about summary refs log tree commit diff
path: root/src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h')
-rw-r--r--src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h341
1 files changed, 0 insertions, 341 deletions
diff --git a/src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h b/src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
deleted file mode 100644
index dc240e1..0000000
--- a/src/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
+++ /dev/null
@@ -1,341 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_GENERALIZEDEIGENSOLVER_H
-#define EIGEN_GENERALIZEDEIGENSOLVER_H
-
-#include "./RealQZ.h"
-
-namespace Eigen { 
-
-/** \eigenvalues_module \ingroup Eigenvalues_Module
-  *
-  *
-  * \class GeneralizedEigenSolver
-  *
-  * \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices
-  *
-  * \tparam _MatrixType the type of the matrices of which we are computing the
-  * eigen-decomposition; this is expected to be an instantiation of the Matrix
-  * class template. Currently, only real matrices are supported.
-  *
-  * The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars
-  * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$.  If
-  * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
-  * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
-  * B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
-  * have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition.
-  *
-  * The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the
-  * matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is
-  * singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$
-  * and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero,
-  * then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that:
-  * \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A  = u_i^T B \f$ where \f$ u_i \f$ is
-  * called the left eigenvector.
-  *
-  * Call the function compute() to compute the generalized eigenvalues and eigenvectors of
-  * a given matrix pair. Alternatively, you can use the
-  * GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the
-  * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
-  * eigenvectors are computed, they can be retrieved with the eigenvalues() and
-  * eigenvectors() functions.
-  *
-  * Here is an usage example of this class:
-  * Example: \include GeneralizedEigenSolver.cpp
-  * Output: \verbinclude GeneralizedEigenSolver.out
-  *
-  * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
-  */
-template<typename _MatrixType> class GeneralizedEigenSolver
-{
-  public:
-
-    /** \brief Synonym for the template parameter \p _MatrixType. */
-    typedef _MatrixType MatrixType;
-
-    enum {
-      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
-      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
-      Options = MatrixType::Options,
-      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
-      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
-    };
-
-    /** \brief Scalar type for matrices of type #MatrixType. */
-    typedef typename MatrixType::Scalar Scalar;
-    typedef typename NumTraits<Scalar>::Real RealScalar;
-    typedef typename MatrixType::Index Index;
-
-    /** \brief Complex scalar type for #MatrixType. 
-      *
-      * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
-      * \c float or \c double) and just \c Scalar if #Scalar is
-      * complex.
-      */
-    typedef std::complex<RealScalar> ComplexScalar;
-
-    /** \brief Type for vector of real scalar values eigenvalues as returned by betas().
-      *
-      * This is a column vector with entries of type #Scalar.
-      * The length of the vector is the size of #MatrixType.
-      */
-    typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType;
-
-    /** \brief Type for vector of complex scalar values eigenvalues as returned by betas().
-      *
-      * This is a column vector with entries of type #ComplexScalar.
-      * The length of the vector is the size of #MatrixType.
-      */
-    typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType;
-
-    /** \brief Expression type for the eigenvalues as returned by eigenvalues().
-      */
-    typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType;
-
-    /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). 
-      *
-      * This is a square matrix with entries of type #ComplexScalar. 
-      * The size is the same as the size of #MatrixType.
-      */
-    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
-
-    /** \brief Default constructor.
-      *
-      * The default constructor is useful in cases in which the user intends to
-      * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
-      *
-      * \sa compute() for an example.
-      */
-    GeneralizedEigenSolver() : m_eivec(), m_alphas(), m_betas(), m_isInitialized(false), m_realQZ(), m_matS(), m_tmp() {}
-
-    /** \brief Default constructor with memory preallocation
-      *
-      * Like the default constructor but with preallocation of the internal data
-      * according to the specified problem \a size.
-      * \sa GeneralizedEigenSolver()
-      */
-    GeneralizedEigenSolver(Index size)
-      : m_eivec(size, size),
-        m_alphas(size),
-        m_betas(size),
-        m_isInitialized(false),
-        m_eigenvectorsOk(false),
-        m_realQZ(size),
-        m_matS(size, size),
-        m_tmp(size)
-    {}
-
-    /** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
-      * 
-      * \param[in]  A  Square matrix whose eigendecomposition is to be computed.
-      * \param[in]  B  Square matrix whose eigendecomposition is to be computed.
-      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
-      *    eigenvalues are computed; if false, only the eigenvalues are computed.
-      *
-      * This constructor calls compute() to compute the generalized eigenvalues
-      * and eigenvectors.
-      *
-      * \sa compute()
-      */
-    GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true)
-      : m_eivec(A.rows(), A.cols()),
-        m_alphas(A.cols()),
-        m_betas(A.cols()),
-        m_isInitialized(false),
-        m_eigenvectorsOk(false),
-        m_realQZ(A.cols()),
-        m_matS(A.rows(), A.cols()),
-        m_tmp(A.cols())
-    {
-      compute(A, B, computeEigenvectors);
-    }
-
-    /* \brief Returns the computed generalized eigenvectors.
-      *
-      * \returns  %Matrix whose columns are the (possibly complex) eigenvectors.
-      *
-      * \pre Either the constructor 
-      * GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function
-      * compute(const MatrixType&, const MatrixType& bool) has been called before, and
-      * \p computeEigenvectors was set to true (the default).
-      *
-      * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
-      * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The
-      * eigenvectors are normalized to have (Euclidean) norm equal to one. The
-      * matrix returned by this function is the matrix \f$ V \f$ in the
-      * generalized eigendecomposition \f$ A = B V D V^{-1} \f$, if it exists.
