aboutsummaryrefslogtreecommitdiff
path: root/src/Eigen/src/Core/Transpositions.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Eigen/src/Core/Transpositions.h')
-rw-r--r--src/Eigen/src/Core/Transpositions.h436
1 files changed, 0 insertions, 436 deletions
diff --git a/src/Eigen/src/Core/Transpositions.h b/src/Eigen/src/Core/Transpositions.h
deleted file mode 100644
index e4ba075..0000000
--- a/src/Eigen/src/Core/Transpositions.h
+++ /dev/null
@@ -1,436 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_TRANSPOSITIONS_H
-#define EIGEN_TRANSPOSITIONS_H
-
-namespace Eigen {
-
-/** \class Transpositions
- * \ingroup Core_Module
- *
- * \brief Represents a sequence of transpositions (row/column interchange)
- *
- * \param SizeAtCompileTime the number of transpositions, or Dynamic
- * \param MaxSizeAtCompileTime the maximum number of transpositions, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
- *
- * This class represents a permutation transformation as a sequence of \em n transpositions
- * \f$[T_{n-1} \ldots T_{i} \ldots T_{0}]\f$. It is internally stored as a vector of integers \c indices.
- * Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges
- * the rows \c i and \c indices[i] of the matrix \c M.
- * A transposition applied on the right (e.g., \f$ M T_{i}\f$) yields a column interchange.
- *
- * Compared to the class PermutationMatrix, such a sequence of transpositions is what is
- * computed during a decomposition with pivoting, and it is faster when applying the permutation in-place.
- *
- * To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example:
- * \code
- * Transpositions tr;
- * MatrixXf mat;
- * mat = tr * mat;
- * \endcode
- * In this example, we detect that the matrix appears on both side, and so the transpositions
- * are applied in-place without any temporary or extra copy.
- *
- * \sa class PermutationMatrix
- */
-
-namespace internal {
-template<typename TranspositionType, typename MatrixType, int Side, bool Transposed=false> struct transposition_matrix_product_retval;
-}
-
-template<typename Derived>
-class TranspositionsBase
-{
- typedef internal::traits<Derived> Traits;
-
- public:
-
- typedef typename Traits::IndicesType IndicesType;
- typedef typename IndicesType::Scalar Index;
-
- Derived& derived() { return *static_cast<Derived*>(this); }
- const Derived& derived() const { return *static_cast<const Derived*>(this); }
-
- /** Copies the \a other transpositions into \c *this */
- template<typename OtherDerived>
- Derived& operator=(const TranspositionsBase<OtherDerived>& other)
- {
- indices() = other.indices();
- return derived();
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** This is a special case of the templated operator=. Its purpose is to
- * prevent a default operator= from hiding the templated operator=.
- */
- Derived& operator=(const TranspositionsBase& other)
- {
- indices() = other.indices();
- return derived();
- }
- #endif
-
- /** \returns the number of transpositions */
- inline Index size() const { return indices().size(); }
-
- /** Direct access to the underlying index vector */
- inline const Index& coeff(Index i) const { return indices().coeff(i); }
- /** Direct access to the underlying index vector */
- inline Index& coeffRef(Index i) { return indices().coeffRef(i); }
- /** Direct access to the underlying index vector */
- inline const Index& operator()(Index i) const { return indices()(i); }
- /** Direct access to the underlying index vector */
- inline Index& operator()(Index i) { return indices()(i); }
- /** Direct access to the underlying index vector */
- inline const Index& operator[](Index i) const { return indices()(i); }
- /** Direct access to the underlying index vector */
- inline Index& operator[](Index i) { return indices()(i); }
-
- /** const version of indices(). */
- const IndicesType& indices() const { return derived().indices(); }
- /** \returns a reference to the stored array representing the transpositions. */
- IndicesType& indices() { return derived().indices(); }
-
- /** Resizes to given size. */
- inline void resize(int newSize)
- {
- indices().resize(newSize);
- }
-
- /** Sets \c *this to represents an identity transformation */
- void setIdentity()
- {
- for(int i = 0; i < indices().size(); ++i)
- coeffRef(i) = i;
- }
-
- // FIXME: do we want such methods ?
