aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/cohere
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/llms/cohere
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/cohere')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/cohere/chat/transformation.py368
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/cohere/common_utils.py146
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/cohere/completion/handler.py5
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/cohere/completion/transformation.py264
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/handler.py178
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py153
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/cohere/rerank/handler.py5
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/cohere/rerank/transformation.py151
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/cohere/rerank_v2/transformation.py80
9 files changed, 1350 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/cohere/chat/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/chat/transformation.py
new file mode 100644
index 00000000..3ceec2db
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/chat/transformation.py
@@ -0,0 +1,368 @@
+import json
+import time
+from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union
+
+import httpx
+
+import litellm
+from litellm.litellm_core_utils.prompt_templates.factory import cohere_messages_pt_v2
+from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
+from litellm.types.llms.openai import AllMessageValues
+from litellm.types.utils import ModelResponse, Usage
+
+from ..common_utils import ModelResponseIterator as CohereModelResponseIterator
+from ..common_utils import validate_environment as cohere_validate_environment
+
+if TYPE_CHECKING:
+ from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
+
+ LiteLLMLoggingObj = _LiteLLMLoggingObj
+else:
+ LiteLLMLoggingObj = Any
+
+
+class CohereError(BaseLLMException):
+ def __init__(
+ self,
+ status_code: int,
+ message: str,
+ headers: Optional[httpx.Headers] = None,
+ ):
+ self.status_code = status_code
+ self.message = message
+ self.request = httpx.Request(method="POST", url="https://api.cohere.ai/v1/chat")
+ self.response = httpx.Response(status_code=status_code, request=self.request)
+ super().__init__(
+ status_code=status_code,
+ message=message,
+ headers=headers,
+ )
+
+
+class CohereChatConfig(BaseConfig):
+ """
+ Configuration class for Cohere's API interface.
+
+ Args:
+ preamble (str, optional): When specified, the default Cohere preamble will be replaced with the provided one.
+ chat_history (List[Dict[str, str]], optional): A list of previous messages between the user and the model.
+ generation_id (str, optional): Unique identifier for the generated reply.
+ response_id (str, optional): Unique identifier for the response.
+ conversation_id (str, optional): An alternative to chat_history, creates or resumes a persisted conversation.
+ prompt_truncation (str, optional): Dictates how the prompt will be constructed. Options: 'AUTO', 'AUTO_PRESERVE_ORDER', 'OFF'.
+ connectors (List[Dict[str, str]], optional): List of connectors (e.g., web-search) to enrich the model's reply.
+ search_queries_only (bool, optional): When true, the response will only contain a list of generated search queries.
+ documents (List[Dict[str, str]], optional): A list of relevant documents that the model can cite.
+ temperature (float, optional): A non-negative float that tunes the degree of randomness in generation.
+ max_tokens (int, optional): The maximum number of tokens the model will generate as part of the response.
+ k (int, optional): Ensures only the top k most likely tokens are considered for generation at each step.
+ p (float, optional): Ensures that only the most likely tokens, with total probability mass of p, are considered for generation.
+ frequency_penalty (float, optional): Used to reduce repetitiveness of generated tokens.
+ presence_penalty (float, optional): Used to reduce repetitiveness of generated tokens.
+ tools (List[Dict[str, str]], optional): A list of available tools (functions) that the model may suggest invoking.
+ tool_results (List[Dict[str, Any]], optional): A list of results from invoking tools.
+ seed (int, optional): A seed to assist reproducibility of the model's response.
+ """
+
+ preamble: Optional[str] = None
+ chat_history: Optional[list] = None
+ generation_id: Optional[str] = None
+ response_id: Optional[str] = None
+ conversation_id: Optional[str] = None
+ prompt_truncation: Optional[str] = None
+ connectors: Optional[list] = None
+ search_queries_only: Optional[bool] = None
+ documents: Optional[list] = None
+ temperature: Optional[int] = None
+ max_tokens: Optional[int] = None
+ k: Optional[int] = None
+ p: Optional[int] = None
+ frequency_penalty: Optional[int] = None
+ presence_penalty: Optional[int] = None
+ tools: Optional[list] = None
+ tool_results: Optional[list] = None
+ seed: Optional[int] = None
+
+ def __init__(
+ self,
+ preamble: Optional[str] = None,
+ chat_history: Optional[list] = None,
+ generation_id: Optional[str] = None,
+ response_id: Optional[str] = None,
+ conversation_id: Optional[str] = None,
+ prompt_truncation: Optional[str] = None,
+ connectors: Optional[list] = None,
+ search_queries_only: Optional[bool] = None,
