1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012-2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSE_QR_H
#define EIGEN_SPARSE_QR_H
namespace Eigen {
template<typename MatrixType, typename OrderingType> class SparseQR;
template<typename SparseQRType> struct SparseQRMatrixQReturnType;
template<typename SparseQRType> struct SparseQRMatrixQTransposeReturnType;
template<typename SparseQRType, typename Derived> struct SparseQR_QProduct;
namespace internal {
template <typename SparseQRType> struct traits<SparseQRMatrixQReturnType<SparseQRType> >
{
typedef typename SparseQRType::MatrixType ReturnType;
typedef typename ReturnType::Index Index;
typedef typename ReturnType::StorageKind StorageKind;
};
template <typename SparseQRType> struct traits<SparseQRMatrixQTransposeReturnType<SparseQRType> >
{
typedef typename SparseQRType::MatrixType ReturnType;
};
template <typename SparseQRType, typename Derived> struct traits<SparseQR_QProduct<SparseQRType, Derived> >
{
typedef typename Derived::PlainObject ReturnType;
};
} // End namespace internal
/**
* \ingroup SparseQR_Module
* \class SparseQR
* \brief Sparse left-looking rank-revealing QR factorization
*
* This class implements a left-looking rank-revealing QR decomposition
* of sparse matrices. When a column has a norm less than a given tolerance
* it is implicitly permuted to the end. The QR factorization thus obtained is
* given by A*P = Q*R where R is upper triangular or trapezoidal.
*
* P is the column permutation which is the product of the fill-reducing and the
* rank-revealing permutations. Use colsPermutation() to get it.
*
* Q is the orthogonal matrix represented as products of Householder reflectors.
* Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
* You can then apply it to a vector.
*
* R is the sparse triangular or trapezoidal matrix. The later occurs when A is rank-deficient.
* matrixR().topLeftCorner(rank(), rank()) always returns a triangular factor of full rank.
*
* \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
* \tparam _OrderingType The fill-reducing ordering method. See the \link OrderingMethods_Module
* OrderingMethods \endlink module for the list of built-in and external ordering methods.
*
* \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()).
*
*/
template<typename _MatrixType, typename _OrderingType>
class SparseQR
{
public:
typedef _MatrixType MatrixType;
typedef _OrderingType OrderingType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef SparseMatrix<Scalar,ColMajor,Index> QRMatrixType;
typedef Matrix<Index, Dynamic, 1> IndexVector;
typedef Matrix<Scalar, Dynamic, 1> ScalarVector;
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
public:
SparseQR () : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
{ }
/** Construct a QR factorization of the matrix \a mat.
*
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
*
* \sa compute()
*/
SparseQR(const MatrixType& mat) : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
{
compute(mat);
}
/** Computes the QR factorization of the sparse matrix \a mat.
*
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
*
* \sa analyzePattern(), factorize()
*/
void compute(const MatrixType& mat)
{
analyzePattern(mat);
factorize(mat);
}
void analyzePattern(const MatrixType& mat);
void factorize(const MatrixType& mat);
/** \returns the number of rows of the represented matrix.
*/
inline Index rows() const { return m_pmat.rows(); }
/** \returns the number of columns of the represented matrix.
*/
inline Index cols() const { return m_pmat.cols();}
/** \returns a const reference to the \b sparse upper triangular matrix R of the QR factorization.
*/
const QRMatrixType& matrixR() const { return m_R; }
/** \returns the number of non linearly dependent columns as determined by the pivoting threshold.
*
* \sa setPivotThreshold()
*/
Index rank() const
{
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
return m_nonzeropivots;
}
/** \returns an expression of the matrix Q as products of sparse Householder reflectors.
* The common usage of this function is to apply it to a dense matrix or vector
* \code
* VectorXd B1, B2;
* // Initialize B1
* B2 = matrixQ() * B1;
* \endcode
*
* To get a plain SparseMatrix representation of Q:
* \code
* SparseMatrix<double> Q;
* Q = SparseQR<SparseMatrix<double> >(A).matrixQ();
* \endcode
* Internally, this call simply performs a sparse product between the matrix Q
* and a sparse identity matrix. However, due to the fact that the sparse
* reflectors are stored unsorted, two transpositions are needed to sort
* them before performing the product.