- // might be usefull when the target matrix expression is complex, e.g.:
- // object.matrix().block(..,..,..,..) = trans * object.matrix().block(..,..,..,..);
- /*
- template<typename MatrixType>
- void applyForwardToRows(MatrixType& mat) const
- {
- for(Index k=0 ; k<size() ; ++k)
- if(m_indices(k)!=k)
- mat.row(k).swap(mat.row(m_indices(k)));
- }
-
- template<typename MatrixType>
- void applyBackwardToRows(MatrixType& mat) const
- {
- for(Index k=size()-1 ; k>=0 ; --k)
- if(m_indices(k)!=k)
- mat.row(k).swap(mat.row(m_indices(k)));
- }
- */
-
- /** \returns the inverse transformation */
- inline Transpose<TranspositionsBase> inverse() const
- { return Transpose<TranspositionsBase>(derived()); }
-
- /** \returns the tranpose transformation */
- inline Transpose<TranspositionsBase> transpose() const
- { return Transpose<TranspositionsBase>(derived()); }
-
- protected:
-};
-
-namespace internal {
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
-struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
-{
- typedef IndexType Index;
- typedef Matrix<Index, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
-};
-}
-
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
-class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
-{
- typedef internal::traits<Transpositions> Traits;
- public:
-
- typedef TranspositionsBase<Transpositions> Base;
- typedef typename Traits::IndicesType IndicesType;
- typedef typename IndicesType::Scalar Index;
-
- inline Transpositions() {}
-
- /** Copy constructor. */
- template<typename OtherDerived>
- inline Transpositions(const TranspositionsBase<OtherDerived>& other)
- : m_indices(other.indices()) {}
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** Standard copy constructor. Defined only to prevent a default copy constructor
- * from hiding the other templated constructor */
- inline Transpositions(const Transpositions& other) : m_indices(other.indices()) {}
- #endif
-
- /** Generic constructor from expression of the transposition indices. */
- template<typename Other>
- explicit inline Transpositions(const MatrixBase<Other>& a_indices) : m_indices(a_indices)
- {}
-
- /** Copies the \a other transpositions into \c *this */
- template<typename OtherDerived>
- Transpositions& operator=(const TranspositionsBase<OtherDerived>& other)
- {
- return Base::operator=(other);
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** This is a special case of the templated operator=. Its purpose is to
- * prevent a default operator= from hiding the templated operator=.
- */
- Transpositions& operator=(const Transpositions& other)
- {
- m_indices = other.m_indices;
- return *this;
- }
- #endif
-
- /** Constructs an uninitialized permutation matrix of given size.
- */
- inline Transpositions(Index size) : m_indices(size)
- {}
-
- /** const version of indices(). */
- const IndicesType& indices() const { return m_indices; }
- /** \returns a reference to the stored array representing the transpositions. */
- IndicesType& indices() { return m_indices; }
-
- protected:
-
- IndicesType m_indices;
-};
-
-
-namespace internal {
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
-struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,_PacketAccess> >
-{
- typedef IndexType Index;
- typedef Map<const Matrix<Index,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType;
-};
-}
-
-template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int PacketAccess>
-class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess>
- : public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess> >
-{
- typedef internal::traits<Map> Traits;
- public:
-
- typedef TranspositionsBase<Map> Base;
- typedef typename Traits::IndicesType IndicesType;
- typedef typename IndicesType::Scalar Index;
-
- inline Map(const Index* indicesPtr)
- : m_indices(indicesPtr)
- {}
-
- inline Map(const Index* indicesPtr, Index size)
- : m_indices(indicesPtr,size)
- {}
-
- /** Copies the \a other transpositions into \c *this */
- template<typename OtherDerived>
- Map& operator=(const TranspositionsBase<OtherDerived>& other)
- {
- return Base::operator=(other);
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** This is a special case of the templated operator=. Its purpose is to
- * prevent a default operator= from hiding the templated operator=.
- */
- Map& operator=(const Map& other)
- {
- m_indices = other.m_indices;
- return *this;
- }
- #endif
-
- /** const version of indices(). */
- const IndicesType& indices() const { return m_indices; }
-
- /** \returns a reference to the stored array representing the transpositions. */
- IndicesType& indices() { return m_indices; }
-
- protected:
-
- IndicesType m_indices;
-};
-
-namespace internal {
-template<typename _IndicesType>
-struct traits<TranspositionsWrapper<_IndicesType> >
-{
- typedef typename _IndicesType::Scalar Index;
- typedef _IndicesType IndicesType;
-};
-}
-
-template<typename _IndicesType>
-class TranspositionsWrapper
- : public TranspositionsBase<TranspositionsWrapper<_IndicesType> >
-{
- typedef internal::traits<TranspositionsWrapper> Traits;
- public:
-
- typedef TranspositionsBase<TranspositionsWrapper> Base;
- typedef typename Traits::IndicesType IndicesType;
- typedef typename IndicesType::Scalar Index;
-
- inline TranspositionsWrapper(IndicesType& a_indices)
- : m_indices(a_indices)
- {}
-
- /** Copies the \a other transpositions into \c *this */
- template<typename OtherDerived>
- TranspositionsWrapper& operator=(const TranspositionsBase<OtherDerived>& other)
- {
- return Base::operator=(other);
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** This is a special case of the templated operator=. Its purpose is to
- * prevent a default operator= from hiding the templated operator=.
