aboutsummaryrefslogtreecommitdiff
path: root/src/Eigen/src/PaStiXSupport/PaStiXSupport.h
blob: a955287d1c9cd3d0b57f59ffda877d6181e33219 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_PASTIXSUPPORT_H
#define EIGEN_PASTIXSUPPORT_H

namespace Eigen { 

/** \ingroup PaStiXSupport_Module
  * \brief Interface to the PaStix solver
  * 
  * This class is used to solve the linear systems A.X = B via the PaStix library. 
  * The matrix can be either real or complex, symmetric or not.
  *
  * \sa TutorialSparseDirectSolvers
  */
template<typename _MatrixType, bool IsStrSym = false> class PastixLU;
template<typename _MatrixType, int Options> class PastixLLT;
template<typename _MatrixType, int Options> class PastixLDLT;

namespace internal
{
    
  template<class Pastix> struct pastix_traits;

  template<typename _MatrixType>
  struct pastix_traits< PastixLU<_MatrixType> >
  {
    typedef _MatrixType MatrixType;
    typedef typename _MatrixType::Scalar Scalar;
    typedef typename _MatrixType::RealScalar RealScalar;
    typedef typename _MatrixType::Index Index;
  };

  template<typename _MatrixType, int Options>
  struct pastix_traits< PastixLLT<_MatrixType,Options> >
  {
    typedef _MatrixType MatrixType;
    typedef typename _MatrixType::Scalar Scalar;
    typedef typename _MatrixType::RealScalar RealScalar;
    typedef typename _MatrixType::Index Index;
  };

  template<typename _MatrixType, int Options>
  struct pastix_traits< PastixLDLT<_MatrixType,Options> >
  {
    typedef _MatrixType MatrixType;
    typedef typename _MatrixType::Scalar Scalar;
    typedef typename _MatrixType::RealScalar RealScalar;
    typedef typename _MatrixType::Index Index;
  };
  
  void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, float *vals, int *perm, int * invp, float *x, int nbrhs, int *iparm, double *dparm)
  {
    if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
    if (nbrhs == 0) {x = NULL; nbrhs=1;}
    s_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm); 
  }
  
  void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, double *vals, int *perm, int * invp, double *x, int nbrhs, int *iparm, double *dparm)
  {
    if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
    if (nbrhs == 0) {x = NULL; nbrhs=1;}
    d_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm); 
  }
  
  void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<float> *vals, int *perm, int * invp, std::complex<float> *x, int nbrhs, int *iparm, double *dparm)
  {
    if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
    if (nbrhs == 0) {x = NULL; nbrhs=1;}
    c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<COMPLEX*>(vals), perm, invp, reinterpret_cast<COMPLEX*>(x), nbrhs, iparm, dparm); 
  }
  
  void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<double> *vals, int *perm, int * invp, std::complex<double> *x, int nbrhs, int *iparm, double *dparm)
  {
    if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
    if (nbrhs == 0) {x = NULL; nbrhs=1;}
    z_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<DCOMPLEX*>(vals), perm, invp, reinterpret_cast<DCOMPLEX*>(x), nbrhs, iparm, dparm); 
  }

  // Convert the matrix  to Fortran-style Numbering
  template <typename MatrixType>
  void c_to_fortran_numbering (MatrixType& mat)
  {
    if ( !(mat.outerIndexPtr()[0]) ) 
    { 
      int i;
      for(i = 0; i <= mat.rows(); ++i)
        ++mat.outerIndexPtr()[i];
      for(i = 0; i < mat.nonZeros(); ++i)
        ++mat.innerIndexPtr()[i];
    }
  }
  
  // Convert to C-style Numbering
  template <typename MatrixType>
  void fortran_to_c_numbering (MatrixType& mat)
  {
    // Check the Numbering
    if ( mat.outerIndexPtr()[0] == 1 ) 
    { // Convert to C-style numbering
      int i;
      for(i = 0; i <= mat.rows(); ++i)
        --mat.outerIndexPtr()[i];
      for(i = 0; i < mat.nonZeros(); ++i)
        --mat.innerIndexPtr()[i];
    }
  }
}

// This is the base class to interface with PaStiX functions. 
// Users should not used this class directly. 
template <class Derived>
class PastixBase : internal::noncopyable
{
  public:
    typedef typename internal::pastix_traits<Derived>::MatrixType _MatrixType;
    typedef _MatrixType MatrixType;
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;
    typedef Matrix<Scalar,Dynamic,1> Vector;
    typedef SparseMatrix<Scalar, ColMajor> ColSpMatrix;
    
  public:
    