*/
SparseQRMatrixQReturnType<SparseQR> matrixQ() const
{ return SparseQRMatrixQReturnType<SparseQR>(*this); }
/** \returns a const reference to the column permutation P that was applied to A such that A*P = Q*R
* It is the combination of the fill-in reducing permutation and numerical column pivoting.
*/
const PermutationType& colsPermutation() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_outputPerm_c;
}
/** \returns A string describing the type of error.
* This method is provided to ease debugging, not to handle errors.
*/
std::string lastErrorMessage() const { return m_lastError; }
/** \internal */
template<typename Rhs, typename Dest>
bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &dest) const
{
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
Index rank = this->rank();
// Compute Q^T * b;
typename Dest::PlainObject y, b;
y = this->matrixQ().transpose() * B;
b = y;
// Solve with the triangular matrix R
y.resize((std::max)(cols(),Index(y.rows())),y.cols());
y.topRows(rank) = this->matrixR().topLeftCorner(rank, rank).template triangularView<Upper>().solve(b.topRows(rank));
y.bottomRows(y.rows()-rank).setZero();
// Apply the column permutation
if (m_perm_c.size()) dest = colsPermutation() * y.topRows(cols());
else dest = y.topRows(cols());
m_info = Success;
return true;
}
/** Sets the threshold that is used to determine linearly dependent columns during the factorization.
*
* In practice, if during the factorization the norm of the column that has to be eliminated is below
* this threshold, then the entire column is treated as zero, and it is moved at the end.
*/
void setPivotThreshold(const RealScalar& threshold)
{
m_useDefaultThreshold = false;
m_threshold = threshold;
}
/** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
*
* \sa compute()
*/
template<typename Rhs>
inline const internal::solve_retval<SparseQR, Rhs> solve(const MatrixBase<Rhs>& B) const
{
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
return internal::solve_retval<SparseQR, Rhs>(*this, B.derived());
}
template<typename Rhs>
inline const internal::sparse_solve_retval<SparseQR, Rhs> solve(const SparseMatrixBase<Rhs>& B) const
{
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
return internal::sparse_solve_retval<SparseQR, Rhs>(*this, B.derived());
}
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was successful,
* \c NumericalIssue if the QR factorization reports a numerical problem
* \c InvalidInput if the input matrix is invalid
*
* \sa iparm()
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
protected:
inline void sort_matrix_Q()
{
if(this->m_isQSorted) return;
// The matrix Q is sorted during the transposition
SparseMatrix<Scalar, RowMajor, Index> mQrm(this->m_Q);
this->m_Q = mQrm;
this->m_isQSorted = true;
}
protected:
bool m_isInitialized;
bool m_analysisIsok;
bool m_factorizationIsok;
mutable ComputationInfo m_info;
std::string m_lastError;
QRMatrixType m_pmat; // Temporary matrix
QRMatrixType m_R; // The triangular factor matrix
QRMatrixType m_Q; // The orthogonal reflectors
ScalarVector m_hcoeffs; // The Householder coefficients
PermutationType m_perm_c; // Fill-reducing Column permutation
PermutationType m_pivotperm; // The permutation for rank revealing
PermutationType m_outputPerm_c; // The final column permutation
RealScalar m_threshold; // Threshold to determine null Householder reflections
bool m_useDefaultThreshold; // Use default threshold
Index m_nonzeropivots; // Number of non zero pivots found
IndexVector m_etree; // Column elimination tree
IndexVector m_firstRowElt; // First element in each row
bool m_isQSorted; // whether Q is sorted or not
template <typename, typename > friend struct SparseQR_QProduct;
template <typename > friend struct SparseQRMatrixQReturnType;
};
/** \brief Preprocessing step of a QR factorization
*
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
*
* In this step, the fill-reducing permutation is computed and applied to the columns of A
* and the column elimination tree is computed as well. Only the sparsity pattern of \a mat is exploited.
*
* \note In this step it is assumed that there is no empty row in the matrix \a mat.