+ documents: Optional[list] = None,
+ temperature: Optional[int] = None,
+ max_tokens: Optional[int] = None,
+ k: Optional[int] = None,
+ p: Optional[int] = None,
+ frequency_penalty: Optional[int] = None,
+ presence_penalty: Optional[int] = None,
+ tools: Optional[list] = None,
+ tool_results: Optional[list] = None,
+ seed: Optional[int] = None,
+ ) -> None:
+ locals_ = locals().copy()
+ for key, value in locals_.items():
+ if key != "self" and value is not None:
+ setattr(self.__class__, key, value)
+
+ def validate_environment(
+ self,
+ headers: dict,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ api_key: Optional[str] = None,
+ api_base: Optional[str] = None,
+ ) -> dict:
+ return cohere_validate_environment(
+ headers=headers,
+ model=model,
+ messages=messages,
+ optional_params=optional_params,
+ api_key=api_key,
+ )
+
+ def get_supported_openai_params(self, model: str) -> List[str]:
+ return [
+ "stream",
+ "temperature",
+ "max_tokens",
+ "top_p",
+ "frequency_penalty",
+ "presence_penalty",
+ "stop",
+ "n",
+ "tools",
+ "tool_choice",
+ "seed",
+ "extra_headers",
+ ]
+
+ def map_openai_params(
+ self,
+ non_default_params: dict,
+ optional_params: dict,
+ model: str,
+ drop_params: bool,
+ ) -> dict:
+ for param, value in non_default_params.items():
+ if param == "stream":
+ optional_params["stream"] = value
+ if param == "temperature":
+ optional_params["temperature"] = value
+ if param == "max_tokens":
+ optional_params["max_tokens"] = value
+ if param == "n":
+ optional_params["num_generations"] = value
+ if param == "top_p":
+ optional_params["p"] = value
+ if param == "frequency_penalty":
+ optional_params["frequency_penalty"] = value
+ if param == "presence_penalty":
+ optional_params["presence_penalty"] = value
+ if param == "stop":
+ optional_params["stop_sequences"] = value
+ if param == "tools":
+ optional_params["tools"] = value
+ if param == "seed":
+ optional_params["seed"] = value
+ return optional_params
+
+ def transform_request(
+ self,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ headers: dict,
+ ) -> dict:
+
+ ## Load Config
+ for k, v in litellm.CohereChatConfig.get_config().items():
+ if (
+ k not in optional_params
+ ): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in
+ optional_params[k] = v
+
+ most_recent_message, chat_history = cohere_messages_pt_v2(
+ messages=messages, model=model, llm_provider="cohere_chat"
+ )
+
+ ## Handle Tool Calling
+ if "tools" in optional_params:
+ _is_function_call = True
+ cohere_tools = self._construct_cohere_tool(tools=optional_params["tools"])
+ optional_params["tools"] = cohere_tools
+ if isinstance(most_recent_message, dict):
+ optional_params["tool_results"] = [most_recent_message]
+ elif isinstance(most_recent_message, str):
+ optional_params["message"] = most_recent_message
+
+ ## check if chat history message is 'user' and 'tool_results' is given -> force_single_step=True, else cohere api fails
+ if len(chat_history) > 0 and chat_history[-1]["role"] == "USER":
+ optional_params["force_single_step"] = True
+
+ return optional_params
+
+ def transform_response(
+ self,
+ model: str,
+ raw_response: httpx.Response,
+ model_response: ModelResponse,
+ logging_obj: LiteLLMLoggingObj,
+ request_data: dict,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ encoding: Any,
+ api_key: Optional[str] = None,
+ json_mode: Optional[bool] = None,
+ ) -> ModelResponse:
+
+ try:
+ raw_response_json = raw_response.json()
+ model_response.choices[0].message.content = raw_response_json["text"] # type: ignore
+ except Exception:
+ raise CohereError(
+ message=raw_response.text, status_code=raw_response.status_code
+ )
+
+ ## ADD CITATIONS
+ if "citations" in raw_response_json:
+ setattr(model_response, "citations", raw_response_json["citations"])
+
+ ## Tool calling response
+ cohere_tools_response = raw_response_json.get("tool_calls", None)
+ if cohere_tools_response is not None and cohere_tools_response != []:
+ # convert cohere_tools_response to OpenAI response format
+ tool_calls = []
+ for tool in cohere_tools_response:
+ function_name = tool.get("name", "")
+ generation_id = tool.get("generation_id", "")
+ parameters = tool.get("parameters", {})
+ tool_call = {
+ "id": f"call_{generation_id}",
+ "type": "function",
+ "function": {
+ "name": function_name,
+ "arguments": json.dumps(parameters),
+ },
+ }
+ tool_calls.append(tool_call)
+ _message = litellm.Message(
+ tool_calls=tool_calls,
+ content=None,
+ )
+ model_response.choices[0].message = _message # type: ignore
+
+ ## CALCULATING USAGE - use cohere `billed_units` for returning usage
+ billed_units = raw_response_json.get("meta", {}).get("billed_units", {})
+
+ prompt_tokens = billed_units.get("input_tokens", 0)
+ completion_tokens = billed_units.get("output_tokens", 0)
+
+ model_response.created = int(time.time())
+ model_response.model = model
+ usage = Usage(
+ prompt_tokens=prompt_tokens,
+ completion_tokens=completion_tokens,
+ total_tokens=prompt_tokens + completion_tokens,
+ )
+ setattr(model_response, "usage", usage)
+ return model_response
+
+ def _construct_cohere_tool(
+ self,
+ tools: Optional[list] = None,
+ ):
+ if tools is None:
+ tools = []
+ cohere_tools = []
+ for tool in tools:
+ cohere_tool = self._translate_openai_tool_to_cohere(tool)
+ cohere_tools.append(cohere_tool)
+ return cohere_tools
+
+ def _translate_openai_tool_to_cohere(
