >= 0 && row < n_row) ;
- row_mark = Row [row].shared2.mark ;
- /* skip if dead */
- if (ROW_IS_MARKED_DEAD (row_mark))
- {
- continue ;
- }
- COLAMD_ASSERT (row_mark > tag_mark) ;
- /* compact the column */
- *new_cp++ = row ;
- /* compute hash function */
- hash += row ;
- /* add set difference */
- cur_score += row_mark - tag_mark ;
- /* integer overflow... */
- cur_score = COLAMD_MIN (cur_score, n_col) ;
- }
-
- /* recompute the column's length */
- Col [col].length = (Index) (new_cp - &A [Col [col].start]) ;
-
- /* === Further mass elimination ================================= */
-
- if (Col [col].length == 0)
- {
- COLAMD_DEBUG4 (("further mass elimination. Col: %d\n", col)) ;
- /* nothing left but the pivot row in this column */
- KILL_PRINCIPAL_COL (col) ;
- pivot_row_degree -= Col [col].shared1.thickness ;
- COLAMD_ASSERT (pivot_row_degree >= 0) ;
- /* order it */
- Col [col].shared2.order = k ;
- /* increment order count by column thickness */
- k += Col [col].shared1.thickness ;
- }
- else
- {
- /* === Prepare for supercolumn detection ==================== */
-
- COLAMD_DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ;
-
- /* save score so far */
- Col [col].shared2.score = cur_score ;
-
- /* add column to hash table, for supercolumn detection */
- hash %= n_col + 1 ;
-
- COLAMD_DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ;
- COLAMD_ASSERT (hash <= n_col) ;
-
- head_column = head [hash] ;
- if (head_column > COLAMD_EMPTY)
- {
- /* degree list "hash" is non-empty, use prev (shared3) of */
- /* first column in degree list as head of hash bucket */
- first_col = Col [head_column].shared3.headhash ;
- Col [head_column].shared3.headhash = col ;
- }
- else
- {
- /* degree list "hash" is empty, use head as hash bucket */
- first_col = - (head_column + 2) ;
- head [hash] = - (col + 2) ;
- }
- Col [col].shared4.hash_next = first_col ;
-
- /* save hash function in Col [col].shared3.hash */
- Col [col].shared3.hash = (Index) hash ;
- COLAMD_ASSERT (COL_IS_ALIVE (col)) ;
- }
- }
-
- /* The approximate external column degree is now computed. */
-
- /* === Supercolumn detection ======================================== */
-
- COLAMD_DEBUG3 (("** Supercolumn detection phase. **\n")) ;
-
- Eigen::internal::detect_super_cols (Col, A, head, pivot_row_start, pivot_row_length) ;
-
- /* === Kill the pivotal column ====================================== */
-
- KILL_PRINCIPAL_COL (pivot_col) ;
-
- /* === Clear mark =================================================== */
-
- tag_mark += (max_deg + 1) ;
- if (tag_mark >= max_mark)
- {
- COLAMD_DEBUG2 (("clearing tag_mark\n")) ;
- tag_mark = Eigen::internal::clear_mark (n_row, Row) ;
- }
-
- /* === Finalize the new pivot row, and column scores ================ */
-
- COLAMD_DEBUG3 (("** Finalize scores phase. **\n")) ;
-
- /* for each column in pivot row */
- rp = &A [pivot_row_start] ;
- /* compact the pivot row */
- new_rp = rp ;
- rp_end = rp + pivot_row_length ;
- while (rp < rp_end)
- {
- col = *rp++ ;
- /* skip dead columns */
- if (COL_IS_DEAD (col))
- {
- continue ;
- }
- *new_rp++ = col ;
- /* add new pivot row to column */
- A [Col [col].start + (Col [col].length++)] = pivot_row ;
-
- /* retrieve score so far and add on pivot row's degree. */
- /* (we wait until here for this in case the pivot */
- /* row's degree was reduced due to mass elimination). */
- cur_score = Col [col].shared2.score + pivot_row_degree ;
-
- /* calculate the max possible score as the number of */
- /* external columns minus the 'k' value minus the */
- /* columns thickness */
- max_score = n_col - k - Col [col].shared1.thickness ;
-
- /* make the score the external degree of the union-of-rows */
- cur_score -= Col [col].shared1.thickness ;
-
- /* make sure score is less or equal than the max score */
- cur_score = COLAMD_MIN (cur_score, max_score) ;
- COLAMD_ASSERT (cur_score >= 0) ;
-
- /* store updated score */
- Col [col].shared2.score = cur_score ;
-
- /* === Place column back in degree list ========================= */
-
- COLAMD_ASSERT (min_score >= 0) ;
- COLAMD_ASSERT (min_score <= n_col) ;
- COLAMD_ASSERT (cur_score >= 0) ;
- COLAMD_ASSERT (cur_score <= n_col) ;
- COLAMD_ASSERT (head [cur_score] >= COLAMD_EMPTY) ;
- next_col = head [cur_score] ;
- Col [col].shared4.degree_next = next_col ;
- Col [col].shared3.prev = COLAMD_EMPTY ;
- if (next_col != COLAMD_EMPTY)
- {
- Col [next_col].shared3.prev = col ;
- }
- head [cur_score] = col ;
-
- /* see if this score is less than current min */
- min_score = COLAMD_MIN (min_score, cur_score) ;
-
- }
-
- /* === Resurrect the new pivot row ================================== */
-
- if (pivot_row_degree > 0)
- {
- /* update pivot row length to reflect any cols that were killed */
- /* during super-col detection and mass elimination */
- Row [pivot_row].start = pivot_row_start ;
- Row [pivot_row].length = (Index) (new_rp - &A[pivot_row_start]) ;
- Row [pivot_row].shared1.degree = pivot_row_degree ;
- Row [pivot_row].shared2.mark = 0 ;
- /* pivot row is no longer dead */
- }
- }
-
- /* === All principal columns have now been ordered ====================== */
-
- return (ngarbage) ;
-}
-
-
-/* ========================================================================== */
-/* === order_children ======================================================= */
-/* ========================================================================== */
-
-/*
- The find_ordering routine has ordered all of the principal columns (the
- representatives of the supercolumns). The non-principal columns have not
- yet been ordered. This routine orders those columns by walking up the
- parent tree (a column is a child of the column which absorbed it). The
- final permutation vector is then placed in p [0 ... n_col-1], with p [0]
- being the first column, and p [n_col-1] being the last. It doesn't look
- like it at first glance, but be assured that this routine takes time linear
- in the number of columns. Although not immediately obvious, the time
- taken by this routine is O (n_col), that is, linear in the number of
- columns. Not user-callable.
-*/
-template <typename Index>
-static inline void order_children
-(
- /* === Parameters ======================================================= */
-
- Index n_col, /* number of columns of A */
- colamd_col<Index> Col [], /* of size n_col+1 */
- Index p [] /* p [0 ... n_col-1] is the column permutation*/
- )
-{
- /* === Local variables ================================================== */
-
- Index i ; /* loop counter for all columns */
- Index c ; /* column index */
- Index parent ; /* index of column's parent */
- Index order ; /* column's order */
-
- /* === Order each non-principal column ================================== */
-
- for (i = 0 ; i < n_col ; i++)
- {
- /* find an un-ordered non-principal column */
- COLAMD_ASSERT (COL_IS_DEAD (i)) ;
- if (!COL_IS_DEAD_PRINCIPAL (i) && Col [i].shared2.order == COLAMD_EMPTY)
- {
- parent = i ;
- /* once found, find its principal parent */
- do
- {
- parent = Col [parent].shared1.parent ;
- } while (!COL_IS_DEAD_PRINCIPAL (parent)) ;
-
- /* now, order all un-ordered non-principal columns along path */
- /* to this parent. collapse tree at the same time */
- c = i ;
- /* get order of parent */
- order = Col [parent].shared2.order ;
-
- do
- {
- COLAMD_ASSERT (Col [c].shared2.order == COLAMD_EMPTY) ;
-
- /* order this column */
- Col [c].shared2.order = order++ ;
- /* collaps tree */
- Col [c].shared1.parent = parent ;
-
- /* get immediate parent of this column */
- c = Col [c].shared1.parent ;
-
- /* continue until we hit an ordered column. There are */
- /* guarranteed not to be anymore unordered columns */
- /* above an ordered column */
- } while (Col [c].shared2.order == COLAMD_EMPTY) ;
-
- /* re-order the super_col parent to largest order for this group */
- Col [parent].shared2.order = order ;
- }
- }
-
- /* === Generate the permutation ========================================= */
-
- for (c = 0 ; c < n_col ; c++)
- {
- p [Col [c].shared2.order] = c ;
- }
-}
-
-
-/* ========================================================================== */
-/* === detect_super_cols ==================================================== */
-/* ========================================================================== */
-
-/*
- Detects supercolumns by finding matches between columns in the hash buckets.
- Check amongst columns in the set A [row_start ... row_start + row_length-1].
- The columns under consideration are currently *not* in the degree lists,
- and have already been placed in the hash buckets.
-
- The hash bucket for columns whose hash function is equal to h is stored
- as follows:
-
- if head [h] is >= 0, then head [h] contains a degree list, so:
-
- head [h] is the first column in degree bucket h.
- Col [head [h]].headhash gives the first column in hash bucket h.
-
- otherwise, the degree list is empty, and:
-
- -(head [h] + 2) is the first column in hash bucket h.
-
- For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous
- column" pointer. Col [c].shared3.hash is used instead as the hash number
- for that column. The value of Col [c].shared4.hash_next is the next column
- in the same hash bucket.
-
- Assuming no, or "few" hash collisions, the time taken by this routine is
- linear in the sum of the sizes (lengths) of each column whose score has
- just been computed in the approximate degree computation.
- Not user-callable.
-*/
-template <typename Index>
-static void detect_super_cols
-(
- /* === Parameters ======================================================= */
-
- colamd_col<Index> Col [], /* of size n_col+1 */
- Index A [], /* row indices of A */
- Index head [], /* head of degree lists and hash buckets */
- Index row_start, /* pointer to set of columns to check */
- Index row_length /* number of columns to check */
-)
-{
- /* === Local variables ================================================== */
-
- Index hash ; /* hash value for a column */
- Index *rp ; /* pointer to a row */
- Index c ; /* a column index */
- Index super_c ; /* column index of the column to absorb into */
- Index *cp1 ; /* column pointer for column super_c */
- Index *cp2 ; /* column pointer for column c */
- Index length ; /* length of column super_c */
- Index prev_c ; /* column preceding c in hash bucket */
- Index i ; /* loop counter */
- Index *rp_end ; /* pointer to the end of the row */
- Index col ; /* a column index in the row to check */
- Index head_column ; /* first column in hash bucket or degree list */
- Index first_col ; /* first column in hash bucket */
-
- /* === Consider each column in the row ================================== */
-
- rp = &A [row_start] ;
- rp_end = rp + row_length ;
- while (rp < rp_end)
- {
- col = *rp++ ;
- if (COL_IS_DEAD (col))
- {
- continue ;
- }
-
- /* get hash number for this column */
- hash = Col [col].shared3.hash ;
- COLAMD_ASSERT (hash <= n_col) ;
-
- /* === Get the first column in this hash bucket ===================== */
-
- head_column = head [hash] ;
- if (head_column > COLAMD_EMPTY)
- {
- first_col = Col [head_column].shared3.headhash ;
- }
- else
- {
- first_col = - (head_column + 2) ;
- }
-
- /* === Consider each column in the hash bucket ====================== */
-
- for (super_c = first_col ; super_c != COLAMD_EMPTY ;
- super_c = Col [super_c].shared4.hash_next)
- {
- COLAMD_ASSERT (COL_IS_ALIVE (super_c)) ;
- COLAMD_ASSERT (Col [super_c].shared3.hash == hash) ;
- length = Col [super_c].length ;
-
- /* prev_c is the column preceding column c in the hash bucket */
- prev_c = super_c ;
-
- /* === Compare super_c with all columns after it ================ */
-
- for (c = Col [super_c].shared4.hash_next ;
- c != COLAMD_EMPTY ; c = Col [c].shared4.hash_next)
- {
- COLAMD_ASSERT (c != super_c) ;
- COLAMD_ASSERT (COL_IS_ALIVE (c)) ;
- COLAMD_ASSERT (Col [c].shared3.hash == hash) ;
-
- /* not identical if lengths or scores are different */
- if (Col [c].length != length ||
- Col [c].shared2.score != Col [super_c].shared2.score)
- {
- prev_c = c ;
- continue ;
- }
-
- /* compare the two columns */
- cp1 = &A [Col [super_c].start] ;
- cp2 = &A [Col [c].start] ;
-
- for (i = 0 ; i < length ; i++)
- {
- /* the columns are "clean" (no dead rows) */
- COLAMD_ASSERT (ROW_IS_ALIVE (*cp1)) ;
- COLAMD_ASSERT (ROW_IS_ALIVE (*cp2)) ;
- /* row indices will same order for both supercols, */
- /* no gather scatter nessasary */
- if (*cp1++ != *cp2++)
- {
- break ;
- }
- }
-
- /* the two columns are different if the for-loop "broke" */
- if (i != length)
- {
- prev_c = c ;
- continue ;
- }
-
- /* === Got it! two columns are identical =================== */
-
- COLAMD_ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ;
-
- Col [super_c].shared1.thickness += Col [c].shared1.thickness ;
- Col [c].shared1.parent = super_c ;
- KILL_NON_PRINCIPAL_COL (c) ;
- /* order c later, in order_children() */
- Col [c].shared2.order = COLAMD_EMPTY ;
- /* remove c from hash bucket */
- Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ;
- }
- }
-
- /* === Empty this hash bucket ======================================= */
-
- if (head_column > COLAMD_EMPTY)
- {
- /* corresponding degree list "hash" is not empty */
- Col [head_column].shared3.headhash = COLAMD_EMPTY ;
- }
- else
- {
- /* corresponding degree list "hash" is empty */
- head [hash] = COLAMD_EMPTY ;
- }
- }
-}
-
-
-/* ========================================================================== */
-/* === garbage_collection =================================================== */
-/* ========================================================================== */
-
-/*
- Defragments and compacts columns and rows in the workspace A. Used when
- all avaliable memory has been used while performing row merging. Returns
- the index of the first free position in A, after garbage collection. The
- time taken by this routine is linear is the size of the array A, which is
- itself linear in the number of nonzeros in the input matrix.
- Not user-callable.
-*/
-template <typename Index>
-static Index garbage_collection /* returns the new value of pfree */
- (
- /* === Parameters ======================================================= */
-
- Index n_row, /* number of rows */
- Index n_col, /* number of columns */
- Colamd_Row<Index> Row [], /* row info */
- colamd_col<Index> Col [], /* column info */
- Index A [], /* A [0 ... Alen-1] holds the matrix */
- Index *pfree /* &A [0] ... pfree is in use */
- )
-{
- /* === Local variables ================================================== */
-
- Index *psrc ; /* source pointer */
- Index *pdest ; /* destination pointer */
- Index j ; /* counter */
- Index r ; /* a row index */
- Index c ; /* a column index */
- Index length ; /* length of a row or column */
-
- /* === Defragment the columns =========================================== */
-
- pdest = &A[0] ;
- for (c = 0 ; c < n_col ; c++)
- {
- if (COL_IS_ALIVE (c))
- {
- psrc = &A [Col [c].start] ;
-
- /* move and compact the column */
- COLAMD_ASSERT (pdest <= psrc) ;
- Col [c].start = (Index) (pdest - &A [0]) ;
- length = Col [c].length ;
- for (j = 0 ; j < length ; j++)
- {
- r = *psrc++ ;
- if (ROW_IS_ALIVE (r))
- {
- *pdest++ = r ;
- }
- }
- Col [c].length = (Index) (pdest - &A [Col [c].start]) ;
- }
- }
-
- /* === Prepare to defragment the rows =================================== */
-
- for (r = 0 ; r < n_row ; r++)
- {
- if (ROW_IS_ALIVE (r))
- {
- if (Row [r].length == 0)
- {
- /* this row is of zero length. cannot compact it, so kill it */
- COLAMD_DEBUG3 (("Defrag row kill\n")) ;
- KILL_ROW (r) ;
- }
- else
- {
- /* save first column index in Row [r].shared2.first_column */
- psrc = &A [Row [r].start] ;
- Row [r].shared2.first_column = *psrc ;
- COLAMD_ASSERT (ROW_IS_ALIVE (r)) ;
- /* flag the start of the row with the one's complement of row */
- *psrc = ONES_COMPLEMENT (r) ;
-
- }
- }
- }
-
- /* === Defragment the rows ============================================== */
-
- psrc = pdest ;
- while (psrc < pfree)
- {
- /* find a negative number ... the start of a row */
- if (*psrc++ < 0)
- {
- psrc-- ;
- /* get the row index */
- r = ONES_COMPLEMENT (*psrc) ;
- COLAMD_ASSERT (r >= 0 && r < n_row) ;
- /* restore first column index */
- *psrc = Row [r].shared2.first_column ;
- COLAMD_ASSERT (ROW_IS_ALIVE (r)) ;
-
- /* move and compact the row */
- COLAMD_ASSERT (pdest <= psrc) ;
- Row [r].start = (Index) (pdest - &A [0]) ;
- length = Row [r].length ;
- for (j = 0 ; j < length ; j++)
- {
- c = *psrc++ ;
- if (COL_IS_ALIVE (c))
- {
- *pdest++ = c ;
- }
- }
- Row [r].length = (Index) (pdest - &A [Row [r].start]) ;
-
- }
- }
- /* ensure we found all the rows */
- COLAMD_ASSERT (debug_rows == 0) ;
-
- /* === Return the new value of pfree ==================================== */
-
- return ((Index) (pdest - &A [0])) ;
-}
-
-
-/* ========================================================================== */
-/* === clear_mark =========================================================== */
-/* ========================================================================== */
-
-/*
- Clears the Row [].shared2.mark array, and returns the new tag_mark.
- Return value is the new tag_mark. Not user-callable.
-*/
-template <typename Index>
-static inline Index clear_mark /* return the new value for tag_mark */
- (
- /* === Parameters ======================================================= */
-
- Index n_row, /* number of rows in A */
- Colamd_Row<Index> Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */
- )
-{
- /* === Local variables ================================================== */
-
- Index r ;
-
- for (r = 0 ; r < n_row ; r++)
- {
- if (ROW_IS_ALIVE (r))
- {
- Row [r].shared2.mark = 0 ;
- }
- }
- return (1) ;
-}
-
-
-} // namespace internal
-#endif
diff --git a/src/Eigen/src/OrderingMethods/Ordering.h b/src/Eigen/src/OrderingMethods/Ordering.h
deleted file mode 100644
index f3c31f9..0000000
--- a/src/Eigen/src/OrderingMethods/Ordering.h
+++ /dev/null
@@ -1,154 +0,0 @@
-
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ORDERING_H
-#define EIGEN_ORDERING_H
-
-namespace Eigen {
-
-#include "Eigen_Colamd.h"
-
-namespace internal {
-
-/** \internal
- * \ingroup OrderingMethods_Module
- * \returns the symmetric pattern A^T+A from the input matrix A.
- * FIXME: The values should not be considered here
- */
-template<typename MatrixType>
-void ordering_helper_at_plus_a(const MatrixType& mat, MatrixType& symmat)
-{
- MatrixType C;
- C = mat.transpose(); // NOTE: Could be costly
- for (int i = 0; i < C.rows(); i++)
- {
- for (typename MatrixType::InnerIterator it(C, i); it; ++it)
- it.valueRef() = 0.0;
- }
- symmat = C + mat;
-}
-
-}
-
-#ifndef EIGEN_MPL2_ONLY
-
-/** \ingroup OrderingMethods_Module
- * \class AMDOrdering
- *
- * Functor computing the \em approximate \em minimum \em degree ordering
- * If the matrix is not structurally symmetric, an ordering of A^T+A is computed
- * \tparam Index The type of indices of the matrix
- * \sa COLAMDOrdering
- */
-template <typename Index>
-class AMDOrdering
-{
- public:
- typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
-
- /** Compute the permutation vector from a sparse matrix
- * This routine is much faster if the input matrix is column-major
- */
- template <typename MatrixType>
- void operator()(const MatrixType& mat, PermutationType& perm)
- {
- // Compute the symmetric pattern
- SparseMatrix<typename MatrixType::Scalar, ColMajor, Index> symm;
- internal::ordering_helper_at_plus_a(mat,symm);
-
- // Call the AMD routine
- //m_mat.prune(keep_diag());
- internal::minimum_degree_ordering(symm, perm);
- }
-
- /** Compute the permutation with a selfadjoint matrix */
- template <typename SrcType, unsigned int SrcUpLo>
- void operator()(const SparseSelfAdjointView<SrcType, SrcUpLo>& mat, PermutationType& perm)
- {
- SparseMatrix<typename SrcType::Scalar, ColMajor, Index> C; C = mat;
-
- // Call the AMD routine
- // m_mat.prune(keep_diag()); //Remove the diagonal elements
- internal::minimum_degree_ordering(C, perm);
- }
-};
-
-#endif // EIGEN_MPL2_ONLY
-
-/** \ingroup OrderingMethods_Module
- * \class NaturalOrdering
- *
- * Functor computing the natural ordering (identity)
- *
- * \note Returns an empty permutation matrix
- * \tparam Index The type of indices of the matrix
- */
-template <typename Index>
-class NaturalOrdering
-{
- public:
- typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
-
- /** Compute the permutation vector from a column-major sparse matrix */
- template <typename MatrixType>
- void operator()(const MatrixType& /*mat*/, PermutationType& perm)
- {
- perm.resize(0);
- }
-
-};
-
-/** \ingroup OrderingMethods_Module
- * \class COLAMDOrdering
- *
- * Functor computing the \em column \em approximate \em minimum \em degree ordering
- * The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()).
- */
-template<typename Index>
-class COLAMDOrdering
-{
- public:
- typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
- typedef Matrix<Index, Dynamic, 1> IndexVector;
-
- /** Compute the permutation vector \a perm form the sparse matrix \a mat
- * \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
- */
- template <typename MatrixType>
- void operator() (const MatrixType& mat, PermutationType& perm)
- {
- eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering");
-
- Index m = mat.rows();
- Index n = mat.cols();
- Index nnz = mat.nonZeros();
- // Get the recommended value of Alen to be used by colamd
- Index Alen = internal::colamd_recommended(nnz, m, n);
- // Set the default parameters
- double knobs [COLAMD_KNOBS];
- Index stats [COLAMD_STATS];
- internal::colamd_set_defaults(knobs);
-
- IndexVector p(n+1), A(Alen);
- for(Index i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i];
- for(Index i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i];
- // Call Colamd routine to compute the ordering
- Index info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
- EIGEN_UNUSED_VARIABLE(info);
- eigen_assert( info && "COLAMD failed " );
-
- perm.resize(n);
- for (Index i = 0; i < n; i++) perm.indices()(p(i)) = i;
- }
-};
-
-} // end namespace Eigen
-
-#endif
diff --git a/src/Eigen/src/PaStiXSupport/CMakeLists.txt b/src/Eigen/src/PaStiXSupport/CMakeLists.txt
deleted file mode 100644
index 28c657e..0000000
--- a/src/Eigen/src/PaStiXSupport/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_PastixSupport_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_PastixSupport_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/PaStiXSupport COMPONENT Devel
- )
diff --git a/src/Eigen/src/PaStiXSupport/PaStiXSupport.h b/src/Eigen/src/PaStiXSupport/PaStiXSupport.h
deleted file mode 100644
index a955287..0000000
--- a/src/Eigen/src/PaStiXSupport/PaStiXSupport.h
+++ /dev/null
@@ -1,721 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_PASTIXSUPPORT_H
-#define EIGEN_PASTIXSUPPORT_H
-
-namespace Eigen {
-
-/** \ingroup PaStiXSupport_Module
- * \brief Interface to the PaStix solver
- *
- * This class is used to solve the linear systems A.X = B via the PaStix library.
- * The matrix can be either real or complex, symmetric or not.
- *
- * \sa TutorialSparseDirectSolvers
- */
-template<typename _MatrixType, bool IsStrSym = false> class PastixLU;
-template<typename _MatrixType, int Options> class PastixLLT;
-template<typename _MatrixType, int Options> class PastixLDLT;
-
-namespace internal
-{
-
- template<class Pastix> struct pastix_traits;
-
- template<typename _MatrixType>
- struct pastix_traits< PastixLU<_MatrixType> >
- {
- typedef _MatrixType MatrixType;
- typedef typename _MatrixType::Scalar Scalar;
- typedef typename _MatrixType::RealScalar RealScalar;
- typedef typename _MatrixType::Index Index;
- };
-
- template<typename _MatrixType, int Options>
- struct pastix_traits< PastixLLT<_MatrixType,Options> >
- {
- typedef _MatrixType MatrixType;
- typedef typename _MatrixType::Scalar Scalar;
- typedef typename _MatrixType::RealScalar RealScalar;
- typedef typename _MatrixType::Index Index;
- };
-
- template<typename _MatrixType, int Options>
- struct pastix_traits< PastixLDLT<_MatrixType,Options> >
- {
- typedef _MatrixType MatrixType;
- typedef typename _MatrixType::Scalar Scalar;
- typedef typename _MatrixType::RealScalar RealScalar;
- typedef typename _MatrixType::Index Index;
- };
-
- void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, float *vals, int *perm, int * invp, float *x, int nbrhs, int *iparm, double *dparm)
- {
- if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
- if (nbrhs == 0) {x = NULL; nbrhs=1;}
- s_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm);
- }
-
- void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, double *vals, int *perm, int * invp, double *x, int nbrhs, int *iparm, double *dparm)
- {
- if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
- if (nbrhs == 0) {x = NULL; nbrhs=1;}
- d_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm);
- }
-
- void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<float> *vals, int *perm, int * invp, std::complex<float> *x, int nbrhs, int *iparm, double *dparm)
- {
- if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
- if (nbrhs == 0) {x = NULL; nbrhs=1;}
- c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<COMPLEX*>(vals), perm, invp, reinterpret_cast<COMPLEX*>(x), nbrhs, iparm, dparm);
- }
-
- void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<double> *vals, int *perm, int * invp, std::complex<double> *x, int nbrhs, int *iparm, double *dparm)
- {
- if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
- if (nbrhs == 0) {x = NULL; nbrhs=1;}
- z_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<DCOMPLEX*>(vals), perm, invp, reinterpret_cast<DCOMPLEX*>(x), nbrhs, iparm, dparm);
- }
-
- // Convert the matrix to Fortran-style Numbering
- template <typename MatrixType>
- void c_to_fortran_numbering (MatrixType& mat)
- {
- if ( !(mat.outerIndexPtr()[0]) )
- {
- int i;
- for(i = 0; i <= mat.rows(); ++i)
- ++mat.outerIndexPtr()[i];
- for(i = 0; i < mat.nonZeros(); ++i)
- ++mat.innerIndexPtr()[i];
- }
- }
-
- // Convert to C-style Numbering
- template <typename MatrixType>
- void fortran_to_c_numbering (MatrixType& mat)
- {
- // Check the Numbering
- if ( mat.outerIndexPtr()[0] == 1 )
- { // Convert to C-style numbering
- int i;
- for(i = 0; i <= mat.rows(); ++i)
- --mat.outerIndexPtr()[i];
- for(i = 0; i < mat.nonZeros(); ++i)
- --mat.innerIndexPtr()[i];
- }
- }
-}
-
-// This is the base class to interface with PaStiX functions.
-// Users should not used this class directly.
-template <class Derived>
-class PastixBase : internal::noncopyable
-{
- public:
- typedef typename internal::pastix_traits<Derived>::MatrixType _MatrixType;
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef Matrix<Scalar,Dynamic,1> Vector;
- typedef SparseMatrix<Scalar, ColMajor> ColSpMatrix;
-
- public:
-
- PastixBase() : m_initisOk(false), m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false), m_pastixdata(0), m_size(0)
- {
- init();
- }
-
- ~PastixBase()
- {
- clean();
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::solve_retval<PastixBase, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "Pastix solver is not initialized.");
- eigen_assert(rows()==b.rows()
- && "PastixBase::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<PastixBase, Rhs>(*this, b.derived());
- }
-
- template<typename Rhs,typename Dest>
- bool _solve (const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const;
-
- Derived& derived()
- {
- return *static_cast<Derived*>(this);
- }
- const Derived& derived() const
- {
- return *static_cast<const Derived*>(this);
- }
-
- /** Returns a reference to the integer vector IPARM of PaStiX parameters
- * to modify the default parameters.
- * The statistics related to the different phases of factorization and solve are saved here as well
- * \sa analyzePattern() factorize()
- */
- Array<Index,IPARM_SIZE,1>& iparm()
- {
- return m_iparm;
- }
-
- /** Return a reference to a particular index parameter of the IPARM vector
- * \sa iparm()
- */
-
- int& iparm(int idxparam)
- {
- return m_iparm(idxparam);
- }
-
- /** Returns a reference to the double vector DPARM of PaStiX parameters
- * The statistics related to the different phases of factorization and solve are saved here as well
- * \sa analyzePattern() factorize()
- */
- Array<RealScalar,IPARM_SIZE,1>& dparm()
- {
- return m_dparm;
- }
-
-
- /** Return a reference to a particular index parameter of the DPARM vector
- * \sa dparm()
- */
- double& dparm(int idxparam)
- {
- return m_dparm(idxparam);
- }
-
- inline Index cols() const { return m_size; }
- inline Index rows() const { return m_size; }
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful,
- * \c NumericalIssue if the PaStiX reports a problem
- * \c InvalidInput if the input matrix is invalid
- *
- * \sa iparm()
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return m_info;
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::sparse_solve_retval<PastixBase, Rhs>
- solve(const SparseMatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "Pastix LU, LLT or LDLT is not initialized.");
- eigen_assert(rows()==b.rows()
- && "PastixBase::solve(): invalid number of rows of the right hand side matrix b");
- return internal::sparse_solve_retval<PastixBase, Rhs>(*this, b.derived());
- }
-
- protected:
-
- // Initialize the Pastix data structure, check the matrix
- void init();
-
- // Compute the ordering and the symbolic factorization
- void analyzePattern(ColSpMatrix& mat);
-
- // Compute the numerical factorization
- void factorize(ColSpMatrix& mat);
-
- // Free all the data allocated by Pastix
- void clean()
- {
- eigen_assert(m_initisOk && "The Pastix structure should be allocated first");
- m_iparm(IPARM_START_TASK) = API_TASK_CLEAN;
- m_iparm(IPARM_END_TASK) = API_TASK_CLEAN;
- internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0,
- m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
- }
-
- void compute(ColSpMatrix& mat);
-
- int m_initisOk;
- int m_analysisIsOk;
- int m_factorizationIsOk;
- bool m_isInitialized;
- mutable ComputationInfo m_info;
- mutable pastix_data_t *m_pastixdata; // Data structure for pastix
- mutable int m_comm; // The MPI communicator identifier
- mutable Matrix<int,IPARM_SIZE,1> m_iparm; // integer vector for the input parameters
- mutable Matrix<double,DPARM_SIZE,1> m_dparm; // Scalar vector for the input parameters
- mutable Matrix<Index,Dynamic,1> m_perm; // Permutation vector
- mutable Matrix<Index,Dynamic,1> m_invp; // Inverse permutation vector
- mutable int m_size; // Size of the matrix
-};
-
- /** Initialize the PaStiX data structure.
- *A first call to this function fills iparm and dparm with the default PaStiX parameters
- * \sa iparm() dparm()
- */
-template <class Derived>
-void PastixBase<Derived>::init()
-{
- m_size = 0;
- m_iparm.setZero(IPARM_SIZE);
- m_dparm.setZero(DPARM_SIZE);
-
- m_iparm(IPARM_MODIFY_PARAMETER) = API_NO;
- pastix(&m_pastixdata, MPI_COMM_WORLD,
- 0, 0, 0, 0,
- 0, 0, 0, 1, m_iparm.data(), m_dparm.data());
-
- m_iparm[IPARM_MATRIX_VERIFICATION] = API_NO;
- m_iparm[IPARM_VERBOSE] = 2;
- m_iparm[IPARM_ORDERING] = API_ORDER_SCOTCH;
- m_iparm[IPARM_INCOMPLETE] = API_NO;
- m_iparm[IPARM_OOC_LIMIT] = 2000;
- m_iparm[IPARM_RHS_MAKING] = API_RHS_B;
- m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
-
- m_iparm(IPARM_START_TASK) = API_TASK_INIT;
- m_iparm(IPARM_END_TASK) = API_TASK_INIT;
- internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0,
- 0, 0, 0, 0, m_iparm.data(), m_dparm.data());
-
- // Check the returned error
- if(m_iparm(IPARM_ERROR_NUMBER)) {
- m_info = InvalidInput;
- m_initisOk = false;
- }
- else {
- m_info = Success;
- m_initisOk = true;
- }
-}
-
-template <class Derived>
-void PastixBase<Derived>::compute(ColSpMatrix& mat)
-{
- eigen_assert(mat.rows() == mat.cols() && "The input matrix should be squared");
-
- analyzePattern(mat);
- factorize(mat);
-
- m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
- m_isInitialized = m_factorizationIsOk;
-}
-
-
-template <class Derived>
-void PastixBase<Derived>::analyzePattern(ColSpMatrix& mat)
-{
- eigen_assert(m_initisOk && "The initialization of PaSTiX failed");
-
- // clean previous calls
- if(m_size>0)
- clean();
-
- m_size = mat.rows();
- m_perm.resize(m_size);
- m_invp.resize(m_size);
-
- m_iparm(IPARM_START_TASK) = API_TASK_ORDERING;
- m_iparm(IPARM_END_TASK) = API_TASK_ANALYSE;
- internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(),
- mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
-
- // Check the returned error
- if(m_iparm(IPARM_ERROR_NUMBER))
- {
- m_info = NumericalIssue;
- m_analysisIsOk = false;
- }
- else
- {
- m_info = Success;
- m_analysisIsOk = true;
- }
-}
-
-template <class Derived>
-void PastixBase<Derived>::factorize(ColSpMatrix& mat)
-{
-// if(&m_cpyMat != &mat) m_cpyMat = mat;
- eigen_assert(m_analysisIsOk && "The analysis phase should be called before the factorization phase");
- m_iparm(IPARM_START_TASK) = API_TASK_NUMFACT;
- m_iparm(IPARM_END_TASK) = API_TASK_NUMFACT;
- m_size = mat.rows();
-
- internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(),
- mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
-
- // Check the returned error
- if(m_iparm(IPARM_ERROR_NUMBER))
- {
- m_info = NumericalIssue;
- m_factorizationIsOk = false;
- m_isInitialized = false;
- }
- else
- {
- m_info = Success;
- m_factorizationIsOk = true;
- m_isInitialized = true;
- }
-}
-
-/* Solve the system */
-template<typename Base>
-template<typename Rhs,typename Dest>
-bool PastixBase<Base>::_solve (const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const
-{
- eigen_assert(m_isInitialized && "The matrix should be factorized first");
- EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
- THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
- int rhs = 1;
-
- x = b; /* on return, x is overwritten by the computed solution */
-
- for (int i = 0; i < b.cols(); i++){
- m_iparm[IPARM_START_TASK] = API_TASK_SOLVE;
- m_iparm[IPARM_END_TASK] = API_TASK_REFINE;
-
- internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, x.rows(), 0, 0, 0,
- m_perm.data(), m_invp.data(), &x(0, i), rhs, m_iparm.data(), m_dparm.data());
- }
-
- // Check the returned error
- m_info = m_iparm(IPARM_ERROR_NUMBER)==0 ? Success : NumericalIssue;
-
- return m_iparm(IPARM_ERROR_NUMBER)==0;
-}
-
-/** \ingroup PaStiXSupport_Module
- * \class PastixLU
- * \brief Sparse direct LU solver based on PaStiX library
- *
- * This class is used to solve the linear systems A.X = B with a supernodal LU
- * factorization in the PaStiX library. The matrix A should be squared and nonsingular
- * PaStiX requires that the matrix A has a symmetric structural pattern.
- * This interface can symmetrize the input matrix otherwise.
- * The vectors or matrices X and B can be either dense or sparse.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam IsStrSym Indicates if the input matrix has a symmetric pattern, default is false
- * NOTE : Note that if the analysis and factorization phase are called separately,
- * the input matrix will be symmetrized at each call, hence it is advised to
- * symmetrize the matrix in a end-user program and set \p IsStrSym to true
- *
- * \sa \ref TutorialSparseDirectSolvers
- *
- */
-template<typename _MatrixType, bool IsStrSym>
-class PastixLU : public PastixBase< PastixLU<_MatrixType> >
-{
- public:
- typedef _MatrixType MatrixType;
- typedef PastixBase<PastixLU<MatrixType> > Base;
- typedef typename Base::ColSpMatrix ColSpMatrix;
- typedef typename MatrixType::Index Index;
-
- public:
- PastixLU() : Base()
- {
- init();
- }
-
- PastixLU(const MatrixType& matrix):Base()
- {
- init();
- compute(matrix);
- }
- /** Compute the LU supernodal factorization of \p matrix.
- * iparm and dparm can be used to tune the PaStiX parameters.
- * see the PaStiX user's manual
- * \sa analyzePattern() factorize()
- */
- void compute (const MatrixType& matrix)
- {
- m_structureIsUptodate = false;
- ColSpMatrix temp;
- grabMatrix(matrix, temp);
- Base::compute(temp);
- }
- /** Compute the LU symbolic factorization of \p matrix using its sparsity pattern.
- * Several ordering methods can be used at this step. See the PaStiX user's manual.
- * The result of this operation can be used with successive matrices having the same pattern as \p matrix
- * \sa factorize()
- */
- void analyzePattern(const MatrixType& matrix)
- {
- m_structureIsUptodate = false;
- ColSpMatrix temp;
- grabMatrix(matrix, temp);
- Base::analyzePattern(temp);
- }
-
- /** Compute the LU supernodal factorization of \p matrix
- * WARNING The matrix \p matrix should have the same structural pattern
- * as the same used in the analysis phase.
- * \sa analyzePattern()
- */
- void factorize(const MatrixType& matrix)
- {
- ColSpMatrix temp;
- grabMatrix(matrix, temp);
- Base::factorize(temp);
- }
- protected:
-
- void init()
- {
- m_structureIsUptodate = false;
- m_iparm(IPARM_SYM) = API_SYM_NO;
- m_iparm(IPARM_FACTORIZATION) = API_FACT_LU;
- }
-
- void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
- {
- if(IsStrSym)
- out = matrix;
- else
- {
- if(!m_structureIsUptodate)
- {
- // update the transposed structure
- m_transposedStructure = matrix.transpose();
-
- // Set the elements of the matrix to zero
- for (Index j=0; j<m_transposedStructure.outerSize(); ++j)
- for(typename ColSpMatrix::InnerIterator it(m_transposedStructure, j); it; ++it)
- it.valueRef() = 0.0;
-
- m_structureIsUptodate = true;
- }
-
- out = m_transposedStructure + matrix;
- }
- internal::c_to_fortran_numbering(out);
- }
-
- using Base::m_iparm;
- using Base::m_dparm;
-
- ColSpMatrix m_transposedStructure;
- bool m_structureIsUptodate;
-};
-
-/** \ingroup PaStiXSupport_Module
- * \class PastixLLT
- * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library
- *
- * This class is used to solve the linear systems A.X = B via a LL^T supernodal Cholesky factorization
- * available in the PaStiX library. The matrix A should be symmetric and positive definite
- * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX
- * The vectors or matrices X and B can be either dense or sparse
- *
- * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX
- *
- * \sa \ref TutorialSparseDirectSolvers
- */
-template<typename _MatrixType, int _UpLo>
-class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> >
-{
- public:
- typedef _MatrixType MatrixType;
- typedef PastixBase<PastixLLT<MatrixType, _UpLo> > Base;
- typedef typename Base::ColSpMatrix ColSpMatrix;
-
- public:
- enum { UpLo = _UpLo };
- PastixLLT() : Base()
- {
- init();
- }
-
- PastixLLT(const MatrixType& matrix):Base()
- {
- init();
- compute(matrix);
- }
-
- /** Compute the L factor of the LL^T supernodal factorization of \p matrix
- * \sa analyzePattern() factorize()
- */
- void compute (const MatrixType& matrix)
- {
- ColSpMatrix temp;
- grabMatrix(matrix, temp);
- Base::compute(temp);
- }
-
- /** Compute the LL^T symbolic factorization of \p matrix using its sparsity pattern
- * The result of this operation can be used with successive matrices having the same pattern as \p matrix
- * \sa factorize()
- */
- void analyzePattern(const MatrixType& matrix)
- {
- ColSpMatrix temp;
- grabMatrix(matrix, temp);
- Base::analyzePattern(temp);
- }
- /** Compute the LL^T supernodal numerical factorization of \p matrix
- * \sa analyzePattern()
- */
- void factorize(const MatrixType& matrix)
- {
- ColSpMatrix temp;
- grabMatrix(matrix, temp);
- Base::factorize(temp);
- }
- protected:
- using Base::m_iparm;
-
- void init()
- {
- m_iparm(IPARM_SYM) = API_SYM_YES;
- m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT;
- }
-
- void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
- {
- // Pastix supports only lower, column-major matrices
- out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>();
- internal::c_to_fortran_numbering(out);
- }
-};
-
-/** \ingroup PaStiXSupport_Module
- * \class PastixLDLT
- * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library
- *
- * This class is used to solve the linear systems A.X = B via a LDL^T supernodal Cholesky factorization
- * available in the PaStiX library. The matrix A should be symmetric and positive definite
- * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX
- * The vectors or matrices X and B can be either dense or sparse
- *
- * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX
- *
- * \sa \ref TutorialSparseDirectSolvers
- */
-template<typename _MatrixType, int _UpLo>
-class PastixLDLT : public PastixBase< PastixLDLT<_MatrixType, _UpLo> >
-{
- public:
- typedef _MatrixType MatrixType;
- typedef PastixBase<PastixLDLT<MatrixType, _UpLo> > Base;
- typedef typename Base::ColSpMatrix ColSpMatrix;
-
- public:
- enum { UpLo = _UpLo };
- PastixLDLT():Base()
- {
- init();
- }
-
- PastixLDLT(const MatrixType& matrix):Base()
- {
- init();
- compute(matrix);
- }
-
- /** Compute the L and D factors of the LDL^T factorization of \p matrix
- * \sa analyzePattern() factorize()
- */
- void compute (const MatrixType& matrix)
- {
- ColSpMatrix temp;
- grabMatrix(matrix, temp);
- Base::compute(temp);
- }
-
- /** Compute the LDL^T symbolic factorization of \p matrix using its sparsity pattern
- * The result of this operation can be used with successive matrices having the same pattern as \p matrix
- * \sa factorize()
- */
- void analyzePattern(const MatrixType& matrix)
- {
- ColSpMatrix temp;
- grabMatrix(matrix, temp);
- Base::analyzePattern(temp);
- }
- /** Compute the LDL^T supernodal numerical factorization of \p matrix
- *
- */
- void factorize(const MatrixType& matrix)
- {
- ColSpMatrix temp;
- grabMatrix(matrix, temp);
- Base::factorize(temp);
- }
-
- protected:
- using Base::m_iparm;
-
- void init()
- {
- m_iparm(IPARM_SYM) = API_SYM_YES;
- m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT;
- }
-
- void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
- {
- // Pastix supports only lower, column-major matrices
- out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>();
- internal::c_to_fortran_numbering(out);
- }
-};
-
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<PastixBase<_MatrixType>, Rhs>
- : solve_retval_base<PastixBase<_MatrixType>, Rhs>
-{
- typedef PastixBase<_MatrixType> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-template<typename _MatrixType, typename Rhs>
-struct sparse_solve_retval<PastixBase<_MatrixType>, Rhs>
- : sparse_solve_retval_base<PastixBase<_MatrixType>, Rhs>
-{
- typedef PastixBase<_MatrixType> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- this->defaultEvalTo(dst);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif
diff --git a/src/Eigen/src/PardisoSupport/CMakeLists.txt b/src/Eigen/src/PardisoSupport/CMakeLists.txt
deleted file mode 100644
index a097ab4..0000000
--- a/src/Eigen/src/PardisoSupport/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_PardisoSupport_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_PardisoSupport_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/PardisoSupport COMPONENT Devel
- )
diff --git a/src/Eigen/src/PardisoSupport/PardisoSupport.h b/src/Eigen/src/PardisoSupport/PardisoSupport.h
deleted file mode 100644
index 1c48f0d..0000000
--- a/src/Eigen/src/PardisoSupport/PardisoSupport.h
+++ /dev/null
@@ -1,592 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL PARDISO
- ********************************************************************************
-*/
-
-#ifndef EIGEN_PARDISOSUPPORT_H
-#define EIGEN_PARDISOSUPPORT_H
-
-namespace Eigen {
-
-template<typename _MatrixType> class PardisoLU;
-template<typename _MatrixType, int Options=Upper> class PardisoLLT;
-template<typename _MatrixType, int Options=Upper> class PardisoLDLT;
-
-namespace internal
-{
- template<typename Index>
- struct pardiso_run_selector
- {
- static Index run( _MKL_DSS_HANDLE_t pt, Index maxfct, Index mnum, Index type, Index phase, Index n, void *a,
- Index *ia, Index *ja, Index *perm, Index nrhs, Index *iparm, Index msglvl, void *b, void *x)
- {
- Index error = 0;
- ::pardiso(pt, &maxfct, &mnum, &type, &phase, &n, a, ia, ja, perm, &nrhs, iparm, &msglvl, b, x, &error);
- return error;
- }
- };
- template<>
- struct pardiso_run_selector<long long int>
- {
- typedef long long int Index;
- static Index run( _MKL_DSS_HANDLE_t pt, Index maxfct, Index mnum, Index type, Index phase, Index n, void *a,
- Index *ia, Index *ja, Index *perm, Index nrhs, Index *iparm, Index msglvl, void *b, void *x)
- {
- Index error = 0;
- ::pardiso_64(pt, &maxfct, &mnum, &type, &phase, &n, a, ia, ja, perm, &nrhs, iparm, &msglvl, b, x, &error);
- return error;
- }
- };
-
- template<class Pardiso> struct pardiso_traits;
-
- template<typename _MatrixType>
- struct pardiso_traits< PardisoLU<_MatrixType> >
- {
- typedef _MatrixType MatrixType;
- typedef typename _MatrixType::Scalar Scalar;
- typedef typename _MatrixType::RealScalar RealScalar;
- typedef typename _MatrixType::Index Index;
- };
-
- template<typename _MatrixType, int Options>
- struct pardiso_traits< PardisoLLT<_MatrixType, Options> >
- {
- typedef _MatrixType MatrixType;
- typedef typename _MatrixType::Scalar Scalar;
- typedef typename _MatrixType::RealScalar RealScalar;
- typedef typename _MatrixType::Index Index;
- };
-
- template<typename _MatrixType, int Options>
- struct pardiso_traits< PardisoLDLT<_MatrixType, Options> >
- {
- typedef _MatrixType MatrixType;
- typedef typename _MatrixType::Scalar Scalar;
- typedef typename _MatrixType::RealScalar RealScalar;
- typedef typename _MatrixType::Index Index;
- };
-
-}
-
-template<class Derived>
-class PardisoImpl
-{
- typedef internal::pardiso_traits<Derived> Traits;
- public:
- typedef typename Traits::MatrixType MatrixType;
- typedef typename Traits::Scalar Scalar;
- typedef typename Traits::RealScalar RealScalar;
- typedef typename Traits::Index Index;
- typedef SparseMatrix<Scalar,RowMajor,Index> SparseMatrixType;
- typedef Matrix<Scalar,Dynamic,1> VectorType;
- typedef Matrix<Index, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
- typedef Matrix<Index, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
- typedef Array<Index,64,1,DontAlign> ParameterType;
- enum {
- ScalarIsComplex = NumTraits<Scalar>::IsComplex
- };
-
- PardisoImpl()
- {
- eigen_assert((sizeof(Index) >= sizeof(_INTEGER_t) && sizeof(Index) <= 8) && "Non-supported index type");
- m_iparm.setZero();
- m_msglvl = 0; // No output
- m_initialized = false;
- }
-
- ~PardisoImpl()
- {
- pardisoRelease();
- }
-
- inline Index cols() const { return m_size; }
- inline Index rows() const { return m_size; }
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful,
- * \c NumericalIssue if the matrix appears to be negative.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_initialized && "Decomposition is not initialized.");
- return m_info;
- }
-
- /** \warning for advanced usage only.
- * \returns a reference to the parameter array controlling PARDISO.
- * See the PARDISO manual to know how to use it. */
- ParameterType& pardisoParameterArray()
- {
- return m_iparm;
- }
-
- /** Performs a symbolic decomposition on the sparcity of \a matrix.
- *
- * This function is particularly useful when solving for several problems having the same structure.
- *
- * \sa factorize()
- */
- Derived& analyzePattern(const MatrixType& matrix);
-
- /** Performs a numeric decomposition of \a matrix
- *
- * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
- *
- * \sa analyzePattern()
- */
- Derived& factorize(const MatrixType& matrix);
-
- Derived& compute(const MatrixType& matrix);
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::solve_retval<PardisoImpl, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_initialized && "Pardiso solver is not initialized.");
- eigen_assert(rows()==b.rows()
- && "PardisoImpl::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<PardisoImpl, Rhs>(*this, b.derived());
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::sparse_solve_retval<PardisoImpl, Rhs>
- solve(const SparseMatrixBase<Rhs>& b) const
- {
- eigen_assert(m_initialized && "Pardiso solver is not initialized.");
- eigen_assert(rows()==b.rows()
- && "PardisoImpl::solve(): invalid number of rows of the right hand side matrix b");
- return internal::sparse_solve_retval<PardisoImpl, Rhs>(*this, b.derived());
- }
-
- Derived& derived()
- {
- return *static_cast<Derived*>(this);
- }
- const Derived& derived() const
- {
- return *static_cast<const Derived*>(this);
- }
-
- template<typename BDerived, typename XDerived>
- bool _solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>& x) const;
-
- protected:
- void pardisoRelease()
- {
- if(m_initialized) // Factorization ran at least once
- {
- internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, -1, m_size, 0, 0, 0, m_perm.data(), 0,
- m_iparm.data(), m_msglvl, 0, 0);
- }
- }
-
- void pardisoInit(int type)
- {
- m_type = type;
- bool symmetric = abs(m_type) < 10;
- m_iparm[0] = 1; // No solver default
- m_iparm[1] = 3; // use Metis for the ordering
- m_iparm[2] = 1; // Numbers of processors, value of OMP_NUM_THREADS
- m_iparm[3] = 0; // No iterative-direct algorithm
- m_iparm[4] = 0; // No user fill-in reducing permutation
- m_iparm[5] = 0; // Write solution into x
- m_iparm[6] = 0; // Not in use
- m_iparm[7] = 2; // Max numbers of iterative refinement steps
- m_iparm[8] = 0; // Not in use
- m_iparm[9] = 13; // Perturb the pivot elements with 1E-13
- m_iparm[10] = symmetric ? 0 : 1; // Use nonsymmetric permutation and scaling MPS
- m_iparm[11] = 0; // Not in use
- m_iparm[12] = symmetric ? 0 : 1; // Maximum weighted matching algorithm is switched-off (default for symmetric).
- // Try m_iparm[12] = 1 in case of inappropriate accuracy
- m_iparm[13] = 0; // Output: Number of perturbed pivots
- m_iparm[14] = 0; // Not in use
- m_iparm[15] = 0; // Not in use
- m_iparm[16] = 0; // Not in use
- m_iparm[17] = -1; // Output: Number of nonzeros in the factor LU
- m_iparm[18] = -1; // Output: Mflops for LU factorization
- m_iparm[19] = 0; // Output: Numbers of CG Iterations
-
- m_iparm[20] = 0; // 1x1 pivoting
- m_iparm[26] = 0; // No matrix checker
- m_iparm[27] = (sizeof(RealScalar) == 4) ? 1 : 0;
- m_iparm[34] = 1; // C indexing
- m_iparm[59] = 1; // Automatic switch between In-Core and Out-of-Core modes
- }
-
- protected:
- // cached data to reduce reallocation, etc.
-
- void manageErrorCode(Index error)
- {
- switch(error)
- {
- case 0:
- m_info = Success;
- break;
- case -4:
- case -7:
- m_info = NumericalIssue;
- break;
- default:
- m_info = InvalidInput;
- }
- }
-
- mutable SparseMatrixType m_matrix;
- ComputationInfo m_info;
- bool m_initialized, m_analysisIsOk, m_factorizationIsOk;
- Index m_type, m_msglvl;
- mutable void *m_pt[64];
- mutable ParameterType m_iparm;
- mutable IntColVectorType m_perm;
- Index m_size;
-
- private:
- PardisoImpl(PardisoImpl &) {}
-};
-
-template<class Derived>
-Derived& PardisoImpl<Derived>::compute(const MatrixType& a)
-{
- m_size = a.rows();
- eigen_assert(a.rows() == a.cols());
-
- pardisoRelease();
- memset(m_pt, 0, sizeof(m_pt));
- m_perm.setZero(m_size);
- derived().getMatrix(a);
-
- Index error;
- error = internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, 12, m_size,
- m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
- m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL);
-
- manageErrorCode(error);
- m_analysisIsOk = true;
- m_factorizationIsOk = true;
- m_initialized = true;
- return derived();
-}
-
-template<class Derived>
-Derived& PardisoImpl<Derived>::analyzePattern(const MatrixType& a)
-{
- m_size = a.rows();
- eigen_assert(m_size == a.cols());
-
- pardisoRelease();
- memset(m_pt, 0, sizeof(m_pt));
- m_perm.setZero(m_size);
- derived().getMatrix(a);
-
- Index error;
- error = internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, 11, m_size,
- m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
- m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL);
-
- manageErrorCode(error);
- m_analysisIsOk = true;
- m_factorizationIsOk = false;
- m_initialized = true;
- return derived();
-}
-
-template<class Derived>
-Derived& PardisoImpl<Derived>::factorize(const MatrixType& a)
-{
- eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
- eigen_assert(m_size == a.rows() && m_size == a.cols());
-
- derived().getMatrix(a);
-
- Index error;
- error = internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, 22, m_size,
- m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
- m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL);
-
- manageErrorCode(error);
- m_factorizationIsOk = true;
- return derived();
-}
-
-template<class Base>
-template<typename BDerived,typename XDerived>
-bool PardisoImpl<Base>::_solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>& x) const
-{
- if(m_iparm[0] == 0) // Factorization was not computed
- return false;
-
- //Index n = m_matrix.rows();
- Index nrhs = Index(b.cols());
- eigen_assert(m_size==b.rows());
- eigen_assert(((MatrixBase<BDerived>::Flags & RowMajorBit) == 0 || nrhs == 1) && "Row-major right hand sides are not supported");
- eigen_assert(((MatrixBase<XDerived>::Flags & RowMajorBit) == 0 || nrhs == 1) && "Row-major matrices of unknowns are not supported");
- eigen_assert(((nrhs == 1) || b.outerStride() == b.rows()));
-
-
-// switch (transposed) {
-// case SvNoTrans : m_iparm[11] = 0 ; break;
-// case SvTranspose : m_iparm[11] = 2 ; break;
-// case SvAdjoint : m_iparm[11] = 1 ; break;
-// default:
-// //std::cerr << "Eigen: transposition option \"" << transposed << "\" not supported by the PARDISO backend\n";
-// m_iparm[11] = 0;
-// }
-
- Scalar* rhs_ptr = const_cast<Scalar*>(b.derived().data());
- Matrix<Scalar,Dynamic,Dynamic,ColMajor> tmp;
-
- // Pardiso cannot solve in-place
- if(rhs_ptr == x.derived().data())
- {
- tmp = b;
- rhs_ptr = tmp.data();
- }
-
- Index error;
- error = internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, 33, m_size,
- m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
- m_perm.data(), nrhs, m_iparm.data(), m_msglvl,
- rhs_ptr, x.derived().data());
-
- return error==0;
-}
-
-
-/** \ingroup PardisoSupport_Module
- * \class PardisoLU
- * \brief A sparse direct LU factorization and solver based on the PARDISO library
- *
- * This class allows to solve for A.X = B sparse linear problems via a direct LU factorization
- * using the Intel MKL PARDISO library. The sparse matrix A must be squared and invertible.
- * The vectors or matrices X and B can be either dense or sparse.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- *
- * \sa \ref TutorialSparseDirectSolvers
- */
-template<typename MatrixType>
-class PardisoLU : public PardisoImpl< PardisoLU<MatrixType> >
-{
- protected:
- typedef PardisoImpl< PardisoLU<MatrixType> > Base;
- typedef typename Base::Scalar Scalar;
- typedef typename Base::RealScalar RealScalar;
- using Base::pardisoInit;
- using Base::m_matrix;
- friend class PardisoImpl< PardisoLU<MatrixType> >;
-
- public:
-
- using Base::compute;
- using Base::solve;
-
- PardisoLU()
- : Base()
- {
- pardisoInit(Base::ScalarIsComplex ? 13 : 11);
- }
-
- PardisoLU(const MatrixType& matrix)
- : Base()
- {
- pardisoInit(Base::ScalarIsComplex ? 13 : 11);
- compute(matrix);
- }
- protected:
- void getMatrix(const MatrixType& matrix)
- {
- m_matrix = matrix;
- }
-
- private:
- PardisoLU(PardisoLU& ) {}
-};
-
-/** \ingroup PardisoSupport_Module
- * \class PardisoLLT
- * \brief A sparse direct Cholesky (LLT) factorization and solver based on the PARDISO library
- *
- * This class allows to solve for A.X = B sparse linear problems via a LL^T Cholesky factorization
- * using the Intel MKL PARDISO library. The sparse matrix A must be selfajoint and positive definite.
- * The vectors or matrices X and B can be either dense or sparse.
- *
- * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam UpLo can be any bitwise combination of Upper, Lower. The default is Upper, meaning only the upper triangular part has to be used.
- * Upper|Lower can be used to tell both triangular parts can be used as input.
- *
- * \sa \ref TutorialSparseDirectSolvers
- */
-template<typename MatrixType, int _UpLo>
-class PardisoLLT : public PardisoImpl< PardisoLLT<MatrixType,_UpLo> >
-{
- protected:
- typedef PardisoImpl< PardisoLLT<MatrixType,_UpLo> > Base;
- typedef typename Base::Scalar Scalar;
- typedef typename Base::Index Index;
- typedef typename Base::RealScalar RealScalar;
- using Base::pardisoInit;
- using Base::m_matrix;
- friend class PardisoImpl< PardisoLLT<MatrixType,_UpLo> >;
-
- public:
-
- enum { UpLo = _UpLo };
- using Base::compute;
- using Base::solve;
-
- PardisoLLT()
- : Base()
- {
- pardisoInit(Base::ScalarIsComplex ? 4 : 2);
- }
-
- PardisoLLT(const MatrixType& matrix)
- : Base()
- {
- pardisoInit(Base::ScalarIsComplex ? 4 : 2);
- compute(matrix);
- }
-
- protected:
-
- void getMatrix(const MatrixType& matrix)
- {
- // PARDISO supports only upper, row-major matrices
- PermutationMatrix<Dynamic,Dynamic,Index> p_null;
- m_matrix.resize(matrix.rows(), matrix.cols());
- m_matrix.template selfadjointView<Upper>() = matrix.template selfadjointView<UpLo>().twistedBy(p_null);
- }
-
- private:
- PardisoLLT(PardisoLLT& ) {}
-};
-
-/** \ingroup PardisoSupport_Module
- * \class PardisoLDLT
- * \brief A sparse direct Cholesky (LDLT) factorization and solver based on the PARDISO library
- *
- * This class allows to solve for A.X = B sparse linear problems via a LDL^T Cholesky factorization
- * using the Intel MKL PARDISO library. The sparse matrix A is assumed to be selfajoint and positive definite.
- * For complex matrices, A can also be symmetric only, see the \a Options template parameter.
- * The vectors or matrices X and B can be either dense or sparse.
- *
- * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam Options can be any bitwise combination of Upper, Lower, and Symmetric. The default is Upper, meaning only the upper triangular part has to be used.
- * Symmetric can be used for symmetric, non-selfadjoint complex matrices, the default being to assume a selfadjoint matrix.
- * Upper|Lower can be used to tell both triangular parts can be used as input.
- *
- * \sa \ref TutorialSparseDirectSolvers
- */
-template<typename MatrixType, int Options>
-class PardisoLDLT : public PardisoImpl< PardisoLDLT<MatrixType,Options> >
-{
- protected:
- typedef PardisoImpl< PardisoLDLT<MatrixType,Options> > Base;
- typedef typename Base::Scalar Scalar;
- typedef typename Base::Index Index;
- typedef typename Base::RealScalar RealScalar;
- using Base::pardisoInit;
- using Base::m_matrix;
- friend class PardisoImpl< PardisoLDLT<MatrixType,Options> >;
-
- public:
-
- using Base::compute;
- using Base::solve;
- enum { UpLo = Options&(Upper|Lower) };
-
- PardisoLDLT()
- : Base()
- {
- pardisoInit(Base::ScalarIsComplex ? ( bool(Options&Symmetric) ? 6 : -4 ) : -2);
- }
-
- PardisoLDLT(const MatrixType& matrix)
- : Base()
- {
- pardisoInit(Base::ScalarIsComplex ? ( bool(Options&Symmetric) ? 6 : -4 ) : -2);
- compute(matrix);
- }
-
- void getMatrix(const MatrixType& matrix)
- {
- // PARDISO supports only upper, row-major matrices
- PermutationMatrix<Dynamic,Dynamic,Index> p_null;
- m_matrix.resize(matrix.rows(), matrix.cols());
- m_matrix.template selfadjointView<Upper>() = matrix.template selfadjointView<UpLo>().twistedBy(p_null);
- }
-
- private:
- PardisoLDLT(PardisoLDLT& ) {}
-};
-
-namespace internal {
-
-template<typename _Derived, typename Rhs>
-struct solve_retval<PardisoImpl<_Derived>, Rhs>
- : solve_retval_base<PardisoImpl<_Derived>, Rhs>
-{
- typedef PardisoImpl<_Derived> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-template<typename Derived, typename Rhs>
-struct sparse_solve_retval<PardisoImpl<Derived>, Rhs>
- : sparse_solve_retval_base<PardisoImpl<Derived>, Rhs>
-{
- typedef PardisoImpl<Derived> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- this->defaultEvalTo(dst);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_PARDISOSUPPORT_H
diff --git a/src/Eigen/src/QR/CMakeLists.txt b/src/Eigen/src/QR/CMakeLists.txt
deleted file mode 100644
index 96f43d7..0000000
--- a/src/Eigen/src/QR/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_QR_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_QR_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/QR COMPONENT Devel
- )
diff --git a/src/Eigen/src/QR/ColPivHouseholderQR.h b/src/Eigen/src/QR/ColPivHouseholderQR.h
deleted file mode 100644
index 773d1df..0000000
--- a/src/Eigen/src/QR/ColPivHouseholderQR.h
+++ /dev/null
@@ -1,580 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
-#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
-
-namespace Eigen {
-
-/** \ingroup QR_Module
- *
- * \class ColPivHouseholderQR
- *
- * \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting
- *
- * \param MatrixType the type of the matrix of which we are computing the QR decomposition
- *
- * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
- * such that
- * \f[
- * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
- * \f]
- * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
- * upper triangular matrix.
- *
- * This decomposition performs column pivoting in order to be rank-revealing and improve
- * numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR.
- *
- * \sa MatrixBase::colPivHouseholderQr()
- */
-template<typename _MatrixType> class ColPivHouseholderQR
-{
- public:
-
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
- typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
- typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
- typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
- typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
- typedef typename internal::plain_row_type<MatrixType, RealScalar>::type RealRowVectorType;
- typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
-
- private:
-
- typedef typename PermutationType::Index PermIndexType;
-
- public:
-
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&).
- */
- ColPivHouseholderQR()
- : m_qr(),
- m_hCoeffs(),
- m_colsPermutation(),
- m_colsTranspositions(),
- m_temp(),
- m_colSqNorms(),
- m_isInitialized(false),
- m_usePrescribedThreshold(false) {}
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa ColPivHouseholderQR()
- */
- ColPivHouseholderQR(Index rows, Index cols)
- : m_qr(rows, cols),
- m_hCoeffs((std::min)(rows,cols)),
- m_colsPermutation(PermIndexType(cols)),
- m_colsTranspositions(cols),
- m_temp(cols),
- m_colSqNorms(cols),
- m_isInitialized(false),
- m_usePrescribedThreshold(false) {}
-
- /** \brief Constructs a QR factorization from a given matrix
- *
- * This constructor computes the QR factorization of the matrix \a matrix by calling
- * the method compute(). It is a short cut for:
- *
- * \code
- * ColPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
- * qr.compute(matrix);
- * \endcode
- *
- * \sa compute()
- */
- ColPivHouseholderQR(const MatrixType& matrix)
- : m_qr(matrix.rows(), matrix.cols()),
- m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
- m_colsPermutation(PermIndexType(matrix.cols())),
- m_colsTranspositions(matrix.cols()),
- m_temp(matrix.cols()),
- m_colSqNorms(matrix.cols()),
- m_isInitialized(false),
- m_usePrescribedThreshold(false)
- {
- compute(matrix);
- }
-
- /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
- * *this is the QR decomposition, if any exists.
- *
- * \param b the right-hand-side of the equation to solve.
- *
- * \returns a solution.
- *
- * \note The case where b is a matrix is not yet implemented. Also, this
- * code is space inefficient.
- *
- * \note_about_checking_solutions
- *
- * \note_about_arbitrary_choice_of_solution
- *
- * Example: \include ColPivHouseholderQR_solve.cpp
- * Output: \verbinclude ColPivHouseholderQR_solve.out
- */
- template<typename Rhs>
- inline const internal::solve_retval<ColPivHouseholderQR, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return internal::solve_retval<ColPivHouseholderQR, Rhs>(*this, b.derived());
- }
-
- HouseholderSequenceType householderQ(void) const;
- HouseholderSequenceType matrixQ(void) const
- {
- return householderQ();
- }
-
- /** \returns a reference to the matrix where the Householder QR decomposition is stored
- */
- const MatrixType& matrixQR() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_qr;
- }
-
- /** \returns a reference to the matrix where the result Householder QR is stored
- * \warning The strict lower part of this matrix contains internal values.
- * Only the upper triangular part should be referenced. To get it, use
- * \code matrixR().template triangularView<Upper>() \endcode
- * For rank-deficient matrices, use
- * \code
- * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
- * \endcode
- */
- const MatrixType& matrixR() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_qr;
- }
-
- ColPivHouseholderQR& compute(const MatrixType& matrix);
-
- /** \returns a const reference to the column permutation matrix */
- const PermutationType& colsPermutation() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_colsPermutation;
- }
-
- /** \returns the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- * One way to work around that is to use logAbsDeterminant() instead.
- *
- * \sa logAbsDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar absDeterminant() const;
-
- /** \returns the natural log of the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \note This method is useful to work around the risk of overflow/underflow that's inherent
- * to determinant computation.
- *
- * \sa absDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar logAbsDeterminant() const;
-
- /** \returns the rank of the matrix of which *this is the QR decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index rank() const
- {
- using std::abs;
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
- Index result = 0;
- for(Index i = 0; i < m_nonzero_pivots; ++i)
- result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
- return result;
- }
-
- /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index dimensionOfKernel() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return cols() - rank();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition represents an injective
- * linear map, i.e. has trivial kernel; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInjective() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return rank() == cols();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
- * linear map; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isSurjective() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return rank() == rows();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition is invertible.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInvertible() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return isInjective() && isSurjective();
- }
-
- /** \returns the inverse of the matrix of which *this is the QR decomposition.
- *
- * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
- * Use isInvertible() to first determine whether this matrix is invertible.
- */
- inline const
- internal::solve_retval<ColPivHouseholderQR, typename MatrixType::IdentityReturnType>
- inverse() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return internal::solve_retval<ColPivHouseholderQR,typename MatrixType::IdentityReturnType>
- (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
- }
-
- inline Index rows() const { return m_qr.rows(); }
- inline Index cols() const { return m_qr.cols(); }
-
- /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
- *
- * For advanced uses only.
- */
- const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
-
- /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
- * who need to determine when pivots are to be considered nonzero. This is not used for the
- * QR decomposition itself.
- *
- * When it needs to get the threshold value, Eigen calls threshold(). By default, this
- * uses a formula to automatically determine a reasonable threshold.
- * Once you have called the present method setThreshold(const RealScalar&),
- * your value is used instead.
- *
- * \param threshold The new value to use as the threshold.
- *
- * A pivot will be considered nonzero if its absolute value is strictly greater than
- * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
- * where maxpivot is the biggest pivot.
- *
- * If you want to come back to the default behavior, call setThreshold(Default_t)
- */
- ColPivHouseholderQR& setThreshold(const RealScalar& threshold)
- {
- m_usePrescribedThreshold = true;
- m_prescribedThreshold = threshold;
- return *this;
- }
-
- /** Allows to come back to the default behavior, letting Eigen use its default formula for
- * determining the threshold.
- *
- * You should pass the special object Eigen::Default as parameter here.
- * \code qr.setThreshold(Eigen::Default); \endcode
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- ColPivHouseholderQR& setThreshold(Default_t)
- {
- m_usePrescribedThreshold = false;
- return *this;
- }
-
- /** Returns the threshold that will be used by certain methods such as rank().
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- RealScalar threshold() const
- {
- eigen_assert(m_isInitialized || m_usePrescribedThreshold);
- return m_usePrescribedThreshold ? m_prescribedThreshold
- // this formula comes from experimenting (see "LU precision tuning" thread on the list)
- // and turns out to be identical to Higham's formula used already in LDLt.
- : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
- }
-
- /** \returns the number of nonzero pivots in the QR decomposition.
- * Here nonzero is meant in the exact sense, not in a fuzzy sense.
- * So that notion isn't really intrinsically interesting, but it is
- * still useful when implementing algorithms.
- *
- * \sa rank()
- */
- inline Index nonzeroPivots() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_nonzero_pivots;
- }
-
- /** \returns the absolute value of the biggest pivot, i.e. the biggest
- * diagonal coefficient of R.
- */
- RealScalar maxPivot() const { return m_maxpivot; }
-
- /** \brief Reports whether the QR factorization was succesful.
- *
- * \note This function always returns \c Success. It is provided for compatibility
- * with other factorization routines.
- * \returns \c Success
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return Success;
- }
-
- protected:
- MatrixType m_qr;
- HCoeffsType m_hCoeffs;
- PermutationType m_colsPermutation;
- IntRowVectorType m_colsTranspositions;
- RowVectorType m_temp;
- RealRowVectorType m_colSqNorms;
- bool m_isInitialized, m_usePrescribedThreshold;
- RealScalar m_prescribedThreshold, m_maxpivot;
- Index m_nonzero_pivots;
- Index m_det_pq;
-};
-
-template<typename MatrixType>
-typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::absDeterminant() const
-{
- using std::abs;
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return abs(m_qr.diagonal().prod());
-}
-
-template<typename MatrixType>
-typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::logAbsDeterminant() const
-{
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return m_qr.diagonal().cwiseAbs().array().log().sum();
-}
-
-/** Performs the QR factorization of the given matrix \a matrix. The result of
- * the factorization is stored into \c *this, and a reference to \c *this
- * is returned.
- *
- * \sa class ColPivHouseholderQR, ColPivHouseholderQR(const MatrixType&)
- */
-template<typename MatrixType>
-ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
-{
- using std::abs;
- Index rows = matrix.rows();
- Index cols = matrix.cols();
- Index size = matrix.diagonalSize();
-
- // the column permutation is stored as int indices, so just to be sure:
- eigen_assert(cols<=NumTraits<int>::highest());
-
- m_qr = matrix;
- m_hCoeffs.resize(size);
-
- m_temp.resize(cols);
-
- m_colsTranspositions.resize(matrix.cols());
- Index number_of_transpositions = 0;
-
- m_colSqNorms.resize(cols);
- for(Index k = 0; k < cols; ++k)
- m_colSqNorms.coeffRef(k) = m_qr.col(k).squaredNorm();
-
- RealScalar threshold_helper = m_colSqNorms.maxCoeff() * numext::abs2(NumTraits<Scalar>::epsilon()) / RealScalar(rows);
-
- m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
- m_maxpivot = RealScalar(0);
-
- for(Index k = 0; k < size; ++k)
- {
- // first, we look up in our table m_colSqNorms which column has the biggest squared norm
- Index biggest_col_index;
- RealScalar biggest_col_sq_norm = m_colSqNorms.tail(cols-k).maxCoeff(&biggest_col_index);
- biggest_col_index += k;
-
- // since our table m_colSqNorms accumulates imprecision at every step, we must now recompute
- // the actual squared norm of the selected column.
- // Note that not doing so does result in solve() sometimes returning inf/nan values
- // when running the unit test with 1000 repetitions.
- biggest_col_sq_norm = m_qr.col(biggest_col_index).tail(rows-k).squaredNorm();
-
- // we store that back into our table: it can't hurt to correct our table.
- m_colSqNorms.coeffRef(biggest_col_index) = biggest_col_sq_norm;
-
- // if the current biggest column is smaller than epsilon times the initial biggest column,
- // terminate to avoid generating nan/inf values.
- // Note that here, if we test instead for "biggest == 0", we get a failure every 1000 (or so)
- // repetitions of the unit test, with the result of solve() filled with large values of the order
- // of 1/(size*epsilon).
- if(biggest_col_sq_norm < threshold_helper * RealScalar(rows-k))
- {
- m_nonzero_pivots = k;
- m_hCoeffs.tail(size-k).setZero();
- m_qr.bottomRightCorner(rows-k,cols-k)
- .template triangularView<StrictlyLower>()
- .setZero();
- break;
- }
-
- // apply the transposition to the columns
- m_colsTranspositions.coeffRef(k) = biggest_col_index;
- if(k != biggest_col_index) {
- m_qr.col(k).swap(m_qr.col(biggest_col_index));
- std::swap(m_colSqNorms.coeffRef(k), m_colSqNorms.coeffRef(biggest_col_index));
- ++number_of_transpositions;
- }
-
- // generate the householder vector, store it below the diagonal
- RealScalar beta;
- m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
-
- // apply the householder transformation to the diagonal coefficient
- m_qr.coeffRef(k,k) = beta;
-
- // remember the maximum absolute value of diagonal coefficients
- if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
-
- // apply the householder transformation
- m_qr.bottomRightCorner(rows-k, cols-k-1)
- .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
-
- // update our table of squared norms of the columns
- m_colSqNorms.tail(cols-k-1) -= m_qr.row(k).tail(cols-k-1).cwiseAbs2();
- }
-
- m_colsPermutation.setIdentity(PermIndexType(cols));
- for(PermIndexType k = 0; k < m_nonzero_pivots; ++k)
- m_colsPermutation.applyTranspositionOnTheRight(k, PermIndexType(m_colsTranspositions.coeff(k)));
-
- m_det_pq = (number_of_transpositions%2) ? -1 : 1;
- m_isInitialized = true;
-
- return *this;
-}
-
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<ColPivHouseholderQR<_MatrixType>, Rhs>
- : solve_retval_base<ColPivHouseholderQR<_MatrixType>, Rhs>
-{
- EIGEN_MAKE_SOLVE_HELPERS(ColPivHouseholderQR<_MatrixType>,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- eigen_assert(rhs().rows() == dec().rows());
-
- const Index cols = dec().cols(),
- nonzero_pivots = dec().nonzeroPivots();
-
- if(nonzero_pivots == 0)
- {
- dst.setZero();
- return;
- }
-
- typename Rhs::PlainObject c(rhs());
-
- // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
- c.applyOnTheLeft(householderSequence(dec().matrixQR(), dec().hCoeffs())
- .setLength(dec().nonzeroPivots())
- .transpose()
- );
-
- dec().matrixR()
- .topLeftCorner(nonzero_pivots, nonzero_pivots)
- .template triangularView<Upper>()
- .solveInPlace(c.topRows(nonzero_pivots));
-
- for(Index i = 0; i < nonzero_pivots; ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
- for(Index i = nonzero_pivots; i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
- }
-};
-
-} // end namespace internal
-
-/** \returns the matrix Q as a sequence of householder transformations */
-template<typename MatrixType>
-typename ColPivHouseholderQR<MatrixType>::HouseholderSequenceType ColPivHouseholderQR<MatrixType>
- ::householderQ() const
-{
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()).setLength(m_nonzero_pivots);
-}
-
-/** \return the column-pivoting Householder QR decomposition of \c *this.
- *
- * \sa class ColPivHouseholderQR
- */
-template<typename Derived>
-const ColPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::colPivHouseholderQr() const
-{
- return ColPivHouseholderQR<PlainObject>(eval());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
diff --git a/src/Eigen/src/QR/ColPivHouseholderQR_MKL.h b/src/Eigen/src/QR/ColPivHouseholderQR_MKL.h
deleted file mode 100644
index b5b1983..0000000
--- a/src/Eigen/src/QR/ColPivHouseholderQR_MKL.h
+++ /dev/null
@@ -1,99 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * Householder QR decomposition of a matrix with column pivoting based on
- * LAPACKE_?geqp3 function.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_MKL_H
-#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_MKL_H
-
-#include "Eigen/src/Core/util/MKL_support.h"
-
-namespace Eigen {
-
-/** \internal Specialization for the data types supported by MKL */
-
-#define EIGEN_MKL_QR_COLPIV(EIGTYPE, MKLTYPE, MKLPREFIX, EIGCOLROW, MKLCOLROW) \
-template<> inline \
-ColPivHouseholderQR<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> >& \
-ColPivHouseholderQR<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> >::compute( \
- const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>& matrix) \
-\
-{ \
- using std::abs; \
- typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> MatrixType; \
- typedef MatrixType::Scalar Scalar; \
- typedef MatrixType::RealScalar RealScalar; \
- Index rows = matrix.rows();\
- Index cols = matrix.cols();\
- Index size = matrix.diagonalSize();\
-\
- m_qr = matrix;\
- m_hCoeffs.resize(size);\
-\
- m_colsTranspositions.resize(cols);\
- /*Index number_of_transpositions = 0;*/ \
-\
- m_nonzero_pivots = 0; \
- m_maxpivot = RealScalar(0);\
- m_colsPermutation.resize(cols); \
- m_colsPermutation.indices().setZero(); \
-\
- lapack_int lda = m_qr.outerStride(), i; \
- lapack_int matrix_order = MKLCOLROW; \
- LAPACKE_##MKLPREFIX##geqp3( matrix_order, rows, cols, (MKLTYPE*)m_qr.data(), lda, (lapack_int*)m_colsPermutation.indices().data(), (MKLTYPE*)m_hCoeffs.data()); \
- m_isInitialized = true; \
- m_maxpivot=m_qr.diagonal().cwiseAbs().maxCoeff(); \
- m_hCoeffs.adjointInPlace(); \
- RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); \
- lapack_int *perm = m_colsPermutation.indices().data(); \
- for(i=0;i<size;i++) { \
- m_nonzero_pivots += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);\
- } \
- for(i=0;i<cols;i++) perm[i]--;\
-\
- /*m_det_pq = (number_of_transpositions%2) ? -1 : 1; // TODO: It's not needed now; fix upon availability in Eigen */ \
-\
- return *this; \
-}
-
-EIGEN_MKL_QR_COLPIV(double, double, d, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_QR_COLPIV(float, float, s, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_QR_COLPIV(dcomplex, MKL_Complex16, z, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_QR_COLPIV(scomplex, MKL_Complex8, c, ColMajor, LAPACK_COL_MAJOR)
-
-EIGEN_MKL_QR_COLPIV(double, double, d, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_MKL_QR_COLPIV(float, float, s, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_MKL_QR_COLPIV(dcomplex, MKL_Complex16, z, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_MKL_QR_COLPIV(scomplex, MKL_Complex8, c, RowMajor, LAPACK_ROW_MAJOR)
-
-} // end namespace Eigen
-
-#endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_MKL_H
diff --git a/src/Eigen/src/QR/FullPivHouseholderQR.h b/src/Eigen/src/QR/FullPivHouseholderQR.h
deleted file mode 100644
index 6168e7a..0000000
--- a/src/Eigen/src/QR/FullPivHouseholderQR.h
+++ /dev/null
@@ -1,614 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
-#define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType;
-
-template<typename MatrixType>
-struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
-{
- typedef typename MatrixType::PlainObject ReturnType;
-};
-
-}
-
-/** \ingroup QR_Module
- *
- * \class FullPivHouseholderQR
- *
- * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
- *
- * \param MatrixType the type of the matrix of which we are computing the QR decomposition
- *
- * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
- * such that
- * \f[
- * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
- * \f]
- * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
- * upper triangular matrix.
- *
- * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
- * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
- *
- * \sa MatrixBase::fullPivHouseholderQr()
- */
-template<typename _MatrixType> class FullPivHouseholderQR
-{
- public:
-
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> MatrixQReturnType;
- typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
- typedef Matrix<Index, 1,
- EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime,RowsAtCompileTime), RowMajor, 1,
- EIGEN_SIZE_MIN_PREFER_FIXED(MaxColsAtCompileTime,MaxRowsAtCompileTime)> IntDiagSizeVectorType;
- typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
- typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
- typedef typename internal::plain_col_type<MatrixType>::type ColVectorType;
-
- /** \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).
- */
- FullPivHouseholderQR()
- : m_qr(),
- m_hCoeffs(),
- m_rows_transpositions(),
- m_cols_transpositions(),
- m_cols_permutation(),
- m_temp(),
- m_isInitialized(false),
- m_usePrescribedThreshold(false) {}
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa FullPivHouseholderQR()
- */
- FullPivHouseholderQR(Index rows, Index cols)
- : m_qr(rows, cols),
- m_hCoeffs((std::min)(rows,cols)),
- m_rows_transpositions((std::min)(rows,cols)),
- m_cols_transpositions((std::min)(rows,cols)),
- m_cols_permutation(cols),
- m_temp(cols),
- m_isInitialized(false),
- m_usePrescribedThreshold(false) {}
-
- /** \brief Constructs a QR factorization from a given matrix
- *
- * This constructor computes the QR factorization of the matrix \a matrix by calling
- * the method compute(). It is a short cut for:
- *
- * \code
- * FullPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
- * qr.compute(matrix);
- * \endcode
- *
- * \sa compute()
- */
- FullPivHouseholderQR(const MatrixType& matrix)
- : m_qr(matrix.rows(), matrix.cols()),
- m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
- m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())),
- m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())),
- m_cols_permutation(matrix.cols()),
- m_temp(matrix.cols()),
- m_isInitialized(false),
- m_usePrescribedThreshold(false)
- {
- compute(matrix);
- }
-
- /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
- * \c *this is the QR decomposition.
- *
- * \param b the right-hand-side of the equation to solve.
- *
- * \returns the exact or least-square solution if the rank is greater or equal to the number of columns of A,
- * and an arbitrary solution otherwise.
- *
- * \note The case where b is a matrix is not yet implemented. Also, this
- * code is space inefficient.
- *
- * \note_about_checking_solutions
- *
- * \note_about_arbitrary_choice_of_solution
- *
- * Example: \include FullPivHouseholderQR_solve.cpp
- * Output: \verbinclude FullPivHouseholderQR_solve.out
- */
- template<typename Rhs>
- inline const internal::solve_retval<FullPivHouseholderQR, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return internal::solve_retval<FullPivHouseholderQR, Rhs>(*this, b.derived());
- }
-
- /** \returns Expression object representing the matrix Q
- */
- MatrixQReturnType matrixQ(void) const;
-
- /** \returns a reference to the matrix where the Householder QR decomposition is stored
- */
- const MatrixType& matrixQR() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return m_qr;
- }
-
- FullPivHouseholderQR& compute(const MatrixType& matrix);
-
- /** \returns a const reference to the column permutation matrix */
- const PermutationType& colsPermutation() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return m_cols_permutation;
- }
-
- /** \returns a const reference to the vector of indices representing the rows transpositions */
- const IntDiagSizeVectorType& rowsTranspositions() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return m_rows_transpositions;
- }
-
- /** \returns the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- * One way to work around that is to use logAbsDeterminant() instead.
- *
- * \sa logAbsDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar absDeterminant() const;
-
- /** \returns the natural log of the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \note This method is useful to work around the risk of overflow/underflow that's inherent
- * to determinant computation.
- *
- * \sa absDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar logAbsDeterminant() const;
-
- /** \returns the rank of the matrix of which *this is the QR decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index rank() const
- {
- using std::abs;
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
- Index result = 0;
- for(Index i = 0; i < m_nonzero_pivots; ++i)
- result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
- return result;
- }
-
- /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index dimensionOfKernel() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return cols() - rank();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition represents an injective
- * linear map, i.e. has trivial kernel; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInjective() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return rank() == cols();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
- * linear map; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isSurjective() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return rank() == rows();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition is invertible.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInvertible() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return isInjective() && isSurjective();
- }
-
- /** \returns the inverse of the matrix of which *this is the QR decomposition.
- *
- * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
- * Use isInvertible() to first determine whether this matrix is invertible.
- */ inline const
- internal::solve_retval<FullPivHouseholderQR, typename MatrixType::IdentityReturnType>
- inverse() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return internal::solve_retval<FullPivHouseholderQR,typename MatrixType::IdentityReturnType>
- (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
- }
-
- inline Index rows() const { return m_qr.rows(); }
- inline Index cols() const { return m_qr.cols(); }
-
- /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
- *
- * For advanced uses only.
- */
- const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
-
- /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
- * who need to determine when pivots are to be considered nonzero. This is not used for the
- * QR decomposition itself.
- *
- * When it needs to get the threshold value, Eigen calls threshold(). By default, this
- * uses a formula to automatically determine a reasonable threshold.
- * Once you have called the present method setThreshold(const RealScalar&),
- * your value is used instead.
- *
- * \param threshold The new value to use as the threshold.
- *
- * A pivot will be considered nonzero if its absolute value is strictly greater than
- * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
- * where maxpivot is the biggest pivot.
- *
- * If you want to come back to the default behavior, call setThreshold(Default_t)
- */
- FullPivHouseholderQR& setThreshold(const RealScalar& threshold)
- {
- m_usePrescribedThreshold = true;
- m_prescribedThreshold = threshold;
- return *this;
- }
-
- /** Allows to come back to the default behavior, letting Eigen use its default formula for
- * determining the threshold.
- *
- * You should pass the special object Eigen::Default as parameter here.
- * \code qr.setThreshold(Eigen::Default); \endcode
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- FullPivHouseholderQR& setThreshold(Default_t)
- {
- m_usePrescribedThreshold = false;
- return *this;
- }
-
- /** Returns the threshold that will be used by certain methods such as rank().
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- RealScalar threshold() const
- {
- eigen_assert(m_isInitialized || m_usePrescribedThreshold);
- return m_usePrescribedThreshold ? m_prescribedThreshold
- // this formula comes from experimenting (see "LU precision tuning" thread on the list)
- // and turns out to be identical to Higham's formula used already in LDLt.
- : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
- }
-
- /** \returns the number of nonzero pivots in the QR decomposition.
- * Here nonzero is meant in the exact sense, not in a fuzzy sense.
- * So that notion isn't really intrinsically interesting, but it is
- * still useful when implementing algorithms.
- *
- * \sa rank()
- */
- inline Index nonzeroPivots() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return m_nonzero_pivots;
- }
-
- /** \returns the absolute value of the biggest pivot, i.e. the biggest
- * diagonal coefficient of U.
- */
- RealScalar maxPivot() const { return m_maxpivot; }
-
- protected:
- MatrixType m_qr;
- HCoeffsType m_hCoeffs;
- IntDiagSizeVectorType m_rows_transpositions;
- IntDiagSizeVectorType m_cols_transpositions;
- PermutationType m_cols_permutation;
- RowVectorType m_temp;
- bool m_isInitialized, m_usePrescribedThreshold;
- RealScalar m_prescribedThreshold, m_maxpivot;
- Index m_nonzero_pivots;
- RealScalar m_precision;
- Index m_det_pq;
-};
-
-template<typename MatrixType>
-typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const
-{
- using std::abs;
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return abs(m_qr.diagonal().prod());
-}
-
-template<typename MatrixType>
-typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const
-{
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return m_qr.diagonal().cwiseAbs().array().log().sum();
-}
-
-/** Performs the QR factorization of the given matrix \a matrix. The result of
- * the factorization is stored into \c *this, and a reference to \c *this
- * is returned.
