aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/handler.py178
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py153
2 files changed, 331 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/handler.py
new file mode 100644
index 00000000..e7f22ea7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/handler.py
@@ -0,0 +1,178 @@
+import json
+from typing import Any, Callable, Optional, Union
+
+import httpx
+
+import litellm
+from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
+from litellm.llms.custom_httpx.http_handler import (
+ AsyncHTTPHandler,
+ HTTPHandler,
+ get_async_httpx_client,
+)
+from litellm.types.llms.bedrock import CohereEmbeddingRequest
+from litellm.types.utils import EmbeddingResponse
+
+from .transformation import CohereEmbeddingConfig
+
+
+def validate_environment(api_key, headers: dict):
+ headers.update(
+ {
+ "Request-Source": "unspecified:litellm",
+ "accept": "application/json",
+ "content-type": "application/json",
+ }
+ )
+ if api_key:
+ headers["Authorization"] = f"Bearer {api_key}"
+ return headers
+
+
+class CohereError(Exception):
+ def __init__(self, status_code, message):
+ self.status_code = status_code
+ self.message = message
+ self.request = httpx.Request(
+ method="POST", url="https://api.cohere.ai/v1/generate"
+ )
+ self.response = httpx.Response(status_code=status_code, request=self.request)
+ super().__init__(
+ self.message
+ ) # Call the base class constructor with the parameters it needs
+
+
+async def async_embedding(
+ model: str,
+ data: Union[dict, CohereEmbeddingRequest],
+ input: list,
+ model_response: litellm.utils.EmbeddingResponse,
+ timeout: Optional[Union[float, httpx.Timeout]],
+ logging_obj: LiteLLMLoggingObj,
+ optional_params: dict,
+ api_base: str,
+ api_key: Optional[str],
+ headers: dict,
+ encoding: Callable,
+ client: Optional[AsyncHTTPHandler] = None,
+):
+
+ ## LOGGING
+ logging_obj.pre_call(
+ input=input,
+ api_key=api_key,
+ additional_args={
+ "complete_input_dict": data,
+ "headers": headers,
+ "api_base": api_base,
+ },
+ )
+ ## COMPLETION CALL
+
+ if client is None:
+ client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.COHERE,
+ params={"timeout": timeout},
+ )
+
+ try:
+ response = await client.post(api_base, headers=headers, data=json.dumps(data))
+ except httpx.HTTPStatusError as e:
+ ## LOGGING
+ logging_obj.post_call(
+ input=input,
+ api_key=api_key,
+ additional_args={"complete_input_dict": data},
+ original_response=e.response.text,
+ )
+ raise e
+ except Exception as e:
+ ## LOGGING
+ logging_obj.post_call(
+ input=input,
+ api_key=api_key,
+ additional_args={"complete_input_dict": data},
+ original_response=str(e),
+ )
+ raise e
+
+ ## PROCESS RESPONSE ##
+ return CohereEmbeddingConfig()._transform_response(
+ response=response,
+ api_key=api_key,
+ logging_obj=logging_obj,
+ data=data,
+ model_response=model_response,
+ model=model,
+ encoding=encoding,
+ input=input,
+ )
+
+
+def embedding(
+ model: str,
+ input: list,
+ model_response: EmbeddingResponse,
+ logging_obj: LiteLLMLoggingObj,
+ optional_params: dict,
+ headers: dict,
+ encoding: Any,
+ data: Optional[Union[dict, CohereEmbeddingRequest]] = None,
+ complete_api_base: Optional[str] = None,
+ api_key: Optional[str] = None,
+ aembedding: Optional[bool] = None,
+ timeout: Optional[Union[float, httpx.Timeout]] = httpx.Timeout(None),
+ client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
+):
+ headers = validate_environment(api_key, headers=headers)
+ embed_url = complete_api_base or "https://api.cohere.ai/v1/embed"
+ model = model
+
+ data = data or CohereEmbeddingConfig()._transform_request(
+ model=model, input=input, inference_params=optional_params
+ )
+
+ ## ROUTING
+ if aembedding is True:
+ return async_embedding(
+ model=model,
+ data=data,
+ input=input,
+ model_response=model_response,
+ timeout=timeout,
+ logging_obj=logging_obj,
+ optional_params=optional_params,
+ api_base=embed_url,
+ api_key=api_key,
+ headers=headers,
+ encoding=encoding,
+ client=(
+ client
+ if client is not None and isinstance(client, AsyncHTTPHandler)
+ else None
+ ),
+ )
+
+ ## LOGGING
+ logging_obj.pre_call(
+ input=input,
+ api_key=api_key,
+ additional_args={"complete_input_dict": data},
+ )
+
+ ## COMPLETION CALL
+ if client is None or not isinstance(client, HTTPHandler):
+ client = HTTPHandler(concurrent_limit=1)
+
+ response = client.post(embed_url, headers=headers, data=json.dumps(data))
+
+ return CohereEmbeddingConfig()._transform_response(
+ response=response,
+ api_key=api_key,
+ logging_obj=logging_obj,
+ data=data,
+ model_response=model_response,
+ model=model,
+ encoding=encoding,
+ input=input,
+ )
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py
new file mode 100644
index 00000000..22e157a0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py
@@ -0,0 +1,153 @@
+"""
+Transformation logic from OpenAI /v1/embeddings format to Cohere's /v1/embed format.
