diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/openai')
560 files changed, 58495 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/openai/__init__.py b/.venv/lib/python3.12/site-packages/openai/__init__.py new file mode 100644 index 00000000..7ce6df08 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/__init__.py @@ -0,0 +1,366 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import os as _os +from typing_extensions import override + +from . import types +from ._types import NOT_GIVEN, Omit, NoneType, NotGiven, Transport, ProxiesTypes +from ._utils import file_from_path +from ._client import Client, OpenAI, Stream, Timeout, Transport, AsyncClient, AsyncOpenAI, AsyncStream, RequestOptions +from ._models import BaseModel +from ._version import __title__, __version__ +from ._response import APIResponse as APIResponse, AsyncAPIResponse as AsyncAPIResponse +from ._constants import DEFAULT_TIMEOUT, DEFAULT_MAX_RETRIES, DEFAULT_CONNECTION_LIMITS +from ._exceptions import ( + APIError, + OpenAIError, + ConflictError, + NotFoundError, + APIStatusError, + RateLimitError, + APITimeoutError, + BadRequestError, + APIConnectionError, + AuthenticationError, + InternalServerError, + PermissionDeniedError, + LengthFinishReasonError, + UnprocessableEntityError, + APIResponseValidationError, + ContentFilterFinishReasonError, +) +from ._base_client import DefaultHttpxClient, DefaultAsyncHttpxClient +from ._utils._logs import setup_logging as _setup_logging +from ._legacy_response import HttpxBinaryResponseContent as HttpxBinaryResponseContent + +__all__ = [ + "types", + "__version__", + "__title__", + "NoneType", + "Transport", + "ProxiesTypes", + "NotGiven", + "NOT_GIVEN", + "Omit", + "OpenAIError", + "APIError", + "APIStatusError", + "APITimeoutError", + "APIConnectionError", + "APIResponseValidationError", + "BadRequestError", + "AuthenticationError", + "PermissionDeniedError", + "NotFoundError", + "ConflictError", + "UnprocessableEntityError", + "RateLimitError", + "InternalServerError", + "LengthFinishReasonError", + "ContentFilterFinishReasonError", + "Timeout", + "RequestOptions", + "Client", + "AsyncClient", + "Stream", + "AsyncStream", + "OpenAI", + "AsyncOpenAI", + "file_from_path", + "BaseModel", + "DEFAULT_TIMEOUT", + "DEFAULT_MAX_RETRIES", + "DEFAULT_CONNECTION_LIMITS", + "DefaultHttpxClient", + "DefaultAsyncHttpxClient", +] + +from .lib import azure as _azure, pydantic_function_tool as pydantic_function_tool +from .version import VERSION as VERSION +from .lib.azure import AzureOpenAI as AzureOpenAI, AsyncAzureOpenAI as AsyncAzureOpenAI +from .lib._old_api import * +from .lib.streaming import ( + AssistantEventHandler as AssistantEventHandler, + AsyncAssistantEventHandler as AsyncAssistantEventHandler, +) + +_setup_logging() + +# Update the __module__ attribute for exported symbols so that +# error messages point to this module instead of the module +# it was originally defined in, e.g. +# openai._exceptions.NotFoundError -> openai.NotFoundError +__locals = locals() +for __name in __all__: + if not __name.startswith("__"): + try: + __locals[__name].__module__ = "openai" + except (TypeError, AttributeError): + # Some of our exported symbols are builtins which we can't set attributes for. + pass + +# ------ Module level client ------ +import typing as _t +import typing_extensions as _te + +import httpx as _httpx + +from ._base_client import DEFAULT_TIMEOUT, DEFAULT_MAX_RETRIES + +api_key: str | None = None + +organization: str | None = None + +project: str | None = None + +base_url: str | _httpx.URL | None = None + +timeout: float | Timeout | None = DEFAULT_TIMEOUT + +max_retries: int = DEFAULT_MAX_RETRIES + +default_headers: _t.Mapping[str, str] | None = None + +default_query: _t.Mapping[str, object] | None = None + +http_client: _httpx.Client | None = None + +_ApiType = _te.Literal["openai", "azure"] + +api_type: _ApiType | None = _t.cast(_ApiType, _os.environ.get("OPENAI_API_TYPE")) + +api_version: str | None = _os.environ.get("OPENAI_API_VERSION") + +azure_endpoint: str | None = _os.environ.get("AZURE_OPENAI_ENDPOINT") + +azure_ad_token: str | None = _os.environ.get("AZURE_OPENAI_AD_TOKEN") + +azure_ad_token_provider: _azure.AzureADTokenProvider | None = None + + +class _ModuleClient(OpenAI): + # Note: we have to use type: ignores here as overriding class members + # with properties is technically unsafe but it is fine for our use case + + @property # type: ignore + @override + def api_key(self) -> str | None: + return api_key + + @api_key.setter # type: ignore + def api_key(self, value: str | None) -> None: # type: ignore + global api_key + + api_key = value + + @property # type: ignore + @override + def organization(self) -> str | None: + return organization + + @organization.setter # type: ignore + def organization(self, value: str | None) -> None: # type: ignore + global organization + + organization = value + + @property # type: ignore + @override + def project(self) -> str | None: + return project + + @project.setter # type: ignore + def project(self, value: str | None) -> None: # type: ignore + global project + + project = value + + @property + @override + def base_url(self) -> _httpx.URL: + if base_url is not None: + return _httpx.URL(base_url) + + return super().base_url + + @base_url.setter + def base_url(self, url: _httpx.URL | str) -> None: + super().base_url = url # type: ignore[misc] + + @property # type: ignore + @override + def timeout(self) -> float | Timeout | None: + return timeout + + @timeout.setter # type: ignore + def timeout(self, value: float | Timeout | None) -> None: # type: ignore + global timeout + + timeout = value + + @property # type: ignore + @override + def max_retries(self) -> int: + return max_retries + + @max_retries.setter # type: ignore + def max_retries(self, value: int) -> None: # type: ignore + global max_retries + + max_retries = value + + @property # type: ignore + @override + def _custom_headers(self) -> _t.Mapping[str, str] | None: + return default_headers + + @_custom_headers.setter # type: ignore + def _custom_headers(self, value: _t.Mapping[str, str] | None) -> None: # type: ignore + global default_headers + + default_headers = value + + @property # type: ignore + @override + def _custom_query(self) -> _t.Mapping[str, object] | None: + return default_query + + @_custom_query.setter # type: ignore + def _custom_query(self, value: _t.Mapping[str, object] | None) -> None: # type: ignore + global default_query + + default_query = value + + @property # type: ignore + @override + def _client(self) -> _httpx.Client: + return http_client or super()._client + + @_client.setter # type: ignore + def _client(self, value: _httpx.Client) -> None: # type: ignore + global http_client + + http_client = value + + +class _AzureModuleClient(_ModuleClient, AzureOpenAI): # type: ignore + ... + + +class _AmbiguousModuleClientUsageError(OpenAIError): + def __init__(self) -> None: + super().__init__( + "Ambiguous use of module client; please set `openai.api_type` or the `OPENAI_API_TYPE` environment variable to `openai` or `azure`" + ) + + +def _has_openai_credentials() -> bool: + return _os.environ.get("OPENAI_API_KEY") is not None + + +def _has_azure_credentials() -> bool: + return azure_endpoint is not None or _os.environ.get("AZURE_OPENAI_API_KEY") is not None + + +def _has_azure_ad_credentials() -> bool: + return ( + _os.environ.get("AZURE_OPENAI_AD_TOKEN") is not None + or azure_ad_token is not None + or azure_ad_token_provider is not None + ) + + +_client: OpenAI | None = None + + +def _load_client() -> OpenAI: # type: ignore[reportUnusedFunction] + global _client + + if _client is None: + global api_type, azure_endpoint, azure_ad_token, api_version + + if azure_endpoint is None: + azure_endpoint = _os.environ.get("AZURE_OPENAI_ENDPOINT") + + if azure_ad_token is None: + azure_ad_token = _os.environ.get("AZURE_OPENAI_AD_TOKEN") + + if api_version is None: + api_version = _os.environ.get("OPENAI_API_VERSION") + + if api_type is None: + has_openai = _has_openai_credentials() + has_azure = _has_azure_credentials() + has_azure_ad = _has_azure_ad_credentials() + + if has_openai and (has_azure or has_azure_ad): + raise _AmbiguousModuleClientUsageError() + + if (azure_ad_token is not None or azure_ad_token_provider is not None) and _os.environ.get( + "AZURE_OPENAI_API_KEY" + ) is not None: + raise _AmbiguousModuleClientUsageError() + + if has_azure or has_azure_ad: + api_type = "azure" + else: + api_type = "openai" + + if api_type == "azure": + _client = _AzureModuleClient( # type: ignore + api_version=api_version, + azure_endpoint=azure_endpoint, + api_key=api_key, + azure_ad_token=azure_ad_token, + azure_ad_token_provider=azure_ad_token_provider, + organization=organization, + base_url=base_url, + timeout=timeout, + max_retries=max_retries, + default_headers=default_headers, + default_query=default_query, + http_client=http_client, + ) + return _client + + _client = _ModuleClient( + api_key=api_key, + organization=organization, + project=project, + base_url=base_url, + timeout=timeout, + max_retries=max_retries, + default_headers=default_headers, + default_query=default_query, + http_client=http_client, + ) + return _client + + return _client + + +def _reset_client() -> None: # type: ignore[reportUnusedFunction] + global _client + + _client = None + + +from ._module_client import ( + beta as beta, + chat as chat, + audio as audio, + files as files, + images as images, + models as models, + batches as batches, + uploads as uploads, + responses as responses, + embeddings as embeddings, + completions as completions, + fine_tuning as fine_tuning, + moderations as moderations, + vector_stores as vector_stores, +) diff --git a/.venv/lib/python3.12/site-packages/openai/__main__.py b/.venv/lib/python3.12/site-packages/openai/__main__.py new file mode 100644 index 00000000..4e28416e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/__main__.py @@ -0,0 +1,3 @@ +from .cli import main + +main() diff --git a/.venv/lib/python3.12/site-packages/openai/_base_client.py b/.venv/lib/python3.12/site-packages/openai/_base_client.py new file mode 100644 index 00000000..f31e5af5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_base_client.py @@ -0,0 +1,2000 @@ +from __future__ import annotations + +import sys +import json +import time +import uuid +import email +import asyncio +import inspect +import logging +import platform +import email.utils +from types import TracebackType +from random import random +from typing import ( + TYPE_CHECKING, + Any, + Dict, + Type, + Union, + Generic, + Mapping, + TypeVar, + Iterable, + Iterator, + Optional, + Generator, + AsyncIterator, + cast, + overload, +) +from typing_extensions import Literal, override, get_origin + +import anyio +import httpx +import distro +import pydantic +from httpx import URL +from pydantic import PrivateAttr + +from . import _exceptions +from ._qs import Querystring +from ._files import to_httpx_files, async_to_httpx_files +from ._types import ( + NOT_GIVEN, + Body, + Omit, + Query, + Headers, + Timeout, + NotGiven, + ResponseT, + AnyMapping, + PostParser, + RequestFiles, + HttpxSendArgs, + RequestOptions, + HttpxRequestFiles, + ModelBuilderProtocol, +) +from ._utils import SensitiveHeadersFilter, is_dict, is_list, asyncify, is_given, lru_cache, is_mapping +from ._compat import PYDANTIC_V2, model_copy, model_dump +from ._models import GenericModel, FinalRequestOptions, validate_type, construct_type +from ._response import ( + APIResponse, + BaseAPIResponse, + AsyncAPIResponse, + extract_response_type, +) +from ._constants import ( + DEFAULT_TIMEOUT, + MAX_RETRY_DELAY, + DEFAULT_MAX_RETRIES, + INITIAL_RETRY_DELAY, + RAW_RESPONSE_HEADER, + OVERRIDE_CAST_TO_HEADER, + DEFAULT_CONNECTION_LIMITS, +) +from ._streaming import Stream, SSEDecoder, AsyncStream, SSEBytesDecoder +from ._exceptions import ( + APIStatusError, + APITimeoutError, + APIConnectionError, + APIResponseValidationError, +) +from ._legacy_response import LegacyAPIResponse + +log: logging.Logger = logging.getLogger(__name__) +log.addFilter(SensitiveHeadersFilter()) + +# TODO: make base page type vars covariant +SyncPageT = TypeVar("SyncPageT", bound="BaseSyncPage[Any]") +AsyncPageT = TypeVar("AsyncPageT", bound="BaseAsyncPage[Any]") + + +_T = TypeVar("_T") +_T_co = TypeVar("_T_co", covariant=True) + +_StreamT = TypeVar("_StreamT", bound=Stream[Any]) +_AsyncStreamT = TypeVar("_AsyncStreamT", bound=AsyncStream[Any]) + +if TYPE_CHECKING: + from httpx._config import DEFAULT_TIMEOUT_CONFIG as HTTPX_DEFAULT_TIMEOUT +else: + try: + from httpx._config import DEFAULT_TIMEOUT_CONFIG as HTTPX_DEFAULT_TIMEOUT + except ImportError: + # taken from https://github.com/encode/httpx/blob/3ba5fe0d7ac70222590e759c31442b1cab263791/httpx/_config.py#L366 + HTTPX_DEFAULT_TIMEOUT = Timeout(5.0) + + +class PageInfo: + """Stores the necessary information to build the request to retrieve the next page. + + Either `url` or `params` must be set. + """ + + url: URL | NotGiven + params: Query | NotGiven + + @overload + def __init__( + self, + *, + url: URL, + ) -> None: ... + + @overload + def __init__( + self, + *, + params: Query, + ) -> None: ... + + def __init__( + self, + *, + url: URL | NotGiven = NOT_GIVEN, + params: Query | NotGiven = NOT_GIVEN, + ) -> None: + self.url = url + self.params = params + + @override + def __repr__(self) -> str: + if self.url: + return f"{self.__class__.__name__}(url={self.url})" + return f"{self.__class__.__name__}(params={self.params})" + + +class BasePage(GenericModel, Generic[_T]): + """ + Defines the core interface for pagination. + + Type Args: + ModelT: The pydantic model that represents an item in the response. + + Methods: + has_next_page(): Check if there is another page available + next_page_info(): Get the necessary information to make a request for the next page + """ + + _options: FinalRequestOptions = PrivateAttr() + _model: Type[_T] = PrivateAttr() + + def has_next_page(self) -> bool: + items = self._get_page_items() + if not items: + return False + return self.next_page_info() is not None + + def next_page_info(self) -> Optional[PageInfo]: ... + + def _get_page_items(self) -> Iterable[_T]: # type: ignore[empty-body] + ... + + def _params_from_url(self, url: URL) -> httpx.QueryParams: + # TODO: do we have to preprocess params here? + return httpx.QueryParams(cast(Any, self._options.params)).merge(url.params) + + def _info_to_options(self, info: PageInfo) -> FinalRequestOptions: + options = model_copy(self._options) + options._strip_raw_response_header() + + if not isinstance(info.params, NotGiven): + options.params = {**options.params, **info.params} + return options + + if not isinstance(info.url, NotGiven): + params = self._params_from_url(info.url) + url = info.url.copy_with(params=params) + options.params = dict(url.params) + options.url = str(url) + return options + + raise ValueError("Unexpected PageInfo state") + + +class BaseSyncPage(BasePage[_T], Generic[_T]): + _client: SyncAPIClient = pydantic.PrivateAttr() + + def _set_private_attributes( + self, + client: SyncAPIClient, + model: Type[_T], + options: FinalRequestOptions, + ) -> None: + if PYDANTIC_V2 and getattr(self, "__pydantic_private__", None) is None: + self.