aboutsummaryrefslogtreecommitdiff
path: root/scripts
diff options
context:
space:
mode:
Diffstat (limited to 'scripts')
-rw-r--r--scripts/cli_parser.py3
-rw-r--r--scripts/insert_samples.py26
-rw-r--r--scripts/load_phenotypes_to_db.py518
-rw-r--r--scripts/phenotypes_bulk_edit.py266
-rw-r--r--scripts/rqtl2/entry.py30
-rw-r--r--scripts/rqtl2/phenotypes_qc.py29
6 files changed, 832 insertions, 40 deletions
diff --git a/scripts/cli_parser.py b/scripts/cli_parser.py
index d42ae66..0c91c5e 100644
--- a/scripts/cli_parser.py
+++ b/scripts/cli_parser.py
@@ -23,7 +23,8 @@ def init_cli_parser(program: str, description: Optional[str] = None) -> Argument
"--loglevel",
type=str,
default="INFO",
- choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
+ choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL",
+ "debug", "info", "warning", "error", "critical"],
help="The severity of events to track with the logger.")
return parser
diff --git a/scripts/insert_samples.py b/scripts/insert_samples.py
index 1b0a052..742c4ae 100644
--- a/scripts/insert_samples.py
+++ b/scripts/insert_samples.py
@@ -3,6 +3,7 @@ import sys
import logging
import pathlib
import argparse
+import traceback
import MySQLdb as mdb
from redis import Redis
@@ -73,6 +74,7 @@ def insert_samples(conn: mdb.Connection,# pylint: disable=[too-many-arguments]
print("Samples upload successfully completed.")
return 0
+
if __name__ == "__main__":
def cli_args():
@@ -127,7 +129,7 @@ if __name__ == "__main__":
def main():
"""Run script to insert samples into the database."""
-
+ status_code = 1 # Exit with an Exception
args = cli_args()
check_db(args.databaseuri)
check_redis(args.redisuri)
@@ -137,13 +139,19 @@ if __name__ == "__main__":
with (Redis.from_url(args.redisuri, decode_responses=True) as rconn,
database_connection(args.databaseuri) as dbconn):
- return insert_samples(dbconn,
- rconn,
- args.speciesid,
- args.populationid,
- args.samplesfile,
- args.separator,
- args.firstlineheading,
- args.quotechar)
+
+ try:
+ status_code = insert_samples(dbconn,
+ rconn,
+ args.speciesid,
+ args.populationid,
+ args.samplesfile,
+ args.separator,
+ args.firstlineheading,
+ args.quotechar)
+ except Exception as _exc:
+ print(traceback.format_exc(), file=sys.stderr)
+
+ return status_code
sys.exit(main())
diff --git a/scripts/load_phenotypes_to_db.py b/scripts/load_phenotypes_to_db.py
new file mode 100644
index 0000000..5ce37f3
--- /dev/null
+++ b/scripts/load_phenotypes_to_db.py
@@ -0,0 +1,518 @@
+import sys
+import uuid
+import json
+import logging
+import argparse
+import datetime
+from pathlib import Path
+from zipfile import ZipFile
+from typing import Any, Union
+from urllib.parse import urljoin
+from functools import reduce, partial
+
+from MySQLdb.cursors import Cursor, DictCursor
+
+from gn_libs import jobs, mysqldb, sqlite3, monadic_requests as mrequests
+
+from r_qtl import r_qtl2 as rqtl2
+from uploader.species.models import species_by_id
+from uploader.population.models import population_by_species_and_id
+from uploader.samples.models import samples_by_species_and_population
+from uploader.phenotypes.models import (
+ dataset_by_id,
+ save_phenotypes_data,
+ create_new_phenotypes,
+ quick_save_phenotypes_data)
+from uploader.publications.models import (
+ create_new_publications,
+ fetch_publication_by_id)
+
+from scripts.rqtl2.bundleutils import build_line_joiner, build_line_splitter
+
+logging.basicConfig(
+ format="%(asctime)s — %(filename)s:%(lineno)s — %(levelname)s: %(message)s")
+logger = logging.getLogger(__name__)
+
+
+
+def __replace_na_strings__(line, na_strings):
+ return ((None if value in na_strings else value) for value in line)
+
+
+def save_phenotypes(
+ cursor: mysqldb.Connection,
+ control_data: dict[str, Any],
+ filesdir: Path
+) -> tuple[dict, ...]:
+ """Read `phenofiles` and save the phenotypes therein."""
+ ## TODO: Replace with something like this: ##
+ # phenofiles = control_data["phenocovar"] + control_data.get(
+ # "gn-metadata", {}).get("pheno", [])
+ #
+ # This is meant to load (and merge) data from the "phenocovar" and
+ # "gn-metadata -> pheno" files into a single collection of phenotypes.
+ phenofiles = tuple(filesdir.joinpath(_file) for _file in control_data["phenocovar"])
+ if len(phenofiles) <= 0:
+ return tuple()
+
+ if control_data["phenocovar_transposed"]:
+ logger.info("Undoing transposition of the files rows and columns.")