- *
- * \sa class FullPivHouseholderQR, FullPivHouseholderQR(const MatrixType&)
- */
-template<typename MatrixType>
-FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
-{
- using std::abs;
- Index rows = matrix.rows();
- Index cols = matrix.cols();
- Index size = (std::min)(rows,cols);
-
- m_qr = matrix;
- m_hCoeffs.resize(size);
-
- m_temp.resize(cols);
-
- m_precision = NumTraits<Scalar>::epsilon() * RealScalar(size);
-
- m_rows_transpositions.resize(size);
- m_cols_transpositions.resize(size);
- Index number_of_transpositions = 0;
-
- RealScalar biggest(0);
-
- m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
- m_maxpivot = RealScalar(0);
-
- for (Index k = 0; k < size; ++k)
- {
- Index row_of_biggest_in_corner, col_of_biggest_in_corner;
- RealScalar biggest_in_corner;
-
- biggest_in_corner = m_qr.bottomRightCorner(rows-k, cols-k)
- .cwiseAbs()
- .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
- row_of_biggest_in_corner += k;
- col_of_biggest_in_corner += k;
- if(k==0) biggest = biggest_in_corner;
-
- // if the corner is negligible, then we have less than full rank, and we can finish early
- if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
- {
- m_nonzero_pivots = k;
- for(Index i = k; i < size; i++)
- {
- m_rows_transpositions.coeffRef(i) = i;
- m_cols_transpositions.coeffRef(i) = i;
- m_hCoeffs.coeffRef(i) = Scalar(0);
- }
- break;
- }
-
- m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
- m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
- if(k != row_of_biggest_in_corner) {
- m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k));
- ++number_of_transpositions;
- }
- if(k != col_of_biggest_in_corner) {
- m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
- ++number_of_transpositions;
- }
-
- RealScalar beta;
- m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
- m_qr.coeffRef(k,k) = beta;
-
- // remember the maximum absolute value of diagonal coefficients
- if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
-
- m_qr.bottomRightCorner(rows-k, cols-k-1)
- .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
- }
-
- m_cols_permutation.setIdentity(cols);
- for(Index k = 0; k < size; ++k)
- m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k));
-
- m_det_pq = (number_of_transpositions%2) ? -1 : 1;
- m_isInitialized = true;
-
- return *this;
-}
-
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<FullPivHouseholderQR<_MatrixType>, Rhs>
- : solve_retval_base<FullPivHouseholderQR<_MatrixType>, Rhs>
-{
- EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- const Index rows = dec().rows(), cols = dec().cols();
- eigen_assert(rhs().rows() == rows);
-
- // FIXME introduce nonzeroPivots() and use it here. and more generally,
- // make the same improvements in this dec as in FullPivLU.
- if(dec().rank()==0)
- {
- dst.setZero();
- return;
- }
-
- typename Rhs::PlainObject c(rhs());
-
- Matrix<Scalar,1,Rhs::ColsAtCompileTime> temp(rhs().cols());
- for (Index k = 0; k < dec().rank(); ++k)
- {
- Index remainingSize = rows-k;
- c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k)));
- c.bottomRightCorner(remainingSize, rhs().cols())
- .applyHouseholderOnTheLeft(dec().matrixQR().col(k).tail(remainingSize-1),
- dec().hCoeffs().coeff(k), &temp.coeffRef(0));
- }
-
- dec().matrixQR()
- .topLeftCorner(dec().rank(), dec().rank())
- .template triangularView<Upper>()
- .solveInPlace(c.topRows(dec().rank()));
-
- for(Index i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
- for(Index i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
- }
-};
-
-/** \ingroup QR_Module
- *
- * \brief Expression type for return value of FullPivHouseholderQR::matrixQ()
- *
- * \tparam MatrixType type of underlying dense matrix
- */
-template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType
- : public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
-{
-public:
- typedef typename MatrixType::Index Index;
- typedef typename FullPivHouseholderQR<MatrixType>::IntDiagSizeVectorType IntDiagSizeVectorType;
- typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
- typedef Matrix<typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1,
- MatrixType::MaxRowsAtCompileTime> WorkVectorType;
-
- FullPivHouseholderQRMatrixQReturnType(const MatrixType& qr,
- const HCoeffsType& hCoeffs,
- const IntDiagSizeVectorType& rowsTranspositions)
- : m_qr(qr),
- m_hCoeffs(hCoeffs),
- m_rowsTranspositions(rowsTranspositions)
- {}
-
- template <typename ResultType>
- void evalTo(ResultType& result) const
- {
- const Index rows = m_qr.rows();
- WorkVectorType workspace(rows);
- evalTo(result, workspace);
- }
-
- template <typename ResultType>
- void evalTo(ResultType& result, WorkVectorType& workspace) const
- {
- using numext::conj;
- // compute the product H'_0 H'_1 ... H'_n-1,
- // where H_k is the k-th Householder transformation I - h_k v_k v_k'
- // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
- const Index rows = m_qr.rows();
- const Index cols = m_qr.cols();
- const Index size = (std::min)(rows, cols);
- workspace.resize(rows);
- result.setIdentity(rows, rows);
- for (Index k = size-1; k >= 0; k--)
- {
- result.block(k, k, rows-k, rows-k)
- .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k));
- result.row(k).swap(result.row(m_rowsTranspositions.coeff(k)));
- }
- }
-
- Index rows() const { return m_qr.rows(); }
- Index cols() const { return m_qr.rows(); }
-
-protected:
- typename MatrixType::Nested m_qr;
- typename HCoeffsType::Nested m_hCoeffs;
- typename IntDiagSizeVectorType::Nested m_rowsTranspositions;
-};
-
-} // end namespace internal
-
-template<typename MatrixType>
-inline typename FullPivHouseholderQR<MatrixType>::MatrixQReturnType FullPivHouseholderQR<MatrixType>::matrixQ() const
-{
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions);
-}
-
-/** \return the full-pivoting Householder QR decomposition of \c *this.
- *
- * \sa class FullPivHouseholderQR
- */
-template<typename Derived>
-const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::fullPivHouseholderQr() const
-{
- return FullPivHouseholderQR<PlainObject>(eval());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
diff --git a/src/Eigen/src/QR/HouseholderQR.h b/src/Eigen/src/QR/HouseholderQR.h
deleted file mode 100644
index abc61bc..0000000
--- a/src/Eigen/src/QR/HouseholderQR.h
+++ /dev/null
@@ -1,374 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2010 Vincent Lejeune
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_QR_H
-#define EIGEN_QR_H
-
-namespace Eigen {
-
-/** \ingroup QR_Module
- *
- *
- * \class HouseholderQR
- *
- * \brief Householder QR decomposition of a matrix
- *
- * \param MatrixType the type of the matrix of which we are computing the QR decomposition
- *
- * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R
- * such that
- * \f[
- * \mathbf{A} = \mathbf{Q} \, \mathbf{R}
- * \f]
- * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix.
- * The result is stored in a compact way compatible with LAPACK.
- *
- * Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
- * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead.
- *
- * This Householder QR decomposition is faster, but less numerically stable and less feature-full than
- * FullPivHouseholderQR or ColPivHouseholderQR.
- *
- * \sa MatrixBase::householderQr()
- */
-template<typename _MatrixType> class HouseholderQR
-{
- public:
-
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
- typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
- typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
- typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
-
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via HouseholderQR::compute(const MatrixType&).
- */
- HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {}
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa HouseholderQR()
- */
- HouseholderQR(Index rows, Index cols)
- : m_qr(rows, cols),
- m_hCoeffs((std::min)(rows,cols)),
- m_temp(cols),
- m_isInitialized(false) {}
-
- /** \brief Constructs a QR factorization from a given matrix
- *
- * This constructor computes the QR factorization of the matrix \a matrix by calling
- * the method compute(). It is a short cut for:
- *
- * \code
- * HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
- * qr.compute(matrix);
- * \endcode
- *
- * \sa compute()
- */
- HouseholderQR(const MatrixType& matrix)
- : m_qr(matrix.rows(), matrix.cols()),
- m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
- m_temp(matrix.cols()),
- m_isInitialized(false)
- {
- compute(matrix);
- }
-
- /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
- * *this is the QR decomposition, if any exists.
- *
- * \param b the right-hand-side of the equation to solve.
- *
- * \returns a solution.
- *
- * \note The case where b is a matrix is not yet implemented. Also, this
- * code is space inefficient.
- *
- * \note_about_checking_solutions
- *
- * \note_about_arbitrary_choice_of_solution
- *
- * Example: \include HouseholderQR_solve.cpp
- * Output: \verbinclude HouseholderQR_solve.out
- */
- template<typename Rhs>
- inline const internal::solve_retval<HouseholderQR, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- return internal::solve_retval<HouseholderQR, Rhs>(*this, b.derived());
- }
-
- /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations.
- *
- * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object.
- * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*:
- *
- * Example: \include HouseholderQR_householderQ.cpp
- * Output: \verbinclude HouseholderQR_householderQ.out
- */
- HouseholderSequenceType householderQ() const
- {
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
- }
-
- /** \returns a reference to the matrix where the Householder QR decomposition is stored
- * in a LAPACK-compatible way.
- */
- const MatrixType& matrixQR() const
- {
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- return m_qr;
- }
-
- HouseholderQR& compute(const MatrixType& matrix);
-
- /** \returns the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- * One way to work around that is to use logAbsDeterminant() instead.
- *
- * \sa logAbsDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar absDeterminant() const;
-
- /** \returns the natural log of the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \note This method is useful to work around the risk of overflow/underflow that's inherent
- * to determinant computation.
- *
- * \sa absDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar logAbsDeterminant() const;
-
- inline Index rows() const { return m_qr.rows(); }
- inline Index cols() const { return m_qr.cols(); }
-
- /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
- *
- * For advanced uses only.
- */
- const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
-
- protected:
- MatrixType m_qr;
- HCoeffsType m_hCoeffs;
- RowVectorType m_temp;
- bool m_isInitialized;
-};
-
-template<typename MatrixType>
-typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const
-{
- using std::abs;
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return abs(m_qr.diagonal().prod());
-}
-
-template<typename MatrixType>
-typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const
-{
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return m_qr.diagonal().cwiseAbs().array().log().sum();
-}
-
-namespace internal {
-
-/** \internal */
-template<typename MatrixQR, typename HCoeffs>
-void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0)
-{
- typedef typename MatrixQR::Index Index;
- typedef typename MatrixQR::Scalar Scalar;
- typedef typename MatrixQR::RealScalar RealScalar;
- Index rows = mat.rows();
- Index cols = mat.cols();
- Index size = (std::min)(rows,cols);
-
- eigen_assert(hCoeffs.size() == size);
-
- typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType;
- TempType tempVector;
- if(tempData==0)
- {
- tempVector.resize(cols);
- tempData = tempVector.data();
- }
-
- for(Index k = 0; k < size; ++k)
- {
- Index remainingRows = rows - k;
- Index remainingCols = cols - k - 1;
-
- RealScalar beta;
- mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta);
- mat.coeffRef(k,k) = beta;
-
- // apply H to remaining part of m_qr from the left
- mat.bottomRightCorner(remainingRows, remainingCols)
- .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1);
- }
-}
-
-/** \internal */
-template<typename MatrixQR, typename HCoeffs>
-void householder_qr_inplace_blocked(MatrixQR& mat, HCoeffs& hCoeffs,
- typename MatrixQR::Index maxBlockSize=32,
- typename MatrixQR::Scalar* tempData = 0)
-{
- typedef typename MatrixQR::Index Index;
- typedef typename MatrixQR::Scalar Scalar;
- typedef Block<MatrixQR,Dynamic,Dynamic> BlockType;
-
- Index rows = mat.rows();
- Index cols = mat.cols();
- Index size = (std::min)(rows, cols);
-
- typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType;
- TempType tempVector;
- if(tempData==0)
- {
- tempVector.resize(cols);
- tempData = tempVector.data();
- }
-
- Index blockSize = (std::min)(maxBlockSize,size);
-
- Index k = 0;
- for (k = 0; k < size; k += blockSize)
- {
- Index bs = (std::min)(size-k,blockSize); // actual size of the block
- Index tcols = cols - k - bs; // trailing columns
- Index brows = rows-k; // rows of the block
-
- // partition the matrix:
- // A00 | A01 | A02
- // mat = A10 | A11 | A12
- // A20 | A21 | A22
- // and performs the qr dec of [A11^T A12^T]^T
- // and update [A21^T A22^T]^T using level 3 operations.
- // Finally, the algorithm continue on A22
-
- BlockType A11_21 = mat.block(k,k,brows,bs);
- Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs);
-
- householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData);
-
- if(tcols)
- {
- BlockType A21_22 = mat.block(k,k+bs,brows,tcols);
- apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment.adjoint());
- }
- }
-}
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<HouseholderQR<_MatrixType>, Rhs>
- : solve_retval_base<HouseholderQR<_MatrixType>, Rhs>
-{
- EIGEN_MAKE_SOLVE_HELPERS(HouseholderQR<_MatrixType>,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- const Index rows = dec().rows(), cols = dec().cols();
- const Index rank = (std::min)(rows, cols);
- eigen_assert(rhs().rows() == rows);
-
- typename Rhs::PlainObject c(rhs());
-
- // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
- c.applyOnTheLeft(householderSequence(
- dec().matrixQR().leftCols(rank),
- dec().hCoeffs().head(rank)).transpose()
- );
-
- dec().matrixQR()
- .topLeftCorner(rank, rank)
- .template triangularView<Upper>()
- .solveInPlace(c.topRows(rank));
-
- dst.topRows(rank) = c.topRows(rank);
- dst.bottomRows(cols-rank).setZero();
- }
-};
-
-} // end namespace internal
-
-/** Performs the QR factorization of the given matrix \a matrix. The result of
- * the factorization is stored into \c *this, and a reference to \c *this
- * is returned.
- *
- * \sa class HouseholderQR, HouseholderQR(const MatrixType&)
- */
-template<typename MatrixType>
-HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix)
-{
- Index rows = matrix.rows();
- Index cols = matrix.cols();
- Index size = (std::min)(rows,cols);
-
- m_qr = matrix;
- m_hCoeffs.resize(size);
-
- m_temp.resize(cols);
-
- internal::householder_qr_inplace_blocked(m_qr, m_hCoeffs, 48, m_temp.data());
-
- m_isInitialized = true;
- return *this;
-}
-
-/** \return the Householder QR decomposition of \c *this.
- *
- * \sa class HouseholderQR
- */
-template<typename Derived>
-const HouseholderQR<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::householderQr() const
-{
- return HouseholderQR<PlainObject>(eval());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_QR_H
diff --git a/src/Eigen/src/QR/HouseholderQR_MKL.h b/src/Eigen/src/QR/HouseholderQR_MKL.h
deleted file mode 100644
index 5313de6..0000000
--- a/src/Eigen/src/QR/HouseholderQR_MKL.h
+++ /dev/null
@@ -1,69 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * Householder QR decomposition of a matrix w/o pivoting based on
- * LAPACKE_?geqrf function.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_QR_MKL_H
-#define EIGEN_QR_MKL_H
-
-#include "Eigen/src/Core/util/MKL_support.h"
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal Specialization for the data types supported by MKL */
-
-#define EIGEN_MKL_QR_NOPIV(EIGTYPE, MKLTYPE, MKLPREFIX) \
-template<typename MatrixQR, typename HCoeffs> \
-void householder_qr_inplace_blocked(MatrixQR& mat, HCoeffs& hCoeffs, \
- typename MatrixQR::Index maxBlockSize=32, \
- EIGTYPE* tempData = 0) \
-{ \
- lapack_int m = mat.rows(); \
- lapack_int n = mat.cols(); \
- lapack_int lda = mat.outerStride(); \
- lapack_int matrix_order = (MatrixQR::IsRowMajor) ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \
- LAPACKE_##MKLPREFIX##geqrf( matrix_order, m, n, (MKLTYPE*)mat.data(), lda, (MKLTYPE*)hCoeffs.data()); \
- hCoeffs.adjointInPlace(); \
-\
-}
-
-EIGEN_MKL_QR_NOPIV(double, double, d)
-EIGEN_MKL_QR_NOPIV(float, float, s)
-EIGEN_MKL_QR_NOPIV(dcomplex, MKL_Complex16, z)
-EIGEN_MKL_QR_NOPIV(scomplex, MKL_Complex8, c)
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_QR_MKL_H
diff --git a/src/Eigen/src/SPQRSupport/CMakeLists.txt b/src/Eigen/src/SPQRSupport/CMakeLists.txt
deleted file mode 100644
index 4968bea..0000000
--- a/src/Eigen/src/SPQRSupport/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_SPQRSupport_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_SPQRSupport_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/SPQRSupport/ COMPONENT Devel
- )
diff --git a/src/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h b/src/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h
deleted file mode 100644
index a2cc2a9..0000000
--- a/src/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h
+++ /dev/null
@@ -1,314 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SUITESPARSEQRSUPPORT_H
-#define EIGEN_SUITESPARSEQRSUPPORT_H
-
-namespace Eigen {
-
- template<typename MatrixType> class SPQR;
- template<typename SPQRType> struct SPQRMatrixQReturnType;
- template<typename SPQRType> struct SPQRMatrixQTransposeReturnType;
- template <typename SPQRType, typename Derived> struct SPQR_QProduct;
- namespace internal {
- template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> >
- {
- typedef typename SPQRType::MatrixType ReturnType;
- };
- template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> >
- {
- typedef typename SPQRType::MatrixType ReturnType;
- };
- template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> >
- {
- typedef typename Derived::PlainObject ReturnType;
- };
- } // End namespace internal
-
-/**
- * \ingroup SPQRSupport_Module
- * \class SPQR
- * \brief Sparse QR factorization based on SuiteSparseQR library
- *
- * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition
- * of sparse matrices. The result is then used to solve linear leasts_square systems.
- * Clearly, a QR factorization is returned such that A*P = Q*R where :
- *
- * P is the column permutation. Use colsPermutation() to get it.
- *
- * Q is the orthogonal matrix represented as Householder reflectors.
- * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
- * You can then apply it to a vector.
- *
- * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix.
- * NOTE : The Index type of R is always UF_long. You can get it with SPQR::Index
- *
- * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
- * NOTE
- *
- */
-template<typename _MatrixType>
-class SPQR
-{
- public:
- typedef typename _MatrixType::Scalar Scalar;
- typedef typename _MatrixType::RealScalar RealScalar;
- typedef UF_long Index ;
- typedef SparseMatrix<Scalar, ColMajor, Index> MatrixType;
- typedef PermutationMatrix<Dynamic, Dynamic> PermutationType;
- public:
- SPQR()
- : m_isInitialized(false),
- m_ordering(SPQR_ORDERING_DEFAULT),
- m_allow_tol(SPQR_DEFAULT_TOL),
- m_tolerance (NumTraits<Scalar>::epsilon())
- {
- cholmod_l_start(&m_cc);
- }
-
- SPQR(const _MatrixType& matrix)
- : m_isInitialized(false),
- m_ordering(SPQR_ORDERING_DEFAULT),
- m_allow_tol(SPQR_DEFAULT_TOL),
- m_tolerance (NumTraits<Scalar>::epsilon())
- {
- cholmod_l_start(&m_cc);
- compute(matrix);
- }
-
- ~SPQR()
- {
- SPQR_free();
- cholmod_l_finish(&m_cc);
- }
- void SPQR_free()
- {
- cholmod_l_free_sparse(&m_H, &m_cc);
- cholmod_l_free_sparse(&m_cR, &m_cc);
- cholmod_l_free_dense(&m_HTau, &m_cc);
- std::free(m_E);
- std::free(m_HPinv);
- }
-
- void compute(const _MatrixType& matrix)
- {
- if(m_isInitialized) SPQR_free();
-
- MatrixType mat(matrix);
- cholmod_sparse A;
- A = viewAsCholmod(mat);
- Index col = matrix.cols();
- m_rank = SuiteSparseQR<Scalar>(m_ordering, m_tolerance, col, &A,
- &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);
-
- if (!m_cR)
- {
- m_info = NumericalIssue;
- m_isInitialized = false;
- return;
- }
- m_info = Success;
- m_isInitialized = true;
- m_isRUpToDate = false;
- }
- /**
- * Get the number of rows of the input matrix and the Q matrix
- */
- inline Index rows() const {return m_H->nrow; }
-
- /**
- * Get the number of columns of the input matrix.
- */
- inline Index cols() const { return m_cR->ncol; }
-
- /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::solve_retval<SPQR, Rhs> solve(const MatrixBase<Rhs>& B) const
- {
- eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
- eigen_assert(this->rows()==B.rows()
- && "SPQR::solve(): invalid number of rows of the right hand side matrix B");
- return internal::solve_retval<SPQR, Rhs>(*this, B.derived());
- }
-
- template<typename Rhs, typename Dest>
- void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
- {
- eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
- eigen_assert(b.cols()==1 && "This method is for vectors only");
-
- //Compute Q^T * b
- typename Dest::PlainObject y;
- y = matrixQ().transpose() * b;
- // Solves with the triangular matrix R
- Index rk = this->rank();
- y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y.topRows(rk));
- y.bottomRows(cols()-rk).setZero();
- // Apply the column permutation
- dest.topRows(cols()) = colsPermutation() * y.topRows(cols());
-
- m_info = Success;
- }
-
- /** \returns the sparse triangular factor R. It is a sparse matrix
- */
- const MatrixType matrixR() const
- {
- eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
- if(!m_isRUpToDate) {
- m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::Index>(*m_cR);
- m_isRUpToDate = true;
- }
- return m_R;
- }
- /// Get an expression of the matrix Q
- SPQRMatrixQReturnType<SPQR> matrixQ() const
- {
- return SPQRMatrixQReturnType<SPQR>(*this);
- }
- /// Get the permutation that was applied to columns of A
- PermutationType colsPermutation() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- Index n = m_cR->ncol;
- PermutationType colsPerm(n);
- for(Index j = 0; j <n; j++) colsPerm.indices()(j) = m_E[j];
- return colsPerm;
-
- }
- /**
- * Gets the rank of the matrix.
- * It should be equal to matrixQR().cols if the matrix is full-rank
- */
- Index rank() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return m_cc.SPQR_istat[4];
- }
- /// Set the fill-reducing ordering method to be used
- void setSPQROrdering(int ord) { m_ordering = ord;}
- /// Set the tolerance tol to treat columns with 2-norm < =tol as zero
- void setPivotThreshold(const RealScalar& tol) { m_tolerance = tol; }
-
- /** \returns a pointer to the SPQR workspace */
- cholmod_common *cholmodCommon() const { return &m_cc; }
-
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful,
- * \c NumericalIssue if the sparse QR can not be computed
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return m_info;
- }
- protected:
- bool m_isInitialized;
- bool m_analysisIsOk;
- bool m_factorizationIsOk;
- mutable bool m_isRUpToDate;
- mutable ComputationInfo m_info;
- int m_ordering; // Ordering method to use, see SPQR's manual
- int m_allow_tol; // Allow to use some tolerance during numerical factorization.
- RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero
- mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format
- mutable MatrixType m_R; // The sparse matrix R in Eigen format
- mutable Index *m_E; // The permutation applied to columns
- mutable cholmod_sparse *m_H; //The householder vectors
- mutable Index *m_HPinv; // The row permutation of H
- mutable cholmod_dense *m_HTau; // The Householder coefficients
- mutable Index m_rank; // The rank of the matrix
- mutable cholmod_common m_cc; // Workspace and parameters
- template<typename ,typename > friend struct SPQR_QProduct;
-};
-
-template <typename SPQRType, typename Derived>
-struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> >
-{
- typedef typename SPQRType::Scalar Scalar;
- typedef typename SPQRType::Index Index;
- //Define the constructor to get reference to argument types
- SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {}
-
- inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); }
- inline Index cols() const { return m_other.cols(); }
- // Assign to a vector
- template<typename ResType>
- void evalTo(ResType& res) const
- {
- cholmod_dense y_cd;
- cholmod_dense *x_cd;
- int method = m_transpose ? SPQR_QTX : SPQR_QX;
- cholmod_common *cc = m_spqr.cholmodCommon();
- y_cd = viewAsCholmod(m_other.const_cast_derived());
- x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc);
- res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol);
- cholmod_l_free_dense(&x_cd, cc);
- }
- const SPQRType& m_spqr;
- const Derived& m_other;
- bool m_transpose;
-
-};
-template<typename SPQRType>
-struct SPQRMatrixQReturnType{
-
- SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
- template<typename Derived>
- SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other)
- {
- return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false);
- }
- SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const
- {
- return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
- }
- // To use for operations with the transpose of Q
- SPQRMatrixQTransposeReturnType<SPQRType> transpose() const
- {
- return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
- }
- const SPQRType& m_spqr;
-};
-
-template<typename SPQRType>
-struct SPQRMatrixQTransposeReturnType{
- SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
- template<typename Derived>
- SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other)
- {
- return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true);
- }
- const SPQRType& m_spqr;
-};
-
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<SPQR<_MatrixType>, Rhs>
- : solve_retval_base<SPQR<_MatrixType>, Rhs>
-{
- typedef SPQR<_MatrixType> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
-}// End namespace Eigen
-#endif
diff --git a/src/Eigen/src/SVD/CMakeLists.txt b/src/Eigen/src/SVD/CMakeLists.txt
deleted file mode 100644
index 55efc44..0000000
--- a/src/Eigen/src/SVD/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_SVD_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_SVD_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/SVD COMPONENT Devel
- )
diff --git a/src/Eigen/src/SVD/JacobiSVD.h b/src/Eigen/src/SVD/JacobiSVD.h
deleted file mode 100644
index dff9e44..0000000
--- a/src/Eigen/src/SVD/JacobiSVD.h
+++ /dev/null
@@ -1,961 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_JACOBISVD_H
-#define EIGEN_JACOBISVD_H
-
-namespace Eigen {
-
-namespace internal {
-// forward declaration (needed by ICC)
-// the empty body is required by MSVC
-template<typename MatrixType, int QRPreconditioner,
- bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
-struct svd_precondition_2x2_block_to_be_real {};
-
-/*** QR preconditioners (R-SVD)
- ***
- *** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
- *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
- *** JacobiSVD which by itself is only able to work on square matrices.
- ***/
-
-enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };
-
-template<typename MatrixType, int QRPreconditioner, int Case>
-struct qr_preconditioner_should_do_anything
-{
- enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
- MatrixType::ColsAtCompileTime != Dynamic &&
- MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
- b = MatrixType::RowsAtCompileTime != Dynamic &&
- MatrixType::ColsAtCompileTime != Dynamic &&
- MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
- ret = !( (QRPreconditioner == NoQRPreconditioner) ||
- (Case == PreconditionIfMoreColsThanRows && bool(a)) ||
- (Case == PreconditionIfMoreRowsThanCols && bool(b)) )
- };
-};
-
-template<typename MatrixType, int QRPreconditioner, int Case,
- bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
-> struct qr_preconditioner_impl {};
-
-template<typename MatrixType, int QRPreconditioner, int Case>
-class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
-{
-public:
- typedef typename MatrixType::Index Index;
- void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
- bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
- {
- return false;
- }
-};
-
-/*** preconditioner using FullPivHouseholderQR ***/
-
-template<typename MatrixType>
-class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
-{
-public:
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
- enum
- {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
- };
- typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
-
- void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
- {
- if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
- {
- m_qr.~QRType();
- ::new (&m_qr) QRType(svd.rows(), svd.cols());
- }
- if (svd.m_computeFullU) m_workspace.resize(svd.rows());
- }
-
- bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
- {
- if(matrix.rows() > matrix.cols())
- {
- m_qr.compute(matrix);
- svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
- if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
- if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
- return true;
- }
- return false;
- }
-private:
- typedef FullPivHouseholderQR<MatrixType> QRType;
- QRType m_qr;
- WorkspaceType m_workspace;
-};
-
-template<typename MatrixType>
-class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
-{
-public:
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
- enum
- {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- Options = MatrixType::Options
- };
- typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
- TransposeTypeWithSameStorageOrder;
-
- void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
- {
- if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
- {
- m_qr.~QRType();
- ::new (&m_qr) QRType(svd.cols(), svd.rows());
- }
- m_adjoint.resize(svd.cols(), svd.rows());
- if (svd.m_computeFullV) m_workspace.resize(svd.cols());
- }
-
- bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
- {
- if(matrix.cols() > matrix.rows())
- {
- m_adjoint = matrix.adjoint();
- m_qr.compute(m_adjoint);
- svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
- if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
- if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
- return true;
- }
- else return false;
- }
-private:
- typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
- QRType m_qr;
- TransposeTypeWithSameStorageOrder m_adjoint;
- typename internal::plain_row_type<MatrixType>::type m_workspace;
-};
-
-/*** preconditioner using ColPivHouseholderQR ***/
-
-template<typename MatrixType>
-class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
-{
-public:
- typedef typename MatrixType::Index Index;
-
- void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
- {
- if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
- {
- m_qr.~QRType();
- ::new (&m_qr) QRType(svd.rows(), svd.cols());
- }
- if (svd.m_computeFullU) m_workspace.resize(svd.rows());
- else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
- }
-
- bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
- {
- if(matrix.rows() > matrix.cols())
- {
- m_qr.compute(matrix);
- svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
- if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
- else if(svd.m_computeThinU)
- {
- svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
- m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
- }
- if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
- return true;
- }
- return false;
- }
-
-private:
- typedef ColPivHouseholderQR<MatrixType> QRType;
- QRType m_qr;
- typename internal::plain_col_type<MatrixType>::type m_workspace;
-};
-
-template<typename MatrixType>
-class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
-{
-public:
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
- enum
- {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- Options = MatrixType::Options
- };
-
- typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
- TransposeTypeWithSameStorageOrder;
-
- void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
- {
- if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
- {
- m_qr.~QRType();
- ::new (&m_qr) QRType(svd.cols(), svd.rows());
- }
- if (svd.m_computeFullV) m_workspace.resize(svd.cols());
- else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
- m_adjoint.resize(svd.cols(), svd.rows());
- }
-
- bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
- {
- if(matrix.cols() > matrix.rows())
- {
- m_adjoint = matrix.adjoint();
- m_qr.compute(m_adjoint);
-
- svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
- if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
- else if(svd.m_computeThinV)
- {
- svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
- m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
- }
- if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
- return true;
- }
- else return false;
- }
-
-private:
- typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
- QRType m_qr;
- TransposeTypeWithSameStorageOrder m_adjoint;
- typename internal::plain_row_type<MatrixType>::type m_workspace;
-};
-
-/*** preconditioner using HouseholderQR ***/
-
-template<typename MatrixType>
-class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
-{
-public:
- typedef typename MatrixType::Index Index;
-
- void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
- {
- if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
- {
- m_qr.~QRType();
- ::new (&m_qr) QRType(svd.rows(), svd.cols());
- }
- if (svd.m_computeFullU) m_workspace.resize(svd.rows());
- else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
- }
-
- bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
- {
- if(matrix.rows() > matrix.cols())
- {
- m_qr.compute(matrix);
- svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
- if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
- else if(svd.m_computeThinU)
- {
- svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
- m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
- }
- if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
- return true;
- }
- return false;
- }
-private:
- typedef HouseholderQR<MatrixType> QRType;
- QRType m_qr;
- typename internal::plain_col_type<MatrixType>::type m_workspace;
-};
-
-template<typename MatrixType>
-class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
-{
-public:
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
- enum
- {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- Options = MatrixType::Options
- };
-
- typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
- TransposeTypeWithSameStorageOrder;
-
- void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
- {
- if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
- {
- m_qr.~QRType();
- ::new (&m_qr) QRType(svd.cols(), svd.rows());
- }
- if (svd.m_computeFullV) m_workspace.resize(svd.cols());
- else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
- m_adjoint.resize(svd.cols(), svd.rows());
- }
-
- bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
- {
- if(matrix.cols() > matrix.rows())
- {
- m_adjoint = matrix.adjoint();
- m_qr.compute(m_adjoint);
-
- svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
- if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
- else if(svd.m_computeThinV)
- {
- svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
- m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
- }
- if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
- return true;
- }
- else return false;
- }
-
-private:
- typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
- QRType m_qr;
- TransposeTypeWithSameStorageOrder m_adjoint;
- typename internal::plain_row_type<MatrixType>::type m_workspace;
-};
-
-/*** 2x2 SVD implementation
- ***
- *** JacobiSVD consists in performing a series of 2x2 SVD subproblems
- ***/
-
-template<typename MatrixType, int QRPreconditioner>
-struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
-{
- typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
- typedef typename SVD::Index Index;
- static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {}
-};
-
-template<typename MatrixType, int QRPreconditioner>
-struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
-{
- typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename SVD::Index Index;
- static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
- {
- using std::sqrt;
- Scalar z;
- JacobiRotation<Scalar> rot;
- RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
-
- if(n==0)
- {
- z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
- work_matrix.row(p) *= z;
- if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
- if(work_matrix.coeff(q,q)!=Scalar(0))
- {
- z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
- work_matrix.row(q) *= z;
- if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
- }
- // otherwise the second row is already zero, so we have nothing to do.
- }
- else
- {
- rot.c() = conj(work_matrix.coeff(p,p)) / n;
- rot.s() = work_matrix.coeff(q,p) / n;
- work_matrix.applyOnTheLeft(p,q,rot);
- if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
- if(work_matrix.coeff(p,q) != Scalar(0))
- {
- Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
- work_matrix.col(q) *= z;
- if(svd.computeV()) svd.m_matrixV.col(q) *= z;
- }
- if(work_matrix.coeff(q,q) != Scalar(0))
- {
- z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
- work_matrix.row(q) *= z;
- if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
- }
- }
- }
-};
-
-template<typename MatrixType, typename RealScalar, typename Index>
-void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
- JacobiRotation<RealScalar> *j_left,
- JacobiRotation<RealScalar> *j_right)
-{
- using std::sqrt;
- using std::abs;
- Matrix<RealScalar,2,2> m;
- m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
- numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
- JacobiRotation<RealScalar> rot1;
- RealScalar t = m.coeff(0,0) + m.coeff(1,1);
- RealScalar d = m.coeff(1,0) - m.coeff(0,1);
- if(t == RealScalar(0))
- {
- rot1.c() = RealScalar(0);
- rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
- }
- else
- {
- RealScalar t2d2 = numext::hypot(t,d);
- rot1.c() = abs(t)/t2d2;
- rot1.s() = d/t2d2;
- if(t<RealScalar(0))
- rot1.s() = -rot1.s();
- }
- m.applyOnTheLeft(0,1,rot1);
- j_right->makeJacobi(m,0,1);
- *j_left = rot1 * j_right->transpose();
-}
-
-} // end namespace internal
-
-/** \ingroup SVD_Module
- *
- *
- * \class JacobiSVD
- *
- * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
- *
- * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
- * \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
- * for the R-SVD step for non-square matrices. See discussion of possible values below.
- *
- * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
- * \f[ A = U S V^* \f]
- * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
- * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
- * and right \em singular \em vectors of \a A respectively.
- *
- * Singular values are always sorted in decreasing order.
- *
- * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly.
- *
- * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
- * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
- * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
- * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
- *
- * Here's an example demonstrating basic usage:
- * \include JacobiSVD_basic.cpp
- * Output: \verbinclude JacobiSVD_basic.out
- *
- * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than
- * bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and
- * \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms.
- * In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
- *
- * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
- * terminate in finite (and reasonable) time.
- *
- * The possible values for QRPreconditioner are:
- * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
- * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
- * Contrary to other QRs, it doesn't allow computing thin unitaries.
- * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR.
- * This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization
- * is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive
- * process is more reliable than the optimized bidiagonal SVD iterations.
- * \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing
- * JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in
- * faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
- * if QR preconditioning is needed before applying it anyway.
- *
- * \sa MatrixBase::jacobiSvd()
- */
-template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
-{
- public:
-
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
- MatrixOptions = MatrixType::Options
- };
-
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
- MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
- MatrixUType;
- typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
- MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
- MatrixVType;
- typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
- typedef typename internal::plain_row_type<MatrixType>::type RowType;
- typedef typename internal::plain_col_type<MatrixType>::type ColType;
- typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
- MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
- WorkMatrixType;
-
- /** \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via JacobiSVD::compute(const MatrixType&).
- */
- JacobiSVD()
- : m_isInitialized(false),
- m_isAllocated(false),
- m_usePrescribedThreshold(false),
- m_computationOptions(0),
- m_rows(-1), m_cols(-1), m_diagSize(0)
- {}
-
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem size.
- * \sa JacobiSVD()
- */
- JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
- : m_isInitialized(false),
- m_isAllocated(false),
- m_usePrescribedThreshold(false),
- m_computationOptions(0),
- m_rows(-1), m_cols(-1)
- {
- allocate(rows, cols, computationOptions);
- }
-
- /** \brief Constructor performing the decomposition of given matrix.
- *
- * \param matrix the matrix to decompose
- * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
- * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
- * #ComputeFullV, #ComputeThinV.
- *
- * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
- * available with the (non-default) FullPivHouseholderQR preconditioner.
- */
- JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
- : m_isInitialized(false),
- m_isAllocated(false),
- m_usePrescribedThreshold(false),
- m_computationOptions(0),
- m_rows(-1), m_cols(-1)
- {
- compute(matrix, computationOptions);
- }
-
- /** \brief Method performing the decomposition of given matrix using custom options.
- *
- * \param matrix the matrix to decompose
- * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
- * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
- * #ComputeFullV, #ComputeThinV.
- *
- * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
- * available with the (non-default) FullPivHouseholderQR preconditioner.
- */
- JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
-
- /** \brief Method performing the decomposition of given matrix using current options.
- *
- * \param matrix the matrix to decompose
- *
- * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
- */
- JacobiSVD& compute(const MatrixType& matrix)
- {
- return compute(matrix, m_computationOptions);
- }
-
- /** \returns the \a U matrix.
- *
- * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
- * the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU.
- *
- * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
- *
- * This method asserts that you asked for \a U to be computed.
- */
- const MatrixUType& matrixU() const
- {
- eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
- eigen_assert(computeU() && "This JacobiSVD decomposition didn't compute U. Did you ask for it?");
- return m_matrixU;
- }
-
- /** \returns the \a V matrix.
- *
- * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
- * the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV.
- *
- * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
- *
- * This method asserts that you asked for \a V to be computed.
- */
- const MatrixVType& matrixV() const
- {
- eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
- eigen_assert(computeV() && "This JacobiSVD decomposition didn't compute V. Did you ask for it?");
- return m_matrixV;
- }
-
- /** \returns the vector of singular values.
- *
- * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
- * returned vector has size \a m. Singular values are always sorted in decreasing order.
- */
- const SingularValuesType& singularValues() const
- {
- eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
- return m_singularValues;
- }
-
- /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
- inline bool computeU() const { return m_computeFullU || m_computeThinU; }
- /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
- inline bool computeV() const { return m_computeFullV || m_computeThinV; }
-
- /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
- *
- * \param b the right-hand-side of the equation to solve.
- *
- * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
- *
- * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
- * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
- */
- template<typename Rhs>
- inline const internal::solve_retval<JacobiSVD, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
- eigen_assert(computeU() && computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
- return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
- }
-
- /** \returns the number of singular values that are not exactly 0 */
- Index nonzeroSingularValues() const
- {
- eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
- return m_nonzeroSingularValues;
- }
-
- /** \returns the rank of the matrix of which \c *this is the SVD.
- *
- * \note This method has to determine which singular values should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index rank() const
- {
- using std::abs;
- eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
- if(m_singularValues.size()==0) return 0;
- RealScalar premultiplied_threshold = m_singularValues.coeff(0) * threshold();
- Index i = m_nonzeroSingularValues-1;
- while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
- return i+1;
- }
-
- /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
- * which need to determine when singular values are to be considered nonzero.
- * This is not used for the SVD decomposition itself.
- *
- * When it needs to get the threshold value, Eigen calls threshold().
- * The default is \c NumTraits<Scalar>::epsilon()
- *
- * \param threshold The new value to use as the threshold.
- *
- * A singular value will be considered nonzero if its value is strictly greater than
- * \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
- *
- * If you want to come back to the default behavior, call setThreshold(Default_t)
- */
- JacobiSVD& setThreshold(const RealScalar& threshold)
- {
- m_usePrescribedThreshold = true;
- m_prescribedThreshold = threshold;
- return *this;
- }
-
- /** Allows to come back to the default behavior, letting Eigen use its default formula for
- * determining the threshold.
- *
- * You should pass the special object Eigen::Default as parameter here.
- * \code svd.setThreshold(Eigen::Default); \endcode
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- JacobiSVD& setThreshold(Default_t)
- {
- m_usePrescribedThreshold = false;
- return *this;
- }
-
- /** Returns the threshold that will be used by certain methods such as rank().
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- RealScalar threshold() const
- {
- eigen_assert(m_isInitialized || m_usePrescribedThreshold);
- return m_usePrescribedThreshold ? m_prescribedThreshold
- : (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon();
- }
-
- inline Index rows() const { return m_rows; }
- inline Index cols() const { return m_cols; }
-
- private:
- void allocate(Index rows, Index cols, unsigned int computationOptions);
-
- protected:
- MatrixUType m_matrixU;
- MatrixVType m_matrixV;
- SingularValuesType m_singularValues;
- WorkMatrixType m_workMatrix;
- bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
- bool m_computeFullU, m_computeThinU;
- bool m_computeFullV, m_computeThinV;
- unsigned int m_computationOptions;
- Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
- RealScalar m_prescribedThreshold;
-
- template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
- friend struct internal::svd_precondition_2x2_block_to_be_real;
- template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
- friend struct internal::qr_preconditioner_impl;
-
- internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
- internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
-};
-
-template<typename MatrixType, int QRPreconditioner>
-void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions)
-{
- eigen_assert(rows >= 0 && cols >= 0);
-
- if (m_isAllocated &&
- rows == m_rows &&
- cols == m_cols &&
- computationOptions == m_computationOptions)
- {
- return;
- }
-
- m_rows = rows;
- m_cols = cols;
- m_isInitialized = false;
- m_isAllocated = true;
- m_computationOptions = computationOptions;
- m_computeFullU = (computationOptions & ComputeFullU) != 0;
- m_computeThinU = (computationOptions & ComputeThinU) != 0;
- m_computeFullV = (computationOptions & ComputeFullV) != 0;
- m_computeThinV = (computationOptions & ComputeThinV) != 0;
- eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U");
- eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V");
- eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
- "JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns.");
- if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
- {
- eigen_assert(!(m_computeThinU || m_computeThinV) &&
- "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
- "Use the ColPivHouseholderQR preconditioner instead.");
- }
- m_diagSize = (std::min)(m_rows, m_cols);
- m_singularValues.resize(m_diagSize);
- if(RowsAtCompileTime==Dynamic)
- m_matrixU.resize(m_rows, m_computeFullU ? m_rows
- : m_computeThinU ? m_diagSize
- : 0);
- if(ColsAtCompileTime==Dynamic)
- m_matrixV.resize(m_cols, m_computeFullV ? m_cols
- : m_computeThinV ? m_diagSize
- : 0);
- m_workMatrix.resize(m_diagSize, m_diagSize);
-
- if(m_cols>m_rows) m_qr_precond_morecols.allocate(*this);
- if(m_rows>m_cols) m_qr_precond_morerows.allocate(*this);
-}
-
-template<typename MatrixType, int QRPreconditioner>
-JacobiSVD<MatrixType, QRPreconditioner>&
-JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
-{
- using std::abs;
- allocate(matrix.rows(), matrix.cols(), computationOptions);
-
- // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
- // only worsening the precision of U and V as we accumulate more rotations
- const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();
-
- // limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286)
- const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min();
-
- /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
-
- if(!m_qr_precond_morecols.run(*this, matrix) && !m_qr_precond_morerows.run(*this, matrix))
- {
- m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize);
- if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows);
- if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize);
- if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols);
- if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
- }
-
- // Scaling factor to reduce over/under-flows
- RealScalar scale = m_workMatrix.cwiseAbs().maxCoeff();
- if(scale==RealScalar(0)) scale = RealScalar(1);
- m_workMatrix /= scale;
-
- /*** step 2. The main Jacobi SVD iteration. ***/
-
- bool finished = false;
- while(!finished)
- {
- finished = true;
-
- // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix
-
- for(Index p = 1; p < m_diagSize; ++p)
- {
- for(Index q = 0; q < p; ++q)
- {
- // if this 2x2 sub-matrix is not diagonal already...
- // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
- // keep us iterating forever. Similarly, small denormal numbers are considered zero.
- using std::max;
- RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)),
- abs(m_workMatrix.coeff(q,q))));
- if((max)(abs(m_workMatrix.coeff(p,q)),abs(m_workMatrix.coeff(q,p))) > threshold)
- {
- finished = false;
-
- // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
- internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q);
- JacobiRotation<RealScalar> j_left, j_right;
- internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
-
- // accumulate resulting Jacobi rotations
- m_workMatrix.applyOnTheLeft(p,q,j_left);
- if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose());
-
- m_workMatrix.applyOnTheRight(p,q,j_right);
- if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right);
- }
- }
- }
- }
-
- /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/
-
- for(Index i = 0; i < m_diagSize; ++i)
- {
- RealScalar a = abs(m_workMatrix.coeff(i,i));
- m_singularValues.coeffRef(i) = a;
- if(computeU() && (a!=RealScalar(0))) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a;
- }
-
- /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/
-
- m_nonzeroSingularValues = m_diagSize;
- for(Index i = 0; i < m_diagSize; i++)
- {
- Index pos;
- RealScalar maxRemainingSingularValue = m_singularValues.tail(m_diagSize-i).maxCoeff(&pos);
- if(maxRemainingSingularValue == RealScalar(0))
- {
- m_nonzeroSingularValues = i;
- break;
- }
- if(pos)
- {
- pos += i;
- std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
- if(computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i));
- if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i));
- }
- }
-
- m_singularValues *= scale;
-
- m_isInitialized = true;
- return *this;
-}
-
-namespace internal {
-template<typename _MatrixType, int QRPreconditioner, typename Rhs>
-struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
- : solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
-{
- typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType;
- EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- eigen_assert(rhs().rows() == dec().rows());
-
- // A = U S V^*
- // So A^{-1} = V S^{-1} U^*
-
- Matrix<Scalar, Dynamic, Rhs::ColsAtCompileTime, 0, _MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime> tmp;
- Index rank = dec().rank();
-
- tmp.noalias() = dec().matrixU().leftCols(rank).adjoint() * rhs();
- tmp = dec().singularValues().head(rank).asDiagonal().inverse() * tmp;
- dst = dec().matrixV().leftCols(rank) * tmp;
- }
-};
-} // end namespace internal
-
-/** \svd_module
- *
- * \return the singular value decomposition of \c *this computed by two-sided
- * Jacobi transformations.
- *
- * \sa class JacobiSVD
- */
-template<typename Derived>
-JacobiSVD<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
-{
- return JacobiSVD<PlainObject>(*this, computationOptions);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_JACOBISVD_H
diff --git a/src/Eigen/src/SVD/JacobiSVD_MKL.h b/src/Eigen/src/SVD/JacobiSVD_MKL.h
deleted file mode 100644
index decda75..0000000
--- a/src/Eigen/src/SVD/JacobiSVD_MKL.h
+++ /dev/null
@@ -1,92 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * Singular Value Decomposition - SVD.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_JACOBISVD_MKL_H
-#define EIGEN_JACOBISVD_MKL_H
-
-#include "Eigen/src/Core/util/MKL_support.h"
-
-namespace Eigen {
-
-/** \internal Specialization for the data types supported by MKL */
-
-#define EIGEN_MKL_SVD(EIGTYPE, MKLTYPE, MKLRTYPE, MKLPREFIX, EIGCOLROW, MKLCOLROW) \
-template<> inline \
-JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPivHouseholderQRPreconditioner>& \
-JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPivHouseholderQRPreconditioner>::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>& matrix, unsigned int computationOptions) \
-{ \
- typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> MatrixType; \
- typedef MatrixType::Scalar Scalar; \
- typedef MatrixType::RealScalar RealScalar; \
- allocate(matrix.rows(), matrix.cols(), computationOptions); \
-\
- /*const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();*/ \
- m_nonzeroSingularValues = m_diagSize; \
-\
- lapack_int lda = matrix.outerStride(), ldu, ldvt; \
- lapack_int matrix_order = MKLCOLROW; \
- char jobu, jobvt; \
- MKLTYPE *u, *vt, dummy; \
- jobu = (m_computeFullU) ? 'A' : (m_computeThinU) ? 'S' : 'N'; \
- jobvt = (m_computeFullV) ? 'A' : (m_computeThinV) ? 'S' : 'N'; \
- if (computeU()) { \
- ldu = m_matrixU.outerStride(); \
- u = (MKLTYPE*)m_matrixU.data(); \
- } else { ldu=1; u=&dummy; }\
- MatrixType localV; \
- ldvt = (m_computeFullV) ? m_cols : (m_computeThinV) ? m_diagSize : 1; \
- if (computeV()) { \
- localV.resize(ldvt, m_cols); \
- vt = (MKLTYPE*)localV.data(); \
- } else { ldvt=1; vt=&dummy; }\
- Matrix<MKLRTYPE, Dynamic, Dynamic> superb; superb.resize(m_diagSize, 1); \
- MatrixType m_temp; m_temp = matrix; \
- LAPACKE_##MKLPREFIX##gesvd( matrix_order, jobu, jobvt, m_rows, m_cols, (MKLTYPE*)m_temp.data(), lda, (MKLRTYPE*)m_singularValues.data(), u, ldu, vt, ldvt, superb.data()); \
- if (computeV()) m_matrixV = localV.adjoint(); \
- /* for(int i=0;i<m_diagSize;i++) if (m_singularValues.coeffRef(i) < precision) { m_nonzeroSingularValues--; m_singularValues.coeffRef(i)=RealScalar(0);}*/ \
- m_isInitialized = true; \
- return *this; \
-}
-
-EIGEN_MKL_SVD(double, double, double, d, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_SVD(float, float, float , s, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_SVD(dcomplex, MKL_Complex16, double, z, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_SVD(scomplex, MKL_Complex8, float , c, ColMajor, LAPACK_COL_MAJOR)
-
-EIGEN_MKL_SVD(double, double, double, d, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_MKL_SVD(float, float, float , s, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_MKL_SVD(dcomplex, MKL_Complex16, double, z, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_MKL_SVD(scomplex, MKL_Complex8, float , c, RowMajor, LAPACK_ROW_MAJOR)
-
-} // end namespace Eigen
-
-#endif // EIGEN_JACOBISVD_MKL_H
diff --git a/src/Eigen/src/SVD/UpperBidiagonalization.h b/src/Eigen/src/SVD/UpperBidiagonalization.h
deleted file mode 100644
index 587de37..0000000
--- a/src/Eigen/src/SVD/UpperBidiagonalization.h
+++ /dev/null
@@ -1,148 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_BIDIAGONALIZATION_H
-#define EIGEN_BIDIAGONALIZATION_H
-
-namespace Eigen {
-
-namespace internal {
-// UpperBidiagonalization will probably be replaced by a Bidiagonalization class, don't want to make it stable API.
-// At the same time, it's useful to keep for now as it's about the only thing that is testing the BandMatrix class.
-
-template<typename _MatrixType> class UpperBidiagonalization
-{
- public:
-
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- ColsAtCompileTimeMinusOne = internal::decrement_size<ColsAtCompileTime>::ret
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
- typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
- typedef BandMatrix<RealScalar, ColsAtCompileTime, ColsAtCompileTime, 1, 0> BidiagonalType;
- typedef Matrix<Scalar, ColsAtCompileTime, 1> DiagVectorType;
- typedef Matrix<Scalar, ColsAtCompileTimeMinusOne, 1> SuperDiagVectorType;
- typedef HouseholderSequence<
- const MatrixType,
- CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const Diagonal<const MatrixType,0> >
- > HouseholderUSequenceType;
- typedef HouseholderSequence<
- const typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type,
- Diagonal<const MatrixType,1>,
- OnTheRight
- > HouseholderVSequenceType;
-
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via Bidiagonalization::compute(const MatrixType&).
- */
- UpperBidiagonalization() : m_householder(), m_bidiagonal(), m_isInitialized(false) {}
-
- UpperBidiagonalization(const MatrixType& matrix)
- : m_householder(matrix.rows(), matrix.cols()),
- m_bidiagonal(matrix.cols(), matrix.cols()),
- m_isInitialized(false)
- {
- compute(matrix);
- }
-
- UpperBidiagonalization& compute(const MatrixType& matrix);
-
- const MatrixType& householder() const { return m_householder; }
- const BidiagonalType& bidiagonal() const { return m_bidiagonal; }
-
- const HouseholderUSequenceType householderU() const
- {
- eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
- return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate());
- }
-
- const HouseholderVSequenceType householderV() // const here gives nasty errors and i'm lazy
- {
- eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
- return HouseholderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template diagonal<1>())
- .setLength(m_householder.cols()-1)
- .setShift(1);
- }
-
- protected:
- MatrixType m_householder;
- BidiagonalType m_bidiagonal;
- bool m_isInitialized;
-};
-
-template<typename _MatrixType>
-UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::compute(const _MatrixType& matrix)
-{
- Index rows = matrix.rows();
- Index cols = matrix.cols();
-
- eigen_assert(rows >= cols && "UpperBidiagonalization is only for matrices satisfying rows>=cols.");
-
- m_householder = matrix;
-
- ColVectorType temp(rows);
-
- for (Index k = 0; /* breaks at k==cols-1 below */ ; ++k)
- {
- Index remainingRows = rows - k;
- Index remainingCols = cols - k - 1;
-
- // construct left householder transform in-place in m_householder
- m_householder.col(k).tail(remainingRows)
- .makeHouseholderInPlace(m_householder.coeffRef(k,k),
- m_bidiagonal.template diagonal<0>().coeffRef(k));
- // apply householder transform to remaining part of m_householder on the left
- m_householder.bottomRightCorner(remainingRows, remainingCols)
- .applyHouseholderOnTheLeft(m_householder.col(k).tail(remainingRows-1),
- m_householder.coeff(k,k),
- temp.data());
-
- if(k == cols-1) break;
-
- // construct right householder transform in-place in m_householder
- m_householder.row(k).tail(remainingCols)
- .makeHouseholderInPlace(m_householder.coeffRef(k,k+1),
- m_bidiagonal.template diagonal<1>().coeffRef(k));
- // apply householder transform to remaining part of m_householder on the left
- m_householder.bottomRightCorner(remainingRows-1, remainingCols)
- .applyHouseholderOnTheRight(m_householder.row(k).tail(remainingCols-1).transpose(),
- m_householder.coeff(k,k+1),
- temp.data());
- }
- m_isInitialized = true;
- return *this;
-}
-
-#if 0
-/** \return the Householder QR decomposition of \c *this.
- *
- * \sa class Bidiagonalization
- */
-template<typename Derived>
-const UpperBidiagonalization<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::bidiagonalization() const
-{
- return UpperBidiagonalization<PlainObject>(eval());
-}
-#endif
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_BIDIAGONALIZATION_H
diff --git a/src/Eigen/src/SparseCholesky/CMakeLists.txt b/src/Eigen/src/SparseCholesky/CMakeLists.txt
deleted file mode 100644
index 375a59d..0000000
--- a/src/Eigen/src/SparseCholesky/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_SparseCholesky_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_SparseCholesky_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/SparseCholesky COMPONENT Devel
- )
diff --git a/src/Eigen/src/SparseCholesky/SimplicialCholesky.h b/src/Eigen/src/SparseCholesky/SimplicialCholesky.h
deleted file mode 100644
index e1f96ba..0000000
--- a/src/Eigen/src/SparseCholesky/SimplicialCholesky.h
+++ /dev/null
@@ -1,671 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SIMPLICIAL_CHOLESKY_H
-#define EIGEN_SIMPLICIAL_CHOLESKY_H
-
-namespace Eigen {
-
-enum SimplicialCholeskyMode {
- SimplicialCholeskyLLT,
- SimplicialCholeskyLDLT
-};
-
-/** \ingroup SparseCholesky_Module
- * \brief A direct sparse Cholesky factorizations
- *
- * These classes provide LL^T and LDL^T Cholesky factorizations of sparse matrices that are
- * selfadjoint and positive definite. The factorization allows for solving A.X = B where
- * X and B can be either dense or sparse.
- *
- * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization
- * such that the factorized matrix is P A P^-1.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
- * or Upper. Default is Lower.
- *
- */
-template<typename Derived>
-class SimplicialCholeskyBase : internal::noncopyable
-{
- public:
- typedef typename internal::traits<Derived>::MatrixType MatrixType;
- typedef typename internal::traits<Derived>::OrderingType OrderingType;
- enum { UpLo = internal::traits<Derived>::UpLo };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
- typedef Matrix<Scalar,Dynamic,1> VectorType;
-
- public:
-
- /** Default constructor */
- SimplicialCholeskyBase()
- : m_info(Success), m_isInitialized(false), m_shiftOffset(0), m_shiftScale(1)
- {}
-
- SimplicialCholeskyBase(const MatrixType& matrix)
- : m_info(Success), m_isInitialized(false), m_shiftOffset(0), m_shiftScale(1)
- {
- derived().compute(matrix);
- }
-
- ~SimplicialCholeskyBase()
- {
- }
-
- Derived& derived() { return *static_cast<Derived*>(this); }
- const Derived& derived() const { return *static_cast<const Derived*>(this); }
-
- inline Index cols() const { return m_matrix.cols(); }
- inline Index rows() const { return m_matrix.rows(); }
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful,
- * \c NumericalIssue if the matrix.appears to be negative.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return m_info;
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::solve_retval<SimplicialCholeskyBase, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "Simplicial LLT or LDLT is not initialized.");
- eigen_assert(rows()==b.rows()
- && "SimplicialCholeskyBase::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<SimplicialCholeskyBase, Rhs>(*this, b.derived());
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::sparse_solve_retval<SimplicialCholeskyBase, Rhs>
- solve(const SparseMatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "Simplicial LLT or LDLT is not initialized.");
- eigen_assert(rows()==b.rows()
- && "SimplicialCholesky::solve(): invalid number of rows of the right hand side matrix b");
- return internal::sparse_solve_retval<SimplicialCholeskyBase, Rhs>(*this, b.derived());
- }
-
- /** \returns the permutation P
- * \sa permutationPinv() */
- const PermutationMatrix<Dynamic,Dynamic,Index>& permutationP() const
- { return m_P; }
-
- /** \returns the inverse P^-1 of the permutation P
- * \sa permutationP() */
- const PermutationMatrix<Dynamic,Dynamic,Index>& permutationPinv() const
- { return m_Pinv; }
-
- /** Sets the shift parameters that will be used to adjust the diagonal coefficients during the numerical factorization.
- *
- * During the numerical factorization, the diagonal coefficients are transformed by the following linear model:\n
- * \c d_ii = \a offset + \a scale * \c d_ii
- *
- * The default is the identity transformation with \a offset=0, and \a scale=1.
- *
- * \returns a reference to \c *this.
- */
- Derived& setShift(const RealScalar& offset, const RealScalar& scale = 1)
- {
- m_shiftOffset = offset;
- m_shiftScale = scale;
- return derived();
- }
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- /** \internal */
- template<typename Stream>
- void dumpMemory(Stream& s)
- {
- int total = 0;
- s << " L: " << ((total+=(m_matrix.cols()+1) * sizeof(int) + m_matrix.nonZeros()*(sizeof(int)+sizeof(Scalar))) >> 20) << "Mb" << "\n";
- s << " diag: " << ((total+=m_diag.size() * sizeof(Scalar)) >> 20) << "Mb" << "\n";
- s << " tree: " << ((total+=m_parent.size() * sizeof(int)) >> 20) << "Mb" << "\n";
- s << " nonzeros: " << ((total+=m_nonZerosPerCol.size() * sizeof(int)) >> 20) << "Mb" << "\n";
- s << " perm: " << ((total+=m_P.size() * sizeof(int)) >> 20) << "Mb" << "\n";
- s << " perm^-1: " << ((total+=m_Pinv.size() * sizeof(int)) >> 20) << "Mb" << "\n";
- s << " TOTAL: " << (total>> 20) << "Mb" << "\n";
- }
-
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
- {
- eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
- eigen_assert(m_matrix.rows()==b.rows());
-
- if(m_info!=Success)
- return;
-
- if(m_P.size()>0)
- dest = m_P * b;
- else
- dest = b;
-
- if(m_matrix.nonZeros()>0) // otherwise L==I
- derived().matrixL().solveInPlace(dest);
-
- if(m_diag.size()>0)
- dest = m_diag.asDiagonal().inverse() * dest;
-
- if (m_matrix.nonZeros()>0) // otherwise U==I
- derived().matrixU().solveInPlace(dest);
-
- if(m_P.size()>0)
- dest = m_Pinv * dest;
- }
-
-#endif // EIGEN_PARSED_BY_DOXYGEN
-
- protected:
-
- /** Computes the sparse Cholesky decomposition of \a matrix */
- template<bool DoLDLT>
- void compute(const MatrixType& matrix)
- {
- eigen_assert(matrix.rows()==matrix.cols());
- Index size = matrix.cols();
- CholMatrixType ap(size,size);
- ordering(matrix, ap);
- analyzePattern_preordered(ap, DoLDLT);
- factorize_preordered<DoLDLT>(ap);
- }
-
- template<bool DoLDLT>
- void factorize(const MatrixType& a)
- {
- eigen_assert(a.rows()==a.cols());
- int size = a.cols();
- CholMatrixType ap(size,size);
- ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P);
- factorize_preordered<DoLDLT>(ap);
- }
-
- template<bool DoLDLT>
- void factorize_preordered(const CholMatrixType& a);
-
- void analyzePattern(const MatrixType& a, bool doLDLT)
- {
- eigen_assert(a.rows()==a.cols());
- int size = a.cols();
- CholMatrixType ap(size,size);
- ordering(a, ap);
- analyzePattern_preordered(ap,doLDLT);
- }
- void analyzePattern_preordered(const CholMatrixType& a, bool doLDLT);
-
- void ordering(const MatrixType& a, CholMatrixType& ap);
-
- /** keeps off-diagonal entries; drops diagonal entries */
- struct keep_diag {
- inline bool operator() (const Index& row, const Index& col, const Scalar&) const
- {
- return row!=col;
- }
- };
-
- mutable ComputationInfo m_info;
- bool m_isInitialized;
- bool m_factorizationIsOk;
- bool m_analysisIsOk;
-
- CholMatrixType m_matrix;
- VectorType m_diag; // the diagonal coefficients (LDLT mode)
- VectorXi m_parent; // elimination tree
- VectorXi m_nonZerosPerCol;
- PermutationMatrix<Dynamic,Dynamic,Index> m_P; // the permutation
- PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // the inverse permutation
-
- RealScalar m_shiftOffset;
- RealScalar m_shiftScale;
-};
-
-template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialLLT;
-template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialLDLT;
-template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialCholesky;
-
-namespace internal {
-
-template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
-{
- typedef _MatrixType MatrixType;
- typedef _Ordering OrderingType;
- enum { UpLo = _UpLo };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
- typedef SparseMatrix<Scalar, ColMajor, Index> CholMatrixType;
- typedef SparseTriangularView<CholMatrixType, Eigen::Lower> MatrixL;
- typedef SparseTriangularView<typename CholMatrixType::AdjointReturnType, Eigen::Upper> MatrixU;
- static inline MatrixL getL(const MatrixType& m) { return m; }
- static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
-};
-
-template<typename _MatrixType,int _UpLo, typename _Ordering> struct traits<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
-{
- typedef _MatrixType MatrixType;
- typedef _Ordering OrderingType;
- enum { UpLo = _UpLo };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
- typedef SparseMatrix<Scalar, ColMajor, Index> CholMatrixType;
- typedef SparseTriangularView<CholMatrixType, Eigen::UnitLower> MatrixL;
- typedef SparseTriangularView<typename CholMatrixType::AdjointReturnType, Eigen::UnitUpper> MatrixU;
- static inline MatrixL getL(const MatrixType& m) { return m; }
- static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
-};
-
-template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
-{
- typedef _MatrixType MatrixType;
- typedef _Ordering OrderingType;
- enum { UpLo = _UpLo };
-};
-
-}
-
-/** \ingroup SparseCholesky_Module
- * \class SimplicialLLT
- * \brief A direct sparse LLT Cholesky factorizations
- *
- * This class provides a LL^T Cholesky factorizations of sparse matrices that are
- * selfadjoint and positive definite. The factorization allows for solving A.X = B where
- * X and B can be either dense or sparse.
- *
- * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization
- * such that the factorized matrix is P A P^-1.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
- * or Upper. Default is Lower.
- * \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
- *
- * \sa class SimplicialLDLT, class AMDOrdering, class NaturalOrdering
- */
-template<typename _MatrixType, int _UpLo, typename _Ordering>
- class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
-{
-public:
- typedef _MatrixType MatrixType;
- enum { UpLo = _UpLo };
- typedef SimplicialCholeskyBase<SimplicialLLT> Base;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
- typedef Matrix<Scalar,Dynamic,1> VectorType;
- typedef internal::traits<SimplicialLLT> Traits;
- typedef typename Traits::MatrixL MatrixL;
- typedef typename Traits::MatrixU MatrixU;
-public:
- /** Default constructor */
- SimplicialLLT() : Base() {}
- /** Constructs and performs the LLT factorization of \a matrix */
- SimplicialLLT(const MatrixType& matrix)
- : Base(matrix) {}
-
- /** \returns an expression of the factor L */
- inline const MatrixL matrixL() const {
- eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized");
- return Traits::getL(Base::m_matrix);
- }
-
- /** \returns an expression of the factor U (= L^*) */
- inline const MatrixU matrixU() const {
- eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized");
- return Traits::getU(Base::m_matrix);
- }
-
- /** Computes the sparse Cholesky decomposition of \a matrix */
- SimplicialLLT& compute(const MatrixType& matrix)
- {
- Base::template compute<false>(matrix);
- return *this;
- }
-
- /** Performs a symbolic decomposition on the sparcity of \a matrix.
- *
- * This function is particularly useful when solving for several problems having the same structure.
- *
- * \sa factorize()
- */
- void analyzePattern(const MatrixType& a)
- {
- Base::analyzePattern(a, false);
- }
-
- /** Performs a numeric decomposition of \a matrix
- *
- * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
- *
- * \sa analyzePattern()
- */
- void factorize(const MatrixType& a)
- {
- Base::template factorize<false>(a);
- }
-
- /** \returns the determinant of the underlying matrix from the current factorization */
- Scalar determinant() const
- {
- Scalar detL = Base::m_matrix.diagonal().prod();
- return numext::abs2(detL);
- }
-};
-
-/** \ingroup SparseCholesky_Module
- * \class SimplicialLDLT
- * \brief A direct sparse LDLT Cholesky factorizations without square root.
- *
- * This class provides a LDL^T Cholesky factorizations without square root of sparse matrices that are
- * selfadjoint and positive definite. The factorization allows for solving A.X = B where
- * X and B can be either dense or sparse.
- *
- * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization
- * such that the factorized matrix is P A P^-1.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
- * or Upper. Default is Lower.
- * \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
- *
- * \sa class SimplicialLLT, class AMDOrdering, class NaturalOrdering
- */
-template<typename _MatrixType, int _UpLo, typename _Ordering>
- class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
-{
-public:
- typedef _MatrixType MatrixType;
- enum { UpLo = _UpLo };
- typedef SimplicialCholeskyBase<SimplicialLDLT> Base;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
- typedef Matrix<Scalar,Dynamic,1> VectorType;
- typedef internal::traits<SimplicialLDLT> Traits;
- typedef typename Traits::MatrixL MatrixL;
- typedef typename Traits::MatrixU MatrixU;
-public:
- /** Default constructor */
- SimplicialLDLT() : Base() {}
-
- /** Constructs and performs the LLT factorization of \a matrix */
- SimplicialLDLT(const MatrixType& matrix)
- : Base(matrix) {}
-
- /** \returns a vector expression of the diagonal D */
- inline const VectorType vectorD() const {
- eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
- return Base::m_diag;
- }
- /** \returns an expression of the factor L */
- inline const MatrixL matrixL() const {
- eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
- return Traits::getL(Base::m_matrix);
- }
-
- /** \returns an expression of the factor U (= L^*) */
- inline const MatrixU matrixU() const {
- eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
- return Traits::getU(Base::m_matrix);
- }
-
- /** Computes the sparse Cholesky decomposition of \a matrix */
- SimplicialLDLT& compute(const MatrixType& matrix)
- {
- Base::template compute<true>(matrix);
- return *this;
- }
-
- /** Performs a symbolic decomposition on the sparcity of \a matrix.
- *
- * This function is particularly useful when solving for several problems having the same structure.
- *
- * \sa factorize()
- */
- void analyzePattern(const MatrixType& a)
- {
- Base::analyzePattern(a, true);
- }
-
- /** Performs a numeric decomposition of \a matrix
- *
- * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
- *
- * \sa analyzePattern()
- */
- void factorize(const MatrixType& a)
- {
- Base::template factorize<true>(a);
- }
-
- /** \returns the determinant of the underlying matrix from the current factorization */
- Scalar determinant() const
- {
- return Base::m_diag.prod();
- }
-};
-
-/** \deprecated use SimplicialLDLT or class SimplicialLLT
- * \ingroup SparseCholesky_Module
- * \class SimplicialCholesky
- *
- * \sa class SimplicialLDLT, class SimplicialLLT
- */
-template<typename _MatrixType, int _UpLo, typename _Ordering>
- class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
-{
-public:
- typedef _MatrixType MatrixType;
- enum { UpLo = _UpLo };
- typedef SimplicialCholeskyBase<SimplicialCholesky> Base;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
- typedef Matrix<Scalar,Dynamic,1> VectorType;
- typedef internal::traits<SimplicialCholesky> Traits;
- typedef internal::traits<SimplicialLDLT<MatrixType,UpLo> > LDLTTraits;
- typedef internal::traits<SimplicialLLT<MatrixType,UpLo> > LLTTraits;
- public:
- SimplicialCholesky() : Base(), m_LDLT(true) {}
-
- SimplicialCholesky(const MatrixType& matrix)
- : Base(), m_LDLT(true)
- {
- compute(matrix);
- }
-
- SimplicialCholesky& setMode(SimplicialCholeskyMode mode)
- {
- switch(mode)
- {
- case SimplicialCholeskyLLT:
- m_LDLT = false;
- break;
- case SimplicialCholeskyLDLT:
- m_LDLT = true;
- break;
- default:
- break;
- }
-
- return *this;
- }
-
- inline const VectorType vectorD() const {
- eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized");
- return Base::m_diag;
- }
- inline const CholMatrixType rawMatrix() const {
- eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized");
- return Base::m_matrix;
- }
-
- /** Computes the sparse Cholesky decomposition of \a matrix */
- SimplicialCholesky& compute(const MatrixType& matrix)
- {
- if(m_LDLT)
- Base::template compute<true>(matrix);
- else
- Base::template compute<false>(matrix);
- return *this;
- }
-
- /** Performs a symbolic decomposition on the sparcity of \a matrix.
- *
- * This function is particularly useful when solving for several problems having the same structure.
- *
- * \sa factorize()
- */
- void analyzePattern(const MatrixType& a)
- {
- Base::analyzePattern(a, m_LDLT);
- }
-
- /** Performs a numeric decomposition of \a matrix
- *
- * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
- *
- * \sa analyzePattern()
- */
- void factorize(const MatrixType& a)
- {
- if(m_LDLT)
- Base::template factorize<true>(a);
- else
- Base::template factorize<false>(a);
- }
-
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
- {
- eigen_assert(Base::m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
- eigen_assert(Base::m_matrix.rows()==b.rows());
-
- if(Base::m_info!=Success)
- return;
-
- if(Base::m_P.size()>0)
- dest = Base::m_P * b;
- else
- dest = b;
-
- if(Base::m_matrix.nonZeros()>0) // otherwise L==I
- {
- if(m_LDLT)
- LDLTTraits::getL(Base::m_matrix).solveInPlace(dest);
- else
- LLTTraits::getL(Base::m_matrix).solveInPlace(dest);
- }
-
- if(Base::m_diag.size()>0)
- dest = Base::m_diag.asDiagonal().inverse() * dest;
-
- if (Base::m_matrix.nonZeros()>0) // otherwise I==I
- {
- if(m_LDLT)
- LDLTTraits::getU(Base::m_matrix).solveInPlace(dest);
- else
- LLTTraits::getU(Base::m_matrix).solveInPlace(dest);
- }
-
- if(Base::m_P.size()>0)
- dest = Base::m_Pinv * dest;
- }
-
- Scalar determinant() const
- {
- if(m_LDLT)
- {
- return Base::m_diag.prod();
- }
- else
- {
- Scalar detL = Diagonal<const CholMatrixType>(Base::m_matrix).prod();
- return numext::abs2(detL);
- }
- }
-
- protected:
- bool m_LDLT;
-};
-
-template<typename Derived>
-void SimplicialCholeskyBase<Derived>::ordering(const MatrixType& a, CholMatrixType& ap)
-{
- eigen_assert(a.rows()==a.cols());
- const Index size = a.rows();
- // Note that amd compute the inverse permutation
- {
- CholMatrixType C;
- C = a.template selfadjointView<UpLo>();
-
- OrderingType ordering;
- ordering(C,m_Pinv);
- }
-
- if(m_Pinv.size()>0)
- m_P = m_Pinv.inverse();
- else
- m_P.resize(0);
-
- ap.resize(size,size);
- ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P);
-}
-
-namespace internal {
-
-template<typename Derived, typename Rhs>
-struct solve_retval<SimplicialCholeskyBase<Derived>, Rhs>
- : solve_retval_base<SimplicialCholeskyBase<Derived>, Rhs>
-{
- typedef SimplicialCholeskyBase<Derived> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec().derived()._solve(rhs(),dst);
- }
-};
-
-template<typename Derived, typename Rhs>
-struct sparse_solve_retval<SimplicialCholeskyBase<Derived>, Rhs>
- : sparse_solve_retval_base<SimplicialCholeskyBase<Derived>, Rhs>
-{
- typedef SimplicialCholeskyBase<Derived> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- this->defaultEvalTo(dst);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_SIMPLICIAL_CHOLESKY_H
diff --git a/src/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h b/src/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h
deleted file mode 100644
index 7aaf702..0000000
--- a/src/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h
+++ /dev/null
@@ -1,199 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
-
-/*
-
-NOTE: thes functions vave been adapted from the LDL library:
-
-LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved.
-
-LDL License:
-
- Your use or distribution of LDL or any modified version of
- LDL implies that you agree to this License.
-
- This library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- This library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with this library; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
- USA
-
- Permission is hereby granted to use or copy this program under the
- terms of the GNU LGPL, provided that the Copyright, this License,
- and the Availability of the original version is retained on all copies.
- User documentation of any code that uses this code or any modified
- version of this code must cite the Copyright, this License, the
- Availability note, and "Used by permission." Permission to modify
- the code and to distribute modified code is granted, provided the
- Copyright, this License, and the Availability note are retained,
- and a notice that the code was modified is included.
- */
-
-#include "../Core/util/NonMPL2.h"
-
-#ifndef EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
-#define EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
-
-namespace Eigen {
-
-template<typename Derived>
-void SimplicialCholeskyBase<Derived>::analyzePattern_preordered(const CholMatrixType& ap, bool doLDLT)
-{
- const Index size = ap.rows();
- m_matrix.resize(size, size);
- m_parent.resize(size);
- m_nonZerosPerCol.resize(size);
-
- ei_declare_aligned_stack_constructed_variable(Index, tags, size, 0);
-
- for(Index k = 0; k < size; ++k)
- {
- /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */
- m_parent[k] = -1; /* parent of k is not yet known */
- tags[k] = k; /* mark node k as visited */
- m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */
- for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it)
- {
- Index i = it.index();
- if(i < k)
- {
- /* follow path from i to root of etree, stop at flagged node */
- for(; tags[i] != k; i = m_parent[i])
- {
- /* find parent of i if not yet determined */
- if (m_parent[i] == -1)
- m_parent[i] = k;
- m_nonZerosPerCol[i]++; /* L (k,i) is nonzero */
- tags[i] = k; /* mark i as visited */
- }
- }
- }
- }
-
- /* construct Lp index array from m_nonZerosPerCol column counts */
- Index* Lp = m_matrix.outerIndexPtr();
- Lp[0] = 0;
- for(Index k = 0; k < size; ++k)
- Lp[k+1] = Lp[k] + m_nonZerosPerCol[k] + (doLDLT ? 0 : 1);
-
- m_matrix.resizeNonZeros(Lp[size]);
-
- m_isInitialized = true;
- m_info = Success;
- m_analysisIsOk = true;
- m_factorizationIsOk = false;
-}
-
-
-template<typename Derived>
-template<bool DoLDLT>
-void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType& ap)
-{
- using std::sqrt;
-
- eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
- eigen_assert(ap.rows()==ap.cols());
- const Index size = ap.rows();
- eigen_assert(m_parent.size()==size);
- eigen_assert(m_nonZerosPerCol.size()==size);
-
- const Index* Lp = m_matrix.outerIndexPtr();
- Index* Li = m_matrix.innerIndexPtr();
- Scalar* Lx = m_matrix.valuePtr();
-
- ei_declare_aligned_stack_constructed_variable(Scalar, y, size, 0);
- ei_declare_aligned_stack_constructed_variable(Index, pattern, size, 0);
- ei_declare_aligned_stack_constructed_variable(Index, tags, size, 0);
-
- bool ok = true;
- m_diag.resize(DoLDLT ? size : 0);
-
- for(Index k = 0; k < size; ++k)
- {
- // compute nonzero pattern of kth row of L, in topological order
- y[k] = 0.0; // Y(0:k) is now all zero
- Index top = size; // stack for pattern is empty
- tags[k] = k; // mark node k as visited
- m_nonZerosPerCol[k] = 0; // count of nonzeros in column k of L
- for(typename MatrixType::InnerIterator it(ap,k); it; ++it)
- {
- Index i = it.index();
- if(i <= k)
- {
- y[i] += numext::conj(it.value()); /* scatter A(i,k) into Y (sum duplicates) */
- Index len;
- for(len = 0; tags[i] != k; i = m_parent[i])
- {
- pattern[len++] = i; /* L(k,i) is nonzero */
- tags[i] = k; /* mark i as visited */
- }
- while(len > 0)
- pattern[--top] = pattern[--len];
- }
- }
-
- /* compute numerical values kth row of L (a sparse triangular solve) */
-
- RealScalar d = numext::real(y[k]) * m_shiftScale + m_shiftOffset; // get D(k,k), apply the shift function, and clear Y(k)
- y[k] = 0.0;
- for(; top < size; ++top)
- {
- Index i = pattern[top]; /* pattern[top:n-1] is pattern of L(:,k) */
- Scalar yi = y[i]; /* get and clear Y(i) */
- y[i] = 0.0;
-
- /* the nonzero entry L(k,i) */
- Scalar l_ki;
- if(DoLDLT)
- l_ki = yi / m_diag[i];
- else
- yi = l_ki = yi / Lx[Lp[i]];
-
- Index p2 = Lp[i] + m_nonZerosPerCol[i];
- Index p;
- for(p = Lp[i] + (DoLDLT ? 0 : 1); p < p2; ++p)
- y[Li[p]] -= numext::conj(Lx[p]) * yi;
- d -= numext::real(l_ki * numext::conj(yi));
- Li[p] = k; /* store L(k,i) in column form of L */
- Lx[p] = l_ki;
- ++m_nonZerosPerCol[i]; /* increment count of nonzeros in col i */
- }
- if(DoLDLT)
- {
- m_diag[k] = d;
- if(d == RealScalar(0))
- {
- ok = false; /* failure, D(k,k) is zero */
- break;
- }
- }
- else
- {
- Index p = Lp[k] + m_nonZerosPerCol[k]++;
- Li[p] = k ; /* store L(k,k) = sqrt (d) in column k */
- if(d <= RealScalar(0)) {
- ok = false; /* failure, matrix is not positive definite */
- break;
- }
- Lx[p] = sqrt(d) ;
- }
- }
-
- m_info = ok ? Success : NumericalIssue;
- m_factorizationIsOk = true;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
diff --git a/src/Eigen/src/SparseCore/AmbiVector.h b/src/Eigen/src/SparseCore/AmbiVector.h
deleted file mode 100644
index 17fff96..0000000
--- a/src/Eigen/src/SparseCore/AmbiVector.h
+++ /dev/null
@@ -1,373 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_AMBIVECTOR_H
-#define EIGEN_AMBIVECTOR_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal
- * Hybrid sparse/dense vector class designed for intensive read-write operations.
- *
- * See BasicSparseLLT and SparseProduct for usage examples.
- */
-template<typename _Scalar, typename _Index>
-class AmbiVector
-{
- public:
- typedef _Scalar Scalar;
- typedef _Index Index;
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- AmbiVector(Index size)
- : m_buffer(0), m_zero(0), m_size(0), m_allocatedSize(0), m_allocatedElements(0), m_mode(-1)
- {
- resize(size);
- }
-
- void init(double estimatedDensity);
- void init(int mode);
-
- Index nonZeros() const;
-
- /** Specifies a sub-vector to work on */
- void setBounds(Index start, Index end) { m_start = start; m_end = end; }
-
- void setZero();
-
- void restart();
- Scalar& coeffRef(Index i);
- Scalar& coeff(Index i);
-
- class Iterator;
-
- ~AmbiVector() { delete[] m_buffer; }
-
- void resize(Index size)
- {
- if (m_allocatedSize < size)
- reallocate(size);
- m_size = size;
- }
-
- Index size() const { return m_size; }
-
- protected:
-
- void reallocate(Index size)
- {
- // if the size of the matrix is not too large, let's allocate a bit more than needed such
- // that we can handle dense vector even in sparse mode.
- delete[] m_buffer;
- if (size<1000)
- {
- Index allocSize = (size * sizeof(ListEl))/sizeof(Scalar);
- m_allocatedElements = (allocSize*sizeof(Scalar))/sizeof(ListEl);
- m_buffer = new Scalar[allocSize];
- }
- else
- {
- m_allocatedElements = (size*sizeof(Scalar))/sizeof(ListEl);
- m_buffer = new Scalar[size];
- }
- m_size = size;
- m_start = 0;
- m_end = m_size;
- }
-
- void reallocateSparse()
- {
- Index copyElements = m_allocatedElements;
- m_allocatedElements = (std::min)(Index(m_allocatedElements*1.5),m_size);
- Index allocSize = m_allocatedElements * sizeof(ListEl);
- allocSize = allocSize/sizeof(Scalar) + (allocSize%sizeof(Scalar)>0?1:0);
- Scalar* newBuffer = new Scalar[allocSize];
- memcpy(newBuffer, m_buffer, copyElements * sizeof(ListEl));
- delete[] m_buffer;
- m_buffer = newBuffer;
- }
-
- protected:
- // element type of the linked list
- struct ListEl
- {
- Index next;
- Index index;
- Scalar value;
- };
-
- // used to store data in both mode
- Scalar* m_buffer;
- Scalar m_zero;
- Index m_size;
- Index m_start;
- Index m_end;
- Index m_allocatedSize;
- Index m_allocatedElements;
- Index m_mode;
-
- // linked list mode
- Index m_llStart;
- Index m_llCurrent;
- Index m_llSize;
-};
-
-/** \returns the number of non zeros in the current sub vector */
-template<typename _Scalar,typename _Index>
-_Index AmbiVector<_Scalar,_Index>::nonZeros() const
-{
- if (m_mode==IsSparse)
- return m_llSize;
- else
- return m_end - m_start;
-}
-
-template<typename _Scalar,typename _Index>
-void AmbiVector<_Scalar,_Index>::init(double estimatedDensity)
-{
- if (estimatedDensity>0.1)
- init(IsDense);
- else
- init(IsSparse);
-}
-
-template<typename _Scalar,typename _Index>
-void AmbiVector<_Scalar,_Index>::init(int mode)
-{
- m_mode = mode;
- if (m_mode==IsSparse)
- {
- m_llSize = 0;
- m_llStart = -1;
- }
-}
-
-/** Must be called whenever we might perform a write access
- * with an index smaller than the previous one.
- *
- * Don't worry, this function is extremely cheap.
- */
-template<typename _Scalar,typename _Index>
-void AmbiVector<_Scalar,_Index>::restart()
-{
- m_llCurrent = m_llStart;
-}
-
-/** Set all coefficients of current subvector to zero */
-template<typename _Scalar,typename _Index>
-void AmbiVector<_Scalar,_Index>::setZero()
-{
- if (m_mode==IsDense)
- {
- for (Index i=m_start; i<m_end; ++i)
- m_buffer[i] = Scalar(0);
- }
- else
- {
- eigen_assert(m_mode==IsSparse);
- m_llSize = 0;
- m_llStart = -1;
- }
-}
-
-template<typename _Scalar,typename _Index>
-_Scalar& AmbiVector<_Scalar,_Index>::coeffRef(_Index i)
-{
- if (m_mode==IsDense)
- return m_buffer[i];
- else
- {
- ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
- // TODO factorize the following code to reduce code generation
- eigen_assert(m_mode==IsSparse);
- if (m_llSize==0)
- {
- // this is the first element
- m_llStart = 0;
- m_llCurrent = 0;
- ++m_llSize;
- llElements[0].value = Scalar(0);
- llElements[0].index = i;
- llElements[0].next = -1;
- return llElements[0].value;
- }
- else if (i<llElements[m_llStart].index)
- {
- // this is going to be the new first element of the list
- ListEl& el = llElements[m_llSize];
- el.value = Scalar(0);
- el.index = i;
- el.next = m_llStart;
- m_llStart = m_llSize;
- ++m_llSize;
- m_llCurrent = m_llStart;
- return el.value;
- }
- else
- {
- Index nextel = llElements[m_llCurrent].next;
- eigen_assert(i>=llElements[m_llCurrent].index && "you must call restart() before inserting an element with lower or equal index");
- while (nextel >= 0 && llElements[nextel].index<=i)
- {
- m_llCurrent = nextel;
- nextel = llElements[nextel].next;
- }
-
- if (llElements[m_llCurrent].index==i)
- {
- // the coefficient already exists and we found it !
- return llElements[m_llCurrent].value;
- }
- else
- {
- if (m_llSize>=m_allocatedElements)
- {
- reallocateSparse();
- llElements = reinterpret_cast<ListEl*>(m_buffer);
- }
- eigen_internal_assert(m_llSize<m_allocatedElements && "internal error: overflow in sparse mode");
- // let's insert a new coefficient
- ListEl& el = llElements[m_llSize];
- el.value = Scalar(0);
- el.index = i;
- el.next = llElements[m_llCurrent].next;
- llElements[m_llCurrent].next = m_llSize;
- ++m_llSize;
- return el.value;
- }
- }
- }
-}
-
-template<typename _Scalar,typename _Index>
-_Scalar& AmbiVector<_Scalar,_Index>::coeff(_Index i)
-{
- if (m_mode==IsDense)
- return m_buffer[i];
- else
- {
- ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
- eigen_assert(m_mode==IsSparse);
- if ((m_llSize==0) || (i<llElements[m_llStart].index))
- {
- return m_zero;
- }
- else
- {
- Index elid = m_llStart;
- while (elid >= 0 && llElements[elid].index<i)
- elid = llElements[elid].next;
-
- if (llElements[elid].index==i)
- return llElements[m_llCurrent].value;
- else
- return m_zero;
- }
- }
-}
-
-/** Iterator over the nonzero coefficients */
-template<typename _Scalar,typename _Index>
-class AmbiVector<_Scalar,_Index>::Iterator
-{
- public:
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- /** Default constructor
- * \param vec the vector on which we iterate
- * \param epsilon the minimal value used to prune zero coefficients.
- * In practice, all coefficients having a magnitude smaller than \a epsilon
- * are skipped.
