diff options
Diffstat (limited to 'src/Eigen/src/Eigen2Support/Geometry/Hyperplane.h')
-rw-r--r-- | src/Eigen/src/Eigen2Support/Geometry/Hyperplane.h | 254 |
1 files changed, 0 insertions, 254 deletions
diff --git a/src/Eigen/src/Eigen2Support/Geometry/Hyperplane.h b/src/Eigen/src/Eigen2Support/Geometry/Hyperplane.h deleted file mode 100644 index b95bf00..0000000 --- a/src/Eigen/src/Eigen2Support/Geometry/Hyperplane.h +++ /dev/null @@ -1,254 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> -// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * \class Hyperplane - * - * \brief A hyperplane - * - * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n. - * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane. - * - * \param _Scalar the scalar type, i.e., the type of the coefficients - * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. - * Notice that the dimension of the hyperplane is _AmbientDim-1. - * - * This class represents an hyperplane as the zero set of the implicit equation - * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part) - * and \f$ d \f$ is the distance (offset) to the origin. - */ -template <typename _Scalar, int _AmbientDim> -class Hyperplane -{ -public: - EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1) - enum { AmbientDimAtCompileTime = _AmbientDim }; - typedef _Scalar Scalar; - typedef typename NumTraits<Scalar>::Real RealScalar; - typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType; - typedef Matrix<Scalar,int(AmbientDimAtCompileTime)==Dynamic - ? Dynamic - : int(AmbientDimAtCompileTime)+1,1> Coefficients; - typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType; - - /** Default constructor without initialization */ - inline Hyperplane() {} - - /** Constructs a dynamic-size hyperplane with \a _dim the dimension - * of the ambient space */ - inline explicit Hyperplane(int _dim) : m_coeffs(_dim+1) {} - - /** Construct a plane from its normal \a n and a point \a e onto the plane. - * \warning the vector normal is assumed to be normalized. - */ - inline Hyperplane(const VectorType& n, const VectorType& e) - : m_coeffs(n.size()+1) - { - normal() = n; - offset() = -e.eigen2_dot(n); - } - - /** Constructs a plane from its normal \a n and distance to the origin \a d - * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$. - * \warning the vector normal is assumed to be normalized. - */ - inline Hyperplane(const VectorType& n, Scalar d) - : m_coeffs(n.size()+1) - { - normal() = n; - offset() = d; - } - - /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space - * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made. - */ - static inline Hyperplane Through(const VectorType& p0, const VectorType& p1) - { - Hyperplane result(p0.size()); - result.normal() = (p1 - p0).unitOrthogonal(); - result.offset() = -result.normal().eigen2_dot(p0); - return result; - } - - /** Constructs a hyperplane passing through the three points. The dimension of the ambient space - * is required to be exactly 3. - */ - static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2) - { - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3) - Hyperplane result(p0.size()); - result.normal() = (p2 - p0).cross(p1 - p0).normalized(); - result.offset() = -result.normal().eigen2_dot(p0); - return result; - } - - /** Constructs a hyperplane passing through the parametrized line \a parametrized. - * If the dimension of the ambient space is greater than 2, then there isn't uniqueness, - * so an arbitrary choice is made. - */ - // FIXME to be consitent with the rest this could be implemented as a static Through function ?? - explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized) - { - normal() = parametrized.direction().unitOrthogonal(); - offset() = -normal().eigen2_dot(parametrized.origin()); - } - - ~Hyperplane() {} - - /** \returns the dimension in which the plane holds */ - inline int dim() const { return int(AmbientDimAtCompileTime)==Dynamic ? m_coeffs.size()-1 : int(AmbientDimAtCompileTime); } - - /** normalizes \c *this */ - void normalize(void) - { - m_coeffs /= normal().norm(); - } - - /** \returns the signed distance between the plane \c *this and a point \a p. - * \sa absDistance() - */ - inline Scalar signedDistance(const VectorType& p) const { return p.eigen2_dot(normal()) + offset(); } - - /** \returns the absolute distance between the plane \c *this and a point \a p. - * \sa signedDistance() - */ - inline Scalar absDistance(const VectorType& p) const { return ei_abs(signedDistance(p)); } - - /** \returns the projection of a point \a p onto the plane \c *this. - */ - inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); } - - /** \returns a constant reference to the unit normal vector of the plane, which corresponds - * to the linear part of the implicit equation. - */ - inline const NormalReturnType normal() const { return NormalReturnType(*const_cast<Coefficients*>(&m_coeffs),0,0,dim(),1); } - - /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds - * to the linear part of the implicit equation. - */ - inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); } - - /** \returns the distance to the origin, which is also the "constant term" of the implicit equation - * \warning the vector normal is assumed to be normalized. - */ - inline const Scalar& offset() const { return m_coeffs.coeff(dim()); } - - /** \returns a non-constant reference to the distance to the origin, which is also the constant part - * of the implicit equation */ - inline Scalar& offset() { return m_coeffs(dim()); } - - /** \returns a constant reference to the coefficients c_i of the plane equation: - * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ - */ - inline const Coefficients& coeffs() const { return m_coeffs; } - - /** \returns a non-constant reference to the coefficients c_i of the plane equation: - * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ - */ - inline Coefficients& coeffs() { return m_coeffs; } - - /** \returns the intersection of *this with \a other. - * - * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines. - * - * \note If \a other is approximately parallel to *this, this method will return any point on *this. - */ - VectorType intersection(const Hyperplane& other) - { - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) - Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0); - // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests - // whether the two lines are approximately parallel. - if(ei_isMuchSmallerThan(det, Scalar(1))) - { // special case where the two lines are approximately parallel. Pick any point on the first line. - if(ei_abs(coeffs().coeff(1))>ei_abs(coeffs().coeff(0))) - return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0)); - else - return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0)); - } - else - { // general case - Scalar invdet = Scalar(1) / det; - return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)), - invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2))); - } - } - - /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this. - * - * \param mat the Dim x Dim transformation matrix - * \param traits specifies whether the matrix \a mat represents an Isometry - * or a more generic Affine transformation. The default is Affine. - */ - template<typename XprType> - inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine) - { - if (traits==Affine) - normal() = mat.inverse().transpose() * normal(); - else if (traits==Isometry) - normal() = mat * normal(); - else - { - ei_assert("invalid traits value in Hyperplane::transform()"); - } - return *this; - } - - /** Applies the transformation \a t to \c *this and returns a reference to \c *this. - * - * \param t the transformation of dimension Dim - * \param traits specifies whether the transformation \a t represents an Isometry - * or a more generic Affine transformation. The default is Affine. - * Other kind of transformations are not supported. - */ - inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime>& t, - TransformTraits traits = Affine) - { - transform(t.linear(), traits); - offset() -= t.translation().eigen2_dot(normal()); - return *this; - } - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template<typename NewScalarType> - inline typename internal::cast_return_type<Hyperplane, - Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type cast() const - { - return typename internal::cast_return_type<Hyperplane, - Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type(*this); - } - - /** Copy constructor with scalar type conversion */ - template<typename OtherScalarType> - inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime>& other) - { m_coeffs = other.coeffs().template cast<Scalar>(); } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - bool isApprox(const Hyperplane& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const - { return m_coeffs.isApprox(other.m_coeffs, prec); } - -protected: - - Coefficients m_coeffs; -}; - -} // end namespace Eigen |