+ phenofiles = (
+ rqtl2.transpose_csv_with_rename(
+ _file,
+ build_line_splitter(control_data),
+ build_line_joiner(control_data))
+ for _file in phenofiles)
+
+ _headers = rqtl2.read_csv_file_headers(phenofiles[0],
+ control_data["phenocovar_transposed"],
+ control_data["sep"],
+ control_data["comment.char"])
+ return create_new_phenotypes(
+ cursor,
+ (dict(zip(_headers,
+ __replace_na_strings__(line, control_data["na.strings"])))
+ for filecontent
+ in (rqtl2.read_csv_file(path,
+ separator=control_data["sep"],
+ comment_char=control_data["comment.char"])
+ for path in phenofiles)
+ for idx, line in enumerate(filecontent)
+ if idx != 0))
+
+
+def __fetch_next_dataid__(conn: mysqldb.Connection) -> int:
+ """Fetch the next available DataId value from the database."""
+ with conn.cursor(cursorclass=DictCursor) as cursor:
+ cursor.execute(
+ "SELECT MAX(DataId) AS CurrentMaxDataId FROM PublishXRef")
+ return int(cursor.fetchone()["CurrentMaxDataId"]) + 1
+
+
+def __row_to_dataitems__(
+ sample_row: dict,
+ dataidmap: dict,
+ pheno_name2id: dict[str, int],
+ samples: dict
+) -> tuple[dict, ...]:
+ samplename = sample_row["id"]
+
+ return ({
+ "phenotype_id": dataidmap[pheno_name2id[phenoname]]["phenotype_id"],
+ "data_id": dataidmap[pheno_name2id[phenoname]]["data_id"],
+ "sample_name": samplename,
+ "sample_id": samples[samplename]["Id"],
+ "value": phenovalue
+ } for phenoname, phenovalue in sample_row.items() if phenoname != "id")
+
+
+def __build_dataitems__(
+ filetype,
+ phenofiles,
+ control_data,
+ samples,
+ dataidmap,
+ pheno_name2id
+):
+ _headers = rqtl2.read_csv_file_headers(
+ phenofiles[0],
+ False, # Any transposed files have been un-transposed by this point
+ control_data["sep"],
+ control_data["comment.char"])
+ _filescontents = (
+ rqtl2.read_csv_file(path,
+ separator=control_data["sep"],
+ comment_char=control_data["comment.char"])
+ for path in phenofiles)
+ _linescontents = (
+ __row_to_dataitems__(
+ dict(zip(("id",) + _headers[1:],
+ __replace_na_strings__(line, control_data["na.strings"]))),
+ dataidmap,
+ pheno_name2id,
+ samples)
+ for linenum, line in (enumline for filecontent in _filescontents
+ for enumline in enumerate(filecontent))
+ if linenum > 0)
+ return (item for items in _linescontents
+ for item in items
+ if item["value"] is not None)
+
+
+def save_numeric_data(
+ conn: mysqldb.Connection,
+ dataidmap: dict,
+ pheno_name2id: dict[str, int],
+ samples: tuple[dict, ...],
+ control_data: dict,
+ filesdir: Path,
+ filetype: str,
+ table: str
+):
+ """Read data from files and save to the database."""
+ phenofiles = tuple(
+ filesdir.joinpath(_file) for _file in control_data[filetype])
+ if len(phenofiles) <= 0:
+ return tuple()
+
+ if control_data[f"{filetype}_transposed"]:
+ logger.info("Undoing transposition of the files rows and columns.")
+ phenofiles = tuple(
+ rqtl2.transpose_csv_with_rename(
+ _file,
+ build_line_splitter(control_data),
+ build_line_joiner(control_data))
+ for _file in phenofiles)
+
+ try:
+ logger.debug("Attempt quick save with `LOAD … INFILE`.")
+ return quick_save_phenotypes_data(
+ conn,
+ table,
+ __build_dataitems__(
+ filetype,
+ phenofiles,
+ control_data,
+ samples,
+ dataidmap,
+ pheno_name2id),
+ filesdir)
+ except Exception as _exc:
+ logger.debug("Could not use `LOAD … INFILE`, using raw query",
+ exc_info=True)
+ import time;time.sleep(60)
+ return save_phenotypes_data(
+ conn,
+ table,
+ __build_dataitems__(
+ filetype,
+ phenofiles,
+ control_data,
+ samples,
+ dataidmap,
+ pheno_name2id))
+
+
+save_pheno_data = partial(save_numeric_data,
+ filetype="pheno",
+ table="PublishData")
+
+
+save_phenotypes_se = partial(save_numeric_data,
+ filetype="phenose",
+ table="PublishSE")
+
+
+save_phenotypes_n = partial(save_numeric_data,
+ filetype="phenonum",
+ table="NStrain")
+
+
+def cross_reference_phenotypes_publications_and_data(
+ conn: mysqldb.Connection, xref_data: tuple[dict, ...]
+):
+ """Crossreference the phenotypes, publication and data."""