-      *
-      * \sa eigenvalues()
-      */
-//    EigenvectorsType eigenvectors() const;
-
-    /** \brief Returns an expression of the computed generalized eigenvalues.
-      *
-      * \returns An expression of the column vector containing the eigenvalues.
-      *
-      * It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode
-      * Not that betas might contain zeros. It is therefore not recommended to use this function,
-      * but rather directly deal with the alphas and betas vectors.
-      *
-      * \pre Either the constructor 
-      * GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function
-      * compute(const MatrixType&,const MatrixType&,bool) has been called before.
-      *
-      * The eigenvalues are repeated according to their algebraic multiplicity,
-      * so there are as many eigenvalues as rows in the matrix. The eigenvalues 
-      * are not sorted in any particular order.
-      *
-      * \sa alphas(), betas(), eigenvectors()
-      */
-    EigenvalueType eigenvalues() const
-    {
-      eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
-      return EigenvalueType(m_alphas,m_betas);
-    }
-
-    /** \returns A const reference to the vectors containing the alpha values
-      *
-      * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
-      *
-      * \sa betas(), eigenvalues() */
-    ComplexVectorType alphas() const
-    {
-      eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
-      return m_alphas;
-    }
-
-    /** \returns A const reference to the vectors containing the beta values
-      *
-      * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
-      *
-      * \sa alphas(), eigenvalues() */
-    VectorType betas() const
-    {
-      eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
-      return m_betas;
-    }
-
-    /** \brief Computes generalized eigendecomposition of given matrix.
-      * 
-      * \param[in]  A  Square matrix whose eigendecomposition is to be computed.
-      * \param[in]  B  Square matrix whose eigendecomposition is to be computed.
-      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
-      *    eigenvalues are computed; if false, only the eigenvalues are
-      *    computed. 
-      * \returns    Reference to \c *this
-      *
-      * This function computes the eigenvalues of the real matrix \p matrix.
-      * The eigenvalues() function can be used to retrieve them.  If 
-      * \p computeEigenvectors is true, then the eigenvectors are also computed
-      * and can be retrieved by calling eigenvectors().
-      *
-      * The matrix is first reduced to real generalized Schur form using the RealQZ
-      * class. The generalized Schur decomposition is then used to compute the eigenvalues
-      * and eigenvectors.
-      *
-      * The cost of the computation is dominated by the cost of the
-      * generalized Schur decomposition.
-      *
-      * This method reuses of the allocated data in the GeneralizedEigenSolver object.
-      */
-    GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true);
-
-    ComputationInfo info() const
-    {
-      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
-      return m_realQZ.info();
-    }
-
-    /** Sets the maximal number of iterations allowed.
-    */
-    GeneralizedEigenSolver& setMaxIterations(Index maxIters)
-    {
-      m_realQZ.setMaxIterations(maxIters);
-      return *this;
-    }
-
-  protected:
-    MatrixType m_eivec;
-    ComplexVectorType m_alphas;
-    VectorType m_betas;
-    bool m_isInitialized;
-    bool m_eigenvectorsOk;
-    RealQZ<MatrixType> m_realQZ;
-    MatrixType m_matS;
-
-    typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
-    ColumnVectorType m_tmp;
-};
-
-//template<typename MatrixType>
-//typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType GeneralizedEigenSolver<MatrixType>::eigenvectors() const
-//{
-//  eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
-//  eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
-//  Index n = m_eivec.cols();
-//  EigenvectorsType matV(n,n);
-//  // TODO
-//  return matV;
-//}
-
-template<typename MatrixType>
-GeneralizedEigenSolver<MatrixType>&
-GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
-{
-  using std::sqrt;
-  using std::abs;
-  eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
-
-  // Reduce to generalized real Schur form:
-  // A = Q S Z and B = Q T Z
-  m_realQZ.compute(A, B, computeEigenvectors);
-
-  if (m_realQZ.info() == Success)
-  {
-    m_matS = m_realQZ.matrixS();
-    if (computeEigenvectors)
-      m_eivec = m_realQZ.matrixZ().transpose();
-  
-    // Compute eigenvalues from matS
-    m_alphas.resize(A.cols());
-    m_betas.resize(A.cols());
-    Index i = 0;
-    while (i < A.cols())
-    {
-      if (i == A.cols() - 1 || m_matS.coeff(i+1, i) == Scalar(0))
-      {
-        m_alphas.coeffRef(i) = m_matS.coeff(i, i);
-        m_betas.coeffRef(i)  = m_realQZ.matrixT().coeff(i,i);
-        ++i;
-      }
-      else
-      {
-        Scalar p = Scalar(0.5) * (m_matS.coeff(i, i) - m_matS.coeff(i+1, i+1));
-        Scalar z = sqrt(abs(p * p + m_matS.coeff(i+1, i) * m_matS.coeff(i, i+1)));
-        m_alphas.coeffRef(i)   = ComplexScalar(m_matS.coeff(i+1, i+1) + p, z);
-        m_alphas.coeffRef(i+1) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, -z);
-
-        m_betas.coeffRef(i)   = m_realQZ.matrixT().coeff(i,i);
-        m_betas.coeffRef(i+1) = m_realQZ.matrixT().coeff(i,i);
-        i += 2;
-      }
-    }
-  }
-
-  m_isInitialized = true;
-  m_eigenvectorsOk = false;//computeEigenvectors;
-
-  return *this;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_GENERALIZEDEIGENSOLVER_H