    PastixBase() : m_initisOk(false), m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false), m_pastixdata(0), m_size(0)
    {
      init();
    }
    
    ~PastixBase() 
    {
      clean();
    }

    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
      *
      * \sa compute()
      */
    template<typename Rhs>
    inline const internal::solve_retval<PastixBase, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "Pastix solver is not initialized.");
      eigen_assert(rows()==b.rows()
                && "PastixBase::solve(): invalid number of rows of the right hand side matrix b");
      return internal::solve_retval<PastixBase, Rhs>(*this, b.derived());
    }
    
    template<typename Rhs,typename Dest>
    bool _solve (const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const;
    
    Derived& derived()
    {
      return *static_cast<Derived*>(this);
    }
    const Derived& derived() const
    {
      return *static_cast<const Derived*>(this);
    }

    /** Returns a reference to the integer vector IPARM of PaStiX parameters
      * to modify the default parameters. 
      * The statistics related to the different phases of factorization and solve are saved here as well
      * \sa analyzePattern() factorize()
      */
    Array<Index,IPARM_SIZE,1>& iparm()
    {
      return m_iparm; 
    }
    
    /** Return a reference to a particular index parameter of the IPARM vector 
     * \sa iparm()
     */
    
    int& iparm(int idxparam)
    {
      return m_iparm(idxparam);
    }
    
     /** Returns a reference to the double vector DPARM of PaStiX parameters 
      * The statistics related to the different phases of factorization and solve are saved here as well
      * \sa analyzePattern() factorize()
      */
    Array<RealScalar,IPARM_SIZE,1>& dparm()
    {
      return m_dparm; 
    }
    
    
    /** Return a reference to a particular index parameter of the DPARM vector 
     * \sa dparm()
     */
    double& dparm(int idxparam)
    {
      return m_dparm(idxparam);
    }
    
    inline Index cols() const { return m_size; }
    inline Index rows() const { return m_size; }
    
     /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was succesful,
      *          \c NumericalIssue if the PaStiX reports a problem
      *          \c InvalidInput if the input matrix is invalid
      *
      * \sa iparm()          
      */
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "Decomposition is not initialized.");
      return m_info;
    }
    
    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
      *
      * \sa compute()
      */
    template<typename Rhs>
    inline const internal::sparse_solve_retval<PastixBase, Rhs>
    solve(const SparseMatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "Pastix LU, LLT or LDLT is not initialized.");
      eigen_assert(rows()==b.rows()
                && "PastixBase::solve(): invalid number of rows of the right hand side matrix b");
      return internal::sparse_solve_retval<PastixBase, Rhs>(*this, b.derived());
    }
    
  protected:

    // Initialize the Pastix data structure, check the matrix
    void init(); 
    
    // Compute the ordering and the symbolic factorization
    void analyzePattern(ColSpMatrix& mat);
    
    // Compute the numerical factorization
    void factorize(ColSpMatrix& mat);
    
    // Free all the data allocated by Pastix
    void clean()
    {
      eigen_assert(m_initisOk && "The Pastix structure should be allocated first"); 
      m_iparm(IPARM_START_TASK) = API_TASK_CLEAN;
      m_iparm(IPARM_END_TASK) = API_TASK_CLEAN;
      internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0,
                             m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
    }
    
    void compute(ColSpMatrix& mat);
    
    int m_initisOk; 
    int m_analysisIsOk;
    int m_factorizationIsOk;
    bool m_isInitialized;
    mutable ComputationInfo m_info; 
    mutable pastix_data_t *m_pastixdata; // Data structure for pastix
    mutable int m_comm; // The MPI communicator identifier
    mutable Matrix<int,IPARM_SIZE,1> m_iparm; // integer vector for the input parameters
    mutable Matrix<double,DPARM_SIZE,1> m_dparm; // Scalar vector for the input parameters
    mutable Matrix<Index,Dynamic,1> m_perm;  // Permutation vector
    mutable Matrix<Index,Dynamic,1> m_invp;  // Inverse permutation vector
    mutable int m_size; // Size of the matrix 
}; 

