about summary refs log tree commit diff
path: root/src/Eigen/src/Core/Transpositions.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Eigen/src/Core/Transpositions.h')
-rw-r--r--src/Eigen/src/Core/Transpositions.h436
1 files changed, 0 insertions, 436 deletions
diff --git a/src/Eigen/src/Core/Transpositions.h b/src/Eigen/src/Core/Transpositions.h
deleted file mode 100644
index e4ba075..0000000
--- a/src/Eigen/src/Core/Transpositions.h
+++ /dev/null
@@ -1,436 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_TRANSPOSITIONS_H
-#define EIGEN_TRANSPOSITIONS_H
-
-namespace Eigen { 
-
-/** \class Transpositions
-  * \ingroup Core_Module
-  *
-  * \brief Represents a sequence of transpositions (row/column interchange)
-  *
-  * \param SizeAtCompileTime the number of transpositions, or Dynamic
-  * \param MaxSizeAtCompileTime the maximum number of transpositions, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
-  *
-  * This class represents a permutation transformation as a sequence of \em n transpositions
-  * \f$[T_{n-1} \ldots T_{i} \ldots T_{0}]\f$. It is internally stored as a vector of integers \c indices.
-  * Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges
-  * the rows \c i and \c indices[i] of the matrix \c M.
-  * A transposition applied on the right (e.g., \f$ M T_{i}\f$) yields a column interchange.
-  *
-  * Compared to the class PermutationMatrix, such a sequence of transpositions is what is
-  * computed during a decomposition with pivoting, and it is faster when applying the permutation in-place.
-  * 
-  * To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example:
-  * \code
-  * Transpositions tr;
-  * MatrixXf mat;
-  * mat = tr * mat;
-  * \endcode
-  * In this example, we detect that the matrix appears on both side, and so the transpositions
-  * are applied in-place without any temporary or extra copy.
-  *
-  * \sa class PermutationMatrix
-  */
-
-namespace internal {
-template<typename TranspositionType, typename MatrixType, int Side, bool Transposed=false> struct transposition_matrix_product_retval;
-}
-
-template<typename Derived>
-class TranspositionsBase
-{
-    typedef internal::traits<Derived> Traits;
-    
-  public:
-
-    typedef typename Traits::IndicesType IndicesType;
-    typedef typename IndicesType::Scalar Index;
-
-    Derived& derived() { return *static_cast<Derived*>(this); }
-    const Derived& derived() const { return *static_cast<const Derived*>(this); }
-
-    /** Copies the \a other transpositions into \c *this */
-    template<typename OtherDerived>
-    Derived& operator=(const TranspositionsBase<OtherDerived>& other)
-    {
-      indices() = other.indices();
-      return derived();
-    }
-
-    #ifndef EIGEN_PARSED_BY_DOXYGEN
-    /** This is a special case of the templated operator=. Its purpose is to
-      * prevent a default operator= from hiding the templated operator=.
-      */
-    Derived& operator=(const TranspositionsBase& other)
-    {
-      indices() = other.indices();
-      return derived();
-    }
-    #endif
-
-    /** \returns the number of transpositions */
-    inline Index size() const { return indices().size(); }
-
-    /** Direct access to the underlying index vector */
-    inline const Index& coeff(Index i) const { return indices().coeff(i); }
-    /** Direct access to the underlying index vector */
-    inline Index& coeffRef(Index i) { return indices().coeffRef(i); }
-    /** Direct access to the underlying index vector */
-    inline const Index& operator()(Index i) const { return indices()(i); }
-    /** Direct access to the underlying index vector */
-    inline Index& operator()(Index i) { return indices()(i); }
-    /** Direct access to the underlying index vector */
-    inline const Index& operator[](Index i) const { return indices()(i); }
-    /** Direct access to the underlying index vector */
-    inline Index& operator[](Index i) { return indices()(i); }
-
-    /** const version of indices(). */
-    const IndicesType& indices() const { return derived().indices(); }
-    /** \returns a reference to the stored array representing the transpositions. */
-    IndicesType& indices() { return derived().indices(); }
-
-    /** Resizes to given size. */
-    inline void resize(int newSize)
-    {
-      indices().resize(newSize);
-    }
-
-    /** Sets \c *this to represents an identity transformation */
-    void setIdentity()
-    {
-      for(int i = 0; i < indices().size(); ++i)
-        coeffRef(i) = i;
-    }
-
-    // FIXME: do we want such methods ?