+ with conn.cursor(cursorclass=DictCursor) as cursor:
+ cursor.execute("SELECT MAX(Id) CurrentMaxId FROM PublishXRef")
+ _nextid = int(cursor.fetchone()["CurrentMaxId"]) + 1
+ _params = tuple({**row, "xref_id": _id}
+ for _id, row in enumerate(xref_data, start=_nextid))
+ cursor.executemany(
+ ("INSERT INTO PublishXRef("
+ "Id, InbredSetId, PhenotypeId, PublicationId, DataId, comments"
+ ") "
+ "VALUES ("
+ "%(xref_id)s, %(population_id)s, %(phenotype_id)s, "
+ "%(publication_id)s, %(data_id)s, 'Upload of new data.'"
+ ")"),
+ _params)
+ return _params
+ return tuple()
+
+
+def update_auth(authserver, token, species, population, dataset, xrefdata):
+ """Grant the user access to their data."""
+ # TODO Call into the auth server to:
+ # 1. Link the phenotypes with a user group
+ # - fetch group: http://localhost:8081/auth/user/group
+ # - link data to group: http://localhost:8081/auth/data/link/phenotype
+ # - *might need code update in gn-auth: remove restriction, perhaps*
+ # 2. Create resource (perhaps?)
+ # - Get resource categories: http://localhost:8081/auth/resource/categories
+ # - Create a new resource: http://localhost:80host:8081/auth/resource/create
+ # - single resource for all phenotypes
+ # - resource name from user, species, population, dataset, datetime?
+ # - User will have "ownership" of resource by default
+ # 3. Link data to the resource: http://localhost:8081/auth/resource/data/link
+ # - Update code to allow linking multiple items in a single request
+ _tries = 0 # TODO use this to limit how many tries before quiting and bailing
+ _delay = 1
+ headers = {
+ "Authorization": f"Bearer {token}",
+ "Content-Type": "application/json"
+ }
+ def authserveruri(endpoint):
+ return urljoin(authserver, endpoint)
+
+ def __fetch_user_details__():
+ logger.debug("… Fetching user details")
+ return mrequests.get(
+ authserveruri("/auth/user/"),
+ headers=headers
+ )
+
+ def __link_data__(user):
+ logger.debug("… linking uploaded data to user's group")
+ return mrequests.post(
+ authserveruri("/auth/data/link/phenotype"),
+ headers=headers,
+ json={
+ "species_name": species["Name"],
+ "group_id": user["group"]["group_id"],
+ "selected": [
+ {
+ "SpeciesId": species["SpeciesId"],
+ "InbredSetId": population["Id"],
+ "PublishFreezeId": dataset["Id"],
+ "dataset_name": dataset["Name"],
+ "dataset_fullname": dataset["FullName"],
+ "dataset_shortname": dataset["ShortName"],
+ "PublishXRefId": item["xref_id"]
+ }
+ for item in xrefdata
+ ],
+ "using-raw-ids": "on"
+ }).then(lambda ld_results: (user, ld_results))
+
+ def __fetch_phenotype_category_details__(user, linkeddata):
+ logger.debug("… fetching phenotype category details")
+ return mrequests.get(
+ authserveruri("/auth/resource/categories"),
+ headers=headers
+ ).then(
+ lambda categories: (
+ user,
+ linkeddata,
+ next(category for category in categories
+ if category["resource_category_key"] == "phenotype"))
+ )
+
+ def __create_resource__(user, linkeddata, category):
+ logger.debug("… creating authorisation resource object")
+ now = datetime.datetime.now().isoformat()
+ return mrequests.post(
+ authserveruri("/auth/resource/create"),
+ headers=headers,
+ json={
+ "resource_category": category["resource_category_id"],
+ "resource_name": (f"{user['email']}—{dataset['Name']}—{now}—"
+ f"{len(xrefdata)} phenotypes"),
+ "public": "off"
+ }).then(lambda cr_results: (user, linkeddata, cr_results))
+
+ def __attach_data_to_resource__(user, linkeddata, resource):
+ logger.debug("… attaching data to authorisation resource object")
+ return mrequests.post(
+ authserveruri("/auth/resource/data/link"),
+ headers=headers,
+ json={
+ "dataset_type": "phenotype",
+ "resource_id": resource["resource_id"],
+ "data_link_ids": [
+ item["data_link_id"] for item in linkeddata["traits"]]
+ }).then(lambda attc: (user, linkeddata, resource, attc))
+
+ def __handle_error__(resp):
+ logger.error("ERROR: Updating the authorisation for the data failed.")
+ logger.debug(
+ "ERROR: The response from the authorisation server was:\n\t%s",
+ resp.json())
+ return 1
+
+ def __handle_success__(val):
+ logger.info(
+ "The authorisation for the data has been updated successfully.")
+ return 0
+
+ return __fetch_user_details__().then(__link_data__).then(
+ lambda result: __fetch_phenotype_category_details__(*result)
+ ).then(
+ lambda result: __create_resource__(*result)
+ ).then(
+ lambda result: __attach_data_to_resource__(*result)
+ ).either(__handle_error__, __handle_success__)
+
+
+def load_data(conn: mysqldb.Connection, job: dict) -> int:
+ """Load the data attached in the given job."""