+ self,
+ openai_tool: dict,
+ ):
+ # cohere tools look like this
+ """
+ {
+ "name": "query_daily_sales_report",
+ "description": "Connects to a database to retrieve overall sales volumes and sales information for a given day.",
+ "parameter_definitions": {
+ "day": {
+ "description": "Retrieves sales data for this day, formatted as YYYY-MM-DD.",
+ "type": "str",
+ "required": True
+ }
+ }
+ }
+ """
+
+ # OpenAI tools look like this
+ """
+ {
+ "type": "function",
+ "function": {
+ "name": "get_current_weather",
+ "description": "Get the current weather in a given location",
+ "parameters": {
+ "type": "object",
+ "properties": {
+ "location": {
+ "type": "string",
+ "description": "The city and state, e.g. San Francisco, CA",
+ },
+ "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
+ },
+ "required": ["location"],
+ },
+ },
+ }
+ """
+ cohere_tool = {
+ "name": openai_tool["function"]["name"],
+ "description": openai_tool["function"]["description"],
+ "parameter_definitions": {},
+ }
+
+ for param_name, param_def in openai_tool["function"]["parameters"][
+ "properties"
+ ].items():
+ required_params = (
+ openai_tool.get("function", {})
+ .get("parameters", {})
+ .get("required", [])
+ )
+ cohere_param_def = {
+ "description": param_def.get("description", ""),
+ "type": param_def.get("type", ""),
+ "required": param_name in required_params,
+ }
+ cohere_tool["parameter_definitions"][param_name] = cohere_param_def
+
+ return cohere_tool
+
+ def get_model_response_iterator(
+ self,
+ streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
+ sync_stream: bool,
+ json_mode: Optional[bool] = False,
+ ):
+ return CohereModelResponseIterator(
+ streaming_response=streaming_response,
+ sync_stream=sync_stream,
+ json_mode=json_mode,
+ )
+
+ def get_error_class(
+ self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
+ ) -> BaseLLMException:
+ return CohereError(status_code=status_code, message=error_message)
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/cohere/common_utils.py b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/common_utils.py
new file mode 100644
index 00000000..11ff73ef
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/common_utils.py
@@ -0,0 +1,146 @@
+import json
+from typing import List, Optional
+
+from litellm.llms.base_llm.chat.transformation import BaseLLMException
+from litellm.types.llms.openai import AllMessageValues
+from litellm.types.utils import (
+ ChatCompletionToolCallChunk,
+ ChatCompletionUsageBlock,
+ GenericStreamingChunk,
+)
+
+
+class CohereError(BaseLLMException):
+ def __init__(self, status_code, message):
+ super().__init__(status_code=status_code, message=message)
+
+
+def validate_environment(
+ headers: dict,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ api_key: Optional[str] = None,
+) -> dict:
+ """
+ Return headers to use for cohere chat completion request
+
+ Cohere API Ref: https://docs.cohere.com/reference/chat
+ Expected headers:
+ {
+ "Request-Source": "unspecified:litellm",
+ "accept": "application/json",
+ "content-type": "application/json",
+ "Authorization": "bearer $CO_API_KEY"
+ }
+ """
+ headers.update(
+ {
+ "Request-Source": "unspecified:litellm",
+ "accept": "application/json",
+ "content-type": "application/json",
+ }
+ )
+ if api_key:
+ headers["Authorization"] = f"bearer {api_key}"
+ return headers
+
+
+class ModelResponseIterator:
+ def __init__(
+ self, streaming_response, sync_stream: bool, json_mode: Optional[bool] = False
+ ):
+ self.streaming_response = streaming_response
+ self.response_iterator = self.streaming_response
+ self.content_blocks: List = []
+ self.tool_index = -1
+ self.json_mode = json_mode
+
+ def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
+ try:
+ text = ""
+ tool_use: Optional[ChatCompletionToolCallChunk] = None
+ is_finished = False
+ finish_reason = ""
+ usage: Optional[ChatCompletionUsageBlock] = None
+ provider_specific_fields = None
+
+ index = int(chunk.get("index", 0))
+
+ if "text" in chunk:
+ text = chunk["text"]
+ elif "is_finished" in chunk and chunk["is_finished"] is True:
+ is_finished = chunk["is_finished"]
+ finish_reason = chunk["finish_reason"]
+
+ if "citations" in chunk:
+ provider_specific_fields = {"citations": chunk["citations"]}
+
+ returned_chunk = GenericStreamingChunk(
+ text=text,
+ tool_use=tool_use,
+ is_finished=is_finished,
+ finish_reason=finish_reason,
+ usage=usage,
+ index=index,
+ provider_specific_fields=provider_specific_fields,
+ )
+
+ return returned_chunk
+
+ except json.JSONDecodeError:
+ raise ValueError(f"Failed to decode JSON from chunk: {chunk}")
+
+ # Sync iterator
+ def __iter__(self):
+ return self
+
+ def __next__(self):
+ try:
+ chunk = self.response_iterator.__next__()
+ except StopIteration:
+ raise StopIteration
+ except ValueError as e:
+ raise RuntimeError(f"Error receiving chunk from stream: {e}")
+
+ try:
+ str_line = chunk
+ if isinstance(chunk, bytes): # Handle binary data
+ str_line = chunk.decode("utf-8") # Convert bytes to string
+ index = str_line.find("data:")
+ if index != -1:
+ str_line = str_line[index:]
+ data_json = json.loads(str_line)
+ return self.chunk_parser(chunk=data_json)
+ except StopIteration:
+ raise StopIteration
+ except ValueError as e:
+ raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
+
+ # Async iterator
+ def __aiter__(self):
