aboutsummaryrefslogtreecommitdiff
path: root/src/Eigen/src/Eigen2Support/Geometry/Hyperplane.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Eigen/src/Eigen2Support/Geometry/Hyperplane.h')
-rw-r--r--src/Eigen/src/Eigen2Support/Geometry/Hyperplane.h254
1 files changed, 0 insertions, 254 deletions
diff --git a/src/Eigen/src/Eigen2Support/Geometry/Hyperplane.h b/src/Eigen/src/Eigen2Support/Geometry/Hyperplane.h
deleted file mode 100644
index b95bf00..0000000
--- a/src/Eigen/src/Eigen2Support/Geometry/Hyperplane.h
+++ /dev/null
@@ -1,254 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Hyperplane
- *
- * \brief A hyperplane
- *
- * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
- * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
- * Notice that the dimension of the hyperplane is _AmbientDim-1.
- *
- * This class represents an hyperplane as the zero set of the implicit equation
- * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
- * and \f$ d \f$ is the distance (offset) to the origin.
- */
-template <typename _Scalar, int _AmbientDim>
-class Hyperplane
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
- enum { AmbientDimAtCompileTime = _AmbientDim };
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
- typedef Matrix<Scalar,int(AmbientDimAtCompileTime)==Dynamic
- ? Dynamic
- : int(AmbientDimAtCompileTime)+1,1> Coefficients;
- typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
-
- /** Default constructor without initialization */
- inline Hyperplane() {}
-
- /** Constructs a dynamic-size hyperplane with \a _dim the dimension
- * of the ambient space */
- inline explicit Hyperplane(int _dim) : m_coeffs(_dim+1) {}
-
- /** Construct a plane from its normal \a n and a point \a e onto the plane.
- * \warning the vector normal is assumed to be normalized.
- */
- inline Hyperplane(const VectorType& n, const VectorType& e)
- : m_coeffs(n.size()+1)
- {
- normal() = n;
- offset() = -e.eigen2_dot(n);
- }
-
- /** Constructs a plane from its normal \a n and distance to the origin \a d
- * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
- * \warning the vector normal is assumed to be normalized.
- */
- inline Hyperplane(const VectorType& n, Scalar d)
- : m_coeffs(n.size()+1)
- {
- normal() = n;
- offset() = d;
- }
-
- /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
- * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
- */
- static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
- {
- Hyperplane result(p0.size());
- result.normal() = (p1 - p0).unitOrthogonal();
- result.offset() = -result.normal().eigen2_dot(p0);
- return result;
- }
-
- /** Constructs a hyperplane passing through the three points. The dimension of the ambient space
- * is required to be exactly 3.
- */
- static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
- {
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
- Hyperplane result(p0.size());
- result.normal() = (p2 - p0).cross(p1 - p0).normalized();
- result.offset() = -result.normal().eigen2_dot(p0);
- return result;
- }
-
- /** Constructs a hyperplane passing through the parametrized line \a parametrized.
- * If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
- * so an arbitrary choice is made.
- */
- // FIXME to be consitent with the rest this could be implemented as a static Through function ??
- explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
- {
- normal() = parametrized.direction().unitOrthogonal();
- offset() = -normal().eigen2_dot(parametrized.origin());
- }
-
- ~Hyperplane() {}
-
- /** \returns the dimension in which the plane holds */
- inline int dim() const { return int(AmbientDimAtCompileTime)==Dynamic ? m_coeffs.size()-1 : int(AmbientDimAtCompileTime); }
-
- /** normalizes \c *this */
- void normalize(void)
- {
- m_coeffs /= normal().norm();
- }
-
- /** \returns the signed distance between the plane \c *this and a point \a p.
- * \sa absDistance()
- */
- inline Scalar signedDistance(const VectorType& p) const { return p.eigen2_dot(normal()) + offset(); }
-
- /** \returns the absolute distance between the plane \c *this and a point \a p.
- * \sa signedDistance()
- */
- inline Scalar absDistance(const VectorType& p) const { return ei_abs(signedDistance(p)); }
-
- /** \returns the projection of a point \a p onto the plane \c *this.
- */
- inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
-
- /** \returns a constant reference to the unit normal vector of the plane, which corresponds
- * to the linear part of the implicit equation.
- */
- inline const NormalReturnType normal() const { return NormalReturnType(*const_cast<Coefficients*>(&m_coeffs),0,0,dim(),1); }
-
- /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
- * to the linear part of the implicit equation.
- */
- inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
-
- /** \returns the distance to the origin, which is also the "constant term" of the implicit equation
- * \warning the vector normal is assumed to be normalized.
- */
- inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
-
- /** \returns a non-constant reference to the distance to the origin, which is also the constant part
- * of the implicit equation */
- inline Scalar& offset() { return m_coeffs(dim()); }
-
- /** \returns a constant reference to the coefficients c_i of the plane equation:
- * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
- */
- inline const Coefficients& coeffs() const { return m_coeffs; }
-
- /** \returns a non-constant reference to the coefficients c_i of the plane equation:
- * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
- */
- inline Coefficients& coeffs() { return m_coeffs; }
-
- /** \returns the intersection of *this with \a other.
- *
- * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
- *
- * \note If \a other is approximately parallel to *this, this method will return any point on *this.
- */
- VectorType intersection(const Hyperplane& other)
- {
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
- Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
- // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
- // whether the two lines are approximately parallel.
- if(ei_isMuchSmallerThan(det, Scalar(1)))
- { // special case where the two lines are approximately parallel. Pick any point on the first line.
- if(ei_abs(coeffs().coeff(1))>ei_abs(coeffs().coeff(0)))
- return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
- else
- return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
- }
- else
- { // general case
- Scalar invdet = Scalar(1) / det;
- return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
- invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
- }
- }
-
- /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
- *
- * \param mat the Dim x Dim transformation matrix
- * \param traits specifies whether the matrix \a mat represents an Isometry
- * or a more generic Affine transformation. The default is Affine.
- */
- template<typename XprType>
- inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
- {
- if (traits==Affine)
- normal() = mat.inverse().transpose() * normal();
- else if (traits==Isometry)
- normal() = mat * normal();
- else
- {
- ei_assert("invalid traits value in Hyperplane::transform()");
- }
- return *this;
- }
-
- /** Applies the transformation \a t to \c *this and returns a reference to \c *this.
- *
- * \param t the transformation of dimension Dim
- * \param traits specifies whether the transformation \a t represents an Isometry
- * or a more generic Affine transformation. The default is Affine.
- * Other kind of transformations are not supported.
- */
- inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime>& t,
- TransformTraits traits = Affine)
- {
- transform(t.linear(), traits);
- offset() -= t.translation().eigen2_dot(normal());
- return *this;
- }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Hyperplane,
- Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
- {
- return typename internal::cast_return_type<Hyperplane,
- Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
- }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime>& other)
- { m_coeffs = other.coeffs().template cast<Scalar>(); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Hyperplane& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_coeffs.isApprox(other.m_coeffs, prec); }
-
-protected:
-
- Coefficients m_coeffs;
-};
-
-} // end namespace Eigen