+
+Why separate file? Make it easy to see how transformation works
+
+Convers
+- v3 embedding models
+- v2 embedding models
+
+Docs - https://docs.cohere.com/v2/reference/embed
+"""
+
+from typing import Any, List, Optional, Union
+
+import httpx
+
+from litellm import COHERE_DEFAULT_EMBEDDING_INPUT_TYPE
+from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
+from litellm.types.llms.bedrock import (
+ CohereEmbeddingRequest,
+ CohereEmbeddingRequestWithModel,
+)
+from litellm.types.utils import EmbeddingResponse, PromptTokensDetailsWrapper, Usage
+from litellm.utils import is_base64_encoded
+
+
+class CohereEmbeddingConfig:
+ """
+ Reference: https://docs.cohere.com/v2/reference/embed
+ """
+
+ def __init__(self) -> None:
+ pass
+
+ def get_supported_openai_params(self) -> List[str]:
+ return ["encoding_format"]
+
+ def map_openai_params(
+ self, non_default_params: dict, optional_params: dict
+ ) -> dict:
+ for k, v in non_default_params.items():
+ if k == "encoding_format":
+ optional_params["embedding_types"] = v
+ return optional_params
+
+ def _is_v3_model(self, model: str) -> bool:
+ return "3" in model
+
+ def _transform_request(
+ self, model: str, input: List[str], inference_params: dict
+ ) -> CohereEmbeddingRequestWithModel:
+ is_encoded = False
+ for input_str in input:
+ is_encoded = is_base64_encoded(input_str)
+
+ if is_encoded: # check if string is b64 encoded image or not
+ transformed_request = CohereEmbeddingRequestWithModel(
+ model=model,
+ images=input,
+ input_type="image",
+ )
+ else:
+ transformed_request = CohereEmbeddingRequestWithModel(
+ model=model,
+ texts=input,
+ input_type=COHERE_DEFAULT_EMBEDDING_INPUT_TYPE,
+ )
+
+ for k, v in inference_params.items():
+ transformed_request[k] = v # type: ignore
+
+ return transformed_request
+
+ def _calculate_usage(self, input: List[str], encoding: Any, meta: dict) -> Usage:
+
+ input_tokens = 0
+
+ text_tokens: Optional[int] = meta.get("billed_units", {}).get("input_tokens")
+
+ image_tokens: Optional[int] = meta.get("billed_units", {}).get("images")
+
+ prompt_tokens_details: Optional[PromptTokensDetailsWrapper] = None
+ if image_tokens is None and text_tokens is None:
+ for text in input:
+ input_tokens += len(encoding.encode(text))
+ else:
+ prompt_tokens_details = PromptTokensDetailsWrapper(
+ image_tokens=image_tokens,
+ text_tokens=text_tokens,
+ )
+ if image_tokens:
+ input_tokens += image_tokens
+ if text_tokens:
+ input_tokens += text_tokens
+
+ return Usage(
+ prompt_tokens=input_tokens,
+ completion_tokens=0,
+ total_tokens=input_tokens,
+ prompt_tokens_details=prompt_tokens_details,
+ )
+
+ def _transform_response(
+ self,
+ response: httpx.Response,
+ api_key: Optional[str],
+ logging_obj: LiteLLMLoggingObj,
+ data: Union[dict, CohereEmbeddingRequest],
+ model_response: EmbeddingResponse,
+ model: str,
+ encoding: Any,
+ input: list,
+ ) -> EmbeddingResponse:
+
+ response_json = response.json()
+ ## LOGGING
+ logging_obj.post_call(
+ input=input,
+ api_key=api_key,
+ additional_args={"complete_input_dict": data},
+ original_response=response_json,
+ )
+ """
+ response
+ {
+ 'object': "list",
+ 'data': [
+
+ ]
+ 'model',
+ 'usage'
+ }
+ """
+ embeddings = response_json["embeddings"]
+ output_data = []
+ for idx, embedding in enumerate(embeddings):
+ output_data.append(
+ {"object": "embedding", "index": idx, "embedding": embedding}
+ )
+ model_response.object = "list"
+ model_response.data = output_data
+ model_response.model = model
+ input_tokens = 0
+ for text in input:
+ input_tokens += len(encoding.encode(text))
+
+ setattr(
+ model_response,
+ "usage",
+ self._calculate_usage(input, encoding, response_json.get("meta", {})),
+ )
+
+ return model_response