*/
template <typename MatrixType, typename OrderingType>
void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
{
eigen_assert(mat.isCompressed() && "SparseQR requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to SparseQR");
// Compute the column fill reducing ordering
OrderingType ord;
ord(mat, m_perm_c);
Index n = mat.cols();
Index m = mat.rows();
Index diagSize = (std::min)(m,n);
if (!m_perm_c.size())
{
m_perm_c.resize(n);
m_perm_c.indices().setLinSpaced(n, 0,n-1);
}
// Compute the column elimination tree of the permuted matrix
m_outputPerm_c = m_perm_c.inverse();
internal::coletree(mat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
m_R.resize(m, n);
m_Q.resize(m, diagSize);
// Allocate space for nonzero elements : rough estimation
m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree
m_Q.reserve(2*mat.nonZeros());
m_hcoeffs.resize(diagSize);
m_analysisIsok = true;
}
/** \brief Performs the numerical QR factorization of the input matrix
*
* The function SparseQR::analyzePattern(const MatrixType&) must have been called beforehand with
* a matrix having the same sparsity pattern than \a mat.
*
* \param mat The sparse column-major matrix
*/
template <typename MatrixType, typename OrderingType>
void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
{
using std::abs;
using std::max;
eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step");
Index m = mat.rows();
Index n = mat.cols();
Index diagSize = (std::min)(m,n);
IndexVector mark((std::max)(m,n)); mark.setConstant(-1); // Record the visited nodes
IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q
Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
ScalarVector tval(m); // The dense vector used to compute the current column
RealScalar pivotThreshold = m_threshold;
m_pmat = mat;
m_pmat.uncompress(); // To have the innerNonZeroPtr allocated
// Apply the fill-in reducing permutation lazily:
for (int i = 0; i < n; i++)
{
Index p = m_perm_c.size() ? m_perm_c.indices()(i) : i;
m_pmat.outerIndexPtr()[p] = mat.outerIndexPtr()[i];
m_pmat.innerNonZeroPtr()[p] = mat.outerIndexPtr()[i+1] - mat.outerIndexPtr()[i];
}
/* Compute the default threshold as in MatLab, see:
* Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
* Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
*/
if(m_useDefaultThreshold)
{
RealScalar max2Norm = 0.0;
for (int j = 0; j < n; j++) max2Norm = (max)(max2Norm, m_pmat.col(j).norm());
pivotThreshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon();
}
// Initialize the numerical permutation
m_pivotperm.setIdentity(n);
Index nonzeroCol = 0; // Record the number of valid pivots
m_Q.startVec(0);
// Left looking rank-revealing QR factorization: compute a column of R and Q at a time
for (Index col = 0; col < n; ++col)
{
mark.setConstant(-1);
m_R.startVec(col);
mark(nonzeroCol) = col;
Qidx(0) = nonzeroCol;
nzcolR = 0; nzcolQ = 1;
bool found_diag = nonzeroCol>=m;
tval.setZero();
// Symbolic factorization: find the nonzero locations of the column k of the factors R and Q, i.e.,
// all the nodes (with indexes lower than rank) reachable through the column elimination tree (etree) rooted at node k.
// Note: if the diagonal entry does not exist, then its contribution must be explicitly added,
// thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found.
