aboutsummaryrefslogtreecommitdiff
path: root/src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h')
-rw-r--r--src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h214
1 files changed, 0 insertions, 214 deletions
diff --git a/src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h b/src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h
deleted file mode 100644
index af598a4..0000000
--- a/src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h
+++ /dev/null
@@ -1,214 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class AngleAxis
- *
- * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients.
- *
- * The following two typedefs are provided for convenience:
- * \li \c AngleAxisf for \c float
- * \li \c AngleAxisd for \c double
- *
- * \addexample AngleAxisForEuler \label How to define a rotation from Euler-angles
- *
- * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
- * mimic Euler-angles. Here is an example:
- * \include AngleAxis_mimic_euler.cpp
- * Output: \verbinclude AngleAxis_mimic_euler.out
- *
- * \note This class is not aimed to be used to store a rotation transformation,
- * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
- * and transformation objects.
- *
- * \sa class Quaternion, class Transform, MatrixBase::UnitX()
- */
-
-template<typename _Scalar> struct ei_traits<AngleAxis<_Scalar> >
-{
- typedef _Scalar Scalar;
-};
-
-template<typename _Scalar>
-class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
-{
- typedef RotationBase<AngleAxis<_Scalar>,3> Base;
-
-public:
-
- using Base::operator*;
-
- enum { Dim = 3 };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- typedef Matrix<Scalar,3,3> Matrix3;
- typedef Matrix<Scalar,3,1> Vector3;
- typedef Quaternion<Scalar> QuaternionType;
-
-protected:
-
- Vector3 m_axis;
- Scalar m_angle;
-
-public:
-
- /** Default constructor without initialization. */
- AngleAxis() {}
- /** Constructs and initialize the angle-axis rotation from an \a angle in radian
- * and an \a axis which must be normalized. */
- template<typename Derived>
- inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
- /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
- inline AngleAxis(const QuaternionType& q) { *this = q; }
- /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
- template<typename Derived>
- inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
-
- Scalar angle() const { return m_angle; }
- Scalar& angle() { return m_angle; }
-
- const Vector3& axis() const { return m_axis; }
- Vector3& axis() { return m_axis; }
-
- /** Concatenates two rotations */
- inline QuaternionType operator* (const AngleAxis& other) const
- { return QuaternionType(*this) * QuaternionType(other); }
-
- /** Concatenates two rotations */
- inline QuaternionType operator* (const QuaternionType& other) const
- { return QuaternionType(*this) * other; }
-
- /** Concatenates two rotations */
- friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
- { return a * QuaternionType(b); }
-
- /** Concatenates two rotations */
- inline Matrix3 operator* (const Matrix3& other) const
- { return toRotationMatrix() * other; }
-
- /** Concatenates two rotations */
- inline friend Matrix3 operator* (const Matrix3& a, const AngleAxis& b)
- { return a * b.toRotationMatrix(); }
-
- /** Applies rotation to vector */
- inline Vector3 operator* (const Vector3& other) const
- { return toRotationMatrix() * other; }
-
- /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
- AngleAxis inverse() const
- { return AngleAxis(-m_angle, m_axis); }
-
- AngleAxis& operator=(const QuaternionType& q);
- template<typename Derived>
- AngleAxis& operator=(const MatrixBase<Derived>& m);
-
- template<typename Derived>
- AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
- Matrix3 toRotationMatrix(void) const;
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
- { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
- {
- m_axis = other.axis().template cast<Scalar>();
- m_angle = Scalar(other.angle());
- }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_axis.isApprox(other.m_axis, prec) && ei_isApprox(m_angle,other.m_angle, prec); }
-};
-
-/** \ingroup Geometry_Module
- * single precision angle-axis type */
-typedef AngleAxis<float> AngleAxisf;
-/** \ingroup Geometry_Module
- * double precision angle-axis type */
-typedef AngleAxis<double> AngleAxisd;
-
-/** Set \c *this from a quaternion.
- * The axis is normalized.
- */
-template<typename Scalar>
-AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionType& q)
-{
- Scalar n2 = q.vec().squaredNorm();
- if (n2 < precision<Scalar>()*precision<Scalar>())
- {
- m_angle = 0;
- m_axis << 1, 0, 0;
- }
- else
- {
- m_angle = 2*std::acos(q.w());
- m_axis = q.vec() / ei_sqrt(n2);
- }
- return *this;
-}
-
-/** Set \c *this from a 3x3 rotation matrix \a mat.
- */
-template<typename Scalar>
-template<typename Derived>
-AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
-{
- // Since a direct conversion would not be really faster,
- // let's use the robust Quaternion implementation:
- return *this = QuaternionType(mat);
-}
-
-/** Constructs and \returns an equivalent 3x3 rotation matrix.
- */
-template<typename Scalar>
-typename AngleAxis<Scalar>::Matrix3
-AngleAxis<Scalar>::toRotationMatrix(void) const
-{
- Matrix3 res;
- Vector3 sin_axis = ei_sin(m_angle) * m_axis;
- Scalar c = ei_cos(m_angle);
- Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
-
- Scalar tmp;
- tmp = cos1_axis.x() * m_axis.y();
- res.coeffRef(0,1) = tmp - sin_axis.z();
- res.coeffRef(1,0) = tmp + sin_axis.z();
-
- tmp = cos1_axis.x() * m_axis.z();
- res.coeffRef(0,2) = tmp + sin_axis.y();
- res.coeffRef(2,0) = tmp - sin_axis.y();
-
- tmp = cos1_axis.y() * m_axis.z();
- res.coeffRef(1,2) = tmp - sin_axis.x();
- res.coeffRef(2,1) = tmp + sin_axis.x();
-
- res.diagonal() = (cos1_axis.cwise() * m_axis).cwise() + c;
-
- return res;
-}
-
-} // end namespace Eigen