aboutsummaryrefslogtreecommitdiff
path: root/src/Eigen/src/Cholesky/LDLT.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Eigen/src/Cholesky/LDLT.h')
-rw-r--r--src/Eigen/src/Cholesky/LDLT.h604
1 files changed, 0 insertions, 604 deletions
diff --git a/src/Eigen/src/Cholesky/LDLT.h b/src/Eigen/src/Cholesky/LDLT.h
deleted file mode 100644
index c52b7d1..0000000
--- a/src/Eigen/src/Cholesky/LDLT.h
+++ /dev/null
@@ -1,604 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com >
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_LDLT_H
-#define EIGEN_LDLT_H
-
-namespace Eigen {
-
-namespace internal {
- template<typename MatrixType, int UpLo> struct LDLT_Traits;
-
- // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef
- enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite };
-}
-
-/** \ingroup Cholesky_Module
- *
- * \class LDLT
- *
- * \brief Robust Cholesky decomposition of a matrix with pivoting
- *
- * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
- * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
- * The other triangular part won't be read.
- *
- * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
- * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L
- * is lower triangular with a unit diagonal and D is a diagonal matrix.
- *
- * The decomposition uses pivoting to ensure stability, so that L will have
- * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
- * on D also stabilizes the computation.
- *
- * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
- * decomposition to determine whether a system of equations has a solution.
- *
- * \sa MatrixBase::ldlt(), class LLT
- */
-template<typename _MatrixType, int _UpLo> class LDLT
-{
- public:
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here!
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- UpLo = _UpLo
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
- typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType;
-
- typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
- typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
-
- typedef internal::LDLT_Traits<MatrixType,UpLo> Traits;
-
- /** \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via LDLT::compute(const MatrixType&).
- */
- LDLT()
- : m_matrix(),
- m_transpositions(),
- m_sign(internal::ZeroSign),
- m_isInitialized(false)
- {}
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa LDLT()
- */
- LDLT(Index size)
- : m_matrix(size, size),
- m_transpositions(size),
- m_temporary(size),
- m_sign(internal::ZeroSign),
- m_isInitialized(false)
- {}
-
- /** \brief Constructor with decomposition
- *
- * This calculates the decomposition for the input \a matrix.
- * \sa LDLT(Index size)
- */
- LDLT(const MatrixType& matrix)
- : m_matrix(matrix.rows(), matrix.cols()),
- m_transpositions(matrix.rows()),
- m_temporary(matrix.rows()),
- m_sign(internal::ZeroSign),
- m_isInitialized(false)
- {
- compute(matrix);
- }
-
- /** Clear any existing decomposition
- * \sa rankUpdate(w,sigma)
- */
- void setZero()
- {
- m_isInitialized = false;
- }
-
- /** \returns a view of the upper triangular matrix U */
- inline typename Traits::MatrixU matrixU() const
- {
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- return Traits::getU(m_matrix);
- }
-
- /** \returns a view of the lower triangular matrix L */
- inline typename Traits::MatrixL matrixL() const
- {
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- return Traits::getL(m_matrix);
- }
-
- /** \returns the permutation matrix P as a transposition sequence.
- */
- inline const TranspositionType& transpositionsP() const
- {
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- return m_transpositions;
- }
-
- /** \returns the coefficients of the diagonal matrix D */
- inline Diagonal<const MatrixType> vectorD() const
- {
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- return m_matrix.diagonal();
- }
-
- /** \returns true if the matrix is positive (semidefinite) */
- inline bool isPositive() const
- {
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign;
- }
-
- #ifdef EIGEN2_SUPPORT
- inline bool isPositiveDefinite() const
- {
- return isPositive();
- }
- #endif
-
- /** \returns true if the matrix is negative (semidefinite) */
- inline bool isNegative(void) const
- {
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign;
- }
-
- /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> .
- *
- * \note_about_checking_solutions
- *
- * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$
- * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$,
- * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then
- * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the
- * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function
- * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular.
- *
- * \sa MatrixBase::ldlt()
- */
- template<typename Rhs>
- inline const internal::solve_retval<LDLT, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- eigen_assert(m_matrix.rows()==b.rows()
- && "LDLT::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<LDLT, Rhs>(*this, b.derived());
- }
-
- #ifdef EIGEN2_SUPPORT
- template<typename OtherDerived, typename ResultType>
- bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
- {
- *result = this->solve(b);
- return true;
- }
- #endif
-
- template<typename Derived>
- bool solveInPlace(MatrixBase<Derived> &bAndX) const;
-
- LDLT& compute(const MatrixType& matrix);
-
- template <typename Derived>
- LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1);
-
- /** \returns the internal LDLT decomposition matrix
- *
- * TODO: document the storage layout
- */
- inline const MatrixType& matrixLDLT() const
- {
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- return m_matrix;
- }
-
- MatrixType reconstructedMatrix() const;
-
- inline Index rows() const { return m_matrix.rows(); }
- inline Index cols() const { return m_matrix.cols(); }
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful,
- * \c NumericalIssue if the matrix.appears to be negative.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- return Success;
- }
-
- protected:
-
- /** \internal
- * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
- * The strict upper part is used during the decomposition, the strict lower
- * part correspond to the coefficients of L (its diagonal is equal to 1 and
- * is not stored), and the diagonal entries correspond to D.