+ _job_metadata = job["metadata"]
+ # Steps
+ # 0. Read data from the files: can be multiple files per type
+ #
+ _species = species_by_id(conn, int(_job_metadata["species_id"]))
+ _population = population_by_species_and_id(
+ conn,
+ _species["SpeciesId"],
+ int(_job_metadata["population_id"]))
+ _dataset = dataset_by_id(
+ conn,
+ _species["SpeciesId"],
+ _population["Id"],
+ int(_job_metadata["dataset_id"]))
+ # 1. Just retrive the publication: Don't create publications for now.
+ _publication = fetch_publication_by_id(
+ conn, int(_job_metadata.get("publication_id", "0"))) or {"Id": 0}
+ # 2. Save all new phenotypes:
+ # -> return phenotype IDs
+ bundle = Path(_job_metadata["bundle_file"])
+ _control_data = rqtl2.control_data(bundle)
+ logger.info("Extracting the zipped bundle of files.")
+ _outdir = Path(bundle.parent, f"bundle_{bundle.stem}")
+ with ZipFile(str(bundle), "r") as zfile:
+ _files = rqtl2.extract(zfile, _outdir)
+ logger.info("Saving new phenotypes.")
+ _phenos = save_phenotypes(conn, _control_data, _outdir)
+ def __build_phenos_maps__(accumulator, current):
+ dataid, row = current
+ return ({
+ **accumulator[0],
+ row["phenotype_id"]: {
+ "population_id": _population["Id"],
+ "phenotype_id": row["phenotype_id"],
+ "data_id": dataid,
+ "publication_id": _publication["Id"],
+ }
+ }, {
+ **accumulator[1],
+ row["id"]: row["phenotype_id"]
+ })
+ dataidmap, pheno_name2id = reduce(
+ __build_phenos_maps__,
+ enumerate(_phenos, start=__fetch_next_dataid__(conn)),
+ ({},{}))
+ # 3. a. Fetch the strain names and IDS: create name->ID map
+ samples = {
+ row["Name"]: row
+ for row in samples_by_species_and_population(
+ conn, _species["SpeciesId"], _population["Id"])}
+ # b. Save all the data items (DataIds are vibes), return new IDs
+ logger.info("Saving new phenotypes data.")
+ _num_data_rows = save_pheno_data(conn=conn,
+ dataidmap=dataidmap,
+ pheno_name2id=pheno_name2id,
+ samples=samples,
+ control_data=_control_data,
+ filesdir=_outdir)
+ logger.info("Saved %s new phenotype data rows.", _num_data_rows)
+ # 4. Cross-reference Phenotype, Publication, and PublishData in PublishXRef
+ logger.info("Cross-referencing new phenotypes to their data and publications.")
+ _xrefs = cross_reference_phenotypes_publications_and_data(
+ conn, tuple(dataidmap.values()))
+ # 5. If standard errors and N exist, save them too
+ # (use IDs returned in `3. b.` above).
+ logger.info("Saving new phenotypes standard errors.")
+ _num_se_rows = save_phenotypes_se(conn=conn,
+ dataidmap=dataidmap,
+ pheno_name2id=pheno_name2id,
+ samples=samples,
+ control_data=_control_data,
+ filesdir=_outdir)
+ logger.info("Saved %s new phenotype standard error rows.", _num_se_rows)
+
+ logger.info("Saving new phenotypes sample counts.")
+ _num_n_rows = save_phenotypes_n(conn=conn,
+ dataidmap=dataidmap,
+ pheno_name2id=pheno_name2id,
+ samples=samples,
+ control_data=_control_data,
+ filesdir=_outdir)
+ logger.info("Saved %s new phenotype sample counts rows.", _num_n_rows)
+ return (_species, _population, _dataset, _xrefs)
+
+
+if __name__ == "__main__":
+ def parse_args():
+ """Setup command-line arguments."""
+ parser = argparse.ArgumentParser(
+ prog="load_phenotypes_to_db",
+ description="Process the phenotypes' data and load it into the database.")
+ parser.add_argument("db_uri", type=str, help="MariaDB/MySQL connection URL")
+ parser.add_argument(
+ "jobs_db_path", type=Path, help="Path to jobs' SQLite database.")
+ parser.add_argument("job_id", type=uuid.UUID, help="ID of the running job")
+ parser.add_argument(
+ "--log-level",
+ type=str,
+ help="Determines what is logged out.",
+ choices=("debug", "info", "warning", "error", "critical"),
+ default="info")
+ return parser.parse_args()
+
+ def setup_logging(log_level: str):
+ """Setup logging for the script."""
+ logger.setLevel(log_level)
+ logging.getLogger("uploader.phenotypes.models").setLevel(log_level)
+
+
+ def main():
+ """Entry-point for this script."""
+ args = parse_args()
+ setup_logging(args.log_level.upper())
+
+ with (mysqldb.database_connection(args.db_uri) as conn,
+ conn.cursor(cursorclass=DictCursor) as cursor,
+ sqlite3.connection(args.jobs_db_path) as jobs_conn):
+ job = jobs.job(jobs_conn, args.job_id)
+
+ # Lock the PublishXRef/PublishData/PublishSE/NStrain here: Why?