for (typename MatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp)
{
Index curIdx = nonzeroCol;
if(itp) curIdx = itp.row();
if(curIdx == nonzeroCol) found_diag = true;
// Get the nonzeros indexes of the current column of R
Index st = m_firstRowElt(curIdx); // The traversal of the etree starts here
if (st < 0 )
{
m_lastError = "Empty row found during numerical factorization";
m_info = InvalidInput;
return;
}
// Traverse the etree
Index bi = nzcolR;
for (; mark(st) != col; st = m_etree(st))
{
Ridx(nzcolR) = st; // Add this row to the list,
mark(st) = col; // and mark this row as visited
nzcolR++;
}
// Reverse the list to get the topological ordering
Index nt = nzcolR-bi;
for(Index i = 0; i < nt/2; i++) std::swap(Ridx(bi+i), Ridx(nzcolR-i-1));
// Copy the current (curIdx,pcol) value of the input matrix
if(itp) tval(curIdx) = itp.value();
else tval(curIdx) = Scalar(0);
// Compute the pattern of Q(:,k)
if(curIdx > nonzeroCol && mark(curIdx) != col )
{
Qidx(nzcolQ) = curIdx; // Add this row to the pattern of Q,
mark(curIdx) = col; // and mark it as visited
nzcolQ++;
}
}
// Browse all the indexes of R(:,col) in reverse order
for (Index i = nzcolR-1; i >= 0; i--)
{
Index curIdx = Ridx(i);
// Apply the curIdx-th householder vector to the current column (temporarily stored into tval)
Scalar tdot(0);
// First compute q' * tval
tdot = m_Q.col(curIdx).dot(tval);
tdot *= m_hcoeffs(curIdx);
// Then update tval = tval - q * tau
// FIXME: tval -= tdot * m_Q.col(curIdx) should amount to the same (need to check/add support for efficient "dense ?= sparse")
for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
tval(itq.row()) -= itq.value() * tdot;
// Detect fill-in for the current column of Q
if(m_etree(Ridx(i)) == nonzeroCol)
{
for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
{
Index iQ = itq.row();
if (mark(iQ) != col)
{
Qidx(nzcolQ++) = iQ; // Add this row to the pattern of Q,
mark(iQ) = col; // and mark it as visited
}
}
}
} // End update current column
Scalar tau;
RealScalar beta = 0;
if(nonzeroCol < diagSize)
{
// Compute the Householder reflection that eliminate the current column
// FIXME this step should call the Householder module.
Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0);
// First, the squared norm of Q((col+1):m, col)
RealScalar sqrNorm = 0.;
for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
{
tau = RealScalar(0);
beta = numext::real(c0);
tval(Qidx(0)) = 1;
}
else
{
using std::sqrt;
beta = sqrt(numext::abs2(c0) + sqrNorm);
if(numext::real(c0) >= RealScalar(0))
beta = -beta;
tval(Qidx(0)) = 1;
for (Index itq = 1; itq < nzcolQ; ++itq)
tval(Qidx(itq)) /= (c0 - beta);
tau = numext::conj((beta-c0) / beta);
}
}
// Insert values in R
for (Index i = nzcolR-1; i >= 0; i--)
{
Index curIdx = Ridx(i);
if(curIdx < nonzeroCol)
{
m_R.insertBackByOuterInnerUnordered(col, curIdx) = tval(curIdx);
tval(curIdx) = Scalar(0.);
}
}
if(nonzeroCol < diagSize && abs(beta) >= pivotThreshold)
{
m_R.insertBackByOuterInner(col, nonzeroCol) = beta;
// The householder coefficient
m_hcoeffs(nonzeroCol) = tau;
// Record the householder reflections
for (Index itq = 0; itq < nzcolQ; ++itq)
{
Index iQ = Qidx(itq);
m_Q.insertBackByOuterInnerUnordered(nonzeroCol,iQ) = tval(iQ);
tval(iQ) = Scalar(0.);
}
nonzeroCol++;
if(nonzeroCol<diagSize)
m_Q.startVec(nonzeroCol);
}
else
{
// Zero pivot found: move implicitly this column to the end
for (Index j = nonzeroCol; j < n-1; j++)
std::swap(m_pivotperm.indices()(j), m_pivotperm.indices()[j+1]);
// Recompute the column elimination tree
internal::coletree(m_pmat, m_etree, m_firstRowElt, m_pivotperm.indices().data());
}
}
m_hcoeffs.tail(diagSize-nonzeroCol).setZero();
// Finalize the column pointers of the sparse matrices R and Q
m_Q.finalize();
m_Q.makeCompressed();
m_R.finalize();
m_R.makeCompressed();
m_isQSorted = false;
m_nonzeropivots = nonzeroCol;
if(nonzeroCol<n)
{
// Permute the triangular factor to put the 'dead' columns to the end
MatrixType tempR(m_R);
m_R = tempR * m_pivotperm;
// Update the column permutation
m_outputPerm_c = m_outputPerm_c * m_pivotperm;
}
m_isInitialized = true;
m_factorizationIsok = true;