 /** Initialize the PaStiX data structure. 
   *A first call to this function fills iparm and dparm with the default PaStiX parameters
   * \sa iparm() dparm()
   */
template <class Derived>
void PastixBase<Derived>::init()
{
  m_size = 0; 
  m_iparm.setZero(IPARM_SIZE);
  m_dparm.setZero(DPARM_SIZE);
  
  m_iparm(IPARM_MODIFY_PARAMETER) = API_NO;
  pastix(&m_pastixdata, MPI_COMM_WORLD,
         0, 0, 0, 0,
         0, 0, 0, 1, m_iparm.data(), m_dparm.data());
  
  m_iparm[IPARM_MATRIX_VERIFICATION] = API_NO;
  m_iparm[IPARM_VERBOSE]             = 2;
  m_iparm[IPARM_ORDERING]            = API_ORDER_SCOTCH;
  m_iparm[IPARM_INCOMPLETE]          = API_NO;
  m_iparm[IPARM_OOC_LIMIT]           = 2000;
  m_iparm[IPARM_RHS_MAKING]          = API_RHS_B;
  m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
  
  m_iparm(IPARM_START_TASK) = API_TASK_INIT;
  m_iparm(IPARM_END_TASK) = API_TASK_INIT;
  internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0,
                         0, 0, 0, 0, m_iparm.data(), m_dparm.data());
  
  // Check the returned error
  if(m_iparm(IPARM_ERROR_NUMBER)) {
    m_info = InvalidInput;
    m_initisOk = false;
  }
  else { 
    m_info = Success;
    m_initisOk = true;
  }
}

template <class Derived>
void PastixBase<Derived>::compute(ColSpMatrix& mat)
{
  eigen_assert(mat.rows() == mat.cols() && "The input matrix should be squared");
  
  analyzePattern(mat);  
  factorize(mat);
  
  m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
  m_isInitialized = m_factorizationIsOk;
}


template <class Derived>
void PastixBase<Derived>::analyzePattern(ColSpMatrix& mat)
{                         
  eigen_assert(m_initisOk && "The initialization of PaSTiX failed");
  
  // clean previous calls
  if(m_size>0)
    clean();
  
  m_size = mat.rows();
  m_perm.resize(m_size);
  m_invp.resize(m_size);
  
  m_iparm(IPARM_START_TASK) = API_TASK_ORDERING;
  m_iparm(IPARM_END_TASK) = API_TASK_ANALYSE;
  internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(),
               mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
  
  // Check the returned error
  if(m_iparm(IPARM_ERROR_NUMBER))
  {
    m_info = NumericalIssue;
    m_analysisIsOk = false;
  }
  else
  { 
    m_info = Success;
    m_analysisIsOk = true;
  }
}

template <class Derived>
void PastixBase<Derived>::factorize(ColSpMatrix& mat)
{
//   if(&m_cpyMat != &mat) m_cpyMat = mat;
  eigen_assert(m_analysisIsOk && "The analysis phase should be called before the factorization phase");
  m_iparm(IPARM_START_TASK) = API_TASK_NUMFACT;
  m_iparm(IPARM_END_TASK) = API_TASK_NUMFACT;
  m_size = mat.rows();
  
  internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(),
               mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
  
  // Check the returned error
  if(m_iparm(IPARM_ERROR_NUMBER))
  {
    m_info = NumericalIssue;
    m_factorizationIsOk = false;
    m_isInitialized = false;
  }
  else
  {
    m_info = Success;
    m_factorizationIsOk = true;
    m_isInitialized = true;
  }
}

/* Solve the system */
template<typename Base>
template<typename Rhs,typename Dest>
bool PastixBase<Base>::_solve (const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const
{
  eigen_assert(m_isInitialized && "The matrix should be factorized first");
  EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
                     THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
  int rhs = 1;
  
  x = b; /* on return, x is overwritten by the computed solution */
  
  for (int i = 0; i < b.cols(); i++){
    m_iparm[IPARM_START_TASK]          = API_TASK_SOLVE;
    m_iparm[IPARM_END_TASK]            = API_TASK_REFINE;
  
    internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, x.rows(), 0, 0, 0,
                           m_perm.data(), m_invp.data(), &x(0, i), rhs, m_iparm.data(), m_dparm.data());
  }
  