- */
- Iterator(const AmbiVector& vec, const RealScalar& epsilon = 0)
- : m_vector(vec)
- {
- using std::abs;
- m_epsilon = epsilon;
- m_isDense = m_vector.m_mode==IsDense;
- if (m_isDense)
- {
- m_currentEl = 0; // this is to avoid a compilation warning
- m_cachedValue = 0; // this is to avoid a compilation warning
- m_cachedIndex = m_vector.m_start-1;
- ++(*this);
- }
- else
- {
- ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
- m_currentEl = m_vector.m_llStart;
- while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<=m_epsilon)
- m_currentEl = llElements[m_currentEl].next;
- if (m_currentEl<0)
- {
- m_cachedValue = 0; // this is to avoid a compilation warning
- m_cachedIndex = -1;
- }
- else
- {
- m_cachedIndex = llElements[m_currentEl].index;
- m_cachedValue = llElements[m_currentEl].value;
- }
- }
- }
-
- Index index() const { return m_cachedIndex; }
- Scalar value() const { return m_cachedValue; }
-
- operator bool() const { return m_cachedIndex>=0; }
-
- Iterator& operator++()
- {
- using std::abs;
- if (m_isDense)
- {
- do {
- ++m_cachedIndex;
- } while (m_cachedIndex<m_vector.m_end && abs(m_vector.m_buffer[m_cachedIndex])<m_epsilon);
- if (m_cachedIndex<m_vector.m_end)
- m_cachedValue = m_vector.m_buffer[m_cachedIndex];
- else
- m_cachedIndex=-1;
- }
- else
- {
- ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
- do {
- m_currentEl = llElements[m_currentEl].next;
- } while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<m_epsilon);
- if (m_currentEl<0)
- {
- m_cachedIndex = -1;
- }
- else
- {
- m_cachedIndex = llElements[m_currentEl].index;
- m_cachedValue = llElements[m_currentEl].value;
- }
- }
- return *this;
- }
-
- protected:
- const AmbiVector& m_vector; // the target vector
- Index m_currentEl; // the current element in sparse/linked-list mode
- RealScalar m_epsilon; // epsilon used to prune zero coefficients
- Index m_cachedIndex; // current coordinate
- Scalar m_cachedValue; // current value
- bool m_isDense; // mode of the vector
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_AMBIVECTOR_H
diff --git a/src/Eigen/src/SparseCore/CMakeLists.txt b/src/Eigen/src/SparseCore/CMakeLists.txt
deleted file mode 100644
index d860452..0000000
--- a/src/Eigen/src/SparseCore/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_SparseCore_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_SparseCore_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/SparseCore COMPONENT Devel
- )
diff --git a/src/Eigen/src/SparseCore/CompressedStorage.h b/src/Eigen/src/SparseCore/CompressedStorage.h
deleted file mode 100644
index a667cb5..0000000
--- a/src/Eigen/src/SparseCore/CompressedStorage.h
+++ /dev/null
@@ -1,233 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COMPRESSED_STORAGE_H
-#define EIGEN_COMPRESSED_STORAGE_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal
- * Stores a sparse set of values as a list of values and a list of indices.
- *
- */
-template<typename _Scalar,typename _Index>
-class CompressedStorage
-{
- public:
-
- typedef _Scalar Scalar;
- typedef _Index Index;
-
- protected:
-
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- public:
-
- CompressedStorage()
- : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
- {}
-
- CompressedStorage(size_t size)
- : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
- {
- resize(size);
- }
-
- CompressedStorage(const CompressedStorage& other)
- : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
- {
- *this = other;
- }
-
- CompressedStorage& operator=(const CompressedStorage& other)
- {
- resize(other.size());
- internal::smart_copy(other.m_values, other.m_values + m_size, m_values);
- internal::smart_copy(other.m_indices, other.m_indices + m_size, m_indices);
- return *this;
- }
-
- void swap(CompressedStorage& other)
- {
- std::swap(m_values, other.m_values);
- std::swap(m_indices, other.m_indices);
- std::swap(m_size, other.m_size);
- std::swap(m_allocatedSize, other.m_allocatedSize);
- }
-
- ~CompressedStorage()
- {
- delete[] m_values;
- delete[] m_indices;
- }
-
- void reserve(size_t size)
- {
- size_t newAllocatedSize = m_size + size;
- if (newAllocatedSize > m_allocatedSize)
- reallocate(newAllocatedSize);
- }
-
- void squeeze()
- {
- if (m_allocatedSize>m_size)
- reallocate(m_size);
- }
-
- void resize(size_t size, double reserveSizeFactor = 0)
- {
- if (m_allocatedSize<size)
- reallocate(size + size_t(reserveSizeFactor*double(size)));
- m_size = size;
- }
-
- void append(const Scalar& v, Index i)
- {
- Index id = static_cast<Index>(m_size);
- resize(m_size+1, 1);
- m_values[id] = v;
- m_indices[id] = i;
- }
-
- inline size_t size() const { return m_size; }
- inline size_t allocatedSize() const { return m_allocatedSize; }
- inline void clear() { m_size = 0; }
-
- inline Scalar& value(size_t i) { return m_values[i]; }
- inline const Scalar& value(size_t i) const { return m_values[i]; }
-
- inline Index& index(size_t i) { return m_indices[i]; }
- inline const Index& index(size_t i) const { return m_indices[i]; }
-
- static CompressedStorage Map(Index* indices, Scalar* values, size_t size)
- {
- CompressedStorage res;
- res.m_indices = indices;
- res.m_values = values;
- res.m_allocatedSize = res.m_size = size;
- return res;
- }
-
- /** \returns the largest \c k such that for all \c j in [0,k) index[\c j]\<\a key */
- inline Index searchLowerIndex(Index key) const
- {
- return searchLowerIndex(0, m_size, key);
- }
-
- /** \returns the largest \c k in [start,end) such that for all \c j in [start,k) index[\c j]\<\a key */
- inline Index searchLowerIndex(size_t start, size_t end, Index key) const
- {
- while(end>start)
- {
- size_t mid = (end+start)>>1;
- if (m_indices[mid]<key)
- start = mid+1;
- else
- end = mid;
- }
- return static_cast<Index>(start);
- }
-
- /** \returns the stored value at index \a key
- * If the value does not exist, then the value \a defaultValue is returned without any insertion. */
- inline Scalar at(Index key, const Scalar& defaultValue = Scalar(0)) const
- {
- if (m_size==0)
- return defaultValue;
- else if (key==m_indices[m_size-1])
- return m_values[m_size-1];
- // ^^ optimization: let's first check if it is the last coefficient
- // (very common in high level algorithms)
- const size_t id = searchLowerIndex(0,m_size-1,key);
- return ((id<m_size) && (m_indices[id]==key)) ? m_values[id] : defaultValue;
- }
-
- /** Like at(), but the search is performed in the range [start,end) */
- inline Scalar atInRange(size_t start, size_t end, Index key, const Scalar& defaultValue = Scalar(0)) const
- {
- if (start>=end)
- return Scalar(0);
- else if (end>start && key==m_indices[end-1])
- return m_values[end-1];
- // ^^ optimization: let's first check if it is the last coefficient
- // (very common in high level algorithms)
- const size_t id = searchLowerIndex(start,end-1,key);
- return ((id<end) && (m_indices[id]==key)) ? m_values[id] : defaultValue;
- }
-
- /** \returns a reference to the value at index \a key
- * If the value does not exist, then the value \a defaultValue is inserted
- * such that the keys are sorted. */
- inline Scalar& atWithInsertion(Index key, const Scalar& defaultValue = Scalar(0))
- {
- size_t id = searchLowerIndex(0,m_size,key);
- if (id>=m_size || m_indices[id]!=key)
- {
- resize(m_size+1,1);
- for (size_t j=m_size-1; j>id; --j)
- {
- m_indices[j] = m_indices[j-1];
- m_values[j] = m_values[j-1];
- }
- m_indices[id] = key;
- m_values[id] = defaultValue;
- }
- return m_values[id];
- }
-
- void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
- {
- size_t k = 0;
- size_t n = size();
- for (size_t i=0; i<n; ++i)
- {
- if (!internal::isMuchSmallerThan(value(i), reference, epsilon))
- {
- value(k) = value(i);
- index(k) = index(i);
- ++k;
- }
- }
- resize(k,0);
- }
-
- protected:
-
- inline void reallocate(size_t size)
- {
- Scalar* newValues = new Scalar[size];
- Index* newIndices = new Index[size];
- size_t copySize = (std::min)(size, m_size);
- // copy
- internal::smart_copy(m_values, m_values+copySize, newValues);
- internal::smart_copy(m_indices, m_indices+copySize, newIndices);
- // delete old stuff
- delete[] m_values;
- delete[] m_indices;
- m_values = newValues;
- m_indices = newIndices;
- m_allocatedSize = size;
- }
-
- protected:
- Scalar* m_values;
- Index* m_indices;
- size_t m_size;
- size_t m_allocatedSize;
-
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_COMPRESSED_STORAGE_H
diff --git a/src/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h b/src/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h
deleted file mode 100644
index 5c320e2..0000000
--- a/src/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h
+++ /dev/null
@@ -1,245 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
-#define EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename Lhs, typename Rhs, typename ResultType>
-static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
-{
- typedef typename remove_all<Lhs>::type::Scalar Scalar;
- typedef typename remove_all<Lhs>::type::Index Index;
-
- // make sure to call innerSize/outerSize since we fake the storage order.
- Index rows = lhs.innerSize();
- Index cols = rhs.outerSize();
- eigen_assert(lhs.outerSize() == rhs.innerSize());
-
- std::vector<bool> mask(rows,false);
- Matrix<Scalar,Dynamic,1> values(rows);
- Matrix<Index,Dynamic,1> indices(rows);
-
- // estimate the number of non zero entries
- // given a rhs column containing Y non zeros, we assume that the respective Y columns
- // of the lhs differs in average of one non zeros, thus the number of non zeros for
- // the product of a rhs column with the lhs is X+Y where X is the average number of non zero
- // per column of the lhs.
- // Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs)
- Index estimated_nnz_prod = lhs.nonZeros() + rhs.nonZeros();
-
- res.setZero();
- res.reserve(Index(estimated_nnz_prod));
- // we compute each column of the result, one after the other
- for (Index j=0; j<cols; ++j)
- {
-
- res.startVec(j);
- Index nnz = 0;
- for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
- {
- Scalar y = rhsIt.value();
- Index k = rhsIt.index();
- for (typename Lhs::InnerIterator lhsIt(lhs, k); lhsIt; ++lhsIt)
- {
- Index i = lhsIt.index();
- Scalar x = lhsIt.value();
- if(!mask[i])
- {
- mask[i] = true;
- values[i] = x * y;
- indices[nnz] = i;
- ++nnz;
- }
- else
- values[i] += x * y;
- }
- }
-
- // unordered insertion
- for(Index k=0; k<nnz; ++k)
- {
- Index i = indices[k];
- res.insertBackByOuterInnerUnordered(j,i) = values[i];
- mask[i] = false;
- }
-
-#if 0
- // alternative ordered insertion code:
-
- Index t200 = rows/(log2(200)*1.39);
- Index t = (rows*100)/139;
-
- // FIXME reserve nnz non zeros
- // FIXME implement fast sort algorithms for very small nnz
- // if the result is sparse enough => use a quick sort
- // otherwise => loop through the entire vector
- // In order to avoid to perform an expensive log2 when the
- // result is clearly very sparse we use a linear bound up to 200.
- //if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t)
- //res.startVec(j);
- if(true)
- {
- if(nnz>1) std::sort(indices.data(),indices.data()+nnz);
- for(Index k=0; k<nnz; ++k)
- {
- Index i = indices[k];
- res.insertBackByOuterInner(j,i) = values[i];
- mask[i] = false;
- }
- }
- else
- {
- // dense path
- for(Index i=0; i<rows; ++i)
- {
- if(mask[i])
- {
- mask[i] = false;
- res.insertBackByOuterInner(j,i) = values[i];
- }
- }
- }
-#endif
-
- }
- res.finalize();
-}
-
-
-} // end namespace internal
-
-namespace internal {
-
-template<typename Lhs, typename Rhs, typename ResultType,
- int LhsStorageOrder = (traits<Lhs>::Flags&RowMajorBit) ? RowMajor : ColMajor,
- int RhsStorageOrder = (traits<Rhs>::Flags&RowMajorBit) ? RowMajor : ColMajor,
- int ResStorageOrder = (traits<ResultType>::Flags&RowMajorBit) ? RowMajor : ColMajor>
-struct conservative_sparse_sparse_product_selector;
-
-template<typename Lhs, typename Rhs, typename ResultType>
-struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
-{
- typedef typename remove_all<Lhs>::type LhsCleaned;
- typedef typename LhsCleaned::Scalar Scalar;
-
- static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
- {
- typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
- typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
- ColMajorMatrix resCol(lhs.rows(),rhs.cols());
- internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
- // sort the non zeros:
- RowMajorMatrix resRow(resCol);
- res = resRow;
- }
-};
-
-template<typename Lhs, typename Rhs, typename ResultType>
-struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
-{
- static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
- {
- typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
- RowMajorMatrix rhsRow = rhs;
- RowMajorMatrix resRow(lhs.rows(), rhs.cols());
- internal::conservative_sparse_sparse_product_impl<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow);
- res = resRow;
- }
-};
-
-template<typename Lhs, typename Rhs, typename ResultType>
-struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
-{
- static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
- {
- typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
- RowMajorMatrix lhsRow = lhs;
- RowMajorMatrix resRow(lhs.rows(), rhs.cols());
- internal::conservative_sparse_sparse_product_impl<Rhs,RowMajorMatrix,RowMajorMatrix>(rhs, lhsRow, resRow);
- res = resRow;
- }
-};
-
-template<typename Lhs, typename Rhs, typename ResultType>
-struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
-{
- static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
- {
- typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
- RowMajorMatrix resRow(lhs.rows(), rhs.cols());
- internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
- res = resRow;
- }
-};
-
-
-template<typename Lhs, typename Rhs, typename ResultType>
-struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
-{
- typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;
-
- static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
- {
- typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
- ColMajorMatrix resCol(lhs.rows(), rhs.cols());
- internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
- res = resCol;
- }
-};
-
-template<typename Lhs, typename Rhs, typename ResultType>
-struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
-{
- static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
- {
- typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
- ColMajorMatrix lhsCol = lhs;
- ColMajorMatrix resCol(lhs.rows(), rhs.cols());
- internal::conservative_sparse_sparse_product_impl<ColMajorMatrix,Rhs,ColMajorMatrix>(lhsCol, rhs, resCol);
- res = resCol;
- }
-};
-
-template<typename Lhs, typename Rhs, typename ResultType>
-struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
-{
- static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
- {
- typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
- ColMajorMatrix rhsCol = rhs;
- ColMajorMatrix resCol(lhs.rows(), rhs.cols());
- internal::conservative_sparse_sparse_product_impl<Lhs,ColMajorMatrix,ColMajorMatrix>(lhs, rhsCol, resCol);
- res = resCol;
- }
-};
-
-template<typename Lhs, typename Rhs, typename ResultType>
-struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
-{
- static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
- {
- typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
- typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
- RowMajorMatrix resRow(lhs.rows(),rhs.cols());
- internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
- // sort the non zeros:
- ColMajorMatrix resCol(resRow);
- res = resCol;
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
diff --git a/src/Eigen/src/SparseCore/MappedSparseMatrix.h b/src/Eigen/src/SparseCore/MappedSparseMatrix.h
deleted file mode 100644
index ab1a266..0000000
--- a/src/Eigen/src/SparseCore/MappedSparseMatrix.h
+++ /dev/null
@@ -1,181 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MAPPED_SPARSEMATRIX_H
-#define EIGEN_MAPPED_SPARSEMATRIX_H
-
-namespace Eigen {
-
-/** \class MappedSparseMatrix
- *
- * \brief Sparse matrix
- *
- * \param _Scalar the scalar type, i.e. the type of the coefficients
- *
- * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
- *
- */
-namespace internal {
-template<typename _Scalar, int _Flags, typename _Index>
-struct traits<MappedSparseMatrix<_Scalar, _Flags, _Index> > : traits<SparseMatrix<_Scalar, _Flags, _Index> >
-{};
-}
-
-template<typename _Scalar, int _Flags, typename _Index>
-class MappedSparseMatrix
- : public SparseMatrixBase<MappedSparseMatrix<_Scalar, _Flags, _Index> >
-{
- public:
- EIGEN_SPARSE_PUBLIC_INTERFACE(MappedSparseMatrix)
- enum { IsRowMajor = Base::IsRowMajor };
-
- protected:
-
- Index m_outerSize;
- Index m_innerSize;
- Index m_nnz;
- Index* m_outerIndex;
- Index* m_innerIndices;
- Scalar* m_values;
-
- public:
-
- inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
- inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
- inline Index innerSize() const { return m_innerSize; }
- inline Index outerSize() const { return m_outerSize; }
-
- bool isCompressed() const { return true; }
-
- //----------------------------------------
- // direct access interface
- inline const Scalar* valuePtr() const { return m_values; }
- inline Scalar* valuePtr() { return m_values; }
-
- inline const Index* innerIndexPtr() const { return m_innerIndices; }
- inline Index* innerIndexPtr() { return m_innerIndices; }
-
- inline const Index* outerIndexPtr() const { return m_outerIndex; }
- inline Index* outerIndexPtr() { return m_outerIndex; }
- //----------------------------------------
-
- inline Scalar coeff(Index row, Index col) const
- {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- Index start = m_outerIndex[outer];
- Index end = m_outerIndex[outer+1];
- if (start==end)
- return Scalar(0);
- else if (end>0 && inner==m_innerIndices[end-1])
- return m_values[end-1];
- // ^^ optimization: let's first check if it is the last coefficient
- // (very common in high level algorithms)
-
- const Index* r = std::lower_bound(&m_innerIndices[start],&m_innerIndices[end-1],inner);
- const Index id = r-&m_innerIndices[0];
- return ((*r==inner) && (id<end)) ? m_values[id] : Scalar(0);
- }
-
- inline Scalar& coeffRef(Index row, Index col)
- {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- Index start = m_outerIndex[outer];
- Index end = m_outerIndex[outer+1];
- eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
- eigen_assert(end>start && "coeffRef cannot be called on a zero coefficient");
- Index* r = std::lower_bound(&m_innerIndices[start],&m_innerIndices[end],inner);
- const Index id = r-&m_innerIndices[0];
- eigen_assert((*r==inner) && (id<end) && "coeffRef cannot be called on a zero coefficient");
- return m_values[id];
- }
-
- class InnerIterator;
- class ReverseInnerIterator;
-
- /** \returns the number of non zero coefficients */
- inline Index nonZeros() const { return m_nnz; }
-
- inline MappedSparseMatrix(Index rows, Index cols, Index nnz, Index* outerIndexPtr, Index* innerIndexPtr, Scalar* valuePtr)
- : m_outerSize(IsRowMajor?rows:cols), m_innerSize(IsRowMajor?cols:rows), m_nnz(nnz), m_outerIndex(outerIndexPtr),
- m_innerIndices(innerIndexPtr), m_values(valuePtr)
- {}
-
- /** Empty destructor */
- inline ~MappedSparseMatrix() {}
-};
-
-template<typename Scalar, int _Flags, typename _Index>
-class MappedSparseMatrix<Scalar,_Flags,_Index>::InnerIterator
-{
- public:
- InnerIterator(const MappedSparseMatrix& mat, Index outer)
- : m_matrix(mat),
- m_outer(outer),
- m_id(mat.outerIndexPtr()[outer]),
- m_start(m_id),
- m_end(mat.outerIndexPtr()[outer+1])
- {}
-
- inline InnerIterator& operator++() { m_id++; return *this; }
-
- inline Scalar value() const { return m_matrix.valuePtr()[m_id]; }
- inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix.valuePtr()[m_id]); }
-
- inline Index index() const { return m_matrix.innerIndexPtr()[m_id]; }
- inline Index row() const { return IsRowMajor ? m_outer : index(); }
- inline Index col() const { return IsRowMajor ? index() : m_outer; }
-
- inline operator bool() const { return (m_id < m_end) && (m_id>=m_start); }
-
- protected:
- const MappedSparseMatrix& m_matrix;
- const Index m_outer;
- Index m_id;
- const Index m_start;
- const Index m_end;
-};
-
-template<typename Scalar, int _Flags, typename _Index>
-class MappedSparseMatrix<Scalar,_Flags,_Index>::ReverseInnerIterator
-{
- public:
- ReverseInnerIterator(const MappedSparseMatrix& mat, Index outer)
- : m_matrix(mat),
- m_outer(outer),
- m_id(mat.outerIndexPtr()[outer+1]),
- m_start(mat.outerIndexPtr()[outer]),
- m_end(m_id)
- {}
-
- inline ReverseInnerIterator& operator--() { m_id--; return *this; }
-
- inline Scalar value() const { return m_matrix.valuePtr()[m_id-1]; }
- inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix.valuePtr()[m_id-1]); }
-
- inline Index index() const { return m_matrix.innerIndexPtr()[m_id-1]; }
- inline Index row() const { return IsRowMajor ? m_outer : index(); }
- inline Index col() const { return IsRowMajor ? index() : m_outer; }
-
- inline operator bool() const { return (m_id <= m_end) && (m_id>m_start); }
-
- protected:
- const MappedSparseMatrix& m_matrix;
- const Index m_outer;
- Index m_id;
- const Index m_start;
- const Index m_end;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_MAPPED_SPARSEMATRIX_H
diff --git a/src/Eigen/src/SparseCore/SparseBlock.h b/src/Eigen/src/SparseCore/SparseBlock.h
deleted file mode 100644
index 16a20a5..0000000
--- a/src/Eigen/src/SparseCore/SparseBlock.h
+++ /dev/null
@@ -1,409 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSE_BLOCK_H
-#define EIGEN_SPARSE_BLOCK_H
-
-namespace Eigen {
-
-template<typename XprType, int BlockRows, int BlockCols>
-class BlockImpl<XprType,BlockRows,BlockCols,true,Sparse>
- : public SparseMatrixBase<Block<XprType,BlockRows,BlockCols,true> >
-{
- typedef typename internal::remove_all<typename XprType::Nested>::type _MatrixTypeNested;
- typedef Block<XprType, BlockRows, BlockCols, true> BlockType;
-public:
- enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
-protected:
- enum { OuterSize = IsRowMajor ? BlockRows : BlockCols };
-public:
- EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
-
- class InnerIterator: public XprType::InnerIterator
- {
- typedef typename BlockImpl::Index Index;
- public:
- inline InnerIterator(const BlockType& xpr, Index outer)
- : XprType::InnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
- {}
- inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
- inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
- protected:
- Index m_outer;
- };
- class ReverseInnerIterator: public XprType::ReverseInnerIterator
- {
- typedef typename BlockImpl::Index Index;
- public:
- inline ReverseInnerIterator(const BlockType& xpr, Index outer)
- : XprType::ReverseInnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
- {}
- inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
- inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
- protected:
- Index m_outer;
- };
-
- inline BlockImpl(const XprType& xpr, int i)
- : m_matrix(xpr), m_outerStart(i), m_outerSize(OuterSize)
- {}
-
- inline BlockImpl(const XprType& xpr, int startRow, int startCol, int blockRows, int blockCols)
- : m_matrix(xpr), m_outerStart(IsRowMajor ? startRow : startCol), m_outerSize(IsRowMajor ? blockRows : blockCols)
- {}
-
- EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
- EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
-
- protected:
-
- typename XprType::Nested m_matrix;
- Index m_outerStart;
- const internal::variable_if_dynamic<Index, OuterSize> m_outerSize;
-
- EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl)
-};
-
-
-/***************************************************************************
-* specialisation for SparseMatrix
-***************************************************************************/
-
-template<typename _Scalar, int _Options, typename _Index, int BlockRows, int BlockCols>
-class BlockImpl<SparseMatrix<_Scalar, _Options, _Index>,BlockRows,BlockCols,true,Sparse>
- : public SparseMatrixBase<Block<SparseMatrix<_Scalar, _Options, _Index>,BlockRows,BlockCols,true> >
-{
- typedef SparseMatrix<_Scalar, _Options, _Index> SparseMatrixType;
- typedef typename internal::remove_all<typename SparseMatrixType::Nested>::type _MatrixTypeNested;
- typedef Block<SparseMatrixType, BlockRows, BlockCols, true> BlockType;
-public:
- enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
- EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
-protected:
- enum { OuterSize = IsRowMajor ? BlockRows : BlockCols };
-public:
-
- class InnerIterator: public SparseMatrixType::InnerIterator
- {
- public:
- inline InnerIterator(const BlockType& xpr, Index outer)
- : SparseMatrixType::InnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
- {}
- inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
- inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
- protected:
- Index m_outer;
- };
- class ReverseInnerIterator: public SparseMatrixType::ReverseInnerIterator
- {
- public:
- inline ReverseInnerIterator(const BlockType& xpr, Index outer)
- : SparseMatrixType::ReverseInnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
- {}
- inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
- inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
- protected:
- Index m_outer;
- };
-
- inline BlockImpl(const SparseMatrixType& xpr, int i)
- : m_matrix(xpr), m_outerStart(i), m_outerSize(OuterSize)
- {}
-
- inline BlockImpl(const SparseMatrixType& xpr, int startRow, int startCol, int blockRows, int blockCols)
- : m_matrix(xpr), m_outerStart(IsRowMajor ? startRow : startCol), m_outerSize(IsRowMajor ? blockRows : blockCols)
- {}
-
- template<typename OtherDerived>
- inline BlockType& operator=(const SparseMatrixBase<OtherDerived>& other)
- {
- typedef typename internal::remove_all<typename SparseMatrixType::Nested>::type _NestedMatrixType;
- _NestedMatrixType& matrix = const_cast<_NestedMatrixType&>(m_matrix);;
- // This assignement is slow if this vector set is not empty
- // and/or it is not at the end of the nonzeros of the underlying matrix.
-
- // 1 - eval to a temporary to avoid transposition and/or aliasing issues
- SparseMatrix<Scalar, IsRowMajor ? RowMajor : ColMajor, Index> tmp(other);
-
- // 2 - let's check whether there is enough allocated memory
- Index nnz = tmp.nonZeros();
- Index start = m_outerStart==0 ? 0 : matrix.outerIndexPtr()[m_outerStart]; // starting position of the current block
- Index end = m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()]; // ending posiiton of the current block
- Index block_size = end - start; // available room in the current block
- Index tail_size = m_matrix.outerIndexPtr()[m_matrix.outerSize()] - end;
-
- Index free_size = m_matrix.isCompressed()
- ? Index(matrix.data().allocatedSize()) + block_size
- : block_size;
-
- if(nnz>free_size)
- {
- // realloc manually to reduce copies
- typename SparseMatrixType::Storage newdata(m_matrix.data().allocatedSize() - block_size + nnz);
-
- std::memcpy(&newdata.value(0), &m_matrix.data().value(0), start*sizeof(Scalar));
- std::memcpy(&newdata.index(0), &m_matrix.data().index(0), start*sizeof(Index));
-
- std::memcpy(&newdata.value(start), &tmp.data().value(0), nnz*sizeof(Scalar));
- std::memcpy(&newdata.index(start), &tmp.data().index(0), nnz*sizeof(Index));
-
- std::memcpy(&newdata.value(start+nnz), &matrix.data().value(end), tail_size*sizeof(Scalar));
- std::memcpy(&newdata.index(start+nnz), &matrix.data().index(end), tail_size*sizeof(Index));
-
- newdata.resize(m_matrix.outerIndexPtr()[m_matrix.outerSize()] - block_size + nnz);
-
- matrix.data().swap(newdata);
- }
- else
- {
- // no need to realloc, simply copy the tail at its respective position and insert tmp
- matrix.data().resize(start + nnz + tail_size);
-
- std::memmove(&matrix.data().value(start+nnz), &matrix.data().value(end), tail_size*sizeof(Scalar));
- std::memmove(&matrix.data().index(start+nnz), &matrix.data().index(end), tail_size*sizeof(Index));
-
- std::memcpy(&matrix.data().value(start), &tmp.data().value(0), nnz*sizeof(Scalar));
- std::memcpy(&matrix.data().index(start), &tmp.data().index(0), nnz*sizeof(Index));
- }
-
- // update innerNonZeros
- if(!m_matrix.isCompressed())
- for(Index j=0; j<m_outerSize.value(); ++j)
- matrix.innerNonZeroPtr()[m_outerStart+j] = tmp.innerVector(j).nonZeros();
-
- // update outer index pointers
- Index p = start;
- for(Index k=0; k<m_outerSize.value(); ++k)
- {
- matrix.outerIndexPtr()[m_outerStart+k] = p;
- p += tmp.innerVector(k).nonZeros();
- }
- std::ptrdiff_t offset = nnz - block_size;
- for(Index k = m_outerStart + m_outerSize.value(); k<=matrix.outerSize(); ++k)
- {
- matrix.outerIndexPtr()[k] += offset;
- }
-
- return derived();
- }
-
- inline BlockType& operator=(const BlockType& other)
- {
- return operator=<BlockType>(other);
- }
-
- inline const Scalar* valuePtr() const
- { return m_matrix.valuePtr() + m_matrix.outerIndexPtr()[m_outerStart]; }
- inline Scalar* valuePtr()
- { return m_matrix.const_cast_derived().valuePtr() + m_matrix.outerIndexPtr()[m_outerStart]; }
-
- inline const Index* innerIndexPtr() const
- { return m_matrix.innerIndexPtr() + m_matrix.outerIndexPtr()[m_outerStart]; }
- inline Index* innerIndexPtr()
- { return m_matrix.const_cast_derived().innerIndexPtr() + m_matrix.outerIndexPtr()[m_outerStart]; }
-
- inline const Index* outerIndexPtr() const
- { return m_matrix.outerIndexPtr() + m_outerStart; }
- inline Index* outerIndexPtr()
- { return m_matrix.const_cast_derived().outerIndexPtr() + m_outerStart; }
-
- Index nonZeros() const
- {
- if(m_matrix.isCompressed())
- return std::size_t(m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()])
- - std::size_t(m_matrix.outerIndexPtr()[m_outerStart]);
- else if(m_outerSize.value()==0)
- return 0;
- else
- return Map<const Matrix<Index,OuterSize,1> >(m_matrix.innerNonZeroPtr()+m_outerStart, m_outerSize.value()).sum();
- }
-
- const Scalar& lastCoeff() const
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(BlockImpl);
- eigen_assert(nonZeros()>0);
- if(m_matrix.isCompressed())
- return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart+1]-1];
- else
- return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart]+m_matrix.innerNonZeroPtr()[m_outerStart]-1];
- }
-
- EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
- EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
-
- protected:
-
- typename SparseMatrixType::Nested m_matrix;
- Index m_outerStart;
- const internal::variable_if_dynamic<Index, OuterSize> m_outerSize;
-
-};
-
-//----------
-
-/** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this
- * is col-major (resp. row-major).
- */
-template<typename Derived>
-typename SparseMatrixBase<Derived>::InnerVectorReturnType SparseMatrixBase<Derived>::innerVector(Index outer)
-{ return InnerVectorReturnType(derived(), outer); }
-
-/** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this
- * is col-major (resp. row-major). Read-only.
- */
-template<typename Derived>
-const typename SparseMatrixBase<Derived>::ConstInnerVectorReturnType SparseMatrixBase<Derived>::innerVector(Index outer) const
-{ return ConstInnerVectorReturnType(derived(), outer); }
-
-/** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this
- * is col-major (resp. row-major).
- */
-template<typename Derived>
-Block<Derived,Dynamic,Dynamic,true> SparseMatrixBase<Derived>::innerVectors(Index outerStart, Index outerSize)
-{
- return Block<Derived,Dynamic,Dynamic,true>(derived(),
- IsRowMajor ? outerStart : 0, IsRowMajor ? 0 : outerStart,
- IsRowMajor ? outerSize : rows(), IsRowMajor ? cols() : outerSize);
-
-}
-
-/** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this
- * is col-major (resp. row-major). Read-only.
- */
-template<typename Derived>
-const Block<const Derived,Dynamic,Dynamic,true> SparseMatrixBase<Derived>::innerVectors(Index outerStart, Index outerSize) const
-{
- return Block<const Derived,Dynamic,Dynamic,true>(derived(),
- IsRowMajor ? outerStart : 0, IsRowMajor ? 0 : outerStart,
- IsRowMajor ? outerSize : rows(), IsRowMajor ? cols() : outerSize);
-
-}
-
-/** Generic implementation of sparse Block expression.
- * Real-only.
- */
-template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
-class BlockImpl<XprType,BlockRows,BlockCols,InnerPanel,Sparse>
- : public SparseMatrixBase<Block<XprType,BlockRows,BlockCols,InnerPanel> >, internal::no_assignment_operator
-{
- typedef typename internal::remove_all<typename XprType::Nested>::type _MatrixTypeNested;
- typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
-public:
- enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
- EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
-
- /** Column or Row constructor
- */
- inline BlockImpl(const XprType& xpr, int i)
- : m_matrix(xpr),
- m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0),
- m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0),
- m_blockRows(xpr.rows()),
- m_blockCols(xpr.cols())
- {}
-
- /** Dynamic-size constructor
- */
- inline BlockImpl(const XprType& xpr, int startRow, int startCol, int blockRows, int blockCols)
- : m_matrix(xpr), m_startRow(startRow), m_startCol(startCol), m_blockRows(blockRows), m_blockCols(blockCols)
- {}
-
- inline int rows() const { return m_blockRows.value(); }
- inline int cols() const { return m_blockCols.value(); }
-
- inline Scalar& coeffRef(int row, int col)
- {
- return m_matrix.const_cast_derived()
- .coeffRef(row + m_startRow.value(), col + m_startCol.value());
- }
-
- inline const Scalar coeff(int row, int col) const
- {
- return m_matrix.coeff(row + m_startRow.value(), col + m_startCol.value());
- }
-
- inline Scalar& coeffRef(int index)
- {
- return m_matrix.const_cast_derived()
- .coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
- m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
- }
-
- inline const Scalar coeff(int index) const
- {
- return m_matrix
- .coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
- m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
- }
-
- inline const _MatrixTypeNested& nestedExpression() const { return m_matrix; }
-
- class InnerIterator : public _MatrixTypeNested::InnerIterator
- {
- typedef typename _MatrixTypeNested::InnerIterator Base;
- const BlockType& m_block;
- Index m_end;
- public:
-
- EIGEN_STRONG_INLINE InnerIterator(const BlockType& block, Index outer)
- : Base(block.derived().nestedExpression(), outer + (IsRowMajor ? block.m_startRow.value() : block.m_startCol.value())),
- m_block(block),
- m_end(IsRowMajor ? block.m_startCol.value()+block.m_blockCols.value() : block.m_startRow.value()+block.m_blockRows.value())
- {
- while( (Base::operator bool()) && (Base::index() < (IsRowMajor ? m_block.m_startCol.value() : m_block.m_startRow.value())) )
- Base::operator++();
- }
-
- inline Index index() const { return Base::index() - (IsRowMajor ? m_block.m_startCol.value() : m_block.m_startRow.value()); }
- inline Index outer() const { return Base::outer() - (IsRowMajor ? m_block.m_startRow.value() : m_block.m_startCol.value()); }
- inline Index row() const { return Base::row() - m_block.m_startRow.value(); }
- inline Index col() const { return Base::col() - m_block.m_startCol.value(); }
-
- inline operator bool() const { return Base::operator bool() && Base::index() < m_end; }
- };
- class ReverseInnerIterator : public _MatrixTypeNested::ReverseInnerIterator
- {
- typedef typename _MatrixTypeNested::ReverseInnerIterator Base;
- const BlockType& m_block;
- Index m_begin;
- public:
-
- EIGEN_STRONG_INLINE ReverseInnerIterator(const BlockType& block, Index outer)
- : Base(block.derived().nestedExpression(), outer + (IsRowMajor ? block.m_startRow.value() : block.m_startCol.value())),
- m_block(block),
- m_begin(IsRowMajor ? block.m_startCol.value() : block.m_startRow.value())
- {
- while( (Base::operator bool()) && (Base::index() >= (IsRowMajor ? m_block.m_startCol.value()+block.m_blockCols.value() : m_block.m_startRow.value()+block.m_blockRows.value())) )
- Base::operator--();
- }
-
- inline Index index() const { return Base::index() - (IsRowMajor ? m_block.m_startCol.value() : m_block.m_startRow.value()); }
- inline Index outer() const { return Base::outer() - (IsRowMajor ? m_block.m_startRow.value() : m_block.m_startCol.value()); }
- inline Index row() const { return Base::row() - m_block.m_startRow.value(); }
- inline Index col() const { return Base::col() - m_block.m_startCol.value(); }
-
- inline operator bool() const { return Base::operator bool() && Base::index() >= m_begin; }
- };
- protected:
- friend class InnerIterator;
- friend class ReverseInnerIterator;
-
- EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl)
-
- typename XprType::Nested m_matrix;
- const internal::variable_if_dynamic<Index, XprType::RowsAtCompileTime == 1 ? 0 : Dynamic> m_startRow;
- const internal::variable_if_dynamic<Index, XprType::ColsAtCompileTime == 1 ? 0 : Dynamic> m_startCol;
- const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_blockRows;
- const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_blockCols;
-
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSE_BLOCK_H
diff --git a/src/Eigen/src/SparseCore/SparseColEtree.h b/src/Eigen/src/SparseCore/SparseColEtree.h
deleted file mode 100644
index f8745f4..0000000
--- a/src/Eigen/src/SparseCore/SparseColEtree.h
+++ /dev/null
@@ -1,206 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-
-/*
-
- * NOTE: This file is the modified version of sp_coletree.c file in SuperLU
-
- * -- SuperLU routine (version 3.1) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * August 1, 2008
- *
- * Copyright (c) 1994 by Xerox Corporation. All rights reserved.
- *
- * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
- *
- * Permission is hereby granted to use or copy this program for any
- * purpose, provided the above notices are retained on all copies.
- * Permission to modify the code and to distribute modified code is
- * granted, provided the above notices are retained, and a notice that
- * the code was modified is included with the above copyright notice.
- */
-#ifndef SPARSE_COLETREE_H
-#define SPARSE_COLETREE_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** Find the root of the tree/set containing the vertex i : Use Path halving */
-template<typename Index, typename IndexVector>
-Index etree_find (Index i, IndexVector& pp)
-{
- Index p = pp(i); // Parent
- Index gp = pp(p); // Grand parent
- while (gp != p)
- {
- pp(i) = gp; // Parent pointer on find path is changed to former grand parent
- i = gp;
- p = pp(i);
- gp = pp(p);
- }
- return p;
-}
-
-/** Compute the column elimination tree of a sparse matrix
- * \param mat The matrix in column-major format.
- * \param parent The elimination tree
- * \param firstRowElt The column index of the first element in each row
- * \param perm The permutation to apply to the column of \b mat
- */
-template <typename MatrixType, typename IndexVector>
-int coletree(const MatrixType& mat, IndexVector& parent, IndexVector& firstRowElt, typename MatrixType::Index *perm=0)
-{
- typedef typename MatrixType::Index Index;
- Index nc = mat.cols(); // Number of columns
- Index m = mat.rows();
- Index diagSize = (std::min)(nc,m);
- IndexVector root(nc); // root of subtree of etree
- root.setZero();
- IndexVector pp(nc); // disjoint sets
- pp.setZero(); // Initialize disjoint sets
- parent.resize(mat.cols());
- //Compute first nonzero column in each row
- Index row,col;
- firstRowElt.resize(m);
- firstRowElt.setConstant(nc);
- firstRowElt.segment(0, diagSize).setLinSpaced(diagSize, 0, diagSize-1);
- bool found_diag;
- for (col = 0; col < nc; col++)
- {
- Index pcol = col;
- if(perm) pcol = perm[col];
- for (typename MatrixType::InnerIterator it(mat, pcol); it; ++it)
- {
- row = it.row();
- firstRowElt(row) = (std::min)(firstRowElt(row), col);
- }
- }
- /* Compute etree by Liu's algorithm for symmetric matrices,
- except use (firstRowElt[r],c) in place of an edge (r,c) of A.
- Thus each row clique in A'*A is replaced by a star
- centered at its first vertex, which has the same fill. */
- Index rset, cset, rroot;
- for (col = 0; col < nc; col++)
- {
- found_diag = col>=m;
- pp(col) = col;
- cset = col;
- root(cset) = col;
- parent(col) = nc;
- /* The diagonal element is treated here even if it does not exist in the matrix
- * hence the loop is executed once more */
- Index pcol = col;
- if(perm) pcol = perm[col];
- for (typename MatrixType::InnerIterator it(mat, pcol); it||!found_diag; ++it)
- { // A sequence of interleaved find and union is performed
- Index i = col;
- if(it) i = it.index();
- if (i == col) found_diag = true;
-
- row = firstRowElt(i);
- if (row >= col) continue;
- rset = internal::etree_find(row, pp); // Find the name of the set containing row
- rroot = root(rset);
- if (rroot != col)
- {
- parent(rroot) = col;
- pp(cset) = rset;
- cset = rset;
- root(cset) = col;
- }
- }
- }
- return 0;
-}
-
-/**
- * Depth-first search from vertex n. No recursion.
- * This routine was contributed by Cédric Doucet, CEDRAT Group, Meylan, France.
-*/
-template <typename Index, typename IndexVector>
-void nr_etdfs (Index n, IndexVector& parent, IndexVector& first_kid, IndexVector& next_kid, IndexVector& post, Index postnum)
-{
- Index current = n, first, next;
- while (postnum != n)
- {
- // No kid for the current node
- first = first_kid(current);
-
- // no kid for the current node
- if (first == -1)
- {
- // Numbering this node because it has no kid
- post(current) = postnum++;
-
- // looking for the next kid
- next = next_kid(current);
- while (next == -1)
- {
- // No more kids : back to the parent node
- current = parent(current);
- // numbering the parent node
- post(current) = postnum++;
-
- // Get the next kid
- next = next_kid(current);
- }
- // stopping criterion
- if (postnum == n+1) return;
-
- // Updating current node
- current = next;
- }
- else
- {
- current = first;
- }
- }
-}
-
-
-/**
- * \brief Post order a tree
- * \param n the number of nodes
- * \param parent Input tree
- * \param post postordered tree
- */
-template <typename Index, typename IndexVector>
-void treePostorder(Index n, IndexVector& parent, IndexVector& post)
-{
- IndexVector first_kid, next_kid; // Linked list of children
- Index postnum;
- // Allocate storage for working arrays and results
- first_kid.resize(n+1);
- next_kid.setZero(n+1);
- post.setZero(n+1);
-
- // Set up structure describing children
- Index v, dad;
- first_kid.setConstant(-1);
- for (v = n-1; v >= 0; v--)
- {
- dad = parent(v);
- next_kid(v) = first_kid(dad);
- first_kid(dad) = v;
- }
-
- // Depth-first search from dummy root vertex #n
- postnum = 0;
- internal::nr_etdfs(n, parent, first_kid, next_kid, post, postnum);
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // SPARSE_COLETREE_H
diff --git a/src/Eigen/src/SparseCore/SparseCwiseBinaryOp.h b/src/Eigen/src/SparseCore/SparseCwiseBinaryOp.h
deleted file mode 100644
index 60ca769..0000000
--- a/src/Eigen/src/SparseCore/SparseCwiseBinaryOp.h
+++ /dev/null
@@ -1,325 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSE_CWISE_BINARY_OP_H
-#define EIGEN_SPARSE_CWISE_BINARY_OP_H
-
-namespace Eigen {
-
-// Here we have to handle 3 cases:
-// 1 - sparse op dense
-// 2 - dense op sparse
-// 3 - sparse op sparse
-// We also need to implement a 4th iterator for:
-// 4 - dense op dense
-// Finally, we also need to distinguish between the product and other operations :
-// configuration returned mode
-// 1 - sparse op dense product sparse
-// generic dense
-// 2 - dense op sparse product sparse
-// generic dense
-// 3 - sparse op sparse product sparse
-// generic sparse
-// 4 - dense op dense product dense
-// generic dense
-
-namespace internal {
-
-template<> struct promote_storage_type<Dense,Sparse>
-{ typedef Sparse ret; };
-
-template<> struct promote_storage_type<Sparse,Dense>
-{ typedef Sparse ret; };
-
-template<typename BinaryOp, typename Lhs, typename Rhs, typename Derived,
- typename _LhsStorageMode = typename traits<Lhs>::StorageKind,
- typename _RhsStorageMode = typename traits<Rhs>::StorageKind>
-class sparse_cwise_binary_op_inner_iterator_selector;
-
-} // end namespace internal
-
-template<typename BinaryOp, typename Lhs, typename Rhs>
-class CwiseBinaryOpImpl<BinaryOp, Lhs, Rhs, Sparse>
- : public SparseMatrixBase<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
-{
- public:
- class InnerIterator;
- class ReverseInnerIterator;
- typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> Derived;
- EIGEN_SPARSE_PUBLIC_INTERFACE(Derived)
- CwiseBinaryOpImpl()
- {
- typedef typename internal::traits<Lhs>::StorageKind LhsStorageKind;
- typedef typename internal::traits<Rhs>::StorageKind RhsStorageKind;
- EIGEN_STATIC_ASSERT((
- (!internal::is_same<LhsStorageKind,RhsStorageKind>::value)
- || ((Lhs::Flags&RowMajorBit) == (Rhs::Flags&RowMajorBit))),
- THE_STORAGE_ORDER_OF_BOTH_SIDES_MUST_MATCH);
- }
-};
-
-template<typename BinaryOp, typename Lhs, typename Rhs>
-class CwiseBinaryOpImpl<BinaryOp,Lhs,Rhs,Sparse>::InnerIterator
- : public internal::sparse_cwise_binary_op_inner_iterator_selector<BinaryOp,Lhs,Rhs,typename CwiseBinaryOpImpl<BinaryOp,Lhs,Rhs,Sparse>::InnerIterator>
-{
- public:
- typedef typename Lhs::Index Index;
- typedef internal::sparse_cwise_binary_op_inner_iterator_selector<
- BinaryOp,Lhs,Rhs, InnerIterator> Base;
-
- // NOTE: we have to prefix Index by "typename Lhs::" to avoid an ICE with VC11
- EIGEN_STRONG_INLINE InnerIterator(const CwiseBinaryOpImpl& binOp, typename Lhs::Index outer)
- : Base(binOp.derived(),outer)
- {}
-};
-
-/***************************************************************************
-* Implementation of inner-iterators
-***************************************************************************/
-
-// template<typename T> struct internal::func_is_conjunction { enum { ret = false }; };
-// template<typename T> struct internal::func_is_conjunction<internal::scalar_product_op<T> > { enum { ret = true }; };
-
-// TODO generalize the internal::scalar_product_op specialization to all conjunctions if any !
-
-namespace internal {
-
-// sparse - sparse (generic)
-template<typename BinaryOp, typename Lhs, typename Rhs, typename Derived>
-class sparse_cwise_binary_op_inner_iterator_selector<BinaryOp, Lhs, Rhs, Derived, Sparse, Sparse>
-{
- typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> CwiseBinaryXpr;
- typedef typename traits<CwiseBinaryXpr>::Scalar Scalar;
- typedef typename traits<CwiseBinaryXpr>::_LhsNested _LhsNested;
- typedef typename traits<CwiseBinaryXpr>::_RhsNested _RhsNested;
- typedef typename _LhsNested::InnerIterator LhsIterator;
- typedef typename _RhsNested::InnerIterator RhsIterator;
- typedef typename Lhs::Index Index;
-
- public:
-
- EIGEN_STRONG_INLINE sparse_cwise_binary_op_inner_iterator_selector(const CwiseBinaryXpr& xpr, Index outer)
- : m_lhsIter(xpr.lhs(),outer), m_rhsIter(xpr.rhs(),outer), m_functor(xpr.functor())
- {
- this->operator++();
- }
-
- EIGEN_STRONG_INLINE Derived& operator++()
- {
- if (m_lhsIter && m_rhsIter && (m_lhsIter.index() == m_rhsIter.index()))
- {
- m_id = m_lhsIter.index();
- m_value = m_functor(m_lhsIter.value(), m_rhsIter.value());
- ++m_lhsIter;
- ++m_rhsIter;
- }
- else if (m_lhsIter && (!m_rhsIter || (m_lhsIter.index() < m_rhsIter.index())))
- {
- m_id = m_lhsIter.index();
- m_value = m_functor(m_lhsIter.value(), Scalar(0));
- ++m_lhsIter;
- }
- else if (m_rhsIter && (!m_lhsIter || (m_lhsIter.index() > m_rhsIter.index())))
- {
- m_id = m_rhsIter.index();
- m_value = m_functor(Scalar(0), m_rhsIter.value());
- ++m_rhsIter;
- }
- else
- {
- m_value = 0; // this is to avoid a compilation warning
- m_id = -1;
- }
- return *static_cast<Derived*>(this);
- }
-
- EIGEN_STRONG_INLINE Scalar value() const { return m_value; }
-
- EIGEN_STRONG_INLINE Index index() const { return m_id; }
- EIGEN_STRONG_INLINE Index row() const { return Lhs::IsRowMajor ? m_lhsIter.row() : index(); }
- EIGEN_STRONG_INLINE Index col() const { return Lhs::IsRowMajor ? index() : m_lhsIter.col(); }
-
- EIGEN_STRONG_INLINE operator bool() const { return m_id>=0; }
-
- protected:
- LhsIterator m_lhsIter;
- RhsIterator m_rhsIter;
- const BinaryOp& m_functor;
- Scalar m_value;
- Index m_id;
-};
-
-// sparse - sparse (product)
-template<typename T, typename Lhs, typename Rhs, typename Derived>
-class sparse_cwise_binary_op_inner_iterator_selector<scalar_product_op<T>, Lhs, Rhs, Derived, Sparse, Sparse>
-{
- typedef scalar_product_op<T> BinaryFunc;
- typedef CwiseBinaryOp<BinaryFunc, Lhs, Rhs> CwiseBinaryXpr;
- typedef typename CwiseBinaryXpr::Scalar Scalar;
- typedef typename traits<CwiseBinaryXpr>::_LhsNested _LhsNested;
- typedef typename _LhsNested::InnerIterator LhsIterator;
- typedef typename traits<CwiseBinaryXpr>::_RhsNested _RhsNested;
- typedef typename _RhsNested::InnerIterator RhsIterator;
- typedef typename Lhs::Index Index;
- public:
-
- EIGEN_STRONG_INLINE sparse_cwise_binary_op_inner_iterator_selector(const CwiseBinaryXpr& xpr, Index outer)
- : m_lhsIter(xpr.lhs(),outer), m_rhsIter(xpr.rhs(),outer), m_functor(xpr.functor())
- {
- while (m_lhsIter && m_rhsIter && (m_lhsIter.index() != m_rhsIter.index()))
- {
- if (m_lhsIter.index() < m_rhsIter.index())
- ++m_lhsIter;
- else
- ++m_rhsIter;
- }
- }
-
- EIGEN_STRONG_INLINE Derived& operator++()
- {
- ++m_lhsIter;
- ++m_rhsIter;
- while (m_lhsIter && m_rhsIter && (m_lhsIter.index() != m_rhsIter.index()))
- {
- if (m_lhsIter.index() < m_rhsIter.index())
- ++m_lhsIter;
- else
- ++m_rhsIter;
- }
- return *static_cast<Derived*>(this);
- }
-
- EIGEN_STRONG_INLINE Scalar value() const { return m_functor(m_lhsIter.value(), m_rhsIter.value()); }
-
- EIGEN_STRONG_INLINE Index index() const { return m_lhsIter.index(); }
- EIGEN_STRONG_INLINE Index row() const { return m_lhsIter.row(); }
- EIGEN_STRONG_INLINE Index col() const { return m_lhsIter.col(); }
-
- EIGEN_STRONG_INLINE operator bool() const { return (m_lhsIter && m_rhsIter); }
-
- protected:
- LhsIterator m_lhsIter;
- RhsIterator m_rhsIter;
- const BinaryFunc& m_functor;
-};
-
-// sparse - dense (product)
-template<typename T, typename Lhs, typename Rhs, typename Derived>
-class sparse_cwise_binary_op_inner_iterator_selector<scalar_product_op<T>, Lhs, Rhs, Derived, Sparse, Dense>
-{
- typedef scalar_product_op<T> BinaryFunc;
- typedef CwiseBinaryOp<BinaryFunc, Lhs, Rhs> CwiseBinaryXpr;
- typedef typename CwiseBinaryXpr::Scalar Scalar;
- typedef typename traits<CwiseBinaryXpr>::_LhsNested _LhsNested;
- typedef typename traits<CwiseBinaryXpr>::RhsNested RhsNested;
- typedef typename _LhsNested::InnerIterator LhsIterator;
- typedef typename Lhs::Index Index;
- enum { IsRowMajor = (int(Lhs::Flags)&RowMajorBit)==RowMajorBit };
- public:
-
- EIGEN_STRONG_INLINE sparse_cwise_binary_op_inner_iterator_selector(const CwiseBinaryXpr& xpr, Index outer)
- : m_rhs(xpr.rhs()), m_lhsIter(xpr.lhs(),outer), m_functor(xpr.functor()), m_outer(outer)
- {}
-
- EIGEN_STRONG_INLINE Derived& operator++()
- {
- ++m_lhsIter;
- return *static_cast<Derived*>(this);
- }
-
- EIGEN_STRONG_INLINE Scalar value() const
- { return m_functor(m_lhsIter.value(),
- m_rhs.coeff(IsRowMajor?m_outer:m_lhsIter.index(),IsRowMajor?m_lhsIter.index():m_outer)); }
-
- EIGEN_STRONG_INLINE Index index() const { return m_lhsIter.index(); }
- EIGEN_STRONG_INLINE Index row() const { return m_lhsIter.row(); }
- EIGEN_STRONG_INLINE Index col() const { return m_lhsIter.col(); }
-
- EIGEN_STRONG_INLINE operator bool() const { return m_lhsIter; }
-
- protected:
- RhsNested m_rhs;
- LhsIterator m_lhsIter;
- const BinaryFunc m_functor;
- const Index m_outer;
-};
-
-// sparse - dense (product)
-template<typename T, typename Lhs, typename Rhs, typename Derived>
-class sparse_cwise_binary_op_inner_iterator_selector<scalar_product_op<T>, Lhs, Rhs, Derived, Dense, Sparse>
-{
- typedef scalar_product_op<T> BinaryFunc;
- typedef CwiseBinaryOp<BinaryFunc, Lhs, Rhs> CwiseBinaryXpr;
- typedef typename CwiseBinaryXpr::Scalar Scalar;
- typedef typename traits<CwiseBinaryXpr>::_RhsNested _RhsNested;
- typedef typename _RhsNested::InnerIterator RhsIterator;
- typedef typename Lhs::Index Index;
-
- enum { IsRowMajor = (int(Rhs::Flags)&RowMajorBit)==RowMajorBit };
- public:
-
- EIGEN_STRONG_INLINE sparse_cwise_binary_op_inner_iterator_selector(const CwiseBinaryXpr& xpr, Index outer)
- : m_xpr(xpr), m_rhsIter(xpr.rhs(),outer), m_functor(xpr.functor()), m_outer(outer)
- {}
-
- EIGEN_STRONG_INLINE Derived& operator++()
- {
- ++m_rhsIter;
- return *static_cast<Derived*>(this);
- }
-
- EIGEN_STRONG_INLINE Scalar value() const
- { return m_functor(m_xpr.lhs().coeff(IsRowMajor?m_outer:m_rhsIter.index(),IsRowMajor?m_rhsIter.index():m_outer), m_rhsIter.value()); }
-
- EIGEN_STRONG_INLINE Index index() const { return m_rhsIter.index(); }
- EIGEN_STRONG_INLINE Index row() const { return m_rhsIter.row(); }
- EIGEN_STRONG_INLINE Index col() const { return m_rhsIter.col(); }
-
- EIGEN_STRONG_INLINE operator bool() const { return m_rhsIter; }
-
- protected:
- const CwiseBinaryXpr& m_xpr;
- RhsIterator m_rhsIter;
- const BinaryFunc& m_functor;
- const Index m_outer;
-};
-
-} // end namespace internal
-
-/***************************************************************************
-* Implementation of SparseMatrixBase and SparseCwise functions/operators
-***************************************************************************/
-
-template<typename Derived>
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE Derived &
-SparseMatrixBase<Derived>::operator-=(const SparseMatrixBase<OtherDerived> &other)
-{
- return derived() = derived() - other.derived();
-}
-
-template<typename Derived>
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE Derived &
-SparseMatrixBase<Derived>::operator+=(const SparseMatrixBase<OtherDerived>& other)
-{
- return derived() = derived() + other.derived();
-}
-
-template<typename Derived>
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE const EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE
-SparseMatrixBase<Derived>::cwiseProduct(const MatrixBase<OtherDerived> &other) const
-{
- return EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE(derived(), other.derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSE_CWISE_BINARY_OP_H
diff --git a/src/Eigen/src/SparseCore/SparseCwiseUnaryOp.h b/src/Eigen/src/SparseCore/SparseCwiseUnaryOp.h
deleted file mode 100644
index 5a50c78..0000000
--- a/src/Eigen/src/SparseCore/SparseCwiseUnaryOp.h
+++ /dev/null
@@ -1,163 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSE_CWISE_UNARY_OP_H
-#define EIGEN_SPARSE_CWISE_UNARY_OP_H
-
-namespace Eigen {
-
-template<typename UnaryOp, typename MatrixType>
-class CwiseUnaryOpImpl<UnaryOp,MatrixType,Sparse>
- : public SparseMatrixBase<CwiseUnaryOp<UnaryOp, MatrixType> >
-{
- public:
-
- class InnerIterator;
- class ReverseInnerIterator;
-
- typedef CwiseUnaryOp<UnaryOp, MatrixType> Derived;
- EIGEN_SPARSE_PUBLIC_INTERFACE(Derived)
-
- protected:
- typedef typename internal::traits<Derived>::_XprTypeNested _MatrixTypeNested;
- typedef typename _MatrixTypeNested::InnerIterator MatrixTypeIterator;
- typedef typename _MatrixTypeNested::ReverseInnerIterator MatrixTypeReverseIterator;
-};
-
-template<typename UnaryOp, typename MatrixType>
-class CwiseUnaryOpImpl<UnaryOp,MatrixType,Sparse>::InnerIterator
- : public CwiseUnaryOpImpl<UnaryOp,MatrixType,Sparse>::MatrixTypeIterator
-{
- typedef typename CwiseUnaryOpImpl::Scalar Scalar;
- typedef typename CwiseUnaryOpImpl<UnaryOp,MatrixType,Sparse>::MatrixTypeIterator Base;
- public:
-
- EIGEN_STRONG_INLINE InnerIterator(const CwiseUnaryOpImpl& unaryOp, typename CwiseUnaryOpImpl::Index outer)
- : Base(unaryOp.derived().nestedExpression(),outer), m_functor(unaryOp.derived().functor())
- {}
-
- EIGEN_STRONG_INLINE InnerIterator& operator++()
- { Base::operator++(); return *this; }
-
- EIGEN_STRONG_INLINE typename CwiseUnaryOpImpl::Scalar value() const { return m_functor(Base::value()); }
-
- protected:
- const UnaryOp m_functor;
- private:
- typename CwiseUnaryOpImpl::Scalar& valueRef();
-};
-
-template<typename UnaryOp, typename MatrixType>
-class CwiseUnaryOpImpl<UnaryOp,MatrixType,Sparse>::ReverseInnerIterator
- : public CwiseUnaryOpImpl<UnaryOp,MatrixType,Sparse>::MatrixTypeReverseIterator
-{
- typedef typename CwiseUnaryOpImpl::Scalar Scalar;
- typedef typename CwiseUnaryOpImpl<UnaryOp,MatrixType,Sparse>::MatrixTypeReverseIterator Base;
- public:
-
- EIGEN_STRONG_INLINE ReverseInnerIterator(const CwiseUnaryOpImpl& unaryOp, typename CwiseUnaryOpImpl::Index outer)
- : Base(unaryOp.derived().nestedExpression(),outer), m_functor(unaryOp.derived().functor())
- {}
-
- EIGEN_STRONG_INLINE ReverseInnerIterator& operator--()
- { Base::operator--(); return *this; }
-
- EIGEN_STRONG_INLINE typename CwiseUnaryOpImpl::Scalar value() const { return m_functor(Base::value()); }
-
- protected:
- const UnaryOp m_functor;
- private:
- typename CwiseUnaryOpImpl::Scalar& valueRef();
-};
-
-template<typename ViewOp, typename MatrixType>
-class CwiseUnaryViewImpl<ViewOp,MatrixType,Sparse>
- : public SparseMatrixBase<CwiseUnaryView<ViewOp, MatrixType> >
-{
- public:
-
- class InnerIterator;
- class ReverseInnerIterator;
-
- typedef CwiseUnaryView<ViewOp, MatrixType> Derived;
- EIGEN_SPARSE_PUBLIC_INTERFACE(Derived)
-
- protected:
- typedef typename internal::traits<Derived>::_MatrixTypeNested _MatrixTypeNested;
- typedef typename _MatrixTypeNested::InnerIterator MatrixTypeIterator;
- typedef typename _MatrixTypeNested::ReverseInnerIterator MatrixTypeReverseIterator;
-};
-
-template<typename ViewOp, typename MatrixType>
-class CwiseUnaryViewImpl<ViewOp,MatrixType,Sparse>::InnerIterator
- : public CwiseUnaryViewImpl<ViewOp,MatrixType,Sparse>::MatrixTypeIterator
-{
- typedef typename CwiseUnaryViewImpl::Scalar Scalar;
- typedef typename CwiseUnaryViewImpl<ViewOp,MatrixType,Sparse>::MatrixTypeIterator Base;
- public:
-
- EIGEN_STRONG_INLINE InnerIterator(const CwiseUnaryViewImpl& unaryOp, typename CwiseUnaryViewImpl::Index outer)
- : Base(unaryOp.derived().nestedExpression(),outer), m_functor(unaryOp.derived().functor())
- {}
-
- EIGEN_STRONG_INLINE InnerIterator& operator++()
- { Base::operator++(); return *this; }
-
- EIGEN_STRONG_INLINE typename CwiseUnaryViewImpl::Scalar value() const { return m_functor(Base::value()); }
- EIGEN_STRONG_INLINE typename CwiseUnaryViewImpl::Scalar& valueRef() { return m_functor(Base::valueRef()); }
-
- protected:
- const ViewOp m_functor;
-};
-
-template<typename ViewOp, typename MatrixType>
-class CwiseUnaryViewImpl<ViewOp,MatrixType,Sparse>::ReverseInnerIterator
- : public CwiseUnaryViewImpl<ViewOp,MatrixType,Sparse>::MatrixTypeReverseIterator
-{
- typedef typename CwiseUnaryViewImpl::Scalar Scalar;
- typedef typename CwiseUnaryViewImpl<ViewOp,MatrixType,Sparse>::MatrixTypeReverseIterator Base;
- public:
-
- EIGEN_STRONG_INLINE ReverseInnerIterator(const CwiseUnaryViewImpl& unaryOp, typename CwiseUnaryViewImpl::Index outer)
- : Base(unaryOp.derived().nestedExpression(),outer), m_functor(unaryOp.derived().functor())
- {}
-
- EIGEN_STRONG_INLINE ReverseInnerIterator& operator--()
- { Base::operator--(); return *this; }
-
- EIGEN_STRONG_INLINE typename CwiseUnaryViewImpl::Scalar value() const { return m_functor(Base::value()); }
- EIGEN_STRONG_INLINE typename CwiseUnaryViewImpl::Scalar& valueRef() { return m_functor(Base::valueRef()); }
-
- protected:
- const ViewOp m_functor;
-};
-
-template<typename Derived>
-EIGEN_STRONG_INLINE Derived&
-SparseMatrixBase<Derived>::operator*=(const Scalar& other)
-{
- for (Index j=0; j<outerSize(); ++j)
- for (typename Derived::InnerIterator i(derived(),j); i; ++i)
- i.valueRef() *= other;
- return derived();
-}
-
-template<typename Derived>
-EIGEN_STRONG_INLINE Derived&
-SparseMatrixBase<Derived>::operator/=(const Scalar& other)
-{
- for (Index j=0; j<outerSize(); ++j)
- for (typename Derived::InnerIterator i(derived(),j); i; ++i)
- i.valueRef() /= other;
- return derived();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSE_CWISE_UNARY_OP_H
diff --git a/src/Eigen/src/SparseCore/SparseDenseProduct.h b/src/Eigen/src/SparseCore/SparseDenseProduct.h
deleted file mode 100644
index 78411db..0000000
--- a/src/Eigen/src/SparseCore/SparseDenseProduct.h
+++ /dev/null
@@ -1,320 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSEDENSEPRODUCT_H
-#define EIGEN_SPARSEDENSEPRODUCT_H
-
-namespace Eigen {
-
-template<typename Lhs, typename Rhs, int InnerSize> struct SparseDenseProductReturnType
-{
- typedef SparseTimeDenseProduct<Lhs,Rhs> Type;
-};
-
-template<typename Lhs, typename Rhs> struct SparseDenseProductReturnType<Lhs,Rhs,1>
-{
- typedef typename internal::conditional<
- Lhs::IsRowMajor,
- SparseDenseOuterProduct<Rhs,Lhs,true>,
- SparseDenseOuterProduct<Lhs,Rhs,false> >::type Type;
-};
-
-template<typename Lhs, typename Rhs, int InnerSize> struct DenseSparseProductReturnType
-{
- typedef DenseTimeSparseProduct<Lhs,Rhs> Type;
-};
-
-template<typename Lhs, typename Rhs> struct DenseSparseProductReturnType<Lhs,Rhs,1>
-{
- typedef typename internal::conditional<
- Rhs::IsRowMajor,
- SparseDenseOuterProduct<Rhs,Lhs,true>,
- SparseDenseOuterProduct<Lhs,Rhs,false> >::type Type;
-};
-
-namespace internal {
-
-template<typename Lhs, typename Rhs, bool Tr>
-struct traits<SparseDenseOuterProduct<Lhs,Rhs,Tr> >
-{
- typedef Sparse StorageKind;
- typedef typename scalar_product_traits<typename traits<Lhs>::Scalar,
- typename traits<Rhs>::Scalar>::ReturnType Scalar;
- typedef typename Lhs::Index Index;
- typedef typename Lhs::Nested LhsNested;
- typedef typename Rhs::Nested RhsNested;
- typedef typename remove_all<LhsNested>::type _LhsNested;
- typedef typename remove_all<RhsNested>::type _RhsNested;
-
- enum {
- LhsCoeffReadCost = traits<_LhsNested>::CoeffReadCost,
- RhsCoeffReadCost = traits<_RhsNested>::CoeffReadCost,
-
- RowsAtCompileTime = Tr ? int(traits<Rhs>::RowsAtCompileTime) : int(traits<Lhs>::RowsAtCompileTime),
- ColsAtCompileTime = Tr ? int(traits<Lhs>::ColsAtCompileTime) : int(traits<Rhs>::ColsAtCompileTime),
- MaxRowsAtCompileTime = Tr ? int(traits<Rhs>::MaxRowsAtCompileTime) : int(traits<Lhs>::MaxRowsAtCompileTime),
- MaxColsAtCompileTime = Tr ? int(traits<Lhs>::MaxColsAtCompileTime) : int(traits<Rhs>::MaxColsAtCompileTime),
-
- Flags = Tr ? RowMajorBit : 0,
-
- CoeffReadCost = LhsCoeffReadCost + RhsCoeffReadCost + NumTraits<Scalar>::MulCost
- };
-};
-
-} // end namespace internal
-
-template<typename Lhs, typename Rhs, bool Tr>
-class SparseDenseOuterProduct
- : public SparseMatrixBase<SparseDenseOuterProduct<Lhs,Rhs,Tr> >
-{
- public:
-
- typedef SparseMatrixBase<SparseDenseOuterProduct> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(SparseDenseOuterProduct)
- typedef internal::traits<SparseDenseOuterProduct> Traits;
-
- private:
-
- typedef typename Traits::LhsNested LhsNested;
- typedef typename Traits::RhsNested RhsNested;
- typedef typename Traits::_LhsNested _LhsNested;
- typedef typename Traits::_RhsNested _RhsNested;
-
- public:
-
- class InnerIterator;
-
- EIGEN_STRONG_INLINE SparseDenseOuterProduct(const Lhs& lhs, const Rhs& rhs)
- : m_lhs(lhs), m_rhs(rhs)
- {
- EIGEN_STATIC_ASSERT(!Tr,YOU_MADE_A_PROGRAMMING_MISTAKE);
- }
-
- EIGEN_STRONG_INLINE SparseDenseOuterProduct(const Rhs& rhs, const Lhs& lhs)
- : m_lhs(lhs), m_rhs(rhs)
- {
- EIGEN_STATIC_ASSERT(Tr,YOU_MADE_A_PROGRAMMING_MISTAKE);
- }
-
- EIGEN_STRONG_INLINE Index rows() const { return Tr ? m_rhs.rows() : m_lhs.rows(); }
- EIGEN_STRONG_INLINE Index cols() const { return Tr ? m_lhs.cols() : m_rhs.cols(); }
-
- EIGEN_STRONG_INLINE const _LhsNested& lhs() const { return m_lhs; }
- EIGEN_STRONG_INLINE const _RhsNested& rhs() const { return m_rhs; }
-
- protected:
- LhsNested m_lhs;
- RhsNested m_rhs;
-};
-
-template<typename Lhs, typename Rhs, bool Transpose>
-class SparseDenseOuterProduct<Lhs,Rhs,Transpose>::InnerIterator : public _LhsNested::InnerIterator
-{
- typedef typename _LhsNested::InnerIterator Base;
- typedef typename SparseDenseOuterProduct::Index Index;
- public:
- EIGEN_STRONG_INLINE InnerIterator(const SparseDenseOuterProduct& prod, Index outer)
- : Base(prod.lhs(), 0), m_outer(outer), m_factor(get(prod.rhs(), outer, typename internal::traits<Rhs>::StorageKind() ))
- { }
-
- inline Index outer() const { return m_outer; }
- inline Index row() const { return Transpose ? m_outer : Base::index(); }
- inline Index col() const { return Transpose ? Base::index() : m_outer; }
-
- inline Scalar value() const { return Base::value() * m_factor; }
-
- protected:
- static Scalar get(const _RhsNested &rhs, Index outer, Dense = Dense())
- {
- return rhs.coeff(outer);
- }
-
- static Scalar get(const _RhsNested &rhs, Index outer, Sparse = Sparse())
- {
- typename Traits::_RhsNested::InnerIterator it(rhs, outer);
- if (it && it.index()==0)
- return it.value();
-
- return Scalar(0);
- }
-
- Index m_outer;
- Scalar m_factor;
-};
-
-namespace internal {
-template<typename Lhs, typename Rhs>
-struct traits<SparseTimeDenseProduct<Lhs,Rhs> >
- : traits<ProductBase<SparseTimeDenseProduct<Lhs,Rhs>, Lhs, Rhs> >
-{
- typedef Dense StorageKind;
- typedef MatrixXpr XprKind;
-};
-
-template<typename SparseLhsType, typename DenseRhsType, typename DenseResType,
- int LhsStorageOrder = ((SparseLhsType::Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor,
- bool ColPerCol = ((DenseRhsType::Flags&RowMajorBit)==0) || DenseRhsType::ColsAtCompileTime==1>
-struct sparse_time_dense_product_impl;
-
-template<typename SparseLhsType, typename DenseRhsType, typename DenseResType>
-struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, RowMajor, true>
-{
- typedef typename internal::remove_all<SparseLhsType>::type Lhs;
- typedef typename internal::remove_all<DenseRhsType>::type Rhs;
- typedef typename internal::remove_all<DenseResType>::type Res;
- typedef typename Lhs::Index Index;
- typedef typename Lhs::InnerIterator LhsInnerIterator;
- static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
- {
- for(Index c=0; c<rhs.cols(); ++c)
- {
- Index n = lhs.outerSize();
- for(Index j=0; j<n; ++j)
- {
- typename Res::Scalar tmp(0);
- for(LhsInnerIterator it(lhs,j); it ;++it)
- tmp += it.value() * rhs.coeff(it.index(),c);
- res.coeffRef(j,c) = alpha * tmp;
- }
- }
- }
-};
-
-template<typename SparseLhsType, typename DenseRhsType, typename DenseResType>
-struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, ColMajor, true>
-{
- typedef typename internal::remove_all<SparseLhsType>::type Lhs;
- typedef typename internal::remove_all<DenseRhsType>::type Rhs;
- typedef typename internal::remove_all<DenseResType>::type Res;
- typedef typename Lhs::InnerIterator LhsInnerIterator;
- typedef typename Lhs::Index Index;
- static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
- {
- for(Index c=0; c<rhs.cols(); ++c)
- {
- for(Index j=0; j<lhs.outerSize(); ++j)
- {
- typename Res::Scalar rhs_j = alpha * rhs.coeff(j,c);
- for(LhsInnerIterator it(lhs,j); it ;++it)
- res.coeffRef(it.index(),c) += it.value() * rhs_j;
- }
- }
- }
-};
-
-template<typename SparseLhsType, typename DenseRhsType, typename DenseResType>
-struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, RowMajor, false>
-{
- typedef typename internal::remove_all<SparseLhsType>::type Lhs;
- typedef typename internal::remove_all<DenseRhsType>::type Rhs;
- typedef typename internal::remove_all<DenseResType>::type Res;
- typedef typename Lhs::InnerIterator LhsInnerIterator;
- typedef typename Lhs::Index Index;
- static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
- {
- for(Index j=0; j<lhs.outerSize(); ++j)
- {
- typename Res::RowXpr res_j(res.row(j));
- for(LhsInnerIterator it(lhs,j); it ;++it)
- res_j += (alpha*it.value()) * rhs.row(it.index());
- }
- }
-};
-
-template<typename SparseLhsType, typename DenseRhsType, typename DenseResType>
-struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, ColMajor, false>
-{
- typedef typename internal::remove_all<SparseLhsType>::type Lhs;
- typedef typename internal::remove_all<DenseRhsType>::type Rhs;
- typedef typename internal::remove_all<DenseResType>::type Res;
- typedef typename Lhs::InnerIterator LhsInnerIterator;
- typedef typename Lhs::Index Index;
- static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
- {
- for(Index j=0; j<lhs.outerSize(); ++j)
- {
- typename Rhs::ConstRowXpr rhs_j(rhs.row(j));
- for(LhsInnerIterator it(lhs,j); it ;++it)
- res.row(it.index()) += (alpha*it.value()) * rhs_j;
- }
- }
-};
-
-template<typename SparseLhsType, typename DenseRhsType, typename DenseResType,typename AlphaType>
-inline void sparse_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
-{
- sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType>::run(lhs, rhs, res, alpha);
-}
-
-} // end namespace internal
-
-template<typename Lhs, typename Rhs>
-class SparseTimeDenseProduct
- : public ProductBase<SparseTimeDenseProduct<Lhs,Rhs>, Lhs, Rhs>
-{
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(SparseTimeDenseProduct)
-
- SparseTimeDenseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
- {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
- {
- internal::sparse_time_dense_product(m_lhs, m_rhs, dest, alpha);
- }
-
- private:
- SparseTimeDenseProduct& operator=(const SparseTimeDenseProduct&);
-};
-
-
-// dense = dense * sparse
-namespace internal {
-template<typename Lhs, typename Rhs>
-struct traits<DenseTimeSparseProduct<Lhs,Rhs> >
- : traits<ProductBase<DenseTimeSparseProduct<Lhs,Rhs>, Lhs, Rhs> >
-{
- typedef Dense StorageKind;
-};
-} // end namespace internal
-
-template<typename Lhs, typename Rhs>
-class DenseTimeSparseProduct
- : public ProductBase<DenseTimeSparseProduct<Lhs,Rhs>, Lhs, Rhs>
-{
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(DenseTimeSparseProduct)
-
- DenseTimeSparseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
- {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
- {
- Transpose<const _LhsNested> lhs_t(m_lhs);
- Transpose<const _RhsNested> rhs_t(m_rhs);
- Transpose<Dest> dest_t(dest);
- internal::sparse_time_dense_product(rhs_t, lhs_t, dest_t, alpha);
- }
-
- private:
- DenseTimeSparseProduct& operator=(const DenseTimeSparseProduct&);
-};
-
-// sparse * dense
-template<typename Derived>
-template<typename OtherDerived>
-inline const typename SparseDenseProductReturnType<Derived,OtherDerived>::Type
-SparseMatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
-{
- return typename SparseDenseProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSEDENSEPRODUCT_H
diff --git a/src/Eigen/src/SparseCore/SparseDiagonalProduct.h b/src/Eigen/src/SparseCore/SparseDiagonalProduct.h
deleted file mode 100644
index 1bb590e..0000000
--- a/src/Eigen/src/SparseCore/SparseDiagonalProduct.h
+++ /dev/null
@@ -1,196 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSE_DIAGONAL_PRODUCT_H
-#define EIGEN_SPARSE_DIAGONAL_PRODUCT_H
-
-namespace Eigen {
-
-// The product of a diagonal matrix with a sparse matrix can be easily
-// implemented using expression template.
-// We have two consider very different cases:
-// 1 - diag * row-major sparse
-// => each inner vector <=> scalar * sparse vector product
-// => so we can reuse CwiseUnaryOp::InnerIterator
-// 2 - diag * col-major sparse
-// => each inner vector <=> densevector * sparse vector cwise product
-// => again, we can reuse specialization of CwiseBinaryOp::InnerIterator
-// for that particular case
-// The two other cases are symmetric.
-
-namespace internal {
-
-template<typename Lhs, typename Rhs>
-struct traits<SparseDiagonalProduct<Lhs, Rhs> >
-{
- typedef typename remove_all<Lhs>::type _Lhs;
- typedef typename remove_all<Rhs>::type _Rhs;
- typedef typename _Lhs::Scalar Scalar;
- typedef typename promote_index_type<typename traits<Lhs>::Index,
- typename traits<Rhs>::Index>::type Index;
- typedef Sparse StorageKind;
- typedef MatrixXpr XprKind;
- enum {
- RowsAtCompileTime = _Lhs::RowsAtCompileTime,
- ColsAtCompileTime = _Rhs::ColsAtCompileTime,
-
- MaxRowsAtCompileTime = _Lhs::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = _Rhs::MaxColsAtCompileTime,
-
- SparseFlags = is_diagonal<_Lhs>::ret ? int(_Rhs::Flags) : int(_Lhs::Flags),
- Flags = (SparseFlags&RowMajorBit),
- CoeffReadCost = Dynamic
- };
-};
-
-enum {SDP_IsDiagonal, SDP_IsSparseRowMajor, SDP_IsSparseColMajor};
-template<typename Lhs, typename Rhs, typename SparseDiagonalProductType, int RhsMode, int LhsMode>
-class sparse_diagonal_product_inner_iterator_selector;
-
-} // end namespace internal
-
-template<typename Lhs, typename Rhs>
-class SparseDiagonalProduct
- : public SparseMatrixBase<SparseDiagonalProduct<Lhs,Rhs> >,
- internal::no_assignment_operator
-{
- typedef typename Lhs::Nested LhsNested;
- typedef typename Rhs::Nested RhsNested;
-
- typedef typename internal::remove_all<LhsNested>::type _LhsNested;
- typedef typename internal::remove_all<RhsNested>::type _RhsNested;
-
- enum {
- LhsMode = internal::is_diagonal<_LhsNested>::ret ? internal::SDP_IsDiagonal
- : (_LhsNested::Flags&RowMajorBit) ? internal::SDP_IsSparseRowMajor : internal::SDP_IsSparseColMajor,
- RhsMode = internal::is_diagonal<_RhsNested>::ret ? internal::SDP_IsDiagonal
- : (_RhsNested::Flags&RowMajorBit) ? internal::SDP_IsSparseRowMajor : internal::SDP_IsSparseColMajor
- };
-
- public:
-
- EIGEN_SPARSE_PUBLIC_INTERFACE(SparseDiagonalProduct)
-
- typedef internal::sparse_diagonal_product_inner_iterator_selector
- <_LhsNested,_RhsNested,SparseDiagonalProduct,LhsMode,RhsMode> InnerIterator;
-
- // We do not want ReverseInnerIterator for diagonal-sparse products,
- // but this dummy declaration is needed to make diag * sparse * diag compile.
- class ReverseInnerIterator;
-
- EIGEN_STRONG_INLINE SparseDiagonalProduct(const Lhs& lhs, const Rhs& rhs)
- : m_lhs(lhs), m_rhs(rhs)
- {
- eigen_assert(lhs.cols() == rhs.rows() && "invalid sparse matrix * diagonal matrix product");
- }
-
- EIGEN_STRONG_INLINE Index rows() const { return m_lhs.rows(); }
- EIGEN_STRONG_INLINE Index cols() const { return m_rhs.cols(); }
-
- EIGEN_STRONG_INLINE const _LhsNested& lhs() const { return m_lhs; }
- EIGEN_STRONG_INLINE const _RhsNested& rhs() const { return m_rhs; }
-
- protected:
- LhsNested m_lhs;
- RhsNested m_rhs;
-};
-
-namespace internal {
-
-template<typename Lhs, typename Rhs, typename SparseDiagonalProductType>
-class sparse_diagonal_product_inner_iterator_selector
-<Lhs,Rhs,SparseDiagonalProductType,SDP_IsDiagonal,SDP_IsSparseRowMajor>
- : public CwiseUnaryOp<scalar_multiple_op<typename Lhs::Scalar>,const Rhs>::InnerIterator
-{
- typedef typename CwiseUnaryOp<scalar_multiple_op<typename Lhs::Scalar>,const Rhs>::InnerIterator Base;
- typedef typename Lhs::Index Index;
- public:
- inline sparse_diagonal_product_inner_iterator_selector(
- const SparseDiagonalProductType& expr, Index outer)
- : Base(expr.rhs()*(expr.lhs().diagonal().coeff(outer)), outer)
- {}
-};
-
-template<typename Lhs, typename Rhs, typename SparseDiagonalProductType>
-class sparse_diagonal_product_inner_iterator_selector
-<Lhs,Rhs,SparseDiagonalProductType,SDP_IsDiagonal,SDP_IsSparseColMajor>
- : public CwiseBinaryOp<
- scalar_product_op<typename Lhs::Scalar>,
- const typename Rhs::ConstInnerVectorReturnType,
- const typename Lhs::DiagonalVectorType>::InnerIterator
-{
- typedef typename CwiseBinaryOp<
- scalar_product_op<typename Lhs::Scalar>,
- const typename Rhs::ConstInnerVectorReturnType,
- const typename Lhs::DiagonalVectorType>::InnerIterator Base;
- typedef typename Lhs::Index Index;
- Index m_outer;
- public:
- inline sparse_diagonal_product_inner_iterator_selector(
- const SparseDiagonalProductType& expr, Index outer)
- : Base(expr.rhs().innerVector(outer) .cwiseProduct(expr.lhs().diagonal()), 0), m_outer(outer)
- {}
-
- inline Index outer() const { return m_outer; }
- inline Index col() const { return m_outer; }
-};
-
-template<typename Lhs, typename Rhs, typename SparseDiagonalProductType>
-class sparse_diagonal_product_inner_iterator_selector
-<Lhs,Rhs,SparseDiagonalProductType,SDP_IsSparseColMajor,SDP_IsDiagonal>
- : public CwiseUnaryOp<scalar_multiple_op<typename Rhs::Scalar>,const Lhs>::InnerIterator
-{
- typedef typename CwiseUnaryOp<scalar_multiple_op<typename Rhs::Scalar>,const Lhs>::InnerIterator Base;
- typedef typename Lhs::Index Index;
- public:
- inline sparse_diagonal_product_inner_iterator_selector(
- const SparseDiagonalProductType& expr, Index outer)
- : Base(expr.lhs()*expr.rhs().diagonal().coeff(outer), outer)
- {}
-};
-
-template<typename Lhs, typename Rhs, typename SparseDiagonalProductType>
-class sparse_diagonal_product_inner_iterator_selector
-<Lhs,Rhs,SparseDiagonalProductType,SDP_IsSparseRowMajor,SDP_IsDiagonal>
- : public CwiseBinaryOp<
- scalar_product_op<typename Rhs::Scalar>,
- const typename Lhs::ConstInnerVectorReturnType,
- const Transpose<const typename Rhs::DiagonalVectorType> >::InnerIterator
-{
- typedef typename CwiseBinaryOp<
- scalar_product_op<typename Rhs::Scalar>,
- const typename Lhs::ConstInnerVectorReturnType,
- const Transpose<const typename Rhs::DiagonalVectorType> >::InnerIterator Base;
- typedef typename Lhs::Index Index;
- Index m_outer;
- public:
- inline sparse_diagonal_product_inner_iterator_selector(
- const SparseDiagonalProductType& expr, Index outer)
- : Base(expr.lhs().innerVector(outer) .cwiseProduct(expr.rhs().diagonal().transpose()), 0), m_outer(outer)
- {}
-
- inline Index outer() const { return m_outer; }
- inline Index row() const { return m_outer; }
-};
-
-} // end namespace internal
-
-// SparseMatrixBase functions
-
-template<typename Derived>
-template<typename OtherDerived>
-const SparseDiagonalProduct<Derived,OtherDerived>
-SparseMatrixBase<Derived>::operator*(const DiagonalBase<OtherDerived> &other) const
-{
- return SparseDiagonalProduct<Derived,OtherDerived>(this->derived(), other.derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSE_DIAGONAL_PRODUCT_H
diff --git a/src/Eigen/src/SparseCore/SparseDot.h b/src/Eigen/src/SparseCore/SparseDot.h
deleted file mode 100644
index db39c9a..0000000
--- a/src/Eigen/src/SparseCore/SparseDot.h
+++ /dev/null
@@ -1,101 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSE_DOT_H
-#define EIGEN_SPARSE_DOT_H
-
-namespace Eigen {
-
-template<typename Derived>
-template<typename OtherDerived>
-typename internal::traits<Derived>::Scalar
-SparseMatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-
- eigen_assert(size() == other.size());
- eigen_assert(other.size()>0 && "you are using a non initialized vector");
-
- typename Derived::InnerIterator i(derived(),0);
- Scalar res(0);
- while (i)
- {
- res += numext::conj(i.value()) * other.coeff(i.index());
- ++i;
- }
- return res;
-}
-
-template<typename Derived>
-template<typename OtherDerived>
-typename internal::traits<Derived>::Scalar
-SparseMatrixBase<Derived>::dot(const SparseMatrixBase<OtherDerived>& other) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-
- eigen_assert(size() == other.size());
-
- typedef typename Derived::Nested Nested;
- typedef typename OtherDerived::Nested OtherNested;
- typedef typename internal::remove_all<Nested>::type NestedCleaned;
- typedef typename internal::remove_all<OtherNested>::type OtherNestedCleaned;
-
- Nested nthis(derived());
- OtherNested nother(other.derived());
-
- typename NestedCleaned::InnerIterator i(nthis,0);
- typename OtherNestedCleaned::InnerIterator j(nother,0);
- Scalar res(0);
- while (i && j)
- {
- if (i.index()==j.index())
- {
- res += numext::conj(i.value()) * j.value();
- ++i; ++j;
- }
- else if (i.index()<j.index())
- ++i;
- else
- ++j;
- }
- return res;
-}
-
-template<typename Derived>
-inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
-SparseMatrixBase<Derived>::squaredNorm() const
-{
- return numext::real((*this).cwiseAbs2().sum());
-}
-
-template<typename Derived>
-inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
-SparseMatrixBase<Derived>::norm() const
-{
- using std::sqrt;
- return sqrt(squaredNorm());
-}
-
-template<typename Derived>
-inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
-SparseMatrixBase<Derived>::blueNorm() const
-{
- return internal::blueNorm_impl(*this);
-}
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSE_DOT_H
diff --git a/src/Eigen/src/SparseCore/SparseFuzzy.h b/src/Eigen/src/SparseCore/SparseFuzzy.h
deleted file mode 100644
index 45f36e9..0000000
--- a/src/Eigen/src/SparseCore/SparseFuzzy.h
+++ /dev/null
@@ -1,26 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSE_FUZZY_H
-#define EIGEN_SPARSE_FUZZY_H
-
-// template<typename Derived>
-// template<typename OtherDerived>
-// bool SparseMatrixBase<Derived>::isApprox(
-// const OtherDerived& other,
-// typename NumTraits<Scalar>::Real prec
-// ) const
-// {
-// const typename internal::nested<Derived,2>::type nested(derived());
-// const typename internal::nested<OtherDerived,2>::type otherNested(other.derived());
-// return (nested - otherNested).cwise().abs2().sum()
-// <= prec * prec * (std::min)(nested.cwise().abs2().sum(), otherNested.cwise().abs2().sum());
-// }
-
-#endif // EIGEN_SPARSE_FUZZY_H
diff --git a/src/Eigen/src/SparseCore/SparseMatrix.h b/src/Eigen/src/SparseCore/SparseMatrix.h
deleted file mode 100644
index ba5e3a9..0000000
--- a/src/Eigen/src/SparseCore/SparseMatrix.h
+++ /dev/null
@@ -1,1259 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSEMATRIX_H
-#define EIGEN_SPARSEMATRIX_H
-
-namespace Eigen {
-
-/** \ingroup SparseCore_Module
- *
- * \class SparseMatrix
- *
- * \brief A versatible sparse matrix representation
- *
- * This class implements a more versatile variants of the common \em compressed row/column storage format.
- * Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index.
- * All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra
- * space inbetween the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero
- * can be done with limited memory reallocation and copies.
- *
- * A call to the function makeCompressed() turns the matrix into the standard \em compressed format
- * compatible with many library.
- *
- * More details on this storage sceheme are given in the \ref TutorialSparse "manual pages".
- *
- * \tparam _Scalar the scalar type, i.e. the type of the coefficients
- * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility
- * is ColMajor or RowMajor. The default is 0 which means column-major.
- * \tparam _Index the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int.
- *
- * This class can be extended with the help of the plugin mechanism described on the page
- * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN.
- */
-
-namespace internal {
-template<typename _Scalar, int _Options, typename _Index>
-struct traits<SparseMatrix<_Scalar, _Options, _Index> >
-{
- typedef _Scalar Scalar;
- typedef _Index Index;
- typedef Sparse StorageKind;
- typedef MatrixXpr XprKind;
- enum {
- RowsAtCompileTime = Dynamic,
- ColsAtCompileTime = Dynamic,
- MaxRowsAtCompileTime = Dynamic,
- MaxColsAtCompileTime = Dynamic,
- Flags = _Options | NestByRefBit | LvalueBit,
- CoeffReadCost = NumTraits<Scalar>::ReadCost,
- SupportedAccessPatterns = InnerRandomAccessPattern
- };
-};
-
-template<typename _Scalar, int _Options, typename _Index, int DiagIndex>
-struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _Index>, DiagIndex> >
-{
- typedef SparseMatrix<_Scalar, _Options, _Index> MatrixType;
- typedef typename nested<MatrixType>::type MatrixTypeNested;
- typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
-
- typedef _Scalar Scalar;
- typedef Dense StorageKind;
- typedef _Index Index;
- typedef MatrixXpr XprKind;
-
- enum {
- RowsAtCompileTime = Dynamic,
- ColsAtCompileTime = 1,
- MaxRowsAtCompileTime = Dynamic,
- MaxColsAtCompileTime = 1,
- Flags = 0,
- CoeffReadCost = _MatrixTypeNested::CoeffReadCost*10
- };
-};
-
-} // end namespace internal
-
-template<typename _Scalar, int _Options, typename _Index>
-class SparseMatrix
- : public SparseMatrixBase<SparseMatrix<_Scalar, _Options, _Index> >
-{
- public:
- EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix)
- EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, +=)
- EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, -=)
-
- typedef MappedSparseMatrix<Scalar,Flags> Map;
- using Base::IsRowMajor;
- typedef internal::CompressedStorage<Scalar,Index> Storage;
- enum {
- Options = _Options
- };
-
- protected:
-
- typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;
-
- Index m_outerSize;
- Index m_innerSize;
- Index* m_outerIndex;
- Index* m_innerNonZeros; // optional, if null then the data is compressed
- Storage m_data;
-
- Eigen::Map<Matrix<Index,Dynamic,1> > innerNonZeros() { return Eigen::Map<Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); }
- const Eigen::Map<const Matrix<Index,Dynamic,1> > innerNonZeros() const { return Eigen::Map<const Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); }
-
- public:
-
- /** \returns whether \c *this is in compressed form. */
- inline bool isCompressed() const { return m_innerNonZeros==0; }
-
- /** \returns the number of rows of the matrix */
- inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
- /** \returns the number of columns of the matrix */
- inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
-
- /** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */
- inline Index innerSize() const { return m_innerSize; }
- /** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */
- inline Index outerSize() const { return m_outerSize; }
-
- /** \returns a const pointer to the array of values.
- * This function is aimed at interoperability with other libraries.
- * \sa innerIndexPtr(), outerIndexPtr() */
- inline const Scalar* valuePtr() const { return &m_data.value(0); }
- /** \returns a non-const pointer to the array of values.
- * This function is aimed at interoperability with other libraries.
- * \sa innerIndexPtr(), outerIndexPtr() */
- inline Scalar* valuePtr() { return &m_data.value(0); }
-
- /** \returns a const pointer to the array of inner indices.
- * This function is aimed at interoperability with other libraries.
- * \sa valuePtr(), outerIndexPtr() */
- inline const Index* innerIndexPtr() const { return &m_data.index(0); }
- /** \returns a non-const pointer to the array of inner indices.
- * This function is aimed at interoperability with other libraries.
- * \sa valuePtr(), outerIndexPtr() */
- inline Index* innerIndexPtr() { return &m_data.index(0); }
-
- /** \returns a const pointer to the array of the starting positions of the inner vectors.
- * This function is aimed at interoperability with other libraries.
- * \sa valuePtr(), innerIndexPtr() */
- inline const Index* outerIndexPtr() const { return m_outerIndex; }
- /** \returns a non-const pointer to the array of the starting positions of the inner vectors.
- * This function is aimed at interoperability with other libraries.
- * \sa valuePtr(), innerIndexPtr() */
- inline Index* outerIndexPtr() { return m_outerIndex; }
-
- /** \returns a const pointer to the array of the number of non zeros of the inner vectors.
- * This function is aimed at interoperability with other libraries.
- * \warning it returns the null pointer 0 in compressed mode */
- inline const Index* innerNonZeroPtr() const { return m_innerNonZeros; }
- /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors.
- * This function is aimed at interoperability with other libraries.
- * \warning it returns the null pointer 0 in compressed mode */
- inline Index* innerNonZeroPtr() { return m_innerNonZeros; }
-
- /** \internal */
- inline Storage& data() { return m_data; }
- /** \internal */
- inline const Storage& data() const { return m_data; }
-
- /** \returns the value of the matrix at position \a i, \a j
- * This function returns Scalar(0) if the element is an explicit \em zero */
- inline Scalar coeff(Index row, Index col) const
- {
- eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
-
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
- Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
- return m_data.atInRange(m_outerIndex[outer], end, inner);
- }
-
- /** \returns a non-const reference to the value of the matrix at position \a i, \a j
- *
- * If the element does not exist then it is inserted via the insert(Index,Index) function
- * which itself turns the matrix into a non compressed form if that was not the case.
- *
- * This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index)
- * function if the element does not already exist.
- */
- inline Scalar& coeffRef(Index row, Index col)
- {
- eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
-
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- Index start = m_outerIndex[outer];
- Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
- eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
- if(end<=start)
- return insert(row,col);
- const Index p = m_data.searchLowerIndex(start,end-1,inner);
- if((p<end) && (m_data.index(p)==inner))
- return m_data.value(p);
- else
- return insert(row,col);
- }
-
- /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
- * The non zero coefficient must \b not already exist.
- *
- * If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed
- * mode while reserving room for 2 non zeros per inner vector. It is strongly recommended to first
- * call reserve(const SizesType &) to reserve a more appropriate number of elements per
- * inner vector that better match your scenario.
- *
- * This function performs a sorted insertion in O(1) if the elements of each inner vector are
- * inserted in increasing inner index order, and in O(nnz_j) for a random insertion.
- *
- */
- Scalar& insert(Index row, Index col)
- {
- eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
-
- if(isCompressed())
- {
- reserve(Matrix<Index,Dynamic,1>::Constant(outerSize(), 2));
- }
- return insertUncompressed(row,col);
- }
-
- public:
-
- class InnerIterator;
- class ReverseInnerIterator;
-
- /** Removes all non zeros but keep allocated memory */
- inline void setZero()
- {
- m_data.clear();
- memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
- if(m_innerNonZeros)
- memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(Index));
- }
-
- /** \returns the number of non zero coefficients */
- inline Index nonZeros() const
- {
- if(m_innerNonZeros)
- return innerNonZeros().sum();
- return static_cast<Index>(m_data.size());
- }
-
- /** Preallocates \a reserveSize non zeros.
- *
- * Precondition: the matrix must be in compressed mode. */
- inline void reserve(Index reserveSize)
- {
- eigen_assert(isCompressed() && "This function does not make sense in non compressed mode.");
- m_data.reserve(reserveSize);
- }
-
- #ifdef EIGEN_PARSED_BY_DOXYGEN
- /** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j.
- *
- * This function turns the matrix in non-compressed mode */
- template<class SizesType>
- inline void reserve(const SizesType& reserveSizes);
- #else
- template<class SizesType>
- inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif = typename SizesType::value_type())
- {
- EIGEN_UNUSED_VARIABLE(enableif);
- reserveInnerVectors(reserveSizes);
- }
- template<class SizesType>
- inline void reserve(const SizesType& reserveSizes, const typename SizesType::Scalar& enableif =
- #if (!defined(_MSC_VER)) || (_MSC_VER>=1500) // MSVC 2005 fails to compile with this typename
- typename
- #endif
- SizesType::Scalar())
- {
- EIGEN_UNUSED_VARIABLE(enableif);
- reserveInnerVectors(reserveSizes);
- }
- #endif // EIGEN_PARSED_BY_DOXYGEN
- protected:
- template<class SizesType>
- inline void reserveInnerVectors(const SizesType& reserveSizes)
- {
- if(isCompressed())
- {
- std::size_t totalReserveSize = 0;
- // turn the matrix into non-compressed mode
- m_innerNonZeros = static_cast<Index*>(std::malloc(m_outerSize * sizeof(Index)));
- if (!m_innerNonZeros) internal::throw_std_bad_alloc();
-
- // temporarily use m_innerSizes to hold the new starting points.
- Index* newOuterIndex = m_innerNonZeros;
-
- Index count = 0;
- for(Index j=0; j<m_outerSize; ++j)
- {
- newOuterIndex[j] = count;
- count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]);
- totalReserveSize += reserveSizes[j];
- }
- m_data.reserve(totalReserveSize);
- Index previousOuterIndex = m_outerIndex[m_outerSize];
- for(Index j=m_outerSize-1; j>=0; --j)
- {
- Index innerNNZ = previousOuterIndex - m_outerIndex[j];
- for(Index i=innerNNZ-1; i>=0; --i)
- {
- m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
- m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
- }
- previousOuterIndex = m_outerIndex[j];
- m_outerIndex[j] = newOuterIndex[j];
- m_innerNonZeros[j] = innerNNZ;
- }
- m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1];
-
- m_data.resize(m_outerIndex[m_outerSize]);
- }
- else
- {
- Index* newOuterIndex = static_cast<Index*>(std::malloc((m_outerSize+1)*sizeof(Index)));
- if (!newOuterIndex) internal::throw_std_bad_alloc();
-
- Index count = 0;
- for(Index j=0; j<m_outerSize; ++j)
- {
- newOuterIndex[j] = count;
- Index alreadyReserved = (m_outerIndex[j+1]-m_outerIndex[j]) - m_innerNonZeros[j];
- Index toReserve = std::max<Index>(reserveSizes[j], alreadyReserved);
- count += toReserve + m_innerNonZeros[j];
- }
- newOuterIndex[m_outerSize] = count;
-
- m_data.resize(count);
- for(Index j=m_outerSize-1; j>=0; --j)
- {
- Index offset = newOuterIndex[j] - m_outerIndex[j];
- if(offset>0)
- {
- Index innerNNZ = m_innerNonZeros[j];
- for(Index i=innerNNZ-1; i>=0; --i)
- {
- m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
- m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
- }
- }
- }
-
- std::swap(m_outerIndex, newOuterIndex);
- std::free(newOuterIndex);
- }
-
- }
- public:
-
- //--- low level purely coherent filling ---
-
- /** \internal
- * \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
- * - the nonzero does not already exist
- * - the new coefficient is the last one according to the storage order
- *
- * Before filling a given inner vector you must call the statVec(Index) function.
- *
- * After an insertion session, you should call the finalize() function.
- *
- * \sa insert, insertBackByOuterInner, startVec */
- inline Scalar& insertBack(Index row, Index col)
- {
- return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
- }
-
- /** \internal
- * \sa insertBack, startVec */
- inline Scalar& insertBackByOuterInner(Index outer, Index inner)
- {
- eigen_assert(size_t(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)");
- eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)");
- Index p = m_outerIndex[outer+1];
- ++m_outerIndex[outer+1];
- m_data.append(0, inner);
- return m_data.value(p);
- }
-
- /** \internal
- * \warning use it only if you know what you are doing */
- inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
- {
- Index p = m_outerIndex[outer+1];
- ++m_outerIndex[outer+1];
- m_data.append(0, inner);
- return m_data.value(p);
- }
-
- /** \internal
- * \sa insertBack, insertBackByOuterInner */
- inline void startVec(Index outer)
- {
- eigen_assert(m_outerIndex[outer]==Index(m_data.size()) && "You must call startVec for each inner vector sequentially");
- eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially");
- m_outerIndex[outer+1] = m_outerIndex[outer];
- }
-
- /** \internal
- * Must be called after inserting a set of non zero entries using the low level compressed API.
- */
- inline void finalize()
- {
- if(isCompressed())
- {
- Index size = static_cast<Index>(m_data.size());
- Index i = m_outerSize;
- // find the last filled column
- while (i>=0 && m_outerIndex[i]==0)
- --i;
- ++i;
- while (i<=m_outerSize)
- {
- m_outerIndex[i] = size;
- ++i;
- }
- }
- }
-
- //---
-
- template<typename InputIterators>
- void setFromTriplets(const InputIterators& begin, const InputIterators& end);
-
- void sumupDuplicates();
-
- //---
-
- /** \internal
- * same as insert(Index,Index) except that the indices are given relative to the storage order */
- Scalar& insertByOuterInner(Index j, Index i)
- {
- return insert(IsRowMajor ? j : i, IsRowMajor ? i : j);
- }
-
- /** Turns the matrix into the \em compressed format.
- */
- void makeCompressed()
- {
- if(isCompressed())
- return;
-
- Index oldStart = m_outerIndex[1];
- m_outerIndex[1] = m_innerNonZeros[0];
- for(Index j=1; j<m_outerSize; ++j)
- {
- Index nextOldStart = m_outerIndex[j+1];
- Index offset = oldStart - m_outerIndex[j];
- if(offset>0)
- {
- for(Index k=0; k<m_innerNonZeros[j]; ++k)
- {
- m_data.index(m_outerIndex[j]+k) = m_data.index(oldStart+k);
- m_data.value(m_outerIndex[j]+k) = m_data.value(oldStart+k);
- }
- }
- m_outerIndex[j+1] = m_outerIndex[j] + m_innerNonZeros[j];
- oldStart = nextOldStart;
- }
- std::free(m_innerNonZeros);
- m_innerNonZeros = 0;
- m_data.resize(m_outerIndex[m_outerSize]);
- m_data.squeeze();
- }
-
- /** Turns the matrix into the uncompressed mode */
- void uncompress()
- {
- if(m_innerNonZeros != 0)
- return;
- m_innerNonZeros = static_cast<Index*>(std::malloc(m_outerSize * sizeof(Index)));
- for (Index i = 0; i < m_outerSize; i++)
- {
- m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
- }
- }
-
- /** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */
- void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
- {
- prune(default_prunning_func(reference,epsilon));
- }
-
- /** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep.
- * The functor type \a KeepFunc must implement the following function:
- * \code
- * bool operator() (const Index& row, const Index& col, const Scalar& value) const;
- * \endcode
- * \sa prune(Scalar,RealScalar)
- */
- template<typename KeepFunc>
- void prune(const KeepFunc& keep = KeepFunc())
- {
- // TODO optimize the uncompressed mode to avoid moving and allocating the data twice
- // TODO also implement a unit test
- makeCompressed();
-
- Index k = 0;
- for(Index j=0; j<m_outerSize; ++j)
- {
- Index previousStart = m_outerIndex[j];
- m_outerIndex[j] = k;
- Index end = m_outerIndex[j+1];
- for(Index i=previousStart; i<end; ++i)
- {
- if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i)))
- {
- m_data.value(k) = m_data.value(i);
- m_data.index(k) = m_data.index(i);
- ++k;
- }
- }
- }
- m_outerIndex[m_outerSize] = k;
- m_data.resize(k,0);
- }
-
- /** Resizes the matrix to a \a rows x \a cols matrix leaving old values untouched.
- * \sa resizeNonZeros(Index), reserve(), setZero()
- */
- void conservativeResize(Index rows, Index cols)
- {
- // No change
- if (this->rows() == rows && this->cols() == cols) return;
-
- // If one dimension is null, then there is nothing to be preserved
- if(rows==0 || cols==0) return resize(rows,cols);
-
- Index innerChange = IsRowMajor ? cols - this->cols() : rows - this->rows();
- Index outerChange = IsRowMajor ? rows - this->rows() : cols - this->cols();
- Index newInnerSize = IsRowMajor ? cols : rows;
-
- // Deals with inner non zeros
- if (m_innerNonZeros)
- {
- // Resize m_innerNonZeros
- Index *newInnerNonZeros = static_cast<Index*>(std::realloc(m_innerNonZeros, (m_outerSize + outerChange) * sizeof(Index)));
- if (!newInnerNonZeros) internal::throw_std_bad_alloc();
- m_innerNonZeros = newInnerNonZeros;
-
- for(Index i=m_outerSize; i<m_outerSize+outerChange; i++)
- m_innerNonZeros[i] = 0;
- }
- else if (innerChange < 0)
- {
- // Inner size decreased: allocate a new m_innerNonZeros
- m_innerNonZeros = static_cast<Index*>(std::malloc((m_outerSize+outerChange+1) * sizeof(Index)));
- if (!m_innerNonZeros) internal::throw_std_bad_alloc();
- for(Index i = 0; i < m_outerSize; i++)
- m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
- }
-
- // Change the m_innerNonZeros in case of a decrease of inner size
- if (m_innerNonZeros && innerChange < 0)
- {
- for(Index i = 0; i < m_outerSize + (std::min)(outerChange, Index(0)); i++)
- {
- Index &n = m_innerNonZeros[i];
- Index start = m_outerIndex[i];
- while (n > 0 && m_data.index(start+n-1) >= newInnerSize) --n;
- }
- }
-
- m_innerSize = newInnerSize;
-
- // Re-allocate outer index structure if necessary
- if (outerChange == 0)
- return;
-
- Index *newOuterIndex = static_cast<Index*>(std::realloc(m_outerIndex, (m_outerSize + outerChange + 1) * sizeof(Index)));
- if (!newOuterIndex) internal::throw_std_bad_alloc();
- m_outerIndex = newOuterIndex;
- if (outerChange > 0)
- {
- Index last = m_outerSize == 0 ? 0 : m_outerIndex[m_outerSize];
- for(Index i=m_outerSize; i<m_outerSize+outerChange+1; i++)
- m_outerIndex[i] = last;
- }
- m_outerSize += outerChange;
- }
-
- /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero.
- * \sa resizeNonZeros(Index), reserve(), setZero()
- */
- void resize(Index rows, Index cols)
- {
- const Index outerSize = IsRowMajor ? rows : cols;
- m_innerSize = IsRowMajor ? cols : rows;
- m_data.clear();
- if (m_outerSize != outerSize || m_outerSize==0)
- {
- std::free(m_outerIndex);
- m_outerIndex = static_cast<Index*>(std::malloc((outerSize + 1) * sizeof(Index)));
- if (!m_outerIndex) internal::throw_std_bad_alloc();
-
- m_outerSize = outerSize;
- }
- if(m_innerNonZeros)
- {
- std::free(m_innerNonZeros);
- m_innerNonZeros = 0;
- }
- memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
- }
-
- /** \internal
- * Resize the nonzero vector to \a size */
- void resizeNonZeros(Index size)
- {
- // TODO remove this function
- m_data.resize(size);
- }
-
- /** \returns a const expression of the diagonal coefficients */
- const Diagonal<const SparseMatrix> diagonal() const { return *this; }
-
- /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */
- inline SparseMatrix()
- : m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
- {
- check_template_parameters();
- resize(0, 0);
- }
-
- /** Constructs a \a rows \c x \a cols empty matrix */
- inline SparseMatrix(Index rows, Index cols)
- : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
- {
- check_template_parameters();
- resize(rows, cols);
- }
-
- /** Constructs a sparse matrix from the sparse expression \a other */
- template<typename OtherDerived>
- inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other)
- : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
- {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- check_template_parameters();
- *this = other.derived();
- }
-
- /** Constructs a sparse matrix from the sparse selfadjoint view \a other */
- template<typename OtherDerived, unsigned int UpLo>
- inline SparseMatrix(const SparseSelfAdjointView<OtherDerived, UpLo>& other)
- : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
- {
- check_template_parameters();
- *this = other;
- }
-
- /** Copy constructor (it performs a deep copy) */
- inline SparseMatrix(const SparseMatrix& other)
- : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
- {
- check_template_parameters();
- *this = other.derived();
- }
-
- /** \brief Copy constructor with in-place evaluation */
- template<typename OtherDerived>
- SparseMatrix(const ReturnByValue<OtherDerived>& other)
- : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
- {
- check_template_parameters();
- initAssignment(other);
- other.evalTo(*this);
- }
-
- /** Swaps the content of two sparse matrices of the same type.
- * This is a fast operation that simply swaps the underlying pointers and parameters. */
- inline void swap(SparseMatrix& other)
- {
- //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
- std::swap(m_outerIndex, other.m_outerIndex);
- std::swap(m_innerSize, other.m_innerSize);
- std::swap(m_outerSize, other.m_outerSize);
- std::swap(m_innerNonZeros, other.m_innerNonZeros);
- m_data.swap(other.m_data);
- }
-
- /** Sets *this to the identity matrix */
- inline void setIdentity()
- {
- eigen_assert(rows() == cols() && "ONLY FOR SQUARED MATRICES");
- this->m_data.resize(rows());
- Eigen::Map<Matrix<Index, Dynamic, 1> >(&this->m_data.index(0), rows()).setLinSpaced(0, rows()-1);
- Eigen::Map<Matrix<Scalar, Dynamic, 1> >(&this->m_data.value(0), rows()).setOnes();
- Eigen::Map<Matrix<Index, Dynamic, 1> >(this->m_outerIndex, rows()+1).setLinSpaced(0, rows());
- }
- inline SparseMatrix& operator=(const SparseMatrix& other)
- {
- if (other.isRValue())
- {
- swap(other.const_cast_derived());
- }
- else if(this!=&other)
- {
- initAssignment(other);
- if(other.isCompressed())
- {
- memcpy(m_outerIndex, other.m_outerIndex, (m_outerSize+1)*sizeof(Index));
- m_data = other.m_data;
- }
- else
- {
- Base::operator=(other);
- }
- }
- return *this;
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename Lhs, typename Rhs>
- inline SparseMatrix& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
- { return Base::operator=(product); }
-
- template<typename OtherDerived>
- inline SparseMatrix& operator=(const ReturnByValue<OtherDerived>& other)
- {
- initAssignment(other);
- return Base::operator=(other.derived());
- }
-
- template<typename OtherDerived>
- inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other)
- { return Base::operator=(other.derived()); }
- #endif
-
- template<typename OtherDerived>
- EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other);
-
- friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
- {
- EIGEN_DBG_SPARSE(
- s << "Nonzero entries:\n";
- if(m.isCompressed())
- for (Index i=0; i<m.nonZeros(); ++i)
- s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
- else
- for (Index i=0; i<m.outerSize(); ++i)
- {
- Index p = m.m_outerIndex[i];
- Index pe = m.m_outerIndex[i]+m.m_innerNonZeros[i];
- Index k=p;
- for (; k<pe; ++k)
- s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") ";
- for (; k<m.m_outerIndex[i+1]; ++k)
- s << "(_,_) ";
- }
- s << std::endl;
- s << std::endl;
- s << "Outer pointers:\n";
- for (Index i=0; i<m.outerSize(); ++i)
- s << m.m_outerIndex[i] << " ";
- s << " $" << std::endl;
- if(!m.isCompressed())
- {
- s << "Inner non zeros:\n";
- for (Index i=0; i<m.outerSize(); ++i)
- s << m.m_innerNonZeros[i] << " ";
- s << " $" << std::endl;
- }
- s << std::endl;
- );
- s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
- return s;
- }
-
- /** Destructor */
- inline ~SparseMatrix()
- {
- std::free(m_outerIndex);
- std::free(m_innerNonZeros);
- }
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- /** Overloaded for performance */
- Scalar sum() const;
-#endif
-
-# ifdef EIGEN_SPARSEMATRIX_PLUGIN
-# include EIGEN_SPARSEMATRIX_PLUGIN
-# endif
-
-protected:
-
- template<typename Other>
- void initAssignment(const Other& other)
- {
- resize(other.rows(), other.cols());
- if(m_innerNonZeros)
- {
- std::free(m_innerNonZeros);
- m_innerNonZeros = 0;
- }
- }
-
- /** \internal
- * \sa insert(Index,Index) */
- EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col);
-
- /** \internal
- * A vector object that is equal to 0 everywhere but v at the position i */
- class SingletonVector
- {
- Index m_index;
- Index m_value;
- public:
- typedef Index value_type;
- SingletonVector(Index i, Index v)
- : m_index(i), m_value(v)
- {}
-
- Index operator[](Index i) const { return i==m_index ? m_value : 0; }
- };
-
- /** \internal
- * \sa insert(Index,Index) */
- EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col);
-
-public:
- /** \internal
- * \sa insert(Index,Index) */
- EIGEN_STRONG_INLINE Scalar& insertBackUncompressed(Index row, Index col)
- {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(!isCompressed());
- eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer]));
-
- Index p = m_outerIndex[outer] + m_innerNonZeros[outer]++;
- m_data.index(p) = inner;
- return (m_data.value(p) = 0);
- }
-
-private:
- static void check_template_parameters()
- {
- EIGEN_STATIC_ASSERT(NumTraits<Index>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
- EIGEN_STATIC_ASSERT((Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS);
- }
-
- struct default_prunning_func {
- default_prunning_func(const Scalar& ref, const RealScalar& eps) : reference(ref), epsilon(eps) {}
- inline bool operator() (const Index&, const Index&, const Scalar& value) const
- {
- return !internal::isMuchSmallerThan(value, reference, epsilon);
- }
- Scalar reference;
- RealScalar epsilon;
- };
-};
-
-template<typename Scalar, int _Options, typename _Index>
-class SparseMatrix<Scalar,_Options,_Index>::InnerIterator
-{
- public:
- InnerIterator(const SparseMatrix& mat, Index outer)
- : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer), m_id(mat.m_outerIndex[outer])
- {
- if(mat.isCompressed())
- m_end = mat.m_outerIndex[outer+1];
- else
- m_end = m_id + mat.m_innerNonZeros[outer];
- }
-
- inline InnerIterator& operator++() { m_id++; return *this; }
-
- inline const Scalar& value() const { return m_values[m_id]; }
- inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id]); }
-
- inline Index index() const { return m_indices[m_id]; }
- inline Index outer() const { return m_outer; }
- inline Index row() const { return IsRowMajor ? m_outer : index(); }
- inline Index col() const { return IsRowMajor ? index() : m_outer; }
-
- inline operator bool() const { return (m_id < m_end); }
-
- protected:
- const Scalar* m_values;
- const Index* m_indices;
- const Index m_outer;
- Index m_id;
- Index m_end;
-};
-
-template<typename Scalar, int _Options, typename _Index>
-class SparseMatrix<Scalar,_Options,_Index>::ReverseInnerIterator
-{
- public:
- ReverseInnerIterator(const SparseMatrix& mat, Index outer)
- : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer), m_start(mat.m_outerIndex[outer])
- {
- if(mat.isCompressed())
- m_id = mat.m_outerIndex[outer+1];
- else
- m_id = m_start + mat.m_innerNonZeros[outer];
- }
-
- inline ReverseInnerIterator& operator--() { --m_id; return *this; }
-
- inline const Scalar& value() const { return m_values[m_id-1]; }
- inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id-1]); }
-
- inline Index index() const { return m_indices[m_id-1]; }
- inline Index outer() const { return m_outer; }
- inline Index row() const { return IsRowMajor ? m_outer : index(); }
- inline Index col() const { return IsRowMajor ? index() : m_outer; }
-
- inline operator bool() const { return (m_id > m_start); }
-
- protected:
- const Scalar* m_values;
- const Index* m_indices;
- const Index m_outer;
- Index m_id;
- const Index m_start;
-};
-
-namespace internal {
-
-template<typename InputIterator, typename SparseMatrixType>
-void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, int Options = 0)
-{
- EIGEN_UNUSED_VARIABLE(Options);
- enum { IsRowMajor = SparseMatrixType::IsRowMajor };
- typedef typename SparseMatrixType::Scalar Scalar;
- typedef typename SparseMatrixType::Index Index;
- SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,Index> trMat(mat.rows(),mat.cols());
-
- if(begin!=end)
- {
- // pass 1: count the nnz per inner-vector
- Matrix<Index,Dynamic,1> wi(trMat.outerSize());
- wi.setZero();
- for(InputIterator it(begin); it!=end; ++it)
- {
- eigen_assert(it->row()>=0 && it->row()<mat.rows() && it->col()>=0 && it->col()<mat.cols());
- wi(IsRowMajor ? it->col() : it->row())++;
- }
-
- // pass 2: insert all the elements into trMat
- trMat.reserve(wi);
- for(InputIterator it(begin); it!=end; ++it)
- trMat.insertBackUncompressed(it->row(),it->col()) = it->value();
-
- // pass 3:
- trMat.sumupDuplicates();
- }
-
- // pass 4: transposed copy -> implicit sorting
- mat = trMat;
-}
-
-}
-
-
-/** Fill the matrix \c *this with the list of \em triplets defined by the iterator range \a begin - \a end.
- *
- * A \em triplet is a tuple (i,j,value) defining a non-zero element.
- * The input list of triplets does not have to be sorted, and can contains duplicated elements.
- * In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up.
- * This is a \em O(n) operation, with \em n the number of triplet elements.
- * The initial contents of \c *this is destroyed.
- * The matrix \c *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor,
- * or the resize(Index,Index) method. The sizes are not extracted from the triplet list.
- *
- * The \a InputIterators value_type must provide the following interface:
- * \code
- * Scalar value() const; // the value
- * Scalar row() const; // the row index i
- * Scalar col() const; // the column index j
- * \endcode
- * See for instance the Eigen::Triplet template class.
- *
- * Here is a typical usage example:
- * \code
- typedef Triplet<double> T;
- std::vector<T> tripletList;
- triplets.reserve(estimation_of_entries);
- for(...)
- {
- // ...
- tripletList.push_back(T(i,j,v_ij));
- }
- SparseMatrixType m(rows,cols);
- m.setFromTriplets(tripletList.begin(), tripletList.end());
- // m is ready to go!
- * \endcode
- *
- * \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define
- * an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather
- * be explicitely stored into a std::vector for instance.
- */
-template<typename Scalar, int _Options, typename _Index>
-template<typename InputIterators>
-void SparseMatrix<Scalar,_Options,_Index>::setFromTriplets(const InputIterators& begin, const InputIterators& end)
-{
- internal::set_from_triplets(begin, end, *this);
-}
-
-/** \internal */
-template<typename Scalar, int _Options, typename _Index>
-void SparseMatrix<Scalar,_Options,_Index>::sumupDuplicates()
-{
- eigen_assert(!isCompressed());
- // TODO, in practice we should be able to use m_innerNonZeros for that task
- Matrix<Index,Dynamic,1> wi(innerSize());
- wi.fill(-1);
- Index count = 0;
- // for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers
- for(Index j=0; j<outerSize(); ++j)
- {
- Index start = count;
- Index oldEnd = m_outerIndex[j]+m_innerNonZeros[j];
- for(Index k=m_outerIndex[j]; k<oldEnd; ++k)
- {
- Index i = m_data.index(k);
- if(wi(i)>=start)
- {
- // we already meet this entry => accumulate it
- m_data.value(wi(i)) += m_data.value(k);
- }
- else
- {
- m_data.value(count) = m_data.value(k);
- m_data.index(count) = m_data.index(k);
- wi(i) = count;
- ++count;
- }
- }
- m_outerIndex[j] = start;
- }
- m_outerIndex[m_outerSize] = count;
-
- // turn the matrix into compressed form
- std::free(m_innerNonZeros);
- m_innerNonZeros = 0;
- m_data.resize(m_outerIndex[m_outerSize]);
-}
-
-template<typename Scalar, int _Options, typename _Index>
-template<typename OtherDerived>
-EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_Index>& SparseMatrix<Scalar,_Options,_Index>::operator=(const SparseMatrixBase<OtherDerived>& other)
-{
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-
- const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
- if (needToTranspose)
- {
- // two passes algorithm:
- // 1 - compute the number of coeffs per dest inner vector
- // 2 - do the actual copy/eval
- // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed
- typedef typename internal::nested<OtherDerived,2>::type OtherCopy;
- typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
- OtherCopy otherCopy(other.derived());
-
- SparseMatrix dest(other.rows(),other.cols());
- Eigen::Map<Matrix<Index, Dynamic, 1> > (dest.m_outerIndex,dest.outerSize()).setZero();
-
- // pass 1
- // FIXME the above copy could be merged with that pass
- for (Index j=0; j<otherCopy.outerSize(); ++j)
- for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
- ++dest.m_outerIndex[it.index()];
-
- // prefix sum
- Index count = 0;
- Matrix<Index,Dynamic,1> positions(dest.outerSize());
- for (Index j=0; j<dest.outerSize(); ++j)
- {
- Index tmp = dest.m_outerIndex[j];
- dest.m_outerIndex[j] = count;
- positions[j] = count;
- count += tmp;
- }
- dest.m_outerIndex[dest.outerSize()] = count;
- // alloc
- dest.m_data.resize(count);
- // pass 2
- for (Index j=0; j<otherCopy.outerSize(); ++j)
- {
- for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
- {
- Index pos = positions[it.index()]++;
- dest.m_data.index(pos) = j;
- dest.m_data.value(pos) = it.value();
- }
- }
- this->swap(dest);
- return *this;
- }
- else
- {
- if(other.isRValue())
- initAssignment(other.derived());
- // there is no special optimization
- return Base::operator=(other.derived());
- }
-}
-
-template<typename _Scalar, int _Options, typename _Index>
-EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& SparseMatrix<_Scalar,_Options,_Index>::insertUncompressed(Index row, Index col)
-{
- eigen_assert(!isCompressed());
-
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- Index room = m_outerIndex[outer+1] - m_outerIndex[outer];
- Index innerNNZ = m_innerNonZeros[outer];
- if(innerNNZ>=room)
- {
- // this inner vector is full, we need to reallocate the whole buffer :(
- reserve(SingletonVector(outer,std::max<Index>(2,innerNNZ)));
- }
-
- Index startId = m_outerIndex[outer];
- Index p = startId + m_innerNonZeros[outer];
- while ( (p > startId) && (m_data.index(p-1) > inner) )
- {
- m_data.index(p) = m_data.index(p-1);
- m_data.value(p) = m_data.value(p-1);
- --p;
- }
- eigen_assert((p<=startId || m_data.index(p-1)!=inner) && "you cannot insert an element that already exist, you must call coeffRef to this end");
-
- m_innerNonZeros[outer]++;
-
- m_data.index(p) = inner;
- return (m_data.value(p) = 0);
-}
-
-template<typename _Scalar, int _Options, typename _Index>
-EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& SparseMatrix<_Scalar,_Options,_Index>::insertCompressed(Index row, Index col)
-{
- eigen_assert(isCompressed());
-
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- Index previousOuter = outer;
- if (m_outerIndex[outer+1]==0)
- {
- // we start a new inner vector
- while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
- {
- m_outerIndex[previousOuter] = static_cast<Index>(m_data.size());
- --previousOuter;
- }
- m_outerIndex[outer+1] = m_outerIndex[outer];
- }
-
- // here we have to handle the tricky case where the outerIndex array
- // starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g.,
- // the 2nd inner vector...
- bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
- && (size_t(m_outerIndex[outer+1]) == m_data.size());
-
- size_t startId = m_outerIndex[outer];
- // FIXME let's make sure sizeof(long int) == sizeof(size_t)
- size_t p = m_outerIndex[outer+1];
- ++m_outerIndex[outer+1];
-
- double reallocRatio = 1;
- if (m_data.allocatedSize()<=m_data.size())
- {
- // if there is no preallocated memory, let's reserve a minimum of 32 elements
- if (m_data.size()==0)
- {
- m_data.reserve(32);
- }
- else
- {
- // we need to reallocate the data, to reduce multiple reallocations
- // we use a smart resize algorithm based on the current filling ratio
- // in addition, we use double to avoid integers overflows
- double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1);
- reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size());
- // furthermore we bound the realloc ratio to:
- // 1) reduce multiple minor realloc when the matrix is almost filled
- // 2) avoid to allocate too much memory when the matrix is almost empty
- reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.);
- }
- }
- m_data.resize(m_data.size()+1,reallocRatio);
-
- if (!isLastVec)
- {
- if (previousOuter==-1)
- {
- // oops wrong guess.
- // let's correct the outer offsets
- for (Index k=0; k<=(outer+1); ++k)
- m_outerIndex[k] = 0;
- Index k=outer+1;
- while(m_outerIndex[k]==0)
- m_outerIndex[k++] = 1;
- while (k<=m_outerSize && m_outerIndex[k]!=0)
- m_outerIndex[k++]++;
- p = 0;
- --k;
- k = m_outerIndex[k]-1;
- while (k>0)
- {
- m_data.index(k) = m_data.index(k-1);
- m_data.value(k) = m_data.value(k-1);
- k--;
- }
- }
- else
- {
- // we are not inserting into the last inner vec
- // update outer indices:
- Index j = outer+2;
- while (j<=m_outerSize && m_outerIndex[j]!=0)
- m_outerIndex[j++]++;
- --j;
- // shift data of last vecs:
- Index k = m_outerIndex[j]-1;
- while (k>=Index(p))
- {
- m_data.index(k) = m_data.index(k-1);
- m_data.value(k) = m_data.value(k-1);
- k--;
- }
- }
- }
-
- while ( (p > startId) && (m_data.index(p-1) > inner) )
- {
- m_data.index(p) = m_data.index(p-1);
- m_data.value(p) = m_data.value(p-1);
- --p;
- }
-
- m_data.index(p) = inner;
- return (m_data.value(p) = 0);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSEMATRIX_H
diff --git a/src/Eigen/src/SparseCore/SparseMatrixBase.h b/src/Eigen/src/SparseCore/SparseMatrixBase.h
deleted file mode 100644
index bbcf7fb..0000000
--- a/src/Eigen/src/SparseCore/SparseMatrixBase.h
+++ /dev/null
@@ -1,451 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSEMATRIXBASE_H
-#define EIGEN_SPARSEMATRIXBASE_H
-
-namespace Eigen {
-
-/** \ingroup SparseCore_Module
- *
- * \class SparseMatrixBase
- *
- * \brief Base class of any sparse matrices or sparse expressions
- *
- * \tparam Derived
- *
- * This class can be extended with the help of the plugin mechanism described on the page
- * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIXBASE_PLUGIN.
- */
-template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
-{
- public:
-
- typedef typename internal::traits<Derived>::Scalar Scalar;
- typedef typename internal::packet_traits<Scalar>::type PacketScalar;
- typedef typename internal::traits<Derived>::StorageKind StorageKind;
- typedef typename internal::traits<Derived>::Index Index;
- typedef typename internal::add_const_on_value_type_if_arithmetic<
- typename internal::packet_traits<Scalar>::type
- >::type PacketReturnType;
-
- typedef SparseMatrixBase StorageBaseType;
- typedef EigenBase<Derived> Base;
-
- template<typename OtherDerived>
- Derived& operator=(const EigenBase<OtherDerived> &other)
- {
- other.derived().evalTo(derived());
- return derived();
- }
-
- enum {
-
- RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
- /**< The number of rows at compile-time. This is just a copy of the value provided
- * by the \a Derived type. If a value is not known at compile-time,
- * it is set to the \a Dynamic constant.
- * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
-
- ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
- /**< The number of columns at compile-time. This is just a copy of the value provided
- * by the \a Derived type. If a value is not known at compile-time,
- * it is set to the \a Dynamic constant.
- * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
-
-
- SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
- internal::traits<Derived>::ColsAtCompileTime>::ret),
- /**< This is equal to the number of coefficients, i.e. the number of
- * rows times the number of columns, or to \a Dynamic if this is not
- * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
-
- MaxRowsAtCompileTime = RowsAtCompileTime,
- MaxColsAtCompileTime = ColsAtCompileTime,
-
- MaxSizeAtCompileTime = (internal::size_at_compile_time<MaxRowsAtCompileTime,
- MaxColsAtCompileTime>::ret),
-
- IsVectorAtCompileTime = RowsAtCompileTime == 1 || ColsAtCompileTime == 1,
- /**< This is set to true if either the number of rows or the number of
- * columns is known at compile-time to be equal to 1. Indeed, in that case,
- * we are dealing with a column-vector (if there is only one column) or with
- * a row-vector (if there is only one row). */
-
- Flags = internal::traits<Derived>::Flags,
- /**< This stores expression \ref flags flags which may or may not be inherited by new expressions
- * constructed from this one. See the \ref flags "list of flags".
- */
-
- CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
- /**< This is a rough measure of how expensive it is to read one coefficient from
- * this expression.
- */
-
- IsRowMajor = Flags&RowMajorBit ? 1 : 0,
-
- InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime)
- : int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- _HasDirectAccess = (int(Flags)&DirectAccessBit) ? 1 : 0 // workaround sunCC
- #endif
- };
-
- /** \internal the return type of MatrixBase::adjoint() */
- typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
- CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Eigen::Transpose<const Derived> >,
- Transpose<const Derived>
- >::type AdjointReturnType;
-
-
- typedef SparseMatrix<Scalar, Flags&RowMajorBit ? RowMajor : ColMajor, Index> PlainObject;
-
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- /** This is the "real scalar" type; if the \a Scalar type is already real numbers
- * (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
- * \a Scalar is \a std::complex<T> then RealScalar is \a T.
- *
- * \sa class NumTraits
- */
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- /** \internal the return type of coeff()
- */
- typedef typename internal::conditional<_HasDirectAccess, const Scalar&, Scalar>::type CoeffReturnType;
-
- /** \internal Represents a matrix with all coefficients equal to one another*/
- typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Matrix<Scalar,Dynamic,Dynamic> > ConstantReturnType;
-
- /** type of the equivalent square matrix */
- typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime),
- EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType;
-
- inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
- inline Derived& derived() { return *static_cast<Derived*>(this); }
- inline Derived& const_cast_derived() const
- { return *static_cast<Derived*>(const_cast<SparseMatrixBase*>(this)); }
-#endif // not EIGEN_PARSED_BY_DOXYGEN
-
-#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::SparseMatrixBase
-# include "../plugins/CommonCwiseUnaryOps.h"
-# include "../plugins/CommonCwiseBinaryOps.h"
-# include "../plugins/MatrixCwiseUnaryOps.h"
-# include "../plugins/MatrixCwiseBinaryOps.h"
-# include "../plugins/BlockMethods.h"
-# ifdef EIGEN_SPARSEMATRIXBASE_PLUGIN
-# include EIGEN_SPARSEMATRIXBASE_PLUGIN
-# endif
-# undef EIGEN_CURRENT_STORAGE_BASE_CLASS
-#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
-
- /** \returns the number of rows. \sa cols() */
- inline Index rows() const { return derived().rows(); }
- /** \returns the number of columns. \sa rows() */
- inline Index cols() const { return derived().cols(); }
- /** \returns the number of coefficients, which is \a rows()*cols().
- * \sa rows(), cols(). */
- inline Index size() const { return rows() * cols(); }
- /** \returns the number of nonzero coefficients which is in practice the number
- * of stored coefficients. */
- inline Index nonZeros() const { return derived().nonZeros(); }
- /** \returns true if either the number of rows or the number of columns is equal to 1.
- * In other words, this function returns
- * \code rows()==1 || cols()==1 \endcode
- * \sa rows(), cols(), IsVectorAtCompileTime. */
- inline bool isVector() const { return rows()==1 || cols()==1; }
- /** \returns the size of the storage major dimension,
- * i.e., the number of columns for a columns major matrix, and the number of rows otherwise */
- Index outerSize() const { return (int(Flags)&RowMajorBit) ? this->rows() : this->cols(); }
- /** \returns the size of the inner dimension according to the storage order,
- * i.e., the number of rows for a columns major matrix, and the number of cols otherwise */
- Index innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); }
-
- bool isRValue() const { return m_isRValue; }
- Derived& markAsRValue() { m_isRValue = true; return derived(); }
-
- SparseMatrixBase() : m_isRValue(false) { /* TODO check flags */ }
-
-
- template<typename OtherDerived>
- Derived& operator=(const ReturnByValue<OtherDerived>& other)
- {
- other.evalTo(derived());
- return derived();
- }
-
-
- template<typename OtherDerived>
- inline Derived& operator=(const SparseMatrixBase<OtherDerived>& other)
- {
- return assign(other.derived());
- }
-
- inline Derived& operator=(const Derived& other)
- {
-// if (other.isRValue())
-// derived().swap(other.const_cast_derived());
-// else
- return assign(other.derived());
- }
-
- protected:
-
- template<typename OtherDerived>
- inline Derived& assign(const OtherDerived& other)
- {
- const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
- const Index outerSize = (int(OtherDerived::Flags) & RowMajorBit) ? other.rows() : other.cols();
- if ((!transpose) && other.isRValue())
- {
- // eval without temporary
- derived().resize(other.rows(), other.cols());
- derived().setZero();
- derived().reserve((std::max)(this->rows(),this->cols())*2);
- for (Index j=0; j<outerSize; ++j)
- {
- derived().startVec(j);
- for (typename OtherDerived::InnerIterator it(other, j); it; ++it)
- {
- Scalar v = it.value();
- derived().insertBackByOuterInner(j,it.index()) = v;
- }
- }
- derived().finalize();
- }
- else
- {
- assignGeneric(other);
- }
- return derived();
- }
-
- template<typename OtherDerived>
- inline void assignGeneric(const OtherDerived& other)
- {
- //const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
- eigen_assert(( ((internal::traits<Derived>::SupportedAccessPatterns&OuterRandomAccessPattern)==OuterRandomAccessPattern) ||
- (!((Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit)))) &&
- "the transpose operation is supposed to be handled in SparseMatrix::operator=");
-
- enum { Flip = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit) };
-
- const Index outerSize = other.outerSize();
- //typedef typename internal::conditional<transpose, LinkedVectorMatrix<Scalar,Flags&RowMajorBit>, Derived>::type TempType;
- // thanks to shallow copies, we always eval to a tempary
- Derived temp(other.rows(), other.cols());
-
- temp.reserve((std::max)(this->rows(),this->cols())*2);
- for (Index j=0; j<outerSize; ++j)
- {
- temp.startVec(j);
- for (typename OtherDerived::InnerIterator it(other.derived(), j); it; ++it)
- {
- Scalar v = it.value();
- temp.insertBackByOuterInner(Flip?it.index():j,Flip?j:it.index()) = v;
- }
- }
- temp.finalize();
-
- derived() = temp.markAsRValue();
- }
-
- public:
-
- template<typename Lhs, typename Rhs>
- inline Derived& operator=(const SparseSparseProduct<Lhs,Rhs>& product);
-
- friend std::ostream & operator << (std::ostream & s, const SparseMatrixBase& m)
- {
- typedef typename Derived::Nested Nested;
- typedef typename internal::remove_all<Nested>::type NestedCleaned;
-
- if (Flags&RowMajorBit)
- {
- const Nested nm(m.derived());
- for (Index row=0; row<nm.outerSize(); ++row)
- {
- Index col = 0;
- for (typename NestedCleaned::InnerIterator it(nm.derived(), row); it; ++it)
- {
- for ( ; col<it.index(); ++col)
- s << "0 ";
- s << it.value() << " ";
- ++col;
- }
- for ( ; col<m.cols(); ++col)
- s << "0 ";
- s << std::endl;
- }
- }
- else
- {
- const Nested nm(m.derived());
- if (m.cols() == 1) {
- Index row = 0;
- for (typename NestedCleaned::InnerIterator it(nm.derived(), 0); it; ++it)
- {
- for ( ; row<it.index(); ++row)
- s << "0" << std::endl;
- s << it.value() << std::endl;
- ++row;
- }
- for ( ; row<m.rows(); ++row)
- s << "0" << std::endl;
- }
- else
- {
- SparseMatrix<Scalar, RowMajorBit, Index> trans = m;
- s << static_cast<const SparseMatrixBase<SparseMatrix<Scalar, RowMajorBit, Index> >&>(trans);
- }
- }
- return s;
- }
-
- template<typename OtherDerived>
- Derived& operator+=(const SparseMatrixBase<OtherDerived>& other);
- template<typename OtherDerived>
- Derived& operator-=(const SparseMatrixBase<OtherDerived>& other);
-
- Derived& operator*=(const Scalar& other);
- Derived& operator/=(const Scalar& other);
-
- #define EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE \
- CwiseBinaryOp< \
- internal::scalar_product_op< \
- typename internal::scalar_product_traits< \
- typename internal::traits<Derived>::Scalar, \
- typename internal::traits<OtherDerived>::Scalar \
- >::ReturnType \
- >, \
- const Derived, \
- const OtherDerived \
- >
-
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE const EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE
- cwiseProduct(const MatrixBase<OtherDerived> &other) const;
-
- // sparse * sparse
- template<typename OtherDerived>
- const typename SparseSparseProductReturnType<Derived,OtherDerived>::Type
- operator*(const SparseMatrixBase<OtherDerived> &other) const;
-
- // sparse * diagonal
- template<typename OtherDerived>
- const SparseDiagonalProduct<Derived,OtherDerived>
- operator*(const DiagonalBase<OtherDerived> &other) const;
-
- // diagonal * sparse
- template<typename OtherDerived> friend
- const SparseDiagonalProduct<OtherDerived,Derived>
- operator*(const DiagonalBase<OtherDerived> &lhs, const SparseMatrixBase& rhs)
- { return SparseDiagonalProduct<OtherDerived,Derived>(lhs.derived(), rhs.derived()); }
-
- /** dense * sparse (return a dense object unless it is an outer product) */
- template<typename OtherDerived> friend
- const typename DenseSparseProductReturnType<OtherDerived,Derived>::Type
- operator*(const MatrixBase<OtherDerived>& lhs, const Derived& rhs)
- { return typename DenseSparseProductReturnType<OtherDerived,Derived>::Type(lhs.derived(),rhs); }
-
- /** sparse * dense (returns a dense object unless it is an outer product) */
- template<typename OtherDerived>
- const typename SparseDenseProductReturnType<Derived,OtherDerived>::Type
- operator*(const MatrixBase<OtherDerived> &other) const;
-
- /** \returns an expression of P H P^-1 where H is the matrix represented by \c *this */
- SparseSymmetricPermutationProduct<Derived,Upper|Lower> twistedBy(const PermutationMatrix<Dynamic,Dynamic,Index>& perm) const
- {
- return SparseSymmetricPermutationProduct<Derived,Upper|Lower>(derived(), perm);
- }
-
- template<typename OtherDerived>
- Derived& operator*=(const SparseMatrixBase<OtherDerived>& other);
-
- #ifdef EIGEN2_SUPPORT
- // deprecated
- template<typename OtherDerived>
- typename internal::plain_matrix_type_column_major<OtherDerived>::type
- solveTriangular(const MatrixBase<OtherDerived>& other) const;
-
- // deprecated
- template<typename OtherDerived>
- void solveTriangularInPlace(MatrixBase<OtherDerived>& other) const;
- #endif // EIGEN2_SUPPORT
-
- template<int Mode>
- inline const SparseTriangularView<Derived, Mode> triangularView() const;
-
- template<unsigned int UpLo> inline const SparseSelfAdjointView<Derived, UpLo> selfadjointView() const;
- template<unsigned int UpLo> inline SparseSelfAdjointView<Derived, UpLo> selfadjointView();
-
- template<typename OtherDerived> Scalar dot(const MatrixBase<OtherDerived>& other) const;
- template<typename OtherDerived> Scalar dot(const SparseMatrixBase<OtherDerived>& other) const;
- RealScalar squaredNorm() const;
- RealScalar norm() const;
- RealScalar blueNorm() const;
-
- Transpose<Derived> transpose() { return derived(); }
- const Transpose<const Derived> transpose() const { return derived(); }
- const AdjointReturnType adjoint() const { return transpose(); }
-
- // inner-vector
- typedef Block<Derived,IsRowMajor?1:Dynamic,IsRowMajor?Dynamic:1,true> InnerVectorReturnType;
- typedef Block<const Derived,IsRowMajor?1:Dynamic,IsRowMajor?Dynamic:1,true> ConstInnerVectorReturnType;
- InnerVectorReturnType innerVector(Index outer);
- const ConstInnerVectorReturnType innerVector(Index outer) const;
-
- // set of inner-vectors
- Block<Derived,Dynamic,Dynamic,true> innerVectors(Index outerStart, Index outerSize);
- const Block<const Derived,Dynamic,Dynamic,true> innerVectors(Index outerStart, Index outerSize) const;
-
- /** \internal use operator= */
- template<typename DenseDerived>
- void evalTo(MatrixBase<DenseDerived>& dst) const
- {
- dst.setZero();
- for (Index j=0; j<outerSize(); ++j)
- for (typename Derived::InnerIterator i(derived(),j); i; ++i)
- dst.coeffRef(i.row(),i.col()) = i.value();
- }
-
- Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime> toDense() const
- {
- return derived();
- }
-
- template<typename OtherDerived>
- bool isApprox(const SparseMatrixBase<OtherDerived>& other,
- const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
- { return toDense().isApprox(other.toDense(),prec); }
-
- template<typename OtherDerived>
- bool isApprox(const MatrixBase<OtherDerived>& other,
- const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
- { return toDense().isApprox(other,prec); }
-
- /** \returns the matrix or vector obtained by evaluating this expression.
- *
- * Notice that in the case of a plain matrix or vector (not an expression) this function just returns
- * a const reference, in order to avoid a useless copy.
- */
- inline const typename internal::eval<Derived>::type eval() const
- { return typename internal::eval<Derived>::type(derived()); }
-
- Scalar sum() const;
-
- protected:
-
- bool m_isRValue;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSEMATRIXBASE_H
diff --git a/src/Eigen/src/SparseCore/SparsePermutation.h b/src/Eigen/src/SparseCore/SparsePermutation.h
deleted file mode 100644
index b85be93..0000000
--- a/src/Eigen/src/SparseCore/SparsePermutation.h
+++ /dev/null
@@ -1,148 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSE_PERMUTATION_H
-#define EIGEN_SPARSE_PERMUTATION_H
-
-// This file implements sparse * permutation products
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename PermutationType, typename MatrixType, int Side, bool Transposed>
-struct traits<permut_sparsematrix_product_retval<PermutationType, MatrixType, Side, Transposed> >
-{
- typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
- typedef typename MatrixTypeNestedCleaned::Scalar Scalar;
- typedef typename MatrixTypeNestedCleaned::Index Index;
- enum {
- SrcStorageOrder = MatrixTypeNestedCleaned::Flags&RowMajorBit ? RowMajor : ColMajor,
- MoveOuter = SrcStorageOrder==RowMajor ? Side==OnTheLeft : Side==OnTheRight
- };
-
- typedef typename internal::conditional<MoveOuter,
- SparseMatrix<Scalar,SrcStorageOrder,Index>,
- SparseMatrix<Scalar,int(SrcStorageOrder)==RowMajor?ColMajor:RowMajor,Index> >::type ReturnType;
-};
-
-template<typename PermutationType, typename MatrixType, int Side, bool Transposed>
-struct permut_sparsematrix_product_retval
- : public ReturnByValue<permut_sparsematrix_product_retval<PermutationType, MatrixType, Side, Transposed> >
-{
- typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
- typedef typename MatrixTypeNestedCleaned::Scalar Scalar;
- typedef typename MatrixTypeNestedCleaned::Index Index;
-
- enum {
- SrcStorageOrder = MatrixTypeNestedCleaned::Flags&RowMajorBit ? RowMajor : ColMajor,
- MoveOuter = SrcStorageOrder==RowMajor ? Side==OnTheLeft : Side==OnTheRight
- };
-
- permut_sparsematrix_product_retval(const PermutationType& perm, const MatrixType& matrix)
- : m_permutation(perm), m_matrix(matrix)
- {}
-
- inline int rows() const { return m_matrix.rows(); }
- inline int cols() const { return m_matrix.cols(); }
-
- template<typename Dest> inline void evalTo(Dest& dst) const
- {
- if(MoveOuter)
- {
- SparseMatrix<Scalar,SrcStorageOrder,Index> tmp(m_matrix.rows(), m_matrix.cols());
- Matrix<Index,Dynamic,1> sizes(m_matrix.outerSize());
- for(Index j=0; j<m_matrix.outerSize(); ++j)
- {
- Index jp = m_permutation.indices().coeff(j);
- sizes[((Side==OnTheLeft) ^ Transposed) ? jp : j] = m_matrix.innerVector(((Side==OnTheRight) ^ Transposed) ? jp : j).size();
- }
- tmp.reserve(sizes);
- for(Index j=0; j<m_matrix.outerSize(); ++j)
- {
- Index jp = m_permutation.indices().coeff(j);
- Index jsrc = ((Side==OnTheRight) ^ Transposed) ? jp : j;
- Index jdst = ((Side==OnTheLeft) ^ Transposed) ? jp : j;
- for(typename MatrixTypeNestedCleaned::InnerIterator it(m_matrix,jsrc); it; ++it)
- tmp.insertByOuterInner(jdst,it.index()) = it.value();
- }
- dst = tmp;
- }
- else
- {
- SparseMatrix<Scalar,int(SrcStorageOrder)==RowMajor?ColMajor:RowMajor,Index> tmp(m_matrix.rows(), m_matrix.cols());
- Matrix<Index,Dynamic,1> sizes(tmp.outerSize());
- sizes.setZero();
- PermutationMatrix<Dynamic,Dynamic,Index> perm;
- if((Side==OnTheLeft) ^ Transposed)
- perm = m_permutation;
- else
- perm = m_permutation.transpose();
-
- for(Index j=0; j<m_matrix.outerSize(); ++j)
- for(typename MatrixTypeNestedCleaned::InnerIterator it(m_matrix,j); it; ++it)
- sizes[perm.indices().coeff(it.index())]++;
- tmp.reserve(sizes);
- for(Index j=0; j<m_matrix.outerSize(); ++j)
- for(typename MatrixTypeNestedCleaned::InnerIterator it(m_matrix,j); it; ++it)
- tmp.insertByOuterInner(perm.indices().coeff(it.index()),j) = it.value();
- dst = tmp;
- }
- }
-
- protected:
- const PermutationType& m_permutation;
- typename MatrixType::Nested m_matrix;
-};
-
-}
-
-
-
-/** \returns the matrix with the permutation applied to the columns
- */
-template<typename SparseDerived, typename PermDerived>
-inline const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheRight, false>
-operator*(const SparseMatrixBase<SparseDerived>& matrix, const PermutationBase<PermDerived>& perm)
-{
- return internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheRight, false>(perm, matrix.derived());
-}
-
-/** \returns the matrix with the permutation applied to the rows
- */
-template<typename SparseDerived, typename PermDerived>
-inline const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheLeft, false>
-operator*( const PermutationBase<PermDerived>& perm, const SparseMatrixBase<SparseDerived>& matrix)
-{
- return internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheLeft, false>(perm, matrix.derived());
-}
-
-
-
-/** \returns the matrix with the inverse permutation applied to the columns.
- */
-template<typename SparseDerived, typename PermDerived>
-inline const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheRight, true>
-operator*(const SparseMatrixBase<SparseDerived>& matrix, const Transpose<PermutationBase<PermDerived> >& tperm)
-{
- return internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheRight, true>(tperm.nestedPermutation(), matrix.derived());
-}
-
-/** \returns the matrix with the inverse permutation applied to the rows.
- */
-template<typename SparseDerived, typename PermDerived>
-inline const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheLeft, true>
-operator*(const Transpose<PermutationBase<PermDerived> >& tperm, const SparseMatrixBase<SparseDerived>& matrix)
-{
- return internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheLeft, true>(tperm.nestedPermutation(), matrix.derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H
diff --git a/src/Eigen/src/SparseCore/SparseProduct.h b/src/Eigen/src/SparseCore/SparseProduct.h
deleted file mode 100644
index cf76630..0000000
--- a/src/Eigen/src/SparseCore/SparseProduct.h
+++ /dev/null
@@ -1,188 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSEPRODUCT_H
-#define EIGEN_SPARSEPRODUCT_H
-
-namespace Eigen {
-
-template<typename Lhs, typename Rhs>
-struct SparseSparseProductReturnType
-{
- typedef typename internal::traits<Lhs>::Scalar Scalar;
- typedef typename internal::traits<Lhs>::Index Index;
- enum {
- LhsRowMajor = internal::traits<Lhs>::Flags & RowMajorBit,
- RhsRowMajor = internal::traits<Rhs>::Flags & RowMajorBit,
- TransposeRhs = (!LhsRowMajor) && RhsRowMajor,
- TransposeLhs = LhsRowMajor && (!RhsRowMajor)
- };
-
- typedef typename internal::conditional<TransposeLhs,
- SparseMatrix<Scalar,0,Index>,
- typename internal::nested<Lhs,Rhs::RowsAtCompileTime>::type>::type LhsNested;
-
- typedef typename internal::conditional<TransposeRhs,
- SparseMatrix<Scalar,0,Index>,
- typename internal::nested<Rhs,Lhs::RowsAtCompileTime>::type>::type RhsNested;
-
- typedef SparseSparseProduct<LhsNested, RhsNested> Type;
-};
-
-namespace internal {
-template<typename LhsNested, typename RhsNested>
-struct traits<SparseSparseProduct<LhsNested, RhsNested> >
-{
- typedef MatrixXpr XprKind;
- // clean the nested types:
- typedef typename remove_all<LhsNested>::type _LhsNested;
- typedef typename remove_all<RhsNested>::type _RhsNested;
- typedef typename _LhsNested::Scalar Scalar;
- typedef typename promote_index_type<typename traits<_LhsNested>::Index,
- typename traits<_RhsNested>::Index>::type Index;
-
- enum {
- LhsCoeffReadCost = _LhsNested::CoeffReadCost,
- RhsCoeffReadCost = _RhsNested::CoeffReadCost,
- LhsFlags = _LhsNested::Flags,
- RhsFlags = _RhsNested::Flags,
-
- RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
- ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
- MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
-
- InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
-
- EvalToRowMajor = (RhsFlags & LhsFlags & RowMajorBit),
-
- RemovedBits = ~(EvalToRowMajor ? 0 : RowMajorBit),
-
- Flags = (int(LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
- | EvalBeforeAssigningBit
- | EvalBeforeNestingBit,
-
- CoeffReadCost = Dynamic
- };
-
- typedef Sparse StorageKind;
-};
-
-} // end namespace internal
-
-template<typename LhsNested, typename RhsNested>
-class SparseSparseProduct : internal::no_assignment_operator,
- public SparseMatrixBase<SparseSparseProduct<LhsNested, RhsNested> >
-{
- public:
-
- typedef SparseMatrixBase<SparseSparseProduct> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(SparseSparseProduct)
-
- private:
-
- typedef typename internal::traits<SparseSparseProduct>::_LhsNested _LhsNested;
- typedef typename internal::traits<SparseSparseProduct>::_RhsNested _RhsNested;
-
- public:
-
- template<typename Lhs, typename Rhs>
- EIGEN_STRONG_INLINE SparseSparseProduct(const Lhs& lhs, const Rhs& rhs)
- : m_lhs(lhs), m_rhs(rhs), m_tolerance(0), m_conservative(true)
- {
- init();
- }
-
- template<typename Lhs, typename Rhs>
- EIGEN_STRONG_INLINE SparseSparseProduct(const Lhs& lhs, const Rhs& rhs, const RealScalar& tolerance)
- : m_lhs(lhs), m_rhs(rhs), m_tolerance(tolerance), m_conservative(false)
- {
- init();
- }
-
- SparseSparseProduct pruned(const Scalar& reference = 0, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision()) const
- {
- using std::abs;
- return SparseSparseProduct(m_lhs,m_rhs,abs(reference)*epsilon);
- }
-
- template<typename Dest>
- void evalTo(Dest& result) const
- {
- if(m_conservative)
- internal::conservative_sparse_sparse_product_selector<_LhsNested, _RhsNested, Dest>::run(lhs(),rhs(),result);
- else
- internal::sparse_sparse_product_with_pruning_selector<_LhsNested, _RhsNested, Dest>::run(lhs(),rhs(),result,m_tolerance);
- }
-
- EIGEN_STRONG_INLINE Index rows() const { return m_lhs.rows(); }
- EIGEN_STRONG_INLINE Index cols() const { return m_rhs.cols(); }
-
- EIGEN_STRONG_INLINE const _LhsNested& lhs() const { return m_lhs; }
- EIGEN_STRONG_INLINE const _RhsNested& rhs() const { return m_rhs; }
-
- protected:
- void init()
- {
- eigen_assert(m_lhs.cols() == m_rhs.rows());
-
- enum {
- ProductIsValid = _LhsNested::ColsAtCompileTime==Dynamic
- || _RhsNested::RowsAtCompileTime==Dynamic
- || int(_LhsNested::ColsAtCompileTime)==int(_RhsNested::RowsAtCompileTime),
- AreVectors = _LhsNested::IsVectorAtCompileTime && _RhsNested::IsVectorAtCompileTime,
- SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(_LhsNested,_RhsNested)
- };
- // note to the lost user:
- // * for a dot product use: v1.dot(v2)
- // * for a coeff-wise product use: v1.cwise()*v2
- EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
- INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
- EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
- INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
- EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
- }
-
- LhsNested m_lhs;
- RhsNested m_rhs;
- RealScalar m_tolerance;
- bool m_conservative;
-};
-
-// sparse = sparse * sparse
-template<typename Derived>
-template<typename Lhs, typename Rhs>
-inline Derived& SparseMatrixBase<Derived>::operator=(const SparseSparseProduct<Lhs,Rhs>& product)
-{
- product.evalTo(derived());
- return derived();
-}
-
-/** \returns an expression of the product of two sparse matrices.
- * By default a conservative product preserving the symbolic non zeros is performed.
- * The automatic pruning of the small values can be achieved by calling the pruned() function
- * in which case a totally different product algorithm is employed:
- * \code
- * C = (A*B).pruned(); // supress numerical zeros (exact)
- * C = (A*B).pruned(ref);
- * C = (A*B).pruned(ref,epsilon);
- * \endcode
- * where \c ref is a meaningful non zero reference value.
- * */
-template<typename Derived>
-template<typename OtherDerived>
-inline const typename SparseSparseProductReturnType<Derived,OtherDerived>::Type
-SparseMatrixBase<Derived>::operator*(const SparseMatrixBase<OtherDerived> &other) const
-{
- return typename SparseSparseProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSEPRODUCT_H
diff --git a/src/Eigen/src/SparseCore/SparseRedux.h b/src/Eigen/src/SparseCore/SparseRedux.h
deleted file mode 100644
index f3da93a..0000000
--- a/src/Eigen/src/SparseCore/SparseRedux.h
+++ /dev/null
@@ -1,45 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSEREDUX_H
-#define EIGEN_SPARSEREDUX_H
-
-namespace Eigen {
-
-template<typename Derived>
-typename internal::traits<Derived>::Scalar
-SparseMatrixBase<Derived>::sum() const
-{
- eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix");
- Scalar res(0);
- for (Index j=0; j<outerSize(); ++j)
- for (typename Derived::InnerIterator iter(derived(),j); iter; ++iter)
- res += iter.value();
- return res;
-}
-
-template<typename _Scalar, int _Options, typename _Index>
-typename internal::traits<SparseMatrix<_Scalar,_Options,_Index> >::Scalar
-SparseMatrix<_Scalar,_Options,_Index>::sum() const
-{
- eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix");
- return Matrix<Scalar,1,Dynamic>::Map(&m_data.value(0), m_data.size()).sum();
-}
-
-template<typename _Scalar, int _Options, typename _Index>
-typename internal::traits<SparseVector<_Scalar,_Options, _Index> >::Scalar
-SparseVector<_Scalar,_Options,_Index>::sum() const
-{
- eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix");
- return Matrix<Scalar,1,Dynamic>::Map(&m_data.value(0), m_data.size()).sum();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSEREDUX_H
diff --git a/src/Eigen/src/SparseCore/SparseSelfAdjointView.h b/src/Eigen/src/SparseCore/SparseSelfAdjointView.h
deleted file mode 100644
index 0eda96b..0000000
--- a/src/Eigen/src/SparseCore/SparseSelfAdjointView.h
+++ /dev/null
@@ -1,507 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H
-#define EIGEN_SPARSE_SELFADJOINTVIEW_H
-
-namespace Eigen {
-
-/** \ingroup SparseCore_Module
- * \class SparseSelfAdjointView
- *
- * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
- *
- * \param MatrixType the type of the dense matrix storing the coefficients
- * \param UpLo can be either \c #Lower or \c #Upper
- *
- * This class is an expression of a sefladjoint matrix from a triangular part of a matrix
- * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
- * and most of the time this is the only way that it is used.
- *
- * \sa SparseMatrixBase::selfadjointView()
- */
-template<typename Lhs, typename Rhs, int UpLo>
-class SparseSelfAdjointTimeDenseProduct;
-
-template<typename Lhs, typename Rhs, int UpLo>
-class DenseTimeSparseSelfAdjointProduct;
-
-namespace internal {
-
-template<typename MatrixType, unsigned int UpLo>
-struct traits<SparseSelfAdjointView<MatrixType,UpLo> > : traits<MatrixType> {
-};
-
-template<int SrcUpLo,int DstUpLo,typename MatrixType,int DestOrder>
-void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm = 0);
-
-template<int UpLo,typename MatrixType,int DestOrder>
-void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm = 0);
-
-}
-
-template<typename MatrixType, unsigned int UpLo> class SparseSelfAdjointView
- : public EigenBase<SparseSelfAdjointView<MatrixType,UpLo> >
-{
- public:
-
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
- typedef Matrix<Index,Dynamic,1> VectorI;
- typedef typename MatrixType::Nested MatrixTypeNested;
- typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
-
- inline SparseSelfAdjointView(const MatrixType& matrix) : m_matrix(matrix)
- {
- eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices");
- }
-
- inline Index rows() const { return m_matrix.rows(); }
- inline Index cols() const { return m_matrix.cols(); }
-
- /** \internal \returns a reference to the nested matrix */
- const _MatrixTypeNested& matrix() const { return m_matrix; }
- _MatrixTypeNested& matrix() { return m_matrix.const_cast_derived(); }
-
- /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs.
- *
- * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
- * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
- */
- template<typename OtherDerived>
- SparseSparseProduct<typename OtherDerived::PlainObject, OtherDerived>
- operator*(const SparseMatrixBase<OtherDerived>& rhs) const
- {
- return SparseSparseProduct<typename OtherDerived::PlainObject, OtherDerived>(*this, rhs.derived());
- }
-
- /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs.
- *
- * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
- * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
- */
- template<typename OtherDerived> friend
- SparseSparseProduct<OtherDerived, typename OtherDerived::PlainObject >
- operator*(const SparseMatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
- {
- return SparseSparseProduct<OtherDerived, typename OtherDerived::PlainObject>(lhs.derived(), rhs);
- }
-
- /** Efficient sparse self-adjoint matrix times dense vector/matrix product */
- template<typename OtherDerived>
- SparseSelfAdjointTimeDenseProduct<MatrixType,OtherDerived,UpLo>
- operator*(const MatrixBase<OtherDerived>& rhs) const
- {
- return SparseSelfAdjointTimeDenseProduct<MatrixType,OtherDerived,UpLo>(m_matrix, rhs.derived());
- }
-
- /** Efficient dense vector/matrix times sparse self-adjoint matrix product */
- template<typename OtherDerived> friend
- DenseTimeSparseSelfAdjointProduct<OtherDerived,MatrixType,UpLo>
- operator*(const MatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
- {
- return DenseTimeSparseSelfAdjointProduct<OtherDerived,_MatrixTypeNested,UpLo>(lhs.derived(), rhs.m_matrix);
- }
-
- /** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
- * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
- *
- * \returns a reference to \c *this
- *
- * To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
- * call this function with u.adjoint().
- */
- template<typename DerivedU>
- SparseSelfAdjointView& rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1));
-
- /** \internal triggered by sparse_matrix = SparseSelfadjointView; */
- template<typename DestScalar,int StorageOrder> void evalTo(SparseMatrix<DestScalar,StorageOrder,Index>& _dest) const
- {
- internal::permute_symm_to_fullsymm<UpLo>(m_matrix, _dest);
- }
-
- template<typename DestScalar> void evalTo(DynamicSparseMatrix<DestScalar,ColMajor,Index>& _dest) const
- {
- // TODO directly evaluate into _dest;
- SparseMatrix<DestScalar,ColMajor,Index> tmp(_dest.rows(),_dest.cols());
- internal::permute_symm_to_fullsymm<UpLo>(m_matrix, tmp);
- _dest = tmp;
- }
-
- /** \returns an expression of P H P^-1 */
- SparseSymmetricPermutationProduct<_MatrixTypeNested,UpLo> twistedBy(const PermutationMatrix<Dynamic,Dynamic,Index>& perm) const
- {
- return SparseSymmetricPermutationProduct<_MatrixTypeNested,UpLo>(m_matrix, perm);
- }
-
- template<typename SrcMatrixType,int SrcUpLo>
- SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType,SrcUpLo>& permutedMatrix)
- {
- permutedMatrix.evalTo(*this);
- return *this;
- }
-
-
- SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src)
- {
- PermutationMatrix<Dynamic> pnull;
- return *this = src.twistedBy(pnull);
- }
-
- template<typename SrcMatrixType,unsigned int SrcUpLo>
- SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType,SrcUpLo>& src)
- {
- PermutationMatrix<Dynamic> pnull;
- return *this = src.twistedBy(pnull);
- }
-
-
- // const SparseLLT<PlainObject, UpLo> llt() const;
- // const SparseLDLT<PlainObject, UpLo> ldlt() const;
-
- protected:
-
- typename MatrixType::Nested m_matrix;
- mutable VectorI m_countPerRow;
- mutable VectorI m_countPerCol;
-};
-
-/***************************************************************************
-* Implementation of SparseMatrixBase methods
-***************************************************************************/
-
-template<typename Derived>
-template<unsigned int UpLo>
-const SparseSelfAdjointView<Derived, UpLo> SparseMatrixBase<Derived>::selfadjointView() const
-{
- return derived();
-}
-
-template<typename Derived>
-template<unsigned int UpLo>
-SparseSelfAdjointView<Derived, UpLo> SparseMatrixBase<Derived>::selfadjointView()
-{
- return derived();
-}
-
-/***************************************************************************
-* Implementation of SparseSelfAdjointView methods
-***************************************************************************/
-
-template<typename MatrixType, unsigned int UpLo>
-template<typename DerivedU>
-SparseSelfAdjointView<MatrixType,UpLo>&
-SparseSelfAdjointView<MatrixType,UpLo>::rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha)
-{
- SparseMatrix<Scalar,MatrixType::Flags&RowMajorBit?RowMajor:ColMajor> tmp = u * u.adjoint();
- if(alpha==Scalar(0))
- m_matrix.const_cast_derived() = tmp.template triangularView<UpLo>();
- else
- m_matrix.const_cast_derived() += alpha * tmp.template triangularView<UpLo>();
-
- return *this;
-}
-
-/***************************************************************************
-* Implementation of sparse self-adjoint time dense matrix
-***************************************************************************/
-
-namespace internal {
-template<typename Lhs, typename Rhs, int UpLo>
-struct traits<SparseSelfAdjointTimeDenseProduct<Lhs,Rhs,UpLo> >
- : traits<ProductBase<SparseSelfAdjointTimeDenseProduct<Lhs,Rhs,UpLo>, Lhs, Rhs> >
-{
- typedef Dense StorageKind;
-};
-}
-
-template<typename Lhs, typename Rhs, int UpLo>
-class SparseSelfAdjointTimeDenseProduct
- : public ProductBase<SparseSelfAdjointTimeDenseProduct<Lhs,Rhs,UpLo>, Lhs, Rhs>
-{
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(SparseSelfAdjointTimeDenseProduct)
-
- SparseSelfAdjointTimeDenseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
- {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
- {
- EIGEN_ONLY_USED_FOR_DEBUG(alpha);
- // TODO use alpha
- eigen_assert(alpha==Scalar(1) && "alpha != 1 is not implemented yet, sorry");
- typedef typename internal::remove_all<Lhs>::type _Lhs;
- typedef typename _Lhs::InnerIterator LhsInnerIterator;
- enum {
- LhsIsRowMajor = (_Lhs::Flags&RowMajorBit)==RowMajorBit,
- ProcessFirstHalf =
- ((UpLo&(Upper|Lower))==(Upper|Lower))
- || ( (UpLo&Upper) && !LhsIsRowMajor)
- || ( (UpLo&Lower) && LhsIsRowMajor),
- ProcessSecondHalf = !ProcessFirstHalf
- };
- for (Index j=0; j<m_lhs.outerSize(); ++j)
- {
- LhsInnerIterator i(m_lhs,j);
- if (ProcessSecondHalf)
- {
- while (i && i.index()<j) ++i;
- if(i && i.index()==j)
- {
- dest.row(j) += i.value() * m_rhs.row(j);
- ++i;
- }
- }
- for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i)
- {
- Index a = LhsIsRowMajor ? j : i.index();
- Index b = LhsIsRowMajor ? i.index() : j;
- typename Lhs::Scalar v = i.value();
- dest.row(a) += (v) * m_rhs.row(b);
- dest.row(b) += numext::conj(v) * m_rhs.row(a);
- }
- if (ProcessFirstHalf && i && (i.index()==j))
- dest.row(j) += i.value() * m_rhs.row(j);
- }
- }
-
- private:
- SparseSelfAdjointTimeDenseProduct& operator=(const SparseSelfAdjointTimeDenseProduct&);
-};
-
-namespace internal {
-template<typename Lhs, typename Rhs, int UpLo>
-struct traits<DenseTimeSparseSelfAdjointProduct<Lhs,Rhs,UpLo> >
- : traits<ProductBase<DenseTimeSparseSelfAdjointProduct<Lhs,Rhs,UpLo>, Lhs, Rhs> >
-{};
-}
-
-template<typename Lhs, typename Rhs, int UpLo>
-class DenseTimeSparseSelfAdjointProduct
- : public ProductBase<DenseTimeSparseSelfAdjointProduct<Lhs,Rhs,UpLo>, Lhs, Rhs>
-{
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(DenseTimeSparseSelfAdjointProduct)
-
- DenseTimeSparseSelfAdjointProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
- {}
-
- template<typename Dest> void scaleAndAddTo(Dest& /*dest*/, const Scalar& /*alpha*/) const
- {
- // TODO
- }
-
- private:
- DenseTimeSparseSelfAdjointProduct& operator=(const DenseTimeSparseSelfAdjointProduct&);
-};
-
-/***************************************************************************
-* Implementation of symmetric copies and permutations
-***************************************************************************/
-namespace internal {
-
-template<typename MatrixType, int UpLo>
-struct traits<SparseSymmetricPermutationProduct<MatrixType,UpLo> > : traits<MatrixType> {
-};
-
-template<int UpLo,typename MatrixType,int DestOrder>
-void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm)
-{
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
- typedef SparseMatrix<Scalar,DestOrder,Index> Dest;
- typedef Matrix<Index,Dynamic,1> VectorI;
-
- Dest& dest(_dest.derived());
- enum {
- StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor)
- };
-
- Index size = mat.rows();
- VectorI count;
- count.resize(size);
- count.setZero();
- dest.resize(size,size);
- for(Index j = 0; j<size; ++j)
- {
- Index jp = perm ? perm[j] : j;
- for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
- {
- Index i = it.index();
- Index r = it.row();
- Index c = it.col();
- Index ip = perm ? perm[i] : i;
- if(UpLo==(Upper|Lower))
- count[StorageOrderMatch ? jp : ip]++;
- else if(r==c)
- count[ip]++;
- else if(( UpLo==Lower && r>c) || ( UpLo==Upper && r<c))
- {
- count[ip]++;
- count[jp]++;
- }
- }
- }
- Index nnz = count.sum();
-
- // reserve space
- dest.resizeNonZeros(nnz);
- dest.outerIndexPtr()[0] = 0;
- for(Index j=0; j<size; ++j)
- dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
- for(Index j=0; j<size; ++j)
- count[j] = dest.outerIndexPtr()[j];
-
- // copy data
- for(Index j = 0; j<size; ++j)
- {
- for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
- {
- Index i = it.index();
- Index r = it.row();
- Index c = it.col();
-
- Index jp = perm ? perm[j] : j;
- Index ip = perm ? perm[i] : i;
-
- if(UpLo==(Upper|Lower))
- {
- Index k = count[StorageOrderMatch ? jp : ip]++;
- dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp;
- dest.valuePtr()[k] = it.value();
- }
- else if(r==c)
- {
- Index k = count[ip]++;
- dest.innerIndexPtr()[k] = ip;
- dest.valuePtr()[k] = it.value();
- }
- else if(( (UpLo&Lower)==Lower && r>c) || ( (UpLo&Upper)==Upper && r<c))
- {
- if(!StorageOrderMatch)
- std::swap(ip,jp);
- Index k = count[jp]++;
- dest.innerIndexPtr()[k] = ip;
- dest.valuePtr()[k] = it.value();
- k = count[ip]++;
- dest.innerIndexPtr()[k] = jp;
- dest.valuePtr()[k] = numext::conj(it.value());
- }
- }
- }
-}
-
-template<int _SrcUpLo,int _DstUpLo,typename MatrixType,int DstOrder>
-void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DstOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm)
-{
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
- SparseMatrix<Scalar,DstOrder,Index>& dest(_dest.derived());
- typedef Matrix<Index,Dynamic,1> VectorI;
- enum {
- SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor,
- StorageOrderMatch = int(SrcOrder) == int(DstOrder),
- DstUpLo = DstOrder==RowMajor ? (_DstUpLo==Upper ? Lower : Upper) : _DstUpLo,
- SrcUpLo = SrcOrder==RowMajor ? (_SrcUpLo==Upper ? Lower : Upper) : _SrcUpLo
- };
-
- Index size = mat.rows();
- VectorI count(size);
- count.setZero();
- dest.resize(size,size);
- for(Index j = 0; j<size; ++j)
- {
- Index jp = perm ? perm[j] : j;
- for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
- {
- Index i = it.index();
- if((int(SrcUpLo)==int(Lower) && i<j) || (int(SrcUpLo)==int(Upper) && i>j))
- continue;
-
- Index ip = perm ? perm[i] : i;
- count[int(DstUpLo)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
- }
- }
- dest.outerIndexPtr()[0] = 0;
- for(Index j=0; j<size; ++j)
- dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
- dest.resizeNonZeros(dest.outerIndexPtr()[size]);
- for(Index j=0; j<size; ++j)
- count[j] = dest.outerIndexPtr()[j];
-
- for(Index j = 0; j<size; ++j)
- {
-
- for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
- {
- Index i = it.index();
- if((int(SrcUpLo)==int(Lower) && i<j) || (int(SrcUpLo)==int(Upper) && i>j))
- continue;
-
- Index jp = perm ? perm[j] : j;
- Index ip = perm? perm[i] : i;
-
- Index k = count[int(DstUpLo)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
- dest.innerIndexPtr()[k] = int(DstUpLo)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp);
-
- if(!StorageOrderMatch) std::swap(ip,jp);
- if( ((int(DstUpLo)==int(Lower) && ip<jp) || (int(DstUpLo)==int(Upper) && ip>jp)))
- dest.valuePtr()[k] = numext::conj(it.value());
- else
- dest.valuePtr()[k] = it.value();
- }
- }
-}
-
-}
-
-template<typename MatrixType,int UpLo>
-class SparseSymmetricPermutationProduct
- : public EigenBase<SparseSymmetricPermutationProduct<MatrixType,UpLo> >
-{
- public:
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
- protected:
- typedef PermutationMatrix<Dynamic,Dynamic,Index> Perm;
- public:
- typedef Matrix<Index,Dynamic,1> VectorI;
- typedef typename MatrixType::Nested MatrixTypeNested;
- typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
-
- SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm)
- : m_matrix(mat), m_perm(perm)
- {}
-
- inline Index rows() const { return m_matrix.rows(); }
- inline Index cols() const { return m_matrix.cols(); }
-
- template<typename DestScalar, int Options, typename DstIndex>
- void evalTo(SparseMatrix<DestScalar,Options,DstIndex>& _dest) const
- {
-// internal::permute_symm_to_fullsymm<UpLo>(m_matrix,_dest,m_perm.indices().data());
- SparseMatrix<DestScalar,(Options&RowMajor)==RowMajor ? ColMajor : RowMajor, DstIndex> tmp;
- internal::permute_symm_to_fullsymm<UpLo>(m_matrix,tmp,m_perm.indices().data());
- _dest = tmp;
- }
-
- template<typename DestType,unsigned int DestUpLo> void evalTo(SparseSelfAdjointView<DestType,DestUpLo>& dest) const
- {
- internal::permute_symm_to_symm<UpLo,DestUpLo>(m_matrix,dest.matrix(),m_perm.indices().data());
- }
-
- protected:
- MatrixTypeNested m_matrix;
- const Perm& m_perm;
-
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H
diff --git a/src/Eigen/src/SparseCore/SparseSparseProductWithPruning.h b/src/Eigen/src/SparseCore/SparseSparseProductWithPruning.h
deleted file mode 100644
index fcc18f5..0000000
--- a/src/Eigen/src/SparseCore/SparseSparseProductWithPruning.h
+++ /dev/null
@@ -1,150 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H
-#define EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H
-
-namespace Eigen {
-
-namespace internal {
-
-
-// perform a pseudo in-place sparse * sparse product assuming all matrices are col major
-template<typename Lhs, typename Rhs, typename ResultType>
-static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res, const typename ResultType::RealScalar& tolerance)
-{
- // return sparse_sparse_product_with_pruning_impl2(lhs,rhs,res);
-
- typedef typename remove_all<Lhs>::type::Scalar Scalar;
- typedef typename remove_all<Lhs>::type::Index Index;
-
- // make sure to call innerSize/outerSize since we fake the storage order.
- Index rows = lhs.innerSize();
- Index cols = rhs.outerSize();
- //Index size = lhs.outerSize();
- eigen_assert(lhs.outerSize() == rhs.innerSize());
-
- // allocate a temporary buffer
- AmbiVector<Scalar,Index> tempVector(rows);
-
- // estimate the number of non zero entries
- // given a rhs column containing Y non zeros, we assume that the respective Y columns
- // of the lhs differs in average of one non zeros, thus the number of non zeros for
- // the product of a rhs column with the lhs is X+Y where X is the average number of non zero
- // per column of the lhs.
- // Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs)
- Index estimated_nnz_prod = lhs.nonZeros() + rhs.nonZeros();
-
- // mimics a resizeByInnerOuter:
- if(ResultType::IsRowMajor)
- res.resize(cols, rows);
- else
- res.resize(rows, cols);
-
- res.reserve(estimated_nnz_prod);
- double ratioColRes = double(estimated_nnz_prod)/double(lhs.rows()*rhs.cols());
- for (Index j=0; j<cols; ++j)
- {
- // FIXME:
- //double ratioColRes = (double(rhs.innerVector(j).nonZeros()) + double(lhs.nonZeros())/double(lhs.cols()))/double(lhs.rows());
- // let's do a more accurate determination of the nnz ratio for the current column j of res
- tempVector.init(ratioColRes);
- tempVector.setZero();
- for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
- {
- // FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
- tempVector.restart();
- Scalar x = rhsIt.value();
- for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
- {
- tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x;
- }
- }
- res.startVec(j);
- for (typename AmbiVector<Scalar,Index>::Iterator it(tempVector,tolerance); it; ++it)
- res.insertBackByOuterInner(j,it.index()) = it.value();
- }
- res.finalize();
-}
-
-template<typename Lhs, typename Rhs, typename ResultType,
- int LhsStorageOrder = traits<Lhs>::Flags&RowMajorBit,
- int RhsStorageOrder = traits<Rhs>::Flags&RowMajorBit,
- int ResStorageOrder = traits<ResultType>::Flags&RowMajorBit>
-struct sparse_sparse_product_with_pruning_selector;
-
-template<typename Lhs, typename Rhs, typename ResultType>
-struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
-{
- typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;
- typedef typename ResultType::RealScalar RealScalar;
-
- static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
- {
- typename remove_all<ResultType>::type _res(res.rows(), res.cols());
- internal::sparse_sparse_product_with_pruning_impl<Lhs,Rhs,ResultType>(lhs, rhs, _res, tolerance);
- res.swap(_res);
- }
-};
-
-template<typename Lhs, typename Rhs, typename ResultType>
-struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
-{
- typedef typename ResultType::RealScalar RealScalar;
- static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
- {
- // we need a col-major matrix to hold the result
- typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> SparseTemporaryType;
- SparseTemporaryType _res(res.rows(), res.cols());
- internal::sparse_sparse_product_with_pruning_impl<Lhs,Rhs,SparseTemporaryType>(lhs, rhs, _res, tolerance);
- res = _res;
- }
-};
-
-template<typename Lhs, typename Rhs, typename ResultType>
-struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
-{
- typedef typename ResultType::RealScalar RealScalar;
- static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
- {
- // let's transpose the product to get a column x column product
- typename remove_all<ResultType>::type _res(res.rows(), res.cols());
- internal::sparse_sparse_product_with_pruning_impl<Rhs,Lhs,ResultType>(rhs, lhs, _res, tolerance);
- res.swap(_res);
- }
-};
-
-template<typename Lhs, typename Rhs, typename ResultType>
-struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
-{
- typedef typename ResultType::RealScalar RealScalar;
- static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
- {
- typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename Lhs::Index> ColMajorMatrixLhs;
- typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename Lhs::Index> ColMajorMatrixRhs;
- ColMajorMatrixLhs colLhs(lhs);
- ColMajorMatrixRhs colRhs(rhs);
- internal::sparse_sparse_product_with_pruning_impl<ColMajorMatrixLhs,ColMajorMatrixRhs,ResultType>(colLhs, colRhs, res, tolerance);
-
- // let's transpose the product to get a column x column product
-// typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
-// SparseTemporaryType _res(res.cols(), res.rows());
-// sparse_sparse_product_with_pruning_impl<Rhs,Lhs,SparseTemporaryType>(rhs, lhs, _res);
-// res = _res.transpose();
- }
-};
-
-// NOTE the 2 others cases (col row *) must never occur since they are caught
-// by ProductReturnType which transforms it to (col col *) by evaluating rhs.
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H
diff --git a/src/Eigen/src/SparseCore/SparseTranspose.h b/src/Eigen/src/SparseCore/SparseTranspose.h
deleted file mode 100644
index 76d031d..0000000
--- a/src/Eigen/src/SparseCore/SparseTranspose.h
+++ /dev/null
@@ -1,63 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSETRANSPOSE_H
-#define EIGEN_SPARSETRANSPOSE_H
-
-namespace Eigen {
-
-template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>
- : public SparseMatrixBase<Transpose<MatrixType> >
-{
- typedef typename internal::remove_all<typename MatrixType::Nested>::type _MatrixTypeNested;
- public:
-
- EIGEN_SPARSE_PUBLIC_INTERFACE(Transpose<MatrixType> )
-
- class InnerIterator;
- class ReverseInnerIterator;
-
- inline Index nonZeros() const { return derived().nestedExpression().nonZeros(); }
-};
-
-// NOTE: VC10 and VC11 trigger an ICE if don't put typename TransposeImpl<MatrixType,Sparse>:: in front of Index,
-// a typedef typename TransposeImpl<MatrixType,Sparse>::Index Index;
-// does not fix the issue.
-// An alternative is to define the nested class in the parent class itself.
-template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>::InnerIterator
- : public _MatrixTypeNested::InnerIterator
-{
- typedef typename _MatrixTypeNested::InnerIterator Base;
- typedef typename TransposeImpl::Index Index;
- public:
-
- EIGEN_STRONG_INLINE InnerIterator(const TransposeImpl& trans, typename TransposeImpl<MatrixType,Sparse>::Index outer)
- : Base(trans.derived().nestedExpression(), outer)
- {}
- typename TransposeImpl<MatrixType,Sparse>::Index row() const { return Base::col(); }
- typename TransposeImpl<MatrixType,Sparse>::Index col() const { return Base::row(); }
-};
-
-template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>::ReverseInnerIterator
- : public _MatrixTypeNested::ReverseInnerIterator
-{
- typedef typename _MatrixTypeNested::ReverseInnerIterator Base;
- typedef typename TransposeImpl::Index Index;
- public:
-
- EIGEN_STRONG_INLINE ReverseInnerIterator(const TransposeImpl& xpr, typename TransposeImpl<MatrixType,Sparse>::Index outer)
- : Base(xpr.derived().nestedExpression(), outer)
- {}
- typename TransposeImpl<MatrixType,Sparse>::Index row() const { return Base::col(); }
- typename TransposeImpl<MatrixType,Sparse>::Index col() const { return Base::row(); }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSETRANSPOSE_H
diff --git a/src/Eigen/src/SparseCore/SparseTriangularView.h b/src/Eigen/src/SparseCore/SparseTriangularView.h
deleted file mode 100644
index 333127b..0000000
--- a/src/Eigen/src/SparseCore/SparseTriangularView.h
+++ /dev/null
@@ -1,179 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSE_TRIANGULARVIEW_H
-#define EIGEN_SPARSE_TRIANGULARVIEW_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename MatrixType, int Mode>
-struct traits<SparseTriangularView<MatrixType,Mode> >
-: public traits<MatrixType>
-{};
-
-} // namespace internal
-
-template<typename MatrixType, int Mode> class SparseTriangularView
- : public SparseMatrixBase<SparseTriangularView<MatrixType,Mode> >
-{
- enum { SkipFirst = ((Mode&Lower) && !(MatrixType::Flags&RowMajorBit))
- || ((Mode&Upper) && (MatrixType::Flags&RowMajorBit)),
- SkipLast = !SkipFirst,
- SkipDiag = (Mode&ZeroDiag) ? 1 : 0,
- HasUnitDiag = (Mode&UnitDiag) ? 1 : 0
- };
-
- public:
-
- EIGEN_SPARSE_PUBLIC_INTERFACE(SparseTriangularView)
-
- class InnerIterator;
- class ReverseInnerIterator;
-
- inline Index rows() const { return m_matrix.rows(); }
- inline Index cols() const { return m_matrix.cols(); }
-
- typedef typename MatrixType::Nested MatrixTypeNested;
- typedef typename internal::remove_reference<MatrixTypeNested>::type MatrixTypeNestedNonRef;
- typedef typename internal::remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
-
- inline SparseTriangularView(const MatrixType& matrix) : m_matrix(matrix) {}
-
- /** \internal */
- inline const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; }
-
- template<typename OtherDerived>
- typename internal::plain_matrix_type_column_major<OtherDerived>::type
- solve(const MatrixBase<OtherDerived>& other) const;
-
- template<typename OtherDerived> void solveInPlace(MatrixBase<OtherDerived>& other) const;
- template<typename OtherDerived> void solveInPlace(SparseMatrixBase<OtherDerived>& other) const;
-
- protected:
- MatrixTypeNested m_matrix;
-};
-
-template<typename MatrixType, int Mode>
-class SparseTriangularView<MatrixType,Mode>::InnerIterator : public MatrixTypeNestedCleaned::InnerIterator
-{
- typedef typename MatrixTypeNestedCleaned::InnerIterator Base;
- typedef typename SparseTriangularView::Index Index;
- public:
-
- EIGEN_STRONG_INLINE InnerIterator(const SparseTriangularView& view, Index outer)
- : Base(view.nestedExpression(), outer), m_returnOne(false)
- {
- if(SkipFirst)
- {
- while((*this) && ((HasUnitDiag||SkipDiag) ? this->index()<=outer : this->index()<outer))
- Base::operator++();
- if(HasUnitDiag)
- m_returnOne = true;
- }
- else if(HasUnitDiag && ((!Base::operator bool()) || Base::index()>=Base::outer()))
- {
- if((!SkipFirst) && Base::operator bool())
- Base::operator++();
- m_returnOne = true;
- }
- }
-
- EIGEN_STRONG_INLINE InnerIterator& operator++()
- {
- if(HasUnitDiag && m_returnOne)
- m_returnOne = false;
- else
- {
- Base::operator++();
- if(HasUnitDiag && (!SkipFirst) && ((!Base::operator bool()) || Base::index()>=Base::outer()))
- {
- if((!SkipFirst) && Base::operator bool())
- Base::operator++();
- m_returnOne = true;
- }
- }
- return *this;
- }
-
- inline Index row() const { return (MatrixType::Flags&RowMajorBit ? Base::outer() : this->index()); }
- inline Index col() const { return (MatrixType::Flags&RowMajorBit ? this->index() : Base::outer()); }
- inline Index index() const
- {
- if(HasUnitDiag && m_returnOne) return Base::outer();
- else return Base::index();
- }
- inline Scalar value() const
- {
- if(HasUnitDiag && m_returnOne) return Scalar(1);
- else return Base::value();
- }
-
- EIGEN_STRONG_INLINE operator bool() const
- {
- if(HasUnitDiag && m_returnOne)
- return true;
- if(SkipFirst) return Base::operator bool();
- else
- {
- if (SkipDiag) return (Base::operator bool() && this->index() < this->outer());
- else return (Base::operator bool() && this->index() <= this->outer());
- }
- }
- protected:
- bool m_returnOne;
-};
-
-template<typename MatrixType, int Mode>
-class SparseTriangularView<MatrixType,Mode>::ReverseInnerIterator : public MatrixTypeNestedCleaned::ReverseInnerIterator
-{
- typedef typename MatrixTypeNestedCleaned::ReverseInnerIterator Base;
- typedef typename SparseTriangularView::Index Index;
- public:
-
- EIGEN_STRONG_INLINE ReverseInnerIterator(const SparseTriangularView& view, Index outer)
- : Base(view.nestedExpression(), outer)
- {
- eigen_assert((!HasUnitDiag) && "ReverseInnerIterator does not support yet triangular views with a unit diagonal");
- if(SkipLast) {
- while((*this) && (SkipDiag ? this->index()>=outer : this->index()>outer))
- --(*this);
- }
- }
-
- EIGEN_STRONG_INLINE ReverseInnerIterator& operator--()
- { Base::operator--(); return *this; }
-
- inline Index row() const { return Base::row(); }
- inline Index col() const { return Base::col(); }
-
- EIGEN_STRONG_INLINE operator bool() const
- {
- if (SkipLast) return Base::operator bool() ;
- else
- {
- if(SkipDiag) return (Base::operator bool() && this->index() > this->outer());
- else return (Base::operator bool() && this->index() >= this->outer());
- }
- }
-};
-
-template<typename Derived>
-template<int Mode>
-inline const SparseTriangularView<Derived, Mode>
-SparseMatrixBase<Derived>::triangularView() const
-{
- return derived();
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSE_TRIANGULARVIEW_H
diff --git a/src/Eigen/src/SparseCore/SparseUtil.h b/src/Eigen/src/SparseCore/SparseUtil.h
deleted file mode 100644
index 0ba4713..0000000
--- a/src/Eigen/src/SparseCore/SparseUtil.h
+++ /dev/null
@@ -1,173 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSEUTIL_H
-#define EIGEN_SPARSEUTIL_H
-
-namespace Eigen {
-
-#ifdef NDEBUG
-#define EIGEN_DBG_SPARSE(X)
-#else
-#define EIGEN_DBG_SPARSE(X) X
-#endif
-
-#define EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(Derived, Op) \
-template<typename OtherDerived> \
-EIGEN_STRONG_INLINE Derived& operator Op(const Eigen::SparseMatrixBase<OtherDerived>& other) \
-{ \
- return Base::operator Op(other.derived()); \
-} \
-EIGEN_STRONG_INLINE Derived& operator Op(const Derived& other) \
-{ \
- return Base::operator Op(other); \
-}
-
-#define EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, Op) \
-template<typename Other> \
-EIGEN_STRONG_INLINE Derived& operator Op(const Other& scalar) \
-{ \
- return Base::operator Op(scalar); \
-}
-
-#define EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATORS(Derived) \
-EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(Derived, =) \
-EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(Derived, +=) \
-EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(Derived, -=) \
-EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, *=) \
-EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, /=)
-
-#define _EIGEN_SPARSE_PUBLIC_INTERFACE(Derived, BaseClass) \
- typedef BaseClass Base; \
- typedef typename Eigen::internal::traits<Derived >::Scalar Scalar; \
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; \
- typedef typename Eigen::internal::nested<Derived >::type Nested; \
- typedef typename Eigen::internal::traits<Derived >::StorageKind StorageKind; \
- typedef typename Eigen::internal::traits<Derived >::Index Index; \
- enum { RowsAtCompileTime = Eigen::internal::traits<Derived >::RowsAtCompileTime, \
- ColsAtCompileTime = Eigen::internal::traits<Derived >::ColsAtCompileTime, \
- Flags = Eigen::internal::traits<Derived >::Flags, \
- CoeffReadCost = Eigen::internal::traits<Derived >::CoeffReadCost, \
- SizeAtCompileTime = Base::SizeAtCompileTime, \
- IsVectorAtCompileTime = Base::IsVectorAtCompileTime }; \
- using Base::derived; \
- using Base::const_cast_derived;
-
-#define EIGEN_SPARSE_PUBLIC_INTERFACE(Derived) \
- _EIGEN_SPARSE_PUBLIC_INTERFACE(Derived, Eigen::SparseMatrixBase<Derived >)
-
-const int CoherentAccessPattern = 0x1;
-const int InnerRandomAccessPattern = 0x2 | CoherentAccessPattern;
-const int OuterRandomAccessPattern = 0x4 | CoherentAccessPattern;
-const int RandomAccessPattern = 0x8 | OuterRandomAccessPattern | InnerRandomAccessPattern;
-
-template<typename Derived> class SparseMatrixBase;
-template<typename _Scalar, int _Flags = 0, typename _Index = int> class SparseMatrix;
-template<typename _Scalar, int _Flags = 0, typename _Index = int> class DynamicSparseMatrix;
-template<typename _Scalar, int _Flags = 0, typename _Index = int> class SparseVector;
-template<typename _Scalar, int _Flags = 0, typename _Index = int> class MappedSparseMatrix;
-
-template<typename MatrixType, int Mode> class SparseTriangularView;
-template<typename MatrixType, unsigned int UpLo> class SparseSelfAdjointView;
-template<typename Lhs, typename Rhs> class SparseDiagonalProduct;
-template<typename MatrixType> class SparseView;
-
-template<typename Lhs, typename Rhs> class SparseSparseProduct;
-template<typename Lhs, typename Rhs> class SparseTimeDenseProduct;
-template<typename Lhs, typename Rhs> class DenseTimeSparseProduct;
-template<typename Lhs, typename Rhs, bool Transpose> class SparseDenseOuterProduct;
-
-template<typename Lhs, typename Rhs> struct SparseSparseProductReturnType;
-template<typename Lhs, typename Rhs,
- int InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(internal::traits<Lhs>::ColsAtCompileTime,internal::traits<Rhs>::RowsAtCompileTime)> struct DenseSparseProductReturnType;
-template<typename Lhs, typename Rhs,
- int InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(internal::traits<Lhs>::ColsAtCompileTime,internal::traits<Rhs>::RowsAtCompileTime)> struct SparseDenseProductReturnType;
-template<typename MatrixType,int UpLo> class SparseSymmetricPermutationProduct;
-
-namespace internal {
-
-template<typename T,int Rows,int Cols> struct sparse_eval;
-
-template<typename T> struct eval<T,Sparse>
- : public sparse_eval<T, traits<T>::RowsAtCompileTime,traits<T>::ColsAtCompileTime>
-{};
-
-template<typename T,int Cols> struct sparse_eval<T,1,Cols> {
- typedef typename traits<T>::Scalar _Scalar;
- typedef typename traits<T>::Index _Index;
- public:
- typedef SparseVector<_Scalar, RowMajor, _Index> type;
-};
-
-template<typename T,int Rows> struct sparse_eval<T,Rows,1> {
- typedef typename traits<T>::Scalar _Scalar;
- typedef typename traits<T>::Index _Index;
- public:
- typedef SparseVector<_Scalar, ColMajor, _Index> type;
-};
-
-template<typename T,int Rows,int Cols> struct sparse_eval {
- typedef typename traits<T>::Scalar _Scalar;
- typedef typename traits<T>::Index _Index;
- enum { _Options = ((traits<T>::Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor };
- public:
- typedef SparseMatrix<_Scalar, _Options, _Index> type;
-};
-
-template<typename T> struct sparse_eval<T,1,1> {
- typedef typename traits<T>::Scalar _Scalar;
- public:
- typedef Matrix<_Scalar, 1, 1> type;
-};
-
-template<typename T> struct plain_matrix_type<T,Sparse>
-{
- typedef typename traits<T>::Scalar _Scalar;
- typedef typename traits<T>::Index _Index;
- enum { _Options = ((traits<T>::Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor };
- public:
- typedef SparseMatrix<_Scalar, _Options, _Index> type;
-};
-
-} // end namespace internal
-
-/** \ingroup SparseCore_Module
- *
- * \class Triplet
- *
- * \brief A small structure to hold a non zero as a triplet (i,j,value).
- *
- * \sa SparseMatrix::setFromTriplets()
- */
-template<typename Scalar, typename Index=typename SparseMatrix<Scalar>::Index >
-class Triplet
-{
-public:
- Triplet() : m_row(0), m_col(0), m_value(0) {}
-
- Triplet(const Index& i, const Index& j, const Scalar& v = Scalar(0))
- : m_row(i), m_col(j), m_value(v)
- {}
-
- /** \returns the row index of the element */
- const Index& row() const { return m_row; }
-
- /** \returns the column index of the element */
- const Index& col() const { return m_col; }
-
- /** \returns the value of the element */
- const Scalar& value() const { return m_value; }
-protected:
- Index m_row, m_col;
- Scalar m_value;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSEUTIL_H
diff --git a/src/Eigen/src/SparseCore/SparseVector.h b/src/Eigen/src/SparseCore/SparseVector.h
deleted file mode 100644
index 7e15c81..0000000
--- a/src/Eigen/src/SparseCore/SparseVector.h
+++ /dev/null
@@ -1,447 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSEVECTOR_H
-#define EIGEN_SPARSEVECTOR_H
-
-namespace Eigen {
-
-/** \ingroup SparseCore_Module
- * \class SparseVector
- *
- * \brief a sparse vector class
- *
- * \tparam _Scalar the scalar type, i.e. the type of the coefficients
- *
- * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
- *
- * This class can be extended with the help of the plugin mechanism described on the page
- * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEVECTOR_PLUGIN.
- */
-
-namespace internal {
-template<typename _Scalar, int _Options, typename _Index>
-struct traits<SparseVector<_Scalar, _Options, _Index> >
-{
- typedef _Scalar Scalar;
- typedef _Index Index;
- typedef Sparse StorageKind;
- typedef MatrixXpr XprKind;
- enum {
- IsColVector = (_Options & RowMajorBit) ? 0 : 1,
-
- RowsAtCompileTime = IsColVector ? Dynamic : 1,
- ColsAtCompileTime = IsColVector ? 1 : Dynamic,
- MaxRowsAtCompileTime = RowsAtCompileTime,
- MaxColsAtCompileTime = ColsAtCompileTime,
- Flags = _Options | NestByRefBit | LvalueBit | (IsColVector ? 0 : RowMajorBit),
- CoeffReadCost = NumTraits<Scalar>::ReadCost,
- SupportedAccessPatterns = InnerRandomAccessPattern
- };
-};
-
-// Sparse-Vector-Assignment kinds:
-enum {
- SVA_RuntimeSwitch,
- SVA_Inner,
- SVA_Outer
-};
-
-template< typename Dest, typename Src,
- int AssignmentKind = !bool(Src::IsVectorAtCompileTime) ? SVA_RuntimeSwitch
- : Src::InnerSizeAtCompileTime==1 ? SVA_Outer
- : SVA_Inner>
-struct sparse_vector_assign_selector;
-
-}
-
-template<typename _Scalar, int _Options, typename _Index>
-class SparseVector
- : public SparseMatrixBase<SparseVector<_Scalar, _Options, _Index> >
-{
- typedef SparseMatrixBase<SparseVector> SparseBase;
-
- public:
- EIGEN_SPARSE_PUBLIC_INTERFACE(SparseVector)
- EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, +=)
- EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, -=)
-
- typedef internal::CompressedStorage<Scalar,Index> Storage;
- enum { IsColVector = internal::traits<SparseVector>::IsColVector };
-
- enum {
- Options = _Options
- };
-
- EIGEN_STRONG_INLINE Index rows() const { return IsColVector ? m_size : 1; }
- EIGEN_STRONG_INLINE Index cols() const { return IsColVector ? 1 : m_size; }
- EIGEN_STRONG_INLINE Index innerSize() const { return m_size; }
- EIGEN_STRONG_INLINE Index outerSize() const { return 1; }
-
- EIGEN_STRONG_INLINE const Scalar* valuePtr() const { return &m_data.value(0); }
- EIGEN_STRONG_INLINE Scalar* valuePtr() { return &m_data.value(0); }
-
- EIGEN_STRONG_INLINE const Index* innerIndexPtr() const { return &m_data.index(0); }
- EIGEN_STRONG_INLINE Index* innerIndexPtr() { return &m_data.index(0); }
-
- /** \internal */
- inline Storage& data() { return m_data; }
- /** \internal */
- inline const Storage& data() const { return m_data; }
-
- inline Scalar coeff(Index row, Index col) const
- {
- eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size));
- return coeff(IsColVector ? row : col);
- }
- inline Scalar coeff(Index i) const
- {
- eigen_assert(i>=0 && i<m_size);
- return m_data.at(i);
- }
-
- inline Scalar& coeffRef(Index row, Index col)
- {
- eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size));
- return coeff(IsColVector ? row : col);
- }
-
- /** \returns a reference to the coefficient value at given index \a i
- * This operation involes a log(rho*size) binary search. If the coefficient does not
- * exist yet, then a sorted insertion into a sequential buffer is performed.
- *
- * This insertion might be very costly if the number of nonzeros above \a i is large.
- */
- inline Scalar& coeffRef(Index i)
- {
- eigen_assert(i>=0 && i<m_size);
- return m_data.atWithInsertion(i);
- }
-
- public:
-
- class InnerIterator;
- class ReverseInnerIterator;
-
- inline void setZero() { m_data.clear(); }
-
- /** \returns the number of non zero coefficients */
- inline Index nonZeros() const { return static_cast<Index>(m_data.size()); }
-
- inline void startVec(Index outer)
- {
- EIGEN_UNUSED_VARIABLE(outer);
- eigen_assert(outer==0);
- }
-
- inline Scalar& insertBackByOuterInner(Index outer, Index inner)
- {
- EIGEN_UNUSED_VARIABLE(outer);
- eigen_assert(outer==0);
- return insertBack(inner);
- }
- inline Scalar& insertBack(Index i)
- {
- m_data.append(0, i);
- return m_data.value(m_data.size()-1);
- }
-
- inline Scalar& insert(Index row, Index col)
- {
- eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size));
-
- Index inner = IsColVector ? row : col;
- Index outer = IsColVector ? col : row;
- eigen_assert(outer==0);
- return insert(inner);
- }
- Scalar& insert(Index i)
- {
- eigen_assert(i>=0 && i<m_size);
-
- Index startId = 0;
- Index p = Index(m_data.size()) - 1;
- // TODO smart realloc
- m_data.resize(p+2,1);
-
- while ( (p >= startId) && (m_data.index(p) > i) )
- {
- m_data.index(p+1) = m_data.index(p);
- m_data.value(p+1) = m_data.value(p);
- --p;
- }
- m_data.index(p+1) = i;
- m_data.value(p+1) = 0;
- return m_data.value(p+1);
- }
-
- /**
- */
- inline void reserve(Index reserveSize) { m_data.reserve(reserveSize); }
-
-
- inline void finalize() {}
-
- void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
- {
- m_data.prune(reference,epsilon);
- }
-
- void resize(Index rows, Index cols)
- {
- eigen_assert(rows==1 || cols==1);
- resize(IsColVector ? rows : cols);
- }
-
- void resize(Index newSize)
- {
- m_size = newSize;
- m_data.clear();
- }
-
- void resizeNonZeros(Index size) { m_data.resize(size); }
-
- inline SparseVector() : m_size(0) { check_template_parameters(); resize(0); }
-
- inline SparseVector(Index size) : m_size(0) { check_template_parameters(); resize(size); }
-
- inline SparseVector(Index rows, Index cols) : m_size(0) { check_template_parameters(); resize(rows,cols); }
-
- template<typename OtherDerived>
- inline SparseVector(const SparseMatrixBase<OtherDerived>& other)
- : m_size(0)
- {
- check_template_parameters();
- *this = other.derived();
- }
-
- inline SparseVector(const SparseVector& other)
- : SparseBase(other), m_size(0)
- {
- check_template_parameters();
- *this = other.derived();
- }
-
- /** Swaps the values of \c *this and \a other.
- * Overloaded for performance: this version performs a \em shallow swap by swaping pointers and attributes only.
- * \sa SparseMatrixBase::swap()
- */
- inline void swap(SparseVector& other)
- {
- std::swap(m_size, other.m_size);
- m_data.swap(other.m_data);
- }
-
- inline SparseVector& operator=(const SparseVector& other)
- {
- if (other.isRValue())
- {
- swap(other.const_cast_derived());
- }
- else
- {
- resize(other.size());
- m_data = other.m_data;
- }
- return *this;
- }
-
- template<typename OtherDerived>
- inline SparseVector& operator=(const SparseMatrixBase<OtherDerived>& other)
- {
- SparseVector tmp(other.size());
- internal::sparse_vector_assign_selector<SparseVector,OtherDerived>::run(tmp,other.derived());
- this->swap(tmp);
- return *this;
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename Lhs, typename Rhs>
- inline SparseVector& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
- {
- return Base::operator=(product);
- }
- #endif
-
- friend std::ostream & operator << (std::ostream & s, const SparseVector& m)
- {
- for (Index i=0; i<m.nonZeros(); ++i)
- s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
- s << std::endl;
- return s;
- }
-
- /** Destructor */
- inline ~SparseVector() {}
-
- /** Overloaded for performance */
- Scalar sum() const;
-
- public:
-
- /** \internal \deprecated use setZero() and reserve() */
- EIGEN_DEPRECATED void startFill(Index reserve)
- {
- setZero();
- m_data.reserve(reserve);
- }
-
- /** \internal \deprecated use insertBack(Index,Index) */
- EIGEN_DEPRECATED Scalar& fill(Index r, Index c)
- {
- eigen_assert(r==0 || c==0);
- return fill(IsColVector ? r : c);
- }
-
- /** \internal \deprecated use insertBack(Index) */
- EIGEN_DEPRECATED Scalar& fill(Index i)
- {
- m_data.append(0, i);
- return m_data.value(m_data.size()-1);
- }
-
- /** \internal \deprecated use insert(Index,Index) */
- EIGEN_DEPRECATED Scalar& fillrand(Index r, Index c)
- {
- eigen_assert(r==0 || c==0);
- return fillrand(IsColVector ? r : c);
- }
-
- /** \internal \deprecated use insert(Index) */
- EIGEN_DEPRECATED Scalar& fillrand(Index i)
- {
- return insert(i);
- }
-
- /** \internal \deprecated use finalize() */
- EIGEN_DEPRECATED void endFill() {}
-
- // These two functions were here in the 3.1 release, so let's keep them in case some code rely on them.
- /** \internal \deprecated use data() */
- EIGEN_DEPRECATED Storage& _data() { return m_data; }
- /** \internal \deprecated use data() */
- EIGEN_DEPRECATED const Storage& _data() const { return m_data; }
-
-# ifdef EIGEN_SPARSEVECTOR_PLUGIN
-# include EIGEN_SPARSEVECTOR_PLUGIN
-# endif
-
-protected:
-
- static void check_template_parameters()
- {
- EIGEN_STATIC_ASSERT(NumTraits<Index>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
- EIGEN_STATIC_ASSERT((_Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS);
- }
-
- Storage m_data;
- Index m_size;
-};
-
-template<typename Scalar, int _Options, typename _Index>
-class SparseVector<Scalar,_Options,_Index>::InnerIterator
-{
- public:
- InnerIterator(const SparseVector& vec, Index outer=0)
- : m_data(vec.m_data), m_id(0), m_end(static_cast<Index>(m_data.size()))
- {
- EIGEN_UNUSED_VARIABLE(outer);
- eigen_assert(outer==0);
- }
-
- InnerIterator(const internal::CompressedStorage<Scalar,Index>& data)
- : m_data(data), m_id(0), m_end(static_cast<Index>(m_data.size()))
- {}
-
- inline InnerIterator& operator++() { m_id++; return *this; }
-
- inline Scalar value() const { return m_data.value(m_id); }
- inline Scalar& valueRef() { return const_cast<Scalar&>(m_data.value(m_id)); }
-
- inline Index index() const { return m_data.index(m_id); }
- inline Index row() const { return IsColVector ? index() : 0; }
- inline Index col() const { return IsColVector ? 0 : index(); }
-
- inline operator bool() const { return (m_id < m_end); }
-
- protected:
- const internal::CompressedStorage<Scalar,Index>& m_data;
- Index m_id;
- const Index m_end;
-};
-
-template<typename Scalar, int _Options, typename _Index>
-class SparseVector<Scalar,_Options,_Index>::ReverseInnerIterator
-{
- public:
- ReverseInnerIterator(const SparseVector& vec, Index outer=0)
- : m_data(vec.m_data), m_id(static_cast<Index>(m_data.size())), m_start(0)
- {
- EIGEN_UNUSED_VARIABLE(outer);
- eigen_assert(outer==0);
- }
-
- ReverseInnerIterator(const internal::CompressedStorage<Scalar,Index>& data)
- : m_data(data), m_id(static_cast<Index>(m_data.size())), m_start(0)
- {}
-
- inline ReverseInnerIterator& operator--() { m_id--; return *this; }
-
- inline Scalar value() const { return m_data.value(m_id-1); }
- inline Scalar& valueRef() { return const_cast<Scalar&>(m_data.value(m_id-1)); }
-
- inline Index index() const { return m_data.index(m_id-1); }
- inline Index row() const { return IsColVector ? index() : 0; }
- inline Index col() const { return IsColVector ? 0 : index(); }
-
- inline operator bool() const { return (m_id > m_start); }
-
- protected:
- const internal::CompressedStorage<Scalar,Index>& m_data;
- Index m_id;
- const Index m_start;
-};
-
-namespace internal {
-
-template< typename Dest, typename Src>
-struct sparse_vector_assign_selector<Dest,Src,SVA_Inner> {
- static void run(Dest& dst, const Src& src) {
- eigen_internal_assert(src.innerSize()==src.size());
- for(typename Src::InnerIterator it(src, 0); it; ++it)
- dst.insert(it.index()) = it.value();
- }
-};
-
-template< typename Dest, typename Src>
-struct sparse_vector_assign_selector<Dest,Src,SVA_Outer> {
- static void run(Dest& dst, const Src& src) {
- eigen_internal_assert(src.outerSize()==src.size());
- for(typename Dest::Index i=0; i<src.size(); ++i)
- {
- typename Src::InnerIterator it(src, i);
- if(it)
- dst.insert(i) = it.value();
- }
- }
-};
-
-template< typename Dest, typename Src>
-struct sparse_vector_assign_selector<Dest,Src,SVA_RuntimeSwitch> {
- static void run(Dest& dst, const Src& src) {
- if(src.outerSize()==1) sparse_vector_assign_selector<Dest,Src,SVA_Inner>::run(dst, src);
- else sparse_vector_assign_selector<Dest,Src,SVA_Outer>::run(dst, src);
- }
-};
-
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSEVECTOR_H
diff --git a/src/Eigen/src/SparseCore/SparseView.h b/src/Eigen/src/SparseCore/SparseView.h
deleted file mode 100644
index fd84504..0000000
--- a/src/Eigen/src/SparseCore/SparseView.h
+++ /dev/null
@@ -1,99 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2010 Daniel Lowengrub <lowdanie@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSEVIEW_H
-#define EIGEN_SPARSEVIEW_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename MatrixType>
-struct traits<SparseView<MatrixType> > : traits<MatrixType>
-{
- typedef typename MatrixType::Index Index;
- typedef Sparse StorageKind;
- enum {
- Flags = int(traits<MatrixType>::Flags) & (RowMajorBit)
- };
-};
-
-} // end namespace internal
-
-template<typename MatrixType>
-class SparseView : public SparseMatrixBase<SparseView<MatrixType> >
-{
- typedef typename MatrixType::Nested MatrixTypeNested;
- typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
-public:
- EIGEN_SPARSE_PUBLIC_INTERFACE(SparseView)
-
- SparseView(const MatrixType& mat, const Scalar& m_reference = Scalar(0),
- typename NumTraits<Scalar>::Real m_epsilon = NumTraits<Scalar>::dummy_precision()) :
- m_matrix(mat), m_reference(m_reference), m_epsilon(m_epsilon) {}
-
- class InnerIterator;
-
- inline Index rows() const { return m_matrix.rows(); }
- inline Index cols() const { return m_matrix.cols(); }
-
- inline Index innerSize() const { return m_matrix.innerSize(); }
- inline Index outerSize() const { return m_matrix.outerSize(); }
-
-protected:
- MatrixTypeNested m_matrix;
- Scalar m_reference;
- typename NumTraits<Scalar>::Real m_epsilon;
-};
-
-template<typename MatrixType>
-class SparseView<MatrixType>::InnerIterator : public _MatrixTypeNested::InnerIterator
-{
- typedef typename SparseView::Index Index;
-public:
- typedef typename _MatrixTypeNested::InnerIterator IterBase;
- InnerIterator(const SparseView& view, Index outer) :
- IterBase(view.m_matrix, outer), m_view(view)
- {
- incrementToNonZero();
- }
-
- EIGEN_STRONG_INLINE InnerIterator& operator++()
- {
- IterBase::operator++();
- incrementToNonZero();
- return *this;
- }
-
- using IterBase::value;
-
-protected:
- const SparseView& m_view;
-
-private:
- void incrementToNonZero()
- {
- while((bool(*this)) && internal::isMuchSmallerThan(value(), m_view.m_reference, m_view.m_epsilon))
- {
- IterBase::operator++();
- }
- }
-};
-
-template<typename Derived>
-const SparseView<Derived> MatrixBase<Derived>::sparseView(const Scalar& m_reference,
- const typename NumTraits<Scalar>::Real& m_epsilon) const
-{
- return SparseView<Derived>(derived(), m_reference, m_epsilon);
-}
-
-} // end namespace Eigen
-
-#endif
diff --git a/src/Eigen/src/SparseCore/TriangularSolver.h b/src/Eigen/src/SparseCore/TriangularSolver.h
deleted file mode 100644
index cb8ad82..0000000
--- a/src/Eigen/src/SparseCore/TriangularSolver.h
+++ /dev/null
@@ -1,334 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSETRIANGULARSOLVER_H
-#define EIGEN_SPARSETRIANGULARSOLVER_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename Lhs, typename Rhs, int Mode,
- int UpLo = (Mode & Lower)
- ? Lower
- : (Mode & Upper)
- ? Upper
- : -1,
- int StorageOrder = int(traits<Lhs>::Flags) & RowMajorBit>
-struct sparse_solve_triangular_selector;
-
-// forward substitution, row-major
-template<typename Lhs, typename Rhs, int Mode>
-struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Lower,RowMajor>
-{
- typedef typename Rhs::Scalar Scalar;
- static void run(const Lhs& lhs, Rhs& other)
- {
- for(int col=0 ; col<other.cols() ; ++col)
- {
- for(int i=0; i<lhs.rows(); ++i)
- {
- Scalar tmp = other.coeff(i,col);
- Scalar lastVal(0);
- int lastIndex = 0;
- for(typename Lhs::InnerIterator it(lhs, i); it; ++it)
- {
- lastVal = it.value();
- lastIndex = it.index();
- if(lastIndex==i)
- break;
- tmp -= lastVal * other.coeff(lastIndex,col);
- }
- if (Mode & UnitDiag)
- other.coeffRef(i,col) = tmp;
- else
- {
- eigen_assert(lastIndex==i);
- other.coeffRef(i,col) = tmp/lastVal;
- }
- }
- }
- }
-};
-
-// backward substitution, row-major
-template<typename Lhs, typename Rhs, int Mode>
-struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Upper,RowMajor>
-{
- typedef typename Rhs::Scalar Scalar;
- static void run(const Lhs& lhs, Rhs& other)
- {
- for(int col=0 ; col<other.cols() ; ++col)
- {
- for(int i=lhs.rows()-1 ; i>=0 ; --i)
- {
- Scalar tmp = other.coeff(i,col);
- Scalar l_ii = 0;
- typename Lhs::InnerIterator it(lhs, i);
- while(it && it.index()<i)
- ++it;
- if(!(Mode & UnitDiag))
- {
- eigen_assert(it && it.index()==i);
- l_ii = it.value();
- ++it;
- }
- else if (it && it.index() == i)
- ++it;
- for(; it; ++it)
- {
- tmp -= it.value() * other.coeff(it.index(),col);
- }
-
- if (Mode & UnitDiag)
- other.coeffRef(i,col) = tmp;
- else
- other.coeffRef(i,col) = tmp/l_ii;
- }
- }
- }
-};
-
-// forward substitution, col-major
-template<typename Lhs, typename Rhs, int Mode>
-struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Lower,ColMajor>
-{
- typedef typename Rhs::Scalar Scalar;
- static void run(const Lhs& lhs, Rhs& other)
- {
- for(int col=0 ; col<other.cols() ; ++col)
- {
- for(int i=0; i<lhs.cols(); ++i)
- {
- Scalar& tmp = other.coeffRef(i,col);
- if (tmp!=Scalar(0)) // optimization when other is actually sparse
- {
- typename Lhs::InnerIterator it(lhs, i);
- while(it && it.index()<i)
- ++it;
- if(!(Mode & UnitDiag))
- {
- eigen_assert(it && it.index()==i);
- tmp /= it.value();
- }
- if (it && it.index()==i)
- ++it;
- for(; it; ++it)
- other.coeffRef(it.index(), col) -= tmp * it.value();
- }
- }
- }
- }
-};
-
-// backward substitution, col-major
-template<typename Lhs, typename Rhs, int Mode>
-struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Upper,ColMajor>
-{
- typedef typename Rhs::Scalar Scalar;
- static void run(const Lhs& lhs, Rhs& other)
- {
- for(int col=0 ; col<other.cols() ; ++col)
- {
- for(int i=lhs.cols()-1; i>=0; --i)
- {
- Scalar& tmp = other.coeffRef(i,col);
- if (tmp!=Scalar(0)) // optimization when other is actually sparse
- {
- if(!(Mode & UnitDiag))
- {
- // TODO replace this by a binary search. make sure the binary search is safe for partially sorted elements
- typename Lhs::ReverseInnerIterator it(lhs, i);
- while(it && it.index()!=i)
- --it;
- eigen_assert(it && it.index()==i);
- other.coeffRef(i,col) /= it.value();
- }
- typename Lhs::InnerIterator it(lhs, i);
- for(; it && it.index()<i; ++it)
- other.coeffRef(it.index(), col) -= tmp * it.value();
- }
- }
- }
- }
-};
-
-} // end namespace internal
-
-template<typename ExpressionType,int Mode>
-template<typename OtherDerived>
-void SparseTriangularView<ExpressionType,Mode>::solveInPlace(MatrixBase<OtherDerived>& other) const
-{
- eigen_assert(m_matrix.cols() == m_matrix.rows() && m_matrix.cols() == other.rows());
- eigen_assert((!(Mode & ZeroDiag)) && bool(Mode & (Upper|Lower)));
-
- enum { copy = internal::traits<OtherDerived>::Flags & RowMajorBit };
-
- typedef typename internal::conditional<copy,
- typename internal::plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::type OtherCopy;
- OtherCopy otherCopy(other.derived());
-
- internal::sparse_solve_triangular_selector<ExpressionType, typename internal::remove_reference<OtherCopy>::type, Mode>::run(m_matrix, otherCopy);
-
- if (copy)
- other = otherCopy;
-}
-
-template<typename ExpressionType,int Mode>
-template<typename OtherDerived>
-typename internal::plain_matrix_type_column_major<OtherDerived>::type
-SparseTriangularView<ExpressionType,Mode>::solve(const MatrixBase<OtherDerived>& other) const
-{
- typename internal::plain_matrix_type_column_major<OtherDerived>::type res(other);
- solveInPlace(res);
- return res;
-}
-
-// pure sparse path
-
-namespace internal {
-
-template<typename Lhs, typename Rhs, int Mode,
- int UpLo = (Mode & Lower)
- ? Lower
- : (Mode & Upper)
- ? Upper
- : -1,
- int StorageOrder = int(Lhs::Flags) & (RowMajorBit)>
-struct sparse_solve_triangular_sparse_selector;
-
-// forward substitution, col-major
-template<typename Lhs, typename Rhs, int Mode, int UpLo>
-struct sparse_solve_triangular_sparse_selector<Lhs,Rhs,Mode,UpLo,ColMajor>
-{
- typedef typename Rhs::Scalar Scalar;
- typedef typename promote_index_type<typename traits<Lhs>::Index,
- typename traits<Rhs>::Index>::type Index;
- static void run(const Lhs& lhs, Rhs& other)
- {
- const bool IsLower = (UpLo==Lower);
- AmbiVector<Scalar,Index> tempVector(other.rows()*2);
- tempVector.setBounds(0,other.rows());
-
- Rhs res(other.rows(), other.cols());
- res.reserve(other.nonZeros());
-
- for(int col=0 ; col<other.cols() ; ++col)
- {
- // FIXME estimate number of non zeros
- tempVector.init(.99/*float(other.col(col).nonZeros())/float(other.rows())*/);
- tempVector.setZero();
- tempVector.restart();
- for (typename Rhs::InnerIterator rhsIt(other, col); rhsIt; ++rhsIt)
- {
- tempVector.coeffRef(rhsIt.index()) = rhsIt.value();
- }
-
- for(int i=IsLower?0:lhs.cols()-1;
- IsLower?i<lhs.cols():i>=0;
- i+=IsLower?1:-1)
- {
- tempVector.restart();
- Scalar& ci = tempVector.coeffRef(i);
- if (ci!=Scalar(0))
- {
- // find
- typename Lhs::InnerIterator it(lhs, i);
- if(!(Mode & UnitDiag))
- {
- if (IsLower)
- {
- eigen_assert(it.index()==i);
- ci /= it.value();
- }
- else
- ci /= lhs.coeff(i,i);
- }
- tempVector.restart();
- if (IsLower)
- {
- if (it.index()==i)
- ++it;
- for(; it; ++it)
- tempVector.coeffRef(it.index()) -= ci * it.value();
- }
- else
- {
- for(; it && it.index()<i; ++it)
- tempVector.coeffRef(it.index()) -= ci * it.value();
- }
- }
- }
-
-
- int count = 0;
- // FIXME compute a reference value to filter zeros
- for (typename AmbiVector<Scalar,Index>::Iterator it(tempVector/*,1e-12*/); it; ++it)
- {
- ++ count;
-// std::cerr << "fill " << it.index() << ", " << col << "\n";
-// std::cout << it.value() << " ";
- // FIXME use insertBack
- res.insert(it.index(), col) = it.value();
- }
-// std::cout << "tempVector.nonZeros() == " << int(count) << " / " << (other.rows()) << "\n";
- }
- res.finalize();
- other = res.markAsRValue();
- }
-};
-
-} // end namespace internal
-
-template<typename ExpressionType,int Mode>
-template<typename OtherDerived>
-void SparseTriangularView<ExpressionType,Mode>::solveInPlace(SparseMatrixBase<OtherDerived>& other) const
-{
- eigen_assert(m_matrix.cols() == m_matrix.rows() && m_matrix.cols() == other.rows());
- eigen_assert( (!(Mode & ZeroDiag)) && bool(Mode & (Upper|Lower)));
-
-// enum { copy = internal::traits<OtherDerived>::Flags & RowMajorBit };
-
-// typedef typename internal::conditional<copy,
-// typename internal::plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::type OtherCopy;
-// OtherCopy otherCopy(other.derived());
-
- internal::sparse_solve_triangular_sparse_selector<ExpressionType, OtherDerived, Mode>::run(m_matrix, other.derived());
-
-// if (copy)
-// other = otherCopy;
-}
-
-#ifdef EIGEN2_SUPPORT
-
-// deprecated stuff:
-
-/** \deprecated */
-template<typename Derived>
-template<typename OtherDerived>
-void SparseMatrixBase<Derived>::solveTriangularInPlace(MatrixBase<OtherDerived>& other) const
-{
- this->template triangular<Flags&(Upper|Lower)>().solveInPlace(other);
-}
-
-/** \deprecated */
-template<typename Derived>
-template<typename OtherDerived>
-typename internal::plain_matrix_type_column_major<OtherDerived>::type
-SparseMatrixBase<Derived>::solveTriangular(const MatrixBase<OtherDerived>& other) const
-{
- typename internal::plain_matrix_type_column_major<OtherDerived>::type res(other);
- derived().solveTriangularInPlace(res);
- return res;
-}
-#endif // EIGEN2_SUPPORT
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSETRIANGULARSOLVER_H
diff --git a/src/Eigen/src/SparseLU/CMakeLists.txt b/src/Eigen/src/SparseLU/CMakeLists.txt
deleted file mode 100644
index 69729ee..0000000
--- a/src/Eigen/src/SparseLU/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_SparseLU_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_SparseLU_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/SparseLU COMPONENT Devel
- )
diff --git a/src/Eigen/src/SparseLU/SparseLU.h b/src/Eigen/src/SparseLU/SparseLU.h
deleted file mode 100644
index 1d592f2..0000000
--- a/src/Eigen/src/SparseLU/SparseLU.h
+++ /dev/null
@@ -1,758 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-
-#ifndef EIGEN_SPARSE_LU_H
-#define EIGEN_SPARSE_LU_H
-
-namespace Eigen {
-
-template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename _MatrixType::Index> > class SparseLU;
-template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType;
-template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType;
-
-/** \ingroup SparseLU_Module
- * \class SparseLU
- *
- * \brief Sparse supernodal LU factorization for general matrices
- *
- * This class implements the supernodal LU factorization for general matrices.
- * It uses the main techniques from the sequential SuperLU package
- * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real
- * and complex arithmetics with single and double precision, depending on the
- * scalar type of your input matrix.
- * The code has been optimized to provide BLAS-3 operations during supernode-panel updates.
- * It benefits directly from the built-in high-performant Eigen BLAS routines.
- * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to
- * enable a better optimization from the compiler. For best performance,
- * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors.
- *
- * An important parameter of this class is the ordering method. It is used to reorder the columns
- * (and eventually the rows) of the matrix to reduce the number of new elements that are created during
- * numerical factorization. The cheapest method available is COLAMD.
- * See \link OrderingMethods_Module the OrderingMethods module \endlink for the list of
- * built-in and external ordering methods.
- *
- * Simple example with key steps
- * \code
- * VectorXd x(n), b(n);
- * SparseMatrix<double, ColMajor> A;
- * SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<Index> > solver;
- * // fill A and b;
- * // Compute the ordering permutation vector from the structural pattern of A
- * solver.analyzePattern(A);
- * // Compute the numerical factorization
- * solver.factorize(A);
- * //Use the factors to solve the linear system
- * x = solver.solve(b);
- * \endcode
- *
- * \warning The input matrix A should be in a \b compressed and \b column-major form.
- * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
- *
- * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix.
- * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization.
- * If this is the case for your matrices, you can try the basic scaling method at
- * "unsupported/Eigen/src/IterativeSolvers/Scaling.h"
- *
- * \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
- * \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD
- *
- *
- * \sa \ref TutorialSparseDirectSolvers
- * \sa \ref OrderingMethods_Module
- */
-template <typename _MatrixType, typename _OrderingType>
-class SparseLU : public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::Index>
-{
- public:
- typedef _MatrixType MatrixType;
- typedef _OrderingType OrderingType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef SparseMatrix<Scalar,ColMajor,Index> NCMatrix;
- typedef internal::MappedSuperNodalMatrix<Scalar, Index> SCMatrix;
- typedef Matrix<Scalar,Dynamic,1> ScalarVector;
- typedef Matrix<Index,Dynamic,1> IndexVector;
- typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
- typedef internal::SparseLUImpl<Scalar, Index> Base;
-
- public:
- SparseLU():m_isInitialized(true),m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
- {
- initperfvalues();
- }
- SparseLU(const MatrixType& matrix):m_isInitialized(true),m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
- {
- initperfvalues();
- compute(matrix);
- }
-
- ~SparseLU()
- {
- // Free all explicit dynamic pointers
- }
-
- void analyzePattern (const MatrixType& matrix);
- void factorize (const MatrixType& matrix);
- void simplicialfactorize(const MatrixType& matrix);
-
- /**
- * Compute the symbolic and numeric factorization of the input sparse matrix.
- * The input matrix should be in column-major storage.
- */
- void compute (const MatrixType& matrix)
- {
- // Analyze
- analyzePattern(matrix);
- //Factorize
- factorize(matrix);
- }
-
- inline Index rows() const { return m_mat.rows(); }
- inline Index cols() const { return m_mat.cols(); }
- /** Indicate that the pattern of the input matrix is symmetric */
- void isSymmetric(bool sym)
- {
- m_symmetricmode = sym;
- }
-
- /** \returns an expression of the matrix L, internally stored as supernodes
- * The only operation available with this expression is the triangular solve
- * \code
- * y = b; matrixL().solveInPlace(y);
- * \endcode
- */
- SparseLUMatrixLReturnType<SCMatrix> matrixL() const
- {
- return SparseLUMatrixLReturnType<SCMatrix>(m_Lstore);
- }
- /** \returns an expression of the matrix U,
- * The only operation available with this expression is the triangular solve
- * \code
- * y = b; matrixU().solveInPlace(y);
- * \endcode
- */
- SparseLUMatrixUReturnType<SCMatrix,MappedSparseMatrix<Scalar,ColMajor,Index> > matrixU() const
- {
- return SparseLUMatrixUReturnType<SCMatrix, MappedSparseMatrix<Scalar,ColMajor,Index> >(m_Lstore, m_Ustore);
- }
-
- /**
- * \returns a reference to the row matrix permutation \f$ P_r \f$ such that \f$P_r A P_c^T = L U\f$
- * \sa colsPermutation()
- */
- inline const PermutationType& rowsPermutation() const
- {
- return m_perm_r;
- }
- /**
- * \returns a reference to the column matrix permutation\f$ P_c^T \f$ such that \f$P_r A P_c^T = L U\f$
- * \sa rowsPermutation()
- */
- inline const PermutationType& colsPermutation() const
- {
- return m_perm_c;
- }
- /** Set the threshold used for a diagonal entry to be an acceptable pivot. */
- void setPivotThreshold(const RealScalar& thresh)
- {
- m_diagpivotthresh = thresh;
- }
-
- /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
- *
- * \warning the destination matrix X in X = this->solve(B) must be colmun-major.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::solve_retval<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const
- {
- eigen_assert(m_factorizationIsOk && "SparseLU is not initialized.");
- eigen_assert(rows()==B.rows()
- && "SparseLU::solve(): invalid number of rows of the right hand side matrix B");
- return internal::solve_retval<SparseLU, Rhs>(*this, B.derived());
- }
-
- /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::sparse_solve_retval<SparseLU, Rhs> solve(const SparseMatrixBase<Rhs>& B) const
- {
- eigen_assert(m_factorizationIsOk && "SparseLU is not initialized.");
- eigen_assert(rows()==B.rows()
- && "SparseLU::solve(): invalid number of rows of the right hand side matrix B");
- return internal::sparse_solve_retval<SparseLU, Rhs>(*this, B.derived());
- }
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful,
- * \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance
- * \c InvalidInput if the input matrix is invalid
- *
- * \sa iparm()
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return m_info;
- }
-
- /**
- * \returns A string describing the type of error
- */
- std::string lastErrorMessage() const
- {
- return m_lastError;
- }
-
- template<typename Rhs, typename Dest>
- bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
- {
- Dest& X(X_base.derived());
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
- EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
- THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
-
- // Permute the right hand side to form X = Pr*B
- // on return, X is overwritten by the computed solution
- X.resize(B.rows(),B.cols());
-
- // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
- for(Index j = 0; j < B.cols(); ++j)
- X.col(j) = rowsPermutation() * B.const_cast_derived().col(j);
-
- //Forward substitution with L
- this->matrixL().solveInPlace(X);
- this->matrixU().solveInPlace(X);
-
- // Permute back the solution
- for (Index j = 0; j < B.cols(); ++j)
- X.col(j) = colsPermutation().inverse() * X.col(j);
-
- return true;
- }
-
- /**
- * \returns the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- * One way to work around that is to use logAbsDeterminant() instead.
- *
- * \sa logAbsDeterminant(), signDeterminant()
- */
- Scalar absDeterminant()
- {
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
- // Initialize with the determinant of the row matrix
- Scalar det = Scalar(1.);
- //Note that the diagonal blocks of U are stored in supernodes,
- // which are available in the L part :)
- for (Index j = 0; j < this->cols(); ++j)
- {
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
- {
- if(it.row() < j) continue;
- if(it.row() == j)
- {
- det *= (std::abs)(it.value());
- break;
- }
- }
- }
- return det;
- }
-
- /** \returns the natural log of the absolute value of the determinant of the matrix
- * of which **this is the QR decomposition
- *
- * \note This method is useful to work around the risk of overflow/underflow that's
- * inherent to the determinant computation.
- *
- * \sa absDeterminant(), signDeterminant()
- */
- Scalar logAbsDeterminant() const
- {
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
- Scalar det = Scalar(0.);
- for (Index j = 0; j < this->cols(); ++j)
- {
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
- {
- if(it.row() < j) continue;
- if(it.row() == j)
- {
- det += (std::log)((std::abs)(it.value()));
- break;
- }
- }
- }
- return det;
- }
-
- /** \returns A number representing the sign of the determinant
- *
- * \sa absDeterminant(), logAbsDeterminant()
- */
- Scalar signDeterminant()
- {
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
- return Scalar(m_detPermR);
- }
-
- protected:
- // Functions
- void initperfvalues()
- {
- m_perfv.panel_size = 1;
- m_perfv.relax = 1;
- m_perfv.maxsuper = 128;
- m_perfv.rowblk = 16;
- m_perfv.colblk = 8;
- m_perfv.fillfactor = 20;
- }
-
- // Variables
- mutable ComputationInfo m_info;
- bool m_isInitialized;
- bool m_factorizationIsOk;
- bool m_analysisIsOk;
- std::string m_lastError;
- NCMatrix m_mat; // The input (permuted ) matrix
- SCMatrix m_Lstore; // The lower triangular matrix (supernodal)
- MappedSparseMatrix<Scalar,ColMajor,Index> m_Ustore; // The upper triangular matrix
- PermutationType m_perm_c; // Column permutation
- PermutationType m_perm_r ; // Row permutation
- IndexVector m_etree; // Column elimination tree
-
- typename Base::GlobalLU_t m_glu;
-
- // SparseLU options
- bool m_symmetricmode;
- // values for performance
- internal::perfvalues<Index> m_perfv;
- RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
- Index m_nnzL, m_nnzU; // Nonzeros in L and U factors
- Index m_detPermR; // Determinant of the coefficient matrix
- private:
- // Disable copy constructor
- SparseLU (const SparseLU& );
-
-}; // End class SparseLU
-
-
-
-// Functions needed by the anaysis phase
-/**
- * Compute the column permutation to minimize the fill-in
- *
- * - Apply this permutation to the input matrix -
- *
- * - Compute the column elimination tree on the permuted matrix
- *
- * - Postorder the elimination tree and the column permutation
- *
- */
-template <typename MatrixType, typename OrderingType>
-void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
-{
-
- //TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
-
- OrderingType ord;
- ord(mat,m_perm_c);
-
- // Apply the permutation to the column of the input matrix
- //First copy the whole input matrix.
- m_mat = mat;
- if (m_perm_c.size()) {
- m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used.
- //Then, permute only the column pointers
- const Index * outerIndexPtr;
- if (mat.isCompressed()) outerIndexPtr = mat.outerIndexPtr();
- else
- {
- Index *outerIndexPtr_t = new Index[mat.cols()+1];
- for(Index i = 0; i <= mat.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
- outerIndexPtr = outerIndexPtr_t;
- }
- for (Index i = 0; i < mat.cols(); i++)
- {
- m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
- m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
- }
- if(!mat.isCompressed()) delete[] outerIndexPtr;
- }
- // Compute the column elimination tree of the permuted matrix
- IndexVector firstRowElt;
- internal::coletree(m_mat, m_etree,firstRowElt);
-
- // In symmetric mode, do not do postorder here
- if (!m_symmetricmode) {
- IndexVector post, iwork;
- // Post order etree
- internal::treePostorder(m_mat.cols(), m_etree, post);
-
-
- // Renumber etree in postorder
- Index m = m_mat.cols();
- iwork.resize(m+1);
- for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
- m_etree = iwork;
-
- // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
- PermutationType post_perm(m);
- for (Index i = 0; i < m; i++)
- post_perm.indices()(i) = post(i);
-
- // Combine the two permutations : postorder the permutation for future use
- if(m_perm_c.size()) {
- m_perm_c = post_perm * m_perm_c;
- }
-
- } // end postordering
-
- m_analysisIsOk = true;
-}
-
-// Functions needed by the numerical factorization phase
-
-
-/**
- * - Numerical factorization
- * - Interleaved with the symbolic factorization
- * On exit, info is
- *
- * = 0: successful factorization
- *
- * > 0: if info = i, and i is
- *
- * <= A->ncol: U(i,i) is exactly zero. The factorization has
- * been completed, but the factor U is exactly singular,
- * and division by zero will occur if it is used to solve a
- * system of equations.
- *
- * > A->ncol: number of bytes allocated when memory allocation
- * failure occurred, plus A->ncol. If lwork = -1, it is
- * the estimated amount of space needed, plus A->ncol.
- */
-template <typename MatrixType, typename OrderingType>
-void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
-{
- using internal::emptyIdxLU;
- eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
- eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
-
- typedef typename IndexVector::Scalar Index;
-
-
- // Apply the column permutation computed in analyzepattern()
- // m_mat = matrix * m_perm_c.inverse();
- m_mat = matrix;
- if (m_perm_c.size())
- {
- m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers.
- //Then, permute only the column pointers
- const Index * outerIndexPtr;
- if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr();
- else
- {
- Index* outerIndexPtr_t = new Index[matrix.cols()+1];
- for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
- outerIndexPtr = outerIndexPtr_t;
- }
- for (Index i = 0; i < matrix.cols(); i++)
- {
- m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
- m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
- }
- if(!matrix.isCompressed()) delete[] outerIndexPtr;
- }
- else
- { //FIXME This should not be needed if the empty permutation is handled transparently
- m_perm_c.resize(matrix.cols());
- for(Index i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i;
- }
-
- Index m = m_mat.rows();
- Index n = m_mat.cols();
- Index nnz = m_mat.nonZeros();
- Index maxpanel = m_perfv.panel_size * m;
- // Allocate working storage common to the factor routines
- Index lwork = 0;
- Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu);
- if (info)
- {
- m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
- m_factorizationIsOk = false;
- return ;
- }
-
- // Set up pointers for integer working arrays
- IndexVector segrep(m); segrep.setZero();
- IndexVector parent(m); parent.setZero();
- IndexVector xplore(m); xplore.setZero();
- IndexVector repfnz(maxpanel);
- IndexVector panel_lsub(maxpanel);
- IndexVector xprune(n); xprune.setZero();
- IndexVector marker(m*internal::LUNoMarker); marker.setZero();
-
- repfnz.setConstant(-1);
- panel_lsub.setConstant(-1);
-
- // Set up pointers for scalar working arrays
- ScalarVector dense;
- dense.setZero(maxpanel);
- ScalarVector tempv;
- tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) );
-
- // Compute the inverse of perm_c
- PermutationType iperm_c(m_perm_c.inverse());
-
- // Identify initial relaxed snodes
- IndexVector relax_end(n);
- if ( m_symmetricmode == true )
- Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
- else
- Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
-
-
- m_perm_r.resize(m);
- m_perm_r.indices().setConstant(-1);
- marker.setConstant(-1);
- m_detPermR = 1; // Record the determinant of the row permutation
-
- m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0);
- m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0);
-
- // Work on one 'panel' at a time. A panel is one of the following :
- // (a) a relaxed supernode at the bottom of the etree, or
- // (b) panel_size contiguous columns, <panel_size> defined by the user
- Index jcol;
- IndexVector panel_histo(n);
- Index pivrow; // Pivotal row number in the original row matrix
- Index nseg1; // Number of segments in U-column above panel row jcol
- Index nseg; // Number of segments in each U-column
- Index irep;
- Index i, k, jj;
- for (jcol = 0; jcol < n; )
- {
- // Adjust panel size so that a panel won't overlap with the next relaxed snode.
- Index panel_size = m_perfv.panel_size; // upper bound on panel width
- for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++)
- {
- if (relax_end(k) != emptyIdxLU)
- {
- panel_size = k - jcol;
- break;
- }
- }
- if (k == n)
- panel_size = n - jcol;
-
- // Symbolic outer factorization on a panel of columns
- Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu);
-
- // Numeric sup-panel updates in topological order
- Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu);
-
- // Sparse LU within the panel, and below the panel diagonal
- for ( jj = jcol; jj< jcol + panel_size; jj++)
- {
- k = (jj - jcol) * m; // Column index for w-wide arrays
-
- nseg = nseg1; // begin after all the panel segments
- //Depth-first-search for the current column
- VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m);
- VectorBlock<IndexVector> repfnz_k(repfnz, k, m);
- info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
- if ( info )
- {
- m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() ";
- m_info = NumericalIssue;
- m_factorizationIsOk = false;
- return;
- }
- // Numeric updates to this column
- VectorBlock<ScalarVector> dense_k(dense, k, m);
- VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1);
- info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu);
- if ( info )
- {
- m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() ";
- m_info = NumericalIssue;
- m_factorizationIsOk = false;
- return;
- }
-
- // Copy the U-segments to ucol(*)
- info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu);
- if ( info )
- {
- m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() ";
- m_info = NumericalIssue;
- m_factorizationIsOk = false;
- return;
- }
-
- // Form the L-segment
- info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
- if ( info )
- {
- m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT ";
- std::ostringstream returnInfo;
- returnInfo << info;
- m_lastError += returnInfo.str();
- m_info = NumericalIssue;
- m_factorizationIsOk = false;
- return;
- }
-
- // Update the determinant of the row permutation matrix
- if (pivrow != jj) m_detPermR *= -1;
-
- // Prune columns (0:jj-1) using column jj
- Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
-
- // Reset repfnz for this column
- for (i = 0; i < nseg; i++)
- {
- irep = segrep(i);
- repfnz_k(irep) = emptyIdxLU;
- }
- } // end SparseLU within the panel
- jcol += panel_size; // Move to the next panel
- } // end for -- end elimination
-
- // Count the number of nonzeros in factors
- Base::countnz(n, m_nnzL, m_nnzU, m_glu);
- // Apply permutation to the L subscripts
- Base::fixupL(n, m_perm_r.indices(), m_glu);
-
- // Create supernode matrix L
- m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
- // Create the column major upper sparse matrix U;
- new (&m_Ustore) MappedSparseMatrix<Scalar, ColMajor, Index> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() );
-
- m_info = Success;
- m_factorizationIsOk = true;
-}
-
-template<typename MappedSupernodalType>
-struct SparseLUMatrixLReturnType : internal::no_assignment_operator
-{
- typedef typename MappedSupernodalType::Index Index;
- typedef typename MappedSupernodalType::Scalar Scalar;
- SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL)
- { }
- Index rows() { return m_mapL.rows(); }
- Index cols() { return m_mapL.cols(); }
- template<typename Dest>
- void solveInPlace( MatrixBase<Dest> &X) const
- {
- m_mapL.solveInPlace(X);
- }
- const MappedSupernodalType& m_mapL;
-};
-
-template<typename MatrixLType, typename MatrixUType>
-struct SparseLUMatrixUReturnType : internal::no_assignment_operator
-{
- typedef typename MatrixLType::Index Index;
- typedef typename MatrixLType::Scalar Scalar;
- SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU)
- : m_mapL(mapL),m_mapU(mapU)
- { }
- Index rows() { return m_mapL.rows(); }
- Index cols() { return m_mapL.cols(); }
-
- template<typename Dest> void solveInPlace(MatrixBase<Dest> &X) const
- {
- Index nrhs = X.cols();
- Index n = X.rows();
- // Backward solve with U
- for (Index k = m_mapL.nsuper(); k >= 0; k--)
- {
- Index fsupc = m_mapL.supToCol()[k];
- Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
- Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
- Index luptr = m_mapL.colIndexPtr()[fsupc];
-
- if (nsupc == 1)
- {
- for (Index j = 0; j < nrhs; j++)
- {
- X(fsupc, j) /= m_mapL.valuePtr()[luptr];
- }
- }
- else
- {
- Map<const Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
- Map< Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
- U = A.template triangularView<Upper>().solve(U);
- }
-
- for (Index j = 0; j < nrhs; ++j)
- {
- for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
- {
- typename MatrixUType::InnerIterator it(m_mapU, jcol);
- for ( ; it; ++it)
- {
- Index irow = it.index();
- X(irow, j) -= X(jcol, j) * it.value();
- }
- }
- }
- } // End For U-solve
- }
- const MatrixLType& m_mapL;
- const MatrixUType& m_mapU;
-};
-
-namespace internal {
-
-template<typename _MatrixType, typename Derived, typename Rhs>
-struct solve_retval<SparseLU<_MatrixType,Derived>, Rhs>
- : solve_retval_base<SparseLU<_MatrixType,Derived>, Rhs>
-{
- typedef SparseLU<_MatrixType,Derived> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-template<typename _MatrixType, typename Derived, typename Rhs>
-struct sparse_solve_retval<SparseLU<_MatrixType,Derived>, Rhs>
- : sparse_solve_retval_base<SparseLU<_MatrixType,Derived>, Rhs>
-{
- typedef SparseLU<_MatrixType,Derived> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- this->defaultEvalTo(dst);
- }
-};
-} // end namespace internal
-
-} // End namespace Eigen
-
-#endif
diff --git a/src/Eigen/src/SparseLU/SparseLUImpl.h b/src/Eigen/src/SparseLU/SparseLUImpl.h
deleted file mode 100644
index 14d7089..0000000
--- a/src/Eigen/src/SparseLU/SparseLUImpl.h
+++ /dev/null
@@ -1,64 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-#ifndef SPARSELU_IMPL_H
-#define SPARSELU_IMPL_H
-
-namespace Eigen {
-namespace internal {
-
-/** \ingroup SparseLU_Module
- * \class SparseLUImpl
- * Base class for sparseLU
- */
-template <typename Scalar, typename Index>
-class SparseLUImpl
-{
- public:
- typedef Matrix<Scalar,Dynamic,1> ScalarVector;
- typedef Matrix<Index,Dynamic,1> IndexVector;
- typedef typename ScalarVector::RealScalar RealScalar;
- typedef Ref<Matrix<Scalar,Dynamic,1> > BlockScalarVector;
- typedef Ref<Matrix<Index,Dynamic,1> > BlockIndexVector;
- typedef LU_GlobalLU_t<IndexVector, ScalarVector> GlobalLU_t;
- typedef SparseMatrix<Scalar,ColMajor,Index> MatrixType;
-
- protected:
- template <typename VectorType>
- Index expand(VectorType& vec, Index& length, Index nbElts, Index keep_prev, Index& num_expansions);
- Index memInit(Index m, Index n, Index annz, Index lwork, Index fillratio, Index panel_size, GlobalLU_t& glu);
- template <typename VectorType>
- Index memXpand(VectorType& vec, Index& maxlen, Index nbElts, MemType memtype, Index& num_expansions);
- void heap_relax_snode (const Index n, IndexVector& et, const Index relax_columns, IndexVector& descendants, IndexVector& relax_end);
- void relax_snode (const Index n, IndexVector& et, const Index relax_columns, IndexVector& descendants, IndexVector& relax_end);
- Index snode_dfs(const Index jcol, const Index kcol,const MatrixType& mat, IndexVector& xprune, IndexVector& marker, GlobalLU_t& glu);
- Index snode_bmod (const Index jcol, const Index fsupc, ScalarVector& dense, GlobalLU_t& glu);
- Index pivotL(const Index jcol, const RealScalar& diagpivotthresh, IndexVector& perm_r, IndexVector& iperm_c, Index& pivrow, GlobalLU_t& glu);
- template <typename Traits>
- void dfs_kernel(const Index jj, IndexVector& perm_r,
- Index& nseg, IndexVector& panel_lsub, IndexVector& segrep,
- Ref<IndexVector> repfnz_col, IndexVector& xprune, Ref<IndexVector> marker, IndexVector& parent,
- IndexVector& xplore, GlobalLU_t& glu, Index& nextl_col, Index krow, Traits& traits);
- void panel_dfs(const Index m, const Index w, const Index jcol, MatrixType& A, IndexVector& perm_r, Index& nseg, ScalarVector& dense, IndexVector& panel_lsub, IndexVector& segrep, IndexVector& repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu);
-
- void panel_bmod(const Index m, const Index w, const Index jcol, const Index nseg, ScalarVector& dense, ScalarVector& tempv, IndexVector& segrep, IndexVector& repfnz, GlobalLU_t& glu);
- Index column_dfs(const Index m, const Index jcol, IndexVector& perm_r, Index maxsuper, Index& nseg, BlockIndexVector lsub_col, IndexVector& segrep, BlockIndexVector repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu);
- Index column_bmod(const Index jcol, const Index nseg, BlockScalarVector dense, ScalarVector& tempv, BlockIndexVector segrep, BlockIndexVector repfnz, Index fpanelc, GlobalLU_t& glu);
- Index copy_to_ucol(const Index jcol, const Index nseg, IndexVector& segrep, BlockIndexVector repfnz ,IndexVector& perm_r, BlockScalarVector dense, GlobalLU_t& glu);
- void pruneL(const Index jcol, const IndexVector& perm_r, const Index pivrow, const Index nseg, const IndexVector& segrep, BlockIndexVector repfnz, IndexVector& xprune, GlobalLU_t& glu);
- void countnz(const Index n, Index& nnzL, Index& nnzU, GlobalLU_t& glu);
- void fixupL(const Index n, const IndexVector& perm_r, GlobalLU_t& glu);
-
- template<typename , typename >
- friend struct column_dfs_traits;
-};
-
-} // end namespace internal
-} // namespace Eigen
-
-#endif
diff --git a/src/Eigen/src/SparseLU/SparseLU_Memory.h b/src/Eigen/src/SparseLU/SparseLU_Memory.h
deleted file mode 100644
index 1ffa7d5..0000000
--- a/src/Eigen/src/SparseLU/SparseLU_Memory.h
+++ /dev/null
@@ -1,227 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/*
-
- * NOTE: This file is the modified version of [s,d,c,z]memory.c files in SuperLU
-
- * -- SuperLU routine (version 3.1) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * August 1, 2008
- *
- * Copyright (c) 1994 by Xerox Corporation. All rights reserved.
- *
- * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
- *
- * Permission is hereby granted to use or copy this program for any
- * purpose, provided the above notices are retained on all copies.
- * Permission to modify the code and to distribute modified code is
- * granted, provided the above notices are retained, and a notice that
- * the code was modified is included with the above copyright notice.
- */
-
-#ifndef EIGEN_SPARSELU_MEMORY
-#define EIGEN_SPARSELU_MEMORY
-
-namespace Eigen {
-namespace internal {
-
-enum { LUNoMarker = 3 };
-enum {emptyIdxLU = -1};
-template<typename Index>
-inline Index LUnumTempV(Index& m, Index& w, Index& t, Index& b)
-{
- return (std::max)(m, (t+b)*w);
-}
-
-template< typename Scalar, typename Index>
-inline Index LUTempSpace(Index&m, Index& w)
-{
- return (2*w + 4 + LUNoMarker) * m * sizeof(Index) + (w + 1) * m * sizeof(Scalar);
-}
-
-
-
-
-/**
- * Expand the existing storage to accomodate more fill-ins
- * \param vec Valid pointer to the vector to allocate or expand
- * \param[in,out] length At input, contain the current length of the vector that is to be increased. At output, length of the newly allocated vector
- * \param[in] nbElts Current number of elements in the factors
- * \param keep_prev 1: use length and do not expand the vector; 0: compute new_len and expand
- * \param[in,out] num_expansions Number of times the memory has been expanded
- */
-template <typename Scalar, typename Index>
-template <typename VectorType>
-Index SparseLUImpl<Scalar,Index>::expand(VectorType& vec, Index& length, Index nbElts, Index keep_prev, Index& num_expansions)
-{
-
- float alpha = 1.5; // Ratio of the memory increase
- Index new_len; // New size of the allocated memory
-
- if(num_expansions == 0 || keep_prev)
- new_len = length ; // First time allocate requested
- else
- new_len = (std::max)(length+1,Index(alpha * length));
-
- VectorType old_vec; // Temporary vector to hold the previous values
- if (nbElts > 0 )
- old_vec = vec.segment(0,nbElts);
-
- //Allocate or expand the current vector
-#ifdef EIGEN_EXCEPTIONS
- try
-#endif
- {
- vec.resize(new_len);
- }
-#ifdef EIGEN_EXCEPTIONS
- catch(std::bad_alloc& )
-#else
- if(!vec.size())
-#endif
- {
- if (!num_expansions)
- {
- // First time to allocate from LUMemInit()
- // Let LUMemInit() deals with it.
- return -1;
- }
- if (keep_prev)
- {
- // In this case, the memory length should not not be reduced
- return new_len;
- }
- else
- {
- // Reduce the size and increase again
- Index tries = 0; // Number of attempts
- do
- {
- alpha = (alpha + 1)/2;
- new_len = (std::max)(length+1,Index(alpha * length));
-#ifdef EIGEN_EXCEPTIONS
- try
-#endif
- {
- vec.resize(new_len);
- }
-#ifdef EIGEN_EXCEPTIONS
- catch(std::bad_alloc& )
-#else
- if (!vec.size())
-#endif
- {
- tries += 1;
- if ( tries > 10) return new_len;
- }
- } while (!vec.size());
- }
- }
- //Copy the previous values to the newly allocated space
- if (nbElts > 0)
- vec.segment(0, nbElts) = old_vec;
-
-
- length = new_len;
- if(num_expansions) ++num_expansions;
- return 0;
-}
-
-/**
- * \brief Allocate various working space for the numerical factorization phase.
- * \param m number of rows of the input matrix
- * \param n number of columns
- * \param annz number of initial nonzeros in the matrix
- * \param lwork if lwork=-1, this routine returns an estimated size of the required memory
- * \param glu persistent data to facilitate multiple factors : will be deleted later ??
- * \param fillratio estimated ratio of fill in the factors
- * \param panel_size Size of a panel
- * \return an estimated size of the required memory if lwork = -1; otherwise, return the size of actually allocated memory when allocation failed, and 0 on success
- * \note Unlike SuperLU, this routine does not support successive factorization with the same pattern and the same row permutation
- */
-template <typename Scalar, typename Index>
-Index SparseLUImpl<Scalar,Index>::memInit(Index m, Index n, Index annz, Index lwork, Index fillratio, Index panel_size, GlobalLU_t& glu)
-{
- Index& num_expansions = glu.num_expansions; //No memory expansions so far
- num_expansions = 0;
- glu.nzumax = glu.nzlumax = (std::min)(fillratio * annz / n, m) * n; // estimated number of nonzeros in U
- glu.nzlmax = (std::max)(Index(4), fillratio) * annz / 4; // estimated nnz in L factor
- // Return the estimated size to the user if necessary
- Index tempSpace;
- tempSpace = (2*panel_size + 4 + LUNoMarker) * m * sizeof(Index) + (panel_size + 1) * m * sizeof(Scalar);
- if (lwork == emptyIdxLU)
- {
- Index estimated_size;
- estimated_size = (5 * n + 5) * sizeof(Index) + tempSpace
- + (glu.nzlmax + glu.nzumax) * sizeof(Index) + (glu.nzlumax+glu.nzumax) * sizeof(Scalar) + n;
- return estimated_size;
- }
-
- // Setup the required space
-
- // First allocate Integer pointers for L\U factors
- glu.xsup.resize(n+1);
- glu.supno.resize(n+1);
- glu.xlsub.resize(n+1);
- glu.xlusup.resize(n+1);
- glu.xusub.resize(n+1);
-
- // Reserve memory for L/U factors
- do
- {
- if( (expand<ScalarVector>(glu.lusup, glu.nzlumax, 0, 0, num_expansions)<0)
- || (expand<ScalarVector>(glu.ucol, glu.nzumax, 0, 0, num_expansions)<0)
- || (expand<IndexVector> (glu.lsub, glu.nzlmax, 0, 0, num_expansions)<0)
- || (expand<IndexVector> (glu.usub, glu.nzumax, 0, 1, num_expansions)<0) )
- {
- //Reduce the estimated size and retry
- glu.nzlumax /= 2;
- glu.nzumax /= 2;
- glu.nzlmax /= 2;
- if (glu.nzlumax < annz ) return glu.nzlumax;
- }
- } while (!glu.lusup.size() || !glu.ucol.size() || !glu.lsub.size() || !glu.usub.size());
-
- ++num_expansions;
- return 0;
-
-} // end LuMemInit
-
-/**
- * \brief Expand the existing storage
- * \param vec vector to expand
- * \param[in,out] maxlen On input, previous size of vec (Number of elements to copy ). on output, new size
- * \param nbElts current number of elements in the vector.
- * \param memtype Type of the element to expand
- * \param num_expansions Number of expansions
- * \return 0 on success, > 0 size of the memory allocated so far
- */
-template <typename Scalar, typename Index>
-template <typename VectorType>
-Index SparseLUImpl<Scalar,Index>::memXpand(VectorType& vec, Index& maxlen, Index nbElts, MemType memtype, Index& num_expansions)
-{
- Index failed_size;
- if (memtype == USUB)
- failed_size = this->expand<VectorType>(vec, maxlen, nbElts, 1, num_expansions);
- else
- failed_size = this->expand<VectorType>(vec, maxlen, nbElts, 0, num_expansions);
-
- if (failed_size)
- return failed_size;
-
- return 0 ;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-#endif // EIGEN_SPARSELU_MEMORY
diff --git a/src/Eigen/src/SparseLU/SparseLU_Structs.h b/src/Eigen/src/SparseLU/SparseLU_Structs.h
deleted file mode 100644
index 24d6bf1..0000000
--- a/src/Eigen/src/SparseLU/SparseLU_Structs.h
+++ /dev/null
@@ -1,111 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/*
- * NOTE: This file comes from a partly modified version of files slu_[s,d,c,z]defs.h
- * -- SuperLU routine (version 4.1) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * November, 2010
- *
- * Global data structures used in LU factorization -
- *
- * nsuper: #supernodes = nsuper + 1, numbered [0, nsuper].
- * (xsup,supno): supno[i] is the supernode no to which i belongs;
- * xsup(s) points to the beginning of the s-th supernode.
- * e.g. supno 0 1 2 2 3 3 3 4 4 4 4 4 (n=12)
- * xsup 0 1 2 4 7 12
- * Note: dfs will be performed on supernode rep. relative to the new
- * row pivoting ordering
- *
- * (xlsub,lsub): lsub[*] contains the compressed subscript of
- * rectangular supernodes; xlsub[j] points to the starting
- * location of the j-th column in lsub[*]. Note that xlsub
- * is indexed by column.
- * Storage: original row subscripts
- *
- * During the course of sparse LU factorization, we also use
- * (xlsub,lsub) for the purpose of symmetric pruning. For each
- * supernode {s,s+1,...,t=s+r} with first column s and last
- * column t, the subscript set
- * lsub[j], j=xlsub[s], .., xlsub[s+1]-1
- * is the structure of column s (i.e. structure of this supernode).
- * It is used for the storage of numerical values.
- * Furthermore,
- * lsub[j], j=xlsub[t], .., xlsub[t+1]-1
- * is the structure of the last column t of this supernode.
- * It is for the purpose of symmetric pruning. Therefore, the
- * structural subscripts can be rearranged without making physical
- * interchanges among the numerical values.
- *
- * However, if the supernode has only one column, then we
- * only keep one set of subscripts. For any subscript interchange
- * performed, similar interchange must be done on the numerical
- * values.
- *
- * The last column structures (for pruning) will be removed
- * after the numercial LU factorization phase.
- *
- * (xlusup,lusup): lusup[*] contains the numerical values of the
- * rectangular supernodes; xlusup[j] points to the starting
- * location of the j-th column in storage vector lusup[*]
- * Note: xlusup is indexed by column.
- * Each rectangular supernode is stored by column-major
- * scheme, consistent with Fortran 2-dim array storage.
- *
- * (xusub,ucol,usub): ucol[*] stores the numerical values of
- * U-columns outside the rectangular supernodes. The row
- * subscript of nonzero ucol[k] is stored in usub[k].
- * xusub[i] points to the starting location of column i in ucol.
- * Storage: new row subscripts; that is subscripts of PA.
- */
-
-#ifndef EIGEN_LU_STRUCTS
-#define EIGEN_LU_STRUCTS
-namespace Eigen {
-namespace internal {
-
-typedef enum {LUSUP, UCOL, LSUB, USUB, LLVL, ULVL} MemType;
-
-template <typename IndexVector, typename ScalarVector>
-struct LU_GlobalLU_t {
- typedef typename IndexVector::Scalar Index;
- IndexVector xsup; //First supernode column ... xsup(s) points to the beginning of the s-th supernode
- IndexVector supno; // Supernode number corresponding to this column (column to supernode mapping)
- ScalarVector lusup; // nonzero values of L ordered by columns
- IndexVector lsub; // Compressed row indices of L rectangular supernodes.
- IndexVector xlusup; // pointers to the beginning of each column in lusup
- IndexVector xlsub; // pointers to the beginning of each column in lsub
- Index nzlmax; // Current max size of lsub
- Index nzlumax; // Current max size of lusup
- ScalarVector ucol; // nonzero values of U ordered by columns
- IndexVector usub; // row indices of U columns in ucol
- IndexVector xusub; // Pointers to the beginning of each column of U in ucol
- Index nzumax; // Current max size of ucol
- Index n; // Number of columns in the matrix
- Index num_expansions;
-};
-
-// Values to set for performance
-template <typename Index>
-struct perfvalues {
- Index panel_size; // a panel consists of at most <panel_size> consecutive columns
- Index relax; // To control degree of relaxing supernodes. If the number of nodes (columns)
- // in a subtree of the elimination tree is less than relax, this subtree is considered
- // as one supernode regardless of the row structures of those columns
- Index maxsuper; // The maximum size for a supernode in complete LU
- Index rowblk; // The minimum row dimension for 2-D blocking to be used;
- Index colblk; // The minimum column dimension for 2-D blocking to be used;
- Index fillfactor; // The estimated fills factors for L and U, compared with A
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-#endif // EIGEN_LU_STRUCTS
diff --git a/src/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h b/src/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h
deleted file mode 100644
index ad6f218..0000000
--- a/src/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h
+++ /dev/null
@@ -1,298 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSELU_SUPERNODAL_MATRIX_H
-#define EIGEN_SPARSELU_SUPERNODAL_MATRIX_H
-
-namespace Eigen {
-namespace internal {
-
-/** \ingroup SparseLU_Module
- * \brief a class to manipulate the L supernodal factor from the SparseLU factorization
- *
- * This class contain the data to easily store
- * and manipulate the supernodes during the factorization and solution phase of Sparse LU.
- * Only the lower triangular matrix has supernodes.
- *
- * NOTE : This class corresponds to the SCformat structure in SuperLU
- *
- */
-/* TODO
- * InnerIterator as for sparsematrix
- * SuperInnerIterator to iterate through all supernodes
- * Function for triangular solve
- */
-template <typename _Scalar, typename _Index>
-class MappedSuperNodalMatrix
-{
- public:
- typedef _Scalar Scalar;
- typedef _Index Index;
- typedef Matrix<Index,Dynamic,1> IndexVector;
- typedef Matrix<Scalar,Dynamic,1> ScalarVector;
- public:
- MappedSuperNodalMatrix()
- {
-
- }
- MappedSuperNodalMatrix(Index m, Index n, ScalarVector& nzval, IndexVector& nzval_colptr, IndexVector& rowind,
- IndexVector& rowind_colptr, IndexVector& col_to_sup, IndexVector& sup_to_col )
- {
- setInfos(m, n, nzval, nzval_colptr, rowind, rowind_colptr, col_to_sup, sup_to_col);
- }
-
- ~MappedSuperNodalMatrix()
- {
-
- }
- /**
- * Set appropriate pointers for the lower triangular supernodal matrix
- * These infos are available at the end of the numerical factorization
- * FIXME This class will be modified such that it can be use in the course
- * of the factorization.
