diff options
Diffstat (limited to 'src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h')
-rw-r--r-- | src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h | 214 |
1 files changed, 0 insertions, 214 deletions
diff --git a/src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h b/src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h deleted file mode 100644 index af598a4..0000000 --- a/src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h +++ /dev/null @@ -1,214 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * \class AngleAxis - * - * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis - * - * \param _Scalar the scalar type, i.e., the type of the coefficients. - * - * The following two typedefs are provided for convenience: - * \li \c AngleAxisf for \c float - * \li \c AngleAxisd for \c double - * - * \addexample AngleAxisForEuler \label How to define a rotation from Euler-angles - * - * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily - * mimic Euler-angles. Here is an example: - * \include AngleAxis_mimic_euler.cpp - * Output: \verbinclude AngleAxis_mimic_euler.out - * - * \note This class is not aimed to be used to store a rotation transformation, - * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix) - * and transformation objects. - * - * \sa class Quaternion, class Transform, MatrixBase::UnitX() - */ - -template<typename _Scalar> struct ei_traits<AngleAxis<_Scalar> > -{ - typedef _Scalar Scalar; -}; - -template<typename _Scalar> -class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3> -{ - typedef RotationBase<AngleAxis<_Scalar>,3> Base; - -public: - - using Base::operator*; - - enum { Dim = 3 }; - /** the scalar type of the coefficients */ - typedef _Scalar Scalar; - typedef Matrix<Scalar,3,3> Matrix3; - typedef Matrix<Scalar,3,1> Vector3; - typedef Quaternion<Scalar> QuaternionType; - -protected: - - Vector3 m_axis; - Scalar m_angle; - -public: - - /** Default constructor without initialization. */ - AngleAxis() {} - /** Constructs and initialize the angle-axis rotation from an \a angle in radian - * and an \a axis which must be normalized. */ - template<typename Derived> - inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {} - /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */ - inline AngleAxis(const QuaternionType& q) { *this = q; } - /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */ - template<typename Derived> - inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; } - - Scalar angle() const { return m_angle; } - Scalar& angle() { return m_angle; } - - const Vector3& axis() const { return m_axis; } - Vector3& axis() { return m_axis; } - - /** Concatenates two rotations */ - inline QuaternionType operator* (const AngleAxis& other) const - { return QuaternionType(*this) * QuaternionType(other); } - - /** Concatenates two rotations */ - inline QuaternionType operator* (const QuaternionType& other) const - { return QuaternionType(*this) * other; } - - /** Concatenates two rotations */ - friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b) - { return a * QuaternionType(b); } - - /** Concatenates two rotations */ - inline Matrix3 operator* (const Matrix3& other) const - { return toRotationMatrix() * other; } - - /** Concatenates two rotations */ - inline friend Matrix3 operator* (const Matrix3& a, const AngleAxis& b) - { return a * b.toRotationMatrix(); } - - /** Applies rotation to vector */ - inline Vector3 operator* (const Vector3& other) const - { return toRotationMatrix() * other; } - - /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */ - AngleAxis inverse() const - { return AngleAxis(-m_angle, m_axis); } - - AngleAxis& operator=(const QuaternionType& q); - template<typename Derived> - AngleAxis& operator=(const MatrixBase<Derived>& m); - - template<typename Derived> - AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m); - Matrix3 toRotationMatrix(void) const; - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template<typename NewScalarType> - inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const - { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); } - - /** Copy constructor with scalar type conversion */ - template<typename OtherScalarType> - inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other) - { - m_axis = other.axis().template cast<Scalar>(); - m_angle = Scalar(other.angle()); - } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const - { return m_axis.isApprox(other.m_axis, prec) && ei_isApprox(m_angle,other.m_angle, prec); } -}; - -/** \ingroup Geometry_Module - * single precision angle-axis type */ -typedef AngleAxis<float> AngleAxisf; -/** \ingroup Geometry_Module - * double precision angle-axis type */ -typedef AngleAxis<double> AngleAxisd; - -/** Set \c *this from a quaternion. - * The axis is normalized. - */ -template<typename Scalar> -AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionType& q) -{ - Scalar n2 = q.vec().squaredNorm(); - if (n2 < precision<Scalar>()*precision<Scalar>()) - { - m_angle = 0; - m_axis << 1, 0, 0; - } - else - { - m_angle = 2*std::acos(q.w()); - m_axis = q.vec() / ei_sqrt(n2); - } - return *this; -} - -/** Set \c *this from a 3x3 rotation matrix \a mat. - */ -template<typename Scalar> -template<typename Derived> -AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat) -{ - // Since a direct conversion would not be really faster, - // let's use the robust Quaternion implementation: - return *this = QuaternionType(mat); -} - -/** Constructs and \returns an equivalent 3x3 rotation matrix. - */ -template<typename Scalar> -typename AngleAxis<Scalar>::Matrix3 -AngleAxis<Scalar>::toRotationMatrix(void) const -{ - Matrix3 res; - Vector3 sin_axis = ei_sin(m_angle) * m_axis; - Scalar c = ei_cos(m_angle); - Vector3 cos1_axis = (Scalar(1)-c) * m_axis; - - Scalar tmp; - tmp = cos1_axis.x() * m_axis.y(); - res.coeffRef(0,1) = tmp - sin_axis.z(); - res.coeffRef(1,0) = tmp + sin_axis.z(); - - tmp = cos1_axis.x() * m_axis.z(); - res.coeffRef(0,2) = tmp + sin_axis.y(); - res.coeffRef(2,0) = tmp - sin_axis.y(); - - tmp = cos1_axis.y() * m_axis.z(); - res.coeffRef(1,2) = tmp - sin_axis.x(); - res.coeffRef(2,1) = tmp + sin_axis.x(); - - res.diagonal() = (cos1_axis.cwise() * m_axis).cwise() + c; - - return res; -} - -} // end namespace Eigen |