__pydantic_private__ = {} + + self._model = model + self._client = client + self._options = options + + # Pydantic uses a custom `__iter__` method to support casting BaseModels + # to dictionaries. e.g. dict(model). + # As we want to support `for item in page`, this is inherently incompatible + # with the default pydantic behaviour. It is not possible to support both + # use cases at once. Fortunately, this is not a big deal as all other pydantic + # methods should continue to work as expected as there is an alternative method + # to cast a model to a dictionary, model.dict(), which is used internally + # by pydantic. + def __iter__(self) -> Iterator[_T]: # type: ignore + for page in self.iter_pages(): + for item in page._get_page_items(): + yield item + + def iter_pages(self: SyncPageT) -> Iterator[SyncPageT]: + page = self + while True: + yield page + if page.has_next_page(): + page = page.get_next_page() + else: + return + + def get_next_page(self: SyncPageT) -> SyncPageT: + info = self.next_page_info() + if not info: + raise RuntimeError( + "No next page expected; please check `.has_next_page()` before calling `.get_next_page()`." + ) + + options = self._info_to_options(info) + return self._client._request_api_list(self._model, page=self.__class__, options=options) + + +class AsyncPaginator(Generic[_T, AsyncPageT]): + def __init__( + self, + client: AsyncAPIClient, + options: FinalRequestOptions, + page_cls: Type[AsyncPageT], + model: Type[_T], + ) -> None: + self._model = model + self._client = client + self._options = options + self._page_cls = page_cls + + def __await__(self) -> Generator[Any, None, AsyncPageT]: + return self._get_page().__await__() + + async def _get_page(self) -> AsyncPageT: + def _parser(resp: AsyncPageT) -> AsyncPageT: + resp._set_private_attributes( + model=self._model, + options=self._options, + client=self._client, + ) + return resp + + self._options.post_parser = _parser + + return await self._client.request(self._page_cls, self._options) + + async def __aiter__(self) -> AsyncIterator[_T]: + # https://github.com/microsoft/pyright/issues/3464 + page = cast( + AsyncPageT, + await self, # type: ignore + ) + async for item in page: + yield item + + +class BaseAsyncPage(BasePage[_T], Generic[_T]): + _client: AsyncAPIClient = pydantic.PrivateAttr() + + def _set_private_attributes( + self, + model: Type[_T], + client: AsyncAPIClient, + options: FinalRequestOptions, + ) -> None: + if PYDANTIC_V2 and getattr(self, "__pydantic_private__", None) is None: + self.__pydantic_private__ = {} + + self._model = model + self._client = client + self._options = options + + async def __aiter__(self) -> AsyncIterator[_T]: + async for page in self.iter_pages(): + for item in page._get_page_items(): + yield item + + async def iter_pages(self: AsyncPageT) -> AsyncIterator[AsyncPageT]: + page = self + while True: + yield page + if page.has_next_page(): + page = await page.get_next_page() + else: + return + + async def get_next_page(self: AsyncPageT) -> AsyncPageT: + info = self.next_page_info() + if not info: + raise RuntimeError( + "No next page expected; please check `.has_next_page()` before calling `.get_next_page()`." + ) + + options = self._info_to_options(info) + return await self._client._request_api_list(self._model, page=self.__class__, options=options) + + +_HttpxClientT = TypeVar("_HttpxClientT", bound=Union[httpx.Client, httpx.AsyncClient]) +_DefaultStreamT = TypeVar("_DefaultStreamT", bound=Union[Stream[Any], AsyncStream[Any]]) + + +class BaseClient(Generic[_HttpxClientT, _DefaultStreamT]): + _client: _HttpxClientT + _version: str + _base_url: URL + max_retries: int + timeout: Union[float, Timeout, None] + _strict_response_validation: bool + _idempotency_header: str | None + _default_stream_cls: type[_DefaultStreamT] | None = None + + def __init__( + self, + *, + version: str, + base_url: str | URL, + _strict_response_validation: bool, + max_retries: int = DEFAULT_MAX_RETRIES, + timeout: float | Timeout | None = DEFAULT_TIMEOUT, + custom_headers: Mapping[str, str] | None = None, + custom_query: Mapping[str, object] | None = None, + ) -> None: + self._version = version + self._base_url = self._enforce_trailing_slash(URL(base_url)) + self.max_retries = max_retries + self.timeout = timeout + self._custom_headers = custom_headers or {} + self._custom_query = custom_query or {} + self._strict_response_validation = _strict_response_validation + self._idempotency_header = None + self._platform: Platform | None = None + + if max_retries is None: # pyright: ignore[reportUnnecessaryComparison] + raise TypeError( + "max_retries cannot be None. If you want to disable retries, pass `0`; if you want unlimited retries, pass `math.inf` or a very high number; if you want the default behavior, pass `openai.DEFAULT_MAX_RETRIES`" + ) + + def _enforce_trailing_slash(self, url: URL) -> URL: + if url.raw_path.endswith(b"/"): + return url + return url.copy_with(raw_path=url.raw_path + b"/") + + def _make_status_error_from_response( + self, + response: httpx.Response, + ) -> APIStatusError: + if response.is_closed and not response.is_stream_consumed: + # We can't read the response body as it has been closed + # before it was read. This can happen if an event hook + # raises a status error. + body = None + err_msg = f"Error code: {response.status_code}" + else: + err_text = response.text.strip() + body = err_text + + try: + body = json.loads(err_text) + err_msg = f"Error code: {response.status_code} - {body}" + except Exception: + err_msg = err_text or f"Error code: {response.status_code}" + + return self._make_status_error(err_msg, body=body, response=response) + + def _make_status_error( + self, + err_msg: str, + *, + body: object, + response: httpx.Response, + ) -> _exceptions.APIStatusError: + raise NotImplementedError() + + def _build_headers(self, options: FinalRequestOptions, *, retries_taken: int = 0) -> httpx.Headers: + custom_headers = options.headers or {} + headers_dict = _merge_mappings(self.default_headers, custom_headers) + self._validate_headers(headers_dict, custom_headers) + + # headers are case-insensitive while dictionaries are not. + headers = httpx.Headers(headers_dict) + + idempotency_header = self._idempotency_header + if idempotency_header and options.method.lower() != "get" and idempotency_header not in headers: + headers[idempotency_header] = options.idempotency_key or self._idempotency_key() + + # Don't set these headers if they were already set or removed by the caller. We check + # `custom_headers`, which can contain `Omit()`, instead of `headers` to account for the removal case. + lower_custom_headers = [header.lower() for header in custom_headers] + if "x-stainless-retry-count" not in lower_custom_headers: + headers["x-stainless-retry-count"] = str(retries_taken) + if "x-stainless-read-timeout" not in lower_custom_headers: + timeout = self.timeout if isinstance(options.timeout, NotGiven) else options.timeout + if isinstance(timeout, Timeout): + timeout = timeout.read + if timeout is not None: + headers["x-stainless-read-timeout"] = str(timeout) + + return headers + + def _prepare_url(self, url: str) -> URL: + """ + Merge a URL argument together with any 'base_url' on the client, + to create the URL used for the outgoing request. + """ + # Copied from httpx's `_merge_url` method. + merge_url = URL(url) + if merge_url.is_relative_url: + merge_raw_path = self.base_url.raw_path + merge_url.raw_path.lstrip(b"/") + return self.base_url.copy_with(raw_path=merge_raw_path) + + return merge_url + + def _make_sse_decoder(self) -> SSEDecoder | SSEBytesDecoder: + return SSEDecoder() + + def _build_request( + self, + options: FinalRequestOptions, + *, + retries_taken: int = 0, + ) -> httpx.Request: + if log.isEnabledFor(logging.DEBUG): + log.debug("Request options: %s", model_dump(options, exclude_unset=True)) + + kwargs: dict[str, Any] = {} + + json_data = options.json_data + if options.extra_json is not None: + if json_data is None: + json_data = cast(Body, options.extra_json) + elif is_mapping(json_data): + json_data = _merge_mappings(json_data, options.extra_json) + else: + raise RuntimeError(f"Unexpected JSON data type, {type(json_data)}, cannot merge with `extra_body`") + + headers = self._build_headers(options, retries_taken=retries_taken) + params = _merge_mappings(self.default_query, options.params) + content_type = headers.get("Content-Type") + files = options.files + + # If the given Content-Type header is multipart/form-data then it + # has to be removed so that httpx can generate the header with + # additional information for us as it has to be in this form + # for the server to be able to correctly parse the request: + # multipart/form-data; boundary=---abc-- + if content_type is not None and content_type.startswith("multipart/form-data"): + if "boundary" not in content_type: + # only remove the header if the boundary hasn't been explicitly set + # as the caller doesn't want httpx to come up with their own boundary + headers.pop("Content-Type") + + # As we are now sending multipart/form-data instead of application/json + # we need to tell httpx to use it, https://www.python-httpx.org/advanced/clients/#multipart-file-encoding + if json_data: + if not is_dict(json_data): + raise TypeError( + f"Expected query input to be a dictionary for multipart requests but got {type(json_data)} instead." + ) + kwargs["data"] = self._serialize_multipartform(json_data) + + # httpx determines whether or not to send a "multipart/form-data" + # request based on the truthiness of the "files" argument. + # This gets around that issue by generating a dict value that + # evaluates to true. + # + # https://github.com/encode/httpx/discussions/2399#discussioncomment-3814186 + if not files: + files = cast(HttpxRequestFiles, ForceMultipartDict()) + + prepared_url = self._prepare_url(options.url) + if "_" in prepared_url.host: + # work around https://github.com/encode/httpx/discussions/2880 + kwargs["extensions"] = {"sni_hostname": prepared_url.host.replace("_", "-")} + + # TODO: report this error to httpx + return self._client.build_request( # pyright: ignore[reportUnknownMemberType] + headers=headers, + timeout=self.timeout if isinstance(options.timeout, NotGiven) else options.timeout, + method=options.method, + url=prepared_url, + # the `Query` type that we use is incompatible with qs' + # `Params` type as it needs to be typed as `Mapping[str, object]` + # so that passing a `TypedDict` doesn't cause an error. + # https://github.com/microsoft/pyright/issues/3526#event-6715453066 + params=self.qs.stringify(cast(Mapping[str, Any], params)) if params else None, + json=json_data if is_given(json_data) else None, + files=files, + **kwargs, + ) + + def _serialize_multipartform(self, data: Mapping[object, object]) -> dict[str, object]: + items = self.qs.stringify_items( + # TODO: type ignore is required as stringify_items is well typed but we can't be + # well typed without heavy validation. + data, # type: ignore + array_format="brackets", + ) + serialized: dict[str, object] = {} + for key, value in items: + existing = serialized.get(key) + + if not existing: + serialized[key] = value + continue + + # If a value has already been set for this key then that + # means we're sending data like `array[]=[1, 2, 3]` and we + # need to tell httpx that we want to send multiple values with + # the same key which is done by using a list or a tuple. + # + # Note: 2d arrays should never result in the same key at both + # levels so it's safe to assume that if the value is a list, + # it was because we changed it to be a list. + if is_list(existing): + existing.append(value) + else: + serialized[key] = [existing, value] + + return serialized + + def _maybe_override_cast_to(self, cast_to: type[ResponseT], options: FinalRequestOptions) -> type[ResponseT]: + if not is_given(options.headers): + return cast_to + + # make a copy of the headers so we don't mutate user-input + headers = dict(options.headers) + + # we internally support defining a temporary header to override the + # default `cast_to` type for use with `.with_raw_response` and `.with_streaming_response` + # see _response.py for implementation details + override_cast_to = headers.pop(OVERRIDE_CAST_TO_HEADER, NOT_GIVEN) + if is_given(override_cast_to): + options.headers = headers + return cast(Type[ResponseT], override_cast_to) + + return cast_to + + def _should_stream_response_body(self, request: httpx.Request) -> bool: + return request.headers.get(RAW_RESPONSE_HEADER) == "stream" # type: ignore[no-any-return] + + def _process_response_data( + self, + *, + data: object, + cast_to: type[ResponseT], + response: httpx.Response, + ) -> ResponseT: + if data is None: + return cast(ResponseT, None) + + if cast_to is object: + return cast(ResponseT, data) + + try: + if inspect.isclass(cast_to) and issubclass(cast_to, ModelBuilderProtocol): + return cast(ResponseT, cast_to.build(response=response, data=data)) + + if self._strict_response_validation: + return cast(ResponseT, validate_type(type_=cast_to, value=data)) + + return cast(ResponseT, construct_type(type_=cast_to, value=data)) + except pydantic.ValidationError as err: + raise APIResponseValidationError(response=response, body=data) from err + + @property + def qs(self) -> Querystring: + return Querystring() + + @property + def custom_auth(self) -> httpx.Auth | None: + return None + + @property + def auth_headers(self) -> dict[str, str]: + return {} + + @property + def default_headers(self) -> dict[str, str | Omit]: + return { + "Accept": "application/json", + "Content-Type": "application/json", + "User-Agent": self.user_agent, + **self.platform_headers(), + **self.auth_headers, + **self._custom_headers, + } + + @property + def default_query(self) -> dict[str, object]: + return { + **self._custom_query, + } + + def _validate_headers( + self, + headers: Headers, # noqa: ARG002 + custom_headers: Headers, # noqa: ARG002 + ) -> None: + """Validate the given default headers and custom headers. + + Does nothing by default. + """ + return + + @property + def user_agent(self) -> str: + return f"{self.__class__.