+ # The `DataId` values are sequential, but not auto-increment
+ # Can't convert `PublishXRef`.`DataId` to AUTO_INCREMENT.
+ # `SELECT MAX(DataId) FROM PublishXRef;`
+ # How do you check for a table lock?
+ # https://oracle-base.com/articles/mysql/mysql-identify-locked-tables
+ # `SHOW OPEN TABLES LIKE 'Publish%';`
+ _db_tables_ = (
+ "Species",
+ "InbredSet",
+ "Strain",
+ "StrainXRef",
+ "Publication",
+ "Phenotype",
+ "PublishXRef",
+ "PublishFreeze",
+ "PublishData",
+ "PublishSE",
+ "NStrain")
+
+ logger.debug(
+ ("Locking database tables for the connection:" +
+ "".join("\n\t- %s" for _ in _db_tables_) + "\n"),
+ *_db_tables_)
+ cursor.execute(# Lock the tables to avoid race conditions
+ "LOCK TABLES " + ", ".join(
+ f"{_table} WRITE" for _table in _db_tables_))
+
+ db_results = load_data(conn, job)
+ jobs.update_metadata(
+ jobs_conn,
+ args.job_id,
+ "xref_ids",
+ json.dumps([xref["xref_id"] for xref in db_results[3]]))
+
+ logger.info("Unlocking all database tables.")
+ cursor.execute("UNLOCK TABLES")
+
+ # Update authorisations (break this down) — maybe loop until it works?
+ logger.info("Updating authorisation.")
+ _job_metadata = job["metadata"]
+ return update_auth(_job_metadata["authserver"],
+ _job_metadata["token"],
+ *db_results)
+
+
+ try:
+ sys.exit(main())
+ except Exception as _exc:
+ logger.debug("Data loading failed… Halting!",
+ exc_info=True)
+ sys.exit(1)
diff --git a/scripts/phenotypes_bulk_edit.py b/scripts/phenotypes_bulk_edit.py
new file mode 100644
index 0000000..cee5f4e
--- /dev/null
+++ b/scripts/phenotypes_bulk_edit.py
@@ -0,0 +1,266 @@
+import sys
+import uuid
+import logging
+import argparse
+from pathlib import Path
+from typing import Iterator
+from functools import reduce
+
+from MySQLdb.cursors import DictCursor
+
+from gn_libs import jobs, mysqldb, sqlite3
+
+from uploader.phenotypes.models import phenotypes_data_by_ids
+from uploader.phenotypes.misc import phenotypes_data_differences
+from uploader.phenotypes.views import BULK_EDIT_COMMON_FIELDNAMES
+
+import uploader.publications.pubmed as pmed
+from uploader.publications.misc import publications_differences
+from uploader.publications.models import (
+ update_publications, fetch_phenotype_publications)
+
+logging.basicConfig(
+ format="%(asctime)s — %(filename)s:%(lineno)s — %(levelname)s: %(message)s")
+logger = logging.getLogger(__name__)
+
+
+def check_ids(conn, ids: tuple[tuple[int, int], ...]) -> bool:
+ """Verify that all the `UniqueIdentifier` values are valid."""
+ logger.info("Checking the 'UniqueIdentifier' values.")
+ with conn.cursor(cursorclass=DictCursor) as cursor:
+ paramstr = ",".join(["(%s, %s)"] * len(ids))
+ cursor.execute(
+ "SELECT PhenotypeId AS phenotype_id, Id AS xref_id "
+ "FROM PublishXRef "
+ f"WHERE (PhenotypeId, Id) IN ({paramstr})",
+ tuple(item for row in ids for item in row))
+ mysqldb.debug_query(cursor, logger)
+ found = tuple((row["phenotype_id"], row["xref_id"])
+ for row in cursor.fetchall())
+
+ not_found = tuple(item for item in ids if item not in found)
+ if len(not_found) == 0:
+ logger.info("All 'UniqueIdentifier' are valid.")
+ return True
+
+ for item in not_found:
+ logger.error(f"Invalid 'UniqueIdentifier' value: phId:%s::xrId:%s", item[0], item[1])
+
+ return False
+
+
+def check_for_mandatory_fields():
+ """Verify that mandatory fields have values."""
+ pass
+
+
+def __fetch_phenotypes__(conn, ids: tuple[int, ...]) -> tuple[dict, ...]:
+ """Fetch basic (non-numeric) phenotypes data from the database."""
+ with conn.cursor(cursorclass=DictCursor) as cursor:
+ paramstr = ",".join(["%s"] * len(ids))
+ cursor.execute(f"SELECT * FROM Phenotype WHERE Id IN ({paramstr}) "
+ "ORDER BY Id ASC",
+ ids)
+ return tuple(dict(row) for row in cursor.fetchall())
+
+
+def descriptions_differences(file_data, db_data) -> dict[str, str]:
+ """Compute differences in the descriptions."""
+ logger.info("Computing differences in phenotype descriptions.")
+ assert len(file_data) == len(db_data), "The counts of phenotypes differ!"