- */
- TranspositionsWrapper& operator=(const TranspositionsWrapper& other)
- {
- m_indices = other.m_indices;
- return *this;
- }
- #endif
-
- /** const version of indices(). */
- const IndicesType& indices() const { return m_indices; }
-
- /** \returns a reference to the stored array representing the transpositions. */
- IndicesType& indices() { return m_indices; }
-
- protected:
-
- const typename IndicesType::Nested m_indices;
-};
-
-/** \returns the \a matrix with the \a transpositions applied to the columns.
- */
-template<typename Derived, typename TranspositionsDerived>
-inline const internal::transposition_matrix_product_retval<TranspositionsDerived, Derived, OnTheRight>
-operator*(const MatrixBase<Derived>& matrix,
- const TranspositionsBase<TranspositionsDerived> &transpositions)
-{
- return internal::transposition_matrix_product_retval
- <TranspositionsDerived, Derived, OnTheRight>
- (transpositions.derived(), matrix.derived());
-}
-
-/** \returns the \a matrix with the \a transpositions applied to the rows.
- */
-template<typename Derived, typename TranspositionDerived>
-inline const internal::transposition_matrix_product_retval
- <TranspositionDerived, Derived, OnTheLeft>
-operator*(const TranspositionsBase<TranspositionDerived> &transpositions,
- const MatrixBase<Derived>& matrix)
-{
- return internal::transposition_matrix_product_retval
- <TranspositionDerived, Derived, OnTheLeft>
- (transpositions.derived(), matrix.derived());
-}
-
-namespace internal {
-
-template<typename TranspositionType, typename MatrixType, int Side, bool Transposed>
-struct traits<transposition_matrix_product_retval<TranspositionType, MatrixType, Side, Transposed> >
-{
- typedef typename MatrixType::PlainObject ReturnType;
-};
-
-template<typename TranspositionType, typename MatrixType, int Side, bool Transposed>
-struct transposition_matrix_product_retval
- : public ReturnByValue<transposition_matrix_product_retval<TranspositionType, MatrixType, Side, Transposed> >
-{
- typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
- typedef typename TranspositionType::Index Index;
-
- transposition_matrix_product_retval(const TranspositionType& tr, const MatrixType& matrix)
- : m_transpositions(tr), m_matrix(matrix)
- {}
-
- inline int rows() const { return m_matrix.rows(); }
- inline int cols() const { return m_matrix.cols(); }
-
- template<typename Dest> inline void evalTo(Dest& dst) const
- {
- const int size = m_transpositions.size();
- Index j = 0;
-
- if(!(is_same<MatrixTypeNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_matrix)))
- dst = m_matrix;
-
- for(int k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
- if((j=m_transpositions.coeff(k))!=k)
- {
- if(Side==OnTheLeft)
- dst.row(k).swap(dst.row(j));
- else if(Side==OnTheRight)
- dst.col(k).swap(dst.col(j));
- }
- }
-
- protected:
- const TranspositionType& m_transpositions;
- typename MatrixType::Nested m_matrix;
-};
-
-} // end namespace internal
-
-/* Template partial specialization for transposed/inverse transpositions */
-
-template<typename TranspositionsDerived>
-class Transpose<TranspositionsBase<TranspositionsDerived> >
-{
- typedef TranspositionsDerived TranspositionType;
- typedef typename TranspositionType::IndicesType IndicesType;
- public:
-
- Transpose(const TranspositionType& t) : m_transpositions(t) {}
-
- inline int size() const { return m_transpositions.size(); }
-
- /** \returns the \a matrix with the inverse transpositions applied to the columns.
- */
- template<typename Derived> friend
- inline const internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheRight, true>
- operator*(const MatrixBase<Derived>& matrix, const Transpose& trt)
- {
- return internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheRight, true>(trt.m_transpositions, matrix.derived());
- }
-
- /** \returns the \a matrix with the inverse transpositions applied to the rows.
- */
- template<typename Derived>
- inline const internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheLeft, true>
- operator*(const MatrixBase<Derived>& matrix) const
- {
- return internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheLeft, true>(m_transpositions, matrix.derived());
- }
-
- protected:
- const TranspositionType& m_transpositions;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_TRANSPOSITIONS_H