__name__}/Python {self._version}" + + @property + def base_url(self) -> URL: + return self._base_url + + @base_url.setter + def base_url(self, url: URL | str) -> None: + self._base_url = self._enforce_trailing_slash(url if isinstance(url, URL) else URL(url)) + + def platform_headers(self) -> Dict[str, str]: + # the actual implementation is in a separate `lru_cache` decorated + # function because adding `lru_cache` to methods will leak memory + # https://github.com/python/cpython/issues/88476 + return platform_headers(self._version, platform=self._platform) + + def _parse_retry_after_header(self, response_headers: Optional[httpx.Headers] = None) -> float | None: + """Returns a float of the number of seconds (not milliseconds) to wait after retrying, or None if unspecified. + + About the Retry-After header: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After + See also https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After#syntax + """ + if response_headers is None: + return None + + # First, try the non-standard `retry-after-ms` header for milliseconds, + # which is more precise than integer-seconds `retry-after` + try: + retry_ms_header = response_headers.get("retry-after-ms", None) + return float(retry_ms_header) / 1000 + except (TypeError, ValueError): + pass + + # Next, try parsing `retry-after` header as seconds (allowing nonstandard floats). + retry_header = response_headers.get("retry-after") + try: + # note: the spec indicates that this should only ever be an integer + # but if someone sends a float there's no reason for us to not respect it + return float(retry_header) + except (TypeError, ValueError): + pass + + # Last, try parsing `retry-after` as a date. + retry_date_tuple = email.utils.parsedate_tz(retry_header) + if retry_date_tuple is None: + return None + + retry_date = email.utils.mktime_tz(retry_date_tuple) + return float(retry_date - time.time()) + + def _calculate_retry_timeout( + self, + remaining_retries: int, + options: FinalRequestOptions, + response_headers: Optional[httpx.Headers] = None, + ) -> float: + max_retries = options.get_max_retries(self.max_retries) + + # If the API asks us to wait a certain amount of time (and it's a reasonable amount), just do what it says. + retry_after = self._parse_retry_after_header(response_headers) + if retry_after is not None and 0 < retry_after <= 60: + return retry_after + + # Also cap retry count to 1000 to avoid any potential overflows with `pow` + nb_retries = min(max_retries - remaining_retries, 1000) + + # Apply exponential backoff, but not more than the max. + sleep_seconds = min(INITIAL_RETRY_DELAY * pow(2.0, nb_retries), MAX_RETRY_DELAY) + + # Apply some jitter, plus-or-minus half a second. + jitter = 1 - 0.25 * random() + timeout = sleep_seconds * jitter + return timeout if timeout >= 0 else 0 + + def _should_retry(self, response: httpx.Response) -> bool: + # Note: this is not a standard header + should_retry_header = response.headers.get("x-should-retry") + + # If the server explicitly says whether or not to retry, obey. + if should_retry_header == "true": + log.debug("Retrying as header `x-should-retry` is set to `true`") + return True + if should_retry_header == "false": + log.debug("Not retrying as header `x-should-retry` is set to `false`") + return False + + # Retry on request timeouts. + if response.status_code == 408: + log.debug("Retrying due to status code %i", response.status_code) + return True + + # Retry on lock timeouts. + if response.status_code == 409: + log.debug("Retrying due to status code %i", response.status_code) + return True + + # Retry on rate limits. + if response.status_code == 429: + log.debug("Retrying due to status code %i", response.status_code) + return True + + # Retry internal errors. + if response.status_code >= 500: + log.debug("Retrying due to status code %i", response.status_code) + return True + + log.debug("Not retrying") + return False + + def _idempotency_key(self) -> str: + return f"stainless-python-retry-{uuid.uuid4()}" + + +class _DefaultHttpxClient(httpx.Client): + def __init__(self, **kwargs: Any) -> None: + kwargs.setdefault("timeout", DEFAULT_TIMEOUT) + kwargs.setdefault("limits", DEFAULT_CONNECTION_LIMITS) + kwargs.setdefault("follow_redirects", True) + super().__init__(**kwargs) + + +if TYPE_CHECKING: + DefaultHttpxClient = httpx.Client + """An alias to `httpx.Client` that provides the same defaults that this SDK + uses internally. + + This is useful because overriding the `http_client` with your own instance of + `httpx.Client` will result in httpx's defaults being used, not ours. + """ +else: + DefaultHttpxClient = _DefaultHttpxClient + + +class SyncHttpxClientWrapper(DefaultHttpxClient): + def __del__(self) -> None: + if self.is_closed: + return + + try: + self.close() + except Exception: + pass + + +class SyncAPIClient(BaseClient[httpx.Client, Stream[Any]]): + _client: httpx.Client + _default_stream_cls: type[Stream[Any]] | None = None + + def __init__( + self, + *, + version: str, + base_url: str | URL, + max_retries: int = DEFAULT_MAX_RETRIES, + timeout: float | Timeout | None | NotGiven = NOT_GIVEN, + http_client: httpx.Client | None = None, + custom_headers: Mapping[str, str] | None = None, + custom_query: Mapping[str, object] | None = None, + _strict_response_validation: bool, + ) -> None: + if not is_given(timeout): + # if the user passed in a custom http client with a non-default + # timeout set then we use that timeout. + # + # note: there is an edge case here where the user passes in a client + # where they've explicitly set the timeout to match the default timeout + # as this check is structural, meaning that we'll think they didn't + # pass in a timeout and will ignore it + if http_client and http_client.timeout != HTTPX_DEFAULT_TIMEOUT: + timeout = http_client.timeout + else: + timeout = DEFAULT_TIMEOUT + + if http_client is not None and not isinstance(http_client, httpx.Client): # pyright: ignore[reportUnnecessaryIsInstance] + raise TypeError( + f"Invalid `http_client` argument; Expected an instance of `httpx.Client` but got {type(http_client)}" + ) + + super().__init__( + version=version, + # cast to a valid type because mypy doesn't understand our type narrowing + timeout=cast(Timeout, timeout), + base_url=base_url, + max_retries=max_retries, + custom_query=custom_query, + custom_headers=custom_headers, + _strict_response_validation=_strict_response_validation, + ) + self._client = http_client or SyncHttpxClientWrapper( + base_url=base_url, + # cast to a valid type because mypy doesn't understand our type narrowing + timeout=cast(Timeout, timeout), + ) + + def is_closed(self) -> bool: + return self._client.is_closed + + def close(self) -> None: + """Close the underlying HTTPX client. + + The client will *not* be usable after this. + """ + # If an error is thrown while constructing a client, self._client + # may not be present + if hasattr(self, "_client"): + self._client.close() + + def __enter__(self: _T) -> _T: + return self + + def __exit__( + self, + exc_type: type[BaseException] | None, + exc: BaseException | None, + exc_tb: TracebackType | None, + ) -> None: + self.close() + + def _prepare_options( + self, + options: FinalRequestOptions, # noqa: ARG002 + ) -> FinalRequestOptions: + """Hook for mutating the given options""" + return options + + def _prepare_request( + self, + request: httpx.Request, # noqa: ARG002 + ) -> None: + """This method is used as a callback for mutating the `Request` object + after it has been constructed. + This is useful for cases where you want to add certain headers based off of + the request properties, e.g. `url`, `method` etc. + """ + return None + + @overload + def request( + self, + cast_to: Type[ResponseT], + options: FinalRequestOptions, + remaining_retries: Optional[int] = None, + *, + stream: Literal[True], + stream_cls: Type[_StreamT], + ) -> _StreamT: ... + + @overload + def request( + self, + cast_to: Type[ResponseT], + options: FinalRequestOptions, + remaining_retries: Optional[int] = None, + *, + stream: Literal[False] = False, + ) -> ResponseT: ... + + @overload + def request( + self, + cast_to: Type[ResponseT], + options: FinalRequestOptions, + remaining_retries: Optional[int] = None, + *, + stream: bool = False, + stream_cls: Type[_StreamT] | None = None, + ) -> ResponseT | _StreamT: ... + + def request( + self, + cast_to: Type[ResponseT], + options: FinalRequestOptions, + remaining_retries: Optional[int] = None, + *, + stream: bool = False, + stream_cls: type[_StreamT] | None = None, + ) -> ResponseT | _StreamT: + if remaining_retries is not None: + retries_taken = options.get_max_retries(self.max_retries) - remaining_retries + else: + retries_taken = 0 + + return self._request( + cast_to=cast_to, + options=options, + stream=stream, + stream_cls=stream_cls, + retries_taken=retries_taken, + ) + + def _request( + self, + *, + cast_to: Type[ResponseT], + options: FinalRequestOptions, + retries_taken: int, + stream: bool, + stream_cls: type[_StreamT] | None, + ) -> ResponseT | _StreamT: + # create a copy of the options we were given so that if the + # options are mutated later & we then retry, the retries are + # given the original options + input_options = model_copy(options) + + cast_to = self._maybe_override_cast_to(cast_to, options) + options = self._prepare_options(options) + + remaining_retries = options.get_max_retries(self.max_retries) - retries_taken + request = self._build_request(options, retries_taken=retries_taken) + self._prepare_request(request) + + kwargs: HttpxSendArgs = {} + if self.custom_auth is not None: + kwargs["auth"] = self.custom_auth + + log.debug("Sending HTTP Request: %s %s", request.method, request.url) + + try: + response = self._client.send( + request, + stream=stream or self._should_stream_response_body(request=request), + **kwargs, + ) + except httpx.TimeoutException as err: + log.debug("Encountered httpx.TimeoutException", exc_info=True) + + if remaining_retries > 0: + return self._retry_request( + input_options, + cast_to, + retries_taken=retries_taken, + stream=stream, + stream_cls=stream_cls, + response_headers=None, + ) + + log.debug("Raising timeout error") + raise APITimeoutError(request=request) from err + except Exception as err: + log.debug("Encountered Exception", exc_info=True) + + if remaining_retries > 0: + return self._retry_request( + input_options, + cast_to, + retries_taken=retries_taken, + stream=stream, + stream_cls=stream_cls, + response_headers=None, + ) + + log.debug("Raising connection error") + raise APIConnectionError(request=request) from err + + log.debug( + 'HTTP Response: %s %s "%i %s" %s', + request.method, + request.url, + response.status_code, + response.reason_phrase, + response.headers, + ) + log.debug("request_id: %s", response.headers.get("x-request-id")) + + try: + response.raise_for_status() + except httpx.HTTPStatusError as err: # thrown on 4xx and 5xx status code + log.debug("Encountered httpx.HTTPStatusError", exc_info=True) + + if remaining_retries > 0 and self._should_retry(err.response): + err.response.close() + return self._retry_request( + input_options, + cast_to, + retries_taken=retries_taken, + response_headers=err.response.headers, + stream=stream, + stream_cls=stream_cls, + ) + + # If the response is streamed then we need to explicitly read the response + # to completion before attempting to access the response text. + if not err.response.is_closed: + err.response.read() + + log.debug("Re-raising status error") + raise self._make_status_error_from_response(err.response) from None + + return self._process_response( + cast_to=cast_to, + options=options, + response=response, + stream=stream, + stream_cls=stream_cls, + retries_taken=retries_taken, + ) + + def _retry_request( + self, + options: FinalRequestOptions, + cast_to: Type[ResponseT], + *, + retries_taken: int, + response_headers: httpx.Headers | None, + stream: bool, + stream_cls: type[_StreamT] | None, + ) -> ResponseT | _StreamT: + remaining_retries = options.get_max_retries(self.max_retries) - retries_taken + if remaining_retries == 1: + log.debug("1 retry left") + else: + log.debug("%i retries left", remaining_retries) + + timeout = self._calculate_retry_timeout(remaining_retries, options, response_headers) + log.info("Retrying request to %s in %f seconds", options.url, timeout) + + # In a synchronous context we are blocking the entire thread. Up to the library user to run the client in a + # different thread if necessary. + time.sleep(timeout) + + return self._request( + options=options, + cast_to=cast_to, + retries_taken=retries_taken + 1, + stream=stream, + stream_cls=stream_cls, + ) + + def _process_response( + self, + *, + cast_to: Type[ResponseT], + options: FinalRequestOptions, + response: httpx.Response, + stream: bool, + stream_cls: type[Stream[Any]] | type[AsyncStream[Any]] | None, + retries_taken: int = 0, + ) -> ResponseT: + if response.request.headers.get(RAW_RESPONSE_HEADER) == "true": + return cast( + ResponseT, + LegacyAPIResponse( + raw=response, + client=self, + cast_to=cast_to, + stream=stream, + stream_cls=stream_cls, + options=options, + retries_taken=retries_taken, + ), + ) + + origin = get_origin(cast_to) or cast_to + + if inspect.isclass(origin) and issubclass(origin, BaseAPIResponse): + if not issubclass(origin, APIResponse): + raise TypeError(f"API Response types must subclass {APIResponse}; Received {origin}") + + response_cls = cast("type[BaseAPIResponse[Any]]", cast_to) + return cast( + ResponseT, + response_cls( + raw=response, + client=self, + cast_to=extract_response_type(response_cls), + stream=stream, + stream_cls=stream_cls, + options=options, + retries_taken=retries_taken, + ), + ) + + if cast_to == httpx.Response: + return cast(ResponseT, response) + + api_response = APIResponse( + raw=response, + client=self, + cast_to=cast("type[ResponseT]", cast_to), # pyright: ignore[reportUnnecessaryCast] + stream=stream, + stream_cls=stream_cls, + options=options, + retries_taken=retries_taken, + ) + if bool(response.request.headers.get(RAW_RESPONSE_HEADER)): + return cast(ResponseT, api_response) + + return api_response.parse() + + def _request_api_list( + self, + model: Type[object], + page: Type[SyncPageT], + options: FinalRequestOptions, + ) -> SyncPageT: + def _parser(resp: SyncPageT) -> SyncPageT: + resp._set_private_attributes( + client=self, + model=model, + options=options, + ) + return resp + + options.post_parser = _parser + + return self.request(page, options, stream=False) + + @overload + def get( + self, + path: str, + *, + cast_to: Type[ResponseT], + options: RequestOptions = {}, + stream: Literal[False] = False, + ) -> ResponseT: ... + + @overload + def get( + self, + path: str, + *, + cast_to: Type[ResponseT], + options: RequestOptions = {}, + stream: Literal[True], + stream_cls: type[_StreamT], + ) -> _StreamT: ... + + @overload + def get( + self, + path: str, + *, + cast_to: Type[ResponseT], + options: RequestOptions = {}, + stream: bool, + stream_cls: type[_StreamT] | None = None, + ) -> ResponseT | _StreamT: ... + + def get( + self, + path: str, + *, + cast_to: Type[ResponseT], + options: RequestOptions = {}, + stream: bool = False, + stream_cls: type[_StreamT] | None = None, + ) -> ResponseT | _StreamT: + opts = FinalRequestOptions.construct(method="get", url=path, **options) + # cast is required because mypy complains about returning Any even though + # it understands the type variables + return cast(ResponseT, self.request(cast_to, opts, stream=stream, stream_cls=stream_cls)) + + @overload + def post( + self, + path: str, + *, + cast_to: Type[ResponseT], + body: Body | None = None, + options: RequestOptions = {}, + files: RequestFiles | None = None, + stream: Literal[False] = False, + ) -> ResponseT: ... + + @overload + def post( + self, + path: str, + *, + cast_to: Type[ResponseT], + body: Body | None = None, + options: RequestOptions = {}, + files: RequestFiles | None = None, + stream: Literal[True], + stream_cls: type[_StreamT], + ) -> _StreamT: ... + + @overload + def post( + self, + path: str, + *, + cast_to: Type[ResponseT], + body: Body | None = None, + options: RequestOptions = {}, + files: RequestFiles | None = None, + stream: bool, + stream_cls: type[_StreamT] | None = None, + ) -> ResponseT | _StreamT: ... + + def post( + self, + path: str, + *, + cast_to: Type[ResponseT], + body: Body | None = None, + options: RequestOptions = {}, + files: RequestFiles | None = None, + stream: bool = False, + stream_cls: type[_StreamT] | None = None, + ) -> ResponseT | _StreamT: + opts = FinalRequestOptions.construct( + method="post", url=path, json_data=body, files=to_httpx_files(files), **options + ) + return cast(ResponseT, self.request(cast_to, opts, stream=stream, stream_cls=stream_cls)) + + def patch( + self, + path: str, + *, + cast_to: Type[ResponseT], + body: Body | None = None, + options: RequestOptions = {}, + ) -> ResponseT: + opts = FinalRequestOptions.construct(method="patch", url=path, json_data=body, **options) + return self.request(cast_to, opts) + + def put( + self, + path: str, + *, + cast_to: Type[ResponseT], + body: Body | None = None, + files: RequestFiles | None = None, + options: RequestOptions = {}, + ) -> ResponseT: + opts = FinalRequestOptions.construct( + method="put", url=path, json_data=body, files=to_httpx_files(files), **options + ) + return self.request(cast_to, opts) + + def delete( + self, + path: str, + *, + cast_to: Type[ResponseT], + body: Body | None = None, + options: RequestOptions = {}, + ) -> ResponseT: + opts = FinalRequestOptions.construct(method="delete", url=path, json_data=body, **options) + return self.request(cast_to, opts) + + def get_api_list( + self, + path: str, + *, + model: Type[object], + page: Type[SyncPageT], + body: Body | None = None, + options: RequestOptions = {}, + method: str = "get", + ) -> SyncPageT: + opts = FinalRequestOptions.construct(method=method, url=path, json_data=body, **options) + return self._request_api_list(model, page, opts) + + +class _DefaultAsyncHttpxClient(httpx.AsyncClient): + def __init__(self, **kwargs: Any) -> None: + kwargs.setdefault("timeout", DEFAULT_TIMEOUT) + kwargs.setdefault("limits", DEFAULT_CONNECTION_LIMITS) + kwargs.setdefault("follow_redirects", True) + super().