aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py153
1 files changed, 153 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py
new file mode 100644
index 00000000..22e157a0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py
@@ -0,0 +1,153 @@
+"""
+Transformation logic from OpenAI /v1/embeddings format to Cohere's /v1/embed format.
+
+Why separate file? Make it easy to see how transformation works
+
+Convers
+- v3 embedding models
+- v2 embedding models
+
+Docs - https://docs.cohere.com/v2/reference/embed
+"""
+
+from typing import Any, List, Optional, Union
+
+import httpx
+
+from litellm import COHERE_DEFAULT_EMBEDDING_INPUT_TYPE
+from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
+from litellm.types.llms.bedrock import (
+ CohereEmbeddingRequest,
+ CohereEmbeddingRequestWithModel,
+)
+from litellm.types.utils import EmbeddingResponse, PromptTokensDetailsWrapper, Usage
+from litellm.utils import is_base64_encoded
+
+
+class CohereEmbeddingConfig:
+ """
+ Reference: https://docs.cohere.com/v2/reference/embed
+ """
+
+ def __init__(self) -> None:
+ pass
+
+ def get_supported_openai_params(self) -> List[str]:
+ return ["encoding_format"]
+
+ def map_openai_params(
+ self, non_default_params: dict, optional_params: dict
+ ) -> dict:
+ for k, v in non_default_params.items():
+ if k == "encoding_format":
+ optional_params["embedding_types"] = v
+ return optional_params
+
+ def _is_v3_model(self, model: str) -> bool:
+ return "3" in model
+
+ def _transform_request(
+ self, model: str, input: List[str], inference_params: dict
+ ) -> CohereEmbeddingRequestWithModel:
+ is_encoded = False
+ for input_str in input:
+ is_encoded = is_base64_encoded(input_str)
+
+ if is_encoded: # check if string is b64 encoded image or not
+ transformed_request = CohereEmbeddingRequestWithModel(
+ model=model,
+ images=input,
+ input_type="image",
+ )
+ else:
+ transformed_request = CohereEmbeddingRequestWithModel(
+ model=model,
+ texts=input,
+ input_type=COHERE_DEFAULT_EMBEDDING_INPUT_TYPE,
+ )
+
+ for k, v in inference_params.items():
+ transformed_request[k] = v # type: ignore
+
+ return transformed_request
+
+ def _calculate_usage(self, input: List[str], encoding: Any, meta: dict) -> Usage:
+
+ input_tokens = 0
+
+ text_tokens: Optional[int] = meta.get("billed_units", {}).get("input_tokens")
+
+ image_tokens: Optional[int] = meta.get("billed_units", {}).get("images")
+
+ prompt_tokens_details: Optional[PromptTokensDetailsWrapper] = None
+ if image_tokens is None and text_tokens is None:
+ for text in input:
+ input_tokens += len(encoding.encode(text))
+ else:
+ prompt_tokens_details = PromptTokensDetailsWrapper(
+ image_tokens=image_tokens,
+ text_tokens=text_tokens,
+ )
+ if image_tokens:
+ input_tokens += image_tokens
+ if text_tokens:
+ input_tokens += text_tokens
+
+ return Usage(
+ prompt_tokens=input_tokens,
+ completion_tokens=0,
+ total_tokens=input_tokens,
+ prompt_tokens_details=prompt_tokens_details,
+ )
+
+ def _transform_response(
+ self,
+ response: httpx.Response,
+ api_key: Optional[str],
+ logging_obj: LiteLLMLoggingObj,
+ data: Union[dict, CohereEmbeddingRequest],
+ model_response: EmbeddingResponse,
+ model: str,
+ encoding: Any,
+ input: list,
+ ) -> EmbeddingResponse:
+
+ response_json = response.json()
+ ## LOGGING
+ logging_obj.post_call(
+ input=input,
+ api_key=api_key,
+ additional_args={"complete_input_dict": data},
+ original_response=response_json,
+ )
+ """
+ response
+ {
+ 'object': "list",
+ 'data': [
+
+ ]
+ 'model',
+ 'usage'
+ }
+ """
+ embeddings = response_json["embeddings"]
+ output_data = []
+ for idx, embedding in enumerate(embeddings):
+ output_data.append(
+ {"object": "embedding", "index": idx, "embedding": embedding}
+ )
+ model_response.object = "list"
+ model_response.data = output_data
+ model_response.model = model
+ input_tokens = 0
+ for text in input:
+ input_tokens += len(encoding.encode(text))
+
+ setattr(
+ model_response,
+ "usage",
+ self._calculate_usage(input, encoding, response_json.get("meta", {})),
+ )
+
+ return model_response