-    // might be usefull when the target matrix expression is complex, e.g.:
-    // object.matrix().block(..,..,..,..) = trans * object.matrix().block(..,..,..,..);
-    /*
-    template<typename MatrixType>
-    void applyForwardToRows(MatrixType& mat) const
-    {
-      for(Index k=0 ; k<size() ; ++k)
-        if(m_indices(k)!=k)
-          mat.row(k).swap(mat.row(m_indices(k)));
-    }
-
-    template<typename MatrixType>
-    void applyBackwardToRows(MatrixType& mat) const
-    {
-      for(Index k=size()-1 ; k>=0 ; --k)
-        if(m_indices(k)!=k)
-          mat.row(k).swap(mat.row(m_indices(k)));
-    }
-    */
-
-    /** \returns the inverse transformation */
-    inline Transpose<TranspositionsBase> inverse() const
-    { return Transpose<TranspositionsBase>(derived()); }
-
-    /** \returns the tranpose transformation */
-    inline Transpose<TranspositionsBase> transpose() const
-    { return Transpose<TranspositionsBase>(derived()); }
-
-  protected:
-};
-
-namespace internal {
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
-struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
-{
-  typedef IndexType Index;
-  typedef Matrix<Index, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
-};
-}
-
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
-class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
-{
-    typedef internal::traits<Transpositions> Traits;
-  public:
-
-    typedef TranspositionsBase<Transpositions> Base;
-    typedef typename Traits::IndicesType IndicesType;
-    typedef typename IndicesType::Scalar Index;
-
-    inline Transpositions() {}
-
-    /** Copy constructor. */
-    template<typename OtherDerived>
-    inline Transpositions(const TranspositionsBase<OtherDerived>& other)
-      : m_indices(other.indices()) {}
-
-    #ifndef EIGEN_PARSED_BY_DOXYGEN
-    /** Standard copy constructor. Defined only to prevent a default copy constructor
-      * from hiding the other templated constructor */
-    inline Transpositions(const Transpositions& other) : m_indices(other.indices()) {}
-    #endif
-
-    /** Generic constructor from expression of the transposition indices. */
-    template<typename Other>
-    explicit inline Transpositions(const MatrixBase<Other>& a_indices) : m_indices(a_indices)
-    {}
-
-    /** Copies the \a other transpositions into \c *this */
-    template<typename OtherDerived>
-    Transpositions& operator=(const TranspositionsBase<OtherDerived>& other)
-    {
-      return Base::operator=(other);
-    }
-
-    #ifndef EIGEN_PARSED_BY_DOXYGEN
-    /** This is a special case of the templated operator=. Its purpose is to
-      * prevent a default operator= from hiding the templated operator=.
-      */
-    Transpositions& operator=(const Transpositions& other)
-    {
-      m_indices = other.m_indices;
-      return *this;
-    }
-    #endif
-
-    /** Constructs an uninitialized permutation matrix of given size.
-      */
-    inline Transpositions(Index size) : m_indices(size)
-    {}
-
-    /** const version of indices(). */
-    const IndicesType& indices() const { return m_indices; }
-    /** \returns a reference to the stored array representing the transpositions. */
-    IndicesType& indices() { return m_indices; }
-
-  protected:
-
-    IndicesType m_indices;
-};
-
-
-namespace internal {
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
-struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,_PacketAccess> >
-{
-  typedef IndexType Index;
-  typedef Map<const Matrix<Index,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType;
-};
-}
-
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int PacketAccess>
-class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess>
- : public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess> >
-{
-    typedef internal::traits<Map> Traits;
-  public:
-
-    typedef TranspositionsBase<Map> Base;
-    typedef typename Traits::IndicesType IndicesType;
-    typedef typename IndicesType::Scalar Index;
-
-    inline Map(const Index* indicesPtr)
-      : m_indices(indicesPtr)
-    {}
-
-    inline Map(const Index* indicesPtr, Index size)
-      : m_indices(indicesPtr,size)
-    {}
-
-    /** Copies the \a other transpositions into \c *this */
-    template<typename OtherDerived>
-    Map& operator=(const TranspositionsBase<OtherDerived>& other)
-    {
-      return Base::operator=(other);
-    }
-
-    #ifndef EIGEN_PARSED_BY_DOXYGEN
-    /** This is a special case of the templated operator=. Its purpose is to
-      * prevent a default operator= from hiding the templated operator=.
-      */
-    Map& operator=(const Map& other)
-    {
-      m_indices = other.m_indices;
-      return *this;
-    }
-    #endif
-
-    /** const version of indices(). */
-    const IndicesType& indices() const { return m_indices; }
-    
-    /** \returns a reference to the stored array representing the transpositions. */
-    IndicesType& indices() { return m_indices; }
-
-  protected:
-
-    IndicesType m_indices;
-};
-
-namespace internal {
-template<typename _IndicesType>
-struct traits<TranspositionsWrapper<_IndicesType> >
-{
-  typedef typename _IndicesType::Scalar Index;
-  typedef _IndicesType IndicesType;
-};
-}
-
-template<typename _IndicesType>
-class TranspositionsWrapper
- : public TranspositionsBase<TranspositionsWrapper<_IndicesType> >
-{
-    typedef internal::traits<TranspositionsWrapper> Traits;
-  public:
-
-    typedef TranspositionsBase<TranspositionsWrapper> Base;
-    typedef typename Traits::IndicesType IndicesType;
-    typedef typename IndicesType::Scalar Index;
-
-    inline TranspositionsWrapper(IndicesType& a_indices)
-      : m_indices(a_indices)
-    {}
-
-    /** Copies the \a other transpositions into \c *this */
-    template<typename OtherDerived>
-    TranspositionsWrapper& operator=(const TranspositionsBase<OtherDerived>& other)
-    {
-      return Base::operator=(other);
-    }
-
-    #ifndef EIGEN_PARSED_BY_DOXYGEN
-    /** This is a special case of the templated operator=. Its purpose is to
-      * prevent a default operator= from hiding the templated operator=.