__init__(**kwargs) + + +if TYPE_CHECKING: + DefaultAsyncHttpxClient = httpx.AsyncClient + """An alias to `httpx.AsyncClient` that provides the same defaults that this SDK + uses internally. + + This is useful because overriding the `http_client` with your own instance of + `httpx.AsyncClient` will result in httpx's defaults being used, not ours. + """ +else: + DefaultAsyncHttpxClient = _DefaultAsyncHttpxClient + + +class AsyncHttpxClientWrapper(DefaultAsyncHttpxClient): + def __del__(self) -> None: + if self.is_closed: + return + + try: + # TODO(someday): support non asyncio runtimes here + asyncio.get_running_loop().create_task(self.aclose()) + except Exception: + pass + + +class AsyncAPIClient(BaseClient[httpx.AsyncClient, AsyncStream[Any]]): + _client: httpx.AsyncClient + _default_stream_cls: type[AsyncStream[Any]] | None = None + + def __init__( + self, + *, + version: str, + base_url: str | URL, + _strict_response_validation: bool, + max_retries: int = DEFAULT_MAX_RETRIES, + timeout: float | Timeout | None | NotGiven = NOT_GIVEN, + http_client: httpx.AsyncClient | None = None, + custom_headers: Mapping[str, str] | None = None, + custom_query: Mapping[str, object] | None = None, + ) -> None: + if not is_given(timeout): + # if the user passed in a custom http client with a non-default + # timeout set then we use that timeout. + # + # note: there is an edge case here where the user passes in a client + # where they've explicitly set the timeout to match the default timeout + # as this check is structural, meaning that we'll think they didn't + # pass in a timeout and will ignore it + if http_client and http_client.timeout != HTTPX_DEFAULT_TIMEOUT: + timeout = http_client.timeout + else: + timeout = DEFAULT_TIMEOUT + + if http_client is not None and not isinstance(http_client, httpx.AsyncClient): # pyright: ignore[reportUnnecessaryIsInstance] + raise TypeError( + f"Invalid `http_client` argument; Expected an instance of `httpx.AsyncClient` but got {type(http_client)}" + ) + + super().__init__( + version=version, + base_url=base_url, + # cast to a valid type because mypy doesn't understand our type narrowing + timeout=cast(Timeout, timeout), + max_retries=max_retries, + custom_query=custom_query, + custom_headers=custom_headers, + _strict_response_validation=_strict_response_validation, + ) + self._client = http_client or AsyncHttpxClientWrapper( + base_url=base_url, + # cast to a valid type because mypy doesn't understand our type narrowing + timeout=cast(Timeout, timeout), + ) + + def is_closed(self) -> bool: + return self._client.is_closed + + async def close(self) -> None: + """Close the underlying HTTPX client. + + The client will *not* be usable after this. + """ + await self._client.aclose() + + async def __aenter__(self: _T) -> _T: + return self + + async def __aexit__( + self, + exc_type: type[BaseException] | None, + exc: BaseException | None, + exc_tb: TracebackType | None, + ) -> None: + await self.close() + + async def _prepare_options( + self, + options: FinalRequestOptions, # noqa: ARG002 + ) -> FinalRequestOptions: + """Hook for mutating the given options""" + return options + + async def _prepare_request( + self, + request: httpx.Request, # noqa: ARG002 + ) -> None: + """This method is used as a callback for mutating the `Request` object + after it has been constructed. + This is useful for cases where you want to add certain headers based off of + the request properties, e.g. `url`, `method` etc. + """ + return None + + @overload + async def request( + self, + cast_to: Type[ResponseT], + options: FinalRequestOptions, + *, + stream: Literal[False] = False, + remaining_retries: Optional[int] = None, + ) -> ResponseT: ... + + @overload + async def request( + self, + cast_to: Type[ResponseT], + options: FinalRequestOptions, + *, + stream: Literal[True], + stream_cls: type[_AsyncStreamT], + remaining_retries: Optional[int] = None, + ) -> _AsyncStreamT: ... + + @overload + async def request( + self, + cast_to: Type[ResponseT], + options: FinalRequestOptions, + *, + stream: bool, + stream_cls: type[_AsyncStreamT] | None = None, + remaining_retries: Optional[int] = None, + ) -> ResponseT | _AsyncStreamT: ... + + async def request( + self, + cast_to: Type[ResponseT], + options: FinalRequestOptions, + *, + stream: bool = False, + stream_cls: type[_AsyncStreamT] | None = None, + remaining_retries: Optional[int] = None, + ) -> ResponseT | _AsyncStreamT: + if remaining_retries is not None: + retries_taken = options.get_max_retries(self.max_retries) - remaining_retries + else: + retries_taken = 0 + + return await self._request( + cast_to=cast_to, + options=options, + stream=stream, + stream_cls=stream_cls, + retries_taken=retries_taken, + ) + + async def _request( + self, + cast_to: Type[ResponseT], + options: FinalRequestOptions, + *, + stream: bool, + stream_cls: type[_AsyncStreamT] | None, + retries_taken: int, + ) -> ResponseT | _AsyncStreamT: + if self._platform is None: + # `get_platform` can make blocking IO calls so we + # execute it earlier while we are in an async context + self._platform = await asyncify(get_platform)() + + # create a copy of the options we were given so that if the + # options are mutated later & we then retry, the retries are + # given the original options + input_options = model_copy(options) + + cast_to = self._maybe_override_cast_to(cast_to, options) + options = await self._prepare_options(options) + + remaining_retries = options.get_max_retries(self.max_retries) - retries_taken + request = self._build_request(options, retries_taken=retries_taken) + await self._prepare_request(request) + + kwargs: HttpxSendArgs = {} + if self.custom_auth is not None: + kwargs["auth"] = self.custom_auth + + try: + response = await self._client.send( + request, + stream=stream or self._should_stream_response_body(request=request), + **kwargs, + ) + except httpx.TimeoutException as err: + log.debug("Encountered httpx.TimeoutException", exc_info=True) + + if remaining_retries > 0: + return await self._retry_request( + input_options, + cast_to, + retries_taken=retries_taken, + stream=stream, + stream_cls=stream_cls, + response_headers=None, + ) + + log.debug("Raising timeout error") + raise APITimeoutError(request=request) from err + except Exception as err: + log.debug("Encountered Exception", exc_info=True) + + if remaining_retries > 0: + return await self._retry_request( + input_options, + cast_to, + retries_taken=retries_taken, + stream=stream, + stream_cls=stream_cls, + response_headers=None, + ) + + log.debug("Raising connection error") + raise APIConnectionError(request=request) from err + + log.debug( + 'HTTP Request: %s %s "%i %s"', request.method, request.url, response.status_code, response.reason_phrase + ) + + try: + response.raise_for_status() + except httpx.HTTPStatusError as err: # thrown on 4xx and 5xx status code + log.debug("Encountered httpx.HTTPStatusError", exc_info=True) + + if remaining_retries > 0 and self._should_retry(err.response): + await err.response.aclose() + return await self._retry_request( + input_options, + cast_to, + retries_taken=retries_taken, + response_headers=err.response.headers, + stream=stream, + stream_cls=stream_cls, + ) + + # If the response is streamed then we need to explicitly read the response + # to completion before attempting to access the response text. + if not err.response.is_closed: + await err.response.aread() + + log.debug("Re-raising status error") + raise self._make_status_error_from_response(err.response) from None + + return await self._process_response( + cast_to=cast_to, + options=options, + response=response, + stream=stream, + stream_cls=stream_cls, + retries_taken=retries_taken, + ) + + async def _retry_request( + self, + options: FinalRequestOptions, + cast_to: Type[ResponseT], + *, + retries_taken: int, + response_headers: httpx.Headers | None, + stream: bool, + stream_cls: type[_AsyncStreamT] | None, + ) -> ResponseT | _AsyncStreamT: + remaining_retries = options.get_max_retries(self.max_retries) - retries_taken + if remaining_retries == 1: + log.debug("1 retry left") + else: + log.debug("%i retries left", remaining_retries) + + timeout = self._calculate_retry_timeout(remaining_retries, options, response_headers) + log.info("Retrying request to %s in %f seconds", options.url, timeout) + + await anyio.sleep(timeout) + + return await self._request( + options=options, + cast_to=cast_to, + retries_taken=retries_taken + 1, + stream=stream, + stream_cls=stream_cls, + ) + + async def _process_response( + self, + *, + cast_to: Type[ResponseT], + options: FinalRequestOptions, + response: httpx.Response, + stream: bool, + stream_cls: type[Stream[Any]] | type[AsyncStream[Any]] | None, + retries_taken: int = 0, + ) -> ResponseT: + if response.request.headers.get(RAW_RESPONSE_HEADER) == "true": + return cast( + ResponseT, + LegacyAPIResponse( + raw=response, + client=self, + cast_to=cast_to, + stream=stream, + stream_cls=stream_cls, + options=options, + retries_taken=retries_taken, + ), + ) + + origin = get_origin(cast_to) or cast_to + + if inspect.isclass(origin) and issubclass(origin, BaseAPIResponse): + if not issubclass(origin, AsyncAPIResponse): + raise TypeError(f"API Response types must subclass {AsyncAPIResponse}; Received {origin}") + + response_cls = cast("type[BaseAPIResponse[Any]]", cast_to) + return cast( + "ResponseT", + response_cls( + raw=response, + client=self, + cast_to=extract_response_type(response_cls), + stream=stream, + stream_cls=stream_cls, + options=options, + retries_taken=retries_taken, + ), + ) + + if cast_to == httpx.Response: + return cast(ResponseT, response) + + api_response = AsyncAPIResponse( + raw=response, + client=self, + cast_to=cast("type[ResponseT]", cast_to), # pyright: ignore[reportUnnecessaryCast] + stream=stream, + stream_cls=stream_cls, + options=options, + retries_taken=retries_taken, + ) + if bool(response.request.headers.get(RAW_RESPONSE_HEADER)): + return cast(ResponseT, api_response) + + return await api_response.parse() + + def _request_api_list( + self, + model: Type[_T], + page: Type[AsyncPageT], + options: FinalRequestOptions, + ) -> AsyncPaginator[_T, AsyncPageT]: + return AsyncPaginator(client=self, options=options, page_cls=page, model=model) + + @overload + async def get( + self, + path: str, + *, + cast_to: Type[ResponseT], + options: RequestOptions = {}, + stream: Literal[False] = False, + ) -> ResponseT: ... + + @overload + async def get( + self, + path: str, + *, + cast_to: Type[ResponseT], + options: RequestOptions = {}, + stream: Literal[True], + stream_cls: type[_AsyncStreamT], + ) -> _AsyncStreamT: ... + + @overload + async def get( + self, + path: str, + *, + cast_to: Type[ResponseT], + options: RequestOptions = {}, + stream: bool, + stream_cls: type[_AsyncStreamT] | None = None, + ) -> ResponseT | _AsyncStreamT: ... + + async def get( + self, + path: str, + *, + cast_to: Type[ResponseT], + options: RequestOptions = {}, + stream: bool = False, + stream_cls: type[_AsyncStreamT] | None = None, + ) -> ResponseT | _AsyncStreamT: + opts = FinalRequestOptions.construct(method="get", url=path, **options) + return await self.request(cast_to, opts, stream=stream, stream_cls=stream_cls) + + @overload + async def post( + self, + path: str, + *, + cast_to: Type[ResponseT], + body: Body | None = None, + files: RequestFiles | None = None, + options: RequestOptions = {}, + stream: Literal[False] = False, + ) -> ResponseT: ... + + @overload + async def post( + self, + path: str, + *, + cast_to: Type[ResponseT], + body: Body | None = None, + files: RequestFiles | None = None, + options: RequestOptions = {}, + stream: Literal[True], + stream_cls: type[_AsyncStreamT], + ) -> _AsyncStreamT: ... + + @overload + async def post( + self, + path: str, + *, + cast_to: Type[ResponseT], + body: Body | None = None, + files: RequestFiles | None = None, + options: RequestOptions = {}, + stream: bool, + stream_cls: type[_AsyncStreamT] | None = None, + ) -> ResponseT | _AsyncStreamT: ... + + async def post( + self, + path: str, + *, + cast_to: Type[ResponseT], + body: Body | None = None, + files: RequestFiles | None = None, + options: RequestOptions = {}, + stream: bool = False, + stream_cls: type[_AsyncStreamT] | None = None, + ) -> ResponseT | _AsyncStreamT: + opts = FinalRequestOptions.construct( + method="post", url=path, json_data=body, files=await async_to_httpx_files(files), **options + ) + return await self.request(cast_to, opts, stream=stream, stream_cls=stream_cls) + + async def patch( + self, + path: str, + *, + cast_to: Type[ResponseT], + body: Body | None = None, + options: RequestOptions = {}, + ) -> ResponseT: + opts = FinalRequestOptions.construct(method="patch", url=path, json_data=body, **options) + return await self.request(cast_to, opts) + + async def put( + self, + path: str, + *, + cast_to: Type[ResponseT], + body: Body | None = None, + files: RequestFiles | None = None, + options: RequestOptions = {}, + ) -> ResponseT: + opts = FinalRequestOptions.construct( + method="put", url=path, json_data=body, files=await async_to_httpx_files(files), **options + ) + return await self.request(cast_to, opts) + + async def delete( + self, + path: str, + *, + cast_to: Type[ResponseT], + body: Body | None = None, + options: RequestOptions = {}, + ) -> ResponseT: + opts = FinalRequestOptions.construct(method="delete", url=path, json_data=body, **options) + return await self.request(cast_to, opts) + + def get_api_list( + self, + path: str, + *, + model: Type[_T], + page: Type[AsyncPageT], + body: Body | None = None, + options: RequestOptions = {}, + method: str = "get", + ) -> AsyncPaginator[_T, AsyncPageT]: + opts = FinalRequestOptions.construct(method=method, url=path, json_data=body, **options) + return self._request_api_list(model, page, opts) + + +def make_request_options( + *, + query: Query | None = None, + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + idempotency_key: str | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + post_parser: PostParser | NotGiven = NOT_GIVEN, +) -> RequestOptions: + """Create a dict of type RequestOptions