- */
- void setInfos(Index m, Index n, ScalarVector& nzval, IndexVector& nzval_colptr, IndexVector& rowind,
- IndexVector& rowind_colptr, IndexVector& col_to_sup, IndexVector& sup_to_col )
- {
- m_row = m;
- m_col = n;
- m_nzval = nzval.data();
- m_nzval_colptr = nzval_colptr.data();
- m_rowind = rowind.data();
- m_rowind_colptr = rowind_colptr.data();
- m_nsuper = col_to_sup(n);
- m_col_to_sup = col_to_sup.data();
- m_sup_to_col = sup_to_col.data();
- }
-
- /**
- * Number of rows
- */
- Index rows() { return m_row; }
-
- /**
- * Number of columns
- */
- Index cols() { return m_col; }
-
- /**
- * Return the array of nonzero values packed by column
- *
- * The size is nnz
- */
- Scalar* valuePtr() { return m_nzval; }
-
- const Scalar* valuePtr() const
- {
- return m_nzval;
- }
- /**
- * Return the pointers to the beginning of each column in \ref valuePtr()
- */
- Index* colIndexPtr()
- {
- return m_nzval_colptr;
- }
-
- const Index* colIndexPtr() const
- {
- return m_nzval_colptr;
- }
-
- /**
- * Return the array of compressed row indices of all supernodes
- */
- Index* rowIndex() { return m_rowind; }
-
- const Index* rowIndex() const
- {
- return m_rowind;
- }
-
- /**
- * Return the location in \em rowvaluePtr() which starts each column
- */
- Index* rowIndexPtr() { return m_rowind_colptr; }
-
- const Index* rowIndexPtr() const
- {
- return m_rowind_colptr;
- }
-
- /**
- * Return the array of column-to-supernode mapping
- */
- Index* colToSup() { return m_col_to_sup; }
-
- const Index* colToSup() const
- {
- return m_col_to_sup;
- }
- /**
- * Return the array of supernode-to-column mapping
- */
- Index* supToCol() { return m_sup_to_col; }
-
- const Index* supToCol() const
- {
- return m_sup_to_col;
- }
-
- /**
- * Return the number of supernodes
- */
- Index nsuper() const
- {
- return m_nsuper;
- }
-
- class InnerIterator;
- template<typename Dest>
- void solveInPlace( MatrixBase<Dest>&X) const;
-
-
-
-
- protected:
- Index m_row; // Number of rows
- Index m_col; // Number of columns
- Index m_nsuper; // Number of supernodes
- Scalar* m_nzval; //array of nonzero values packed by column
- Index* m_nzval_colptr; //nzval_colptr[j] Stores the location in nzval[] which starts column j
- Index* m_rowind; // Array of compressed row indices of rectangular supernodes
- Index* m_rowind_colptr; //rowind_colptr[j] stores the location in rowind[] which starts column j
- Index* m_col_to_sup; // col_to_sup[j] is the supernode number to which column j belongs
- Index* m_sup_to_col; //sup_to_col[s] points to the starting column of the s-th supernode
-
- private :
-};
-
-/**
- * \brief InnerIterator class to iterate over nonzero values of the current column in the supernodal matrix L
- *
- */
-template<typename Scalar, typename Index>
-class MappedSuperNodalMatrix<Scalar,Index>::InnerIterator
-{
- public:
- InnerIterator(const MappedSuperNodalMatrix& mat, Index outer)
- : m_matrix(mat),
- m_outer(outer),
- m_supno(mat.colToSup()[outer]),
- m_idval(mat.colIndexPtr()[outer]),
- m_startidval(m_idval),
- m_endidval(mat.colIndexPtr()[outer+1]),
- m_idrow(mat.rowIndexPtr()[outer]),
- m_endidrow(mat.rowIndexPtr()[outer+1])
- {}
- inline InnerIterator& operator++()
- {
- m_idval++;
- m_idrow++;
- return *this;
- }
- inline Scalar value() const { return m_matrix.valuePtr()[m_idval]; }
-
- inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix.valuePtr()[m_idval]); }
-
- inline Index index() const { return m_matrix.rowIndex()[m_idrow]; }
- inline Index row() const { return index(); }
- inline Index col() const { return m_outer; }
-
- inline Index supIndex() const { return m_supno; }
-
- inline operator bool() const
- {
- return ( (m_idval < m_endidval) && (m_idval >= m_startidval)
- && (m_idrow < m_endidrow) );
- }
-
- protected:
- const MappedSuperNodalMatrix& m_matrix; // Supernodal lower triangular matrix
- const Index m_outer; // Current column
- const Index m_supno; // Current SuperNode number
- Index m_idval; // Index to browse the values in the current column
- const Index m_startidval; // Start of the column value
- const Index m_endidval; // End of the column value
- Index m_idrow; // Index to browse the row indices
- Index m_endidrow; // End index of row indices of the current column
-};
-
-/**
- * \brief Solve with the supernode triangular matrix
- *
- */
-template<typename Scalar, typename Index>
-template<typename Dest>
-void MappedSuperNodalMatrix<Scalar,Index>::solveInPlace( MatrixBase<Dest>&X) const
-{
- Index n = X.rows();
- Index nrhs = X.cols();
- const Scalar * Lval = valuePtr(); // Nonzero values
- Matrix<Scalar,Dynamic,Dynamic> work(n, nrhs); // working vector
- work.setZero();
- for (Index k = 0; k <= nsuper(); k ++)
- {
- Index fsupc = supToCol()[k]; // First column of the current supernode
- Index istart = rowIndexPtr()[fsupc]; // Pointer index to the subscript of the current column
- Index nsupr = rowIndexPtr()[fsupc+1] - istart; // Number of rows in the current supernode
- Index nsupc = supToCol()[k+1] - fsupc; // Number of columns in the current supernode
- Index nrow = nsupr - nsupc; // Number of rows in the non-diagonal part of the supernode
- Index irow; //Current index row
-
- if (nsupc == 1 )
- {
- for (Index j = 0; j < nrhs; j++)
- {
- InnerIterator it(*this, fsupc);
- ++it; // Skip the diagonal element
- for (; it; ++it)
- {
- irow = it.row();
- X(irow, j) -= X(fsupc, j) * it.value();
- }
- }
- }
- else
- {
- // The supernode has more than one column
- Index luptr = colIndexPtr()[fsupc];
- Index lda = colIndexPtr()[fsupc+1] - luptr;
-
- // Triangular solve
- Map<const Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(Lval[luptr]), nsupc, nsupc, OuterStride<>(lda) );
- Map< Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
- U = A.template triangularView<UnitLower>().solve(U);
-
- // Matrix-vector product
- new (&A) Map<const Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > ( &(Lval[luptr+nsupc]), nrow, nsupc, OuterStride<>(lda) );
- work.block(0, 0, nrow, nrhs) = A * U;
-
- //Begin Scatter
- for (Index j = 0; j < nrhs; j++)
- {
- Index iptr = istart + nsupc;
- for (Index i = 0; i < nrow; i++)
- {
- irow = rowIndex()[iptr];
- X(irow, j) -= work(i, j); // Scatter operation
- work(i, j) = Scalar(0);
- iptr++;
- }
- }
- }
- }
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSELU_MATRIX_H
diff --git a/src/Eigen/src/SparseLU/SparseLU_Utils.h b/src/Eigen/src/SparseLU/SparseLU_Utils.h
deleted file mode 100644
index 15352ac..0000000
--- a/src/Eigen/src/SparseLU/SparseLU_Utils.h
+++ /dev/null
@@ -1,80 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-
-#ifndef EIGEN_SPARSELU_UTILS_H
-#define EIGEN_SPARSELU_UTILS_H
-
-namespace Eigen {
-namespace internal {
-
-/**
- * \brief Count Nonzero elements in the factors
- */
-template <typename Scalar, typename Index>
-void SparseLUImpl<Scalar,Index>::countnz(const Index n, Index& nnzL, Index& nnzU, GlobalLU_t& glu)
-{
- nnzL = 0;
- nnzU = (glu.xusub)(n);
- Index nsuper = (glu.supno)(n);
- Index jlen;
- Index i, j, fsupc;
- if (n <= 0 ) return;
- // For each supernode
- for (i = 0; i <= nsuper; i++)
- {
- fsupc = glu.xsup(i);
- jlen = glu.xlsub(fsupc+1) - glu.xlsub(fsupc);
-
- for (j = fsupc; j < glu.xsup(i+1); j++)
- {
- nnzL += jlen;
- nnzU += j - fsupc + 1;
- jlen--;
- }
- }
-}
-
-/**
- * \brief Fix up the data storage lsub for L-subscripts.
- *
- * It removes the subscripts sets for structural pruning,
- * and applies permutation to the remaining subscripts
- *
- */
-template <typename Scalar, typename Index>
-void SparseLUImpl<Scalar,Index>::fixupL(const Index n, const IndexVector& perm_r, GlobalLU_t& glu)
-{
- Index fsupc, i, j, k, jstart;
-
- Index nextl = 0;
- Index nsuper = (glu.supno)(n);
-
- // For each supernode
- for (i = 0; i <= nsuper; i++)
- {
- fsupc = glu.xsup(i);
- jstart = glu.xlsub(fsupc);
- glu.xlsub(fsupc) = nextl;
- for (j = jstart; j < glu.xlsub(fsupc + 1); j++)
- {
- glu.lsub(nextl) = perm_r(glu.lsub(j)); // Now indexed into P*A
- nextl++;
- }
- for (k = fsupc+1; k < glu.xsup(i+1); k++)
- glu.xlsub(k) = nextl; // other columns in supernode i
- }
-
- glu.xlsub(n) = nextl;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-#endif // EIGEN_SPARSELU_UTILS_H
diff --git a/src/Eigen/src/SparseLU/SparseLU_column_bmod.h b/src/Eigen/src/SparseLU/SparseLU_column_bmod.h
deleted file mode 100644
index f24bd87..0000000
--- a/src/Eigen/src/SparseLU/SparseLU_column_bmod.h
+++ /dev/null
@@ -1,180 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/*
-
- * NOTE: This file is the modified version of xcolumn_bmod.c file in SuperLU
-
- * -- SuperLU routine (version 3.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * October 15, 2003
- *
- * Copyright (c) 1994 by Xerox Corporation. All rights reserved.
- *
- * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
- *
- * Permission is hereby granted to use or copy this program for any
- * purpose, provided the above notices are retained on all copies.
- * Permission to modify the code and to distribute modified code is
- * granted, provided the above notices are retained, and a notice that
- * the code was modified is included with the above copyright notice.
- */
-#ifndef SPARSELU_COLUMN_BMOD_H
-#define SPARSELU_COLUMN_BMOD_H
-
-namespace Eigen {
-
-namespace internal {
-/**
- * \brief Performs numeric block updates (sup-col) in topological order
- *
- * \param jcol current column to update
- * \param nseg Number of segments in the U part
- * \param dense Store the full representation of the column
- * \param tempv working array
- * \param segrep segment representative ...
- * \param repfnz ??? First nonzero column in each row ??? ...
- * \param fpanelc First column in the current panel
- * \param glu Global LU data.
- * \return 0 - successful return
- * > 0 - number of bytes allocated when run out of space
- *
- */
-template <typename Scalar, typename Index>
-Index SparseLUImpl<Scalar,Index>::column_bmod(const Index jcol, const Index nseg, BlockScalarVector dense, ScalarVector& tempv, BlockIndexVector segrep, BlockIndexVector repfnz, Index fpanelc, GlobalLU_t& glu)
-{
- Index jsupno, k, ksub, krep, ksupno;
- Index lptr, nrow, isub, irow, nextlu, new_next, ufirst;
- Index fsupc, nsupc, nsupr, luptr, kfnz, no_zeros;
- /* krep = representative of current k-th supernode
- * fsupc = first supernodal column
- * nsupc = number of columns in a supernode
- * nsupr = number of rows in a supernode
- * luptr = location of supernodal LU-block in storage
- * kfnz = first nonz in the k-th supernodal segment
- * no_zeros = no lf leading zeros in a supernodal U-segment
- */
-
- jsupno = glu.supno(jcol);
- // For each nonzero supernode segment of U[*,j] in topological order
- k = nseg - 1;
- Index d_fsupc; // distance between the first column of the current panel and the
- // first column of the current snode
- Index fst_col; // First column within small LU update
- Index segsize;
- for (ksub = 0; ksub < nseg; ksub++)
- {
- krep = segrep(k); k--;
- ksupno = glu.supno(krep);
- if (jsupno != ksupno )
- {
- // outside the rectangular supernode
- fsupc = glu.xsup(ksupno);
- fst_col = (std::max)(fsupc, fpanelc);
-
- // Distance from the current supernode to the current panel;
- // d_fsupc = 0 if fsupc > fpanelc
- d_fsupc = fst_col - fsupc;
-
- luptr = glu.xlusup(fst_col) + d_fsupc;
- lptr = glu.xlsub(fsupc) + d_fsupc;
-
- kfnz = repfnz(krep);
- kfnz = (std::max)(kfnz, fpanelc);
-
- segsize = krep - kfnz + 1;
- nsupc = krep - fst_col + 1;
- nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc);
- nrow = nsupr - d_fsupc - nsupc;
- Index lda = glu.xlusup(fst_col+1) - glu.xlusup(fst_col);
-
-
- // Perform a triangular solver and block update,
- // then scatter the result of sup-col update to dense
- no_zeros = kfnz - fst_col;
- if(segsize==1)
- LU_kernel_bmod<1>::run(segsize, dense, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros);
- else
- LU_kernel_bmod<Dynamic>::run(segsize, dense, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros);
- } // end if jsupno
- } // end for each segment
-
- // Process the supernodal portion of L\U[*,j]
- nextlu = glu.xlusup(jcol);
- fsupc = glu.xsup(jsupno);
-
- // copy the SPA dense into L\U[*,j]
- Index mem;
- new_next = nextlu + glu.xlsub(fsupc + 1) - glu.xlsub(fsupc);
- Index offset = internal::first_multiple<Index>(new_next, internal::packet_traits<Scalar>::size) - new_next;
- if(offset)
- new_next += offset;
- while (new_next > glu.nzlumax )
- {
- mem = memXpand<ScalarVector>(glu.lusup, glu.nzlumax, nextlu, LUSUP, glu.num_expansions);
- if (mem) return mem;
- }
-
- for (isub = glu.xlsub(fsupc); isub < glu.xlsub(fsupc+1); isub++)
- {
- irow = glu.lsub(isub);
- glu.lusup(nextlu) = dense(irow);
- dense(irow) = Scalar(0.0);
- ++nextlu;
- }
-
- if(offset)
- {
- glu.lusup.segment(nextlu,offset).setZero();
- nextlu += offset;
- }
- glu.xlusup(jcol + 1) = nextlu; // close L\U(*,jcol);
-
- /* For more updates within the panel (also within the current supernode),
- * should start from the first column of the panel, or the first column
- * of the supernode, whichever is bigger. There are two cases:
- * 1) fsupc < fpanelc, then fst_col <-- fpanelc
- * 2) fsupc >= fpanelc, then fst_col <-- fsupc
- */
- fst_col = (std::max)(fsupc, fpanelc);
-
- if (fst_col < jcol)
- {
- // Distance between the current supernode and the current panel
- // d_fsupc = 0 if fsupc >= fpanelc
- d_fsupc = fst_col - fsupc;
-
- lptr = glu.xlsub(fsupc) + d_fsupc;
- luptr = glu.xlusup(fst_col) + d_fsupc;
- nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc); // leading dimension
- nsupc = jcol - fst_col; // excluding jcol
- nrow = nsupr - d_fsupc - nsupc;
-
- // points to the beginning of jcol in snode L\U(jsupno)
- ufirst = glu.xlusup(jcol) + d_fsupc;
- Index lda = glu.xlusup(jcol+1) - glu.xlusup(jcol);
- Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(glu.lusup.data()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
- VectorBlock<ScalarVector> u(glu.lusup, ufirst, nsupc);
- u = A.template triangularView<UnitLower>().solve(u);
-
- new (&A) Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > ( &(glu.lusup.data()[luptr+nsupc]), nrow, nsupc, OuterStride<>(lda) );
- VectorBlock<ScalarVector> l(glu.lusup, ufirst+nsupc, nrow);
- l.noalias() -= A * u;
-
- } // End if fst_col
- return 0;
-}
-
-} // end namespace internal
-} // end namespace Eigen
-
-#endif // SPARSELU_COLUMN_BMOD_H
diff --git a/src/Eigen/src/SparseLU/SparseLU_column_dfs.h b/src/Eigen/src/SparseLU/SparseLU_column_dfs.h
deleted file mode 100644
index 4c04b0e..0000000
--- a/src/Eigen/src/SparseLU/SparseLU_column_dfs.h
+++ /dev/null
@@ -1,177 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/*
-
- * NOTE: This file is the modified version of [s,d,c,z]column_dfs.c file in SuperLU
-
- * -- SuperLU routine (version 2.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * November 15, 1997
- *
- * Copyright (c) 1994 by Xerox Corporation. All rights reserved.
- *
- * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
- *
- * Permission is hereby granted to use or copy this program for any
- * purpose, provided the above notices are retained on all copies.
- * Permission to modify the code and to distribute modified code is
- * granted, provided the above notices are retained, and a notice that
- * the code was modified is included with the above copyright notice.
- */
-#ifndef SPARSELU_COLUMN_DFS_H
-#define SPARSELU_COLUMN_DFS_H
-
-template <typename Scalar, typename Index> class SparseLUImpl;
-namespace Eigen {
-
-namespace internal {
-
-template<typename IndexVector, typename ScalarVector>
-struct column_dfs_traits : no_assignment_operator
-{
- typedef typename ScalarVector::Scalar Scalar;
- typedef typename IndexVector::Scalar Index;
- column_dfs_traits(Index jcol, Index& jsuper, typename SparseLUImpl<Scalar, Index>::GlobalLU_t& glu, SparseLUImpl<Scalar, Index>& luImpl)
- : m_jcol(jcol), m_jsuper_ref(jsuper), m_glu(glu), m_luImpl(luImpl)
- {}
- bool update_segrep(Index /*krep*/, Index /*jj*/)
- {
- return true;
- }
- void mem_expand(IndexVector& lsub, Index& nextl, Index chmark)
- {
- if (nextl >= m_glu.nzlmax)
- m_luImpl.memXpand(lsub, m_glu.nzlmax, nextl, LSUB, m_glu.num_expansions);
- if (chmark != (m_jcol-1)) m_jsuper_ref = emptyIdxLU;
- }
- enum { ExpandMem = true };
-
- Index m_jcol;
- Index& m_jsuper_ref;
- typename SparseLUImpl<Scalar, Index>::GlobalLU_t& m_glu;
- SparseLUImpl<Scalar, Index>& m_luImpl;
-};
-
-
-/**
- * \brief Performs a symbolic factorization on column jcol and decide the supernode boundary
- *
- * A supernode representative is the last column of a supernode.
- * The nonzeros in U[*,j] are segments that end at supernodes representatives.
- * The routine returns a list of the supernodal representatives
- * in topological order of the dfs that generates them.
- * The location of the first nonzero in each supernodal segment
- * (supernodal entry location) is also returned.
- *
- * \param m number of rows in the matrix
- * \param jcol Current column
- * \param perm_r Row permutation
- * \param maxsuper Maximum number of column allowed in a supernode
- * \param [in,out] nseg Number of segments in current U[*,j] - new segments appended
- * \param lsub_col defines the rhs vector to start the dfs
- * \param [in,out] segrep Segment representatives - new segments appended
- * \param repfnz First nonzero location in each row
- * \param xprune
- * \param marker marker[i] == jj, if i was visited during dfs of current column jj;
- * \param parent
- * \param xplore working array
- * \param glu global LU data
- * \return 0 success
- * > 0 number of bytes allocated when run out of space
- *
- */
-template <typename Scalar, typename Index>
-Index SparseLUImpl<Scalar,Index>::column_dfs(const Index m, const Index jcol, IndexVector& perm_r, Index maxsuper, Index& nseg, BlockIndexVector lsub_col, IndexVector& segrep, BlockIndexVector repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu)
-{
-
- Index jsuper = glu.supno(jcol);
- Index nextl = glu.xlsub(jcol);
- VectorBlock<IndexVector> marker2(marker, 2*m, m);
-
-
- column_dfs_traits<IndexVector, ScalarVector> traits(jcol, jsuper, glu, *this);
-
- // For each nonzero in A(*,jcol) do dfs
- for (Index k = 0; ((k < m) ? lsub_col[k] != emptyIdxLU : false) ; k++)
- {
- Index krow = lsub_col(k);
- lsub_col(k) = emptyIdxLU;
- Index kmark = marker2(krow);
-
- // krow was visited before, go to the next nonz;
- if (kmark == jcol) continue;
-
- dfs_kernel(jcol, perm_r, nseg, glu.lsub, segrep, repfnz, xprune, marker2, parent,
- xplore, glu, nextl, krow, traits);
- } // for each nonzero ...
-
- Index fsupc, jptr, jm1ptr, ito, ifrom, istop;
- Index nsuper = glu.supno(jcol);
- Index jcolp1 = jcol + 1;
- Index jcolm1 = jcol - 1;
-
- // check to see if j belongs in the same supernode as j-1
- if ( jcol == 0 )
- { // Do nothing for column 0
- nsuper = glu.supno(0) = 0 ;
- }
- else
- {
- fsupc = glu.xsup(nsuper);
- jptr = glu.xlsub(jcol); // Not yet compressed
- jm1ptr = glu.xlsub(jcolm1);
-
- // Use supernodes of type T2 : see SuperLU paper
- if ( (nextl-jptr != jptr-jm1ptr-1) ) jsuper = emptyIdxLU;
-
- // Make sure the number of columns in a supernode doesn't
- // exceed threshold
- if ( (jcol - fsupc) >= maxsuper) jsuper = emptyIdxLU;
-
- /* If jcol starts a new supernode, reclaim storage space in
- * glu.lsub from previous supernode. Note we only store
- * the subscript set of the first and last columns of
- * a supernode. (first for num values, last for pruning)
- */
- if (jsuper == emptyIdxLU)
- { // starts a new supernode
- if ( (fsupc < jcolm1-1) )
- { // >= 3 columns in nsuper
- ito = glu.xlsub(fsupc+1);
- glu.xlsub(jcolm1) = ito;
- istop = ito + jptr - jm1ptr;
- xprune(jcolm1) = istop; // intialize xprune(jcol-1)
- glu.xlsub(jcol) = istop;
-
- for (ifrom = jm1ptr; ifrom < nextl; ++ifrom, ++ito)
- glu.lsub(ito) = glu.lsub(ifrom);
- nextl = ito; // = istop + length(jcol)
- }
- nsuper++;
- glu.supno(jcol) = nsuper;
- } // if a new supernode
- } // end else: jcol > 0
-
- // Tidy up the pointers before exit
- glu.xsup(nsuper+1) = jcolp1;
- glu.supno(jcolp1) = nsuper;
- xprune(jcol) = nextl; // Intialize upper bound for pruning
- glu.xlsub(jcolp1) = nextl;
-
- return 0;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif
diff --git a/src/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h b/src/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h
deleted file mode 100644
index 170610d..0000000
--- a/src/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h
+++ /dev/null
@@ -1,106 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-/*
-
- * NOTE: This file is the modified version of [s,d,c,z]copy_to_ucol.c file in SuperLU
-
- * -- SuperLU routine (version 2.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * November 15, 1997
- *
- * Copyright (c) 1994 by Xerox Corporation. All rights reserved.
- *
- * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
- *
- * Permission is hereby granted to use or copy this program for any
- * purpose, provided the above notices are retained on all copies.
- * Permission to modify the code and to distribute modified code is
- * granted, provided the above notices are retained, and a notice that
- * the code was modified is included with the above copyright notice.
- */
-#ifndef SPARSELU_COPY_TO_UCOL_H
-#define SPARSELU_COPY_TO_UCOL_H
-
-namespace Eigen {
-namespace internal {
-
-/**
- * \brief Performs numeric block updates (sup-col) in topological order
- *
- * \param jcol current column to update
- * \param nseg Number of segments in the U part
- * \param segrep segment representative ...
- * \param repfnz First nonzero column in each row ...
- * \param perm_r Row permutation
- * \param dense Store the full representation of the column
- * \param glu Global LU data.
- * \return 0 - successful return
- * > 0 - number of bytes allocated when run out of space
- *
- */
-template <typename Scalar, typename Index>
-Index SparseLUImpl<Scalar,Index>::copy_to_ucol(const Index jcol, const Index nseg, IndexVector& segrep, BlockIndexVector repfnz ,IndexVector& perm_r, BlockScalarVector dense, GlobalLU_t& glu)
-{
- Index ksub, krep, ksupno;
-
- Index jsupno = glu.supno(jcol);
-
- // For each nonzero supernode segment of U[*,j] in topological order
- Index k = nseg - 1, i;
- Index nextu = glu.xusub(jcol);
- Index kfnz, isub, segsize;
- Index new_next,irow;
- Index fsupc, mem;
- for (ksub = 0; ksub < nseg; ksub++)
- {
- krep = segrep(k); k--;
- ksupno = glu.supno(krep);
- if (jsupno != ksupno ) // should go into ucol();
- {
- kfnz = repfnz(krep);
- if (kfnz != emptyIdxLU)
- { // Nonzero U-segment
- fsupc = glu.xsup(ksupno);
- isub = glu.xlsub(fsupc) + kfnz - fsupc;
- segsize = krep - kfnz + 1;
- new_next = nextu + segsize;
- while (new_next > glu.nzumax)
- {
- mem = memXpand<ScalarVector>(glu.ucol, glu.nzumax, nextu, UCOL, glu.num_expansions);
- if (mem) return mem;
- mem = memXpand<IndexVector>(glu.usub, glu.nzumax, nextu, USUB, glu.num_expansions);
- if (mem) return mem;
-
- }
-
- for (i = 0; i < segsize; i++)
- {
- irow = glu.lsub(isub);
- glu.usub(nextu) = perm_r(irow); // Unlike the L part, the U part is stored in its final order
- glu.ucol(nextu) = dense(irow);
- dense(irow) = Scalar(0.0);
- nextu++;
- isub++;
- }
-
- } // end nonzero U-segment
-
- } // end if jsupno
-
- } // end for each segment
- glu.xusub(jcol + 1) = nextu; // close U(*,jcol)
- return 0;
-}
-
-} // namespace internal
-} // end namespace Eigen
-
-#endif // SPARSELU_COPY_TO_UCOL_H
diff --git a/src/Eigen/src/SparseLU/SparseLU_gemm_kernel.h b/src/Eigen/src/SparseLU/SparseLU_gemm_kernel.h
deleted file mode 100644
index 9e4e3e7..0000000
--- a/src/Eigen/src/SparseLU/SparseLU_gemm_kernel.h
+++ /dev/null
@@ -1,279 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSELU_GEMM_KERNEL_H
-#define EIGEN_SPARSELU_GEMM_KERNEL_H
-
-namespace Eigen {
-
-namespace internal {
-
-
-/** \internal
- * A general matrix-matrix product kernel optimized for the SparseLU factorization.
- * - A, B, and C must be column major
- * - lda and ldc must be multiples of the respective packet size
- * - C must have the same alignment as A
- */
-template<typename Scalar,typename Index>
-EIGEN_DONT_INLINE
-void sparselu_gemm(Index m, Index n, Index d, const Scalar* A, Index lda, const Scalar* B, Index ldb, Scalar* C, Index ldc)
-{
- using namespace Eigen::internal;
-
- typedef typename packet_traits<Scalar>::type Packet;
- enum {
- NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
- PacketSize = packet_traits<Scalar>::size,
- PM = 8, // peeling in M
- RN = 2, // register blocking
- RK = NumberOfRegisters>=16 ? 4 : 2, // register blocking
- BM = 4096/sizeof(Scalar), // number of rows of A-C per chunk
- SM = PM*PacketSize // step along M
- };
- Index d_end = (d/RK)*RK; // number of columns of A (rows of B) suitable for full register blocking
- Index n_end = (n/RN)*RN; // number of columns of B-C suitable for processing RN columns at once
- Index i0 = internal::first_aligned(A,m);
-
- eigen_internal_assert(((lda%PacketSize)==0) && ((ldc%PacketSize)==0) && (i0==internal::first_aligned(C,m)));
-
- // handle the non aligned rows of A and C without any optimization:
- for(Index i=0; i<i0; ++i)
- {
- for(Index j=0; j<n; ++j)
- {
- Scalar c = C[i+j*ldc];
- for(Index k=0; k<d; ++k)
- c += B[k+j*ldb] * A[i+k*lda];
- C[i+j*ldc] = c;
- }
- }
- // process the remaining rows per chunk of BM rows
- for(Index ib=i0; ib<m; ib+=BM)
- {
- Index actual_b = std::min<Index>(BM, m-ib); // actual number of rows
- Index actual_b_end1 = (actual_b/SM)*SM; // actual number of rows suitable for peeling
- Index actual_b_end2 = (actual_b/PacketSize)*PacketSize; // actual number of rows suitable for vectorization
-
- // Let's process two columns of B-C at once
- for(Index j=0; j<n_end; j+=RN)
- {
- const Scalar* Bc0 = B+(j+0)*ldb;
- const Scalar* Bc1 = B+(j+1)*ldb;
-
- for(Index k=0; k<d_end; k+=RK)
- {
-
- // load and expand a RN x RK block of B
- Packet b00, b10, b20, b30, b01, b11, b21, b31;
- b00 = pset1<Packet>(Bc0[0]);
- b10 = pset1<Packet>(Bc0[1]);
- if(RK==4) b20 = pset1<Packet>(Bc0[2]);
- if(RK==4) b30 = pset1<Packet>(Bc0[3]);
- b01 = pset1<Packet>(Bc1[0]);
- b11 = pset1<Packet>(Bc1[1]);
- if(RK==4) b21 = pset1<Packet>(Bc1[2]);
- if(RK==4) b31 = pset1<Packet>(Bc1[3]);
-
- Packet a0, a1, a2, a3, c0, c1, t0, t1;
-
- const Scalar* A0 = A+ib+(k+0)*lda;
- const Scalar* A1 = A+ib+(k+1)*lda;
- const Scalar* A2 = A+ib+(k+2)*lda;
- const Scalar* A3 = A+ib+(k+3)*lda;
-
- Scalar* C0 = C+ib+(j+0)*ldc;
- Scalar* C1 = C+ib+(j+1)*ldc;
-
- a0 = pload<Packet>(A0);
- a1 = pload<Packet>(A1);
- if(RK==4)
- {
- a2 = pload<Packet>(A2);
- a3 = pload<Packet>(A3);
- }
- else
- {
- // workaround "may be used uninitialized in this function" warning
- a2 = a3 = a0;
- }
-
-#define KMADD(c, a, b, tmp) {tmp = b; tmp = pmul(a,tmp); c = padd(c,tmp);}
-#define WORK(I) \
- c0 = pload<Packet>(C0+i+(I)*PacketSize); \
- c1 = pload<Packet>(C1+i+(I)*PacketSize); \
- KMADD(c0, a0, b00, t0) \
- KMADD(c1, a0, b01, t1) \
- a0 = pload<Packet>(A0+i+(I+1)*PacketSize); \
- KMADD(c0, a1, b10, t0) \
- KMADD(c1, a1, b11, t1) \
- a1 = pload<Packet>(A1+i+(I+1)*PacketSize); \
- if(RK==4) KMADD(c0, a2, b20, t0) \
- if(RK==4) KMADD(c1, a2, b21, t1) \
- if(RK==4) a2 = pload<Packet>(A2+i+(I+1)*PacketSize); \
- if(RK==4) KMADD(c0, a3, b30, t0) \
- if(RK==4) KMADD(c1, a3, b31, t1) \
- if(RK==4) a3 = pload<Packet>(A3+i+(I+1)*PacketSize); \
- pstore(C0+i+(I)*PacketSize, c0); \
- pstore(C1+i+(I)*PacketSize, c1)
-
- // process rows of A' - C' with aggressive vectorization and peeling
- for(Index i=0; i<actual_b_end1; i+=PacketSize*8)
- {
- EIGEN_ASM_COMMENT("SPARSELU_GEMML_KERNEL1");
- prefetch((A0+i+(5)*PacketSize));
- prefetch((A1+i+(5)*PacketSize));
- if(RK==4) prefetch((A2+i+(5)*PacketSize));
- if(RK==4) prefetch((A3+i+(5)*PacketSize));
- WORK(0);
- WORK(1);
- WORK(2);
- WORK(3);
- WORK(4);
- WORK(5);
- WORK(6);
- WORK(7);
- }
- // process the remaining rows with vectorization only
- for(Index i=actual_b_end1; i<actual_b_end2; i+=PacketSize)
- {
- WORK(0);
- }
-#undef WORK
- // process the remaining rows without vectorization
- for(Index i=actual_b_end2; i<actual_b; ++i)
- {
- if(RK==4)
- {
- C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]+A2[i]*Bc0[2]+A3[i]*Bc0[3];
- C1[i] += A0[i]*Bc1[0]+A1[i]*Bc1[1]+A2[i]*Bc1[2]+A3[i]*Bc1[3];
- }
- else
- {
- C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1];
- C1[i] += A0[i]*Bc1[0]+A1[i]*Bc1[1];
- }
- }
-
- Bc0 += RK;
- Bc1 += RK;
- } // peeled loop on k
- } // peeled loop on the columns j
- // process the last column (we now perform a matrux-vector product)
- if((n-n_end)>0)
- {
- const Scalar* Bc0 = B+(n-1)*ldb;
-
- for(Index k=0; k<d_end; k+=RK)
- {
-
- // load and expand a 1 x RK block of B
- Packet b00, b10, b20, b30;
- b00 = pset1<Packet>(Bc0[0]);
- b10 = pset1<Packet>(Bc0[1]);
- if(RK==4) b20 = pset1<Packet>(Bc0[2]);
- if(RK==4) b30 = pset1<Packet>(Bc0[3]);
-
- Packet a0, a1, a2, a3, c0, t0/*, t1*/;
-
- const Scalar* A0 = A+ib+(k+0)*lda;
- const Scalar* A1 = A+ib+(k+1)*lda;
- const Scalar* A2 = A+ib+(k+2)*lda;
- const Scalar* A3 = A+ib+(k+3)*lda;
-
- Scalar* C0 = C+ib+(n_end)*ldc;
-
- a0 = pload<Packet>(A0);
- a1 = pload<Packet>(A1);
- if(RK==4)
- {
- a2 = pload<Packet>(A2);
- a3 = pload<Packet>(A3);
- }
- else
- {
- // workaround "may be used uninitialized in this function" warning
- a2 = a3 = a0;
- }
-
-#define WORK(I) \
- c0 = pload<Packet>(C0+i+(I)*PacketSize); \
- KMADD(c0, a0, b00, t0) \
- a0 = pload<Packet>(A0+i+(I+1)*PacketSize); \
- KMADD(c0, a1, b10, t0) \
- a1 = pload<Packet>(A1+i+(I+1)*PacketSize); \
- if(RK==4) KMADD(c0, a2, b20, t0) \
- if(RK==4) a2 = pload<Packet>(A2+i+(I+1)*PacketSize); \
- if(RK==4) KMADD(c0, a3, b30, t0) \
- if(RK==4) a3 = pload<Packet>(A3+i+(I+1)*PacketSize); \
- pstore(C0+i+(I)*PacketSize, c0);
-
- // agressive vectorization and peeling
- for(Index i=0; i<actual_b_end1; i+=PacketSize*8)
- {
- EIGEN_ASM_COMMENT("SPARSELU_GEMML_KERNEL2");
- WORK(0);
- WORK(1);
- WORK(2);
- WORK(3);
- WORK(4);
- WORK(5);
- WORK(6);
- WORK(7);
- }
- // vectorization only
- for(Index i=actual_b_end1; i<actual_b_end2; i+=PacketSize)
- {
- WORK(0);
- }
- // remaining scalars
- for(Index i=actual_b_end2; i<actual_b; ++i)
- {
- if(RK==4)
- C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]+A2[i]*Bc0[2]+A3[i]*Bc0[3];
- else
- C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1];
- }
-
- Bc0 += RK;
-#undef WORK
- }
- }
-
- // process the last columns of A, corresponding to the last rows of B
- Index rd = d-d_end;
- if(rd>0)
- {
- for(Index j=0; j<n; ++j)
- {
- enum {
- Alignment = PacketSize>1 ? Aligned : 0
- };
- typedef Map<Matrix<Scalar,Dynamic,1>, Alignment > MapVector;
- typedef Map<const Matrix<Scalar,Dynamic,1>, Alignment > ConstMapVector;
- if(rd==1) MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b);
-
- else if(rd==2) MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b)
- + B[1+d_end+j*ldb] * ConstMapVector(A+(d_end+1)*lda+ib, actual_b);
-
- else MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b)
- + B[1+d_end+j*ldb] * ConstMapVector(A+(d_end+1)*lda+ib, actual_b)
- + B[2+d_end+j*ldb] * ConstMapVector(A+(d_end+2)*lda+ib, actual_b);
- }
- }
-
- } // blocking on the rows of A and C
-}
-#undef KMADD
-
-} // namespace internal
-
-} // namespace Eigen
-
-#endif // EIGEN_SPARSELU_GEMM_KERNEL_H
diff --git a/src/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h b/src/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h
deleted file mode 100644
index 7a4e430..0000000
--- a/src/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h
+++ /dev/null
@@ -1,127 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/* This file is a modified version of heap_relax_snode.c file in SuperLU
- * -- SuperLU routine (version 3.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * October 15, 2003
- *
- * Copyright (c) 1994 by Xerox Corporation. All rights reserved.
- *
- * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
- *
- * Permission is hereby granted to use or copy this program for any
- * purpose, provided the above notices are retained on all copies.
- * Permission to modify the code and to distribute modified code is
- * granted, provided the above notices are retained, and a notice that
- * the code was modified is included with the above copyright notice.
- */
-
-#ifndef SPARSELU_HEAP_RELAX_SNODE_H
-#define SPARSELU_HEAP_RELAX_SNODE_H
-
-namespace Eigen {
-namespace internal {
-
-/**
- * \brief Identify the initial relaxed supernodes
- *
- * This routine applied to a symmetric elimination tree.
- * It assumes that the matrix has been reordered according to the postorder of the etree
- * \param n The number of columns
- * \param et elimination tree
- * \param relax_columns Maximum number of columns allowed in a relaxed snode
- * \param descendants Number of descendants of each node in the etree
- * \param relax_end last column in a supernode
- */
-template <typename Scalar, typename Index>
-void SparseLUImpl<Scalar,Index>::heap_relax_snode (const Index n, IndexVector& et, const Index relax_columns, IndexVector& descendants, IndexVector& relax_end)
-{
-
- // The etree may not be postordered, but its heap ordered
- IndexVector post;
- internal::treePostorder(n, et, post); // Post order etree
- IndexVector inv_post(n+1);
- Index i;
- for (i = 0; i < n+1; ++i) inv_post(post(i)) = i; // inv_post = post.inverse()???
-
- // Renumber etree in postorder
- IndexVector iwork(n);
- IndexVector et_save(n+1);
- for (i = 0; i < n; ++i)
- {
- iwork(post(i)) = post(et(i));
- }
- et_save = et; // Save the original etree
- et = iwork;
-
- // compute the number of descendants of each node in the etree
- relax_end.setConstant(emptyIdxLU);
- Index j, parent;
- descendants.setZero();
- for (j = 0; j < n; j++)
- {
- parent = et(j);
- if (parent != n) // not the dummy root
- descendants(parent) += descendants(j) + 1;
- }
- // Identify the relaxed supernodes by postorder traversal of the etree
- Index snode_start; // beginning of a snode
- Index k;
- Index nsuper_et_post = 0; // Number of relaxed snodes in postordered etree
- Index nsuper_et = 0; // Number of relaxed snodes in the original etree
- Index l;
- for (j = 0; j < n; )
- {
- parent = et(j);
- snode_start = j;
- while ( parent != n && descendants(parent) < relax_columns )
- {
- j = parent;
- parent = et(j);
- }
- // Found a supernode in postordered etree, j is the last column
- ++nsuper_et_post;
- k = n;
- for (i = snode_start; i <= j; ++i)
- k = (std::min)(k, inv_post(i));
- l = inv_post(j);
- if ( (l - k) == (j - snode_start) ) // Same number of columns in the snode
- {
- // This is also a supernode in the original etree
- relax_end(k) = l; // Record last column
- ++nsuper_et;
- }
- else
- {
- for (i = snode_start; i <= j; ++i)
- {
- l = inv_post(i);
- if (descendants(i) == 0)
- {
- relax_end(l) = l;
- ++nsuper_et;
- }
- }
- }
- j++;
- // Search for a new leaf
- while (descendants(j) != 0 && j < n) j++;
- } // End postorder traversal of the etree
-
- // Recover the original etree
- et = et_save;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-#endif // SPARSELU_HEAP_RELAX_SNODE_H
diff --git a/src/Eigen/src/SparseLU/SparseLU_kernel_bmod.h b/src/Eigen/src/SparseLU/SparseLU_kernel_bmod.h
deleted file mode 100644
index 0d0283b..0000000
--- a/src/Eigen/src/SparseLU/SparseLU_kernel_bmod.h
+++ /dev/null
@@ -1,130 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef SPARSELU_KERNEL_BMOD_H
-#define SPARSELU_KERNEL_BMOD_H
-
-namespace Eigen {
-namespace internal {
-
-/**
- * \brief Performs numeric block updates from a given supernode to a single column
- *
- * \param segsize Size of the segment (and blocks ) to use for updates
- * \param[in,out] dense Packed values of the original matrix
- * \param tempv temporary vector to use for updates
- * \param lusup array containing the supernodes
- * \param lda Leading dimension in the supernode
- * \param nrow Number of rows in the rectangular part of the supernode
- * \param lsub compressed row subscripts of supernodes
- * \param lptr pointer to the first column of the current supernode in lsub
- * \param no_zeros Number of nonzeros elements before the diagonal part of the supernode
- * \return 0 on success
- */
-template <int SegSizeAtCompileTime> struct LU_kernel_bmod
-{
- template <typename BlockScalarVector, typename ScalarVector, typename IndexVector, typename Index>
- static EIGEN_DONT_INLINE void run(const int segsize, BlockScalarVector& dense, ScalarVector& tempv, ScalarVector& lusup, Index& luptr, const Index lda,
- const Index nrow, IndexVector& lsub, const Index lptr, const Index no_zeros);
-};
-
-template <int SegSizeAtCompileTime>
-template <typename BlockScalarVector, typename ScalarVector, typename IndexVector, typename Index>
-EIGEN_DONT_INLINE void LU_kernel_bmod<SegSizeAtCompileTime>::run(const int segsize, BlockScalarVector& dense, ScalarVector& tempv, ScalarVector& lusup, Index& luptr, const Index lda,
- const Index nrow, IndexVector& lsub, const Index lptr, const Index no_zeros)
-{
- typedef typename ScalarVector::Scalar Scalar;
- // First, copy U[*,j] segment from dense(*) to tempv(*)
- // The result of triangular solve is in tempv[*];
- // The result of matric-vector update is in dense[*]
- Index isub = lptr + no_zeros;
- int i;
- Index irow;
- for (i = 0; i < ((SegSizeAtCompileTime==Dynamic)?segsize:SegSizeAtCompileTime); i++)
- {
- irow = lsub(isub);
- tempv(i) = dense(irow);
- ++isub;
- }
- // Dense triangular solve -- start effective triangle
- luptr += lda * no_zeros + no_zeros;
- // Form Eigen matrix and vector
- Map<Matrix<Scalar,SegSizeAtCompileTime,SegSizeAtCompileTime>, 0, OuterStride<> > A( &(lusup.data()[luptr]), segsize, segsize, OuterStride<>(lda) );
- Map<Matrix<Scalar,SegSizeAtCompileTime,1> > u(tempv.data(), segsize);
-
- u = A.template triangularView<UnitLower>().solve(u);
-
- // Dense matrix-vector product y <-- B*x
- luptr += segsize;
- const Index PacketSize = internal::packet_traits<Scalar>::size;
- Index ldl = internal::first_multiple(nrow, PacketSize);
- Map<Matrix<Scalar,Dynamic,SegSizeAtCompileTime>, 0, OuterStride<> > B( &(lusup.data()[luptr]), nrow, segsize, OuterStride<>(lda) );
- Index aligned_offset = internal::first_aligned(tempv.data()+segsize, PacketSize);
- Index aligned_with_B_offset = (PacketSize-internal::first_aligned(B.data(), PacketSize))%PacketSize;
- Map<Matrix<Scalar,Dynamic,1>, 0, OuterStride<> > l(tempv.data()+segsize+aligned_offset+aligned_with_B_offset, nrow, OuterStride<>(ldl) );
-
- l.setZero();
- internal::sparselu_gemm<Scalar>(l.rows(), l.cols(), B.cols(), B.data(), B.outerStride(), u.data(), u.outerStride(), l.data(), l.outerStride());
-
- // Scatter tempv[] into SPA dense[] as a temporary storage
- isub = lptr + no_zeros;
- for (i = 0; i < ((SegSizeAtCompileTime==Dynamic)?segsize:SegSizeAtCompileTime); i++)
- {
- irow = lsub(isub++);
- dense(irow) = tempv(i);
- }
-
- // Scatter l into SPA dense[]
- for (i = 0; i < nrow; i++)
- {
- irow = lsub(isub++);
- dense(irow) -= l(i);
- }
-}
-
-template <> struct LU_kernel_bmod<1>
-{
- template <typename BlockScalarVector, typename ScalarVector, typename IndexVector, typename Index>
- static EIGEN_DONT_INLINE void run(const int /*segsize*/, BlockScalarVector& dense, ScalarVector& /*tempv*/, ScalarVector& lusup, Index& luptr,
- const Index lda, const Index nrow, IndexVector& lsub, const Index lptr, const Index no_zeros);
-};
-
-
-template <typename BlockScalarVector, typename ScalarVector, typename IndexVector, typename Index>
-EIGEN_DONT_INLINE void LU_kernel_bmod<1>::run(const int /*segsize*/, BlockScalarVector& dense, ScalarVector& /*tempv*/, ScalarVector& lusup, Index& luptr,
- const Index lda, const Index nrow, IndexVector& lsub, const Index lptr, const Index no_zeros)
-{
- typedef typename ScalarVector::Scalar Scalar;
- Scalar f = dense(lsub(lptr + no_zeros));
- luptr += lda * no_zeros + no_zeros + 1;
- const Scalar* a(lusup.data() + luptr);
- const /*typename IndexVector::Scalar*/Index* irow(lsub.data()+lptr + no_zeros + 1);
- Index i = 0;
- for (; i+1 < nrow; i+=2)
- {
- Index i0 = *(irow++);
- Index i1 = *(irow++);
- Scalar a0 = *(a++);
- Scalar a1 = *(a++);
- Scalar d0 = dense.coeff(i0);
- Scalar d1 = dense.coeff(i1);
- d0 -= f*a0;
- d1 -= f*a1;
- dense.coeffRef(i0) = d0;
- dense.coeffRef(i1) = d1;
- }
- if(i<nrow)
- dense.coeffRef(*(irow++)) -= f * *(a++);
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-#endif // SPARSELU_KERNEL_BMOD_H
diff --git a/src/Eigen/src/SparseLU/SparseLU_panel_bmod.h b/src/Eigen/src/SparseLU/SparseLU_panel_bmod.h
deleted file mode 100644
index da0e0fc..0000000
--- a/src/Eigen/src/SparseLU/SparseLU_panel_bmod.h
+++ /dev/null
@@ -1,223 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/*
-
- * NOTE: This file is the modified version of [s,d,c,z]panel_bmod.c file in SuperLU
-
- * -- SuperLU routine (version 3.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * October 15, 2003
- *
- * Copyright (c) 1994 by Xerox Corporation. All rights reserved.
- *
- * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
- *
- * Permission is hereby granted to use or copy this program for any
- * purpose, provided the above notices are retained on all copies.
- * Permission to modify the code and to distribute modified code is
- * granted, provided the above notices are retained, and a notice that
- * the code was modified is included with the above copyright notice.
- */
-#ifndef SPARSELU_PANEL_BMOD_H
-#define SPARSELU_PANEL_BMOD_H
-
-namespace Eigen {
-namespace internal {
-
-/**
- * \brief Performs numeric block updates (sup-panel) in topological order.
- *
- * Before entering this routine, the original nonzeros in the panel
- * were already copied i nto the spa[m,w]
- *
- * \param m number of rows in the matrix
- * \param w Panel size
- * \param jcol Starting column of the panel
- * \param nseg Number of segments in the U part
- * \param dense Store the full representation of the panel
- * \param tempv working array
- * \param segrep segment representative... first row in the segment
- * \param repfnz First nonzero rows
- * \param glu Global LU data.
- *
- *
- */
-template <typename Scalar, typename Index>
-void SparseLUImpl<Scalar,Index>::panel_bmod(const Index m, const Index w, const Index jcol,
- const Index nseg, ScalarVector& dense, ScalarVector& tempv,
- IndexVector& segrep, IndexVector& repfnz, GlobalLU_t& glu)
-{
-
- Index ksub,jj,nextl_col;
- Index fsupc, nsupc, nsupr, nrow;
- Index krep, kfnz;
- Index lptr; // points to the row subscripts of a supernode
- Index luptr; // ...
- Index segsize,no_zeros ;
- // For each nonz supernode segment of U[*,j] in topological order
- Index k = nseg - 1;
- const Index PacketSize = internal::packet_traits<Scalar>::size;
-
- for (ksub = 0; ksub < nseg; ksub++)
- { // For each updating supernode
- /* krep = representative of current k-th supernode
- * fsupc = first supernodal column
- * nsupc = number of columns in a supernode
- * nsupr = number of rows in a supernode
- */
- krep = segrep(k); k--;
- fsupc = glu.xsup(glu.supno(krep));
- nsupc = krep - fsupc + 1;
- nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc);
- nrow = nsupr - nsupc;
- lptr = glu.xlsub(fsupc);
-
- // loop over the panel columns to detect the actual number of columns and rows
- Index u_rows = 0;
- Index u_cols = 0;
- for (jj = jcol; jj < jcol + w; jj++)
- {
- nextl_col = (jj-jcol) * m;
- VectorBlock<IndexVector> repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row
-
- kfnz = repfnz_col(krep);
- if ( kfnz == emptyIdxLU )
- continue; // skip any zero segment
-
- segsize = krep - kfnz + 1;
- u_cols++;
- u_rows = (std::max)(segsize,u_rows);
- }
-
- if(nsupc >= 2)
- {
- Index ldu = internal::first_multiple<Index>(u_rows, PacketSize);
- Map<Matrix<Scalar,Dynamic,Dynamic>, Aligned, OuterStride<> > U(tempv.data(), u_rows, u_cols, OuterStride<>(ldu));
-
- // gather U
- Index u_col = 0;
- for (jj = jcol; jj < jcol + w; jj++)
- {
- nextl_col = (jj-jcol) * m;
- VectorBlock<IndexVector> repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row
- VectorBlock<ScalarVector> dense_col(dense, nextl_col, m); // Scatter/gather entire matrix column from/to here
-
- kfnz = repfnz_col(krep);
- if ( kfnz == emptyIdxLU )
- continue; // skip any zero segment
-
- segsize = krep - kfnz + 1;
- luptr = glu.xlusup(fsupc);
- no_zeros = kfnz - fsupc;
-
- Index isub = lptr + no_zeros;
- Index off = u_rows-segsize;
- for (Index i = 0; i < off; i++) U(i,u_col) = 0;
- for (Index i = 0; i < segsize; i++)
- {
- Index irow = glu.lsub(isub);
- U(i+off,u_col) = dense_col(irow);
- ++isub;
- }
- u_col++;
- }
- // solve U = A^-1 U
- luptr = glu.xlusup(fsupc);
- Index lda = glu.xlusup(fsupc+1) - glu.xlusup(fsupc);
- no_zeros = (krep - u_rows + 1) - fsupc;
- luptr += lda * no_zeros + no_zeros;
- Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A(glu.lusup.data()+luptr, u_rows, u_rows, OuterStride<>(lda) );
- U = A.template triangularView<UnitLower>().solve(U);
-
- // update
- luptr += u_rows;
- Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > B(glu.lusup.data()+luptr, nrow, u_rows, OuterStride<>(lda) );
- eigen_assert(tempv.size()>w*ldu + nrow*w + 1);
-
- Index ldl = internal::first_multiple<Index>(nrow, PacketSize);
- Index offset = (PacketSize-internal::first_aligned(B.data(), PacketSize)) % PacketSize;
- Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > L(tempv.data()+w*ldu+offset, nrow, u_cols, OuterStride<>(ldl));
-
- L.setZero();
- internal::sparselu_gemm<Scalar>(L.rows(), L.cols(), B.cols(), B.data(), B.outerStride(), U.data(), U.outerStride(), L.data(), L.outerStride());
-
- // scatter U and L
- u_col = 0;
- for (jj = jcol; jj < jcol + w; jj++)
- {
- nextl_col = (jj-jcol) * m;
- VectorBlock<IndexVector> repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row
- VectorBlock<ScalarVector> dense_col(dense, nextl_col, m); // Scatter/gather entire matrix column from/to here
-
- kfnz = repfnz_col(krep);
- if ( kfnz == emptyIdxLU )
- continue; // skip any zero segment
-
- segsize = krep - kfnz + 1;
- no_zeros = kfnz - fsupc;
- Index isub = lptr + no_zeros;
-
- Index off = u_rows-segsize;
- for (Index i = 0; i < segsize; i++)
- {
- Index irow = glu.lsub(isub++);
- dense_col(irow) = U.coeff(i+off,u_col);
- U.coeffRef(i+off,u_col) = 0;
- }
-
- // Scatter l into SPA dense[]
- for (Index i = 0; i < nrow; i++)
- {
- Index irow = glu.lsub(isub++);
- dense_col(irow) -= L.coeff(i,u_col);
- L.coeffRef(i,u_col) = 0;
- }
- u_col++;
- }
- }
- else // level 2 only
- {
- // Sequence through each column in the panel
- for (jj = jcol; jj < jcol + w; jj++)
- {
- nextl_col = (jj-jcol) * m;
- VectorBlock<IndexVector> repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row
- VectorBlock<ScalarVector> dense_col(dense, nextl_col, m); // Scatter/gather entire matrix column from/to here
-
- kfnz = repfnz_col(krep);
- if ( kfnz == emptyIdxLU )
- continue; // skip any zero segment
-
- segsize = krep - kfnz + 1;
- luptr = glu.xlusup(fsupc);
-
- Index lda = glu.xlusup(fsupc+1)-glu.xlusup(fsupc);// nsupr
-
- // Perform a trianglar solve and block update,
- // then scatter the result of sup-col update to dense[]
- no_zeros = kfnz - fsupc;
- if(segsize==1) LU_kernel_bmod<1>::run(segsize, dense_col, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros);
- else if(segsize==2) LU_kernel_bmod<2>::run(segsize, dense_col, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros);
- else if(segsize==3) LU_kernel_bmod<3>::run(segsize, dense_col, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros);
- else LU_kernel_bmod<Dynamic>::run(segsize, dense_col, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros);
- } // End for each column in the panel
- }
-
- } // End for each updating supernode
-} // end panel bmod
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // SPARSELU_PANEL_BMOD_H
diff --git a/src/Eigen/src/SparseLU/SparseLU_panel_dfs.h b/src/Eigen/src/SparseLU/SparseLU_panel_dfs.h
deleted file mode 100644
index dc0054e..0000000
--- a/src/Eigen/src/SparseLU/SparseLU_panel_dfs.h
+++ /dev/null
@@ -1,258 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/*
-
- * NOTE: This file is the modified version of [s,d,c,z]panel_dfs.c file in SuperLU
-
- * -- SuperLU routine (version 2.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * November 15, 1997
- *
- * Copyright (c) 1994 by Xerox Corporation. All rights reserved.
- *
- * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
- *
- * Permission is hereby granted to use or copy this program for any
- * purpose, provided the above notices are retained on all copies.
- * Permission to modify the code and to distribute modified code is
- * granted, provided the above notices are retained, and a notice that
- * the code was modified is included with the above copyright notice.
- */
-#ifndef SPARSELU_PANEL_DFS_H
-#define SPARSELU_PANEL_DFS_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename IndexVector>
-struct panel_dfs_traits
-{
- typedef typename IndexVector::Scalar Index;
- panel_dfs_traits(Index jcol, Index* marker)
- : m_jcol(jcol), m_marker(marker)
- {}
- bool update_segrep(Index krep, Index jj)
- {
- if(m_marker[krep]<m_jcol)
- {
- m_marker[krep] = jj;
- return true;
- }
- return false;
- }
- void mem_expand(IndexVector& /*glu.lsub*/, Index /*nextl*/, Index /*chmark*/) {}
- enum { ExpandMem = false };
- Index m_jcol;
- Index* m_marker;
-};
-
-
-template <typename Scalar, typename Index>
-template <typename Traits>
-void SparseLUImpl<Scalar,Index>::dfs_kernel(const Index jj, IndexVector& perm_r,
- Index& nseg, IndexVector& panel_lsub, IndexVector& segrep,
- Ref<IndexVector> repfnz_col, IndexVector& xprune, Ref<IndexVector> marker, IndexVector& parent,
- IndexVector& xplore, GlobalLU_t& glu,
- Index& nextl_col, Index krow, Traits& traits
- )
-{
-
- Index kmark = marker(krow);
-
- // For each unmarked krow of jj
- marker(krow) = jj;
- Index kperm = perm_r(krow);
- if (kperm == emptyIdxLU ) {
- // krow is in L : place it in structure of L(*, jj)
- panel_lsub(nextl_col++) = krow; // krow is indexed into A
-
- traits.mem_expand(panel_lsub, nextl_col, kmark);
- }
- else
- {
- // krow is in U : if its supernode-representative krep
- // has been explored, update repfnz(*)
- // krep = supernode representative of the current row
- Index krep = glu.xsup(glu.supno(kperm)+1) - 1;
- // First nonzero element in the current column:
- Index myfnz = repfnz_col(krep);
-
- if (myfnz != emptyIdxLU )
- {
- // Representative visited before
- if (myfnz > kperm ) repfnz_col(krep) = kperm;
-
- }
- else
- {
- // Otherwise, perform dfs starting at krep
- Index oldrep = emptyIdxLU;
- parent(krep) = oldrep;
- repfnz_col(krep) = kperm;
- Index xdfs = glu.xlsub(krep);
- Index maxdfs = xprune(krep);
-
- Index kpar;
- do
- {
- // For each unmarked kchild of krep
- while (xdfs < maxdfs)
- {
- Index kchild = glu.lsub(xdfs);
- xdfs++;
- Index chmark = marker(kchild);
-
- if (chmark != jj )
- {
- marker(kchild) = jj;
- Index chperm = perm_r(kchild);
-
- if (chperm == emptyIdxLU)
- {
- // case kchild is in L: place it in L(*, j)
- panel_lsub(nextl_col++) = kchild;
- traits.mem_expand(panel_lsub, nextl_col, chmark);
- }
- else
- {
- // case kchild is in U :
- // chrep = its supernode-rep. If its rep has been explored,
- // update its repfnz(*)
- Index chrep = glu.xsup(glu.supno(chperm)+1) - 1;
- myfnz = repfnz_col(chrep);
-
- if (myfnz != emptyIdxLU)
- { // Visited before
- if (myfnz > chperm)
- repfnz_col(chrep) = chperm;
- }
- else
- { // Cont. dfs at snode-rep of kchild
- xplore(krep) = xdfs;
- oldrep = krep;
- krep = chrep; // Go deeper down G(L)
- parent(krep) = oldrep;
- repfnz_col(krep) = chperm;
- xdfs = glu.xlsub(krep);
- maxdfs = xprune(krep);
-
- } // end if myfnz != -1
- } // end if chperm == -1
-
- } // end if chmark !=jj
- } // end while xdfs < maxdfs
-
- // krow has no more unexplored nbrs :
- // Place snode-rep krep in postorder DFS, if this
- // segment is seen for the first time. (Note that
- // "repfnz(krep)" may change later.)
- // Baktrack dfs to its parent
- if(traits.update_segrep(krep,jj))
- //if (marker1(krep) < jcol )
- {
- segrep(nseg) = krep;
- ++nseg;
- //marker1(krep) = jj;
- }
-
- kpar = parent(krep); // Pop recursion, mimic recursion
- if (kpar == emptyIdxLU)
- break; // dfs done
- krep = kpar;
- xdfs = xplore(krep);
- maxdfs = xprune(krep);
-
- } while (kpar != emptyIdxLU); // Do until empty stack
-
- } // end if (myfnz = -1)
-
- } // end if (kperm == -1)
-}
-
-/**
- * \brief Performs a symbolic factorization on a panel of columns [jcol, jcol+w)
- *
- * A supernode representative is the last column of a supernode.
- * The nonzeros in U[*,j] are segments that end at supernodes representatives
- *
- * The routine returns a list of the supernodal representatives
- * in topological order of the dfs that generates them. This list is
- * a superset of the topological order of each individual column within
- * the panel.
- * The location of the first nonzero in each supernodal segment
- * (supernodal entry location) is also returned. Each column has
- * a separate list for this purpose.
- *
- * Two markers arrays are used for dfs :
- * marker[i] == jj, if i was visited during dfs of current column jj;
- * marker1[i] >= jcol, if i was visited by earlier columns in this panel;
- *
- * \param[in] m number of rows in the matrix
- * \param[in] w Panel size
- * \param[in] jcol Starting column of the panel
- * \param[in] A Input matrix in column-major storage
- * \param[in] perm_r Row permutation
- * \param[out] nseg Number of U segments
- * \param[out] dense Accumulate the column vectors of the panel
- * \param[out] panel_lsub Subscripts of the row in the panel
- * \param[out] segrep Segment representative i.e first nonzero row of each segment
- * \param[out] repfnz First nonzero location in each row
- * \param[out] xprune The pruned elimination tree
- * \param[out] marker work vector
- * \param parent The elimination tree
- * \param xplore work vector
- * \param glu The global data structure
- *
- */
-
-template <typename Scalar, typename Index>
-void SparseLUImpl<Scalar,Index>::panel_dfs(const Index m, const Index w, const Index jcol, MatrixType& A, IndexVector& perm_r, Index& nseg, ScalarVector& dense, IndexVector& panel_lsub, IndexVector& segrep, IndexVector& repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu)
-{
- Index nextl_col; // Next available position in panel_lsub[*,jj]
-
- // Initialize pointers
- VectorBlock<IndexVector> marker1(marker, m, m);
- nseg = 0;
-
- panel_dfs_traits<IndexVector> traits(jcol, marker1.data());
-
- // For each column in the panel
- for (Index jj = jcol; jj < jcol + w; jj++)
- {
- nextl_col = (jj - jcol) * m;
-
- VectorBlock<IndexVector> repfnz_col(repfnz, nextl_col, m); // First nonzero location in each row
- VectorBlock<ScalarVector> dense_col(dense,nextl_col, m); // Accumulate a column vector here
-
-
- // For each nnz in A[*, jj] do depth first search
- for (typename MatrixType::InnerIterator it(A, jj); it; ++it)
- {
- Index krow = it.row();
- dense_col(krow) = it.value();
-
- Index kmark = marker(krow);
- if (kmark == jj)
- continue; // krow visited before, go to the next nonzero
-
- dfs_kernel(jj, perm_r, nseg, panel_lsub, segrep, repfnz_col, xprune, marker, parent,
- xplore, glu, nextl_col, krow, traits);
- }// end for nonzeros in column jj
-
- } // end for column jj
-}
-
-} // end namespace internal
-} // end namespace Eigen
-
-#endif // SPARSELU_PANEL_DFS_H
diff --git a/src/Eigen/src/SparseLU/SparseLU_pivotL.h b/src/Eigen/src/SparseLU/SparseLU_pivotL.h
deleted file mode 100644
index ddcd4ec..0000000
--- a/src/Eigen/src/SparseLU/SparseLU_pivotL.h
+++ /dev/null
@@ -1,134 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/*
-
- * NOTE: This file is the modified version of xpivotL.c file in SuperLU
-
- * -- SuperLU routine (version 3.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * October 15, 2003
- *
- * Copyright (c) 1994 by Xerox Corporation. All rights reserved.
- *
- * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
- *
- * Permission is hereby granted to use or copy this program for any
- * purpose, provided the above notices are retained on all copies.
- * Permission to modify the code and to distribute modified code is
- * granted, provided the above notices are retained, and a notice that
- * the code was modified is included with the above copyright notice.
- */
-#ifndef SPARSELU_PIVOTL_H
-#define SPARSELU_PIVOTL_H
-
-namespace Eigen {
-namespace internal {
-
-/**
- * \brief Performs the numerical pivotin on the current column of L, and the CDIV operation.
- *
- * Pivot policy :
- * (1) Compute thresh = u * max_(i>=j) abs(A_ij);
- * (2) IF user specifies pivot row k and abs(A_kj) >= thresh THEN
- * pivot row = k;
- * ELSE IF abs(A_jj) >= thresh THEN
- * pivot row = j;
- * ELSE
- * pivot row = m;
- *
- * Note: If you absolutely want to use a given pivot order, then set u=0.0.
- *
- * \param jcol The current column of L
- * \param diagpivotthresh diagonal pivoting threshold
- * \param[in,out] perm_r Row permutation (threshold pivoting)
- * \param[in] iperm_c column permutation - used to finf diagonal of Pc*A*Pc'
- * \param[out] pivrow The pivot row
- * \param glu Global LU data
- * \return 0 if success, i > 0 if U(i,i) is exactly zero
- *
- */
-template <typename Scalar, typename Index>
-Index SparseLUImpl<Scalar,Index>::pivotL(const Index jcol, const RealScalar& diagpivotthresh, IndexVector& perm_r, IndexVector& iperm_c, Index& pivrow, GlobalLU_t& glu)
-{
-
- Index fsupc = (glu.xsup)((glu.supno)(jcol)); // First column in the supernode containing the column jcol
- Index nsupc = jcol - fsupc; // Number of columns in the supernode portion, excluding jcol; nsupc >=0
- Index lptr = glu.xlsub(fsupc); // pointer to the starting location of the row subscripts for this supernode portion
- Index nsupr = glu.xlsub(fsupc+1) - lptr; // Number of rows in the supernode
- Index lda = glu.xlusup(fsupc+1) - glu.xlusup(fsupc); // leading dimension
- Scalar* lu_sup_ptr = &(glu.lusup.data()[glu.xlusup(fsupc)]); // Start of the current supernode
- Scalar* lu_col_ptr = &(glu.lusup.data()[glu.xlusup(jcol)]); // Start of jcol in the supernode
- Index* lsub_ptr = &(glu.lsub.data()[lptr]); // Start of row indices of the supernode
-
- // Determine the largest abs numerical value for partial pivoting
- Index diagind = iperm_c(jcol); // diagonal index
- RealScalar pivmax = 0.0;
- Index pivptr = nsupc;
- Index diag = emptyIdxLU;
- RealScalar rtemp;
- Index isub, icol, itemp, k;
- for (isub = nsupc; isub < nsupr; ++isub) {
- rtemp = std::abs(lu_col_ptr[isub]);
- if (rtemp > pivmax) {
- pivmax = rtemp;
- pivptr = isub;
- }
- if (lsub_ptr[isub] == diagind) diag = isub;
- }
-
- // Test for singularity
- if ( pivmax == 0.0 ) {
- pivrow = lsub_ptr[pivptr];
- perm_r(pivrow) = jcol;
- return (jcol+1);
- }
-
- RealScalar thresh = diagpivotthresh * pivmax;
-
- // Choose appropriate pivotal element
-
- {
- // Test if the diagonal element can be used as a pivot (given the threshold value)
- if (diag >= 0 )
- {
- // Diagonal element exists
- rtemp = std::abs(lu_col_ptr[diag]);
- if (rtemp != 0.0 && rtemp >= thresh) pivptr = diag;
- }
- pivrow = lsub_ptr[pivptr];
- }
-
- // Record pivot row
- perm_r(pivrow) = jcol;
- // Interchange row subscripts
- if (pivptr != nsupc )
- {
- std::swap( lsub_ptr[pivptr], lsub_ptr[nsupc] );
- // Interchange numerical values as well, for the two rows in the whole snode
- // such that L is indexed the same way as A
- for (icol = 0; icol <= nsupc; icol++)
- {
- itemp = pivptr + icol * lda;
- std::swap(lu_sup_ptr[itemp], lu_sup_ptr[nsupc + icol * lda]);
- }
- }
- // cdiv operations
- Scalar temp = Scalar(1.0) / lu_col_ptr[nsupc];
- for (k = nsupc+1; k < nsupr; k++)
- lu_col_ptr[k] *= temp;
- return 0;
-}
-
-} // end namespace internal
-} // end namespace Eigen
-
-#endif // SPARSELU_PIVOTL_H
diff --git a/src/Eigen/src/SparseLU/SparseLU_pruneL.h b/src/Eigen/src/SparseLU/SparseLU_pruneL.h
deleted file mode 100644
index 66460d1..0000000
--- a/src/Eigen/src/SparseLU/SparseLU_pruneL.h
+++ /dev/null
@@ -1,135 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/*
-
- * NOTE: This file is the modified version of [s,d,c,z]pruneL.c file in SuperLU
-
- * -- SuperLU routine (version 2.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * November 15, 1997
- *
- * Copyright (c) 1994 by Xerox Corporation. All rights reserved.
- *
- * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
- *
- * Permission is hereby granted to use or copy this program for any
- * purpose, provided the above notices are retained on all copies.
- * Permission to modify the code and to distribute modified code is
- * granted, provided the above notices are retained, and a notice that
- * the code was modified is included with the above copyright notice.
- */
-#ifndef SPARSELU_PRUNEL_H
-#define SPARSELU_PRUNEL_H
-
-namespace Eigen {
-namespace internal {
-
-/**
- * \brief Prunes the L-structure.
- *
- * It prunes the L-structure of supernodes whose L-structure contains the current pivot row "pivrow"
- *
- *
- * \param jcol The current column of L
- * \param[in] perm_r Row permutation
- * \param[out] pivrow The pivot row
- * \param nseg Number of segments
- * \param segrep
- * \param repfnz
- * \param[out] xprune
- * \param glu Global LU data
- *
- */
-template <typename Scalar, typename Index>
-void SparseLUImpl<Scalar,Index>::pruneL(const Index jcol, const IndexVector& perm_r, const Index pivrow, const Index nseg, const IndexVector& segrep, BlockIndexVector repfnz, IndexVector& xprune, GlobalLU_t& glu)
-{
- // For each supernode-rep irep in U(*,j]
- Index jsupno = glu.supno(jcol);
- Index i,irep,irep1;
- bool movnum, do_prune = false;
- Index kmin = 0, kmax = 0, minloc, maxloc,krow;
- for (i = 0; i < nseg; i++)
- {
- irep = segrep(i);
- irep1 = irep + 1;
- do_prune = false;
-
- // Don't prune with a zero U-segment
- if (repfnz(irep) == emptyIdxLU) continue;
-
- // If a snode overlaps with the next panel, then the U-segment
- // is fragmented into two parts -- irep and irep1. We should let
- // pruning occur at the rep-column in irep1s snode.
- if (glu.supno(irep) == glu.supno(irep1) ) continue; // don't prune
-
- // If it has not been pruned & it has a nonz in row L(pivrow,i)
- if (glu.supno(irep) != jsupno )
- {
- if ( xprune (irep) >= glu.xlsub(irep1) )
- {
- kmin = glu.xlsub(irep);
- kmax = glu.xlsub(irep1) - 1;
- for (krow = kmin; krow <= kmax; krow++)
- {
- if (glu.lsub(krow) == pivrow)
- {
- do_prune = true;
- break;
- }
- }
- }
-
- if (do_prune)
- {
- // do a quicksort-type partition
- // movnum=true means that the num values have to be exchanged
- movnum = false;
- if (irep == glu.xsup(glu.supno(irep)) ) // Snode of size 1
- movnum = true;
-
- while (kmin <= kmax)
- {
- if (perm_r(glu.lsub(kmax)) == emptyIdxLU)
- kmax--;
- else if ( perm_r(glu.lsub(kmin)) != emptyIdxLU)
- kmin++;
- else
- {
- // kmin below pivrow (not yet pivoted), and kmax
- // above pivrow: interchange the two suscripts
- std::swap(glu.lsub(kmin), glu.lsub(kmax));
-
- // If the supernode has only one column, then we
- // only keep one set of subscripts. For any subscript
- // intercnahge performed, similar interchange must be
- // done on the numerical values.
- if (movnum)
- {
- minloc = glu.xlusup(irep) + ( kmin - glu.xlsub(irep) );
- maxloc = glu.xlusup(irep) + ( kmax - glu.xlsub(irep) );
- std::swap(glu.lusup(minloc), glu.lusup(maxloc));
- }
- kmin++;
- kmax--;
- }
- } // end while
-
- xprune(irep) = kmin; //Pruning
- } // end if do_prune
- } // end pruning
- } // End for each U-segment
-}
-
-} // end namespace internal
-} // end namespace Eigen
-
-#endif // SPARSELU_PRUNEL_H
diff --git a/src/Eigen/src/SparseLU/SparseLU_relax_snode.h b/src/Eigen/src/SparseLU/SparseLU_relax_snode.h
deleted file mode 100644
index 58ec32e..0000000
--- a/src/Eigen/src/SparseLU/SparseLU_relax_snode.h
+++ /dev/null
@@ -1,83 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/* This file is a modified version of heap_relax_snode.c file in SuperLU
- * -- SuperLU routine (version 3.0) --
- * Univ. of California Berkeley, Xerox Palo Alto Research Center,
- * and Lawrence Berkeley National Lab.
- * October 15, 2003
- *
- * Copyright (c) 1994 by Xerox Corporation. All rights reserved.
- *
- * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
- * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
- *
- * Permission is hereby granted to use or copy this program for any
- * purpose, provided the above notices are retained on all copies.
- * Permission to modify the code and to distribute modified code is
- * granted, provided the above notices are retained, and a notice that
- * the code was modified is included with the above copyright notice.
- */
-
-#ifndef SPARSELU_RELAX_SNODE_H
-#define SPARSELU_RELAX_SNODE_H
-
-namespace Eigen {
-
-namespace internal {
-
-/**
- * \brief Identify the initial relaxed supernodes
- *
- * This routine is applied to a column elimination tree.
- * It assumes that the matrix has been reordered according to the postorder of the etree
- * \param n the number of columns
- * \param et elimination tree
- * \param relax_columns Maximum number of columns allowed in a relaxed snode
- * \param descendants Number of descendants of each node in the etree
- * \param relax_end last column in a supernode
- */
-template <typename Scalar, typename Index>
-void SparseLUImpl<Scalar,Index>::relax_snode (const Index n, IndexVector& et, const Index relax_columns, IndexVector& descendants, IndexVector& relax_end)
-{
-
- // compute the number of descendants of each node in the etree
- Index j, parent;
- relax_end.setConstant(emptyIdxLU);
- descendants.setZero();
- for (j = 0; j < n; j++)
- {
- parent = et(j);
- if (parent != n) // not the dummy root
- descendants(parent) += descendants(j) + 1;
- }
- // Identify the relaxed supernodes by postorder traversal of the etree
- Index snode_start; // beginning of a snode
- for (j = 0; j < n; )
- {
- parent = et(j);
- snode_start = j;
- while ( parent != n && descendants(parent) < relax_columns )
- {
- j = parent;
- parent = et(j);
- }
- // Found a supernode in postordered etree, j is the last column
- relax_end(snode_start) = j; // Record last column
- j++;
- // Search for a new leaf
- while (descendants(j) != 0 && j < n) j++;
- } // End postorder traversal of the etree
-
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-#endif
diff --git a/src/Eigen/src/SparseQR/CMakeLists.txt b/src/Eigen/src/SparseQR/CMakeLists.txt
deleted file mode 100644
index f9ddf2b..0000000
--- a/src/Eigen/src/SparseQR/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_SparseQR_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_SparseQR_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/SparseQR/ COMPONENT Devel
- )
diff --git a/src/Eigen/src/SparseQR/SparseQR.h b/src/Eigen/src/SparseQR/SparseQR.h
deleted file mode 100644
index 4c6553b..0000000
--- a/src/Eigen/src/SparseQR/SparseQR.h
+++ /dev/null
@@ -1,685 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012-2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
-// Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSE_QR_H
-#define EIGEN_SPARSE_QR_H
-
-namespace Eigen {
-
-template<typename MatrixType, typename OrderingType> class SparseQR;
-template<typename SparseQRType> struct SparseQRMatrixQReturnType;
-template<typename SparseQRType> struct SparseQRMatrixQTransposeReturnType;
-template<typename SparseQRType, typename Derived> struct SparseQR_QProduct;
-namespace internal {
- template <typename SparseQRType> struct traits<SparseQRMatrixQReturnType<SparseQRType> >
- {
- typedef typename SparseQRType::MatrixType ReturnType;
- typedef typename ReturnType::Index Index;
- typedef typename ReturnType::StorageKind StorageKind;
- };
- template <typename SparseQRType> struct traits<SparseQRMatrixQTransposeReturnType<SparseQRType> >
- {
- typedef typename SparseQRType::MatrixType ReturnType;
- };
- template <typename SparseQRType, typename Derived> struct traits<SparseQR_QProduct<SparseQRType, Derived> >
- {
- typedef typename Derived::PlainObject ReturnType;
- };
-} // End namespace internal
-
-/**
- * \ingroup SparseQR_Module
- * \class SparseQR
- * \brief Sparse left-looking rank-revealing QR factorization
- *
- * This class implements a left-looking rank-revealing QR decomposition
- * of sparse matrices. When a column has a norm less than a given tolerance
- * it is implicitly permuted to the end. The QR factorization thus obtained is
- * given by A*P = Q*R where R is upper triangular or trapezoidal.
- *
- * P is the column permutation which is the product of the fill-reducing and the
- * rank-revealing permutations. Use colsPermutation() to get it.
- *
- * Q is the orthogonal matrix represented as products of Householder reflectors.
- * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
- * You can then apply it to a vector.
- *
- * R is the sparse triangular or trapezoidal matrix. The later occurs when A is rank-deficient.
- * matrixR().topLeftCorner(rank(), rank()) always returns a triangular factor of full rank.
- *
- * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
- * \tparam _OrderingType The fill-reducing ordering method. See the \link OrderingMethods_Module
- * OrderingMethods \endlink module for the list of built-in and external ordering methods.
- *
- * \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()).
- *
- */
-template<typename _MatrixType, typename _OrderingType>
-class SparseQR
-{
- public:
- typedef _MatrixType MatrixType;
- typedef _OrderingType OrderingType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef SparseMatrix<Scalar,ColMajor,Index> QRMatrixType;
- typedef Matrix<Index, Dynamic, 1> IndexVector;
- typedef Matrix<Scalar, Dynamic, 1> ScalarVector;
- typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
- public:
- SparseQR () : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
- { }
-
- /** Construct a QR factorization of the matrix \a mat.
- *
- * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
- *
- * \sa compute()
- */
- SparseQR(const MatrixType& mat) : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
- {
- compute(mat);
- }
-
- /** Computes the QR factorization of the sparse matrix \a mat.
- *
- * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
- *
- * \sa analyzePattern(), factorize()
- */
- void compute(const MatrixType& mat)
- {
- analyzePattern(mat);
- factorize(mat);
- }
- void analyzePattern(const MatrixType& mat);
- void factorize(const MatrixType& mat);
-
- /** \returns the number of rows of the represented matrix.
- */
- inline Index rows() const { return m_pmat.rows(); }
-
- /** \returns the number of columns of the represented matrix.
- */
- inline Index cols() const { return m_pmat.cols();}
-
- /** \returns a const reference to the \b sparse upper triangular matrix R of the QR factorization.
- */
- const QRMatrixType& matrixR() const { return m_R; }
-
- /** \returns the number of non linearly dependent columns as determined by the pivoting threshold.
- *
- * \sa setPivotThreshold()
- */
- Index rank() const
- {
- eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
- return m_nonzeropivots;
- }
-
- /** \returns an expression of the matrix Q as products of sparse Householder reflectors.
- * The common usage of this function is to apply it to a dense matrix or vector
- * \code
- * VectorXd B1, B2;
- * // Initialize B1
- * B2 = matrixQ() * B1;
- * \endcode
- *
- * To get a plain SparseMatrix representation of Q:
- * \code
- * SparseMatrix<double> Q;
- * Q = SparseQR<SparseMatrix<double> >(A).matrixQ();
- * \endcode
- * Internally, this call simply performs a sparse product between the matrix Q
- * and a sparse identity matrix. However, due to the fact that the sparse
- * reflectors are stored unsorted, two transpositions are needed to sort
- * them before performing the product.
- */
- SparseQRMatrixQReturnType<SparseQR> matrixQ() const
- { return SparseQRMatrixQReturnType<SparseQR>(*this); }
-
- /** \returns a const reference to the column permutation P that was applied to A such that A*P = Q*R
- * It is the combination of the fill-in reducing permutation and numerical column pivoting.
- */
- const PermutationType& colsPermutation() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return m_outputPerm_c;
- }
-
- /** \returns A string describing the type of error.
- * This method is provided to ease debugging, not to handle errors.
- */
- std::string lastErrorMessage() const { return m_lastError; }
-
- /** \internal */
- template<typename Rhs, typename Dest>
- bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &dest) const
- {
- eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
- eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
-
- Index rank = this->rank();
-
- // Compute Q^T * b;
- typename Dest::PlainObject y, b;
- y = this->matrixQ().transpose() * B;
- b = y;
-
- // Solve with the triangular matrix R
- y.resize((std::max)(cols(),Index(y.rows())),y.cols());
- y.topRows(rank) = this->matrixR().topLeftCorner(rank, rank).template triangularView<Upper>().solve(b.topRows(rank));
- y.bottomRows(y.rows()-rank).setZero();
-
- // Apply the column permutation
- if (m_perm_c.size()) dest = colsPermutation() * y.topRows(cols());
- else dest = y.topRows(cols());
-
- m_info = Success;
- return true;
- }
-
-
- /** Sets the threshold that is used to determine linearly dependent columns during the factorization.
- *
- * In practice, if during the factorization the norm of the column that has to be eliminated is below
- * this threshold, then the entire column is treated as zero, and it is moved at the end.
- */
- void setPivotThreshold(const RealScalar& threshold)
- {
- m_useDefaultThreshold = false;
- m_threshold = threshold;
- }
-
- /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::solve_retval<SparseQR, Rhs> solve(const MatrixBase<Rhs>& B) const
- {
- eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
- eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
- return internal::solve_retval<SparseQR, Rhs>(*this, B.derived());
- }
- template<typename Rhs>
- inline const internal::sparse_solve_retval<SparseQR, Rhs> solve(const SparseMatrixBase<Rhs>& B) const
- {
- eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
- eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
- return internal::sparse_solve_retval<SparseQR, Rhs>(*this, B.derived());
- }
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was successful,
- * \c NumericalIssue if the QR factorization reports a numerical problem
- * \c InvalidInput if the input matrix is invalid
- *
- * \sa iparm()
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return m_info;
- }
-
- protected:
- inline void sort_matrix_Q()
- {
- if(this->m_isQSorted) return;
- // The matrix Q is sorted during the transposition
- SparseMatrix<Scalar, RowMajor, Index> mQrm(this->m_Q);
- this->m_Q = mQrm;
- this->m_isQSorted = true;
- }
-
-
- protected:
- bool m_isInitialized;
- bool m_analysisIsok;
- bool m_factorizationIsok;
- mutable ComputationInfo m_info;
- std::string m_lastError;
- QRMatrixType m_pmat; // Temporary matrix
- QRMatrixType m_R; // The triangular factor matrix
- QRMatrixType m_Q; // The orthogonal reflectors
- ScalarVector m_hcoeffs; // The Householder coefficients
- PermutationType m_perm_c; // Fill-reducing Column permutation
- PermutationType m_pivotperm; // The permutation for rank revealing
- PermutationType m_outputPerm_c; // The final column permutation
- RealScalar m_threshold; // Threshold to determine null Householder reflections
- bool m_useDefaultThreshold; // Use default threshold
- Index m_nonzeropivots; // Number of non zero pivots found
- IndexVector m_etree; // Column elimination tree
- IndexVector m_firstRowElt; // First element in each row
- bool m_isQSorted; // whether Q is sorted or not
-
- template <typename, typename > friend struct SparseQR_QProduct;
- template <typename > friend struct SparseQRMatrixQReturnType;
-
-};
-
-/** \brief Preprocessing step of a QR factorization
- *
- * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
- *
- * In this step, the fill-reducing permutation is computed and applied to the columns of A
- * and the column elimination tree is computed as well. Only the sparsity pattern of \a mat is exploited.
- *
- * \note In this step it is assumed that there is no empty row in the matrix \a mat.
- */
-template <typename MatrixType, typename OrderingType>
-void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
-{
- eigen_assert(mat.isCompressed() && "SparseQR requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to SparseQR");
- // Compute the column fill reducing ordering
- OrderingType ord;
- ord(mat, m_perm_c);
- Index n = mat.cols();
- Index m = mat.rows();
- Index diagSize = (std::min)(m,n);
-
- if (!m_perm_c.size())
- {
- m_perm_c.resize(n);
- m_perm_c.indices().setLinSpaced(n, 0,n-1);
- }
-
- // Compute the column elimination tree of the permuted matrix
- m_outputPerm_c = m_perm_c.inverse();
- internal::coletree(mat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
-
- m_R.resize(m, n);
- m_Q.resize(m, diagSize);
-
- // Allocate space for nonzero elements : rough estimation
- m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree
- m_Q.reserve(2*mat.nonZeros());
- m_hcoeffs.resize(diagSize);
- m_analysisIsok = true;
-}
-
-/** \brief Performs the numerical QR factorization of the input matrix
- *
- * The function SparseQR::analyzePattern(const MatrixType&) must have been called beforehand with
- * a matrix having the same sparsity pattern than \a mat.
- *
- * \param mat The sparse column-major matrix
- */
-template <typename MatrixType, typename OrderingType>
-void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
-{
- using std::abs;
- using std::max;
-
- eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step");
- Index m = mat.rows();
- Index n = mat.cols();
- Index diagSize = (std::min)(m,n);
- IndexVector mark((std::max)(m,n)); mark.setConstant(-1); // Record the visited nodes
- IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q
- Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
- ScalarVector tval(m); // The dense vector used to compute the current column
- RealScalar pivotThreshold = m_threshold;
-
- m_pmat = mat;
- m_pmat.uncompress(); // To have the innerNonZeroPtr allocated
- // Apply the fill-in reducing permutation lazily:
- for (int i = 0; i < n; i++)
- {
- Index p = m_perm_c.size() ? m_perm_c.indices()(i) : i;
- m_pmat.outerIndexPtr()[p] = mat.outerIndexPtr()[i];
- m_pmat.innerNonZeroPtr()[p] = mat.outerIndexPtr()[i+1] - mat.outerIndexPtr()[i];
- }
-
- /* Compute the default threshold as in MatLab, see:
- * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
- * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
- */
- if(m_useDefaultThreshold)
- {
- RealScalar max2Norm = 0.0;
- for (int j = 0; j < n; j++) max2Norm = (max)(max2Norm, m_pmat.col(j).norm());
- pivotThreshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon();
- }
-
- // Initialize the numerical permutation
- m_pivotperm.setIdentity(n);
-
- Index nonzeroCol = 0; // Record the number of valid pivots
- m_Q.startVec(0);
-
- // Left looking rank-revealing QR factorization: compute a column of R and Q at a time
- for (Index col = 0; col < n; ++col)
- {
- mark.setConstant(-1);
- m_R.startVec(col);
- mark(nonzeroCol) = col;
- Qidx(0) = nonzeroCol;
- nzcolR = 0; nzcolQ = 1;
- bool found_diag = nonzeroCol>=m;
- tval.setZero();
-
- // Symbolic factorization: find the nonzero locations of the column k of the factors R and Q, i.e.,
- // all the nodes (with indexes lower than rank) reachable through the column elimination tree (etree) rooted at node k.
- // Note: if the diagonal entry does not exist, then its contribution must be explicitly added,
- // thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found.
- for (typename MatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp)
- {
- Index curIdx = nonzeroCol;
- if(itp) curIdx = itp.row();
- if(curIdx == nonzeroCol) found_diag = true;
-
- // Get the nonzeros indexes of the current column of R
- Index st = m_firstRowElt(curIdx); // The traversal of the etree starts here
- if (st < 0 )
- {
- m_lastError = "Empty row found during numerical factorization";
- m_info = InvalidInput;
- return;
- }
-
- // Traverse the etree
- Index bi = nzcolR;
- for (; mark(st) != col; st = m_etree(st))
- {
- Ridx(nzcolR) = st; // Add this row to the list,
- mark(st) = col; // and mark this row as visited
- nzcolR++;
- }
-
- // Reverse the list to get the topological ordering
- Index nt = nzcolR-bi;
- for(Index i = 0; i < nt/2; i++) std::swap(Ridx(bi+i), Ridx(nzcolR-i-1));
-
- // Copy the current (curIdx,pcol) value of the input matrix
- if(itp) tval(curIdx) = itp.value();
- else tval(curIdx) = Scalar(0);
-
- // Compute the pattern of Q(:,k)
- if(curIdx > nonzeroCol && mark(curIdx) != col )
- {
- Qidx(nzcolQ) = curIdx; // Add this row to the pattern of Q,
- mark(curIdx) = col; // and mark it as visited
- nzcolQ++;
- }
- }
-
- // Browse all the indexes of R(:,col) in reverse order
- for (Index i = nzcolR-1; i >= 0; i--)
- {
- Index curIdx = Ridx(i);
-
- // Apply the curIdx-th householder vector to the current column (temporarily stored into tval)
- Scalar tdot(0);
-
- // First compute q' * tval
- tdot = m_Q.col(curIdx).dot(tval);
-
- tdot *= m_hcoeffs(curIdx);
-
- // Then update tval = tval - q * tau
- // FIXME: tval -= tdot * m_Q.col(curIdx) should amount to the same (need to check/add support for efficient "dense ?= sparse")
- for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
- tval(itq.row()) -= itq.value() * tdot;
-
- // Detect fill-in for the current column of Q
- if(m_etree(Ridx(i)) == nonzeroCol)
- {
- for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
- {
- Index iQ = itq.row();
- if (mark(iQ) != col)
- {
- Qidx(nzcolQ++) = iQ; // Add this row to the pattern of Q,
- mark(iQ) = col; // and mark it as visited
- }
- }
- }
- } // End update current column
-
- Scalar tau;
- RealScalar beta = 0;
-
- if(nonzeroCol < diagSize)
- {
- // Compute the Householder reflection that eliminate the current column
- // FIXME this step should call the Householder module.
- Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0);
-
- // First, the squared norm of Q((col+1):m, col)
- RealScalar sqrNorm = 0.;
- for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
- if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
- {
- tau = RealScalar(0);
- beta = numext::real(c0);
- tval(Qidx(0)) = 1;
- }
- else
- {
- using std::sqrt;
- beta = sqrt(numext::abs2(c0) + sqrNorm);
- if(numext::real(c0) >= RealScalar(0))
- beta = -beta;
- tval(Qidx(0)) = 1;
- for (Index itq = 1; itq < nzcolQ; ++itq)
- tval(Qidx(itq)) /= (c0 - beta);
- tau = numext::conj((beta-c0) / beta);
-
- }
- }
-
- // Insert values in R
- for (Index i = nzcolR-1; i >= 0; i--)
- {
- Index curIdx = Ridx(i);
- if(curIdx < nonzeroCol)
- {
- m_R.insertBackByOuterInnerUnordered(col, curIdx) = tval(curIdx);
- tval(curIdx) = Scalar(0.);
- }
- }
-
- if(nonzeroCol < diagSize && abs(beta) >= pivotThreshold)
- {
- m_R.insertBackByOuterInner(col, nonzeroCol) = beta;
- // The householder coefficient
- m_hcoeffs(nonzeroCol) = tau;
- // Record the householder reflections
- for (Index itq = 0; itq < nzcolQ; ++itq)
- {
- Index iQ = Qidx(itq);
- m_Q.insertBackByOuterInnerUnordered(nonzeroCol,iQ) = tval(iQ);
- tval(iQ) = Scalar(0.);
- }
- nonzeroCol++;
- if(nonzeroCol<diagSize)
- m_Q.startVec(nonzeroCol);
- }
- else
- {
- // Zero pivot found: move implicitly this column to the end
- for (Index j = nonzeroCol; j < n-1; j++)
- std::swap(m_pivotperm.indices()(j), m_pivotperm.indices()[j+1]);
-
- // Recompute the column elimination tree
- internal::coletree(m_pmat, m_etree, m_firstRowElt, m_pivotperm.indices().data());
- }
- }
-
- m_hcoeffs.tail(diagSize-nonzeroCol).setZero();
-
- // Finalize the column pointers of the sparse matrices R and Q
- m_Q.finalize();
- m_Q.makeCompressed();
- m_R.finalize();
- m_R.makeCompressed();
- m_isQSorted = false;
-
- m_nonzeropivots = nonzeroCol;
-
- if(nonzeroCol<n)
- {
- // Permute the triangular factor to put the 'dead' columns to the end
- MatrixType tempR(m_R);
- m_R = tempR * m_pivotperm;
-
- // Update the column permutation
- m_outputPerm_c = m_outputPerm_c * m_pivotperm;
- }
-
- m_isInitialized = true;
- m_factorizationIsok = true;
- m_info = Success;
-}
-
-namespace internal {
-
-template<typename _MatrixType, typename OrderingType, typename Rhs>
-struct solve_retval<SparseQR<_MatrixType,OrderingType>, Rhs>
- : solve_retval_base<SparseQR<_MatrixType,OrderingType>, Rhs>
-{
- typedef SparseQR<_MatrixType,OrderingType> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-template<typename _MatrixType, typename OrderingType, typename Rhs>
-struct sparse_solve_retval<SparseQR<_MatrixType, OrderingType>, Rhs>
- : sparse_solve_retval_base<SparseQR<_MatrixType, OrderingType>, Rhs>
-{
- typedef SparseQR<_MatrixType, OrderingType> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec, Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- this->defaultEvalTo(dst);
- }
-};
-} // end namespace internal
-
-template <typename SparseQRType, typename Derived>
-struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived> >
-{
- typedef typename SparseQRType::QRMatrixType MatrixType;
- typedef typename SparseQRType::Scalar Scalar;
- typedef typename SparseQRType::Index Index;
- // Get the references
- SparseQR_QProduct(const SparseQRType& qr, const Derived& other, bool transpose) :
- m_qr(qr),m_other(other),m_transpose(transpose) {}
- inline Index rows() const { return m_transpose ? m_qr.rows() : m_qr.cols(); }
- inline Index cols() const { return m_other.cols(); }
-
- // Assign to a vector
- template<typename DesType>
- void evalTo(DesType& res) const
- {
- Index m = m_qr.rows();
- Index n = m_qr.cols();
- Index diagSize = (std::min)(m,n);
- res = m_other;
- if (m_transpose)
- {
- eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
- //Compute res = Q' * other column by column
- for(Index j = 0; j < res.cols(); j++){
- for (Index k = 0; k < diagSize; k++)
- {
- Scalar tau = Scalar(0);
- tau = m_qr.m_Q.col(k).dot(res.col(j));
- if(tau==Scalar(0)) continue;
- tau = tau * m_qr.m_hcoeffs(k);
- res.col(j) -= tau * m_qr.m_Q.col(k);
- }
- }
- }
- else
- {
- eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
- // Compute res = Q * other column by column
- for(Index j = 0; j < res.cols(); j++)
- {
- for (Index k = diagSize-1; k >=0; k--)
- {
- Scalar tau = Scalar(0);
- tau = m_qr.m_Q.col(k).dot(res.col(j));
- if(tau==Scalar(0)) continue;
- tau = tau * m_qr.m_hcoeffs(k);
- res.col(j) -= tau * m_qr.m_Q.col(k);
- }
- }
- }
- }
-
- const SparseQRType& m_qr;
- const Derived& m_other;
- bool m_transpose;
-};
-
-template<typename SparseQRType>
-struct SparseQRMatrixQReturnType : public EigenBase<SparseQRMatrixQReturnType<SparseQRType> >
-{
- typedef typename SparseQRType::Index Index;
- typedef typename SparseQRType::Scalar Scalar;
- typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
- SparseQRMatrixQReturnType(const SparseQRType& qr) : m_qr(qr) {}
- template<typename Derived>
- SparseQR_QProduct<SparseQRType, Derived> operator*(const MatrixBase<Derived>& other)
- {
- return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(),false);
- }
- SparseQRMatrixQTransposeReturnType<SparseQRType> adjoint() const
- {
- return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
- }
- inline Index rows() const { return m_qr.rows(); }
- inline Index cols() const { return (std::min)(m_qr.rows(),m_qr.cols()); }
- // To use for operations with the transpose of Q
- SparseQRMatrixQTransposeReturnType<SparseQRType> transpose() const
- {
- return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
- }
- template<typename Dest> void evalTo(MatrixBase<Dest>& dest) const
- {
- dest.derived() = m_qr.matrixQ() * Dest::Identity(m_qr.rows(), m_qr.rows());
- }
- template<typename Dest> void evalTo(SparseMatrixBase<Dest>& dest) const
- {
- Dest idMat(m_qr.rows(), m_qr.rows());
- idMat.setIdentity();
- // Sort the sparse householder reflectors if needed
- const_cast<SparseQRType *>(&m_qr)->sort_matrix_Q();
- dest.derived() = SparseQR_QProduct<SparseQRType, Dest>(m_qr, idMat, false);
- }
-
- const SparseQRType& m_qr;
-};
-
-template<typename SparseQRType>
-struct SparseQRMatrixQTransposeReturnType
-{
- SparseQRMatrixQTransposeReturnType(const SparseQRType& qr) : m_qr(qr) {}
- template<typename Derived>
- SparseQR_QProduct<SparseQRType,Derived> operator*(const MatrixBase<Derived>& other)
- {
- return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(), true);
- }
- const SparseQRType& m_qr;
-};
-
-} // end namespace Eigen
-
-#endif
diff --git a/src/Eigen/src/StlSupport/CMakeLists.txt b/src/Eigen/src/StlSupport/CMakeLists.txt
deleted file mode 100644
index 0f094f6..0000000
--- a/src/Eigen/src/StlSupport/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_StlSupport_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_StlSupport_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/StlSupport COMPONENT Devel
- )
diff --git a/src/Eigen/src/StlSupport/StdDeque.h b/src/Eigen/src/StlSupport/StdDeque.h
deleted file mode 100644
index aaf6633..0000000
--- a/src/Eigen/src/StlSupport/StdDeque.h
+++ /dev/null
@@ -1,134 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_STDDEQUE_H
-#define EIGEN_STDDEQUE_H
-
-#include "details.h"
-
-// Define the explicit instantiation (e.g. necessary for the Intel compiler)
-#if defined(__INTEL_COMPILER) || defined(__GNUC__)
- #define EIGEN_EXPLICIT_STL_DEQUE_INSTANTIATION(...) template class std::deque<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> >;
-#else
- #define EIGEN_EXPLICIT_STL_DEQUE_INSTANTIATION(...)
-#endif
-
-/**
- * This section contains a convenience MACRO which allows an easy specialization of
- * std::deque such that for data types with alignment issues the correct allocator
- * is used automatically.
- */
-#define EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(...) \
-EIGEN_EXPLICIT_STL_DEQUE_INSTANTIATION(__VA_ARGS__) \
-namespace std \
-{ \
- template<typename _Ay> \
- class deque<__VA_ARGS__, _Ay> \
- : public deque<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > \
- { \
- typedef deque<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > deque_base; \
- public: \
- typedef __VA_ARGS__ value_type; \
- typedef typename deque_base::allocator_type allocator_type; \
- typedef typename deque_base::size_type size_type; \
- typedef typename deque_base::iterator iterator; \
- explicit deque(const allocator_type& a = allocator_type()) : deque_base(a) {} \
- template<typename InputIterator> \
- deque(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) : deque_base(first, last, a) {} \
- deque(const deque& c) : deque_base(c) {} \
- explicit deque(size_type num, const value_type& val = value_type()) : deque_base(num, val) {} \
- deque(iterator start, iterator end) : deque_base(start, end) {} \
- deque& operator=(const deque& x) { \
- deque_base::operator=(x); \
- return *this; \
- } \
- }; \
-}
-
-// check whether we really need the std::deque specialization
-#if !(defined(_GLIBCXX_DEQUE) && (!EIGEN_GNUC_AT_LEAST(4,1))) /* Note that before gcc-4.1 we already have: std::deque::resize(size_type,const T&). */
-
-namespace std {
-
-#define EIGEN_STD_DEQUE_SPECIALIZATION_BODY \
- public: \
- typedef T value_type; \
- typedef typename deque_base::allocator_type allocator_type; \
- typedef typename deque_base::size_type size_type; \
- typedef typename deque_base::iterator iterator; \
- typedef typename deque_base::const_iterator const_iterator; \
- explicit deque(const allocator_type& a = allocator_type()) : deque_base(a) {} \
- template<typename InputIterator> \
- deque(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) \
- : deque_base(first, last, a) {} \
- deque(const deque& c) : deque_base(c) {} \
- explicit deque(size_type num, const value_type& val = value_type()) : deque_base(num, val) {} \
- deque(iterator start, iterator end) : deque_base(start, end) {} \
- deque& operator=(const deque& x) { \
- deque_base::operator=(x); \
- return *this; \
- }
-
- template<typename T>
- class deque<T,EIGEN_ALIGNED_ALLOCATOR<T> >
- : public deque<EIGEN_WORKAROUND_MSVC_STL_SUPPORT(T),
- Eigen::aligned_allocator_indirection<EIGEN_WORKAROUND_MSVC_STL_SUPPORT(T)> >
-{
- typedef deque<EIGEN_WORKAROUND_MSVC_STL_SUPPORT(T),
- Eigen::aligned_allocator_indirection<EIGEN_WORKAROUND_MSVC_STL_SUPPORT(T)> > deque_base;
- EIGEN_STD_DEQUE_SPECIALIZATION_BODY
-
- void resize(size_type new_size)
- { resize(new_size, T()); }
-
-#if defined(_DEQUE_)
- // workaround MSVC std::deque implementation
- void resize(size_type new_size, const value_type& x)
- {
- if (deque_base::size() < new_size)
- deque_base::_Insert_n(deque_base::end(), new_size - deque_base::size(), x);
- else if (new_size < deque_base::size())
- deque_base::erase(deque_base::begin() + new_size, deque_base::end());
- }
- void push_back(const value_type& x)
- { deque_base::push_back(x); }
- void push_front(const value_type& x)
- { deque_base::push_front(x); }
- using deque_base::insert;
- iterator insert(const_iterator position, const value_type& x)
- { return deque_base::insert(position,x); }
- void insert(const_iterator position, size_type new_size, const value_type& x)
- { deque_base::insert(position, new_size, x); }
-#elif defined(_GLIBCXX_DEQUE) && EIGEN_GNUC_AT_LEAST(4,2)
- // workaround GCC std::deque implementation
- void resize(size_type new_size, const value_type& x)
- {
- if (new_size < deque_base::size())
- deque_base::_M_erase_at_end(this->_M_impl._M_start + new_size);
- else
- deque_base::insert(deque_base::end(), new_size - deque_base::size(), x);
- }
-#else
- // either GCC 4.1 or non-GCC
- // default implementation which should always work.
- void resize(size_type new_size, const value_type& x)
- {
- if (new_size < deque_base::size())
- deque_base::erase(deque_base::begin() + new_size, deque_base::end());
- else if (new_size > deque_base::size())
- deque_base::insert(deque_base::end(), new_size - deque_base::size(), x);
- }
-#endif
- };
-}
-
-#endif // check whether specialization is actually required
-
-#endif // EIGEN_STDDEQUE_H
diff --git a/src/Eigen/src/StlSupport/StdList.h b/src/Eigen/src/StlSupport/StdList.h
deleted file mode 100644
index 3c74243..0000000
--- a/src/Eigen/src/StlSupport/StdList.h
+++ /dev/null
@@ -1,114 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_STDLIST_H
-#define EIGEN_STDLIST_H
-
-#include "details.h"
-
-// Define the explicit instantiation (e.g. necessary for the Intel compiler)
-#if defined(__INTEL_COMPILER) || defined(__GNUC__)
- #define EIGEN_EXPLICIT_STL_LIST_INSTANTIATION(...) template class std::list<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> >;
-#else
- #define EIGEN_EXPLICIT_STL_LIST_INSTANTIATION(...)
-#endif
-
-/**
- * This section contains a convenience MACRO which allows an easy specialization of
- * std::list such that for data types with alignment issues the correct allocator
- * is used automatically.
- */
-#define EIGEN_DEFINE_STL_LIST_SPECIALIZATION(...) \
-EIGEN_EXPLICIT_STL_LIST_INSTANTIATION(__VA_ARGS__) \
-namespace std \
-{ \
- template<typename _Ay> \
- class list<__VA_ARGS__, _Ay> \
- : public list<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > \
- { \
- typedef list<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > list_base; \
- public: \
- typedef __VA_ARGS__ value_type; \
- typedef typename list_base::allocator_type allocator_type; \
- typedef typename list_base::size_type size_type; \
- typedef typename list_base::iterator iterator; \
- explicit list(const allocator_type& a = allocator_type()) : list_base(a) {} \
- template<typename InputIterator> \
- list(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) : list_base(first, last, a) {} \
- list(const list& c) : list_base(c) {} \
- explicit list(size_type num, const value_type& val = value_type()) : list_base(num, val) {} \
- list(iterator start, iterator end) : list_base(start, end) {} \
- list& operator=(const list& x) { \
- list_base::operator=(x); \
- return *this; \
- } \
- }; \
-}
-
-// check whether we really need the std::vector specialization
-#if !(defined(_GLIBCXX_VECTOR) && (!EIGEN_GNUC_AT_LEAST(4,1))) /* Note that before gcc-4.1 we already have: std::list::resize(size_type,const T&). */
-
-namespace std
-{
-
-#define EIGEN_STD_LIST_SPECIALIZATION_BODY \
- public: \
- typedef T value_type; \
- typedef typename list_base::allocator_type allocator_type; \
- typedef typename list_base::size_type size_type; \
- typedef typename list_base::iterator iterator; \
- typedef typename list_base::const_iterator const_iterator; \
- explicit list(const allocator_type& a = allocator_type()) : list_base(a) {} \
- template<typename InputIterator> \
- list(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) \
- : list_base(first, last, a) {} \
- list(const list& c) : list_base(c) {} \
- explicit list(size_type num, const value_type& val = value_type()) : list_base(num, val) {} \
- list(iterator start, iterator end) : list_base(start, end) {} \
- list& operator=(const list& x) { \
- list_base::operator=(x); \
- return *this; \
- }
-
- template<typename T>
- class list<T,EIGEN_ALIGNED_ALLOCATOR<T> >
- : public list<EIGEN_WORKAROUND_MSVC_STL_SUPPORT(T),
- Eigen::aligned_allocator_indirection<EIGEN_WORKAROUND_MSVC_STL_SUPPORT(T)> >
- {
- typedef list<EIGEN_WORKAROUND_MSVC_STL_SUPPORT(T),
- Eigen::aligned_allocator_indirection<EIGEN_WORKAROUND_MSVC_STL_SUPPORT(T)> > list_base;
- EIGEN_STD_LIST_SPECIALIZATION_BODY
-
- void resize(size_type new_size)
- { resize(new_size, T()); }
-
- void resize(size_type new_size, const value_type& x)
- {
- if (list_base::size() < new_size)
- list_base::insert(list_base::end(), new_size - list_base::size(), x);
- else
- while (new_size < list_base::size()) list_base::pop_back();
- }
-
-#if defined(_LIST_)
- // workaround MSVC std::list implementation
- void push_back(const value_type& x)
- { list_base::push_back(x); }
- using list_base::insert;
- iterator insert(const_iterator position, const value_type& x)
- { return list_base::insert(position,x); }
- void insert(const_iterator position, size_type new_size, const value_type& x)
- { list_base::insert(position, new_size, x); }
-#endif
- };
-}
-
-#endif // check whether specialization is actually required
-
-#endif // EIGEN_STDLIST_H
diff --git a/src/Eigen/src/StlSupport/StdVector.h b/src/Eigen/src/StlSupport/StdVector.h
deleted file mode 100644
index 611664a..0000000
--- a/src/Eigen/src/StlSupport/StdVector.h
+++ /dev/null
@@ -1,126 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_STDVECTOR_H
-#define EIGEN_STDVECTOR_H
-
-#include "details.h"
-
-/**
- * This section contains a convenience MACRO which allows an easy specialization of
- * std::vector such that for data types with alignment issues the correct allocator
- * is used automatically.
- */
-#define EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(...) \
-namespace std \
-{ \
- template<> \
- class vector<__VA_ARGS__, std::allocator<__VA_ARGS__> > \
- : public vector<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > \
- { \
- typedef vector<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > vector_base; \
- public: \
- typedef __VA_ARGS__ value_type; \
- typedef vector_base::allocator_type allocator_type; \
- typedef vector_base::size_type size_type; \
- typedef vector_base::iterator iterator; \
- explicit vector(const allocator_type& a = allocator_type()) : vector_base(a) {} \
- template<typename InputIterator> \
- vector(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) : vector_base(first, last, a) {} \
- vector(const vector& c) : vector_base(c) {} \
- explicit vector(size_type num, const value_type& val = value_type()) : vector_base(num, val) {} \
- vector(iterator start, iterator end) : vector_base(start, end) {} \
- vector& operator=(const vector& x) { \
- vector_base::operator=(x); \
- return *this; \
- } \
- }; \
-}
-
-namespace std {
-
-#define EIGEN_STD_VECTOR_SPECIALIZATION_BODY \
- public: \
- typedef T value_type; \
- typedef typename vector_base::allocator_type allocator_type; \
- typedef typename vector_base::size_type size_type; \
- typedef typename vector_base::iterator iterator; \
- typedef typename vector_base::const_iterator const_iterator; \
- explicit vector(const allocator_type& a = allocator_type()) : vector_base(a) {} \
- template<typename InputIterator> \
- vector(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) \
- : vector_base(first, last, a) {} \
- vector(const vector& c) : vector_base(c) {} \
- explicit vector(size_type num, const value_type& val = value_type()) : vector_base(num, val) {} \
- vector(iterator start, iterator end) : vector_base(start, end) {} \
- vector& operator=(const vector& x) { \
- vector_base::operator=(x); \
- return *this; \
- }
-
- template<typename T>
- class vector<T,EIGEN_ALIGNED_ALLOCATOR<T> >
- : public vector<EIGEN_WORKAROUND_MSVC_STL_SUPPORT(T),
- Eigen::aligned_allocator_indirection<EIGEN_WORKAROUND_MSVC_STL_SUPPORT(T)> >
-{
- typedef vector<EIGEN_WORKAROUND_MSVC_STL_SUPPORT(T),
- Eigen::aligned_allocator_indirection<EIGEN_WORKAROUND_MSVC_STL_SUPPORT(T)> > vector_base;
- EIGEN_STD_VECTOR_SPECIALIZATION_BODY
-
- void resize(size_type new_size)
- { resize(new_size, T()); }
-
-#if defined(_VECTOR_)
- // workaround MSVC std::vector implementation
- void resize(size_type new_size, const value_type& x)
- {
- if (vector_base::size() < new_size)
- vector_base::_Insert_n(vector_base::end(), new_size - vector_base::size(), x);
- else if (new_size < vector_base::size())
- vector_base::erase(vector_base::begin() + new_size, vector_base::end());
- }
- void push_back(const value_type& x)
- { vector_base::push_back(x); }
- using vector_base::insert;
- iterator insert(const_iterator position, const value_type& x)
- { return vector_base::insert(position,x); }
- void insert(const_iterator position, size_type new_size, const value_type& x)
- { vector_base::insert(position, new_size, x); }
-#elif defined(_GLIBCXX_VECTOR) && (!(EIGEN_GNUC_AT_LEAST(4,1)))
- /* Note that before gcc-4.1 we already have: std::vector::resize(size_type,const T&).
- * However, this specialization is still needed to make the above EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION trick to work. */
- void resize(size_type new_size, const value_type& x)
- {
- vector_base::resize(new_size,x);
- }
-#elif defined(_GLIBCXX_VECTOR) && EIGEN_GNUC_AT_LEAST(4,2)
- // workaround GCC std::vector implementation
- void resize(size_type new_size, const value_type& x)
- {
- if (new_size < vector_base::size())
- vector_base::_M_erase_at_end(this->_M_impl._M_start + new_size);
- else
- vector_base::insert(vector_base::end(), new_size - vector_base::size(), x);
- }
-#else
- // either GCC 4.1 or non-GCC
- // default implementation which should always work.
- void resize(size_type new_size, const value_type& x)
- {
- if (new_size < vector_base::size())
- vector_base::erase(vector_base::begin() + new_size, vector_base::end());
- else if (new_size > vector_base::size())
- vector_base::insert(vector_base::end(), new_size - vector_base::size(), x);
- }
-#endif
- };
-}
-
-#endif // EIGEN_STDVECTOR_H
diff --git a/src/Eigen/src/StlSupport/details.h b/src/Eigen/src/StlSupport/details.h
deleted file mode 100644
index d8debc7..0000000
--- a/src/Eigen/src/StlSupport/details.h
+++ /dev/null
@@ -1,84 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_STL_DETAILS_H
-#define EIGEN_STL_DETAILS_H
-
-#ifndef EIGEN_ALIGNED_ALLOCATOR
- #define EIGEN_ALIGNED_ALLOCATOR Eigen::aligned_allocator
-#endif
-
-namespace Eigen {
-
- // This one is needed to prevent reimplementing the whole std::vector.
- template <class T>
- class aligned_allocator_indirection : public EIGEN_ALIGNED_ALLOCATOR<T>
- {
- public:
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef T* pointer;
- typedef const T* const_pointer;
- typedef T& reference;
- typedef const T& const_reference;
- typedef T value_type;
-
- template<class U>
- struct rebind
- {
- typedef aligned_allocator_indirection<U> other;
- };
-
- aligned_allocator_indirection() {}
- aligned_allocator_indirection(const aligned_allocator_indirection& ) : EIGEN_ALIGNED_ALLOCATOR<T>() {}
- aligned_allocator_indirection(const EIGEN_ALIGNED_ALLOCATOR<T>& ) {}
- template<class U>
- aligned_allocator_indirection(const aligned_allocator_indirection<U>& ) {}
- template<class U>
- aligned_allocator_indirection(const EIGEN_ALIGNED_ALLOCATOR<U>& ) {}
- ~aligned_allocator_indirection() {}
- };
-
-#ifdef _MSC_VER
-
- // sometimes, MSVC detects, at compile time, that the argument x
- // in std::vector::resize(size_t s,T x) won't be aligned and generate an error
- // even if this function is never called. Whence this little wrapper.
-#define EIGEN_WORKAROUND_MSVC_STL_SUPPORT(T) \
- typename Eigen::internal::conditional< \
- Eigen::internal::is_arithmetic<T>::value, \
- T, \
- Eigen::internal::workaround_msvc_stl_support<T> \
- >::type
-
- namespace internal {
- template<typename T> struct workaround_msvc_stl_support : public T
- {
- inline workaround_msvc_stl_support() : T() {}
- inline workaround_msvc_stl_support(const T& other) : T(other) {}
- inline operator T& () { return *static_cast<T*>(this); }
- inline operator const T& () const { return *static_cast<const T*>(this); }
- template<typename OtherT>
- inline T& operator=(const OtherT& other)
- { T::operator=(other); return *this; }
- inline workaround_msvc_stl_support& operator=(const workaround_msvc_stl_support& other)
- { T::operator=(other); return *this; }
- };
- }
-
-#else
-
-#define EIGEN_WORKAROUND_MSVC_STL_SUPPORT(T) T
-
-#endif
-
-}
-
-#endif // EIGEN_STL_DETAILS_H
diff --git a/src/Eigen/src/SuperLUSupport/CMakeLists.txt b/src/Eigen/src/SuperLUSupport/CMakeLists.txt
deleted file mode 100644
index b28ebe5..0000000
--- a/src/Eigen/src/SuperLUSupport/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_SuperLUSupport_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_SuperLUSupport_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/SuperLUSupport COMPONENT Devel
- )
diff --git a/src/Eigen/src/SuperLUSupport/SuperLUSupport.h b/src/Eigen/src/SuperLUSupport/SuperLUSupport.h
deleted file mode 100644
index bcb3557..0000000
--- a/src/Eigen/src/SuperLUSupport/SuperLUSupport.h
+++ /dev/null
@@ -1,1026 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SUPERLUSUPPORT_H
-#define EIGEN_SUPERLUSUPPORT_H
-
-namespace Eigen {
-
-#define DECL_GSSVX(PREFIX,FLOATTYPE,KEYTYPE) \
- extern "C" { \
- typedef struct { FLOATTYPE for_lu; FLOATTYPE total_needed; int expansions; } PREFIX##mem_usage_t; \
- extern void PREFIX##gssvx(superlu_options_t *, SuperMatrix *, int *, int *, int *, \
- char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *, \
- void *, int, SuperMatrix *, SuperMatrix *, \
- FLOATTYPE *, FLOATTYPE *, FLOATTYPE *, FLOATTYPE *, \
- PREFIX##mem_usage_t *, SuperLUStat_t *, int *); \
- } \
- inline float SuperLU_gssvx(superlu_options_t *options, SuperMatrix *A, \
- int *perm_c, int *perm_r, int *etree, char *equed, \
- FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L, \
- SuperMatrix *U, void *work, int lwork, \
- SuperMatrix *B, SuperMatrix *X, \
- FLOATTYPE *recip_pivot_growth, \
- FLOATTYPE *rcond, FLOATTYPE *ferr, FLOATTYPE *berr, \
- SuperLUStat_t *stats, int *info, KEYTYPE) { \
- PREFIX##mem_usage_t mem_usage; \
- PREFIX##gssvx(options, A, perm_c, perm_r, etree, equed, R, C, L, \
- U, work, lwork, B, X, recip_pivot_growth, rcond, \
- ferr, berr, &mem_usage, stats, info); \
- return mem_usage.for_lu; /* bytes used by the factor storage */ \
- }
-
-DECL_GSSVX(s,float,float)
-DECL_GSSVX(c,float,std::complex<float>)
-DECL_GSSVX(d,double,double)
-DECL_GSSVX(z,double,std::complex<double>)
-
-#ifdef MILU_ALPHA
-#define EIGEN_SUPERLU_HAS_ILU
-#endif
-
-#ifdef EIGEN_SUPERLU_HAS_ILU
-
-// similarly for the incomplete factorization using gsisx
-#define DECL_GSISX(PREFIX,FLOATTYPE,KEYTYPE) \
- extern "C" { \
- extern void PREFIX##gsisx(superlu_options_t *, SuperMatrix *, int *, int *, int *, \
- char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *, \
- void *, int, SuperMatrix *, SuperMatrix *, FLOATTYPE *, FLOATTYPE *, \
- PREFIX##mem_usage_t *, SuperLUStat_t *, int *); \
- } \
- inline float SuperLU_gsisx(superlu_options_t *options, SuperMatrix *A, \
- int *perm_c, int *perm_r, int *etree, char *equed, \
- FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L, \
- SuperMatrix *U, void *work, int lwork, \
- SuperMatrix *B, SuperMatrix *X, \
- FLOATTYPE *recip_pivot_growth, \
- FLOATTYPE *rcond, \
- SuperLUStat_t *stats, int *info, KEYTYPE) { \
- PREFIX##mem_usage_t mem_usage; \
- PREFIX##gsisx(options, A, perm_c, perm_r, etree, equed, R, C, L, \
- U, work, lwork, B, X, recip_pivot_growth, rcond, \
- &mem_usage, stats, info); \
- return mem_usage.for_lu; /* bytes used by the factor storage */ \
- }
-
-DECL_GSISX(s,float,float)
-DECL_GSISX(c,float,std::complex<float>)
-DECL_GSISX(d,double,double)
-DECL_GSISX(z,double,std::complex<double>)
-
-#endif
-
-template<typename MatrixType>
-struct SluMatrixMapHelper;
-
-/** \internal
- *
- * A wrapper class for SuperLU matrices. It supports only compressed sparse matrices
- * and dense matrices. Supernodal and other fancy format are not supported by this wrapper.
- *
- * This wrapper class mainly aims to avoids the need of dynamic allocation of the storage structure.
- */
-struct SluMatrix : SuperMatrix
-{
- SluMatrix()
- {
- Store = &storage;
- }
-
- SluMatrix(const SluMatrix& other)
- : SuperMatrix(other)
- {
- Store = &storage;
- storage = other.storage;
- }
-
- SluMatrix& operator=(const SluMatrix& other)
- {
- SuperMatrix::operator=(static_cast<const SuperMatrix&>(other));
- Store = &storage;
- storage = other.storage;
- return *this;
- }
-
- struct
- {
- union {int nnz;int lda;};
- void *values;
- int *innerInd;
- int *outerInd;
- } storage;
-
- void setStorageType(Stype_t t)
- {
- Stype = t;
- if (t==SLU_NC || t==SLU_NR || t==SLU_DN)
- Store = &storage;
- else
- {
- eigen_assert(false && "storage type not supported");
- Store = 0;
- }
- }
-
- template<typename Scalar>
- void setScalarType()
- {
- if (internal::is_same<Scalar,float>::value)
- Dtype = SLU_S;
- else if (internal::is_same<Scalar,double>::value)
- Dtype = SLU_D;
- else if (internal::is_same<Scalar,std::complex<float> >::value)
- Dtype = SLU_C;
- else if (internal::is_same<Scalar,std::complex<double> >::value)
- Dtype = SLU_Z;
- else
- {
- eigen_assert(false && "Scalar type not supported by SuperLU");
- }
- }
-
- template<typename MatrixType>
- static SluMatrix Map(MatrixBase<MatrixType>& _mat)
- {
- MatrixType& mat(_mat.derived());
- eigen_assert( ((MatrixType::Flags&RowMajorBit)!=RowMajorBit) && "row-major dense matrices are not supported by SuperLU");
- SluMatrix res;
- res.setStorageType(SLU_DN);
- res.setScalarType<typename MatrixType::Scalar>();
- res.Mtype = SLU_GE;
-
- res.nrow = mat.rows();
- res.ncol = mat.cols();
-
- res.storage.lda = MatrixType::IsVectorAtCompileTime ? mat.size() : mat.outerStride();
- res.storage.values = (void*)(mat.data());
- return res;
- }
-
- template<typename MatrixType>
- static SluMatrix Map(SparseMatrixBase<MatrixType>& mat)
- {
- SluMatrix res;
- if ((MatrixType::Flags&RowMajorBit)==RowMajorBit)
- {
- res.setStorageType(SLU_NR);
- res.nrow = mat.cols();
- res.ncol = mat.rows();
- }
- else
- {
- res.setStorageType(SLU_NC);
- res.nrow = mat.rows();
- res.ncol = mat.cols();
- }
-
- res.Mtype = SLU_GE;
-
- res.storage.nnz = mat.nonZeros();
- res.storage.values = mat.derived().valuePtr();
- res.storage.innerInd = mat.derived().innerIndexPtr();
- res.storage.outerInd = mat.derived().outerIndexPtr();
-
- res.setScalarType<typename MatrixType::Scalar>();
-
- // FIXME the following is not very accurate
- if (MatrixType::Flags & Upper)
- res.Mtype = SLU_TRU;
- if (MatrixType::Flags & Lower)
- res.Mtype = SLU_TRL;
-
- eigen_assert(((MatrixType::Flags & SelfAdjoint)==0) && "SelfAdjoint matrix shape not supported by SuperLU");
-
- return res;
- }
-};
-
-template<typename Scalar, int Rows, int Cols, int Options, int MRows, int MCols>
-struct SluMatrixMapHelper<Matrix<Scalar,Rows,Cols,Options,MRows,MCols> >
-{
- typedef Matrix<Scalar,Rows,Cols,Options,MRows,MCols> MatrixType;
- static void run(MatrixType& mat, SluMatrix& res)
- {
- eigen_assert( ((Options&RowMajor)!=RowMajor) && "row-major dense matrices is not supported by SuperLU");
- res.setStorageType(SLU_DN);
- res.setScalarType<Scalar>();
- res.Mtype = SLU_GE;
-
- res.nrow = mat.rows();
- res.ncol = mat.cols();
-
- res.storage.lda = mat.outerStride();
- res.storage.values = mat.data();
- }
-};
-
-template<typename Derived>
-struct SluMatrixMapHelper<SparseMatrixBase<Derived> >
-{
- typedef Derived MatrixType;
- static void run(MatrixType& mat, SluMatrix& res)
- {
- if ((MatrixType::Flags&RowMajorBit)==RowMajorBit)
- {
- res.setStorageType(SLU_NR);
- res.nrow = mat.cols();
- res.ncol = mat.rows();
- }
- else
- {
- res.setStorageType(SLU_NC);
- res.nrow = mat.rows();
- res.ncol = mat.cols();
- }
-
- res.Mtype = SLU_GE;
-
- res.storage.nnz = mat.nonZeros();
- res.storage.values = mat.valuePtr();
- res.storage.innerInd = mat.innerIndexPtr();
- res.storage.outerInd = mat.outerIndexPtr();
-
- res.setScalarType<typename MatrixType::Scalar>();
-
- // FIXME the following is not very accurate
- if (MatrixType::Flags & Upper)
- res.Mtype = SLU_TRU;
- if (MatrixType::Flags & Lower)
- res.Mtype = SLU_TRL;
-
- eigen_assert(((MatrixType::Flags & SelfAdjoint)==0) && "SelfAdjoint matrix shape not supported by SuperLU");
- }
-};
-
-namespace internal {
-
-template<typename MatrixType>
-SluMatrix asSluMatrix(MatrixType& mat)
-{
- return SluMatrix::Map(mat);
-}
-
-/** View a Super LU matrix as an Eigen expression */
-template<typename Scalar, int Flags, typename Index>
-MappedSparseMatrix<Scalar,Flags,Index> map_superlu(SluMatrix& sluMat)
-{
- eigen_assert((Flags&RowMajor)==RowMajor && sluMat.Stype == SLU_NR
- || (Flags&ColMajor)==ColMajor && sluMat.Stype == SLU_NC);
-
- Index outerSize = (Flags&RowMajor)==RowMajor ? sluMat.ncol : sluMat.nrow;
-
- return MappedSparseMatrix<Scalar,Flags,Index>(
- sluMat.nrow, sluMat.ncol, sluMat.storage.outerInd[outerSize],
- sluMat.storage.outerInd, sluMat.storage.innerInd, reinterpret_cast<Scalar*>(sluMat.storage.values) );
-}
-
-} // end namespace internal
-
-/** \ingroup SuperLUSupport_Module
- * \class SuperLUBase
- * \brief The base class for the direct and incomplete LU factorization of SuperLU
- */
-template<typename _MatrixType, typename Derived>
-class SuperLUBase : internal::noncopyable
-{
- public:
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef Matrix<Scalar,Dynamic,1> Vector;
- typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
- typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
- typedef SparseMatrix<Scalar> LUMatrixType;
-
- public:
-
- SuperLUBase() {}
-
- ~SuperLUBase()
- {
- clearFactors();
- }
-
- Derived& derived() { return *static_cast<Derived*>(this); }
- const Derived& derived() const { return *static_cast<const Derived*>(this); }
-
- inline Index rows() const { return m_matrix.rows(); }
- inline Index cols() const { return m_matrix.cols(); }
-
- /** \returns a reference to the Super LU option object to configure the Super LU algorithms. */
- inline superlu_options_t& options() { return m_sluOptions; }
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful,
- * \c NumericalIssue if the matrix.appears to be negative.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return m_info;
- }
-
- /** Computes the sparse Cholesky decomposition of \a matrix */
- void compute(const MatrixType& matrix)
- {
- derived().analyzePattern(matrix);
- derived().factorize(matrix);
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::solve_retval<SuperLUBase, Rhs> solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "SuperLU is not initialized.");
- eigen_assert(rows()==b.rows()
- && "SuperLU::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<SuperLUBase, Rhs>(*this, b.derived());
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::sparse_solve_retval<SuperLUBase, Rhs> solve(const SparseMatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "SuperLU is not initialized.");
- eigen_assert(rows()==b.rows()
- && "SuperLU::solve(): invalid number of rows of the right hand side matrix b");
- return internal::sparse_solve_retval<SuperLUBase, Rhs>(*this, b.derived());
- }
-
- /** Performs a symbolic decomposition on the sparcity of \a matrix.
- *
- * This function is particularly useful when solving for several problems having the same structure.
- *
- * \sa factorize()
- */
- void analyzePattern(const MatrixType& /*matrix*/)
- {
- m_isInitialized = true;
- m_info = Success;
- m_analysisIsOk = true;
- m_factorizationIsOk = false;
- }
-
- template<typename Stream>
- void dumpMemory(Stream& /*s*/)
- {}
-
- protected:
-
- void initFactorization(const MatrixType& a)
- {
- set_default_options(&this->m_sluOptions);
-
- const int size = a.rows();
- m_matrix = a;
-
- m_sluA = internal::asSluMatrix(m_matrix);
- clearFactors();
-
- m_p.resize(size);
- m_q.resize(size);
- m_sluRscale.resize(size);
- m_sluCscale.resize(size);
- m_sluEtree.resize(size);
-
- // set empty B and X
- m_sluB.setStorageType(SLU_DN);
- m_sluB.setScalarType<Scalar>();
- m_sluB.Mtype = SLU_GE;
- m_sluB.storage.values = 0;
- m_sluB.nrow = 0;
- m_sluB.ncol = 0;
- m_sluB.storage.lda = size;
- m_sluX = m_sluB;
-
- m_extractedDataAreDirty = true;
- }
-
- void init()
- {
- m_info = InvalidInput;
- m_isInitialized = false;
- m_sluL.Store = 0;
- m_sluU.Store = 0;
- }
-
- void extractData() const;
-
- void clearFactors()
- {
- if(m_sluL.Store)
- Destroy_SuperNode_Matrix(&m_sluL);
- if(m_sluU.Store)
- Destroy_CompCol_Matrix(&m_sluU);
-
- m_sluL.Store = 0;
- m_sluU.Store = 0;
-
- memset(&m_sluL,0,sizeof m_sluL);
- memset(&m_sluU,0,sizeof m_sluU);
- }
-
- // cached data to reduce reallocation, etc.
- mutable LUMatrixType m_l;
- mutable LUMatrixType m_u;
- mutable IntColVectorType m_p;
- mutable IntRowVectorType m_q;
-
- mutable LUMatrixType m_matrix; // copy of the factorized matrix
- mutable SluMatrix m_sluA;
- mutable SuperMatrix m_sluL, m_sluU;
- mutable SluMatrix m_sluB, m_sluX;
- mutable SuperLUStat_t m_sluStat;
- mutable superlu_options_t m_sluOptions;
- mutable std::vector<int> m_sluEtree;
- mutable Matrix<RealScalar,Dynamic,1> m_sluRscale, m_sluCscale;
- mutable Matrix<RealScalar,Dynamic,1> m_sluFerr, m_sluBerr;
- mutable char m_sluEqued;
-
- mutable ComputationInfo m_info;
- bool m_isInitialized;
- int m_factorizationIsOk;
- int m_analysisIsOk;
- mutable bool m_extractedDataAreDirty;
-
- private:
- SuperLUBase(SuperLUBase& ) { }
-};
-
-
-/** \ingroup SuperLUSupport_Module
- * \class SuperLU
- * \brief A sparse direct LU factorization and solver based on the SuperLU library
- *
- * This class allows to solve for A.X = B sparse linear problems via a direct LU factorization
- * using the SuperLU library. The sparse matrix A must be squared and invertible. The vectors or matrices
- * X and B can be either dense or sparse.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- *
- * \sa \ref TutorialSparseDirectSolvers
- */
-template<typename _MatrixType>
-class SuperLU : public SuperLUBase<_MatrixType,SuperLU<_MatrixType> >
-{
- public:
- typedef SuperLUBase<_MatrixType,SuperLU> Base;
- typedef _MatrixType MatrixType;
- typedef typename Base::Scalar Scalar;
- typedef typename Base::RealScalar RealScalar;
- typedef typename Base::Index Index;
- typedef typename Base::IntRowVectorType IntRowVectorType;
- typedef typename Base::IntColVectorType IntColVectorType;
- typedef typename Base::LUMatrixType LUMatrixType;
- typedef TriangularView<LUMatrixType, Lower|UnitDiag> LMatrixType;
- typedef TriangularView<LUMatrixType, Upper> UMatrixType;
-
- public:
-
- SuperLU() : Base() { init(); }
-
- SuperLU(const MatrixType& matrix) : Base()
- {
- init();
- Base::compute(matrix);
- }
-
- ~SuperLU()
- {
- }
-
- /** Performs a symbolic decomposition on the sparcity of \a matrix.
- *
- * This function is particularly useful when solving for several problems having the same structure.
- *
- * \sa factorize()
- */
- void analyzePattern(const MatrixType& matrix)
- {
- m_info = InvalidInput;
- m_isInitialized = false;
- Base::analyzePattern(matrix);
- }
-
- /** Performs a numeric decomposition of \a matrix
- *
- * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
- *
- * \sa analyzePattern()
- */
- void factorize(const MatrixType& matrix);
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const;
- #endif // EIGEN_PARSED_BY_DOXYGEN
-
- inline const LMatrixType& matrixL() const
- {
- if (m_extractedDataAreDirty) this->extractData();
- return m_l;
- }
-
- inline const UMatrixType& matrixU() const
- {
- if (m_extractedDataAreDirty) this->extractData();
- return m_u;
- }
-
- inline const IntColVectorType& permutationP() const
- {
- if (m_extractedDataAreDirty) this->extractData();
- return m_p;
- }
-
- inline const IntRowVectorType& permutationQ() const
- {
- if (m_extractedDataAreDirty) this->extractData();
- return m_q;
- }
-
- Scalar determinant() const;
-
- protected:
-
- using Base::m_matrix;
- using Base::m_sluOptions;
- using Base::m_sluA;
- using Base::m_sluB;
- using Base::m_sluX;
- using Base::m_p;
- using Base::m_q;
- using Base::m_sluEtree;
- using Base::m_sluEqued;
- using Base::m_sluRscale;
- using Base::m_sluCscale;
- using Base::m_sluL;
- using Base::m_sluU;
- using Base::m_sluStat;
- using Base::m_sluFerr;
- using Base::m_sluBerr;
- using Base::m_l;
- using Base::m_u;
-
- using Base::m_analysisIsOk;
- using Base::m_factorizationIsOk;
- using Base::m_extractedDataAreDirty;
- using Base::m_isInitialized;
- using Base::m_info;
-
- void init()
- {
- Base::init();
-
- set_default_options(&this->m_sluOptions);
- m_sluOptions.PrintStat = NO;
- m_sluOptions.ConditionNumber = NO;
- m_sluOptions.Trans = NOTRANS;
- m_sluOptions.ColPerm = COLAMD;
- }
-
-
- private:
- SuperLU(SuperLU& ) { }
-};
-
-template<typename MatrixType>
-void SuperLU<MatrixType>::factorize(const MatrixType& a)
-{
- eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
- if(!m_analysisIsOk)
- {
- m_info = InvalidInput;
- return;
- }
-
- this->initFactorization(a);
-
- m_sluOptions.ColPerm = COLAMD;
- int info = 0;
- RealScalar recip_pivot_growth, rcond;
- RealScalar ferr, berr;
-
- StatInit(&m_sluStat);
- SuperLU_gssvx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0],
- &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0],
- &m_sluL, &m_sluU,
- NULL, 0,
- &m_sluB, &m_sluX,
- &recip_pivot_growth, &rcond,
- &ferr, &berr,
- &m_sluStat, &info, Scalar());
- StatFree(&m_sluStat);
-
- m_extractedDataAreDirty = true;
-
- // FIXME how to better check for errors ???
- m_info = info == 0 ? Success : NumericalIssue;
- m_factorizationIsOk = true;
-}
-
-template<typename MatrixType>
-template<typename Rhs,typename Dest>
-void SuperLU<MatrixType>::_solve(const MatrixBase<Rhs> &b, MatrixBase<Dest>& x) const
-{
- eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()");
-
- const int size = m_matrix.rows();
- const int rhsCols = b.cols();
- eigen_assert(size==b.rows());
-
- m_sluOptions.Trans = NOTRANS;
- m_sluOptions.Fact = FACTORED;
- m_sluOptions.IterRefine = NOREFINE;
-
-
- m_sluFerr.resize(rhsCols);
- m_sluBerr.resize(rhsCols);
- m_sluB = SluMatrix::Map(b.const_cast_derived());
- m_sluX = SluMatrix::Map(x.derived());
-
- typename Rhs::PlainObject b_cpy;
- if(m_sluEqued!='N')
- {
- b_cpy = b;
- m_sluB = SluMatrix::Map(b_cpy.const_cast_derived());
- }
-
- StatInit(&m_sluStat);
- int info = 0;
- RealScalar recip_pivot_growth, rcond;
- SuperLU_gssvx(&m_sluOptions, &m_sluA,
- m_q.data(), m_p.data(),
- &m_sluEtree[0], &m_sluEqued,
- &m_sluRscale[0], &m_sluCscale[0],
- &m_sluL, &m_sluU,
- NULL, 0,
- &m_sluB, &m_sluX,
- &recip_pivot_growth, &rcond,
- &m_sluFerr[0], &m_sluBerr[0],
- &m_sluStat, &info, Scalar());
- StatFree(&m_sluStat);
- m_info = info==0 ? Success : NumericalIssue;
-}
-
-// the code of this extractData() function has been adapted from the SuperLU's Matlab support code,
-//
-// Copyright (c) 1994 by Xerox Corporation. All rights reserved.
-//
-// THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
-// EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-//
-template<typename MatrixType, typename Derived>
-void SuperLUBase<MatrixType,Derived>::extractData() const
-{
- eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for extracting factors, you must first call either compute() or analyzePattern()/factorize()");
- if (m_extractedDataAreDirty)
- {
- int upper;
- int fsupc, istart, nsupr;
- int lastl = 0, lastu = 0;
- SCformat *Lstore = static_cast<SCformat*>(m_sluL.Store);
- NCformat *Ustore = static_cast<NCformat*>(m_sluU.Store);
- Scalar *SNptr;
-
- const int size = m_matrix.rows();
- m_l.resize(size,size);
- m_l.resizeNonZeros(Lstore->nnz);
- m_u.resize(size,size);
- m_u.resizeNonZeros(Ustore->nnz);
-
- int* Lcol = m_l.outerIndexPtr();
- int* Lrow = m_l.innerIndexPtr();
- Scalar* Lval = m_l.valuePtr();
-
- int* Ucol = m_u.outerIndexPtr();
- int* Urow = m_u.innerIndexPtr();
- Scalar* Uval = m_u.valuePtr();
-
- Ucol[0] = 0;
- Ucol[0] = 0;
-
- /* for each supernode */
- for (int k = 0; k <= Lstore->nsuper; ++k)
- {
- fsupc = L_FST_SUPC(k);
- istart = L_SUB_START(fsupc);
- nsupr = L_SUB_START(fsupc+1) - istart;
- upper = 1;
-
- /* for each column in the supernode */
- for (int j = fsupc; j < L_FST_SUPC(k+1); ++j)
- {
- SNptr = &((Scalar*)Lstore->nzval)[L_NZ_START(j)];
-
- /* Extract U */
- for (int i = U_NZ_START(j); i < U_NZ_START(j+1); ++i)
- {
- Uval[lastu] = ((Scalar*)Ustore->nzval)[i];
- /* Matlab doesn't like explicit zero. */
- if (Uval[lastu] != 0.0)
- Urow[lastu++] = U_SUB(i);
- }
- for (int i = 0; i < upper; ++i)
- {
- /* upper triangle in the supernode */
- Uval[lastu] = SNptr[i];
- /* Matlab doesn't like explicit zero. */
- if (Uval[lastu] != 0.0)
- Urow[lastu++] = L_SUB(istart+i);
- }
- Ucol[j+1] = lastu;
-
- /* Extract L */
- Lval[lastl] = 1.0; /* unit diagonal */
- Lrow[lastl++] = L_SUB(istart + upper - 1);
- for (int i = upper; i < nsupr; ++i)
- {
- Lval[lastl] = SNptr[i];
- /* Matlab doesn't like explicit zero. */
- if (Lval[lastl] != 0.0)
- Lrow[lastl++] = L_SUB(istart+i);
- }
- Lcol[j+1] = lastl;
-
- ++upper;
- } /* for j ... */
-
- } /* for k ... */
-
- // squeeze the matrices :
- m_l.resizeNonZeros(lastl);
- m_u.resizeNonZeros(lastu);
-
- m_extractedDataAreDirty = false;
- }
-}
-
-template<typename MatrixType>
-typename SuperLU<MatrixType>::Scalar SuperLU<MatrixType>::determinant() const
-{
- eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for computing the determinant, you must first call either compute() or analyzePattern()/factorize()");
-
- if (m_extractedDataAreDirty)
- this->extractData();
-
- Scalar det = Scalar(1);
- for (int j=0; j<m_u.cols(); ++j)
- {
- if (m_u.outerIndexPtr()[j+1]-m_u.outerIndexPtr()[j] > 0)
- {
- int lastId = m_u.outerIndexPtr()[j+1]-1;
- eigen_assert(m_u.innerIndexPtr()[lastId]<=j);
- if (m_u.innerIndexPtr()[lastId]==j)
- det *= m_u.valuePtr()[lastId];
- }
- }
- if(m_sluEqued!='N')
- return det/m_sluRscale.prod()/m_sluCscale.prod();
- else
- return det;
-}
-
-#ifdef EIGEN_PARSED_BY_DOXYGEN
-#define EIGEN_SUPERLU_HAS_ILU
-#endif
-
-#ifdef EIGEN_SUPERLU_HAS_ILU
-
-/** \ingroup SuperLUSupport_Module
- * \class SuperILU
- * \brief A sparse direct \b incomplete LU factorization and solver based on the SuperLU library
- *
- * This class allows to solve for an approximate solution of A.X = B sparse linear problems via an incomplete LU factorization
- * using the SuperLU library. This class is aimed to be used as a preconditioner of the iterative linear solvers.
- *
- * \warning This class requires SuperLU 4 or later.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- *
- * \sa \ref TutorialSparseDirectSolvers, class ConjugateGradient, class BiCGSTAB
- */
-
-template<typename _MatrixType>
-class SuperILU : public SuperLUBase<_MatrixType,SuperILU<_MatrixType> >
-{
- public:
- typedef SuperLUBase<_MatrixType,SuperILU> Base;
- typedef _MatrixType MatrixType;
- typedef typename Base::Scalar Scalar;
- typedef typename Base::RealScalar RealScalar;
- typedef typename Base::Index Index;
-
- public:
-
- SuperILU() : Base() { init(); }
-
- SuperILU(const MatrixType& matrix) : Base()
- {
- init();
- Base::compute(matrix);
- }
-
- ~SuperILU()
- {
- }
-
- /** Performs a symbolic decomposition on the sparcity of \a matrix.
- *
- * This function is particularly useful when solving for several problems having the same structure.
- *
- * \sa factorize()
- */
- void analyzePattern(const MatrixType& matrix)
- {
- Base::analyzePattern(matrix);
- }
-
- /** Performs a numeric decomposition of \a matrix
- *
- * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
- *
- * \sa analyzePattern()
- */
- void factorize(const MatrixType& matrix);
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const;
- #endif // EIGEN_PARSED_BY_DOXYGEN
-
- protected:
-
- using Base::m_matrix;
- using Base::m_sluOptions;
- using Base::m_sluA;
- using Base::m_sluB;
- using Base::m_sluX;
- using Base::m_p;
- using Base::m_q;
- using Base::m_sluEtree;
- using Base::m_sluEqued;
- using Base::m_sluRscale;
- using Base::m_sluCscale;
- using Base::m_sluL;
- using Base::m_sluU;
- using Base::m_sluStat;
- using Base::m_sluFerr;
- using Base::m_sluBerr;
- using Base::m_l;
- using Base::m_u;
-
- using Base::m_analysisIsOk;
- using Base::m_factorizationIsOk;
- using Base::m_extractedDataAreDirty;
- using Base::m_isInitialized;
- using Base::m_info;
-
- void init()
- {
- Base::init();
-
- ilu_set_default_options(&m_sluOptions);
- m_sluOptions.PrintStat = NO;
- m_sluOptions.ConditionNumber = NO;
- m_sluOptions.Trans = NOTRANS;
- m_sluOptions.ColPerm = MMD_AT_PLUS_A;
-
- // no attempt to preserve column sum
- m_sluOptions.ILU_MILU = SILU;
- // only basic ILU(k) support -- no direct control over memory consumption
- // better to use ILU_DropRule = DROP_BASIC | DROP_AREA
- // and set ILU_FillFactor to max memory growth
- m_sluOptions.ILU_DropRule = DROP_BASIC;
- m_sluOptions.ILU_DropTol = NumTraits<Scalar>::dummy_precision()*10;
- }
-
- private:
- SuperILU(SuperILU& ) { }
-};
-
-template<typename MatrixType>
-void SuperILU<MatrixType>::factorize(const MatrixType& a)
-{
- eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
- if(!m_analysisIsOk)
- {
- m_info = InvalidInput;
- return;
- }
-
- this->initFactorization(a);
-
- int info = 0;
- RealScalar recip_pivot_growth, rcond;
-
- StatInit(&m_sluStat);
- SuperLU_gsisx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0],
- &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0],
- &m_sluL, &m_sluU,
- NULL, 0,
- &m_sluB, &m_sluX,
- &recip_pivot_growth, &rcond,
- &m_sluStat, &info, Scalar());
- StatFree(&m_sluStat);
-
- // FIXME how to better check for errors ???
- m_info = info == 0 ? Success : NumericalIssue;
- m_factorizationIsOk = true;
-}
-
-template<typename MatrixType>
-template<typename Rhs,typename Dest>
-void SuperILU<MatrixType>::_solve(const MatrixBase<Rhs> &b, MatrixBase<Dest>& x) const
-{
- eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()");
-
- const int size = m_matrix.rows();
- const int rhsCols = b.cols();
- eigen_assert(size==b.rows());
-
- m_sluOptions.Trans = NOTRANS;
- m_sluOptions.Fact = FACTORED;
- m_sluOptions.IterRefine = NOREFINE;
-
- m_sluFerr.resize(rhsCols);
- m_sluBerr.resize(rhsCols);
- m_sluB = SluMatrix::Map(b.const_cast_derived());
- m_sluX = SluMatrix::Map(x.derived());
-
- typename Rhs::PlainObject b_cpy;
- if(m_sluEqued!='N')
- {
- b_cpy = b;
- m_sluB = SluMatrix::Map(b_cpy.const_cast_derived());
- }
-
- int info = 0;
- RealScalar recip_pivot_growth, rcond;
-
- StatInit(&m_sluStat);
- SuperLU_gsisx(&m_sluOptions, &m_sluA,
- m_q.data(), m_p.data(),
- &m_sluEtree[0], &m_sluEqued,
- &m_sluRscale[0], &m_sluCscale[0],
- &m_sluL, &m_sluU,
- NULL, 0,
- &m_sluB, &m_sluX,
- &recip_pivot_growth, &rcond,
- &m_sluStat, &info, Scalar());
- StatFree(&m_sluStat);
-
- m_info = info==0 ? Success : NumericalIssue;
-}
-#endif
-
-namespace internal {
-
-template<typename _MatrixType, typename Derived, typename Rhs>
-struct solve_retval<SuperLUBase<_MatrixType,Derived>, Rhs>
- : solve_retval_base<SuperLUBase<_MatrixType,Derived>, Rhs>
-{
- typedef SuperLUBase<_MatrixType,Derived> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec().derived()._solve(rhs(),dst);
- }
-};
-
-template<typename _MatrixType, typename Derived, typename Rhs>
-struct sparse_solve_retval<SuperLUBase<_MatrixType,Derived>, Rhs>
- : sparse_solve_retval_base<SuperLUBase<_MatrixType,Derived>, Rhs>
-{
- typedef SuperLUBase<_MatrixType,Derived> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- this->defaultEvalTo(dst);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_SUPERLUSUPPORT_H
diff --git a/src/Eigen/src/UmfPackSupport/CMakeLists.txt b/src/Eigen/src/UmfPackSupport/CMakeLists.txt
deleted file mode 100644
index a57de00..0000000
--- a/src/Eigen/src/UmfPackSupport/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_UmfPackSupport_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_UmfPackSupport_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/UmfPackSupport COMPONENT Devel
- )
diff --git a/src/Eigen/src/UmfPackSupport/UmfPackSupport.h b/src/Eigen/src/UmfPackSupport/UmfPackSupport.h
deleted file mode 100644
index 3a48cec..0000000
--- a/src/Eigen/src/UmfPackSupport/UmfPackSupport.h
+++ /dev/null
@@ -1,432 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_UMFPACKSUPPORT_H
-#define EIGEN_UMFPACKSUPPORT_H
-
-namespace Eigen {
-
-/* TODO extract L, extract U, compute det, etc... */
-
-// generic double/complex<double> wrapper functions:
-
-inline void umfpack_free_numeric(void **Numeric, double)
-{ umfpack_di_free_numeric(Numeric); *Numeric = 0; }
-
-inline void umfpack_free_numeric(void **Numeric, std::complex<double>)
-{ umfpack_zi_free_numeric(Numeric); *Numeric = 0; }
-
-inline void umfpack_free_symbolic(void **Symbolic, double)
-{ umfpack_di_free_symbolic(Symbolic); *Symbolic = 0; }
-
-inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>)
-{ umfpack_zi_free_symbolic(Symbolic); *Symbolic = 0; }
-
-inline int umfpack_symbolic(int n_row,int n_col,
- const int Ap[], const int Ai[], const double Ax[], void **Symbolic,
- const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
-{
- return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info);
-}
-
-inline int umfpack_symbolic(int n_row,int n_col,
- const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic,
- const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
-{
- return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info);
-}
-
-inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[],
- void *Symbolic, void **Numeric,
- const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
-{
- return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info);
-}
-
-inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[],
- void *Symbolic, void **Numeric,
- const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
-{
- return umfpack_zi_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info);
-}
-
-inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[],
- double X[], const double B[], void *Numeric,
- const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
-{
- return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info);
-}
-
-inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[],
- std::complex<double> X[], const std::complex<double> B[], void *Numeric,
- const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
-{
- return umfpack_zi_solve(sys,Ap,Ai,&numext::real_ref(Ax[0]),0,&numext::real_ref(X[0]),0,&numext::real_ref(B[0]),0,Numeric,Control,Info);
-}
-
-inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
-{
- return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
-}
-
-inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>)
-{
- return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
-}
-
-inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[],
- int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
-{
- return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric);
-}
-
-inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[],
- int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric)
-{
- double& lx0_real = numext::real_ref(Lx[0]);
- double& ux0_real = numext::real_ref(Ux[0]);
- double& dx0_real = numext::real_ref(Dx[0]);
- return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q,
- Dx?&dx0_real:0,0,do_recip,Rs,Numeric);
-}
-
-inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
-{
- return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info);
-}
-
-inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
-{
- double& mx_real = numext::real_ref(*Mx);
- return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info);
-}
-
-/** \ingroup UmfPackSupport_Module
- * \brief A sparse LU factorization and solver based on UmfPack
- *
- * This class allows to solve for A.X = B sparse linear problems via a LU factorization
- * using the UmfPack library. The sparse matrix A must be squared and full rank.
- * The vectors or matrices X and B can be either dense or sparse.
- *
- * \warning The input matrix A should be in a \b compressed and \b column-major form.
- * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- *
- * \sa \ref TutorialSparseDirectSolvers
- */
-template<typename _MatrixType>
-class UmfPackLU : internal::noncopyable
-{
- public:
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- typedef Matrix<Scalar,Dynamic,1> Vector;
- typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
- typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
- typedef SparseMatrix<Scalar> LUMatrixType;
- typedef SparseMatrix<Scalar,ColMajor,int> UmfpackMatrixType;
-
- public:
-
- UmfPackLU() { init(); }
-
- UmfPackLU(const MatrixType& matrix)
- {
- init();
- compute(matrix);
- }
-
- ~UmfPackLU()
- {
- if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
- if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar());
- }
-
- inline Index rows() const { return m_copyMatrix.rows(); }
- inline Index cols() const { return m_copyMatrix.cols(); }
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful,
- * \c NumericalIssue if the matrix.appears to be negative.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return m_info;
- }
-
- inline const LUMatrixType& matrixL() const
- {
- if (m_extractedDataAreDirty) extractData();
- return m_l;
- }
-
- inline const LUMatrixType& matrixU() const
- {
- if (m_extractedDataAreDirty) extractData();
- return m_u;
- }
-
- inline const IntColVectorType& permutationP() const
- {
- if (m_extractedDataAreDirty) extractData();
- return m_p;
- }
-
- inline const IntRowVectorType& permutationQ() const
- {
- if (m_extractedDataAreDirty) extractData();
- return m_q;
- }
-
- /** Computes the sparse Cholesky decomposition of \a matrix
- * Note that the matrix should be column-major, and in compressed format for best performance.
- * \sa SparseMatrix::makeCompressed().
- */
- void compute(const MatrixType& matrix)
- {
- analyzePattern(matrix);
- factorize(matrix);
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::solve_retval<UmfPackLU, Rhs> solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "UmfPackLU is not initialized.");
- eigen_assert(rows()==b.rows()
- && "UmfPackLU::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<UmfPackLU, Rhs>(*this, b.derived());
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::sparse_solve_retval<UmfPackLU, Rhs> solve(const SparseMatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "UmfPackLU is not initialized.");
- eigen_assert(rows()==b.rows()
- && "UmfPackLU::solve(): invalid number of rows of the right hand side matrix b");
- return internal::sparse_solve_retval<UmfPackLU, Rhs>(*this, b.derived());
- }
-
- /** Performs a symbolic decomposition on the sparcity of \a matrix.
- *
- * This function is particularly useful when solving for several problems having the same structure.
- *
- * \sa factorize(), compute()
- */
- void analyzePattern(const MatrixType& matrix)
- {
- if(m_symbolic)
- umfpack_free_symbolic(&m_symbolic,Scalar());
- if(m_numeric)
- umfpack_free_numeric(&m_numeric,Scalar());
-
- grapInput(matrix);
-
- int errorCode = 0;
- errorCode = umfpack_symbolic(matrix.rows(), matrix.cols(), m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
- &m_symbolic, 0, 0);
-
- m_isInitialized = true;
- m_info = errorCode ? InvalidInput : Success;
- m_analysisIsOk = true;
- m_factorizationIsOk = false;
- }
-
- /** Performs a numeric decomposition of \a matrix
- *
- * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed.
- *
- * \sa analyzePattern(), compute()
- */
- void factorize(const MatrixType& matrix)
- {
- eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
- if(m_numeric)
- umfpack_free_numeric(&m_numeric,Scalar());
-
- grapInput(matrix);
-
- int errorCode;
- errorCode = umfpack_numeric(m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
- m_symbolic, &m_numeric, 0, 0);
-
- m_info = errorCode ? NumericalIssue : Success;
- m_factorizationIsOk = true;
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** \internal */
- template<typename BDerived,typename XDerived>
- bool _solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
- #endif
-
- Scalar determinant() const;
-
- void extractData() const;
-
- protected:
-
-
- void init()
- {
- m_info = InvalidInput;
- m_isInitialized = false;
- m_numeric = 0;
- m_symbolic = 0;
- m_outerIndexPtr = 0;
- m_innerIndexPtr = 0;
- m_valuePtr = 0;
- }
-
- void grapInput(const MatrixType& mat)
- {
- m_copyMatrix.resize(mat.rows(), mat.cols());
- if( ((MatrixType::Flags&RowMajorBit)==RowMajorBit) || sizeof(typename MatrixType::Index)!=sizeof(int) || !mat.isCompressed() )
- {
- // non supported input -> copy
- m_copyMatrix = mat;
- m_outerIndexPtr = m_copyMatrix.outerIndexPtr();
- m_innerIndexPtr = m_copyMatrix.innerIndexPtr();
- m_valuePtr = m_copyMatrix.valuePtr();
- }
- else
- {
- m_outerIndexPtr = mat.outerIndexPtr();
- m_innerIndexPtr = mat.innerIndexPtr();
- m_valuePtr = mat.valuePtr();
- }
- }
-
- // cached data to reduce reallocation, etc.
- mutable LUMatrixType m_l;
- mutable LUMatrixType m_u;
- mutable IntColVectorType m_p;
- mutable IntRowVectorType m_q;
-
- UmfpackMatrixType m_copyMatrix;
- const Scalar* m_valuePtr;
- const int* m_outerIndexPtr;
- const int* m_innerIndexPtr;
- void* m_numeric;
- void* m_symbolic;
-
- mutable ComputationInfo m_info;
- bool m_isInitialized;
- int m_factorizationIsOk;
- int m_analysisIsOk;
- mutable bool m_extractedDataAreDirty;
-
- private:
- UmfPackLU(UmfPackLU& ) { }
-};
-
-
-template<typename MatrixType>
-void UmfPackLU<MatrixType>::extractData() const
-{
- if (m_extractedDataAreDirty)
- {
- // get size of the data
- int lnz, unz, rows, cols, nz_udiag;
- umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
-
- // allocate data
- m_l.resize(rows,(std::min)(rows,cols));
- m_l.resizeNonZeros(lnz);
-
- m_u.resize((std::min)(rows,cols),cols);
- m_u.resizeNonZeros(unz);
-
- m_p.resize(rows);
- m_q.resize(cols);
-
- // extract
- umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(),
- m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(),
- m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
-
- m_extractedDataAreDirty = false;
- }
-}
-
-template<typename MatrixType>
-typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const
-{
- Scalar det;
- umfpack_get_determinant(&det, 0, m_numeric, 0);
- return det;
-}
-
-template<typename MatrixType>
-template<typename BDerived,typename XDerived>
-bool UmfPackLU<MatrixType>::_solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const
-{
- const int rhsCols = b.cols();
- eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet");
- eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet");
- eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve");
-
- int errorCode;
- for (int j=0; j<rhsCols; ++j)
- {
- errorCode = umfpack_solve(UMFPACK_A,
- m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
- &x.col(j).coeffRef(0), &b.const_cast_derived().col(j).coeffRef(0), m_numeric, 0, 0);
- if (errorCode!=0)
- return false;
- }
-
- return true;
-}
-
-
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<UmfPackLU<_MatrixType>, Rhs>
- : solve_retval_base<UmfPackLU<_MatrixType>, Rhs>
-{
- typedef UmfPackLU<_MatrixType> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-template<typename _MatrixType, typename Rhs>
-struct sparse_solve_retval<UmfPackLU<_MatrixType>, Rhs>
- : sparse_solve_retval_base<UmfPackLU<_MatrixType>, Rhs>
-{
- typedef UmfPackLU<_MatrixType> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- this->defaultEvalTo(dst);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_UMFPACKSUPPORT_H
diff --git a/src/Eigen/src/misc/CMakeLists.txt b/src/Eigen/src/misc/CMakeLists.txt
deleted file mode 100644
index a58ffb7..0000000
--- a/src/Eigen/src/misc/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_misc_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_misc_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/misc COMPONENT Devel
- )
diff --git a/src/Eigen/src/misc/Image.h b/src/Eigen/src/misc/Image.h
deleted file mode 100644
index 75c5f43..0000000
--- a/src/Eigen/src/misc/Image.h
+++ /dev/null
@@ -1,84 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MISC_IMAGE_H
-#define EIGEN_MISC_IMAGE_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** \class image_retval_base
- *
- */
-template<typename DecompositionType>
-struct traits<image_retval_base<DecompositionType> >
-{
- typedef typename DecompositionType::MatrixType MatrixType;
- typedef Matrix<
- typename MatrixType::Scalar,
- MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose
- // dimension is the number of rows of the original matrix
- Dynamic, // we don't know at compile time the dimension of the image (the rank)
- MatrixType::Options,
- MatrixType::MaxRowsAtCompileTime, // the image matrix will consist of columns from the original matrix,
- MatrixType::MaxColsAtCompileTime // so it has the same number of rows and at most as many columns.
- > ReturnType;
-};
-
-template<typename _DecompositionType> struct image_retval_base
- : public ReturnByValue<image_retval_base<_DecompositionType> >
-{
- typedef _DecompositionType DecompositionType;
- typedef typename DecompositionType::MatrixType MatrixType;
- typedef ReturnByValue<image_retval_base> Base;
- typedef typename Base::Index Index;
-
- image_retval_base(const DecompositionType& dec, const MatrixType& originalMatrix)
- : m_dec(dec), m_rank(dec.rank()),
- m_cols(m_rank == 0 ? 1 : m_rank),
- m_originalMatrix(originalMatrix)
- {}
-
- inline Index rows() const { return m_dec.rows(); }
- inline Index cols() const { return m_cols; }
- inline Index rank() const { return m_rank; }
- inline const DecompositionType& dec() const { return m_dec; }
- inline const MatrixType& originalMatrix() const { return m_originalMatrix; }
-
- template<typename Dest> inline void evalTo(Dest& dst) const
- {
- static_cast<const image_retval<DecompositionType>*>(this)->evalTo(dst);
- }
-
- protected:
- const DecompositionType& m_dec;
- Index m_rank, m_cols;
- const MatrixType& m_originalMatrix;
-};
-
-} // end namespace internal
-
-#define EIGEN_MAKE_IMAGE_HELPERS(DecompositionType) \
- typedef typename DecompositionType::MatrixType MatrixType; \
- typedef typename MatrixType::Scalar Scalar; \
- typedef typename MatrixType::RealScalar RealScalar; \
- typedef typename MatrixType::Index Index; \
- typedef Eigen::internal::image_retval_base<DecompositionType> Base; \
- using Base::dec; \
- using Base::originalMatrix; \
- using Base::rank; \
- using Base::rows; \
- using Base::cols; \
- image_retval(const DecompositionType& dec, const MatrixType& originalMatrix) \
- : Base(dec, originalMatrix) {}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MISC_IMAGE_H
diff --git a/src/Eigen/src/misc/Kernel.h b/src/Eigen/src/misc/Kernel.h
deleted file mode 100644
index b9e1518..0000000
--- a/src/Eigen/src/misc/Kernel.h
+++ /dev/null
@@ -1,81 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MISC_KERNEL_H
-#define EIGEN_MISC_KERNEL_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** \class kernel_retval_base
- *
- */
-template<typename DecompositionType>
-struct traits<kernel_retval_base<DecompositionType> >
-{
- typedef typename DecompositionType::MatrixType MatrixType;
- typedef Matrix<
- typename MatrixType::Scalar,
- MatrixType::ColsAtCompileTime, // the number of rows in the "kernel matrix"
- // is the number of cols of the original matrix
- // so that the product "matrix * kernel = zero" makes sense
- Dynamic, // we don't know at compile-time the dimension of the kernel
- MatrixType::Options,
- MatrixType::MaxColsAtCompileTime, // see explanation for 2nd template parameter
- MatrixType::MaxColsAtCompileTime // the kernel is a subspace of the domain space,
- // whose dimension is the number of columns of the original matrix
- > ReturnType;
-};
-
-template<typename _DecompositionType> struct kernel_retval_base
- : public ReturnByValue<kernel_retval_base<_DecompositionType> >
-{
- typedef _DecompositionType DecompositionType;
- typedef ReturnByValue<kernel_retval_base> Base;
- typedef typename Base::Index Index;
-
- kernel_retval_base(const DecompositionType& dec)
- : m_dec(dec),
- m_rank(dec.rank()),
- m_cols(m_rank==dec.cols() ? 1 : dec.cols() - m_rank)
- {}
-
- inline Index rows() const { return m_dec.cols(); }
- inline Index cols() const { return m_cols; }
- inline Index rank() const { return m_rank; }
- inline const DecompositionType& dec() const { return m_dec; }
-
- template<typename Dest> inline void evalTo(Dest& dst) const
- {
- static_cast<const kernel_retval<DecompositionType>*>(this)->evalTo(dst);
- }
-
- protected:
- const DecompositionType& m_dec;
- Index m_rank, m_cols;
-};
-
-} // end namespace internal
-
-#define EIGEN_MAKE_KERNEL_HELPERS(DecompositionType) \
- typedef typename DecompositionType::MatrixType MatrixType; \
- typedef typename MatrixType::Scalar Scalar; \
- typedef typename MatrixType::RealScalar RealScalar; \
- typedef typename MatrixType::Index Index; \
- typedef Eigen::internal::kernel_retval_base<DecompositionType> Base; \
- using Base::dec; \
- using Base::rank; \
- using Base::rows; \
- using Base::cols; \
- kernel_retval(const DecompositionType& dec) : Base(dec) {}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MISC_KERNEL_H
diff --git a/src/Eigen/src/misc/Solve.h b/src/Eigen/src/misc/Solve.h
deleted file mode 100644
index 7f70d60..0000000
--- a/src/Eigen/src/misc/Solve.h
+++ /dev/null
@@ -1,76 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MISC_SOLVE_H
-#define EIGEN_MISC_SOLVE_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** \class solve_retval_base
- *
- */
-template<typename DecompositionType, typename Rhs>
-struct traits<solve_retval_base<DecompositionType, Rhs> >
-{
- typedef typename DecompositionType::MatrixType MatrixType;
- typedef Matrix<typename Rhs::Scalar,
- MatrixType::ColsAtCompileTime,
- Rhs::ColsAtCompileTime,
- Rhs::PlainObject::Options,
- MatrixType::MaxColsAtCompileTime,
- Rhs::MaxColsAtCompileTime> ReturnType;
-};
-
-template<typename _DecompositionType, typename Rhs> struct solve_retval_base
- : public ReturnByValue<solve_retval_base<_DecompositionType, Rhs> >
-{
- typedef typename remove_all<typename Rhs::Nested>::type RhsNestedCleaned;
- typedef _DecompositionType DecompositionType;
- typedef ReturnByValue<solve_retval_base> Base;
- typedef typename Base::Index Index;
-
- solve_retval_base(const DecompositionType& dec, const Rhs& rhs)
- : m_dec(dec), m_rhs(rhs)
- {}
-
- inline Index rows() const { return m_dec.cols(); }
- inline Index cols() const { return m_rhs.cols(); }
- inline const DecompositionType& dec() const { return m_dec; }
- inline const RhsNestedCleaned& rhs() const { return m_rhs; }
-
- template<typename Dest> inline void evalTo(Dest& dst) const
- {
- static_cast<const solve_retval<DecompositionType,Rhs>*>(this)->evalTo(dst);
- }
-
- protected:
- const DecompositionType& m_dec;
- typename Rhs::Nested m_rhs;
-};
-
-} // end namespace internal
-
-#define EIGEN_MAKE_SOLVE_HELPERS(DecompositionType,Rhs) \
- typedef typename DecompositionType::MatrixType MatrixType; \
- typedef typename MatrixType::Scalar Scalar; \
- typedef typename MatrixType::RealScalar RealScalar; \
- typedef typename MatrixType::Index Index; \
- typedef Eigen::internal::solve_retval_base<DecompositionType,Rhs> Base; \
- using Base::dec; \
- using Base::rhs; \
- using Base::rows; \
- using Base::cols; \
- solve_retval(const DecompositionType& dec, const Rhs& rhs) \
- : Base(dec, rhs) {}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MISC_SOLVE_H
diff --git a/src/Eigen/src/misc/SparseSolve.h b/src/Eigen/src/misc/SparseSolve.h
deleted file mode 100644
index 244bb8e..0000000
--- a/src/Eigen/src/misc/SparseSolve.h
+++ /dev/null
@@ -1,128 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSE_SOLVE_H
-#define EIGEN_SPARSE_SOLVE_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename _DecompositionType, typename Rhs> struct sparse_solve_retval_base;
-template<typename _DecompositionType, typename Rhs> struct sparse_solve_retval;
-
-template<typename DecompositionType, typename Rhs>
-struct traits<sparse_solve_retval_base<DecompositionType, Rhs> >
-{
- typedef typename DecompositionType::MatrixType MatrixType;
- typedef SparseMatrix<typename Rhs::Scalar, Rhs::Options, typename Rhs::Index> ReturnType;
-};
-
-template<typename _DecompositionType, typename Rhs> struct sparse_solve_retval_base
- : public ReturnByValue<sparse_solve_retval_base<_DecompositionType, Rhs> >
-{
- typedef typename remove_all<typename Rhs::Nested>::type RhsNestedCleaned;
- typedef _DecompositionType DecompositionType;
- typedef ReturnByValue<sparse_solve_retval_base> Base;
- typedef typename Base::Index Index;
-
- sparse_solve_retval_base(const DecompositionType& dec, const Rhs& rhs)
- : m_dec(dec), m_rhs(rhs)
- {}
-
- inline Index rows() const { return m_dec.cols(); }
- inline Index cols() const { return m_rhs.cols(); }
- inline const DecompositionType& dec() const { return m_dec; }
- inline const RhsNestedCleaned& rhs() const { return m_rhs; }
-
- template<typename Dest> inline void evalTo(Dest& dst) const
- {
- static_cast<const sparse_solve_retval<DecompositionType,Rhs>*>(this)->evalTo(dst);
- }
-
- protected:
- template<typename DestScalar, int DestOptions, typename DestIndex>
- inline void defaultEvalTo(SparseMatrix<DestScalar,DestOptions,DestIndex>& dst) const
- {
- // we process the sparse rhs per block of NbColsAtOnce columns temporarily stored into a dense matrix.