+ description_columns = ("Pre_publication_description",
+ "Post_publication_description",
+ "Original_description",
+ "Pre_publication_abbreviation",
+ "Post_publication_abbreviation")
+ diff = tuple()
+ for file_row, db_row in zip(file_data, db_data):
+ assert file_row["phenotype_id"] == db_row["Id"]
+ inner_diff = {
+ key: file_row[key]
+ for key in description_columns
+ if not file_row[key] == db_row[key]
+ }
+ if bool(inner_diff):
+ diff = diff + ({
+ "phenotype_id": file_row["phenotype_id"],
+ **inner_diff
+ },)
+
+ return diff
+
+
+def update_descriptions():
+ """Update descriptions in the database"""
+ logger.info("Updating descriptions")
+ # Compute differences between db data and uploaded file
+ # Only run query for changed descriptions
+ pass
+
+
+def link_publications():
+ """Link phenotypes to relevant publications."""
+ logger.info("Linking phenotypes to publications.")
+ # Create publication if PubMed_ID doesn't exist in db
+ pass
+
+
+def update_values():
+ """Update the phenotype values."""
+ logger.info("Updating phenotypes values.")
+ # Compute differences between db data and uploaded file
+ # Only run query for changed data
+ pass
+
+
+def parse_args():
+ parser = argparse.ArgumentParser(
+ prog="Phenotypes Bulk-Edit Processor",
+ description="Process the bulk-edits to phenotype data and descriptions.")
+ parser.add_argument("db_uri", type=str, help="MariaDB/MySQL connection URL")
+ parser.add_argument(
+ "jobs_db_path", type=Path, help="Path to jobs' SQLite database.")
+ parser.add_argument("job_id", type=uuid.UUID, help="ID of the running job")
+ parser.add_argument(
+ "--log-level",
+ type=str,
+ help="Determines what is logged out.",
+ choices=("debug", "info", "warning", "error", "critical"),
+ default="info")
+ return parser.parse_args()
+
+
+def read_file(filepath: Path) -> Iterator[str]:
+ """Read the file, one line at a time."""
+ with filepath.open(mode="r", encoding="utf-8") as infile:
+ count = 0
+ headers = None
+ for line in infile:
+ if line.startswith("#"): # ignore comments
+ continue;
+
+ fields = line.strip().split("\t")
+ if count == 0:
+ headers = fields
+ count = count + 1
+ continue
+
+ _dict = dict(zip(
+ headers,
+ ((None if item.strip() == "" else item.strip())
+ for item in fields)))
+ _pheno, _xref = _dict.pop("UniqueIdentifier").split("::")
+ _dict = {
+ key: ((float(val) if bool(val) else val)
+ if key not in BULK_EDIT_COMMON_FIELDNAMES
+ else val)
+ for key, val in _dict.items()
+ }
+ _dict["phenotype_id"] = int(_pheno.split(":")[1])
+ _dict["xref_id"] = int(_xref.split(":")[1])
+ if _dict["PubMed_ID"] is not None:
+ _dict["PubMed_ID"] = int(_dict["PubMed_ID"])
+
+ yield _dict
+ count = count + 1
+
+
+def run(conn, job):
+ """Process the data and update it."""
+ file_contents = tuple(sorted(read_file(Path(job["metadata"]["edit-file"])),
+ key=lambda item: item["phenotype_id"]))
+ pheno_ids, pheno_xref_ids, pubmed_ids = reduce(
+ lambda coll, curr: (
+ coll[0] + (curr["phenotype_id"],),
+ coll[1] + ((curr["phenotype_id"], curr["xref_id"]),),
+ coll[2].union(set([curr["PubMed_ID"]]))),
+ file_contents,
+ (tuple(), tuple(), set([None])))
+ check_ids(conn, pheno_xref_ids)
+ check_for_mandatory_fields()
+ # stop running here if any errors are found.
+
+ ### Compute differences
+ logger.info("Computing differences.")