+ self.async_response_iterator = self.streaming_response.__aiter__()
+ return self
+
+ async def __anext__(self):
+ try:
+ chunk = await self.async_response_iterator.__anext__()
+ except StopAsyncIteration:
+ raise StopAsyncIteration
+ except ValueError as e:
+ raise RuntimeError(f"Error receiving chunk from stream: {e}")
+
+ try:
+ str_line = chunk
+ if isinstance(chunk, bytes): # Handle binary data
+ str_line = chunk.decode("utf-8") # Convert bytes to string
+ index = str_line.find("data:")
+ if index != -1:
+ str_line = str_line[index:]
+
+ data_json = json.loads(str_line)
+ return self.chunk_parser(chunk=data_json)
+ except StopAsyncIteration:
+ raise StopAsyncIteration
+ except ValueError as e:
+ raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/cohere/completion/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/completion/handler.py
new file mode 100644
index 00000000..6a779511
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/completion/handler.py
@@ -0,0 +1,5 @@
+"""
+Cohere /generate API - uses `llm_http_handler.py` to make httpx requests
+
+Request/Response transformation is handled in `transformation.py`
+"""
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/cohere/completion/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/completion/transformation.py
new file mode 100644
index 00000000..bdfcda02
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/completion/transformation.py
@@ -0,0 +1,264 @@
+import time
+from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union
+
+import httpx
+
+import litellm
+from litellm.litellm_core_utils.prompt_templates.common_utils import (
+ convert_content_list_to_str,
+)
+from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
+from litellm.types.llms.openai import AllMessageValues
+from litellm.types.utils import Choices, Message, ModelResponse, Usage
+
+from ..common_utils import CohereError
+from ..common_utils import ModelResponseIterator as CohereModelResponseIterator
+from ..common_utils import validate_environment as cohere_validate_environment
+
+if TYPE_CHECKING:
+ from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
+
+ LiteLLMLoggingObj = _LiteLLMLoggingObj
+else:
+ LiteLLMLoggingObj = Any
+
+
+class CohereTextConfig(BaseConfig):
+ """
+ Reference: https://docs.cohere.com/reference/generate
+
+ The class `CohereConfig` provides configuration for the Cohere's API interface. Below are the parameters:
+
+ - `num_generations` (integer): Maximum number of generations returned. Default is 1, with a minimum value of 1 and a maximum value of 5.
+
+ - `max_tokens` (integer): Maximum number of tokens the model will generate as part of the response. Default value is 20.
+
+ - `truncate` (string): Specifies how the API handles inputs longer than maximum token length. Options include NONE, START, END. Default is END.
+
+ - `temperature` (number): A non-negative float controlling the randomness in generation. Lower temperatures result in less random generations. Default is 0.75.
+
+ - `preset` (string): Identifier of a custom preset, a combination of parameters such as prompt, temperature etc.
+
+ - `end_sequences` (array of strings): The generated text gets cut at the beginning of the earliest occurrence of an end sequence, which will be excluded from the text.
+
+ - `stop_sequences` (array of strings): The generated text gets cut at the end of the earliest occurrence of a stop sequence, which will be included in the text.
+
+ - `k` (integer): Limits generation at each step to top `k` most likely tokens. Default is 0.
+
+ - `p` (number): Limits generation at each step to most likely tokens with total probability mass of `p`. Default is 0.
+
+ - `frequency_penalty` (number): Reduces repetitiveness of generated tokens. Higher values apply stronger penalties to previously occurred tokens.
+
+ - `presence_penalty` (number): Reduces repetitiveness of generated tokens. Similar to frequency_penalty, but this penalty applies equally to all tokens that have already appeared.
+
+ - `return_likelihoods` (string): Specifies how and if token likelihoods are returned with the response. Options include GENERATION, ALL and NONE.
+
+ - `logit_bias` (object): Used to prevent the model from generating unwanted tokens or to incentivize it to include desired tokens. e.g. {"hello_world": 1233}
+ """
+
+ num_generations: Optional[int] = None
+ max_tokens: Optional[int] = None
+ truncate: Optional[str] = None
+ temperature: Optional[int] = None
+ preset: Optional[str] = None
+ end_sequences: Optional[list] = None
+ stop_sequences: Optional[list] = None
+ k: Optional[int] = None
+ p: Optional[int] = None
+ frequency_penalty: Optional[int] = None
+ presence_penalty: Optional[int] = None
+ return_likelihoods: Optional[str] = None
+ logit_bias: Optional[dict] = None
+
+ def __init__(
+ self,
+ num_generations: Optional[int] = None,
+ max_tokens: Optional[int] = None,
+ truncate: Optional[str] = None,
+ temperature: Optional[int] = None,
+ preset: Optional[str] = None,
+ end_sequences: Optional[list] = None,
+ stop_sequences: Optional[list] = None,
+ k: Optional[int] = None,
+ p: Optional[int] = None,
+ frequency_penalty: Optional[int] = None,
+ presence_penalty: Optional[int] = None,
+ return_likelihoods: Optional[str] = None,
+ logit_bias: Optional[dict] = None,
+ ) -> None:
+ locals_ = locals().copy()