- static const int NbColsAtOnce = 4;
- int rhsCols = m_rhs.cols();
- int size = m_rhs.rows();
- Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmp(size,rhsCols);
- Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmpX(size,rhsCols);
- for(int k=0; k<rhsCols; k+=NbColsAtOnce)
- {
- int actualCols = std::min<int>(rhsCols-k, NbColsAtOnce);
- tmp.leftCols(actualCols) = m_rhs.middleCols(k,actualCols);
- tmpX.leftCols(actualCols) = m_dec.solve(tmp.leftCols(actualCols));
- dst.middleCols(k,actualCols) = tmpX.leftCols(actualCols).sparseView();
- }
- }
- const DecompositionType& m_dec;
- typename Rhs::Nested m_rhs;
-};
-
-#define EIGEN_MAKE_SPARSE_SOLVE_HELPERS(DecompositionType,Rhs) \
- typedef typename DecompositionType::MatrixType MatrixType; \
- typedef typename MatrixType::Scalar Scalar; \
- typedef typename MatrixType::RealScalar RealScalar; \
- typedef typename MatrixType::Index Index; \
- typedef Eigen::internal::sparse_solve_retval_base<DecompositionType,Rhs> Base; \
- using Base::dec; \
- using Base::rhs; \
- using Base::rows; \
- using Base::cols; \
- sparse_solve_retval(const DecompositionType& dec, const Rhs& rhs) \
- : Base(dec, rhs) {}
-
-
-
-template<typename DecompositionType, typename Rhs, typename Guess> struct solve_retval_with_guess;
-
-template<typename DecompositionType, typename Rhs, typename Guess>
-struct traits<solve_retval_with_guess<DecompositionType, Rhs, Guess> >
-{
- typedef typename DecompositionType::MatrixType MatrixType;
- typedef Matrix<typename Rhs::Scalar,
- MatrixType::ColsAtCompileTime,
- Rhs::ColsAtCompileTime,
- Rhs::PlainObject::Options,
- MatrixType::MaxColsAtCompileTime,
- Rhs::MaxColsAtCompileTime> ReturnType;
-};
-
-template<typename DecompositionType, typename Rhs, typename Guess> struct solve_retval_with_guess
- : public ReturnByValue<solve_retval_with_guess<DecompositionType, Rhs, Guess> >
-{
- typedef typename DecompositionType::Index Index;
-
- solve_retval_with_guess(const DecompositionType& dec, const Rhs& rhs, const Guess& guess)
- : m_dec(dec), m_rhs(rhs), m_guess(guess)
- {}
-
- inline Index rows() const { return m_dec.cols(); }
- inline Index cols() const { return m_rhs.cols(); }
-
- template<typename Dest> inline void evalTo(Dest& dst) const
- {
- dst = m_guess;
- m_dec._solveWithGuess(m_rhs,dst);
- }
-
- protected:
- const DecompositionType& m_dec;
- const typename Rhs::Nested m_rhs;
- const typename Guess::Nested m_guess;
-};
-
-} // namepsace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSE_SOLVE_H
diff --git a/src/Eigen/src/misc/blas.h b/src/Eigen/src/misc/blas.h
deleted file mode 100644
index 6fce99e..0000000
--- a/src/Eigen/src/misc/blas.h
+++ /dev/null
@@ -1,658 +0,0 @@
-#ifndef BLAS_H
-#define BLAS_H
-
-#ifdef __cplusplus
-extern "C"
-{
-#endif
-
-#define BLASFUNC(FUNC) FUNC##_
-
-#ifdef __WIN64__
-typedef long long BLASLONG;
-typedef unsigned long long BLASULONG;
-#else
-typedef long BLASLONG;
-typedef unsigned long BLASULONG;
-#endif
-
-int BLASFUNC(xerbla)(const char *, int *info, int);
-
-float BLASFUNC(sdot) (int *, float *, int *, float *, int *);
-float BLASFUNC(sdsdot)(int *, float *, float *, int *, float *, int *);
-
-double BLASFUNC(dsdot) (int *, float *, int *, float *, int *);
-double BLASFUNC(ddot) (int *, double *, int *, double *, int *);
-double BLASFUNC(qdot) (int *, double *, int *, double *, int *);
-
-int BLASFUNC(cdotuw) (int *, float *, int *, float *, int *, float*);
-int BLASFUNC(cdotcw) (int *, float *, int *, float *, int *, float*);
-int BLASFUNC(zdotuw) (int *, double *, int *, double *, int *, double*);
-int BLASFUNC(zdotcw) (int *, double *, int *, double *, int *, double*);
-
-int BLASFUNC(saxpy) (int *, float *, float *, int *, float *, int *);
-int BLASFUNC(daxpy) (int *, double *, double *, int *, double *, int *);
-int BLASFUNC(qaxpy) (int *, double *, double *, int *, double *, int *);
-int BLASFUNC(caxpy) (int *, float *, float *, int *, float *, int *);
-int BLASFUNC(zaxpy) (int *, double *, double *, int *, double *, int *);
-int BLASFUNC(xaxpy) (int *, double *, double *, int *, double *, int *);
-int BLASFUNC(caxpyc)(int *, float *, float *, int *, float *, int *);
-int BLASFUNC(zaxpyc)(int *, double *, double *, int *, double *, int *);
-int BLASFUNC(xaxpyc)(int *, double *, double *, int *, double *, int *);
-
-int BLASFUNC(scopy) (int *, float *, int *, float *, int *);
-int BLASFUNC(dcopy) (int *, double *, int *, double *, int *);
-int BLASFUNC(qcopy) (int *, double *, int *, double *, int *);
-int BLASFUNC(ccopy) (int *, float *, int *, float *, int *);
-int BLASFUNC(zcopy) (int *, double *, int *, double *, int *);
-int BLASFUNC(xcopy) (int *, double *, int *, double *, int *);
-
-int BLASFUNC(sswap) (int *, float *, int *, float *, int *);
-int BLASFUNC(dswap) (int *, double *, int *, double *, int *);
-int BLASFUNC(qswap) (int *, double *, int *, double *, int *);
-int BLASFUNC(cswap) (int *, float *, int *, float *, int *);
-int BLASFUNC(zswap) (int *, double *, int *, double *, int *);
-int BLASFUNC(xswap) (int *, double *, int *, double *, int *);
-
-float BLASFUNC(sasum) (int *, float *, int *);
-float BLASFUNC(scasum)(int *, float *, int *);
-double BLASFUNC(dasum) (int *, double *, int *);
-double BLASFUNC(qasum) (int *, double *, int *);
-double BLASFUNC(dzasum)(int *, double *, int *);
-double BLASFUNC(qxasum)(int *, double *, int *);
-
-int BLASFUNC(isamax)(int *, float *, int *);
-int BLASFUNC(idamax)(int *, double *, int *);
-int BLASFUNC(iqamax)(int *, double *, int *);
-int BLASFUNC(icamax)(int *, float *, int *);
-int BLASFUNC(izamax)(int *, double *, int *);
-int BLASFUNC(ixamax)(int *, double *, int *);
-
-int BLASFUNC(ismax) (int *, float *, int *);
-int BLASFUNC(idmax) (int *, double *, int *);
-int BLASFUNC(iqmax) (int *, double *, int *);
-int BLASFUNC(icmax) (int *, float *, int *);
-int BLASFUNC(izmax) (int *, double *, int *);
-int BLASFUNC(ixmax) (int *, double *, int *);
-
-int BLASFUNC(isamin)(int *, float *, int *);
-int BLASFUNC(idamin)(int *, double *, int *);
-int BLASFUNC(iqamin)(int *, double *, int *);
-int BLASFUNC(icamin)(int *, float *, int *);
-int BLASFUNC(izamin)(int *, double *, int *);
-int BLASFUNC(ixamin)(int *, double *, int *);
-
-int BLASFUNC(ismin)(int *, float *, int *);
-int BLASFUNC(idmin)(int *, double *, int *);
-int BLASFUNC(iqmin)(int *, double *, int *);
-int BLASFUNC(icmin)(int *, float *, int *);
-int BLASFUNC(izmin)(int *, double *, int *);
-int BLASFUNC(ixmin)(int *, double *, int *);
-
-float BLASFUNC(samax) (int *, float *, int *);
-double BLASFUNC(damax) (int *, double *, int *);
-double BLASFUNC(qamax) (int *, double *, int *);
-float BLASFUNC(scamax)(int *, float *, int *);
-double BLASFUNC(dzamax)(int *, double *, int *);
-double BLASFUNC(qxamax)(int *, double *, int *);
-
-float BLASFUNC(samin) (int *, float *, int *);
-double BLASFUNC(damin) (int *, double *, int *);
-double BLASFUNC(qamin) (int *, double *, int *);
-float BLASFUNC(scamin)(int *, float *, int *);
-double BLASFUNC(dzamin)(int *, double *, int *);
-double BLASFUNC(qxamin)(int *, double *, int *);
-
-float BLASFUNC(smax) (int *, float *, int *);
-double BLASFUNC(dmax) (int *, double *, int *);
-double BLASFUNC(qmax) (int *, double *, int *);
-float BLASFUNC(scmax) (int *, float *, int *);
-double BLASFUNC(dzmax) (int *, double *, int *);
-double BLASFUNC(qxmax) (int *, double *, int *);
-
-float BLASFUNC(smin) (int *, float *, int *);
-double BLASFUNC(dmin) (int *, double *, int *);
-double BLASFUNC(qmin) (int *, double *, int *);
-float BLASFUNC(scmin) (int *, float *, int *);
-double BLASFUNC(dzmin) (int *, double *, int *);
-double BLASFUNC(qxmin) (int *, double *, int *);
-
-int BLASFUNC(sscal) (int *, float *, float *, int *);
-int BLASFUNC(dscal) (int *, double *, double *, int *);
-int BLASFUNC(qscal) (int *, double *, double *, int *);
-int BLASFUNC(cscal) (int *, float *, float *, int *);
-int BLASFUNC(zscal) (int *, double *, double *, int *);
-int BLASFUNC(xscal) (int *, double *, double *, int *);
-int BLASFUNC(csscal)(int *, float *, float *, int *);
-int BLASFUNC(zdscal)(int *, double *, double *, int *);
-int BLASFUNC(xqscal)(int *, double *, double *, int *);
-
-float BLASFUNC(snrm2) (int *, float *, int *);
-float BLASFUNC(scnrm2)(int *, float *, int *);
-
-double BLASFUNC(dnrm2) (int *, double *, int *);
-double BLASFUNC(qnrm2) (int *, double *, int *);
-double BLASFUNC(dznrm2)(int *, double *, int *);
-double BLASFUNC(qxnrm2)(int *, double *, int *);
-
-int BLASFUNC(srot) (int *, float *, int *, float *, int *, float *, float *);
-int BLASFUNC(drot) (int *, double *, int *, double *, int *, double *, double *);
-int BLASFUNC(qrot) (int *, double *, int *, double *, int *, double *, double *);
-int BLASFUNC(csrot) (int *, float *, int *, float *, int *, float *, float *);
-int BLASFUNC(zdrot) (int *, double *, int *, double *, int *, double *, double *);
-int BLASFUNC(xqrot) (int *, double *, int *, double *, int *, double *, double *);
-
-int BLASFUNC(srotg) (float *, float *, float *, float *);
-int BLASFUNC(drotg) (double *, double *, double *, double *);
-int BLASFUNC(qrotg) (double *, double *, double *, double *);
-int BLASFUNC(crotg) (float *, float *, float *, float *);
-int BLASFUNC(zrotg) (double *, double *, double *, double *);
-int BLASFUNC(xrotg) (double *, double *, double *, double *);
-
-int BLASFUNC(srotmg)(float *, float *, float *, float *, float *);
-int BLASFUNC(drotmg)(double *, double *, double *, double *, double *);
-
-int BLASFUNC(srotm) (int *, float *, int *, float *, int *, float *);
-int BLASFUNC(drotm) (int *, double *, int *, double *, int *, double *);
-int BLASFUNC(qrotm) (int *, double *, int *, double *, int *, double *);
-
-/* Level 2 routines */
-
-int BLASFUNC(sger)(int *, int *, float *, float *, int *,
- float *, int *, float *, int *);
-int BLASFUNC(dger)(int *, int *, double *, double *, int *,
- double *, int *, double *, int *);
-int BLASFUNC(qger)(int *, int *, double *, double *, int *,
- double *, int *, double *, int *);
-int BLASFUNC(cgeru)(int *, int *, float *, float *, int *,
- float *, int *, float *, int *);
-int BLASFUNC(cgerc)(int *, int *, float *, float *, int *,
- float *, int *, float *, int *);
-int BLASFUNC(zgeru)(int *, int *, double *, double *, int *,
- double *, int *, double *, int *);
-int BLASFUNC(zgerc)(int *, int *, double *, double *, int *,
- double *, int *, double *, int *);
-int BLASFUNC(xgeru)(int *, int *, double *, double *, int *,
- double *, int *, double *, int *);
-int BLASFUNC(xgerc)(int *, int *, double *, double *, int *,
- double *, int *, double *, int *);
-
-int BLASFUNC(sgemv)(char *, int *, int *, float *, float *, int *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(dgemv)(char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(qgemv)(char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(cgemv)(char *, int *, int *, float *, float *, int *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(zgemv)(char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(xgemv)(char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-
-int BLASFUNC(strsv) (char *, char *, char *, int *, float *, int *,
- float *, int *);
-int BLASFUNC(dtrsv) (char *, char *, char *, int *, double *, int *,
- double *, int *);
-int BLASFUNC(qtrsv) (char *, char *, char *, int *, double *, int *,
- double *, int *);
-int BLASFUNC(ctrsv) (char *, char *, char *, int *, float *, int *,
- float *, int *);
-int BLASFUNC(ztrsv) (char *, char *, char *, int *, double *, int *,
- double *, int *);
-int BLASFUNC(xtrsv) (char *, char *, char *, int *, double *, int *,
- double *, int *);
-
-int BLASFUNC(stpsv) (char *, char *, char *, int *, float *, float *, int *);
-int BLASFUNC(dtpsv) (char *, char *, char *, int *, double *, double *, int *);
-int BLASFUNC(qtpsv) (char *, char *, char *, int *, double *, double *, int *);
-int BLASFUNC(ctpsv) (char *, char *, char *, int *, float *, float *, int *);
-int BLASFUNC(ztpsv) (char *, char *, char *, int *, double *, double *, int *);
-int BLASFUNC(xtpsv) (char *, char *, char *, int *, double *, double *, int *);
-
-int BLASFUNC(strmv) (char *, char *, char *, int *, float *, int *,
- float *, int *);
-int BLASFUNC(dtrmv) (char *, char *, char *, int *, double *, int *,
- double *, int *);
-int BLASFUNC(qtrmv) (char *, char *, char *, int *, double *, int *,
- double *, int *);
-int BLASFUNC(ctrmv) (char *, char *, char *, int *, float *, int *,
- float *, int *);
-int BLASFUNC(ztrmv) (char *, char *, char *, int *, double *, int *,
- double *, int *);
-int BLASFUNC(xtrmv) (char *, char *, char *, int *, double *, int *,
- double *, int *);
-
-int BLASFUNC(stpmv) (char *, char *, char *, int *, float *, float *, int *);
-int BLASFUNC(dtpmv) (char *, char *, char *, int *, double *, double *, int *);
-int BLASFUNC(qtpmv) (char *, char *, char *, int *, double *, double *, int *);
-int BLASFUNC(ctpmv) (char *, char *, char *, int *, float *, float *, int *);
-int BLASFUNC(ztpmv) (char *, char *, char *, int *, double *, double *, int *);
-int BLASFUNC(xtpmv) (char *, char *, char *, int *, double *, double *, int *);
-
-int BLASFUNC(stbmv) (char *, char *, char *, int *, int *, float *, int *, float *, int *);
-int BLASFUNC(dtbmv) (char *, char *, char *, int *, int *, double *, int *, double *, int *);
-int BLASFUNC(qtbmv) (char *, char *, char *, int *, int *, double *, int *, double *, int *);
-int BLASFUNC(ctbmv) (char *, char *, char *, int *, int *, float *, int *, float *, int *);
-int BLASFUNC(ztbmv) (char *, char *, char *, int *, int *, double *, int *, double *, int *);
-int BLASFUNC(xtbmv) (char *, char *, char *, int *, int *, double *, int *, double *, int *);
-
-int BLASFUNC(stbsv) (char *, char *, char *, int *, int *, float *, int *, float *, int *);
-int BLASFUNC(dtbsv) (char *, char *, char *, int *, int *, double *, int *, double *, int *);
-int BLASFUNC(qtbsv) (char *, char *, char *, int *, int *, double *, int *, double *, int *);
-int BLASFUNC(ctbsv) (char *, char *, char *, int *, int *, float *, int *, float *, int *);
-int BLASFUNC(ztbsv) (char *, char *, char *, int *, int *, double *, int *, double *, int *);
-int BLASFUNC(xtbsv) (char *, char *, char *, int *, int *, double *, int *, double *, int *);
-
-int BLASFUNC(ssymv) (char *, int *, float *, float *, int *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(dsymv) (char *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(qsymv) (char *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(csymv) (char *, int *, float *, float *, int *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(zsymv) (char *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(xsymv) (char *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-
-int BLASFUNC(sspmv) (char *, int *, float *, float *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(dspmv) (char *, int *, double *, double *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(qspmv) (char *, int *, double *, double *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(cspmv) (char *, int *, float *, float *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(zspmv) (char *, int *, double *, double *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(xspmv) (char *, int *, double *, double *,
- double *, int *, double *, double *, int *);
-
-int BLASFUNC(ssyr) (char *, int *, float *, float *, int *,
- float *, int *);
-int BLASFUNC(dsyr) (char *, int *, double *, double *, int *,
- double *, int *);
-int BLASFUNC(qsyr) (char *, int *, double *, double *, int *,
- double *, int *);
-int BLASFUNC(csyr) (char *, int *, float *, float *, int *,
- float *, int *);
-int BLASFUNC(zsyr) (char *, int *, double *, double *, int *,
- double *, int *);
-int BLASFUNC(xsyr) (char *, int *, double *, double *, int *,
- double *, int *);
-
-int BLASFUNC(ssyr2) (char *, int *, float *,
- float *, int *, float *, int *, float *, int *);
-int BLASFUNC(dsyr2) (char *, int *, double *,
- double *, int *, double *, int *, double *, int *);
-int BLASFUNC(qsyr2) (char *, int *, double *,
- double *, int *, double *, int *, double *, int *);
-int BLASFUNC(csyr2) (char *, int *, float *,
- float *, int *, float *, int *, float *, int *);
-int BLASFUNC(zsyr2) (char *, int *, double *,
- double *, int *, double *, int *, double *, int *);
-int BLASFUNC(xsyr2) (char *, int *, double *,
- double *, int *, double *, int *, double *, int *);
-
-int BLASFUNC(sspr) (char *, int *, float *, float *, int *,
- float *);
-int BLASFUNC(dspr) (char *, int *, double *, double *, int *,
- double *);
-int BLASFUNC(qspr) (char *, int *, double *, double *, int *,
- double *);
-int BLASFUNC(cspr) (char *, int *, float *, float *, int *,
- float *);
-int BLASFUNC(zspr) (char *, int *, double *, double *, int *,
- double *);
-int BLASFUNC(xspr) (char *, int *, double *, double *, int *,
- double *);
-
-int BLASFUNC(sspr2) (char *, int *, float *,
- float *, int *, float *, int *, float *);
-int BLASFUNC(dspr2) (char *, int *, double *,
- double *, int *, double *, int *, double *);
-int BLASFUNC(qspr2) (char *, int *, double *,
- double *, int *, double *, int *, double *);
-int BLASFUNC(cspr2) (char *, int *, float *,
- float *, int *, float *, int *, float *);
-int BLASFUNC(zspr2) (char *, int *, double *,
- double *, int *, double *, int *, double *);
-int BLASFUNC(xspr2) (char *, int *, double *,
- double *, int *, double *, int *, double *);
-
-int BLASFUNC(cher) (char *, int *, float *, float *, int *,
- float *, int *);
-int BLASFUNC(zher) (char *, int *, double *, double *, int *,
- double *, int *);
-int BLASFUNC(xher) (char *, int *, double *, double *, int *,
- double *, int *);
-
-int BLASFUNC(chpr) (char *, int *, float *, float *, int *, float *);
-int BLASFUNC(zhpr) (char *, int *, double *, double *, int *, double *);
-int BLASFUNC(xhpr) (char *, int *, double *, double *, int *, double *);
-
-int BLASFUNC(cher2) (char *, int *, float *,
- float *, int *, float *, int *, float *, int *);
-int BLASFUNC(zher2) (char *, int *, double *,
- double *, int *, double *, int *, double *, int *);
-int BLASFUNC(xher2) (char *, int *, double *,
- double *, int *, double *, int *, double *, int *);
-
-int BLASFUNC(chpr2) (char *, int *, float *,
- float *, int *, float *, int *, float *);
-int BLASFUNC(zhpr2) (char *, int *, double *,
- double *, int *, double *, int *, double *);
-int BLASFUNC(xhpr2) (char *, int *, double *,
- double *, int *, double *, int *, double *);
-
-int BLASFUNC(chemv) (char *, int *, float *, float *, int *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(zhemv) (char *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(xhemv) (char *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-
-int BLASFUNC(chpmv) (char *, int *, float *, float *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(zhpmv) (char *, int *, double *, double *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(xhpmv) (char *, int *, double *, double *,
- double *, int *, double *, double *, int *);
-
-int BLASFUNC(snorm)(char *, int *, int *, float *, int *);
-int BLASFUNC(dnorm)(char *, int *, int *, double *, int *);
-int BLASFUNC(cnorm)(char *, int *, int *, float *, int *);
-int BLASFUNC(znorm)(char *, int *, int *, double *, int *);
-
-int BLASFUNC(sgbmv)(char *, int *, int *, int *, int *, float *, float *, int *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(dgbmv)(char *, int *, int *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(qgbmv)(char *, int *, int *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(cgbmv)(char *, int *, int *, int *, int *, float *, float *, int *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(zgbmv)(char *, int *, int *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(xgbmv)(char *, int *, int *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-
-int BLASFUNC(ssbmv)(char *, int *, int *, float *, float *, int *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(dsbmv)(char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(qsbmv)(char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(csbmv)(char *, int *, int *, float *, float *, int *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(zsbmv)(char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(xsbmv)(char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-
-int BLASFUNC(chbmv)(char *, int *, int *, float *, float *, int *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(zhbmv)(char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(xhbmv)(char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-
-/* Level 3 routines */
-
-int BLASFUNC(sgemm)(char *, char *, int *, int *, int *, float *,
- float *, int *, float *, int *, float *, float *, int *);
-int BLASFUNC(dgemm)(char *, char *, int *, int *, int *, double *,
- double *, int *, double *, int *, double *, double *, int *);
-int BLASFUNC(qgemm)(char *, char *, int *, int *, int *, double *,
- double *, int *, double *, int *, double *, double *, int *);
-int BLASFUNC(cgemm)(char *, char *, int *, int *, int *, float *,
- float *, int *, float *, int *, float *, float *, int *);
-int BLASFUNC(zgemm)(char *, char *, int *, int *, int *, double *,
- double *, int *, double *, int *, double *, double *, int *);
-int BLASFUNC(xgemm)(char *, char *, int *, int *, int *, double *,
- double *, int *, double *, int *, double *, double *, int *);
-
-int BLASFUNC(cgemm3m)(char *, char *, int *, int *, int *, float *,
- float *, int *, float *, int *, float *, float *, int *);
-int BLASFUNC(zgemm3m)(char *, char *, int *, int *, int *, double *,
- double *, int *, double *, int *, double *, double *, int *);
-int BLASFUNC(xgemm3m)(char *, char *, int *, int *, int *, double *,
- double *, int *, double *, int *, double *, double *, int *);
-
-int BLASFUNC(sge2mm)(char *, char *, char *, int *, int *,
- float *, float *, int *, float *, int *,
- float *, float *, int *);
-int BLASFUNC(dge2mm)(char *, char *, char *, int *, int *,
- double *, double *, int *, double *, int *,
- double *, double *, int *);
-int BLASFUNC(cge2mm)(char *, char *, char *, int *, int *,
- float *, float *, int *, float *, int *,
- float *, float *, int *);
-int BLASFUNC(zge2mm)(char *, char *, char *, int *, int *,
- double *, double *, int *, double *, int *,
- double *, double *, int *);
-
-int BLASFUNC(strsm)(char *, char *, char *, char *, int *, int *,
- float *, float *, int *, float *, int *);
-int BLASFUNC(dtrsm)(char *, char *, char *, char *, int *, int *,
- double *, double *, int *, double *, int *);
-int BLASFUNC(qtrsm)(char *, char *, char *, char *, int *, int *,
- double *, double *, int *, double *, int *);
-int BLASFUNC(ctrsm)(char *, char *, char *, char *, int *, int *,
- float *, float *, int *, float *, int *);
-int BLASFUNC(ztrsm)(char *, char *, char *, char *, int *, int *,
- double *, double *, int *, double *, int *);
-int BLASFUNC(xtrsm)(char *, char *, char *, char *, int *, int *,
- double *, double *, int *, double *, int *);
-
-int BLASFUNC(strmm)(char *, char *, char *, char *, int *, int *,
- float *, float *, int *, float *, int *);
-int BLASFUNC(dtrmm)(char *, char *, char *, char *, int *, int *,
- double *, double *, int *, double *, int *);
-int BLASFUNC(qtrmm)(char *, char *, char *, char *, int *, int *,
- double *, double *, int *, double *, int *);
-int BLASFUNC(ctrmm)(char *, char *, char *, char *, int *, int *,
- float *, float *, int *, float *, int *);
-int BLASFUNC(ztrmm)(char *, char *, char *, char *, int *, int *,
- double *, double *, int *, double *, int *);
-int BLASFUNC(xtrmm)(char *, char *, char *, char *, int *, int *,
- double *, double *, int *, double *, int *);
-
-int BLASFUNC(ssymm)(char *, char *, int *, int *, float *, float *, int *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(dsymm)(char *, char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(qsymm)(char *, char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(csymm)(char *, char *, int *, int *, float *, float *, int *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(zsymm)(char *, char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(xsymm)(char *, char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-
-int BLASFUNC(csymm3m)(char *, char *, int *, int *, float *, float *, int *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(zsymm3m)(char *, char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(xsymm3m)(char *, char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-
-int BLASFUNC(ssyrk)(char *, char *, int *, int *, float *, float *, int *,
- float *, float *, int *);
-int BLASFUNC(dsyrk)(char *, char *, int *, int *, double *, double *, int *,
- double *, double *, int *);
-int BLASFUNC(qsyrk)(char *, char *, int *, int *, double *, double *, int *,
- double *, double *, int *);
-int BLASFUNC(csyrk)(char *, char *, int *, int *, float *, float *, int *,
- float *, float *, int *);
-int BLASFUNC(zsyrk)(char *, char *, int *, int *, double *, double *, int *,
- double *, double *, int *);
-int BLASFUNC(xsyrk)(char *, char *, int *, int *, double *, double *, int *,
- double *, double *, int *);
-
-int BLASFUNC(ssyr2k)(char *, char *, int *, int *, float *, float *, int *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(dsyr2k)(char *, char *, int *, int *, double *, double *, int *,
- double*, int *, double *, double *, int *);
-int BLASFUNC(qsyr2k)(char *, char *, int *, int *, double *, double *, int *,
- double*, int *, double *, double *, int *);
-int BLASFUNC(csyr2k)(char *, char *, int *, int *, float *, float *, int *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(zsyr2k)(char *, char *, int *, int *, double *, double *, int *,
- double*, int *, double *, double *, int *);
-int BLASFUNC(xsyr2k)(char *, char *, int *, int *, double *, double *, int *,
- double*, int *, double *, double *, int *);
-
-int BLASFUNC(chemm)(char *, char *, int *, int *, float *, float *, int *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(zhemm)(char *, char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(xhemm)(char *, char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-
-int BLASFUNC(chemm3m)(char *, char *, int *, int *, float *, float *, int *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(zhemm3m)(char *, char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-int BLASFUNC(xhemm3m)(char *, char *, int *, int *, double *, double *, int *,
- double *, int *, double *, double *, int *);
-
-int BLASFUNC(cherk)(char *, char *, int *, int *, float *, float *, int *,
- float *, float *, int *);
-int BLASFUNC(zherk)(char *, char *, int *, int *, double *, double *, int *,
- double *, double *, int *);
-int BLASFUNC(xherk)(char *, char *, int *, int *, double *, double *, int *,
- double *, double *, int *);
-
-int BLASFUNC(cher2k)(char *, char *, int *, int *, float *, float *, int *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(zher2k)(char *, char *, int *, int *, double *, double *, int *,
- double*, int *, double *, double *, int *);
-int BLASFUNC(xher2k)(char *, char *, int *, int *, double *, double *, int *,
- double*, int *, double *, double *, int *);
-int BLASFUNC(cher2m)(char *, char *, char *, int *, int *, float *, float *, int *,
- float *, int *, float *, float *, int *);
-int BLASFUNC(zher2m)(char *, char *, char *, int *, int *, double *, double *, int *,
- double*, int *, double *, double *, int *);
-int BLASFUNC(xher2m)(char *, char *, char *, int *, int *, double *, double *, int *,
- double*, int *, double *, double *, int *);
-
-int BLASFUNC(sgemt)(char *, int *, int *, float *, float *, int *,
- float *, int *);
-int BLASFUNC(dgemt)(char *, int *, int *, double *, double *, int *,
- double *, int *);
-int BLASFUNC(cgemt)(char *, int *, int *, float *, float *, int *,
- float *, int *);
-int BLASFUNC(zgemt)(char *, int *, int *, double *, double *, int *,
- double *, int *);
-
-int BLASFUNC(sgema)(char *, char *, int *, int *, float *,
- float *, int *, float *, float *, int *, float *, int *);
-int BLASFUNC(dgema)(char *, char *, int *, int *, double *,
- double *, int *, double*, double *, int *, double*, int *);
-int BLASFUNC(cgema)(char *, char *, int *, int *, float *,
- float *, int *, float *, float *, int *, float *, int *);
-int BLASFUNC(zgema)(char *, char *, int *, int *, double *,
- double *, int *, double*, double *, int *, double*, int *);
-
-int BLASFUNC(sgems)(char *, char *, int *, int *, float *,
- float *, int *, float *, float *, int *, float *, int *);
-int BLASFUNC(dgems)(char *, char *, int *, int *, double *,
- double *, int *, double*, double *, int *, double*, int *);
-int BLASFUNC(cgems)(char *, char *, int *, int *, float *,
- float *, int *, float *, float *, int *, float *, int *);
-int BLASFUNC(zgems)(char *, char *, int *, int *, double *,
- double *, int *, double*, double *, int *, double*, int *);
-
-int BLASFUNC(sgetf2)(int *, int *, float *, int *, int *, int *);
-int BLASFUNC(dgetf2)(int *, int *, double *, int *, int *, int *);
-int BLASFUNC(qgetf2)(int *, int *, double *, int *, int *, int *);
-int BLASFUNC(cgetf2)(int *, int *, float *, int *, int *, int *);
-int BLASFUNC(zgetf2)(int *, int *, double *, int *, int *, int *);
-int BLASFUNC(xgetf2)(int *, int *, double *, int *, int *, int *);
-
-int BLASFUNC(sgetrf)(int *, int *, float *, int *, int *, int *);
-int BLASFUNC(dgetrf)(int *, int *, double *, int *, int *, int *);
-int BLASFUNC(qgetrf)(int *, int *, double *, int *, int *, int *);
-int BLASFUNC(cgetrf)(int *, int *, float *, int *, int *, int *);
-int BLASFUNC(zgetrf)(int *, int *, double *, int *, int *, int *);
-int BLASFUNC(xgetrf)(int *, int *, double *, int *, int *, int *);
-
-int BLASFUNC(slaswp)(int *, float *, int *, int *, int *, int *, int *);
-int BLASFUNC(dlaswp)(int *, double *, int *, int *, int *, int *, int *);
-int BLASFUNC(qlaswp)(int *, double *, int *, int *, int *, int *, int *);
-int BLASFUNC(claswp)(int *, float *, int *, int *, int *, int *, int *);
-int BLASFUNC(zlaswp)(int *, double *, int *, int *, int *, int *, int *);
-int BLASFUNC(xlaswp)(int *, double *, int *, int *, int *, int *, int *);
-
-int BLASFUNC(sgetrs)(char *, int *, int *, float *, int *, int *, float *, int *, int *);
-int BLASFUNC(dgetrs)(char *, int *, int *, double *, int *, int *, double *, int *, int *);
-int BLASFUNC(qgetrs)(char *, int *, int *, double *, int *, int *, double *, int *, int *);
-int BLASFUNC(cgetrs)(char *, int *, int *, float *, int *, int *, float *, int *, int *);
-int BLASFUNC(zgetrs)(char *, int *, int *, double *, int *, int *, double *, int *, int *);
-int BLASFUNC(xgetrs)(char *, int *, int *, double *, int *, int *, double *, int *, int *);
-
-int BLASFUNC(sgesv)(int *, int *, float *, int *, int *, float *, int *, int *);
-int BLASFUNC(dgesv)(int *, int *, double *, int *, int *, double*, int *, int *);
-int BLASFUNC(qgesv)(int *, int *, double *, int *, int *, double*, int *, int *);
-int BLASFUNC(cgesv)(int *, int *, float *, int *, int *, float *, int *, int *);
-int BLASFUNC(zgesv)(int *, int *, double *, int *, int *, double*, int *, int *);
-int BLASFUNC(xgesv)(int *, int *, double *, int *, int *, double*, int *, int *);
-
-int BLASFUNC(spotf2)(char *, int *, float *, int *, int *);
-int BLASFUNC(dpotf2)(char *, int *, double *, int *, int *);
-int BLASFUNC(qpotf2)(char *, int *, double *, int *, int *);
-int BLASFUNC(cpotf2)(char *, int *, float *, int *, int *);
-int BLASFUNC(zpotf2)(char *, int *, double *, int *, int *);
-int BLASFUNC(xpotf2)(char *, int *, double *, int *, int *);
-
-int BLASFUNC(spotrf)(char *, int *, float *, int *, int *);
-int BLASFUNC(dpotrf)(char *, int *, double *, int *, int *);
-int BLASFUNC(qpotrf)(char *, int *, double *, int *, int *);
-int BLASFUNC(cpotrf)(char *, int *, float *, int *, int *);
-int BLASFUNC(zpotrf)(char *, int *, double *, int *, int *);
-int BLASFUNC(xpotrf)(char *, int *, double *, int *, int *);
-
-int BLASFUNC(slauu2)(char *, int *, float *, int *, int *);
-int BLASFUNC(dlauu2)(char *, int *, double *, int *, int *);
-int BLASFUNC(qlauu2)(char *, int *, double *, int *, int *);
-int BLASFUNC(clauu2)(char *, int *, float *, int *, int *);
-int BLASFUNC(zlauu2)(char *, int *, double *, int *, int *);
-int BLASFUNC(xlauu2)(char *, int *, double *, int *, int *);
-
-int BLASFUNC(slauum)(char *, int *, float *, int *, int *);
-int BLASFUNC(dlauum)(char *, int *, double *, int *, int *);
-int BLASFUNC(qlauum)(char *, int *, double *, int *, int *);
-int BLASFUNC(clauum)(char *, int *, float *, int *, int *);
-int BLASFUNC(zlauum)(char *, int *, double *, int *, int *);
-int BLASFUNC(xlauum)(char *, int *, double *, int *, int *);
-
-int BLASFUNC(strti2)(char *, char *, int *, float *, int *, int *);
-int BLASFUNC(dtrti2)(char *, char *, int *, double *, int *, int *);
-int BLASFUNC(qtrti2)(char *, char *, int *, double *, int *, int *);
-int BLASFUNC(ctrti2)(char *, char *, int *, float *, int *, int *);
-int BLASFUNC(ztrti2)(char *, char *, int *, double *, int *, int *);
-int BLASFUNC(xtrti2)(char *, char *, int *, double *, int *, int *);
-
-int BLASFUNC(strtri)(char *, char *, int *, float *, int *, int *);
-int BLASFUNC(dtrtri)(char *, char *, int *, double *, int *, int *);
-int BLASFUNC(qtrtri)(char *, char *, int *, double *, int *, int *);
-int BLASFUNC(ctrtri)(char *, char *, int *, float *, int *, int *);
-int BLASFUNC(ztrtri)(char *, char *, int *, double *, int *, int *);
-int BLASFUNC(xtrtri)(char *, char *, int *, double *, int *, int *);
-
-int BLASFUNC(spotri)(char *, int *, float *, int *, int *);
-int BLASFUNC(dpotri)(char *, int *, double *, int *, int *);
-int BLASFUNC(qpotri)(char *, int *, double *, int *, int *);
-int BLASFUNC(cpotri)(char *, int *, float *, int *, int *);
-int BLASFUNC(zpotri)(char *, int *, double *, int *, int *);
-int BLASFUNC(xpotri)(char *, int *, double *, int *, int *);
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
diff --git a/src/Eigen/src/plugins/ArrayCwiseBinaryOps.h b/src/Eigen/src/plugins/ArrayCwiseBinaryOps.h
deleted file mode 100644
index 5c8c476..0000000
--- a/src/Eigen/src/plugins/ArrayCwiseBinaryOps.h
+++ /dev/null
@@ -1,211 +0,0 @@
-/** \returns an expression of the coefficient wise product of \c *this and \a other
- *
- * \sa MatrixBase::cwiseProduct
- */
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE(Derived,OtherDerived)
-operator*(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
-{
- return EIGEN_CWISE_PRODUCT_RETURN_TYPE(Derived,OtherDerived)(derived(), other.derived());
-}
-
-/** \returns an expression of the coefficient wise quotient of \c *this and \a other
- *
- * \sa MatrixBase::cwiseQuotient
- */
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived>
-operator/(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
-{
- return CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
-}
-
-/** \returns an expression of the coefficient-wise min of \c *this and \a other
- *
- * Example: \include Cwise_min.cpp
- * Output: \verbinclude Cwise_min.out
- *
- * \sa max()
- */
-EIGEN_MAKE_CWISE_BINARY_OP(min,internal::scalar_min_op)
-
-/** \returns an expression of the coefficient-wise min of \c *this and scalar \a other
- *
- * \sa max()
- */
-EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived,
- const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, PlainObject> >
-#ifdef EIGEN_PARSED_BY_DOXYGEN
-min
-#else
-(min)
-#endif
-(const Scalar &other) const
-{
- return (min)(Derived::PlainObject::Constant(rows(), cols(), other));
-}
-
-/** \returns an expression of the coefficient-wise max of \c *this and \a other
- *
- * Example: \include Cwise_max.cpp
- * Output: \verbinclude Cwise_max.out
- *
- * \sa min()
- */
-EIGEN_MAKE_CWISE_BINARY_OP(max,internal::scalar_max_op)
-
-/** \returns an expression of the coefficient-wise max of \c *this and scalar \a other
- *
- * \sa min()
- */
-EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived,
- const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, PlainObject> >
-#ifdef EIGEN_PARSED_BY_DOXYGEN
-max
-#else
-(max)
-#endif
-(const Scalar &other) const
-{
- return (max)(Derived::PlainObject::Constant(rows(), cols(), other));
-}
-
-/** \returns an expression of the coefficient-wise \< operator of *this and \a other
- *
- * Example: \include Cwise_less.cpp
- * Output: \verbinclude Cwise_less.out
- *
- * \sa all(), any(), operator>(), operator<=()
- */
-EIGEN_MAKE_CWISE_BINARY_OP(operator<,std::less)
-
-/** \returns an expression of the coefficient-wise \<= operator of *this and \a other
- *
- * Example: \include Cwise_less_equal.cpp
- * Output: \verbinclude Cwise_less_equal.out
- *
- * \sa all(), any(), operator>=(), operator<()
- */
-EIGEN_MAKE_CWISE_BINARY_OP(operator<=,std::less_equal)
-
-/** \returns an expression of the coefficient-wise \> operator of *this and \a other
- *
- * Example: \include Cwise_greater.cpp
- * Output: \verbinclude Cwise_greater.out
- *
- * \sa all(), any(), operator>=(), operator<()
- */
-EIGEN_MAKE_CWISE_BINARY_OP(operator>,std::greater)
-
-/** \returns an expression of the coefficient-wise \>= operator of *this and \a other
- *
- * Example: \include Cwise_greater_equal.cpp
- * Output: \verbinclude Cwise_greater_equal.out
- *
- * \sa all(), any(), operator>(), operator<=()
- */
-EIGEN_MAKE_CWISE_BINARY_OP(operator>=,std::greater_equal)
-
-/** \returns an expression of the coefficient-wise == operator of *this and \a other
- *
- * \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
- * In order to check for equality between two vectors or matrices with floating-point coefficients, it is
- * generally a far better idea to use a fuzzy comparison as provided by isApprox() and
- * isMuchSmallerThan().
- *
- * Example: \include Cwise_equal_equal.cpp
- * Output: \verbinclude Cwise_equal_equal.out
- *
- * \sa all(), any(), isApprox(), isMuchSmallerThan()
- */
-EIGEN_MAKE_CWISE_BINARY_OP(operator==,std::equal_to)
-
-/** \returns an expression of the coefficient-wise != operator of *this and \a other
- *
- * \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
- * In order to check for equality between two vectors or matrices with floating-point coefficients, it is
- * generally a far better idea to use a fuzzy comparison as provided by isApprox() and
- * isMuchSmallerThan().
- *
- * Example: \include Cwise_not_equal.cpp
- * Output: \verbinclude Cwise_not_equal.out
- *
- * \sa all(), any(), isApprox(), isMuchSmallerThan()
- */
-EIGEN_MAKE_CWISE_BINARY_OP(operator!=,std::not_equal_to)
-
-// scalar addition
-
-/** \returns an expression of \c *this with each coeff incremented by the constant \a scalar
- *
- * Example: \include Cwise_plus.cpp
- * Output: \verbinclude Cwise_plus.out
- *
- * \sa operator+=(), operator-()
- */
-inline const CwiseUnaryOp<internal::scalar_add_op<Scalar>, const Derived>
-operator+(const Scalar& scalar) const
-{
- return CwiseUnaryOp<internal::scalar_add_op<Scalar>, const Derived>(derived(), internal::scalar_add_op<Scalar>(scalar));
-}
-
-friend inline const CwiseUnaryOp<internal::scalar_add_op<Scalar>, const Derived>
-operator+(const Scalar& scalar,const EIGEN_CURRENT_STORAGE_BASE_CLASS<Derived>& other)
-{
- return other + scalar;
-}
-
-/** \returns an expression of \c *this with each coeff decremented by the constant \a scalar
- *
- * Example: \include Cwise_minus.cpp
- * Output: \verbinclude Cwise_minus.out
- *
- * \sa operator+(), operator-=()
- */
-inline const CwiseUnaryOp<internal::scalar_add_op<Scalar>, const Derived>
-operator-(const Scalar& scalar) const
-{
- return *this + (-scalar);
-}
-
-friend inline const CwiseUnaryOp<internal::scalar_add_op<Scalar>, const CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const Derived> >
-operator-(const Scalar& scalar,const EIGEN_CURRENT_STORAGE_BASE_CLASS<Derived>& other)
-{
- return (-other) + scalar;
-}
-
-/** \returns an expression of the coefficient-wise && operator of *this and \a other
- *
- * \warning this operator is for expression of bool only.
- *
- * Example: \include Cwise_boolean_and.cpp
- * Output: \verbinclude Cwise_boolean_and.out
- *
- * \sa operator||(), select()
- */
-template<typename OtherDerived>
-inline const CwiseBinaryOp<internal::scalar_boolean_and_op, const Derived, const OtherDerived>
-operator&&(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
-{
- EIGEN_STATIC_ASSERT((internal::is_same<bool,Scalar>::value && internal::is_same<bool,typename OtherDerived::Scalar>::value),
- THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_OF_BOOL);
- return CwiseBinaryOp<internal::scalar_boolean_and_op, const Derived, const OtherDerived>(derived(),other.derived());
-}
-
-/** \returns an expression of the coefficient-wise || operator of *this and \a other
- *
- * \warning this operator is for expression of bool only.
- *
- * Example: \include Cwise_boolean_or.cpp
- * Output: \verbinclude Cwise_boolean_or.out
- *
- * \sa operator&&(), select()
- */
-template<typename OtherDerived>
-inline const CwiseBinaryOp<internal::scalar_boolean_or_op, const Derived, const OtherDerived>
-operator||(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
-{
- EIGEN_STATIC_ASSERT((internal::is_same<bool,Scalar>::value && internal::is_same<bool,typename OtherDerived::Scalar>::value),
- THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_OF_BOOL);
- return CwiseBinaryOp<internal::scalar_boolean_or_op, const Derived, const OtherDerived>(derived(),other.derived());
-}
diff --git a/src/Eigen/src/plugins/ArrayCwiseUnaryOps.h b/src/Eigen/src/plugins/ArrayCwiseUnaryOps.h
deleted file mode 100644
index a596367..0000000
--- a/src/Eigen/src/plugins/ArrayCwiseUnaryOps.h
+++ /dev/null
@@ -1,203 +0,0 @@
-
-
-/** \returns an expression of the coefficient-wise absolute value of \c *this
- *
- * Example: \include Cwise_abs.cpp
- * Output: \verbinclude Cwise_abs.out
- *
- * \sa abs2()
- */
-EIGEN_STRONG_INLINE const CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived>
-abs() const
-{
- return derived();
-}
-
-/** \returns an expression of the coefficient-wise squared absolute value of \c *this
- *
- * Example: \include Cwise_abs2.cpp
- * Output: \verbinclude Cwise_abs2.out
- *
- * \sa abs(), square()
- */
-EIGEN_STRONG_INLINE const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const Derived>
-abs2() const
-{
- return derived();
-}
-
-/** \returns an expression of the coefficient-wise exponential of *this.
- *
- * Example: \include Cwise_exp.cpp
- * Output: \verbinclude Cwise_exp.out
- *
- * \sa pow(), log(), sin(), cos()
- */
-inline const CwiseUnaryOp<internal::scalar_exp_op<Scalar>, const Derived>
-exp() const
-{
- return derived();
-}
-
-/** \returns an expression of the coefficient-wise logarithm of *this.
- *
- * Example: \include Cwise_log.cpp
- * Output: \verbinclude Cwise_log.out
- *
- * \sa exp()
- */
-inline const CwiseUnaryOp<internal::scalar_log_op<Scalar>, const Derived>
-log() const
-{
- return derived();
-}
-
-/** \returns an expression of the coefficient-wise square root of *this.
- *
- * Example: \include Cwise_sqrt.cpp
- * Output: \verbinclude Cwise_sqrt.out
- *
- * \sa pow(), square()
- */
-inline const CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived>
-sqrt() const
-{
- return derived();
-}
-
-/** \returns an expression of the coefficient-wise cosine of *this.
- *
- * Example: \include Cwise_cos.cpp
- * Output: \verbinclude Cwise_cos.out
- *
- * \sa sin(), acos()
- */
-inline const CwiseUnaryOp<internal::scalar_cos_op<Scalar>, const Derived>
-cos() const
-{
- return derived();
-}
-
-
-/** \returns an expression of the coefficient-wise sine of *this.
- *
- * Example: \include Cwise_sin.cpp
- * Output: \verbinclude Cwise_sin.out
- *
- * \sa cos(), asin()
- */
-inline const CwiseUnaryOp<internal::scalar_sin_op<Scalar>, const Derived>
-sin() const
-{
- return derived();
-}
-
-/** \returns an expression of the coefficient-wise arc cosine of *this.
- *
- * Example: \include Cwise_acos.cpp
- * Output: \verbinclude Cwise_acos.out
- *
- * \sa cos(), asin()
- */
-inline const CwiseUnaryOp<internal::scalar_acos_op<Scalar>, const Derived>
-acos() const
-{
- return derived();
-}
-
-/** \returns an expression of the coefficient-wise arc sine of *this.
- *
- * Example: \include Cwise_asin.cpp
- * Output: \verbinclude Cwise_asin.out
- *
- * \sa sin(), acos()
- */
-inline const CwiseUnaryOp<internal::scalar_asin_op<Scalar>, const Derived>
-asin() const
-{
- return derived();
-}
-
-/** \returns an expression of the coefficient-wise tan of *this.
- *
- * Example: \include Cwise_tan.cpp
- * Output: \verbinclude Cwise_tan.out
- *
- * \sa cos(), sin()
- */
-inline const CwiseUnaryOp<internal::scalar_tan_op<Scalar>, Derived>
-tan() const
-{
- return derived();
-}
-
-
-/** \returns an expression of the coefficient-wise power of *this to the given exponent.
- *
- * Example: \include Cwise_pow.cpp
- * Output: \verbinclude Cwise_pow.out
- *
- * \sa exp(), log()
- */
-inline const CwiseUnaryOp<internal::scalar_pow_op<Scalar>, const Derived>
-pow(const Scalar& exponent) const
-{
- return CwiseUnaryOp<internal::scalar_pow_op<Scalar>, const Derived>
- (derived(), internal::scalar_pow_op<Scalar>(exponent));
-}
-
-
-/** \returns an expression of the coefficient-wise inverse of *this.
- *
- * Example: \include Cwise_inverse.cpp
- * Output: \verbinclude Cwise_inverse.out
- *
- * \sa operator/(), operator*()
- */
-inline const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived>
-inverse() const
-{
- return derived();
-}
-
-/** \returns an expression of the coefficient-wise square of *this.
- *
- * Example: \include Cwise_square.cpp
- * Output: \verbinclude Cwise_square.out
- *
- * \sa operator/(), operator*(), abs2()
- */
-inline const CwiseUnaryOp<internal::scalar_square_op<Scalar>, const Derived>
-square() const
-{
- return derived();
-}
-
-/** \returns an expression of the coefficient-wise cube of *this.
- *
- * Example: \include Cwise_cube.cpp
- * Output: \verbinclude Cwise_cube.out
- *
- * \sa square(), pow()
- */
-inline const CwiseUnaryOp<internal::scalar_cube_op<Scalar>, const Derived>
-cube() const
-{
- return derived();
-}
-
-#define EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(METHOD_NAME,FUNCTOR) \
- inline const CwiseUnaryOp<std::binder2nd<FUNCTOR<Scalar> >, const Derived> \
- METHOD_NAME(const Scalar& s) const { \
- return CwiseUnaryOp<std::binder2nd<FUNCTOR<Scalar> >, const Derived> \
- (derived(), std::bind2nd(FUNCTOR<Scalar>(), s)); \
- }
-
-EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(operator==, std::equal_to)
-EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(operator!=, std::not_equal_to)
-EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(operator<, std::less)
-EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(operator<=, std::less_equal)
-EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(operator>, std::greater)
-EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(operator>=, std::greater_equal)
-
-
diff --git a/src/Eigen/src/plugins/BlockMethods.h b/src/Eigen/src/plugins/BlockMethods.h
deleted file mode 100644
index 2788251..0000000
--- a/src/Eigen/src/plugins/BlockMethods.h
+++ /dev/null
@@ -1,935 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-
-/** \internal expression type of a column */
-typedef Block<Derived, internal::traits<Derived>::RowsAtCompileTime, 1, !IsRowMajor> ColXpr;
-typedef const Block<const Derived, internal::traits<Derived>::RowsAtCompileTime, 1, !IsRowMajor> ConstColXpr;
-/** \internal expression type of a row */
-typedef Block<Derived, 1, internal::traits<Derived>::ColsAtCompileTime, IsRowMajor> RowXpr;
-typedef const Block<const Derived, 1, internal::traits<Derived>::ColsAtCompileTime, IsRowMajor> ConstRowXpr;
-/** \internal expression type of a block of whole columns */
-typedef Block<Derived, internal::traits<Derived>::RowsAtCompileTime, Dynamic, !IsRowMajor> ColsBlockXpr;
-typedef const Block<const Derived, internal::traits<Derived>::RowsAtCompileTime, Dynamic, !IsRowMajor> ConstColsBlockXpr;
-/** \internal expression type of a block of whole rows */
-typedef Block<Derived, Dynamic, internal::traits<Derived>::ColsAtCompileTime, IsRowMajor> RowsBlockXpr;
-typedef const Block<const Derived, Dynamic, internal::traits<Derived>::ColsAtCompileTime, IsRowMajor> ConstRowsBlockXpr;
-/** \internal expression type of a block of whole columns */
-template<int N> struct NColsBlockXpr { typedef Block<Derived, internal::traits<Derived>::RowsAtCompileTime, N, !IsRowMajor> Type; };
-template<int N> struct ConstNColsBlockXpr { typedef const Block<const Derived, internal::traits<Derived>::RowsAtCompileTime, N, !IsRowMajor> Type; };
-/** \internal expression type of a block of whole rows */
-template<int N> struct NRowsBlockXpr { typedef Block<Derived, N, internal::traits<Derived>::ColsAtCompileTime, IsRowMajor> Type; };
-template<int N> struct ConstNRowsBlockXpr { typedef const Block<const Derived, N, internal::traits<Derived>::ColsAtCompileTime, IsRowMajor> Type; };
-
-typedef VectorBlock<Derived> SegmentReturnType;
-typedef const VectorBlock<const Derived> ConstSegmentReturnType;
-template<int Size> struct FixedSegmentReturnType { typedef VectorBlock<Derived, Size> Type; };
-template<int Size> struct ConstFixedSegmentReturnType { typedef const VectorBlock<const Derived, Size> Type; };
-
-#endif // not EIGEN_PARSED_BY_DOXYGEN
-
-/** \returns a dynamic-size expression of a block in *this.
- *
- * \param startRow the first row in the block
- * \param startCol the first column in the block
- * \param blockRows the number of rows in the block
- * \param blockCols the number of columns in the block
- *
- * Example: \include MatrixBase_block_int_int_int_int.cpp
- * Output: \verbinclude MatrixBase_block_int_int_int_int.out
- *
- * \note Even though the returned expression has dynamic size, in the case
- * when it is applied to a fixed-size matrix, it inherits a fixed maximal size,
- * which means that evaluating it does not cause a dynamic memory allocation.
- *
- * \sa class Block, block(Index,Index)
- */
-inline Block<Derived> block(Index startRow, Index startCol, Index blockRows, Index blockCols)
-{
- return Block<Derived>(derived(), startRow, startCol, blockRows, blockCols);
-}
-
-/** This is the const version of block(Index,Index,Index,Index). */
-inline const Block<const Derived> block(Index startRow, Index startCol, Index blockRows, Index blockCols) const
-{
- return Block<const Derived>(derived(), startRow, startCol, blockRows, blockCols);
-}
-
-
-
-
-/** \returns a dynamic-size expression of a top-right corner of *this.
- *
- * \param cRows the number of rows in the corner
- * \param cCols the number of columns in the corner
- *
- * Example: \include MatrixBase_topRightCorner_int_int.cpp
- * Output: \verbinclude MatrixBase_topRightCorner_int_int.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-inline Block<Derived> topRightCorner(Index cRows, Index cCols)
-{
- return Block<Derived>(derived(), 0, cols() - cCols, cRows, cCols);
-}
-
-/** This is the const version of topRightCorner(Index, Index).*/
-inline const Block<const Derived> topRightCorner(Index cRows, Index cCols) const
-{
- return Block<const Derived>(derived(), 0, cols() - cCols, cRows, cCols);
-}
-
-/** \returns an expression of a fixed-size top-right corner of *this.
- *
- * \tparam CRows the number of rows in the corner
- * \tparam CCols the number of columns in the corner
- *
- * Example: \include MatrixBase_template_int_int_topRightCorner.cpp
- * Output: \verbinclude MatrixBase_template_int_int_topRightCorner.out
- *
- * \sa class Block, block<int,int>(Index,Index)
- */
-template<int CRows, int CCols>
-inline Block<Derived, CRows, CCols> topRightCorner()
-{
- return Block<Derived, CRows, CCols>(derived(), 0, cols() - CCols);
-}
-
-/** This is the const version of topRightCorner<int, int>().*/
-template<int CRows, int CCols>
-inline const Block<const Derived, CRows, CCols> topRightCorner() const
-{
- return Block<const Derived, CRows, CCols>(derived(), 0, cols() - CCols);
-}
-
-/** \returns an expression of a top-right corner of *this.
- *
- * \tparam CRows number of rows in corner as specified at compile-time
- * \tparam CCols number of columns in corner as specified at compile-time
- * \param cRows number of rows in corner as specified at run-time
- * \param cCols number of columns in corner as specified at run-time
- *
- * This function is mainly useful for corners where the number of rows is specified at compile-time
- * and the number of columns is specified at run-time, or vice versa. The compile-time and run-time
- * information should not contradict. In other words, \a cRows should equal \a CRows unless
- * \a CRows is \a Dynamic, and the same for the number of columns.
- *
- * Example: \include MatrixBase_template_int_int_topRightCorner_int_int.cpp
- * Output: \verbinclude MatrixBase_template_int_int_topRightCorner_int_int.out
- *
- * \sa class Block
- */
-template<int CRows, int CCols>
-inline Block<Derived, CRows, CCols> topRightCorner(Index cRows, Index cCols)
-{
- return Block<Derived, CRows, CCols>(derived(), 0, cols() - cCols, cRows, cCols);
-}
-
-/** This is the const version of topRightCorner<int, int>(Index, Index).*/
-template<int CRows, int CCols>
-inline const Block<const Derived, CRows, CCols> topRightCorner(Index cRows, Index cCols) const
-{
- return Block<const Derived, CRows, CCols>(derived(), 0, cols() - cCols, cRows, cCols);
-}
-
-
-
-/** \returns a dynamic-size expression of a top-left corner of *this.
- *
- * \param cRows the number of rows in the corner
- * \param cCols the number of columns in the corner
- *
- * Example: \include MatrixBase_topLeftCorner_int_int.cpp
- * Output: \verbinclude MatrixBase_topLeftCorner_int_int.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-inline Block<Derived> topLeftCorner(Index cRows, Index cCols)
-{
- return Block<Derived>(derived(), 0, 0, cRows, cCols);
-}
-
-/** This is the const version of topLeftCorner(Index, Index).*/
-inline const Block<const Derived> topLeftCorner(Index cRows, Index cCols) const
-{
- return Block<const Derived>(derived(), 0, 0, cRows, cCols);
-}
-
-/** \returns an expression of a fixed-size top-left corner of *this.
- *
- * The template parameters CRows and CCols are the number of rows and columns in the corner.
- *
- * Example: \include MatrixBase_template_int_int_topLeftCorner.cpp
- * Output: \verbinclude MatrixBase_template_int_int_topLeftCorner.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-template<int CRows, int CCols>
-inline Block<Derived, CRows, CCols> topLeftCorner()
-{
- return Block<Derived, CRows, CCols>(derived(), 0, 0);
-}
-
-/** This is the const version of topLeftCorner<int, int>().*/
-template<int CRows, int CCols>
-inline const Block<const Derived, CRows, CCols> topLeftCorner() const
-{
- return Block<const Derived, CRows, CCols>(derived(), 0, 0);
-}
-
-/** \returns an expression of a top-left corner of *this.
- *
- * \tparam CRows number of rows in corner as specified at compile-time
- * \tparam CCols number of columns in corner as specified at compile-time
- * \param cRows number of rows in corner as specified at run-time
- * \param cCols number of columns in corner as specified at run-time
- *
- * This function is mainly useful for corners where the number of rows is specified at compile-time
- * and the number of columns is specified at run-time, or vice versa. The compile-time and run-time
- * information should not contradict. In other words, \a cRows should equal \a CRows unless
- * \a CRows is \a Dynamic, and the same for the number of columns.
- *
- * Example: \include MatrixBase_template_int_int_topLeftCorner_int_int.cpp
- * Output: \verbinclude MatrixBase_template_int_int_topLeftCorner_int_int.out
- *
- * \sa class Block
- */
-template<int CRows, int CCols>
-inline Block<Derived, CRows, CCols> topLeftCorner(Index cRows, Index cCols)
-{
- return Block<Derived, CRows, CCols>(derived(), 0, 0, cRows, cCols);
-}
-
-/** This is the const version of topLeftCorner<int, int>(Index, Index).*/
-template<int CRows, int CCols>
-inline const Block<const Derived, CRows, CCols> topLeftCorner(Index cRows, Index cCols) const
-{
- return Block<const Derived, CRows, CCols>(derived(), 0, 0, cRows, cCols);
-}
-
-
-
-/** \returns a dynamic-size expression of a bottom-right corner of *this.
- *
- * \param cRows the number of rows in the corner
- * \param cCols the number of columns in the corner
- *
- * Example: \include MatrixBase_bottomRightCorner_int_int.cpp
- * Output: \verbinclude MatrixBase_bottomRightCorner_int_int.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-inline Block<Derived> bottomRightCorner(Index cRows, Index cCols)
-{
- return Block<Derived>(derived(), rows() - cRows, cols() - cCols, cRows, cCols);
-}
-
-/** This is the const version of bottomRightCorner(Index, Index).*/
-inline const Block<const Derived> bottomRightCorner(Index cRows, Index cCols) const
-{
- return Block<const Derived>(derived(), rows() - cRows, cols() - cCols, cRows, cCols);
-}
-
-/** \returns an expression of a fixed-size bottom-right corner of *this.
- *
- * The template parameters CRows and CCols are the number of rows and columns in the corner.
- *
- * Example: \include MatrixBase_template_int_int_bottomRightCorner.cpp
- * Output: \verbinclude MatrixBase_template_int_int_bottomRightCorner.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-template<int CRows, int CCols>
-inline Block<Derived, CRows, CCols> bottomRightCorner()
-{
- return Block<Derived, CRows, CCols>(derived(), rows() - CRows, cols() - CCols);
-}
-
-/** This is the const version of bottomRightCorner<int, int>().*/
-template<int CRows, int CCols>
-inline const Block<const Derived, CRows, CCols> bottomRightCorner() const
-{
- return Block<const Derived, CRows, CCols>(derived(), rows() - CRows, cols() - CCols);
-}
-
-/** \returns an expression of a bottom-right corner of *this.
- *
- * \tparam CRows number of rows in corner as specified at compile-time
- * \tparam CCols number of columns in corner as specified at compile-time
- * \param cRows number of rows in corner as specified at run-time
- * \param cCols number of columns in corner as specified at run-time
- *
- * This function is mainly useful for corners where the number of rows is specified at compile-time
- * and the number of columns is specified at run-time, or vice versa. The compile-time and run-time
- * information should not contradict. In other words, \a cRows should equal \a CRows unless
- * \a CRows is \a Dynamic, and the same for the number of columns.
- *
- * Example: \include MatrixBase_template_int_int_bottomRightCorner_int_int.cpp
- * Output: \verbinclude MatrixBase_template_int_int_bottomRightCorner_int_int.out
- *
- * \sa class Block
- */
-template<int CRows, int CCols>
-inline Block<Derived, CRows, CCols> bottomRightCorner(Index cRows, Index cCols)
-{
- return Block<Derived, CRows, CCols>(derived(), rows() - cRows, cols() - cCols, cRows, cCols);
-}
-
-/** This is the const version of bottomRightCorner<int, int>(Index, Index).*/
-template<int CRows, int CCols>
-inline const Block<const Derived, CRows, CCols> bottomRightCorner(Index cRows, Index cCols) const
-{
- return Block<const Derived, CRows, CCols>(derived(), rows() - cRows, cols() - cCols, cRows, cCols);
-}
-
-
-
-/** \returns a dynamic-size expression of a bottom-left corner of *this.
- *
- * \param cRows the number of rows in the corner
- * \param cCols the number of columns in the corner
- *
- * Example: \include MatrixBase_bottomLeftCorner_int_int.cpp
- * Output: \verbinclude MatrixBase_bottomLeftCorner_int_int.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-inline Block<Derived> bottomLeftCorner(Index cRows, Index cCols)
-{
- return Block<Derived>(derived(), rows() - cRows, 0, cRows, cCols);
-}
-
-/** This is the const version of bottomLeftCorner(Index, Index).*/
-inline const Block<const Derived> bottomLeftCorner(Index cRows, Index cCols) const
-{
- return Block<const Derived>(derived(), rows() - cRows, 0, cRows, cCols);
-}
-
-/** \returns an expression of a fixed-size bottom-left corner of *this.
- *
- * The template parameters CRows and CCols are the number of rows and columns in the corner.
- *
- * Example: \include MatrixBase_template_int_int_bottomLeftCorner.cpp
- * Output: \verbinclude MatrixBase_template_int_int_bottomLeftCorner.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-template<int CRows, int CCols>
-inline Block<Derived, CRows, CCols> bottomLeftCorner()
-{
- return Block<Derived, CRows, CCols>(derived(), rows() - CRows, 0);
-}
-
-/** This is the const version of bottomLeftCorner<int, int>().*/
-template<int CRows, int CCols>
-inline const Block<const Derived, CRows, CCols> bottomLeftCorner() const
-{
- return Block<const Derived, CRows, CCols>(derived(), rows() - CRows, 0);
-}
-
-/** \returns an expression of a bottom-left corner of *this.
- *
- * \tparam CRows number of rows in corner as specified at compile-time
- * \tparam CCols number of columns in corner as specified at compile-time
- * \param cRows number of rows in corner as specified at run-time
- * \param cCols number of columns in corner as specified at run-time
- *
- * This function is mainly useful for corners where the number of rows is specified at compile-time
- * and the number of columns is specified at run-time, or vice versa. The compile-time and run-time
- * information should not contradict. In other words, \a cRows should equal \a CRows unless
- * \a CRows is \a Dynamic, and the same for the number of columns.
- *
- * Example: \include MatrixBase_template_int_int_bottomLeftCorner_int_int.cpp
- * Output: \verbinclude MatrixBase_template_int_int_bottomLeftCorner_int_int.out
- *
- * \sa class Block
- */
-template<int CRows, int CCols>
-inline Block<Derived, CRows, CCols> bottomLeftCorner(Index cRows, Index cCols)
-{
- return Block<Derived, CRows, CCols>(derived(), rows() - cRows, 0, cRows, cCols);
-}
-
-/** This is the const version of bottomLeftCorner<int, int>(Index, Index).*/
-template<int CRows, int CCols>
-inline const Block<const Derived, CRows, CCols> bottomLeftCorner(Index cRows, Index cCols) const
-{
- return Block<const Derived, CRows, CCols>(derived(), rows() - cRows, 0, cRows, cCols);
-}
-
-
-
-/** \returns a block consisting of the top rows of *this.
- *
- * \param n the number of rows in the block
- *
- * Example: \include MatrixBase_topRows_int.cpp
- * Output: \verbinclude MatrixBase_topRows_int.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-inline RowsBlockXpr topRows(Index n)
-{
- return RowsBlockXpr(derived(), 0, 0, n, cols());
-}
-
-/** This is the const version of topRows(Index).*/
-inline ConstRowsBlockXpr topRows(Index n) const
-{
- return ConstRowsBlockXpr(derived(), 0, 0, n, cols());
-}
-
-/** \returns a block consisting of the top rows of *this.
- *
- * \tparam N the number of rows in the block as specified at compile-time
- * \param n the number of rows in the block as specified at run-time
- *
- * The compile-time and run-time information should not contradict. In other words,
- * \a n should equal \a N unless \a N is \a Dynamic.
- *
- * Example: \include MatrixBase_template_int_topRows.cpp
- * Output: \verbinclude MatrixBase_template_int_topRows.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-template<int N>
-inline typename NRowsBlockXpr<N>::Type topRows(Index n = N)
-{
- return typename NRowsBlockXpr<N>::Type(derived(), 0, 0, n, cols());
-}
-
-/** This is the const version of topRows<int>().*/
-template<int N>
-inline typename ConstNRowsBlockXpr<N>::Type topRows(Index n = N) const
-{
- return typename ConstNRowsBlockXpr<N>::Type(derived(), 0, 0, n, cols());
-}
-
-
-
-/** \returns a block consisting of the bottom rows of *this.
- *
- * \param n the number of rows in the block
- *
- * Example: \include MatrixBase_bottomRows_int.cpp
- * Output: \verbinclude MatrixBase_bottomRows_int.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-inline RowsBlockXpr bottomRows(Index n)
-{
- return RowsBlockXpr(derived(), rows() - n, 0, n, cols());
-}
-
-/** This is the const version of bottomRows(Index).*/
-inline ConstRowsBlockXpr bottomRows(Index n) const
-{
- return ConstRowsBlockXpr(derived(), rows() - n, 0, n, cols());
-}
-
-/** \returns a block consisting of the bottom rows of *this.
- *
- * \tparam N the number of rows in the block as specified at compile-time
- * \param n the number of rows in the block as specified at run-time
- *
- * The compile-time and run-time information should not contradict. In other words,
- * \a n should equal \a N unless \a N is \a Dynamic.
- *
- * Example: \include MatrixBase_template_int_bottomRows.cpp
- * Output: \verbinclude MatrixBase_template_int_bottomRows.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-template<int N>
-inline typename NRowsBlockXpr<N>::Type bottomRows(Index n = N)
-{
- return typename NRowsBlockXpr<N>::Type(derived(), rows() - n, 0, n, cols());
-}
-
-/** This is the const version of bottomRows<int>().*/
-template<int N>
-inline typename ConstNRowsBlockXpr<N>::Type bottomRows(Index n = N) const
-{
- return typename ConstNRowsBlockXpr<N>::Type(derived(), rows() - n, 0, n, cols());
-}
-
-
-
-/** \returns a block consisting of a range of rows of *this.
- *
- * \param startRow the index of the first row in the block
- * \param n the number of rows in the block
- *
- * Example: \include DenseBase_middleRows_int.cpp
- * Output: \verbinclude DenseBase_middleRows_int.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-inline RowsBlockXpr middleRows(Index startRow, Index n)
-{
- return RowsBlockXpr(derived(), startRow, 0, n, cols());
-}
-
-/** This is the const version of middleRows(Index,Index).*/
-inline ConstRowsBlockXpr middleRows(Index startRow, Index n) const
-{
- return ConstRowsBlockXpr(derived(), startRow, 0, n, cols());
-}
-
-/** \returns a block consisting of a range of rows of *this.
- *
- * \tparam N the number of rows in the block as specified at compile-time
- * \param startRow the index of the first row in the block
- * \param n the number of rows in the block as specified at run-time
- *
- * The compile-time and run-time information should not contradict. In other words,
- * \a n should equal \a N unless \a N is \a Dynamic.
- *
- * Example: \include DenseBase_template_int_middleRows.cpp
- * Output: \verbinclude DenseBase_template_int_middleRows.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-template<int N>
-inline typename NRowsBlockXpr<N>::Type middleRows(Index startRow, Index n = N)
-{
- return typename NRowsBlockXpr<N>::Type(derived(), startRow, 0, n, cols());
-}
-
-/** This is the const version of middleRows<int>().*/
-template<int N>
-inline typename ConstNRowsBlockXpr<N>::Type middleRows(Index startRow, Index n = N) const
-{
- return typename ConstNRowsBlockXpr<N>::Type(derived(), startRow, 0, n, cols());
-}
-
-
-
-/** \returns a block consisting of the left columns of *this.
- *
- * \param n the number of columns in the block
- *
- * Example: \include MatrixBase_leftCols_int.cpp
- * Output: \verbinclude MatrixBase_leftCols_int.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-inline ColsBlockXpr leftCols(Index n)
-{
- return ColsBlockXpr(derived(), 0, 0, rows(), n);
-}
-
-/** This is the const version of leftCols(Index).*/
-inline ConstColsBlockXpr leftCols(Index n) const
-{
- return ConstColsBlockXpr(derived(), 0, 0, rows(), n);
-}
-
-/** \returns a block consisting of the left columns of *this.
- *
- * \tparam N the number of columns in the block as specified at compile-time
- * \param n the number of columns in the block as specified at run-time
- *
- * The compile-time and run-time information should not contradict. In other words,
- * \a n should equal \a N unless \a N is \a Dynamic.
- *
- * Example: \include MatrixBase_template_int_leftCols.cpp
- * Output: \verbinclude MatrixBase_template_int_leftCols.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-template<int N>
-inline typename NColsBlockXpr<N>::Type leftCols(Index n = N)
-{
- return typename NColsBlockXpr<N>::Type(derived(), 0, 0, rows(), n);
-}
-
-/** This is the const version of leftCols<int>().*/
-template<int N>
-inline typename ConstNColsBlockXpr<N>::Type leftCols(Index n = N) const
-{
- return typename ConstNColsBlockXpr<N>::Type(derived(), 0, 0, rows(), n);
-}
-
-
-
-/** \returns a block consisting of the right columns of *this.
- *
- * \param n the number of columns in the block
- *
- * Example: \include MatrixBase_rightCols_int.cpp
- * Output: \verbinclude MatrixBase_rightCols_int.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-inline ColsBlockXpr rightCols(Index n)
-{
- return ColsBlockXpr(derived(), 0, cols() - n, rows(), n);
-}
-
-/** This is the const version of rightCols(Index).*/
-inline ConstColsBlockXpr rightCols(Index n) const
-{
- return ConstColsBlockXpr(derived(), 0, cols() - n, rows(), n);
-}
-
-/** \returns a block consisting of the right columns of *this.
- *
- * \tparam N the number of columns in the block as specified at compile-time
- * \param n the number of columns in the block as specified at run-time
- *
- * The compile-time and run-time information should not contradict. In other words,
- * \a n should equal \a N unless \a N is \a Dynamic.
- *
- * Example: \include MatrixBase_template_int_rightCols.cpp
- * Output: \verbinclude MatrixBase_template_int_rightCols.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-template<int N>
-inline typename NColsBlockXpr<N>::Type rightCols(Index n = N)
-{
- return typename NColsBlockXpr<N>::Type(derived(), 0, cols() - n, rows(), n);
-}
-
-/** This is the const version of rightCols<int>().*/
-template<int N>
-inline typename ConstNColsBlockXpr<N>::Type rightCols(Index n = N) const
-{
- return typename ConstNColsBlockXpr<N>::Type(derived(), 0, cols() - n, rows(), n);
-}
-
-
-
-/** \returns a block consisting of a range of columns of *this.
- *
- * \param startCol the index of the first column in the block
- * \param numCols the number of columns in the block
- *
- * Example: \include DenseBase_middleCols_int.cpp
- * Output: \verbinclude DenseBase_middleCols_int.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-inline ColsBlockXpr middleCols(Index startCol, Index numCols)
-{
- return ColsBlockXpr(derived(), 0, startCol, rows(), numCols);
-}
-
-/** This is the const version of middleCols(Index,Index).*/
-inline ConstColsBlockXpr middleCols(Index startCol, Index numCols) const
-{
- return ConstColsBlockXpr(derived(), 0, startCol, rows(), numCols);
-}
-
-/** \returns a block consisting of a range of columns of *this.
- *
- * \tparam N the number of columns in the block as specified at compile-time
- * \param startCol the index of the first column in the block
- * \param n the number of columns in the block as specified at run-time
- *
- * The compile-time and run-time information should not contradict. In other words,
- * \a n should equal \a N unless \a N is \a Dynamic.
- *
- * Example: \include DenseBase_template_int_middleCols.cpp
- * Output: \verbinclude DenseBase_template_int_middleCols.out
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-template<int N>
-inline typename NColsBlockXpr<N>::Type middleCols(Index startCol, Index n = N)
-{
- return typename NColsBlockXpr<N>::Type(derived(), 0, startCol, rows(), n);
-}
-
-/** This is the const version of middleCols<int>().*/
-template<int N>
-inline typename ConstNColsBlockXpr<N>::Type middleCols(Index startCol, Index n = N) const
-{
- return typename ConstNColsBlockXpr<N>::Type(derived(), 0, startCol, rows(), n);
-}
-
-
-
-/** \returns a fixed-size expression of a block in *this.
- *
- * The template parameters \a BlockRows and \a BlockCols are the number of
- * rows and columns in the block.
- *
- * \param startRow the first row in the block
- * \param startCol the first column in the block
- *
- * Example: \include MatrixBase_block_int_int.cpp
- * Output: \verbinclude MatrixBase_block_int_int.out
- *
- * \note since block is a templated member, the keyword template has to be used
- * if the matrix type is also a template parameter: \code m.template block<3,3>(1,1); \endcode
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-template<int BlockRows, int BlockCols>
-inline Block<Derived, BlockRows, BlockCols> block(Index startRow, Index startCol)
-{
- return Block<Derived, BlockRows, BlockCols>(derived(), startRow, startCol);
-}
-
-/** This is the const version of block<>(Index, Index). */
-template<int BlockRows, int BlockCols>
-inline const Block<const Derived, BlockRows, BlockCols> block(Index startRow, Index startCol) const
-{
- return Block<const Derived, BlockRows, BlockCols>(derived(), startRow, startCol);
-}
-
-/** \returns an expression of a block in *this.
- *
- * \tparam BlockRows number of rows in block as specified at compile-time
- * \tparam BlockCols number of columns in block as specified at compile-time
- * \param startRow the first row in the block
- * \param startCol the first column in the block
- * \param blockRows number of rows in block as specified at run-time
- * \param blockCols number of columns in block as specified at run-time
- *
- * This function is mainly useful for blocks where the number of rows is specified at compile-time
- * and the number of columns is specified at run-time, or vice versa. The compile-time and run-time
- * information should not contradict. In other words, \a blockRows should equal \a BlockRows unless
- * \a BlockRows is \a Dynamic, and the same for the number of columns.
- *
- * Example: \include MatrixBase_template_int_int_block_int_int_int_int.cpp
- * Output: \verbinclude MatrixBase_template_int_int_block_int_int_int_int.cpp
- *
- * \sa class Block, block(Index,Index,Index,Index)
- */
-template<int BlockRows, int BlockCols>
-inline Block<Derived, BlockRows, BlockCols> block(Index startRow, Index startCol,
- Index blockRows, Index blockCols)
-{
- return Block<Derived, BlockRows, BlockCols>(derived(), startRow, startCol, blockRows, blockCols);
-}
-
-/** This is the const version of block<>(Index, Index, Index, Index). */
-template<int BlockRows, int BlockCols>
-inline const Block<const Derived, BlockRows, BlockCols> block(Index startRow, Index startCol,
- Index blockRows, Index blockCols) const
-{
- return Block<const Derived, BlockRows, BlockCols>(derived(), startRow, startCol, blockRows, blockCols);
-}
-
-/** \returns an expression of the \a i-th column of *this. Note that the numbering starts at 0.
- *
- * Example: \include MatrixBase_col.cpp
- * Output: \verbinclude MatrixBase_col.out
- *
- * \sa row(), class Block */
-inline ColXpr col(Index i)
-{
- return ColXpr(derived(), i);
-}
-
-/** This is the const version of col(). */
-inline ConstColXpr col(Index i) const
-{
- return ConstColXpr(derived(), i);
-}
-
-/** \returns an expression of the \a i-th row of *this. Note that the numbering starts at 0.
- *
- * Example: \include MatrixBase_row.cpp
- * Output: \verbinclude MatrixBase_row.out
- *
- * \sa col(), class Block */
-inline RowXpr row(Index i)
-{
- return RowXpr(derived(), i);
-}
-
-/** This is the const version of row(). */
-inline ConstRowXpr row(Index i) const
-{
- return ConstRowXpr(derived(), i);
-}
-
-/** \returns a dynamic-size expression of a segment (i.e. a vector block) in *this.
- *
- * \only_for_vectors
- *
- * \param start the first coefficient in the segment
- * \param n the number of coefficients in the segment
- *
- * Example: \include MatrixBase_segment_int_int.cpp
- * Output: \verbinclude MatrixBase_segment_int_int.out
- *
- * \note Even though the returned expression has dynamic size, in the case
- * when it is applied to a fixed-size vector, it inherits a fixed maximal size,
- * which means that evaluating it does not cause a dynamic memory allocation.
- *
- * \sa class Block, segment(Index)
- */
-inline SegmentReturnType segment(Index start, Index n)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return SegmentReturnType(derived(), start, n);
-}
-
-
-/** This is the const version of segment(Index,Index).*/
-inline ConstSegmentReturnType segment(Index start, Index n) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return ConstSegmentReturnType(derived(), start, n);
-}
-
-/** \returns a dynamic-size expression of the first coefficients of *this.
- *
- * \only_for_vectors
- *
- * \param n the number of coefficients in the segment
- *
- * Example: \include MatrixBase_start_int.cpp
- * Output: \verbinclude MatrixBase_start_int.out
- *
- * \note Even though the returned expression has dynamic size, in the case
- * when it is applied to a fixed-size vector, it inherits a fixed maximal size,
- * which means that evaluating it does not cause a dynamic memory allocation.
- *
- * \sa class Block, block(Index,Index)
- */
-inline SegmentReturnType head(Index n)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return SegmentReturnType(derived(), 0, n);
-}
-
-/** This is the const version of head(Index).*/
-inline ConstSegmentReturnType head(Index n) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return ConstSegmentReturnType(derived(), 0, n);
-}
-
-/** \returns a dynamic-size expression of the last coefficients of *this.
- *
- * \only_for_vectors
- *
- * \param n the number of coefficients in the segment
- *
- * Example: \include MatrixBase_end_int.cpp
- * Output: \verbinclude MatrixBase_end_int.out
- *
- * \note Even though the returned expression has dynamic size, in the case
- * when it is applied to a fixed-size vector, it inherits a fixed maximal size,
- * which means that evaluating it does not cause a dynamic memory allocation.
- *
- * \sa class Block, block(Index,Index)
- */
-inline SegmentReturnType tail(Index n)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return SegmentReturnType(derived(), this->size() - n, n);
-}
-
-/** This is the const version of tail(Index).*/
-inline ConstSegmentReturnType tail(Index n) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return ConstSegmentReturnType(derived(), this->size() - n, n);
-}
-
-/** \returns a fixed-size expression of a segment (i.e. a vector block) in \c *this
- *
- * \only_for_vectors
- *
- * \tparam N the number of coefficients in the segment as specified at compile-time
- * \param start the index of the first element in the segment
- * \param n the number of coefficients in the segment as specified at compile-time
- *
- * The compile-time and run-time information should not contradict. In other words,
- * \a n should equal \a N unless \a N is \a Dynamic.
- *
- * Example: \include MatrixBase_template_int_segment.cpp
- * Output: \verbinclude MatrixBase_template_int_segment.out
- *
- * \sa class Block
- */
-template<int N>
-inline typename FixedSegmentReturnType<N>::Type segment(Index start, Index n = N)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return typename FixedSegmentReturnType<N>::Type(derived(), start, n);
-}
-
-/** This is the const version of segment<int>(Index).*/
-template<int N>
-inline typename ConstFixedSegmentReturnType<N>::Type segment(Index start, Index n = N) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return typename ConstFixedSegmentReturnType<N>::Type(derived(), start, n);
-}
-
-/** \returns a fixed-size expression of the first coefficients of *this.
- *
- * \only_for_vectors
- *
- * \tparam N the number of coefficients in the segment as specified at compile-time
- * \param n the number of coefficients in the segment as specified at run-time
- *
- * The compile-time and run-time information should not contradict. In other words,
- * \a n should equal \a N unless \a N is \a Dynamic.
- *
- * Example: \include MatrixBase_template_int_start.cpp
- * Output: \verbinclude MatrixBase_template_int_start.out
- *
- * \sa class Block
- */
-template<int N>
-inline typename FixedSegmentReturnType<N>::Type head(Index n = N)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return typename FixedSegmentReturnType<N>::Type(derived(), 0, n);
-}
-
-/** This is the const version of head<int>().*/
-template<int N>
-inline typename ConstFixedSegmentReturnType<N>::Type head(Index n = N) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return typename ConstFixedSegmentReturnType<N>::Type(derived(), 0, n);
-}
-
-/** \returns a fixed-size expression of the last coefficients of *this.
- *
- * \only_for_vectors
- *
- * \tparam N the number of coefficients in the segment as specified at compile-time
- * \param n the number of coefficients in the segment as specified at run-time
- *
- * The compile-time and run-time information should not contradict. In other words,
- * \a n should equal \a N unless \a N is \a Dynamic.
- *
- * Example: \include MatrixBase_template_int_end.cpp
- * Output: \verbinclude MatrixBase_template_int_end.out
- *
- * \sa class Block
- */
-template<int N>
-inline typename FixedSegmentReturnType<N>::Type tail(Index n = N)
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return typename FixedSegmentReturnType<N>::Type(derived(), size() - n);
-}
-
-/** This is the const version of tail<int>.*/
-template<int N>
-inline typename ConstFixedSegmentReturnType<N>::Type tail(Index n = N) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return typename ConstFixedSegmentReturnType<N>::Type(derived(), size() - n);
-}
diff --git a/src/Eigen/src/plugins/CMakeLists.txt b/src/Eigen/src/plugins/CMakeLists.txt
deleted file mode 100644
index 1a1d3ff..0000000
--- a/src/Eigen/src/plugins/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_plugins_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_plugins_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/plugins COMPONENT Devel
- )
diff --git a/src/Eigen/src/plugins/CommonCwiseBinaryOps.h b/src/Eigen/src/plugins/CommonCwiseBinaryOps.h
deleted file mode 100644
index 688d224..0000000
--- a/src/Eigen/src/plugins/CommonCwiseBinaryOps.h
+++ /dev/null
@@ -1,46 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// This file is a base class plugin containing common coefficient wise functions.
-
-/** \returns an expression of the difference of \c *this and \a other
- *
- * \note If you want to substract a given scalar from all coefficients, see Cwise::operator-().
- *
- * \sa class CwiseBinaryOp, operator-=()
- */
-EIGEN_MAKE_CWISE_BINARY_OP(operator-,internal::scalar_difference_op)
-
-/** \returns an expression of the sum of \c *this and \a other
- *
- * \note If you want to add a given scalar to all coefficients, see Cwise::operator+().
- *
- * \sa class CwiseBinaryOp, operator+=()
- */
-EIGEN_MAKE_CWISE_BINARY_OP(operator+,internal::scalar_sum_op)
-
-/** \returns an expression of a custom coefficient-wise operator \a func of *this and \a other
- *
- * The template parameter \a CustomBinaryOp is the type of the functor
- * of the custom operator (see class CwiseBinaryOp for an example)
- *
- * Here is an example illustrating the use of custom functors:
- * \include class_CwiseBinaryOp.cpp
- * Output: \verbinclude class_CwiseBinaryOp.out
- *
- * \sa class CwiseBinaryOp, operator+(), operator-(), cwiseProduct()
- */
-template<typename CustomBinaryOp, typename OtherDerived>
-EIGEN_STRONG_INLINE const CwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived>
-binaryExpr(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other, const CustomBinaryOp& func = CustomBinaryOp()) const
-{
- return CwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived>(derived(), other.derived(), func);
-}
-
diff --git a/src/Eigen/src/plugins/CommonCwiseUnaryOps.h b/src/Eigen/src/plugins/CommonCwiseUnaryOps.h
deleted file mode 100644
index 08e931a..0000000
--- a/src/Eigen/src/plugins/CommonCwiseUnaryOps.h
+++ /dev/null
@@ -1,172 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// This file is a base class plugin containing common coefficient wise functions.
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-
-/** \internal Represents a scalar multiple of an expression */
-typedef CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const Derived> ScalarMultipleReturnType;
-/** \internal Represents a quotient of an expression by a scalar*/
-typedef CwiseUnaryOp<internal::scalar_quotient1_op<Scalar>, const Derived> ScalarQuotient1ReturnType;
-/** \internal the return type of conjugate() */
-typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
- const CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const Derived>,
- const Derived&
- >::type ConjugateReturnType;
-/** \internal the return type of real() const */
-typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
- const CwiseUnaryOp<internal::scalar_real_op<Scalar>, const Derived>,
- const Derived&
- >::type RealReturnType;
-/** \internal the return type of real() */
-typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
- CwiseUnaryView<internal::scalar_real_ref_op<Scalar>, Derived>,
- Derived&
- >::type NonConstRealReturnType;
-/** \internal the return type of imag() const */
-typedef CwiseUnaryOp<internal::scalar_imag_op<Scalar>, const Derived> ImagReturnType;
-/** \internal the return type of imag() */
-typedef CwiseUnaryView<internal::scalar_imag_ref_op<Scalar>, Derived> NonConstImagReturnType;
-
-#endif // not EIGEN_PARSED_BY_DOXYGEN
-
-/** \returns an expression of the opposite of \c *this
- */
-inline const CwiseUnaryOp<internal::scalar_opposite_op<typename internal::traits<Derived>::Scalar>, const Derived>
-operator-() const { return derived(); }
-
-
-/** \returns an expression of \c *this scaled by the scalar factor \a scalar */
-inline const ScalarMultipleReturnType
-operator*(const Scalar& scalar) const
-{
- return CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const Derived>
- (derived(), internal::scalar_multiple_op<Scalar>(scalar));
-}
-
-#ifdef EIGEN_PARSED_BY_DOXYGEN
-const ScalarMultipleReturnType operator*(const RealScalar& scalar) const;
-#endif
-
-/** \returns an expression of \c *this divided by the scalar value \a scalar */
-inline const CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>, const Derived>
-operator/(const Scalar& scalar) const
-{
- return CwiseUnaryOp<internal::scalar_quotient1_op<Scalar>, const Derived>
- (derived(), internal::scalar_quotient1_op<Scalar>(scalar));
-}
-
-/** Overloaded for efficient real matrix times complex scalar value */
-inline const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const Derived>
-operator*(const std::complex<Scalar>& scalar) const
-{
- return CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const Derived>
- (*static_cast<const Derived*>(this), internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >(scalar));
-}
-
-inline friend const ScalarMultipleReturnType
-operator*(const Scalar& scalar, const StorageBaseType& matrix)
-{ return matrix*scalar; }
-
-inline friend const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const Derived>
-operator*(const std::complex<Scalar>& scalar, const StorageBaseType& matrix)
-{ return matrix*scalar; }
-
-/** \returns an expression of *this with the \a Scalar type casted to
- * \a NewScalar.
- *
- * The template parameter \a NewScalar is the type we are casting the scalars to.
- *
- * \sa class CwiseUnaryOp
- */
-template<typename NewType>
-typename internal::cast_return_type<Derived,const CwiseUnaryOp<internal::scalar_cast_op<typename internal::traits<Derived>::Scalar, NewType>, const Derived> >::type
-cast() const
-{
- return derived();
-}
-
-/** \returns an expression of the complex conjugate of \c *this.
- *
- * \sa adjoint() */
-inline ConjugateReturnType
-conjugate() const
-{
- return ConjugateReturnType(derived());
-}
-
-/** \returns a read-only expression of the real part of \c *this.
- *
- * \sa imag() */
-inline RealReturnType
-real() const { return derived(); }
-
-/** \returns an read-only expression of the imaginary part of \c *this.
- *
- * \sa real() */
-inline const ImagReturnType
-imag() const { return derived(); }
-
-/** \brief Apply a unary operator coefficient-wise
- * \param[in] func Functor implementing the unary operator
- * \tparam CustomUnaryOp Type of \a func
- * \returns An expression of a custom coefficient-wise unary operator \a func of *this
- *
- * The function \c ptr_fun() from the C++ standard library can be used to make functors out of normal functions.
- *
- * Example:
- * \include class_CwiseUnaryOp_ptrfun.cpp
- * Output: \verbinclude class_CwiseUnaryOp_ptrfun.out
- *
- * Genuine functors allow for more possibilities, for instance it may contain a state.
- *
- * Example:
- * \include class_CwiseUnaryOp.cpp
- * Output: \verbinclude class_CwiseUnaryOp.out
- *
- * \sa class CwiseUnaryOp, class CwiseBinaryOp
- */
-template<typename CustomUnaryOp>
-inline const CwiseUnaryOp<CustomUnaryOp, const Derived>
-unaryExpr(const CustomUnaryOp& func = CustomUnaryOp()) const
-{
- return CwiseUnaryOp<CustomUnaryOp, const Derived>(derived(), func);
-}
-
-/** \returns an expression of a custom coefficient-wise unary operator \a func of *this
- *
- * The template parameter \a CustomUnaryOp is the type of the functor
- * of the custom unary operator.
- *
- * Example:
- * \include class_CwiseUnaryOp.cpp
- * Output: \verbinclude class_CwiseUnaryOp.out
- *
- * \sa class CwiseUnaryOp, class CwiseBinaryOp
- */
-template<typename CustomViewOp>
-inline const CwiseUnaryView<CustomViewOp, const Derived>
-unaryViewExpr(const CustomViewOp& func = CustomViewOp()) const
-{
- return CwiseUnaryView<CustomViewOp, const Derived>(derived(), func);
-}
-
-/** \returns a non const expression of the real part of \c *this.
- *
- * \sa imag() */
-inline NonConstRealReturnType
-real() { return derived(); }
-
-/** \returns a non const expression of the imaginary part of \c *this.
- *
- * \sa real() */
-inline NonConstImagReturnType
-imag() { return derived(); }
diff --git a/src/Eigen/src/plugins/MatrixCwiseBinaryOps.h b/src/Eigen/src/plugins/MatrixCwiseBinaryOps.h
deleted file mode 100644
index 7f62149..0000000
--- a/src/Eigen/src/plugins/MatrixCwiseBinaryOps.h
+++ /dev/null
@@ -1,126 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// This file is a base class plugin containing matrix specifics coefficient wise functions.
-
-/** \returns an expression of the Schur product (coefficient wise product) of *this and \a other
- *
- * Example: \include MatrixBase_cwiseProduct.cpp
- * Output: \verbinclude MatrixBase_cwiseProduct.out
- *
- * \sa class CwiseBinaryOp, cwiseAbs2
- */
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE(Derived,OtherDerived)
-cwiseProduct(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
-{
- return EIGEN_CWISE_PRODUCT_RETURN_TYPE(Derived,OtherDerived)(derived(), other.derived());
-}
-
-/** \returns an expression of the coefficient-wise == operator of *this and \a other
- *
- * \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
- * In order to check for equality between two vectors or matrices with floating-point coefficients, it is
- * generally a far better idea to use a fuzzy comparison as provided by isApprox() and
- * isMuchSmallerThan().
- *
- * Example: \include MatrixBase_cwiseEqual.cpp
- * Output: \verbinclude MatrixBase_cwiseEqual.out
- *
- * \sa cwiseNotEqual(), isApprox(), isMuchSmallerThan()
- */
-template<typename OtherDerived>
-inline const CwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived>
-cwiseEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
-{
- return CwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
-}
-
-/** \returns an expression of the coefficient-wise != operator of *this and \a other
- *
- * \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
- * In order to check for equality between two vectors or matrices with floating-point coefficients, it is
- * generally a far better idea to use a fuzzy comparison as provided by isApprox() and
- * isMuchSmallerThan().
- *
- * Example: \include MatrixBase_cwiseNotEqual.cpp
- * Output: \verbinclude MatrixBase_cwiseNotEqual.out
- *
- * \sa cwiseEqual(), isApprox(), isMuchSmallerThan()
- */
-template<typename OtherDerived>
-inline const CwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived>
-cwiseNotEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
-{
- return CwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
-}
-
-/** \returns an expression of the coefficient-wise min of *this and \a other
- *
- * Example: \include MatrixBase_cwiseMin.cpp
- * Output: \verbinclude MatrixBase_cwiseMin.out
- *
- * \sa class CwiseBinaryOp, max()
- */
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const OtherDerived>
-cwiseMin(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
-{
- return CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
-}
-
-/** \returns an expression of the coefficient-wise min of *this and scalar \a other
- *
- * \sa class CwiseBinaryOp, min()
- */
-EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const ConstantReturnType>
-cwiseMin(const Scalar &other) const
-{
- return cwiseMin(Derived::Constant(rows(), cols(), other));
-}
-
-/** \returns an expression of the coefficient-wise max of *this and \a other
- *
- * Example: \include MatrixBase_cwiseMax.cpp
- * Output: \verbinclude MatrixBase_cwiseMax.out
- *
- * \sa class CwiseBinaryOp, min()
- */
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const OtherDerived>
-cwiseMax(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
-{
- return CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
-}
-
-/** \returns an expression of the coefficient-wise max of *this and scalar \a other
- *
- * \sa class CwiseBinaryOp, min()
- */
-EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const ConstantReturnType>
-cwiseMax(const Scalar &other) const
-{
- return cwiseMax(Derived::Constant(rows(), cols(), other));
-}
-
-
-/** \returns an expression of the coefficient-wise quotient of *this and \a other
- *
- * Example: \include MatrixBase_cwiseQuotient.cpp
- * Output: \verbinclude MatrixBase_cwiseQuotient.out
- *
- * \sa class CwiseBinaryOp, cwiseProduct(), cwiseInverse()
- */
-template<typename OtherDerived>
-EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived>
-cwiseQuotient(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
-{
- return CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
-}
diff --git a/src/Eigen/src/plugins/MatrixCwiseUnaryOps.h b/src/Eigen/src/plugins/MatrixCwiseUnaryOps.h
deleted file mode 100644
index 0cf0640..0000000
--- a/src/Eigen/src/plugins/MatrixCwiseUnaryOps.h
+++ /dev/null
@@ -1,67 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// This file is a base class plugin containing matrix specifics coefficient wise functions.
-
-/** \returns an expression of the coefficient-wise absolute value of \c *this
- *
- * Example: \include MatrixBase_cwiseAbs.cpp
- * Output: \verbinclude MatrixBase_cwiseAbs.out
- *
- * \sa cwiseAbs2()
- */
-EIGEN_STRONG_INLINE const CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived>
-cwiseAbs() const { return derived(); }
-
-/** \returns an expression of the coefficient-wise squared absolute value of \c *this
- *
- * Example: \include MatrixBase_cwiseAbs2.cpp
- * Output: \verbinclude MatrixBase_cwiseAbs2.out
- *
- * \sa cwiseAbs()
- */
-EIGEN_STRONG_INLINE const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const Derived>
-cwiseAbs2() const { return derived(); }
-
-/** \returns an expression of the coefficient-wise square root of *this.
- *
- * Example: \include MatrixBase_cwiseSqrt.cpp
- * Output: \verbinclude MatrixBase_cwiseSqrt.out
- *
- * \sa cwisePow(), cwiseSquare()
- */
-inline const CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived>
-cwiseSqrt() const { return derived(); }
-
-/** \returns an expression of the coefficient-wise inverse of *this.
- *
- * Example: \include MatrixBase_cwiseInverse.cpp
- * Output: \verbinclude MatrixBase_cwiseInverse.out
- *
- * \sa cwiseProduct()
- */
-inline const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived>
-cwiseInverse() const { return derived(); }
-
-/** \returns an expression of the coefficient-wise == operator of \c *this and a scalar \a s
- *
- * \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
- * In order to check for equality between two vectors or matrices with floating-point coefficients, it is
- * generally a far better idea to use a fuzzy comparison as provided by isApprox() and
- * isMuchSmallerThan().
- *
- * \sa cwiseEqual(const MatrixBase<OtherDerived> &) const
- */
-inline const CwiseUnaryOp<std::binder1st<std::equal_to<Scalar> >, const Derived>
-cwiseEqual(const Scalar& s) const
-{
- return CwiseUnaryOp<std::binder1st<std::equal_to<Scalar> >,const Derived>
- (derived(), std::bind1st(std::equal_to<Scalar>(), s));
-}