1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
"""
Transformation logic from OpenAI /v1/embeddings format to Cohere's /v1/embed format.
Why separate file? Make it easy to see how transformation works
Convers
- v3 embedding models
- v2 embedding models
Docs - https://docs.cohere.com/v2/reference/embed
"""
from typing import Any, List, Optional, Union
import httpx
from litellm import COHERE_DEFAULT_EMBEDDING_INPUT_TYPE
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.types.llms.bedrock import (
CohereEmbeddingRequest,
CohereEmbeddingRequestWithModel,
)
from litellm.types.utils import EmbeddingResponse, PromptTokensDetailsWrapper, Usage
from litellm.utils import is_base64_encoded
class CohereEmbeddingConfig:
"""
Reference: https://docs.cohere.com/v2/reference/embed
"""
def __init__(self) -> None:
pass
def get_supported_openai_params(self) -> List[str]:
return ["encoding_format"]
def map_openai_params(
self, non_default_params: dict, optional_params: dict
) -> dict:
for k, v in non_default_params.items():
if k == "encoding_format":
optional_params["embedding_types"] = v
return optional_params
def _is_v3_model(self, model: str) -> bool:
return "3" in model
def _transform_request(
self, model: str, input: List[str], inference_params: dict
) -> CohereEmbeddingRequestWithModel:
is_encoded = False
for input_str in input:
is_encoded = is_base64_encoded(input_str)
if is_encoded: # check if string is b64 encoded image or not
transformed_request = CohereEmbeddingRequestWithModel(
model=model,
images=input,
input_type="image",
)
else:
transformed_request = CohereEmbeddingRequestWithModel(
model=model,
texts=input,
input_type=COHERE_DEFAULT_EMBEDDING_INPUT_TYPE,
)
for k, v in inference_params.items():
transformed_request[k] = v # type: ignore
return transformed_request
def _calculate_usage(self, input: List[str], encoding: Any, meta: dict) -> Usage:
input_tokens = 0
text_tokens: Optional[int] = meta.get("billed_units", {}).get("input_tokens")
image_tokens: Optional[int] = meta.get("billed_units", {}).get("images")
prompt_tokens_details: Optional[PromptTokensDetailsWrapper] = None
if image_tokens is None and text_tokens is None:
for text in input:
input_tokens += len(encoding.encode(text))
else:
prompt_tokens_details = PromptTokensDetailsWrapper(
image_tokens=image_tokens,
text_tokens=text_tokens,
)
if image_tokens:
input_tokens += image_tokens
if text_tokens:
input_tokens += text_tokens
return Usage(
prompt_tokens=input_tokens,
completion_tokens=0,
total_tokens=input_tokens,
prompt_tokens_details=prompt_tokens_details,
)
def _transform_response(
self,
response: httpx.Response,
api_key: Optional[str],
logging_obj: LiteLLMLoggingObj,
data: Union[dict, CohereEmbeddingRequest],
model_response: EmbeddingResponse,
model: str,
encoding: Any,
input: list,
) -> EmbeddingResponse:
response_json = response.json()
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=response_json,
)
"""
response
{
'object': "list",
'data': [
]
'model',
'usage'
}
"""
embeddings = response_json["embeddings"]
output_data = []
for idx, embedding in enumerate(embeddings):
output_data.append(
{"object": "embedding", "index": idx, "embedding": embedding}
)
model_response.object = "list"
model_response.data = output_data
model_response.model = model
input_tokens = 0
for text in input:
input_tokens += len(encoding.encode(text))
setattr(
model_response,
"usage",
self._calculate_usage(input, encoding, response_json.get("meta", {})),
)
return model_response
|