+ for key, value in locals_.items():
+ if key != "self" and value is not None:
+ setattr(self.__class__, key, value)
+
+ @classmethod
+ def get_config(cls):
+ return super().get_config()
+
+ def validate_environment(
+ self,
+ headers: dict,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ api_key: Optional[str] = None,
+ api_base: Optional[str] = None,
+ ) -> dict:
+ return cohere_validate_environment(
+ headers=headers,
+ model=model,
+ messages=messages,
+ optional_params=optional_params,
+ api_key=api_key,
+ )
+
+ def get_error_class(
+ self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
+ ) -> BaseLLMException:
+ return CohereError(status_code=status_code, message=error_message)
+
+ def get_supported_openai_params(self, model: str) -> List:
+ return [
+ "stream",
+ "temperature",
+ "max_tokens",
+ "logit_bias",
+ "top_p",
+ "frequency_penalty",
+ "presence_penalty",
+ "stop",
+ "n",
+ "extra_headers",
+ ]
+
+ def map_openai_params(
+ self,
+ non_default_params: dict,
+ optional_params: dict,
+ model: str,
+ drop_params: bool,
+ ) -> dict:
+ for param, value in non_default_params.items():
+ if param == "stream":
+ optional_params["stream"] = value
+ elif param == "temperature":
+ optional_params["temperature"] = value
+ elif param == "max_tokens":
+ optional_params["max_tokens"] = value
+ elif param == "n":
+ optional_params["num_generations"] = value
+ elif param == "logit_bias":
+ optional_params["logit_bias"] = value
+ elif param == "top_p":
+ optional_params["p"] = value
+ elif param == "frequency_penalty":
+ optional_params["frequency_penalty"] = value
+ elif param == "presence_penalty":
+ optional_params["presence_penalty"] = value
+ elif param == "stop":
+ optional_params["stop_sequences"] = value
+ return optional_params
+
+ def transform_request(
+ self,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ headers: dict,
+ ) -> dict:
+ prompt = " ".join(
+ convert_content_list_to_str(message=message) for message in messages
+ )
+
+ ## Load Config
+ config = litellm.CohereConfig.get_config()
+ for k, v in config.items():
+ if (
+ k not in optional_params
+ ): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in
+ optional_params[k] = v
+
+ ## Handle Tool Calling
+ if "tools" in optional_params:
+ _is_function_call = True
+ tool_calling_system_prompt = self._construct_cohere_tool_for_completion_api(
+ tools=optional_params["tools"]
+ )
+ optional_params["tools"] = tool_calling_system_prompt
+
+ data = {
+ "model": model,
+ "prompt": prompt,
+ **optional_params,
+ }
+
+ return data
+
+ def transform_response(
+ self,
+ model: str,
+ raw_response: httpx.Response,
+ model_response: ModelResponse,
+ logging_obj: LiteLLMLoggingObj,
+ request_data: dict,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ encoding: Any,
+ api_key: Optional[str] = None,
+ json_mode: Optional[bool] = None,
+ ) -> ModelResponse:
+ prompt = " ".join(
+ convert_content_list_to_str(message=message) for message in messages
+ )
+ completion_response = raw_response.json()
+ choices_list = []
+ for idx, item in enumerate(completion_response["generations"]):
+ if len(item["text"]) > 0:
+ message_obj = Message(content=item["text"])
+ else:
+ message_obj = Message(content=None)
+ choice_obj = Choices(
+ finish_reason=item["finish_reason"],
+ index=idx + 1,
+ message=message_obj,
+ )
+ choices_list.append(choice_obj)
+ model_response.choices = choices_list # type: ignore
+
+ ## CALCULATING USAGE
+ prompt_tokens = len(encoding.encode(prompt))
+ completion_tokens = len(
+ encoding.encode(model_response["choices"][0]["message"].get("content", ""))
+ )
+
+ model_response.created = int(time.time())
+ model_response.model = model
+ usage = Usage(
+ prompt_tokens=prompt_tokens,
+ completion_tokens=completion_tokens,
+ total_tokens=prompt_tokens + completion_tokens,
+ )
+ setattr(model_response, "usage", usage)
+ return model_response
+
+ def _construct_cohere_tool_for_completion_api(
+ self,
+ tools: Optional[List] = None,
+ ) -> dict:
+ if tools is None:
+ tools = []
+ return {"tools": tools}
+
+ def get_model_response_iterator(
+ self,
+ streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
+ sync_stream: bool,
+ json_mode: Optional[bool] = False,
+ ):
+ return CohereModelResponseIterator(
+ streaming_response=streaming_response,
+ sync_stream=sync_stream,
+ json_mode=json_mode,
+ )
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/handler.py
new file mode 100644
index 00000000..e7f22ea7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/handler.py
@@ -0,0 +1,178 @@
+import json
+from typing import Any, Callable, Optional, Union
+
+import httpx
+
+import litellm
+from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
+from litellm.llms.custom_httpx.http_handler import (
+ AsyncHTTPHandler,
+ HTTPHandler,
+ get_async_httpx_client,
+)
+from litellm.types.llms.bedrock import CohereEmbeddingRequest
+from litellm.types.utils import EmbeddingResponse
+
+from .transformation import CohereEmbeddingConfig
+
+
+def validate_environment(api_key, headers: dict):
+ headers.update(
+ {
+ "Request-Source": "unspecified:litellm",
+ "accept": "application/json",
+ "content-type": "application/json",
+ }
+ )
+ if api_key:
+ headers["Authorization"] = f"Bearer {api_key}"
+ return headers
+
+
+class CohereError(Exception):
+ def __init__(self, status_code, message):
+ self.status_code = status_code