without keys of NotGiven values.""" + options: RequestOptions = {} + if extra_headers is not None: + options["headers"] = extra_headers + + if extra_body is not None: + options["extra_json"] = cast(AnyMapping, extra_body) + + if query is not None: + options["params"] = query + + if extra_query is not None: + options["params"] = {**options.get("params", {}), **extra_query} + + if not isinstance(timeout, NotGiven): + options["timeout"] = timeout + + if idempotency_key is not None: + options["idempotency_key"] = idempotency_key + + if is_given(post_parser): + # internal + options["post_parser"] = post_parser # type: ignore + + return options + + +class ForceMultipartDict(Dict[str, None]): + def __bool__(self) -> bool: + return True + + +class OtherPlatform: + def __init__(self, name: str) -> None: + self.name = name + + @override + def __str__(self) -> str: + return f"Other:{self.name}" + + +Platform = Union[ + OtherPlatform, + Literal[ + "MacOS", + "Linux", + "Windows", + "FreeBSD", + "OpenBSD", + "iOS", + "Android", + "Unknown", + ], +] + + +def get_platform() -> Platform: + try: + system = platform.system().lower() + platform_name = platform.platform().lower() + except Exception: + return "Unknown" + + if "iphone" in platform_name or "ipad" in platform_name: + # Tested using Python3IDE on an iPhone 11 and Pythonista on an iPad 7 + # system is Darwin and platform_name is a string like: + # - Darwin-21.6.0-iPhone12,1-64bit + # - Darwin-21.6.0-iPad7,11-64bit + return "iOS" + + if system == "darwin": + return "MacOS" + + if system == "windows": + return "Windows" + + if "android" in platform_name: + # Tested using Pydroid 3 + # system is Linux and platform_name is a string like 'Linux-5.10.81-android12-9-00001-geba40aecb3b7-ab8534902-aarch64-with-libc' + return "Android" + + if system == "linux": + # https://distro.readthedocs.io/en/latest/#distro.id + distro_id = distro.id() + if distro_id == "freebsd": + return "FreeBSD" + + if distro_id == "openbsd": + return "OpenBSD" + + return "Linux" + + if platform_name: + return OtherPlatform(platform_name) + + return "Unknown" + + +@lru_cache(maxsize=None) +def platform_headers(version: str, *, platform: Platform | None) -> Dict[str, str]: + return { + "X-Stainless-Lang": "python", + "X-Stainless-Package-Version": version, + "X-Stainless-OS": str(platform or get_platform()), + "X-Stainless-Arch": str(get_architecture()), + "X-Stainless-Runtime": get_python_runtime(), + "X-Stainless-Runtime-Version": get_python_version(), + } + + +class OtherArch: + def __init__(self, name: str) -> None: + self.name = name + + @override + def __str__(self) -> str: + return f"other:{self.name}" + + +Arch = Union[OtherArch, Literal["x32", "x64", "arm", "arm64", "unknown"]] + + +def get_python_runtime() -> str: + try: + return platform.python_implementation() + except Exception: + return "unknown" + + +def get_python_version() -> str: + try: + return platform.python_version() + except Exception: + return "unknown" + + +def get_architecture() -> Arch: + try: + machine = platform.machine().lower() + except Exception: + return "unknown" + + if machine in ("arm64", "aarch64"): + return "arm64" + + # TODO: untested + if machine == "arm": + return "arm" + + if machine == "x86_64": + return "x64" + + # TODO: untested + if sys.maxsize <= 2**32: + return "x32" + + if machine: + return OtherArch(machine) + + return "unknown" + + +def _merge_mappings( + obj1: Mapping[_T_co, Union[_T, Omit]], + obj2: Mapping[_T_co, Union[_T, Omit]], +) -> Dict[_T_co, _T]: + """Merge two mappings of the same type, removing any values that are instances of `Omit`. + + In cases with duplicate keys the second mapping takes precedence. + """ + merged = {**obj1, **obj2} + return {key: value for key, value in merged.items() if not isinstance(value, Omit)} diff --git a/.venv/lib/python3.12/site-packages/openai/_client.py b/.venv/lib/python3.12/site-packages/openai/_client.py new file mode 100644 index 00000000..18d96da9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_client.py @@ -0,0 +1,583 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import os +from typing import Any, Union, Mapping +from typing_extensions import Self, override + +import httpx + +from . import _exceptions +from ._qs import Querystring +from ._types import ( + NOT_GIVEN, + Omit, + Timeout, + NotGiven, + Transport, + ProxiesTypes, + RequestOptions, +) +from ._utils import ( + is_given, + is_mapping, + get_async_library, +) +from ._version import __version__ +from .resources import files, images, models, batches, embeddings, completions, moderations +from ._streaming import Stream as Stream, AsyncStream as AsyncStream +from ._exceptions import OpenAIError, APIStatusError +from ._base_client import ( + DEFAULT_MAX_RETRIES, + SyncAPIClient, + AsyncAPIClient, +) +from .resources.beta import beta +from .resources.chat import chat +from .resources.audio import audio +from .resources.uploads import uploads +from .resources.responses import responses +from .resources.fine_tuning import fine_tuning +from .resources.vector_stores import vector_stores + +__all__ = ["Timeout", "Transport", "ProxiesTypes", "RequestOptions", "OpenAI", "AsyncOpenAI", "Client", "AsyncClient"] + + +class OpenAI(SyncAPIClient): + completions: completions.Completions + chat: chat.Chat + embeddings: embeddings.Embeddings + files: files.Files + images: images.Images + audio: audio.Audio + moderations: moderations.Moderations + models: models.Models + fine_tuning: fine_tuning.FineTuning + vector_stores: vector_stores.VectorStores + beta: beta.Beta + batches: batches.Batches + uploads: uploads.Uploads + responses: responses.Responses + with_raw_response: OpenAIWithRawResponse + with_streaming_response: OpenAIWithStreamedResponse + + # client options + api_key: str + organization: str | None + project: str | None + + websocket_base_url: str | httpx.URL | None + """Base URL for WebSocket connections. + + If not specified, the default base URL will be used, with 'wss://' replacing the + 'http://' or 'https://' scheme. For example: 'http://example.com' becomes + 'wss://example.com' + """ + + def __init__( + self, + *, + api_key: str | None = None, + organization: str | None = None, + project: str | None = None, + base_url: str | httpx.URL | None = None, + websocket_base_url: str | httpx.URL | None = None, + timeout: Union[float, Timeout, None, NotGiven] = NOT_GIVEN, + max_retries: int = DEFAULT_MAX_RETRIES, + default_headers: Mapping[str, str] | None = None, + default_query: Mapping[str, object] | None = None, + # Configure a custom httpx client. + # We provide a `DefaultHttpxClient` class that you can pass to retain the default values we use for `limits`, `timeout` & `follow_redirects`. + # See the [httpx documentation](https://www.python-httpx.org/api/#client) for more details. + http_client: httpx.Client | None = None, + # Enable or disable schema validation for data returned by the API. + # When enabled an error APIResponseValidationError is raised + # if the API responds with invalid data for the expected schema. + # + # This parameter may be removed or changed in the future. + # If you rely on this feature, please open a GitHub issue + # outlining your use-case to help us decide if it should be + # part of our public interface in the future. + _strict_response_validation: bool = False, + ) -> None: + """Construct a new synchronous OpenAI client instance. + + This automatically infers the following arguments from their corresponding environment variables if they are not provided: + - `api_key` from `OPENAI_API_KEY` + - `organization` from `OPENAI_ORG_ID` + - `project` from `OPENAI_PROJECT_ID` + """ + if api_key is None: + api_key = os.environ.get("OPENAI_API_KEY") + if api_key is None: + raise OpenAIError( + "The api_key client option must be set either by passing api_key to the client or by setting the OPENAI_API_KEY environment variable" + ) + self.api_key = api_key + + if organization is None: + organization = os.environ.get("OPENAI_ORG_ID") + self.organization = organization + + if project is None: + project = os.environ.get("OPENAI_PROJECT_ID") + self.project = project + + self.websocket_base_url = websocket_base_url + + if base_url is None: + base_url = os.environ.get("OPENAI_BASE_URL") + if base_url is None: + base_url = f"https://api.openai.com/v1" + + super().__init__( + version=__version__, + base_url=base_url, + max_retries=max_retries, + timeout=timeout, + http_client=http_client, + custom_headers=default_headers, + custom_query=default_query, + _strict_response_validation=_strict_response_validation, + ) + + self._default_stream_cls = Stream + + self.completions = completions.Completions(self) + self.chat = chat.Chat(self) + self.embeddings = embeddings.Embeddings(self) + self.files = files.Files(self) + self.images = images.Images(self) + self.audio = audio.Audio(self) + self.moderations = moderations.Moderations(self) + self.models = models.Models(self) + self.fine_tuning = fine_tuning.FineTuning(self) + self.vector_stores = vector_stores.VectorStores(self) + self.beta = beta.Beta(self) + self.batches = batches.Batches(self) + self.uploads = uploads.Uploads(self) + self.responses = responses.Responses(self) + self.with_raw_response = OpenAIWithRawResponse(self) + self.with_streaming_response = OpenAIWithStreamedResponse(self) + + @property + @override + def qs(self) -> Querystring: + return Querystring(array_format="brackets") + + @property + @override + def auth_headers(self) -> dict[str, str]: + api_key = self.api_key + return {"Authorization": f"Bearer {api_key}"} + + @property + @override + def default_headers(self) -> dict[str, str | Omit]: + return { + **super().default_headers, + "X-Stainless-Async": "false", + "OpenAI-Organization": self.organization if self.organization is not None else Omit(), + "OpenAI-Project": self.project if self.project is not None else Omit(), + **self._custom_headers, + } + + def copy( + self, + *, + api_key: str | None = None, + organization: str | None = None, + project: str | None = None, + websocket_base_url: str | httpx.URL | None = None, + base_url: str | httpx.URL | None = None, + timeout: float | Timeout | None | NotGiven = NOT_GIVEN, + http_client: httpx.Client | None = None, + max_retries: int | NotGiven = NOT_GIVEN, + default_headers: Mapping[str, str] | None = None, + set_default_headers: Mapping[str, str] | None = None, + default_query: Mapping[str, object] | None = None, + set_default_query: Mapping[str, object] | None = None, + _extra_kwargs: Mapping[str, Any] = {}, + ) -> Self: + """ + Create a new client instance re-using the same options given to the current client with optional overriding. + """ + if default_headers is not None and set_default_headers is not None: + raise ValueError("The `default_headers` and `set_default_headers` arguments are mutually exclusive") + + if default_query is not None and set_default_query is not None: + raise ValueError("The `default_query` and `set_default_query` arguments are mutually exclusive") + + headers = self._custom_headers + if default_headers is not None: + headers = {**headers, **default_headers} + elif set_default_headers is not None: + headers = set_default_headers + + params = self._custom_query + if default_query is not None: + params = {**params, **default_query} + elif set_default_query is not None: + params = set_default_query + + http_client = http_client or self._client + return self.__class__( + api_key=api_key or self.api_key, + organization=organization or self.organization, + project=project or self.project, + websocket_base_url=websocket_base_url or self.websocket_base_url, + base_url=base_url or self.base_url, + timeout=self.timeout if isinstance(timeout, NotGiven) else timeout, + http_client=http_client, + max_retries=max_retries if is_given(max_retries) else self.max_retries, + default_headers=headers, + default_query=params, + **_extra_kwargs, + ) + + # Alias for `copy` for nicer inline usage, e.g. + # client.with_options(timeout=10).foo.create(...) + with_options = copy + + @override + def _make_status_error( + self, + err_msg: str, + *, + body: object, + response: httpx.Response, + ) -> APIStatusError: + data = body.get("error", body) if is_mapping(body) else body + if response.status_code == 400: + return _exceptions.BadRequestError(err_msg, response=response, body=data) + + if response.status_code == 401: + return _exceptions.AuthenticationError(err_msg, response=response, body=data) + + if response.status_code == 403: + return _exceptions.PermissionDeniedError(err_msg, response=response, body=data) + + if response.status_code == 404: + return _exceptions.NotFoundError(err_msg, response=response, body=data) + + if response.status_code == 409: + return _exceptions.ConflictError(err_msg, response=response, body=data) + + if response.status_code == 422: + return _exceptions.UnprocessableEntityError(err_msg, response=response, body=data) + + if response.status_code == 429: + return _exceptions.RateLimitError(err_msg, response=response, body=data) + + if response.status_code >= 500: + return _exceptions.InternalServerError(err_msg, response=response, body=data) + return APIStatusError(err_msg, response=response, body=data) + + +class AsyncOpenAI(AsyncAPIClient): + completions: completions.AsyncCompletions + chat: chat.AsyncChat + embeddings: embeddings.AsyncEmbeddings + files: files.AsyncFiles + images: images.AsyncImages + audio: audio.AsyncAudio + moderations: moderations.AsyncModerations + models: models.AsyncModels + fine_tuning: fine_tuning.AsyncFineTuning + vector_stores: vector_stores.AsyncVectorStores + beta: beta.AsyncBeta + batches: batches.AsyncBatches + uploads: uploads.AsyncUploads + responses: responses.AsyncResponses + with_raw_response: AsyncOpenAIWithRawResponse + with_streaming_response: AsyncOpenAIWithStreamedResponse + + # client options + api_key: str + organization: str | None + project: str | None + + websocket_base_url: str | httpx.URL | None + """Base URL for WebSocket connections. + + If not specified, the default base URL will be used, with 'wss://' replacing the + 'http://' or 'https://' scheme. For example: 'http://example.com' becomes + 'wss://example.com' + """ + + def __init__( + self, + *, + api_key: str | None = None, + organization: str | None = None, + project: str | None = None, + base_url: str | httpx.URL | None = None, + websocket_base_url: str | httpx.URL | None = None, + timeout: Union[float, Timeout, None, NotGiven] = NOT_GIVEN, + max_retries: int = DEFAULT_MAX_RETRIES, + default_headers: Mapping[str, str] | None = None, + default_query: Mapping[str, object] | None = None, + # Configure a custom httpx client. + # We provide a `DefaultAsyncHttpxClient` class that you can pass to retain the default values we use for `limits`, `timeout` & `follow_redirects`. + # See the [httpx documentation](https://www.python-httpx.org/api/#asyncclient) for more details. + http_client: httpx.AsyncClient | None = None, + # Enable or disable schema validation for data returned by the API. + # When enabled an error APIResponseValidationError is raised + # if the API responds with invalid data for the expected schema. + # + # This parameter may be removed or changed in the future. + # If you rely on this feature, please open a GitHub issue + # outlining your use-case to help us decide if it should be + # part of our public interface in the future. + _strict_response_validation: bool = False, + ) -> None: + """Construct a new async AsyncOpenAI client instance. + + This automatically infers the following arguments from their corresponding environment variables if they are not provided: + - `api_key` from `OPENAI_API_KEY` + - `organization` from `OPENAI_ORG_ID` + - `project` from `OPENAI_PROJECT_ID` + """ + if api_key is None: + api_key = os.environ.get("OPENAI_API_KEY") + if api_key is None: + raise OpenAIError( + "The api_key client option must be set either by passing api_key to the client or by setting the OPENAI_API_KEY environment variable" + ) + self.api_key = api_key + + if organization is None: + organization = os.environ.get("OPENAI_ORG_ID") + self.organization = organization + + if project is None: + project = os.environ.get("OPENAI_PROJECT_ID") + self.project = project + + self.websocket_base_url = websocket_base_url + + if base_url is None: + base_url = os.environ.get("OPENAI_BASE_URL") + if base_url is None: + base_url = f"https://api.openai.com/v1" + + super().