  // Check the returned error
  m_info = m_iparm(IPARM_ERROR_NUMBER)==0 ? Success : NumericalIssue;
  
  return m_iparm(IPARM_ERROR_NUMBER)==0;
}

/** \ingroup PaStiXSupport_Module
  * \class PastixLU
  * \brief Sparse direct LU solver based on PaStiX library
  * 
  * This class is used to solve the linear systems A.X = B with a supernodal LU 
  * factorization in the PaStiX library. The matrix A should be squared and nonsingular
  * PaStiX requires that the matrix A has a symmetric structural pattern. 
  * This interface can symmetrize the input matrix otherwise. 
  * The vectors or matrices X and B can be either dense or sparse.
  * 
  * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
  * \tparam IsStrSym Indicates if the input matrix has a symmetric pattern, default is false
  * NOTE : Note that if the analysis and factorization phase are called separately, 
  * the input matrix will be symmetrized at each call, hence it is advised to 
  * symmetrize the matrix in a end-user program and set \p IsStrSym to true
  * 
  * \sa \ref TutorialSparseDirectSolvers
  * 
  */
template<typename _MatrixType, bool IsStrSym>
class PastixLU : public PastixBase< PastixLU<_MatrixType> >
{
  public:
    typedef _MatrixType MatrixType;
    typedef PastixBase<PastixLU<MatrixType> > Base;
    typedef typename Base::ColSpMatrix ColSpMatrix;
    typedef typename MatrixType::Index Index;
    
  public:
    PastixLU() : Base()
    {
      init();
    }
    
    PastixLU(const MatrixType& matrix):Base()
    {
      init();
      compute(matrix);
    }
    /** Compute the LU supernodal factorization of \p matrix. 
      * iparm and dparm can be used to tune the PaStiX parameters. 
      * see the PaStiX user's manual
      * \sa analyzePattern() factorize()
      */
    void compute (const MatrixType& matrix)
    {
      m_structureIsUptodate = false;
      ColSpMatrix temp;
      grabMatrix(matrix, temp);
      Base::compute(temp);
    }
    /** Compute the LU symbolic factorization of \p matrix using its sparsity pattern. 
      * Several ordering methods can be used at this step. See the PaStiX user's manual. 
      * The result of this operation can be used with successive matrices having the same pattern as \p matrix
      * \sa factorize()
      */
    void analyzePattern(const MatrixType& matrix)
    {
      m_structureIsUptodate = false;
      ColSpMatrix temp;
      grabMatrix(matrix, temp);
      Base::analyzePattern(temp);
    }

    /** Compute the LU supernodal factorization of \p matrix
      * WARNING The matrix \p matrix should have the same structural pattern 
      * as the same used in the analysis phase.
      * \sa analyzePattern()
      */ 
    void factorize(const MatrixType& matrix)
    {
      ColSpMatrix temp;
      grabMatrix(matrix, temp);
      Base::factorize(temp);
    }
  protected:
    
    void init()
    {
      m_structureIsUptodate = false;
      m_iparm(IPARM_SYM) = API_SYM_NO;
      m_iparm(IPARM_FACTORIZATION) = API_FACT_LU;
    }
    
    void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
    {
      if(IsStrSym)
        out = matrix;
      else
      {
        if(!m_structureIsUptodate)
        {
          // update the transposed structure
          m_transposedStructure = matrix.transpose();
          
          // Set the elements of the matrix to zero 
          for (Index j=0; j<m_transposedStructure.outerSize(); ++j) 
            for(typename ColSpMatrix::InnerIterator it(m_transposedStructure, j); it; ++it)
              it.valueRef() = 0.0;

          m_structureIsUptodate = true;
        }
        
        out = m_transposedStructure + matrix;
      }
      internal::c_to_fortran_numbering(out);
    }
    
    using Base::m_iparm;
    using Base::m_dparm;
    
    ColSpMatrix m_transposedStructure;
    bool m_structureIsUptodate;
};

/** \ingroup PaStiXSupport_Module
  * \class PastixLLT
  * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library
  * 
  * This class is used to solve the linear systems A.X = B via a LL^T supernodal Cholesky factorization
  * available in the PaStiX library. The matrix A should be symmetric and positive definite
  * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX
  * The vectors or matrices X and B can be either dense or sparse
  * 
  * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
  * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX
  * 
  * \sa \ref TutorialSparseDirectSolvers
  */
template<typename _MatrixType, int _UpLo>
class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> >
{
  public:
    typedef _MatrixType MatrixType;
    typedef PastixBase<PastixLLT<MatrixType, _UpLo> > Base;
    typedef typename Base::ColSpMatrix ColSpMatrix;
    
  public:
    enum { UpLo = _UpLo };
    PastixLLT() : Base()
    {
      init();
    }
    