- */
- MatrixType m_matrix;
- TranspositionType m_transpositions;
- TmpMatrixType m_temporary;
- internal::SignMatrix m_sign;
- bool m_isInitialized;
-};
-
-namespace internal {
-
-template<int UpLo> struct ldlt_inplace;
-
-template<> struct ldlt_inplace<Lower>
-{
- template<typename MatrixType, typename TranspositionType, typename Workspace>
- static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
- {
- using std::abs;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- eigen_assert(mat.rows()==mat.cols());
- const Index size = mat.rows();
-
- if (size <= 1)
- {
- transpositions.setIdentity();
- if (numext::real(mat.coeff(0,0)) > 0) sign = PositiveSemiDef;
- else if (numext::real(mat.coeff(0,0)) < 0) sign = NegativeSemiDef;
- else sign = ZeroSign;
- return true;
- }
-
- for (Index k = 0; k < size; ++k)
- {
- // Find largest diagonal element
- Index index_of_biggest_in_corner;
- mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
- index_of_biggest_in_corner += k;
-
- transpositions.coeffRef(k) = index_of_biggest_in_corner;
- if(k != index_of_biggest_in_corner)
- {
- // apply the transposition while taking care to consider only
- // the lower triangular part
- Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element
- mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
- mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
- std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
- for(int i=k+1;i<index_of_biggest_in_corner;++i)
- {
- Scalar tmp = mat.coeffRef(i,k);
- mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i));
- mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp);
- }
- if(NumTraits<Scalar>::IsComplex)
- mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k));
- }
-
- // partition the matrix:
- // A00 | - | -
- // lu = A10 | A11 | -
- // A20 | A21 | A22
- Index rs = size - k - 1;
- Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
- Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
- Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
-
- if(k>0)
- {
- temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
- mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
- if(rs>0)
- A21.noalias() -= A20 * temp.head(k);
- }
-
- // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
- // was smaller than the cutoff value. However, soince LDLT is not rank-revealing
- // we should only make sure we do not introduce INF or NaN values.
- // LAPACK also uses 0 as the cutoff value.
- RealScalar realAkk = numext::real(mat.coeffRef(k,k));
- if((rs>0) && (abs(realAkk) > RealScalar(0)))
- A21 /= realAkk;
-
- if (sign == PositiveSemiDef) {
- if (realAkk < 0) sign = Indefinite;
- } else if (sign == NegativeSemiDef) {
- if (realAkk > 0) sign = Indefinite;
- } else if (sign == ZeroSign) {
- if (realAkk > 0) sign = PositiveSemiDef;
- else if (realAkk < 0) sign = NegativeSemiDef;
- }
- }
-
- return true;
- }
-
- // Reference for the algorithm: Davis and Hager, "Multiple Rank
- // Modifications of a Sparse Cholesky Factorization" (Algorithm 1)
- // Trivial rearrangements of their computations (Timothy E. Holy)
- // allow their algorithm to work for rank-1 updates even if the
- // original matrix is not of full rank.
- // Here only rank-1 updates are implemented, to reduce the
- // requirement for intermediate storage and improve accuracy
- template<typename MatrixType, typename WDerived>
- static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1)
- {
- using numext::isfinite;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
-
- const Index size = mat.rows();
- eigen_assert(mat.cols() == size && w.size()==size);
-
- RealScalar alpha = 1;
-
- // Apply the update
- for (Index j = 0; j < size; j++)
- {
- // Check for termination due to an original decomposition of low-rank
- if (!(isfinite)(alpha))
- break;
-
- // Update the diagonal terms
- RealScalar dj = numext::real(mat.coeff(j,j));
- Scalar wj = w.coeff(j);
- RealScalar swj2 = sigma*numext::abs2(wj);
- RealScalar gamma = dj*alpha + swj2;
-
- mat.coeffRef(j,j) += swj2/alpha;
- alpha += swj2/dj;
-
-
- // Update the terms of L
- Index rs = size-j-1;
- w.tail(rs) -= wj * mat.col(j).tail(rs);
- if(gamma != 0)
- mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs);
- }
- return true;
- }
-
- template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
- static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1)
- {
- // Apply the permutation to the input w
- tmp = transpositions * w;
-
- return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma);
- }
-};
-
-template<> struct ldlt_inplace<Upper>
-{
- template<typename MatrixType, typename TranspositionType, typename Workspace>
- static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
- {
- Transpose<MatrixType> matt(mat);
- return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
- }
-
- template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
- static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1)
- {
- Transpose<MatrixType> matt(mat);
- return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma);
- }
-};
-
-template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
-{
- typedef const TriangularView<const MatrixType, UnitLower> MatrixL;
- typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
- static inline MatrixL getL(const MatrixType& m) { return m; }
- static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
-};
-
-template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
-{
- typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
- typedef const TriangularView<const MatrixType, UnitUpper> MatrixU;
- static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
- static inline MatrixU getU(const MatrixType& m) { return m; }
-};
-
-} // end namespace internal
-
-/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
- */
-template<typename MatrixType, int _UpLo>
-LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
-{
- eigen_assert(a.rows()==a.cols());
- const Index size = a.rows();
-
- m_matrix = a;
-
- m_transpositions.resize(size);
- m_isInitialized = false;
- m_temporary.resize(size);
-
- internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign);
-
- m_isInitialized = true;
- return *this;
-}
-
-/** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
- * \param w a vector to be incorporated into the decomposition.
- * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
- * \sa setZero()
- */
-template<typename MatrixType, int _UpLo>
-template<typename Derived>
-LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename NumTraits<typename MatrixType::Scalar>::Real& sigma)
-{
- const Index size = w.rows();
- if (m_isInitialized)
- {
- eigen_assert(m_matrix.rows()==size);
- }
- else
- {
- m_matrix.resize(size,size);
- m_matrix.setZero();
- m_transpositions.resize(size);
- for (Index i = 0; i < size; i++)
- m_transpositions.coeffRef(i) = i;
- m_temporary.resize(size);
- m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef;
- m_isInitialized = true;
- }
-
- internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma);
-
- return *this;
-}
-
-namespace internal {
-template<typename _MatrixType, int _UpLo, typename Rhs>
-struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
- : solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs>
-{
- typedef LDLT<_MatrixType,_UpLo> LDLTType;
- EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- eigen_assert(rhs().rows() == dec().matrixLDLT().rows());
- // dst = P b
- dst = dec().transpositionsP() * rhs();
-
- // dst = L^-1 (P b)
- dec().matrixL().solveInPlace(dst);
-
- // dst = D^-1 (L^-1 P b)
- // more precisely, use pseudo-inverse of D (see bug 241)
- using std::abs;
- using std::max;
- typedef typename LDLTType::MatrixType MatrixType;
- typedef typename LDLTType::Scalar Scalar;
- typedef typename LDLTType::RealScalar RealScalar;
- const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD());
- // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
- // as motivated by LAPACK's xGELSS:
- // RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
- // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
- // diagonal element is not well justified and to numerical issues in some cases.
- // Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
- RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
-
- for (Index i = 0; i < vectorD.size(); ++i) {
- if(abs(vectorD(i)) > tolerance)
- dst.row(i) /= vectorD(i);
- else
- dst.row(i).setZero();
- }
-
- // dst = L^-T (D^-1 L^-1 P b)
- dec().matrixU().solveInPlace(dst);
-
- // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
- dst = dec().transpositionsP().transpose() * dst;
- }
-};
-}
-
-/** \internal use x = ldlt_object.solve(x);
- *
- * This is the \em in-place version of solve().
- *
- * \param bAndX represents both the right-hand side matrix b and result x.
- *
- * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
- *
- * This version avoids a copy when the right hand side matrix b is not
- * needed anymore.
- *
- * \sa LDLT::solve(), MatrixBase::ldlt()
- */
-template<typename MatrixType,int _UpLo>
-template<typename Derived>
-bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
-{
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- eigen_assert(m_matrix.rows() == bAndX.rows());
-
- bAndX = this->solve(bAndX);
-
- return true;
-}
-
-/** \returns the matrix represented by the decomposition,
- * i.e., it returns the product: P^T L D L^* P.
- * This function is provided for debug purpose. */
-template<typename MatrixType, int _UpLo>
-MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
-{
- eigen_assert(m_isInitialized && "LDLT is not initialized.");
- const Index size = m_matrix.rows();
- MatrixType res(size,size);
-
- // P
- res.setIdentity();
- res = transpositionsP() * res;
- // L^* P
- res = matrixU() * res;
- // D(L^*P)
- res = vectorD().real().asDiagonal() * res;
- // L(DL^*P)
- res = matrixL() * res;
- // P^T (LDL^*P)
- res = transpositionsP().transpose() * res;
-
- return res;
-}
-
-/** \cholesky_module
- * \returns the Cholesky decomposition with full pivoting without square root of \c *this
- */
-template<typename MatrixType, unsigned int UpLo>
-inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
-SelfAdjointView<MatrixType, UpLo>::ldlt() const
-{
- return LDLT<PlainObject,UpLo>(m_matrix);
-}
-
-/** \cholesky_module
- * \returns the Cholesky decomposition with full pivoting without square root of \c *this
- */
-template<typename Derived>
-inline const LDLT<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::ldlt() const
-{
- return LDLT<PlainObject>(derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_LDLT_H