m_info = Success;
}
namespace internal {
template<typename _MatrixType, typename OrderingType, typename Rhs>
struct solve_retval<SparseQR<_MatrixType,OrderingType>, Rhs>
: solve_retval_base<SparseQR<_MatrixType,OrderingType>, Rhs>
{
typedef SparseQR<_MatrixType,OrderingType> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
}
};
template<typename _MatrixType, typename OrderingType, typename Rhs>
struct sparse_solve_retval<SparseQR<_MatrixType, OrderingType>, Rhs>
: sparse_solve_retval_base<SparseQR<_MatrixType, OrderingType>, Rhs>
{
typedef SparseQR<_MatrixType, OrderingType> Dec;
EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec, Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
this->defaultEvalTo(dst);
}
};
} // end namespace internal
template <typename SparseQRType, typename Derived>
struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived> >
{
typedef typename SparseQRType::QRMatrixType MatrixType;
typedef typename SparseQRType::Scalar Scalar;
typedef typename SparseQRType::Index Index;
// Get the references
SparseQR_QProduct(const SparseQRType& qr, const Derived& other, bool transpose) :
m_qr(qr),m_other(other),m_transpose(transpose) {}
inline Index rows() const { return m_transpose ? m_qr.rows() : m_qr.cols(); }
inline Index cols() const { return m_other.cols(); }
// Assign to a vector
template<typename DesType>
void evalTo(DesType& res) const
{
Index m = m_qr.rows();
Index n = m_qr.cols();
Index diagSize = (std::min)(m,n);
res = m_other;
if (m_transpose)
{
eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
//Compute res = Q' * other column by column
for(Index j = 0; j < res.cols(); j++){
for (Index k = 0; k < diagSize; k++)
{
Scalar tau = Scalar(0);
tau = m_qr.m_Q.col(k).dot(res.col(j));
if(tau==Scalar(0)) continue;
tau = tau * m_qr.m_hcoeffs(k);
res.col(j) -= tau * m_qr.m_Q.col(k);
}
}
}
else
{
eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
// Compute res = Q * other column by column
for(Index j = 0; j < res.cols(); j++)
{
for (Index k = diagSize-1; k >=0; k--)
{
Scalar tau = Scalar(0);
tau = m_qr.m_Q.col(k).dot(res.col(j));
if(tau==Scalar(0)) continue;
tau = tau * m_qr.m_hcoeffs(k);
res.col(j) -= tau * m_qr.m_Q.col(k);
}
}
}
}
const SparseQRType& m_qr;
const Derived& m_other;
bool m_transpose;
};
template<typename SparseQRType>
struct SparseQRMatrixQReturnType : public EigenBase<SparseQRMatrixQReturnType<SparseQRType> >
{
typedef typename SparseQRType::Index Index;
typedef typename SparseQRType::Scalar Scalar;
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
SparseQRMatrixQReturnType(const SparseQRType& qr) : m_qr(qr) {}
template<typename Derived>
SparseQR_QProduct<SparseQRType, Derived> operator*(const MatrixBase<Derived>& other)
{
return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(),false);
}
SparseQRMatrixQTransposeReturnType<SparseQRType> adjoint() const
{
return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
}
inline Index rows() const { return m_qr.rows(); }
inline Index cols() const { return (std::min)(m_qr.rows(),m_qr.cols()); }
// To use for operations with the transpose of Q
SparseQRMatrixQTransposeReturnType<SparseQRType> transpose() const
{
return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
}
template<typename Dest> void evalTo(MatrixBase<Dest>& dest) const
{
dest.derived() = m_qr.matrixQ() * Dest::Identity(m_qr.rows(), m_qr.rows());
}
template<typename Dest> void evalTo(SparseMatrixBase<Dest>& dest) const
{
Dest idMat(m_qr.rows(), m_qr.rows());
idMat.setIdentity();
// Sort the sparse householder reflectors if needed
const_cast<SparseQRType *>(&m_qr)->sort_matrix_Q();
dest.derived() = SparseQR_QProduct<SparseQRType, Dest>(m_qr, idMat, false);
}
const SparseQRType& m_qr;
};
template<typename SparseQRType>
struct SparseQRMatrixQTransposeReturnType
{
SparseQRMatrixQTransposeReturnType(const SparseQRType& qr) : m_qr(qr) {}
template<typename Derived>
SparseQR_QProduct<SparseQRType,Derived> operator*(const MatrixBase<Derived>& other)
{
return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(), true);
}
const SparseQRType& m_qr;
};
} // end namespace Eigen
#endif
|