-      */
-    TranspositionsWrapper& operator=(const TranspositionsWrapper& other)
-    {
-      m_indices = other.m_indices;
-      return *this;
-    }
-    #endif
-
-    /** const version of indices(). */
-    const IndicesType& indices() const { return m_indices; }
-
-    /** \returns a reference to the stored array representing the transpositions. */
-    IndicesType& indices() { return m_indices; }
-
-  protected:
-
-    const typename IndicesType::Nested m_indices;
-};
-
-/** \returns the \a matrix with the \a transpositions applied to the columns.
-  */
-template<typename Derived, typename TranspositionsDerived>
-inline const internal::transposition_matrix_product_retval<TranspositionsDerived, Derived, OnTheRight>
-operator*(const MatrixBase<Derived>& matrix,
-          const TranspositionsBase<TranspositionsDerived> &transpositions)
-{
-  return internal::transposition_matrix_product_retval
-           <TranspositionsDerived, Derived, OnTheRight>
-           (transpositions.derived(), matrix.derived());
-}
-
-/** \returns the \a matrix with the \a transpositions applied to the rows.
-  */
-template<typename Derived, typename TranspositionDerived>
-inline const internal::transposition_matrix_product_retval
-               <TranspositionDerived, Derived, OnTheLeft>
-operator*(const TranspositionsBase<TranspositionDerived> &transpositions,
-          const MatrixBase<Derived>& matrix)
-{
-  return internal::transposition_matrix_product_retval
-           <TranspositionDerived, Derived, OnTheLeft>
-           (transpositions.derived(), matrix.derived());
-}
-
-namespace internal {
-
-template<typename TranspositionType, typename MatrixType, int Side, bool Transposed>
-struct traits<transposition_matrix_product_retval<TranspositionType, MatrixType, Side, Transposed> >
-{
-  typedef typename MatrixType::PlainObject ReturnType;
-};
-
-template<typename TranspositionType, typename MatrixType, int Side, bool Transposed>
-struct transposition_matrix_product_retval
- : public ReturnByValue<transposition_matrix_product_retval<TranspositionType, MatrixType, Side, Transposed> >
-{
-    typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
-    typedef typename TranspositionType::Index Index;
-
-    transposition_matrix_product_retval(const TranspositionType& tr, const MatrixType& matrix)
-      : m_transpositions(tr), m_matrix(matrix)
-    {}
-
-    inline int rows() const { return m_matrix.rows(); }
-    inline int cols() const { return m_matrix.cols(); }
-
-    template<typename Dest> inline void evalTo(Dest& dst) const
-    {
-      const int size = m_transpositions.size();
-      Index j = 0;
-
-      if(!(is_same<MatrixTypeNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_matrix)))
-        dst = m_matrix;
-
-      for(int k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
-        if((j=m_transpositions.coeff(k))!=k)
-        {
-          if(Side==OnTheLeft)
-            dst.row(k).swap(dst.row(j));
-          else if(Side==OnTheRight)
-            dst.col(k).swap(dst.col(j));
-        }
-    }
-
-  protected:
-    const TranspositionType& m_transpositions;
-    typename MatrixType::Nested m_matrix;
-};
-
-} // end namespace internal
-
-/* Template partial specialization for transposed/inverse transpositions */
-
-template<typename TranspositionsDerived>
-class Transpose<TranspositionsBase<TranspositionsDerived> >
-{
-    typedef TranspositionsDerived TranspositionType;
-    typedef typename TranspositionType::IndicesType IndicesType;
-  public:
-
-    Transpose(const TranspositionType& t) : m_transpositions(t) {}
-
-    inline int size() const { return m_transpositions.size(); }
-
-    /** \returns the \a matrix with the inverse transpositions applied to the columns.
-      */
-    template<typename Derived> friend
-    inline const internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheRight, true>
-    operator*(const MatrixBase<Derived>& matrix, const Transpose& trt)
-    {
-      return internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheRight, true>(trt.m_transpositions, matrix.derived());
-    }
-
-    /** \returns the \a matrix with the inverse transpositions applied to the rows.
-      */
-    template<typename Derived>
-    inline const internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheLeft, true>
-    operator*(const MatrixBase<Derived>& matrix) const
-    {
-      return internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheLeft, true>(m_transpositions, matrix.derived());
-    }
-
-  protected:
-    const TranspositionType& m_transpositions;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_TRANSPOSITIONS_H