+ self.message = message
+ self.request = httpx.Request(
+ method="POST", url="https://api.cohere.ai/v1/generate"
+ )
+ self.response = httpx.Response(status_code=status_code, request=self.request)
+ super().__init__(
+ self.message
+ ) # Call the base class constructor with the parameters it needs
+
+
+async def async_embedding(
+ model: str,
+ data: Union[dict, CohereEmbeddingRequest],
+ input: list,
+ model_response: litellm.utils.EmbeddingResponse,
+ timeout: Optional[Union[float, httpx.Timeout]],
+ logging_obj: LiteLLMLoggingObj,
+ optional_params: dict,
+ api_base: str,
+ api_key: Optional[str],
+ headers: dict,
+ encoding: Callable,
+ client: Optional[AsyncHTTPHandler] = None,
+):
+
+ ## LOGGING
+ logging_obj.pre_call(
+ input=input,
+ api_key=api_key,
+ additional_args={
+ "complete_input_dict": data,
+ "headers": headers,
+ "api_base": api_base,
+ },
+ )
+ ## COMPLETION CALL
+
+ if client is None:
+ client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.COHERE,
+ params={"timeout": timeout},
+ )
+
+ try:
+ response = await client.post(api_base, headers=headers, data=json.dumps(data))
+ except httpx.HTTPStatusError as e:
+ ## LOGGING
+ logging_obj.post_call(
+ input=input,
+ api_key=api_key,
+ additional_args={"complete_input_dict": data},
+ original_response=e.response.text,
+ )
+ raise e
+ except Exception as e:
+ ## LOGGING
+ logging_obj.post_call(
+ input=input,
+ api_key=api_key,
+ additional_args={"complete_input_dict": data},
+ original_response=str(e),
+ )
+ raise e
+
+ ## PROCESS RESPONSE ##
+ return CohereEmbeddingConfig()._transform_response(
+ response=response,
+ api_key=api_key,
+ logging_obj=logging_obj,
+ data=data,
+ model_response=model_response,
+ model=model,
+ encoding=encoding,
+ input=input,
+ )
+
+
+def embedding(
+ model: str,
+ input: list,
+ model_response: EmbeddingResponse,
+ logging_obj: LiteLLMLoggingObj,
+ optional_params: dict,
+ headers: dict,
+ encoding: Any,
+ data: Optional[Union[dict, CohereEmbeddingRequest]] = None,
+ complete_api_base: Optional[str] = None,
+ api_key: Optional[str] = None,
+ aembedding: Optional[bool] = None,
+ timeout: Optional[Union[float, httpx.Timeout]] = httpx.Timeout(None),
+ client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
+):
+ headers = validate_environment(api_key, headers=headers)
+ embed_url = complete_api_base or "https://api.cohere.ai/v1/embed"
+ model = model
+
+ data = data or CohereEmbeddingConfig()._transform_request(
+ model=model, input=input, inference_params=optional_params
+ )
+
+ ## ROUTING
+ if aembedding is True:
+ return async_embedding(
+ model=model,
+ data=data,
+ input=input,
+ model_response=model_response,
+ timeout=timeout,
+ logging_obj=logging_obj,
+ optional_params=optional_params,
+ api_base=embed_url,
+ api_key=api_key,
+ headers=headers,
+ encoding=encoding,
+ client=(
+ client
+ if client is not None and isinstance(client, AsyncHTTPHandler)
+ else None
+ ),
+ )
+
+ ## LOGGING
+ logging_obj.pre_call(
+ input=input,
+ api_key=api_key,
+ additional_args={"complete_input_dict": data},
+ )
+
+ ## COMPLETION CALL
+ if client is None or not isinstance(client, HTTPHandler):
+ client = HTTPHandler(concurrent_limit=1)
+
+ response = client.post(embed_url, headers=headers, data=json.dumps(data))
+
+ return CohereEmbeddingConfig()._transform_response(
+ response=response,
+ api_key=api_key,
+ logging_obj=logging_obj,
+ data=data,
+ model_response=model_response,
+ model=model,
+ encoding=encoding,
+ input=input,
+ )
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py
new file mode 100644
index 00000000..22e157a0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/embed/transformation.py
@@ -0,0 +1,153 @@
+"""
+Transformation logic from OpenAI /v1/embeddings format to Cohere's /v1/embed format.
+
+Why separate file? Make it easy to see how transformation works
+
+Convers
+- v3 embedding models
+- v2 embedding models
+
+Docs - https://docs.cohere.com/v2/reference/embed
+"""
+
+from typing import Any, List, Optional, Union
+
+import httpx
+
+from litellm import COHERE_DEFAULT_EMBEDDING_INPUT_TYPE
+from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
+from litellm.types.llms.bedrock import (
+ CohereEmbeddingRequest,
+ CohereEmbeddingRequestWithModel,
+)
+from litellm.types.utils import EmbeddingResponse, PromptTokensDetailsWrapper, Usage
+from litellm.utils import is_base64_encoded
+
+
+class CohereEmbeddingConfig:
+ """
+ Reference: https://docs.cohere.com/v2/reference/embed
+ """
+
+ def __init__(self) -> None:
+ pass
+
+ def get_supported_openai_params(self) -> List[str]:
+ return ["encoding_format"]
+
+ def map_openai_params(
+ self, non_default_params: dict, optional_params: dict
+ ) -> dict:
+ for k, v in non_default_params.items():
+ if k == "encoding_format":
+ optional_params["embedding_types"] = v
+ return optional_params
+
+ def _is_v3_model(self, model: str) -> bool:
+ return "3" in model
+
+ def _transform_request(
+ self, model: str, input: List[str], inference_params: dict
+ ) -> CohereEmbeddingRequestWithModel:
+ is_encoded = False
+ for input_str in input:
+ is_encoded = is_base64_encoded(input_str)
+
+ if is_encoded: # check if string is b64 encoded image or not
+ transformed_request = CohereEmbeddingRequestWithModel(
+ model=model,
+ images=input,
+ input_type="image",
+ )
+ else:
+ transformed_request = CohereEmbeddingRequestWithModel(