+ # 1. Basic Phenotype data differences
+ # a. Descriptions differences
+ _desc_diff = descriptions_differences(
+ file_contents, __fetch_phenotypes__(conn, pheno_ids))
+ logger.debug("DESCRIPTIONS DIFFERENCES: %s", _desc_diff)
+
+ # b. Publications differences
+ _db_publications = fetch_phenotype_publications(conn, pheno_xref_ids)
+ logger.debug("DB PUBLICATIONS: %s", _db_publications)
+
+ _pubmed_map = {
+ (int(row["PubMed_ID"]) if bool(row["PubMed_ID"]) else None): f"{row['phenotype_id']}::{row['xref_id']}"
+ for row in file_contents
+ }
+ _pub_id_map = {
+ f"{pub['PhenotypeId']}::{pub['xref_id']}": pub["PublicationId"]
+ for pub in _db_publications
+ }
+
+ _new_publications = update_publications(
+ conn, tuple({
+ **pub, "publication_id": _pub_id_map[_pubmed_map[pub["pubmed_id"]]]
+ } for pub in pmed.fetch_publications(tuple(
+ pubmed_id for pubmed_id in pubmed_ids
+ if pubmed_id not in
+ tuple(row["PubMed_ID"] for row in _db_publications)))))
+ _pub_diff = publications_differences(
+ file_contents, _db_publications, {
+ row["PubMed_ID" if "PubMed_ID" in row else "pubmed_id"]: row[
+ "PublicationId" if "PublicationId" in row else "publication_id"]
+ for row in _db_publications + _new_publications})
+ logger.debug("Publications diff: %s", _pub_diff)
+ # 2. Data differences
+ _db_pheno_data = phenotypes_data_by_ids(conn, tuple({
+ "population_id": job["metadata"]["population-id"],
+ "phenoid": row[0],
+ "xref_id": row[1]
+ } for row in pheno_xref_ids))
+
+ data_diff = phenotypes_data_differences(
+ ({
+ "phenotype_id": row["phenotype_id"],
+ "xref_id": row["xref_id"],
+ "data": {
+ key:val for key,val in row.items()
+ if key not in BULK_EDIT_COMMON_FIELDNAMES + [
+ "phenotype_id", "xref_id"]
+ }
+ } for row in file_contents),
+ ({
+ **row,
+ "PhenotypeId": row["Id"],
+ "data": {
+ dataitem["StrainName"]: dataitem
+ for dataitem in row["data"].values()
+ }
+ } for row in _db_pheno_data))
+ logger.debug("Data differences: %s", data_diff)
+ ### END: Compute differences
+ update_descriptions()
+ link_publications()
+ update_values()
+ return 0
+
+
+def main():
+ """Entry-point for this script."""
+ args = parse_args()
+ logger.setLevel(args.log_level.upper())
+ logger.debug("Arguments: %s", args)
+
+ logging.getLogger("uploader.phenotypes.misc").setLevel(args.log_level.upper())
+ logging.getLogger("uploader.phenotypes.models").setLevel(args.log_level.upper())
+ logging.getLogger("uploader.publications.models").setLevel(args.log_level.upper())
+
+ with (mysqldb.database_connection(args.db_uri) as conn,
+ sqlite3.connection(args.jobs_db_path) as jobs_conn):
+ return run(conn, jobs.job(jobs_conn, args.job_id))
+
+
+if __name__ == "__main__":
+ sys.exit(main())
diff --git a/scripts/rqtl2/entry.py b/scripts/rqtl2/entry.py
index 327ed2c..e0e00e7 100644
--- a/scripts/rqtl2/entry.py
+++ b/scripts/rqtl2/entry.py
@@ -20,27 +20,23 @@ def build_main(
[Redis, Connection, str, Namespace, logging.Logger],
int
],
- loggername: str
+ logger: logging.Logger
) -> Callable[[],int]:
"""Build a function to be used as an entry-point for scripts."""
def main():
- try:
- logging.basicConfig(
- format=(
- "%(asctime)s - %(levelname)s %(name)s: "
- "(%(pathname)s: %(lineno)d) %(message)s"),
- level=args.loglevel)
- logger = logging.getLogger(loggername)
- with (Redis.from_url(args.redisuri, decode_responses=True) as rconn,
- database_connection(args.databaseuri) as dbconn):
- fqjobid = jobs.job_key(args.redisprefix, args.jobid)
+ with (Redis.from_url(args.redisuri, decode_responses=True) as rconn,
+ database_connection(args.databaseuri) as dbconn):
+ logger.setLevel(args.loglevel.upper())
+ fqjobid = jobs.job_key(args.redisprefix, args.jobid)
+
+ try:
rconn.hset(fqjobid, "status", "started")
logger.addHandler(setup_redis_logger(
rconn,
fqjobid,
f"{fqjobid}:log-messages",
args.redisexpiry))
- logger.addHandler(StreamHandler(stream=sys.stdout))
+ logger.addHandler(StreamHandler(stream=sys.stderr))
check_db(args.databaseuri)
check_redis(args.redisuri)
@@ -48,15 +44,15 @@ def build_main(
logger.error("File not found: '%s'.", args.rqtl2bundle)
return 2
- returncode = run_fn(rconn, dbconn, fqjobid, args, logger)
+ returncode = run_fn(rconn, dbconn, fqjobid, args)
if returncode == 0:
rconn.hset(fqjobid, "status", "completed:success")
return returncode
rconn.hset(fqjobid, "status", "completed:error")
return returncode
- except Exception as _exc:# pylint: disable=[broad-except]
- logger.error("The process failed!", exc_info=True)
- rconn.hset(fqjobid, "status", "completed:error")
- return 4
+ except Exception as _exc:# pylint: disable=[broad-except]
+ logger.error("The process failed!", exc_info=True)
+ rconn.hset(fqjobid, "status", "completed:error")
