diff options
Diffstat (limited to 'uploader/phenotypes/models.py')
-rw-r--r-- | uploader/phenotypes/models.py | 232 |
1 files changed, 232 insertions, 0 deletions
diff --git a/uploader/phenotypes/models.py b/uploader/phenotypes/models.py new file mode 100644 index 0000000..9324601 --- /dev/null +++ b/uploader/phenotypes/models.py @@ -0,0 +1,232 @@ +"""Database and utility functions for phenotypes.""" +from typing import Optional +from functools import reduce +from datetime import datetime + +import MySQLdb as mdb +from MySQLdb.cursors import Cursor, DictCursor + +from uploader.db_utils import debug_query + +def datasets_by_population( + conn: mdb.Connection, + species_id: int, + population_id: int +) -> tuple[dict, ...]: + """Retrieve all of a population's phenotype studies.""" + with conn.cursor(cursorclass=DictCursor) as cursor: + cursor.execute( + "SELECT s.SpeciesId, pf.* FROM Species AS s " + "INNER JOIN InbredSet AS iset ON s.Id=iset.SpeciesId " + "INNER JOIN PublishFreeze AS pf ON iset.Id=pf.InbredSetId " + "WHERE s.Id=%s AND iset.Id=%s;", + (species_id, population_id)) + return tuple(dict(row) for row in cursor.fetchall()) + + +def dataset_by_id(conn: mdb.Connection, + species_id: int, + population_id: int, + dataset_id: int) -> dict: + """Fetch dataset details by identifier""" + with conn.cursor(cursorclass=DictCursor) as cursor: + cursor.execute( + "SELECT s.SpeciesId, pf.* FROM Species AS s " + "INNER JOIN InbredSet AS iset ON s.Id=iset.SpeciesId " + "INNER JOIN PublishFreeze AS pf ON iset.Id=pf.InbredSetId " + "WHERE s.Id=%s AND iset.Id=%s AND pf.Id=%s", + (species_id, population_id, dataset_id)) + return dict(cursor.fetchone()) + + +def phenotypes_count(conn: mdb.Connection, + population_id: int, + dataset_id: int) -> int: + """Count the number of phenotypes in the dataset.""" + with conn.cursor(cursorclass=DictCursor) as cursor: + cursor.execute( + "SELECT COUNT(*) AS total_phenos FROM Phenotype AS pheno " + "INNER JOIN PublishXRef AS pxr ON pheno.Id=pxr.PhenotypeId " + "INNER JOIN PublishFreeze AS pf ON pxr.InbredSetId=pf.InbredSetId " + "WHERE pxr.InbredSetId=%s AND pf.Id=%s", + (population_id, dataset_id)) + return int(cursor.fetchone()["total_phenos"]) + + +def dataset_phenotypes(conn: mdb.Connection, + population_id: int, + dataset_id: int, + offset: int = 0, + limit: Optional[int] = None) -> tuple[dict, ...]: + """Fetch the actual phenotypes.""" + _query = ( + "SELECT pheno.*, pxr.Id, ist.InbredSetCode FROM Phenotype AS pheno " + "INNER JOIN PublishXRef AS pxr ON pheno.Id=pxr.PhenotypeId " + "INNER JOIN PublishFreeze AS pf ON pxr.InbredSetId=pf.InbredSetId " + "INNER JOIN InbredSet AS ist ON pf.InbredSetId=ist.Id " + "WHERE pxr.InbredSetId=%s AND pf.Id=%s") + ( + f" LIMIT {limit} OFFSET {offset}" if bool(limit) else "") + with conn.cursor(cursorclass=DictCursor) as cursor: + cursor.execute(_query, (population_id, dataset_id)) + debug_query(cursor) + return tuple(dict(row) for row in cursor.fetchall()) + + +def __phenotype_se__(cursor: Cursor, + species_id: int, + population_id: int, + dataset_id: int, + xref_id: str) -> dict: + """Fetch standard-error values (if they exist) for a phenotype.""" + _sequery = ( + "SELECT pxr.Id AS xref_id, pxr.DataId, str.Id AS StrainId, pse.error, nst.count " + "FROM Phenotype AS pheno " + "INNER JOIN PublishXRef AS pxr ON pheno.Id=pxr.PhenotypeId " + "INNER JOIN PublishSE AS pse ON pxr.DataId=pse.DataId " + "INNER JOIN NStrain AS nst ON pse.DataId=nst.DataId " + "INNER JOIN Strain AS str ON nst.StrainId=str.Id " + "INNER JOIN StrainXRef AS sxr ON str.Id=sxr.StrainId " + "INNER JOIN PublishFreeze AS pf ON sxr.InbredSetId=pf.InbredSetId " + "INNER JOIN InbredSet AS iset ON pf.InbredSetId=iset.InbredSetId " + "WHERE (str.SpeciesId, pxr.InbredSetId, pf.Id, pxr.Id)=(%s, %s, %s, %s)") + cursor.execute(_sequery, + (species_id, population_id, dataset_id, xref_id)) + return {(row["DataId"], row["StrainId"]): { + "xref_id": row["xref_id"], + "DataId": row["DataId"], + "error": row["error"], + "count": row["count"] + } for row in cursor.fetchall()} + +def __organise_by_phenotype__(pheno, row): + """Organise disparate data rows into phenotype 'objects'.""" + _pheno = pheno.get(row["Id"]) + return { + **pheno, + row["Id"]: { + "Id": row["Id"], + "Pre_publication_description": row["Pre_publication_description"], + "Post_publication_description": row["Post_publication_description"], + "Original_description": row["Original_description"], + "Units": row["Units"], + "Pre_publication_abbreviation": row["Pre_publication_abbreviation"], + "Post_publication_abbreviation": row["Post_publication_abbreviation"], + "xref_id": row["pxr.Id"], + "data": { + **(_pheno["data"] if bool(_pheno) else {}), + (row["DataId"], row["StrainId"]): { + "DataId": row["DataId"], + "mean": row["mean"], + "Locus": row["Locus"], + "LRS": row["LRS"], + "additive": row["additive"], + "Sequence": row["Sequence"], + "comments": row["comments"], + "value": row["value"], + "StrainName": row["Name"], + "StrainName2": row["Name2"], + "StrainSymbol": row["Symbol"], + "StrainAlias": row["Alias"] + } + } + } + } + + +def __merge_pheno_data_and_se__(data, sedata) -> dict: + """Merge phenotype data with the standard errors.""" + return { + key: {**value, **sedata.get(key, {})} + for key, value in data.items() + } + + +def phenotype_by_id( + conn: mdb.Connection, + species_id: int, + population_id: int, + dataset_id: int, + xref_id +) -> Optional[dict]: + """Fetch a specific phenotype.""" + _dataquery = ("SELECT pheno.*, pxr.*, pd.*, str.*, iset.InbredSetCode " + "FROM Phenotype AS pheno " + "INNER JOIN PublishXRef AS pxr ON pheno.Id=pxr.PhenotypeId " + "INNER JOIN PublishData AS pd ON pxr.DataId=pd.Id " + "INNER JOIN Strain AS str ON pd.StrainId=str.Id " + "INNER JOIN StrainXRef AS sxr ON str.Id=sxr.StrainId " + "INNER JOIN PublishFreeze AS pf ON sxr.InbredSetId=pf.InbredSetId " + "INNER JOIN InbredSet AS iset ON pf.InbredSetId=iset.InbredSetId " + "WHERE " + "(str.SpeciesId, pxr.InbredSetId, pf.Id, pxr.Id)=(%s, %s, %s, %s)") + with conn.cursor(cursorclass=DictCursor) as cursor: + cursor.execute(_dataquery, + (species_id, population_id, dataset_id, xref_id)) + _pheno: dict = reduce(__organise_by_phenotype__, cursor.fetchall(), {}) + if bool(_pheno) and len(_pheno.keys()) == 1: + _pheno = tuple(_pheno.values())[0] + return { + **_pheno, + "data": tuple(__merge_pheno_data_and_se__( + _pheno["data"], + __phenotype_se__(cursor, + species_id, + population_id, + dataset_id, + xref_id)).values()) + } + if bool(_pheno) and len(_pheno.keys()) > 1: + raise Exception( + "We found more than one phenotype with the same identifier!") + + return None + + +def phenotypes_data(conn: mdb.Connection, + population_id: int, + dataset_id: int, + offset: int = 0, + limit: Optional[int] = None) -> tuple[dict, ...]: + """Fetch the data for the phenotypes.""" + # — Phenotype -> PublishXRef -> PublishData -> Strain -> StrainXRef -> PublishFreeze + _query = ("SELECT pheno.*, pxr.*, pd.*, str.*, iset.InbredSetCode " + "FROM Phenotype AS pheno " + "INNER JOIN PublishXRef AS pxr ON pheno.Id=pxr.PhenotypeId " + "INNER JOIN PublishData AS pd ON pxr.DataId=pd.Id " + "INNER JOIN Strain AS str ON pd.StrainId=str.Id " + "INNER JOIN StrainXRef AS sxr ON str.Id=sxr.StrainId " + "INNER JOIN PublishFreeze AS pf ON sxr.InbredSetId=pf.InbredSetId " + "INNER JOIN InbredSet AS iset ON pf.InbredSetId=iset.InbredSetId " + "WHERE pxr.InbredSetId=%s AND pf.Id=%s") + ( + f" LIMIT {limit} OFFSET {offset}" if bool(limit) else "") + with conn.cursor(cursorclass=DictCursor) as cursor: + cursor.execute(_query, (population_id, dataset_id)) + debug_query(cursor) + return tuple(dict(row) for row in cursor.fetchall()) + + +def save_new_dataset(cursor: Cursor, + population_id: int, + dataset_name: str, + dataset_fullname: str, + dataset_shortname: str) -> dict: + """Create a new phenotype dataset.""" + params = { + "population_id": population_id, + "dataset_name": dataset_name, + "dataset_fullname": dataset_fullname, + "dataset_shortname": dataset_shortname, + "created": datetime.now().date().isoformat(), + "public": 2, + "confidentiality": 0, + "users": None + } + cursor.execute( + "INSERT INTO PublishFreeze(Name, FullName, ShortName, CreateTime, " + "public, InbredSetId, confidentiality, AuthorisedUsers) " + "VALUES(%(dataset_name)s, %(dataset_fullname)s, %(dataset_shortname)s, " + "%(created)s, %(public)s, %(population_id)s, %(confidentiality)s, " + "%(users)s)", + params) + debug_query(cursor) + return {**params, "Id": cursor.lastrowid} |