+ model=model,
+ texts=input,
+ input_type=COHERE_DEFAULT_EMBEDDING_INPUT_TYPE,
+ )
+
+ for k, v in inference_params.items():
+ transformed_request[k] = v # type: ignore
+
+ return transformed_request
+
+ def _calculate_usage(self, input: List[str], encoding: Any, meta: dict) -> Usage:
+
+ input_tokens = 0
+
+ text_tokens: Optional[int] = meta.get("billed_units", {}).get("input_tokens")
+
+ image_tokens: Optional[int] = meta.get("billed_units", {}).get("images")
+
+ prompt_tokens_details: Optional[PromptTokensDetailsWrapper] = None
+ if image_tokens is None and text_tokens is None:
+ for text in input:
+ input_tokens += len(encoding.encode(text))
+ else:
+ prompt_tokens_details = PromptTokensDetailsWrapper(
+ image_tokens=image_tokens,
+ text_tokens=text_tokens,
+ )
+ if image_tokens:
+ input_tokens += image_tokens
+ if text_tokens:
+ input_tokens += text_tokens
+
+ return Usage(
+ prompt_tokens=input_tokens,
+ completion_tokens=0,
+ total_tokens=input_tokens,
+ prompt_tokens_details=prompt_tokens_details,
+ )
+
+ def _transform_response(
+ self,
+ response: httpx.Response,
+ api_key: Optional[str],
+ logging_obj: LiteLLMLoggingObj,
+ data: Union[dict, CohereEmbeddingRequest],
+ model_response: EmbeddingResponse,
+ model: str,
+ encoding: Any,
+ input: list,
+ ) -> EmbeddingResponse:
+
+ response_json = response.json()
+ ## LOGGING
+ logging_obj.post_call(
+ input=input,
+ api_key=api_key,
+ additional_args={"complete_input_dict": data},
+ original_response=response_json,
+ )
+ """
+ response
+ {
+ 'object': "list",
+ 'data': [
+
+ ]
+ 'model',
+ 'usage'
+ }
+ """
+ embeddings = response_json["embeddings"]
+ output_data = []
+ for idx, embedding in enumerate(embeddings):
+ output_data.append(
+ {"object": "embedding", "index": idx, "embedding": embedding}
+ )
+ model_response.object = "list"
+ model_response.data = output_data
+ model_response.model = model
+ input_tokens = 0
+ for text in input:
+ input_tokens += len(encoding.encode(text))
+
+ setattr(
+ model_response,
+ "usage",
+ self._calculate_usage(input, encoding, response_json.get("meta", {})),
+ )
+
+ return model_response
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/cohere/rerank/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/rerank/handler.py
new file mode 100644
index 00000000..e94f1859
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/rerank/handler.py
@@ -0,0 +1,5 @@
+"""
+Cohere Rerank - uses `llm_http_handler.py` to make httpx requests
+
+Request/Response transformation is handled in `transformation.py`
+"""
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/cohere/rerank/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/rerank/transformation.py
new file mode 100644
index 00000000..f3624d92
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/rerank/transformation.py
@@ -0,0 +1,151 @@
+from typing import Any, Dict, List, Optional, Union
+
+import httpx
+
+import litellm
+from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
+from litellm.llms.base_llm.chat.transformation import BaseLLMException
+from litellm.llms.base_llm.rerank.transformation import BaseRerankConfig
+from litellm.secret_managers.main import get_secret_str
+from litellm.types.rerank import OptionalRerankParams, RerankRequest
+from litellm.types.utils import RerankResponse
+
+from ..common_utils import CohereError
+
+
+class CohereRerankConfig(BaseRerankConfig):
+ """
+ Reference: https://docs.cohere.com/v2/reference/rerank
+ """
+
+ def __init__(self) -> None:
+ pass
+
+ def get_complete_url(self, api_base: Optional[str], model: str) -> str:
+ if api_base:
+ # Remove trailing slashes and ensure clean base URL
+ api_base = api_base.rstrip("/")
+ if not api_base.endswith("/v1/rerank"):
+ api_base = f"{api_base}/v1/rerank"
+ return api_base
+ return "https://api.cohere.ai/v1/rerank"
+
+ def get_supported_cohere_rerank_params(self, model: str) -> list:
+ return [
+ "query",
+ "documents",
+ "top_n",
+ "max_chunks_per_doc",
+ "rank_fields",
+ "return_documents",
+ ]
+
+ def map_cohere_rerank_params(
+ self,
+ non_default_params: Optional[dict],
+ model: str,
+ drop_params: bool,
+ query: str,
+ documents: List[Union[str, Dict[str, Any]]],
+ custom_llm_provider: Optional[str] = None,
+ top_n: Optional[int] = None,
+ rank_fields: Optional[List[str]] = None,
+ return_documents: Optional[bool] = True,
+ max_chunks_per_doc: Optional[int] = None,
+ max_tokens_per_doc: Optional[int] = None,
+ ) -> OptionalRerankParams:
+ """
+ Map Cohere rerank params
+
+ No mapping required - returns all supported params
+ """
+ return OptionalRerankParams(
+ query=query,
+ documents=documents,
+ top_n=top_n,
+ rank_fields=rank_fields,
+ return_documents=return_documents,
+ max_chunks_per_doc=max_chunks_per_doc,
+ )
+
+ def validate_environment(
+ self,
+ headers: dict,
+ model: str,
+ api_key: Optional[str] = None,
+ ) -> dict:
+ if api_key is None:
+ api_key = (
+ get_secret_str("COHERE_API_KEY")
+ or get_secret_str("CO_API_KEY")
+ or litellm.cohere_key
+ )
+
+ if api_key is None:
+ raise ValueError(
+ "Cohere API key is required. Please set 'COHERE_API_KEY' or 'CO_API_KEY' or 'litellm.cohere_key'"
+ )
+
+ default_headers = {
+ "Authorization": f"bearer {api_key}",
+ "accept": "application/json",
+ "content-type": "application/json",
+ }
+
+ # If 'Authorization' is provided in headers, it overrides the default.
