diff options
author | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
---|---|---|
committer | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
commit | 4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch) | |
tree | ee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py | |
parent | cc961e04ba734dd72309fb548a2f97d67d578813 (diff) | |
download | gn-ai-master.tar.gz |
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py | 153 |
1 files changed, 153 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py new file mode 100644 index 00000000..22e157a0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py @@ -0,0 +1,153 @@ +""" +Transformation logic from OpenAI /v1/embeddings format to Cohere's /v1/embed format. + +Why separate file? Make it easy to see how transformation works + +Convers +- v3 embedding models +- v2 embedding models + +Docs - https://docs.cohere.com/v2/reference/embed +""" + +from typing import Any, List, Optional, Union + +import httpx + +from litellm import COHERE_DEFAULT_EMBEDDING_INPUT_TYPE +from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj +from litellm.types.llms.bedrock import ( + CohereEmbeddingRequest, + CohereEmbeddingRequestWithModel, +) +from litellm.types.utils import EmbeddingResponse, PromptTokensDetailsWrapper, Usage +from litellm.utils import is_base64_encoded + + +class CohereEmbeddingConfig: + """ + Reference: https://docs.cohere.com/v2/reference/embed + """ + + def __init__(self) -> None: + pass + + def get_supported_openai_params(self) -> List[str]: + return ["encoding_format"] + + def map_openai_params( + self, non_default_params: dict, optional_params: dict + ) -> dict: + for k, v in non_default_params.items(): + if k == "encoding_format": + optional_params["embedding_types"] = v + return optional_params + + def _is_v3_model(self, model: str) -> bool: + return "3" in model + + def _transform_request( + self, model: str, input: List[str], inference_params: dict + ) -> CohereEmbeddingRequestWithModel: + is_encoded = False + for input_str in input: + is_encoded = is_base64_encoded(input_str) + + if is_encoded: # check if string is b64 encoded image or not + transformed_request = CohereEmbeddingRequestWithModel( + model=model, + images=input, + input_type="image", + ) + else: + transformed_request = CohereEmbeddingRequestWithModel( + model=model, + texts=input, + input_type=COHERE_DEFAULT_EMBEDDING_INPUT_TYPE, + ) + + for k, v in inference_params.items(): + transformed_request[k] = v # type: ignore + + return transformed_request + + def _calculate_usage(self, input: List[str], encoding: Any, meta: dict) -> Usage: + + input_tokens = 0 + + text_tokens: Optional[int] = meta.get("billed_units", {}).get("input_tokens") + + image_tokens: Optional[int] = meta.get("billed_units", {}).get("images") + + prompt_tokens_details: Optional[PromptTokensDetailsWrapper] = None + if image_tokens is None and text_tokens is None: + for text in input: + input_tokens += len(encoding.encode(text)) + else: + prompt_tokens_details = PromptTokensDetailsWrapper( + image_tokens=image_tokens, + text_tokens=text_tokens, + ) + if image_tokens: + input_tokens += image_tokens + if text_tokens: + input_tokens += text_tokens + + return Usage( + prompt_tokens=input_tokens, + completion_tokens=0, + total_tokens=input_tokens, + prompt_tokens_details=prompt_tokens_details, + ) + + def _transform_response( + self, + response: httpx.Response, + api_key: Optional[str], + logging_obj: LiteLLMLoggingObj, + data: Union[dict, CohereEmbeddingRequest], + model_response: EmbeddingResponse, + model: str, + encoding: Any, + input: list, + ) -> EmbeddingResponse: + + response_json = response.json() + ## LOGGING + logging_obj.post_call( + input=input, + api_key=api_key, + additional_args={"complete_input_dict": data}, + original_response=response_json, + ) + """ + response + { + 'object': "list", + 'data': [ + + ] + 'model', + 'usage' + } + """ + embeddings = response_json["embeddings"] + output_data = [] + for idx, embedding in enumerate(embeddings): + output_data.append( + {"object": "embedding", "index": idx, "embedding": embedding} + ) + model_response.object = "list" + model_response.data = output_data + model_response.model = model + input_tokens = 0 + for text in input: + input_tokens += len(encoding.encode(text)) + + setattr( + model_response, + "usage", + self._calculate_usage(input, encoding, response_json.get("meta", {})), + ) + + return model_response |