    PastixLLT(const MatrixType& matrix):Base()
    {
      init();
      compute(matrix);
    }

    /** Compute the L factor of the LL^T supernodal factorization of \p matrix 
      * \sa analyzePattern() factorize()
      */
    void compute (const MatrixType& matrix)
    {
      ColSpMatrix temp;
      grabMatrix(matrix, temp);
      Base::compute(temp);
    }

     /** Compute the LL^T symbolic factorization of \p matrix using its sparsity pattern
      * The result of this operation can be used with successive matrices having the same pattern as \p matrix
      * \sa factorize()
      */
    void analyzePattern(const MatrixType& matrix)
    {
      ColSpMatrix temp;
      grabMatrix(matrix, temp);
      Base::analyzePattern(temp);
    }
      /** Compute the LL^T supernodal numerical factorization of \p matrix 
        * \sa analyzePattern()
        */
    void factorize(const MatrixType& matrix)
    {
      ColSpMatrix temp;
      grabMatrix(matrix, temp);
      Base::factorize(temp);
    }
  protected:
    using Base::m_iparm;
    
    void init()
    {
      m_iparm(IPARM_SYM) = API_SYM_YES;
      m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT;
    }
    
    void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
    {
      // Pastix supports only lower, column-major matrices 
      out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>();
      internal::c_to_fortran_numbering(out);
    }
};

/** \ingroup PaStiXSupport_Module
  * \class PastixLDLT
  * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library
  * 
  * This class is used to solve the linear systems A.X = B via a LDL^T supernodal Cholesky factorization
  * available in the PaStiX library. The matrix A should be symmetric and positive definite
  * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX
  * The vectors or matrices X and B can be either dense or sparse
  * 
  * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
  * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX
  * 
  * \sa \ref TutorialSparseDirectSolvers
  */
template<typename _MatrixType, int _UpLo>
class PastixLDLT : public PastixBase< PastixLDLT<_MatrixType, _UpLo> >
{
  public:
    typedef _MatrixType MatrixType;
    typedef PastixBase<PastixLDLT<MatrixType, _UpLo> > Base; 
    typedef typename Base::ColSpMatrix ColSpMatrix;
    
  public:
    enum { UpLo = _UpLo };
    PastixLDLT():Base()
    {
      init();
    }
    
    PastixLDLT(const MatrixType& matrix):Base()
    {
      init();
      compute(matrix);
    }

    /** Compute the L and D factors of the LDL^T factorization of \p matrix 
      * \sa analyzePattern() factorize()
      */
    void compute (const MatrixType& matrix)
    {
      ColSpMatrix temp;
      grabMatrix(matrix, temp);
      Base::compute(temp);
    }

    /** Compute the LDL^T symbolic factorization of \p matrix using its sparsity pattern
      * The result of this operation can be used with successive matrices having the same pattern as \p matrix
      * \sa factorize()
      */
    void analyzePattern(const MatrixType& matrix)
    { 
      ColSpMatrix temp;
      grabMatrix(matrix, temp);
      Base::analyzePattern(temp);
    }
    /** Compute the LDL^T supernodal numerical factorization of \p matrix 
      * 
      */
    void factorize(const MatrixType& matrix)
    {
      ColSpMatrix temp;
      grabMatrix(matrix, temp);
      Base::factorize(temp);
    }

  protected:
    using Base::m_iparm;
    
    void init()
    {
      m_iparm(IPARM_SYM) = API_SYM_YES;
      m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT;
    }
    
    void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
    {
      // Pastix supports only lower, column-major matrices 
      out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>();
      internal::c_to_fortran_numbering(out);
    }
};

namespace internal {

template<typename _MatrixType, typename Rhs>
struct solve_retval<PastixBase<_MatrixType>, Rhs>
  : solve_retval_base<PastixBase<_MatrixType>, Rhs>
{
  typedef PastixBase<_MatrixType> Dec;
  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dec()._solve(rhs(),dst);
  }
};

template<typename _MatrixType, typename Rhs>
struct sparse_solve_retval<PastixBase<_MatrixType>, Rhs>
  : sparse_solve_retval_base<PastixBase<_MatrixType>, Rhs>
{
  typedef PastixBase<_MatrixType> Dec;
  EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    this->defaultEvalTo(dst);
  }
};

} // end namespace internal

} // end namespace Eigen

#endif