+ if "Authorization" in headers:
+ default_headers["Authorization"] = headers["Authorization"]
+
+ # Merge other headers, overriding any default ones except Authorization
+ return {**default_headers, **headers}
+
+ def transform_rerank_request(
+ self,
+ model: str,
+ optional_rerank_params: OptionalRerankParams,
+ headers: dict,
+ ) -> dict:
+ if "query" not in optional_rerank_params:
+ raise ValueError("query is required for Cohere rerank")
+ if "documents" not in optional_rerank_params:
+ raise ValueError("documents is required for Cohere rerank")
+ rerank_request = RerankRequest(
+ model=model,
+ query=optional_rerank_params["query"],
+ documents=optional_rerank_params["documents"],
+ top_n=optional_rerank_params.get("top_n", None),
+ rank_fields=optional_rerank_params.get("rank_fields", None),
+ return_documents=optional_rerank_params.get("return_documents", None),
+ max_chunks_per_doc=optional_rerank_params.get("max_chunks_per_doc", None),
+ )
+ return rerank_request.model_dump(exclude_none=True)
+
+ def transform_rerank_response(
+ self,
+ model: str,
+ raw_response: httpx.Response,
+ model_response: RerankResponse,
+ logging_obj: LiteLLMLoggingObj,
+ api_key: Optional[str] = None,
+ request_data: dict = {},
+ optional_params: dict = {},
+ litellm_params: dict = {},
+ ) -> RerankResponse:
+ """
+ Transform Cohere rerank response
+
+ No transformation required, litellm follows cohere API response format
+ """
+ try:
+ raw_response_json = raw_response.json()
+ except Exception:
+ raise CohereError(
+ message=raw_response.text, status_code=raw_response.status_code
+ )
+
+ return RerankResponse(**raw_response_json)
+
+ def get_error_class(
+ self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
+ ) -> BaseLLMException:
+ return CohereError(message=error_message, status_code=status_code) \ No newline at end of file
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/cohere/rerank_v2/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/rerank_v2/transformation.py
new file mode 100644
index 00000000..a93cb982
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/rerank_v2/transformation.py
@@ -0,0 +1,80 @@
+from typing import Any, Dict, List, Optional, Union
+
+from litellm.llms.cohere.rerank.transformation import CohereRerankConfig
+from litellm.types.rerank import OptionalRerankParams, RerankRequest
+
+class CohereRerankV2Config(CohereRerankConfig):
+ """
+ Reference: https://docs.cohere.com/v2/reference/rerank
+ """
+
+ def __init__(self) -> None:
+ pass
+
+ def get_complete_url(self, api_base: Optional[str], model: str) -> str:
+ if api_base:
+ # Remove trailing slashes and ensure clean base URL
+ api_base = api_base.rstrip("/")
+ if not api_base.endswith("/v2/rerank"):
+ api_base = f"{api_base}/v2/rerank"
+ return api_base
+ return "https://api.cohere.ai/v2/rerank"
+
+ def get_supported_cohere_rerank_params(self, model: str) -> list:
+ return [
+ "query",
+ "documents",
+ "top_n",
+ "max_tokens_per_doc",
+ "rank_fields",
+ "return_documents",
+ ]
+
+ def map_cohere_rerank_params(
+ self,
+ non_default_params: Optional[dict],
+ model: str,
+ drop_params: bool,
+ query: str,
+ documents: List[Union[str, Dict[str, Any]]],
+ custom_llm_provider: Optional[str] = None,
+ top_n: Optional[int] = None,
+ rank_fields: Optional[List[str]] = None,
+ return_documents: Optional[bool] = True,
+ max_chunks_per_doc: Optional[int] = None,
+ max_tokens_per_doc: Optional[int] = None,
+ ) -> OptionalRerankParams:
+ """
+ Map Cohere rerank params
+
+ No mapping required - returns all supported params
+ """
+ return OptionalRerankParams(
+ query=query,
+ documents=documents,
+ top_n=top_n,
+ rank_fields=rank_fields,
+ return_documents=return_documents,
+ max_tokens_per_doc=max_tokens_per_doc,
+ )
+
+ def transform_rerank_request(
+ self,
+ model: str,
+ optional_rerank_params: OptionalRerankParams,
+ headers: dict,
+ ) -> dict:
+ if "query" not in optional_rerank_params:
+ raise ValueError("query is required for Cohere rerank")
+ if "documents" not in optional_rerank_params:
+ raise ValueError("documents is required for Cohere rerank")
+ rerank_request = RerankRequest(
+ model=model,
+ query=optional_rerank_params["query"],
+ documents=optional_rerank_params["documents"],
+ top_n=optional_rerank_params.get("top_n", None),
+ rank_fields=optional_rerank_params.get("rank_fields", None),
+ return_documents=optional_rerank_params.get("return_documents", None),
+ max_tokens_per_doc=optional_rerank_params.get("max_tokens_per_doc", None),
+ )
+ return rerank_request.model_dump(exclude_none=True) \ No newline at end of file