__init__( + version=__version__, + base_url=base_url, + max_retries=max_retries, + timeout=timeout, + http_client=http_client, + custom_headers=default_headers, + custom_query=default_query, + _strict_response_validation=_strict_response_validation, + ) + + self._default_stream_cls = AsyncStream + + self.completions = completions.AsyncCompletions(self) + self.chat = chat.AsyncChat(self) + self.embeddings = embeddings.AsyncEmbeddings(self) + self.files = files.AsyncFiles(self) + self.images = images.AsyncImages(self) + self.audio = audio.AsyncAudio(self) + self.moderations = moderations.AsyncModerations(self) + self.models = models.AsyncModels(self) + self.fine_tuning = fine_tuning.AsyncFineTuning(self) + self.vector_stores = vector_stores.AsyncVectorStores(self) + self.beta = beta.AsyncBeta(self) + self.batches = batches.AsyncBatches(self) + self.uploads = uploads.AsyncUploads(self) + self.responses = responses.AsyncResponses(self) + self.with_raw_response = AsyncOpenAIWithRawResponse(self) + self.with_streaming_response = AsyncOpenAIWithStreamedResponse(self) + + @property + @override + def qs(self) -> Querystring: + return Querystring(array_format="brackets") + + @property + @override + def auth_headers(self) -> dict[str, str]: + api_key = self.api_key + return {"Authorization": f"Bearer {api_key}"} + + @property + @override + def default_headers(self) -> dict[str, str | Omit]: + return { + **super().default_headers, + "X-Stainless-Async": f"async:{get_async_library()}", + "OpenAI-Organization": self.organization if self.organization is not None else Omit(), + "OpenAI-Project": self.project if self.project is not None else Omit(), + **self._custom_headers, + } + + def copy( + self, + *, + api_key: str | None = None, + organization: str | None = None, + project: str | None = None, + websocket_base_url: str | httpx.URL | None = None, + base_url: str | httpx.URL | None = None, + timeout: float | Timeout | None | NotGiven = NOT_GIVEN, + http_client: httpx.AsyncClient | None = None, + max_retries: int | NotGiven = NOT_GIVEN, + default_headers: Mapping[str, str] | None = None, + set_default_headers: Mapping[str, str] | None = None, + default_query: Mapping[str, object] | None = None, + set_default_query: Mapping[str, object] | None = None, + _extra_kwargs: Mapping[str, Any] = {}, + ) -> Self: + """ + Create a new client instance re-using the same options given to the current client with optional overriding. + """ + if default_headers is not None and set_default_headers is not None: + raise ValueError("The `default_headers` and `set_default_headers` arguments are mutually exclusive") + + if default_query is not None and set_default_query is not None: + raise ValueError("The `default_query` and `set_default_query` arguments are mutually exclusive") + + headers = self._custom_headers + if default_headers is not None: + headers = {**headers, **default_headers} + elif set_default_headers is not None: + headers = set_default_headers + + params = self._custom_query + if default_query is not None: + params = {**params, **default_query} + elif set_default_query is not None: + params = set_default_query + + http_client = http_client or self._client + return self.__class__( + api_key=api_key or self.api_key, + organization=organization or self.organization, + project=project or self.project, + websocket_base_url=websocket_base_url or self.websocket_base_url, + base_url=base_url or self.base_url, + timeout=self.timeout if isinstance(timeout, NotGiven) else timeout, + http_client=http_client, + max_retries=max_retries if is_given(max_retries) else self.max_retries, + default_headers=headers, + default_query=params, + **_extra_kwargs, + ) + + # Alias for `copy` for nicer inline usage, e.g. + # client.with_options(timeout=10).foo.create(...) + with_options = copy + + @override + def _make_status_error( + self, + err_msg: str, + *, + body: object, + response: httpx.Response, + ) -> APIStatusError: + data = body.get("error", body) if is_mapping(body) else body + if response.status_code == 400: + return _exceptions.BadRequestError(err_msg, response=response, body=data) + + if response.status_code == 401: + return _exceptions.AuthenticationError(err_msg, response=response, body=data) + + if response.status_code == 403: + return _exceptions.PermissionDeniedError(err_msg, response=response, body=data) + + if response.status_code == 404: + return _exceptions.NotFoundError(err_msg, response=response, body=data) + + if response.status_code == 409: + return _exceptions.ConflictError(err_msg, response=response, body=data) + + if response.status_code == 422: + return _exceptions.UnprocessableEntityError(err_msg, response=response, body=data) + + if response.status_code == 429: + return _exceptions.RateLimitError(err_msg, response=response, body=data) + + if response.status_code >= 500: + return _exceptions.InternalServerError(err_msg, response=response, body=data) + return APIStatusError(err_msg, response=response, body=data) + + +class OpenAIWithRawResponse: + def __init__(self, client: OpenAI) -> None: + self.completions = completions.CompletionsWithRawResponse(client.completions) + self.chat = chat.ChatWithRawResponse(client.chat) + self.embeddings = embeddings.EmbeddingsWithRawResponse(client.embeddings) + self.files = files.FilesWithRawResponse(client.files) + self.images = images.ImagesWithRawResponse(client.images) + self.audio = audio.AudioWithRawResponse(client.audio) + self.moderations = moderations.ModerationsWithRawResponse(client.moderations) + self.models = models.ModelsWithRawResponse(client.models) + self.fine_tuning = fine_tuning.FineTuningWithRawResponse(client.fine_tuning) + self.vector_stores = vector_stores.VectorStoresWithRawResponse(client.vector_stores) + self.beta = beta.BetaWithRawResponse(client.beta) + self.batches = batches.BatchesWithRawResponse(client.batches) + self.uploads = uploads.UploadsWithRawResponse(client.uploads) + self.responses = responses.ResponsesWithRawResponse(client.responses) + + +class AsyncOpenAIWithRawResponse: + def __init__(self, client: AsyncOpenAI) -> None: + self.completions = completions.AsyncCompletionsWithRawResponse(client.completions) + self.chat = chat.AsyncChatWithRawResponse(client.chat) + self.embeddings = embeddings.AsyncEmbeddingsWithRawResponse(client.embeddings) + self.files = files.AsyncFilesWithRawResponse(client.files) + self.images = images.AsyncImagesWithRawResponse(client.images) + self.audio = audio.AsyncAudioWithRawResponse(client.audio) + self.moderations = moderations.AsyncModerationsWithRawResponse(client.moderations) + self.models = models.AsyncModelsWithRawResponse(client.models) + self.fine_tuning = fine_tuning.AsyncFineTuningWithRawResponse(client.fine_tuning) + self.vector_stores = vector_stores.AsyncVectorStoresWithRawResponse(client.vector_stores) + self.beta = beta.AsyncBetaWithRawResponse(client.beta) + self.batches = batches.AsyncBatchesWithRawResponse(client.batches) + self.uploads = uploads.AsyncUploadsWithRawResponse(client.uploads) + self.responses = responses.AsyncResponsesWithRawResponse(client.responses) + + +class OpenAIWithStreamedResponse: + def __init__(self, client: OpenAI) -> None: + self.completions = completions.CompletionsWithStreamingResponse(client.completions) + self.chat = chat.ChatWithStreamingResponse(client.chat) + self.embeddings = embeddings.EmbeddingsWithStreamingResponse(client.embeddings) + self.files = files.FilesWithStreamingResponse(client.files) + self.images = images.ImagesWithStreamingResponse(client.images) + self.audio = audio.AudioWithStreamingResponse(client.audio) + self.moderations = moderations.ModerationsWithStreamingResponse(client.moderations) + self.models = models.ModelsWithStreamingResponse(client.models) + self.fine_tuning = fine_tuning.FineTuningWithStreamingResponse(client.fine_tuning) + self.vector_stores = vector_stores.VectorStoresWithStreamingResponse(client.vector_stores) + self.beta = beta.BetaWithStreamingResponse(client.beta) + self.batches = batches.BatchesWithStreamingResponse(client.batches) + self.uploads = uploads.UploadsWithStreamingResponse(client.uploads) + self.responses = responses.ResponsesWithStreamingResponse(client.responses) + + +class AsyncOpenAIWithStreamedResponse: + def __init__(self, client: AsyncOpenAI) -> None: + self.completions = completions.AsyncCompletionsWithStreamingResponse(client.completions) + self.chat = chat.AsyncChatWithStreamingResponse(client.chat) + self.embeddings = embeddings.AsyncEmbeddingsWithStreamingResponse(client.embeddings) + self.files = files.AsyncFilesWithStreamingResponse(client.files) + self.images = images.AsyncImagesWithStreamingResponse(client.images) + self.audio = audio.AsyncAudioWithStreamingResponse(client.audio) + self.moderations = moderations.AsyncModerationsWithStreamingResponse(client.moderations) + self.models = models.AsyncModelsWithStreamingResponse(client.models) + self.fine_tuning = fine_tuning.AsyncFineTuningWithStreamingResponse(client.fine_tuning) + self.vector_stores = vector_stores.AsyncVectorStoresWithStreamingResponse(client.vector_stores) + self.beta = beta.AsyncBetaWithStreamingResponse(client.beta) + self.batches = batches.AsyncBatchesWithStreamingResponse(client.batches) + self.uploads = uploads.AsyncUploadsWithStreamingResponse(client.uploads) + self.responses = responses.AsyncResponsesWithStreamingResponse(client.responses) + + +Client = OpenAI + +AsyncClient = AsyncOpenAI diff --git a/.venv/lib/python3.12/site-packages/openai/_compat.py b/.venv/lib/python3.12/site-packages/openai/_compat.py new file mode 100644 index 00000000..87fc3707 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_compat.py @@ -0,0 +1,231 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING, Any, Union, Generic, TypeVar, Callable, cast, overload +from datetime import date, datetime +from typing_extensions import Self, Literal + +import pydantic +from pydantic.fields import FieldInfo + +from ._types import IncEx, StrBytesIntFloat + +_T = TypeVar("_T") +_ModelT = TypeVar("_ModelT", bound=pydantic.BaseModel) + +# --------------- Pydantic v2 compatibility --------------- + +# Pyright incorrectly reports some of our functions as overriding a method when they don't +# pyright: reportIncompatibleMethodOverride=false + +PYDANTIC_V2 = pydantic.VERSION.startswith("2.") + +# v1 re-exports +if TYPE_CHECKING: + + def parse_date(value: date | StrBytesIntFloat) -> date: # noqa: ARG001 + ... + + def parse_datetime(value: Union[datetime, StrBytesIntFloat]) -> datetime: # noqa: ARG001 + ... + + def get_args(t: type[Any]) -> tuple[Any, ...]: # noqa: ARG001 + ... + + def is_union(tp: type[Any] | None) -> bool: # noqa: ARG001 + ... + + def get_origin(t: type[Any]) -> type[Any] | None: # noqa: ARG001 + ... + + def is_literal_type(type_: type[Any]) -> bool: # noqa: ARG001 + ... + + def is_typeddict(type_: type[Any]) -> bool: # noqa: ARG001 + ... + +else: + if PYDANTIC_V2: + from pydantic.v1.typing import ( + get_args as get_args, + is_union as is_union, + get_origin as get_origin, + is_typeddict as is_typeddict, + is_literal_type as is_literal_type, + ) + from pydantic.v1.datetime_parse import parse_date as parse_date, parse_datetime as parse_datetime + else: + from pydantic.typing import ( + get_args as get_args, + is_union as is_union, + get_origin as get_origin, + is_typeddict as is_typeddict, + is_literal_type as is_literal_type, + ) + from pydantic.datetime_parse import parse_date as parse_date, parse_datetime as parse_datetime + + +# refactored config +if TYPE_CHECKING: + from pydantic import ConfigDict as ConfigDict +else: + if PYDANTIC_V2: + from pydantic import ConfigDict + else: + # TODO: provide an error message here? + ConfigDict = None + + +# renamed methods / properties +def parse_obj(model: type[_ModelT], value: object) -> _ModelT: + if PYDANTIC_V2: + return model.model_validate(value) + else: + return cast(_ModelT, model.parse_obj(value)) # pyright: ignore[reportDeprecated, reportUnnecessaryCast] + + +def field_is_required(field: FieldInfo) -> bool: + if PYDANTIC_V2: + return field.is_required() + return field.required # type: ignore + + +def field_get_default(field: FieldInfo) -> Any: + value = field.get_default() + if PYDANTIC_V2: + from pydantic_core import PydanticUndefined + + if value == PydanticUndefined: + return None + return value + return value + + +def field_outer_type(field: FieldInfo) -> Any: + if PYDANTIC_V2: + return field.annotation + return field.outer_type_ # type: ignore + + +def get_model_config(model: type[pydantic.BaseModel]) -> Any: + if PYDANTIC_V2: + return model.model_config + return model.__config__ # type: ignore + + +def get_model_fields(model: type[pydantic.BaseModel]) -> dict[str, FieldInfo]: + if PYDANTIC_V2: + return model.model_fields + return model.