+ return 4
return main
diff --git a/scripts/rqtl2/phenotypes_qc.py b/scripts/rqtl2/phenotypes_qc.py
index 76ecb8d..5c89ca0 100644
--- a/scripts/rqtl2/phenotypes_qc.py
+++ b/scripts/rqtl2/phenotypes_qc.py
@@ -36,6 +36,10 @@ from scripts.cli_parser import init_cli_parser, add_global_data_arguments
from scripts.rqtl2.bundleutils import build_line_joiner, build_line_splitter
__MODULE__ = "scripts.rqtl2.phenotypes_qc"
+logging.basicConfig(
+ format=("%(asctime)s - %(levelname)s %(name)s: "
+ "(%(pathname)s: %(lineno)d) %(message)s"))
+logger = logging.getLogger(__MODULE__)
def validate(phenobundle: Path, logger: Logger) -> dict:
"""Check that the bundle is generally valid"""
@@ -177,7 +181,7 @@ def qc_phenocovar_file(
filepath.name,
f"{fqkey}:logs") as logger,
Redis.from_url(redisuri, decode_responses=True) as rconn):
- logger.info("Running QC on file: %s", filepath.name)
+ print("Running QC on file: ", filepath.name)
_csvfile = rqtl2.read_csv_file(filepath, separator, comment_char)
_headings = tuple(heading.lower() for heading in next(_csvfile))
_errors: tuple[InvalidValue, ...] = tuple()
@@ -205,12 +209,12 @@ def qc_phenocovar_file(
(f"Record {_lc} in file {filepath.name} has a different "
"number of columns than the number of headings"))),)
_line = dict(zip(_headings, line))
- if not bool(_line["description"]):
+ if not bool(_line.get("description")):
_errs = _errs + (
save_error(InvalidValue(filepath.name,
_line[_headings[0]],
"description",
- _line["description"],
+ _line.get("description"),
"The description is not provided!")),)
rconn.hset(file_fqkey(fqkey, "metadata", filepath),
@@ -285,7 +289,7 @@ def qc_pheno_file(# pylint: disable=[too-many-locals, too-many-arguments]
filepath.name,
f"{fqkey}:logs") as logger,
Redis.from_url(redisuri, decode_responses=True) as rconn):
- logger.info("Running QC on file: %s", filepath.name)
+ print("Running QC on file: ", filepath.name)
save_error = partial(
push_error, rconn, file_fqkey(fqkey, "errors", filepath))
_csvfile = rqtl2.read_csv_file(filepath, separator, comment_char)
@@ -369,11 +373,10 @@ def run_qc(# pylint: disable=[too-many-locals]
rconn: Redis,
dbconn: mdb.Connection,
fullyqualifiedjobid: str,
- args: Namespace,
- logger: Logger
+ args: Namespace
) -> int:
"""Run quality control checks on the bundle."""
- logger.debug("Beginning the quality assurance checks.")
+ print("Beginning the quality assurance checks.")
results = check_for_averages_files(
**check_for_mandatory_pheno_keys(
**validate(args.rqtl2bundle, logger)))
@@ -398,7 +401,7 @@ def run_qc(# pylint: disable=[too-many-locals]
for ftype in ("pheno", "phenocovar", "phenose", "phenonum")))
# - Fetch samples/individuals from database.
- logger.debug("Fetching samples/individuals from the database.")
+ print("Fetching samples/individuals from the database.")
samples = tuple(#type: ignore[var-annotated]
item for item in set(reduce(
lambda acc, item: acc + (
@@ -415,7 +418,7 @@ def run_qc(# pylint: disable=[too-many-locals]
json.dumps(tuple(f"{fullyqualifiedjobid}:phenocovar:{_file}"
for _file in cdata.get("phenocovar", []))))
with mproc.Pool(mproc.cpu_count() - 1) as pool:
- logger.debug("Check for errors in 'phenocovar' file(s).")
+ print("Check for errors in 'phenocovar' file(s).")
_phenocovar_qc_res = merge_dicts(*pool.starmap(qc_phenocovar_file, tuple(
(extractiondir.joinpath(_file),
args.redisuri,
@@ -437,7 +440,7 @@ def run_qc(# pylint: disable=[too-many-locals]
"Expected a non-negative number with at least one decimal "
"place."))
- logger.debug("Check for errors in 'pheno' file(s).")
+ print("Check for errors in 'pheno' file(s).")
_pheno_qc_res = merge_dicts(*pool.starmap(qc_pheno_file, tuple((
extractiondir.joinpath(_file),
args.redisuri,
@@ -456,7 +459,7 @@ def run_qc(# pylint: disable=[too-many-locals]
# - Check the 3 checks above for phenose and phenonum values too
# qc_phenose_files(…)
# qc_phenonum_files(…)
- logger.debug("Check for errors in 'phenose' file(s).")
+ print("Check for errors in 'phenose' file(s).")
_phenose_qc_res = merge_dicts(*pool.starmap(qc_pheno_file, tuple((
extractiondir.joinpath(_file),
args.redisuri,
@@ -472,7 +475,7 @@ def run_qc(# pylint: disable=[too-many-locals]
dec_err_fn
) for _file in cdata.get("phenose", []))))
- logger.debug("Check for errors in 'phenonum' file(s).")
+ print("Check for errors in 'phenonum' file(s).")
_phenonum_qc_res = merge_dicts(*pool.starmap(qc_pheno_file, tuple((
extractiondir.joinpath(_file),
args.redisuri,
@@ -509,5 +512,5 @@ if __name__ == "__main__":
type=Path)
return parser.parse_args()
- main = build_main(cli_args(), run_qc, __MODULE__)
+ main = build_main(cli_args(), run_qc, logger)
sys.exit(main())