about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py153
1 files changed, 153 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py
new file mode 100644
index 00000000..22e157a0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py
@@ -0,0 +1,153 @@
+"""
+Transformation logic from OpenAI /v1/embeddings format to Cohere's /v1/embed format.
+
+Why separate file? Make it easy to see how transformation works
+
+Convers
+- v3 embedding models
+- v2 embedding models
+
+Docs - https://docs.cohere.com/v2/reference/embed
+"""
+
+from typing import Any, List, Optional, Union
+
+import httpx
+
+from litellm import COHERE_DEFAULT_EMBEDDING_INPUT_TYPE
+from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
+from litellm.types.llms.bedrock import (
+    CohereEmbeddingRequest,
+    CohereEmbeddingRequestWithModel,
+)
+from litellm.types.utils import EmbeddingResponse, PromptTokensDetailsWrapper, Usage
+from litellm.utils import is_base64_encoded
+
+
+class CohereEmbeddingConfig:
+    """
+    Reference: https://docs.cohere.com/v2/reference/embed
+    """
+
+    def __init__(self) -> None:
+        pass
+
+    def get_supported_openai_params(self) -> List[str]:
+        return ["encoding_format"]
+
+    def map_openai_params(
+        self, non_default_params: dict, optional_params: dict
+    ) -> dict:
+        for k, v in non_default_params.items():
+            if k == "encoding_format":
+                optional_params["embedding_types"] = v
+        return optional_params
+
+    def _is_v3_model(self, model: str) -> bool:
+        return "3" in model
+
+    def _transform_request(
+        self, model: str, input: List[str], inference_params: dict
+    ) -> CohereEmbeddingRequestWithModel:
+        is_encoded = False
+        for input_str in input:
+            is_encoded = is_base64_encoded(input_str)
+
+        if is_encoded:  # check if string is b64 encoded image or not
+            transformed_request = CohereEmbeddingRequestWithModel(
+                model=model,
+                images=input,
+                input_type="image",
+            )
+        else:
+            transformed_request = CohereEmbeddingRequestWithModel(
+                model=model,
+                texts=input,
+                input_type=COHERE_DEFAULT_EMBEDDING_INPUT_TYPE,
+            )
+
+        for k, v in inference_params.items():
+            transformed_request[k] = v  # type: ignore
+
+        return transformed_request
+
+    def _calculate_usage(self, input: List[str], encoding: Any, meta: dict) -> Usage:
+
+        input_tokens = 0
+
+        text_tokens: Optional[int] = meta.get("billed_units", {}).get("input_tokens")
+
+        image_tokens: Optional[int] = meta.get("billed_units", {}).get("images")
+
+        prompt_tokens_details: Optional[PromptTokensDetailsWrapper] = None
+        if image_tokens is None and text_tokens is None:
+            for text in input:
+                input_tokens += len(encoding.encode(text))
+        else:
+            prompt_tokens_details = PromptTokensDetailsWrapper(
+                image_tokens=image_tokens,
+                text_tokens=text_tokens,
+            )
+            if image_tokens:
+                input_tokens += image_tokens
+            if text_tokens:
+                input_tokens += text_tokens
+
+        return Usage(
+            prompt_tokens=input_tokens,
+            completion_tokens=0,
+            total_tokens=input_tokens,
+            prompt_tokens_details=prompt_tokens_details,
+        )
+
+    def _transform_response(
+        self,
+        response: httpx.Response,
+        api_key: Optional[str],
+        logging_obj: LiteLLMLoggingObj,
+        data: Union[dict, CohereEmbeddingRequest],
+        model_response: EmbeddingResponse,
+        model: str,
+        encoding: Any,
+        input: list,
+    ) -> EmbeddingResponse:
+
+        response_json = response.json()
+        ## LOGGING
+        logging_obj.post_call(
+            input=input,
+            api_key=api_key,
+            additional_args={"complete_input_dict": data},
+            original_response=response_json,
+        )
+        """
+            response 
+            {
+                'object': "list",
+                'data': [
+                
+                ]
+                'model', 
+                'usage'
+            }
+        """
+        embeddings = response_json["embeddings"]
+        output_data = []
+        for idx, embedding in enumerate(embeddings):
+            output_data.append(
+                {"object": "embedding", "index": idx, "embedding": embedding}
+            )
+        model_response.object = "list"
+        model_response.data = output_data
+        model_response.model = model
+        input_tokens = 0
+        for text in input:
+            input_tokens += len(encoding.encode(text))
+
+        setattr(
+            model_response,
+            "usage",
+            self._calculate_usage(input, encoding, response_json.get("meta", {})),
+        )
+
+        return model_response