__fields__ # type: ignore + + +def model_copy(model: _ModelT, *, deep: bool = False) -> _ModelT: + if PYDANTIC_V2: + return model.model_copy(deep=deep) + return model.copy(deep=deep) # type: ignore + + +def model_json(model: pydantic.BaseModel, *, indent: int | None = None) -> str: + if PYDANTIC_V2: + return model.model_dump_json(indent=indent) + return model.json(indent=indent) # type: ignore + + +def model_dump( + model: pydantic.BaseModel, + *, + exclude: IncEx | None = None, + exclude_unset: bool = False, + exclude_defaults: bool = False, + warnings: bool = True, + mode: Literal["json", "python"] = "python", +) -> dict[str, Any]: + if PYDANTIC_V2 or hasattr(model, "model_dump"): + return model.model_dump( + mode=mode, + exclude=exclude, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + # warnings are not supported in Pydantic v1 + warnings=warnings if PYDANTIC_V2 else True, + ) + return cast( + "dict[str, Any]", + model.dict( # pyright: ignore[reportDeprecated, reportUnnecessaryCast] + exclude=exclude, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + ), + ) + + +def model_parse(model: type[_ModelT], data: Any) -> _ModelT: + if PYDANTIC_V2: + return model.model_validate(data) + return model.parse_obj(data) # pyright: ignore[reportDeprecated] + + +def model_parse_json(model: type[_ModelT], data: str | bytes) -> _ModelT: + if PYDANTIC_V2: + return model.model_validate_json(data) + return model.parse_raw(data) # pyright: ignore[reportDeprecated] + + +def model_json_schema(model: type[_ModelT]) -> dict[str, Any]: + if PYDANTIC_V2: + return model.model_json_schema() + return model.schema() # pyright: ignore[reportDeprecated] + + +# generic models +if TYPE_CHECKING: + + class GenericModel(pydantic.BaseModel): ... + +else: + if PYDANTIC_V2: + # there no longer needs to be a distinction in v2 but + # we still have to create our own subclass to avoid + # inconsistent MRO ordering errors + class GenericModel(pydantic.BaseModel): ... + + else: + import pydantic.generics + + class GenericModel(pydantic.generics.GenericModel, pydantic.BaseModel): ... + + +# cached properties +if TYPE_CHECKING: + cached_property = property + + # we define a separate type (copied from typeshed) + # that represents that `cached_property` is `set`able + # at runtime, which differs from `@property`. + # + # this is a separate type as editors likely special case + # `@property` and we don't want to cause issues just to have + # more helpful internal types. + + class typed_cached_property(Generic[_T]): + func: Callable[[Any], _T] + attrname: str | None + + def __init__(self, func: Callable[[Any], _T]) -> None: ... + + @overload + def __get__(self, instance: None, owner: type[Any] | None = None) -> Self: ... + + @overload + def __get__(self, instance: object, owner: type[Any] | None = None) -> _T: ... + + def __get__(self, instance: object, owner: type[Any] | None = None) -> _T | Self: + raise NotImplementedError() + + def __set_name__(self, owner: type[Any], name: str) -> None: ... + + # __set__ is not defined at runtime, but @cached_property is designed to be settable + def __set__(self, instance: object, value: _T) -> None: ... +else: + from functools import cached_property as cached_property + + typed_cached_property = cached_property diff --git a/.venv/lib/python3.12/site-packages/openai/_constants.py b/.venv/lib/python3.12/site-packages/openai/_constants.py new file mode 100644 index 00000000..7029dc72 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_constants.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +import httpx + +RAW_RESPONSE_HEADER = "X-Stainless-Raw-Response" +OVERRIDE_CAST_TO_HEADER = "____stainless_override_cast_to" + +# default timeout is 10 minutes +DEFAULT_TIMEOUT = httpx.Timeout(timeout=600, connect=5.0) +DEFAULT_MAX_RETRIES = 2 +DEFAULT_CONNECTION_LIMITS = httpx.Limits(max_connections=1000, max_keepalive_connections=100) + +INITIAL_RETRY_DELAY = 0.5 +MAX_RETRY_DELAY = 8.0 diff --git a/.venv/lib/python3.12/site-packages/openai/_exceptions.py b/.venv/lib/python3.12/site-packages/openai/_exceptions.py new file mode 100644 index 00000000..e326ed95 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_exceptions.py @@ -0,0 +1,156 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import TYPE_CHECKING, Any, Optional, cast +from typing_extensions import Literal + +import httpx + +from ._utils import is_dict +from ._models import construct_type + +if TYPE_CHECKING: + from .types.chat import ChatCompletion + +__all__ = [ + "BadRequestError", + "AuthenticationError", + "PermissionDeniedError", + "NotFoundError", + "ConflictError", + "UnprocessableEntityError", + "RateLimitError", + "InternalServerError", + "LengthFinishReasonError", + "ContentFilterFinishReasonError", +] + + +class OpenAIError(Exception): + pass + + +class APIError(OpenAIError): + message: str + request: httpx.Request + + body: object | None + """The API response body. + + If the API responded with a valid JSON structure then this property will be the + decoded result. + + If it isn't a valid JSON structure then this will be the raw response. + + If there was no response associated with this error then it will be `None`. + """ + + code: Optional[str] = None + param: Optional[str] = None + type: Optional[str] + + def __init__(self, message: str, request: httpx.Request, *, body: object | None) -> None: + super().__init__(message) + self.request = request + self.message = message + self.body = body + + if is_dict(body): + self.code = cast(Any, construct_type(type_=Optional[str], value=body.get("code"))) + self.param = cast(Any, construct_type(type_=Optional[str], value=body.get("param"))) + self.type = cast(Any, construct_type(type_=str, value=body.get("type"))) + else: + self.code = None + self.param = None + self.type = None + + +class APIResponseValidationError(APIError): + response: httpx.Response + status_code: int + + def __init__(self, response: httpx.Response, body: object | None, *, message: str | None = None) -> None: + super().__init__(message or "Data returned by API invalid for expected schema.", response.request, body=body) + self.response = response + self.status_code = response.status_code + + +class APIStatusError(APIError): + """Raised when an API response has a status code of 4xx or 5xx.""" + + response: httpx.Response + status_code: int + request_id: str | None + + def __init__(self, message: str, *, response: httpx.Response, body: object | None) -> None: + super().__init__(message, response.request, body=body) + self.response = response + self.status_code = response.status_code + self.request_id = response.headers.get("x-request-id") + + +class APIConnectionError(APIError): + def __init__(self, *, message: str = "Connection error.", request: httpx.Request) -> None: + super().__init__(message, request, body=None) + + +class APITimeoutError(APIConnectionError): + def __init__(self, request: httpx.Request) -> None: + super().__init__(message="Request timed out.", request=request) + + +class BadRequestError(APIStatusError): + status_code: Literal[400] = 400 # pyright: ignore[reportIncompatibleVariableOverride] + + +class AuthenticationError(APIStatusError): + status_code: Literal[401] = 401 # pyright: ignore[reportIncompatibleVariableOverride] + + +class PermissionDeniedError(APIStatusError): + status_code: Literal[403] = 403 # pyright: ignore[reportIncompatibleVariableOverride] + + +class NotFoundError(APIStatusError): + status_code: Literal[404] = 404 # pyright: ignore[reportIncompatibleVariableOverride] + + +class ConflictError(APIStatusError): + status_code: Literal[409] = 409 # pyright: ignore[reportIncompatibleVariableOverride] + + +class UnprocessableEntityError(APIStatusError): + status_code: Literal[422] = 422 # pyright: ignore[reportIncompatibleVariableOverride] + + +class RateLimitError(APIStatusError): + status_code: Literal[429] = 429 # pyright: ignore[reportIncompatibleVariableOverride] + + +class InternalServerError(APIStatusError): + pass + + +class LengthFinishReasonError(OpenAIError): + completion: ChatCompletion + """The completion that caused this error. + + Note: this will *not* be a complete `ChatCompletion` object when streaming as `usage` + will not be included. + """ + + def __init__(self, *, completion: ChatCompletion) -> None: + msg = "Could not parse response content as the length limit was reached" + if completion.usage: + msg += f" - {completion.usage}" + + super().__init__(msg) + self.completion = completion + + +class ContentFilterFinishReasonError(OpenAIError): + def __init__(self) -> None: + super().__init__( + f"Could not parse response content as the request was rejected by the content filter", + ) diff --git a/.venv/lib/python3.12/site-packages/openai/_extras/__init__.py b/.venv/lib/python3.12/site-packages/openai/_extras/__init__.py new file mode 100644 index 00000000..692de248 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_extras/__init__.py @@ -0,0 +1,3 @@ +from .numpy_proxy import numpy as numpy, has_numpy as has_numpy +from .pandas_proxy import pandas as pandas +from .sounddevice_proxy import sounddevice as sounddevice diff --git a/.venv/lib/python3.12/site-packages/openai/_extras/_common.py b/.venv/lib/python3.12/site-packages/openai/_extras/_common.py new file mode 100644 index 00000000..6e71720e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_extras/_common.py @@ -0,0 +1,21 @@ +from .._exceptions import OpenAIError + +INSTRUCTIONS = """ + +OpenAI error: + + missing `{library}` + +This feature requires additional dependencies: + + $ pip install openai[{extra}] + +""" + + +def format_instructions(*, library: str, extra: str) -> str: + return INSTRUCTIONS.format(library=library, extra=extra) + + +class MissingDependencyError(OpenAIError): + pass diff --git a/.venv/lib/python3.12/site-packages/openai/_extras/numpy_proxy.py b/.venv/lib/python3.12/site-packages/openai/_extras/numpy_proxy.py new file mode 100644 index 00000000..2b066957 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_extras/numpy_proxy.py @@ -0,0 +1,37 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING, Any +from typing_extensions import override + +from .._utils import LazyProxy +from ._common import MissingDependencyError, format_instructions + +if TYPE_CHECKING: + import numpy as numpy + + +NUMPY_INSTRUCTIONS = format_instructions(library="numpy", extra="voice_helpers") + + +class NumpyProxy(LazyProxy[Any]): + @override + def __load__(self) -> Any: + try: + import numpy + except ImportError as err: + raise MissingDependencyError(NUMPY_INSTRUCTIONS) from err + + return numpy + + +if not TYPE_CHECKING: + numpy = NumpyProxy() + + +def has_numpy() -> bool: + try: + import numpy # noqa: F401 # pyright: ignore[reportUnusedImport] + except ImportError: + return False + + return True diff --git a/.venv/lib/python3.12/site-packages/openai/_extras/pandas_proxy.py b/.venv/lib/python3.12/site-packages/openai/_extras/pandas_proxy.py new file mode 100644 index 00000000..686377ba --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_extras/pandas_proxy.py @@ -0,0 +1,28 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING, Any +from typing_extensions import override + +from .._utils import LazyProxy +from ._common import MissingDependencyError, format_instructions + +if TYPE_CHECKING: + import pandas as pandas + + +PANDAS_INSTRUCTIONS = format_instructions(library="pandas", extra="datalib") + + +class PandasProxy(LazyProxy[Any]): + @override + def __load__(self) -> Any: + try: + import pandas + except ImportError as err: + raise MissingDependencyError(PANDAS_INSTRUCTIONS) from err + + return pandas + + +if not TYPE_CHECKING: + pandas = PandasProxy() diff --git a/.venv/lib/python3.12/site-packages/openai/_extras/sounddevice_proxy.py b/.venv/lib/python3.12/site-packages/openai/_extras/sounddevice_proxy.py new file mode 100644 index 00000000..482d4c68 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_extras/sounddevice_proxy.py @@ -0,0 +1,28 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING, Any +from typing_extensions import override + +from .._utils import LazyProxy +from ._common import MissingDependencyError, format_instructions + +if TYPE_CHECKING: + import sounddevice as sounddevice # type: ignore + + +SOUNDDEVICE_INSTRUCTIONS = format_instructions(library="sounddevice", extra="voice_helpers") + + +class SounddeviceProxy(LazyProxy[Any]): + @override + def __load__(self) -> Any: + try: + import sounddevice # type: ignore + except ImportError as err: + raise MissingDependencyError(SOUNDDEVICE_INSTRUCTIONS) from err + + return sounddevice + + +if not TYPE_CHECKING: + sounddevice = SounddeviceProxy() diff --git a/.venv/lib/python3.12/site-packages/openai/_files.py b/.venv/lib/python3.12/site-packages/openai/_files.py new file mode 100644 index 00000000..801a0d29 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_files.py @@ -0,0 +1,123 @@ +from __future__ import annotations + +import io +import os +import pathlib +from typing import overload +from typing_extensions import TypeGuard + +import anyio + +from ._types import ( + FileTypes, + FileContent, + RequestFiles, + HttpxFileTypes, + Base64FileInput, + HttpxFileContent, + HttpxRequestFiles, +) +from ._utils import is_tuple_t, is_mapping_t, is_sequence_t + + +def is_base64_file_input(obj: object) -> TypeGuard[Base64FileInput]: + return isinstance(obj, io.IOBase) or isinstance(obj, os.PathLike) + + +def is_file_content(obj: object) -> TypeGuard[FileContent]: + return ( + isinstance(obj, bytes) or isinstance(obj, tuple) or isinstance(obj, io.IOBase) or isinstance(obj, os.PathLike) + ) + + +def assert_is_file_content(obj: object, *, key: str | None = None) -> None: + if not is_file_content(obj): + prefix = f"Expected entry at `{key}`" if key is not None else f"Expected file input `{obj!r}`" + raise RuntimeError( + f"{prefix} to be bytes, an io.IOBase instance, PathLike or a tuple but received {type(obj)} instead. See https://github.com/openai/openai-python/tree/main#file-uploads" + ) from None + + +@overload +def to_httpx_files(files: None) -> None: ... + + +@overload +def to_httpx_files(files: RequestFiles) -> HttpxRequestFiles: ... + + +def to_httpx_files(files: RequestFiles | None) -> HttpxRequestFiles | None: + if files is None: + return None + + if is_mapping_t(files): + files = {key: _transform_file(file) for key, file in files.items()} + elif is_sequence_t(files): + files = [(key, _transform_file(file)) for key, file in files] + else: + raise TypeError(f"Unexpected file type input {type(files)}, expected mapping or sequence") + + return files + + +def _transform_file(file: FileTypes) -> HttpxFileTypes: + if is_file_content(file): + if isinstance(file, os.PathLike): + path = pathlib.Path(file) + return (path.name, path.read_bytes()) + + return file + + if is_tuple_t(file): + return (file[0], _read_file_content(file[1]), *file[2:]) + + raise TypeError(f"Expected file types input to be a FileContent type or to be a tuple") + + +def _read_file_content(file: FileContent) -> HttpxFileContent: + if isinstance(file, os.PathLike): + return pathlib.Path(file).read_bytes() + return file + + +@overload +async def async_to_httpx_files(files: None) -> None: ... + + +@overload +async def async_to_httpx_files(files: RequestFiles) -> HttpxRequestFiles: ... + + +async def async_to_httpx_files(files: RequestFiles | None) -> HttpxRequestFiles | None: + if files is None: + return None + + if is_mapping_t(files): + files = {key: await _async_transform_file(file) for key, file in files.items()} + elif is_sequence_t(files): + files = [(key, await _async_transform_file(file)) for key, file in files] + else: + raise TypeError("Unexpected file type input {type(files)}, expected mapping or sequence") + + return files + + +async def _async_transform_file(file: FileTypes) -> HttpxFileTypes: + if is_file_content(file): + if isinstance(file, os.PathLike): + path = anyio.Path(file) + return (path.name, await path.read_bytes()) + + return file + + if is_tuple_t(file): + return (file[0], await _async_read_file_content(file[1]), *file[2:]) + + raise TypeError(f"Expected file types input to be a FileContent type or to be a tuple") + + +async def _async_read_file_content(file: FileContent) -> HttpxFileContent: + if isinstance(file, os.PathLike): + return await anyio.Path(file).read_bytes() + + return file diff --git a/.venv/lib/python3.12/site-packages/openai/_legacy_response.py b/.venv/lib/python3.12/site-packages/openai/_legacy_response.py new file mode 100644 index 00000000..8880e5f1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_legacy_response.py @@ -0,0 +1,488 @@ +from __future__ import annotations + +import os +import inspect +import logging +import datetime +import functools +from typing import ( + TYPE_CHECKING, + Any, + Union, + Generic, + TypeVar, + Callable, + Iterator, + AsyncIterator, + cast, + overload, +) +from typing_extensions import Awaitable, ParamSpec, override, deprecated, get_origin + +import anyio +import httpx +import pydantic + +from ._types import NoneType +from ._utils import is_given, extract_type_arg, is_annotated_type, is_type_alias_type +from ._models import BaseModel, is_basemodel, add_request_id +from ._constants import RAW_RESPONSE_HEADER +from ._streaming import Stream, AsyncStream, is_stream_class_type, extract_stream_chunk_type +from ._exceptions import APIResponseValidationError + +if TYPE_CHECKING: + from ._models import FinalRequestOptions + from ._base_client import BaseClient + + +P = ParamSpec("P") +R = TypeVar("R") +_T = TypeVar("_T") + +log: logging.Logger = logging.getLogger(__name__) + + +class LegacyAPIResponse(Generic[R]): + """This is a legacy class as it will be replaced by `APIResponse` + and `AsyncAPIResponse` in the `_response.py` file in the next major + release. + + For the sync client this will mostly be the same with the exception + of `content` & `text` will be methods instead of properties. In the + async client, all methods will be async. + + A migration script will be provided & the migration in general should + be smooth. + """ + + _cast_to: type[R] + _client: BaseClient[Any, Any] + _parsed_by_type: dict[type[Any], Any] + _stream: bool + _stream_cls: type[Stream[Any]] | type[AsyncStream[Any]] | None + _options: FinalRequestOptions + + http_response: httpx.Response + + retries_taken: int + """The number of retries made. If no retries happened this will be `0`""" + + def __init__( + self, + *, + raw: httpx.Response, + cast_to: type[R], + client: BaseClient[Any, Any], + stream: bool, + stream_cls: type[Stream[Any]] | type[AsyncStream[Any]] | None, + options: FinalRequestOptions, + retries_taken: int = 0, + ) -> None: + self._cast_to = cast_to + self._client = client + self._parsed_by_type = {} + self._stream = stream + self._stream_cls = stream_cls + self._options = options + self.http_response = raw + self.retries_taken = retries_taken + + @property + def request_id(self) -> str | None: + return self.http_response.headers.get("x-request-id") # type: ignore[no-any-return] + + @overload + def parse(self, *, to: type[_T]) -> _T: ... + + @overload + def parse(self) -> R: ... + + def parse(self, *, to: type[_T] | None = None) -> R | _T: + """Returns the rich python representation of this response's data. + + NOTE: For the async client: this will become a coroutine in the next major version. + + For lower-level control, see `.read()`, `.json()`, `.iter_bytes()`. + + You can customise the type that the response is parsed into through + the `to` argument, e.g. + + ```py + from openai import BaseModel + + + class MyModel(BaseModel): + foo: str + + + obj = response.parse(to=MyModel) + print(obj.foo) + ``` + + We support parsing: + - `BaseModel` + - `dict` + - `list` + - `Union` + - `str` + - `int` + - `float` + - `httpx.Response` + """ + cache_key = to if to is not None else self._cast_to + cached = self._parsed_by_type.get(cache_key) + if cached is not None: + return cached # type: ignore[no-any-return] + + parsed = self._parse(to=to) + if is_given(self._options.post_parser): + parsed = self._options.post_parser(parsed) + + if isinstance(parsed, BaseModel): + add_request_id(parsed, self.request_id) + + self._parsed_by_type[cache_key] = parsed + return cast(R, parsed) + + @property + def headers(self) -> httpx.Headers: + return self.http_response.headers + + @property + def http_request(self) -> httpx.Request: + return self.http_response.request + + @property + def status_code(self) -> int: + return self.http_response.status_code + + @property + def url(self) -> httpx.URL: + return self.http_response.url + + @property + def method(self) -> str: + return self.http_request.method + + @property + def content(self) -> bytes: + """Return the binary response content. + + NOTE: this will be removed in favour of `.read()` in the + next major version. + """ + return self.http_response.content + + @property + def text(self) -> str: + """Return the decoded response content. + + NOTE: this will be turned into a method in the next major version. + """ + return self.http_response.text + + @property + def http_version(self) -> str: + return self.http_response.http_version + + @property + def is_closed(self) -> bool: + return self.http_response.is_closed + + @property + def elapsed(self) -> datetime.timedelta: + """The time taken for the complete request/response cycle to complete.""" + return self.http_response.elapsed + + def _parse(self, *, to: type[_T] | None = None) -> R | _T: + cast_to = to if to is not None else self._cast_to + + # unwrap `TypeAlias('Name', T)` -> `T` + if is_type_alias_type(cast_to): + cast_to = cast_to.__value__ # type: ignore[unreachable] + + # unwrap `Annotated[T, ...]` -> `T` + if cast_to and is_annotated_type(cast_to): + cast_to = extract_type_arg(cast_to, 0) + + origin = get_origin(cast_to) or cast_to + + if self._stream: + if to: + if not is_stream_class_type(to): + raise TypeError(f"Expected custom parse type to be a subclass of {Stream} or {AsyncStream}") + + return cast( + _T, + to( + cast_to=extract_stream_chunk_type( + to, + failure_message="Expected custom stream type to be passed with a type argument, e.g. Stream[ChunkType]", + ), + response=self.http_response, + client=cast(Any, self._client), + ), + ) + + if self._stream_cls: + return cast( + R, + self._stream_cls( + cast_to=extract_stream_chunk_type(self._stream_cls), + response=self.http_response, + client=cast(Any, self._client), + ), + ) + + stream_cls = cast("type[Stream[Any]] | type[AsyncStream[Any]] | None", self._client._default_stream_cls) + if stream_cls is None: + raise MissingStreamClassError() + + return cast( + R, + stream_cls( + cast_to=cast_to, + response=self.http_response, + client=cast(Any, self._client), + ), + ) + + if cast_to is NoneType: + return cast(R, None) + + response = self.http_response + if cast_to == str: + return cast(R, response.text) + + if cast_to == int: + return cast(R, int(response.text)) + + if cast_to == float: + return cast(R, float(response.text)) + + if cast_to == bool: + return cast(R, response.text.lower() == "true") + + if inspect.isclass(origin) and issubclass(origin, HttpxBinaryResponseContent): + return cast(R, cast_to(response)) # type: ignore + + if origin == LegacyAPIResponse: + raise RuntimeError("Unexpected state - cast_to is `APIResponse`") + + if inspect.isclass( + origin # pyright: ignore[reportUnknownArgumentType] + ) and issubclass(origin, httpx.Response): + # Because of the invariance of our ResponseT TypeVar, users can subclass httpx.Response + # and pass that class to our request functions. We cannot change the variance to be either + # covariant or contravariant as that makes our usage of ResponseT illegal. We could construct + # the response class ourselves but that is something that should be supported directly in httpx + # as it would be easy to incorrectly construct the Response object due to the multitude of arguments. + if cast_to != httpx.Response: + raise ValueError(f"Subclasses of httpx.Response cannot be passed to `cast_to`") + return cast(R, response) + + if ( + inspect.isclass( + origin # pyright: ignore[reportUnknownArgumentType] + ) + and not issubclass(origin, BaseModel) + and issubclass(origin, pydantic.BaseModel) + ): + raise TypeError("Pydantic models must subclass our base model type, e.g. `from openai import BaseModel`") + + if ( + cast_to is not object + and not origin is list + and not origin is dict + and not origin is Union + and not issubclass(origin, BaseModel) + ): + raise RuntimeError( + f"Unsupported type, expected {cast_to} to be a subclass of {BaseModel}, {dict}, {list}, {Union}, {NoneType}, {str} or {httpx.Response}." + ) + + # split is required to handle cases where additional information is included + # in the response, e.g. application/json; charset=utf-8 + content_type, *_ = response.headers.get("content-type", "*").split(";") + if content_type != "application/json": + if is_basemodel(cast_to): + try: + data = response.json() + except Exception as exc: + log.debug("Could not read JSON from response data due to %s - %s", type(exc), exc) + else: + return self._client._process_response_data( + data=data, + cast_to=cast_to, # type: ignore + response=response, + ) + + if self._client._strict_response_validation: + raise APIResponseValidationError( + response=response, + message=f"Expected Content-Type response header to be `application/json` but received `{content_type}` instead.", + body=response.text, + ) + + # If the API responds with content that isn't JSON then we just return + # the (decoded) text without performing any parsing so that you can still + # handle the response however you need to. + return response.text # type: ignore + + data = response.json() + + return self._client._process_response_data( + data=data, + cast_to=cast_to, # type: ignore + response=response, + ) + + @override + def __repr__(self) -> str: + return f"<APIResponse [{self.status_code} {self.http_response.reason_phrase}] type={self._cast_to}>" + + +class MissingStreamClassError(TypeError): + def __init__(self) -> None: + super().__init__( + "The `stream` argument was set to `True` but the `stream_cls` argument was not given. See `openai._streaming` for reference", + ) + + +def to_raw_response_wrapper(func: Callable[P, R]) -> Callable[P, LegacyAPIResponse[R]]: + """Higher order function that takes one of our bound API methods and wraps it + to support returning the raw `APIResponse` object directly. + """ + + @functools.wraps(func) + def wrapped(*args: P.args, **kwargs: P.kwargs) -> LegacyAPIResponse[R]: + extra_headers: dict[str, str] = {**(cast(Any, kwargs.get("extra_headers")) or {})} + extra_headers[RAW_RESPONSE_HEADER] = "true" + + kwargs["extra_headers"] = extra_headers + + return cast(LegacyAPIResponse[R], func(*args, **kwargs)) + + return wrapped + + +def async_to_raw_response_wrapper(func: Callable[P, Awaitable[R]]) -> Callable[P, Awaitable[LegacyAPIResponse[R]]]: + """Higher order function that takes one of our bound API methods and wraps it + to support returning the raw `APIResponse` object directly. + """ + + @functools.wraps(func) + async def wrapped(*args: P.args, **kwargs: P.kwargs) -> LegacyAPIResponse[R]: + extra_headers: dict[str, str] = {**(cast(Any, kwargs.get("extra_headers")) or {})} + extra_headers[RAW_RESPONSE_HEADER] = "true" + + kwargs["extra_headers"] = extra_headers + + return cast(LegacyAPIResponse[R], await func(*args, **kwargs)) + + return wrapped + + +class HttpxBinaryResponseContent: + response: httpx.Response + + def __init__(self, response: httpx.Response) -> None: + self.response = response + + @property + def content(self) -> bytes: + return self.response.content + + @property + def text(self) -> str: + return self.response.text + + @property + def encoding(self) -> str | None: + return self.response.encoding + + @property + def charset_encoding(self) -> str | None: + return self.response.charset_encoding + + def json(self, **kwargs: Any) -> Any: + return self.response.json(**kwargs) + + def read(self) -> bytes: + return self.response.read() + + def iter_bytes(self, chunk_size: int | None = None) -> Iterator[bytes]: + return self.response.iter_bytes(chunk_size) + + def iter_text(self, chunk_size: int | None = None) -> Iterator[str]: + return self.response.iter_text(chunk_size) + + def iter_lines(self) -> Iterator[str]: + return self.response.iter_lines() + + def iter_raw(self, chunk_size: int | None = None) -> Iterator[bytes]: + return self.response.iter_raw(chunk_size) + + def write_to_file( + self, + file: str | os.PathLike[str], + ) -> None: + """Write the output to the given file. + + Accepts a filename or any path-like object, e.g. pathlib.Path + + Note: if you want to stream the data to the file instead of writing + all at once then you should use `.with_streaming_response` when making + the API request, e.g. `client.with_streaming_response.foo().stream_to_file('my_filename.txt')` + """ + with open(file, mode="wb") as f: + for data in self.response.iter_bytes(): + f.write(data) + + @deprecated( + "Due to a bug, this method doesn't actually stream the response content, `.with_streaming_response.method()` should be used instead" + ) + def stream_to_file( + self, + file: str | os.PathLike[str], + *, + chunk_size: int | None = None, + ) -> None: + with open(file, mode="wb") as f: + for data in self.response.iter_bytes(chunk_size): + f.write(data) + + def close(self) -> None: + return self.response.close() + + async def aread(self) -> bytes: + return await self.response.aread() + + async def aiter_bytes(self, chunk_size: int | None = None) -> AsyncIterator[bytes]: + return self.response.aiter_bytes(chunk_size) + + async def aiter_text(self, chunk_size: int | None = None) -> AsyncIterator[str]: + return self.response.aiter_text(chunk_size) + + async def aiter_lines(self) -> AsyncIterator[str]: + return self.response.aiter_lines() + + async def aiter_raw(self, chunk_size: int | None = None) -> AsyncIterator[bytes]: + return self.response.aiter_raw(chunk_size) + + @deprecated( + "Due to a bug, this method doesn't actually stream the response content, `.with_streaming_response.method()` should be used instead" + ) + async def astream_to_file( + self, + file: str | os.PathLike[str], + *, + chunk_size: int | None = None, + ) -> None: + path = anyio.Path(file) + async with await path.open(mode="wb") as f: + async for data in self.response.aiter_bytes(chunk_size): + await f.write(data) + + async def aclose(self) -> None: + return await self.response.aclose() diff --git a/.venv/lib/python3.12/site-packages/openai/_models.py b/.venv/lib/python3.12/site-packages/openai/_models.py new file mode 100644 index 00000000..ff7c1f33 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_models.py @@ -0,0 +1,844 @@ +from __future__ import annotations + +import os +import inspect +from typing import TYPE_CHECKING, Any, Type, Tuple, Union, Generic, TypeVar, Callable, Optional, cast +from datetime import date, datetime +from typing_extensions import ( + Unpack, + Literal, + ClassVar, + Protocol, + Required, + Sequence, + ParamSpec, + TypedDict, + TypeGuard, + final, + override, + runtime_checkable, +) + +import pydantic +import pydantic.generics +from pydantic.fields import FieldInfo + +from ._types import ( + Body, + IncEx, + Query, + ModelT, + Headers, + Timeout, + NotGiven, + AnyMapping, + HttpxRequestFiles, +) +from ._utils import ( + PropertyInfo, + is_list, + is_given, + json_safe, + lru_cache, + is_mapping, + parse_date, + coerce_boolean, + parse_datetime, + strip_not_given, + extract_type_arg, + is_annotated_type, + is_type_alias_type, + strip_annotated_type, +) +from ._compat import ( + PYDANTIC_V2, + ConfigDict, + GenericModel as BaseGenericModel, + get_args, + is_union, + parse_obj, + get_origin, + is_literal_type, + get_model_config, + get_model_fields, + field_get_default, +) +from ._constants import RAW_RESPONSE_HEADER + +if TYPE_CHECKING: + from pydantic_core.core_schema import ModelField, ModelSchema, LiteralSchema, ModelFieldsSchema + +__all__ = ["BaseModel", "GenericModel"] + +_T = TypeVar("_T") +_BaseModelT = TypeVar("_BaseModelT", bound="BaseModel") + +P = ParamSpec("P") + +ReprArgs = Sequence[Tuple[Optional[str], Any]] + + +@runtime_checkable +class _ConfigProtocol(Protocol): + allow_population_by_field_name: bool + + +class BaseModel(pydantic.BaseModel): + if PYDANTIC_V2: + model_config: ClassVar[ConfigDict] = ConfigDict( + extra="allow", defer_build=coerce_boolean(os.environ.get("DEFER_PYDANTIC_BUILD", "true")) + ) + else: + + @property + @override + def model_fields_set(self) -> set[str]: + # a forwards-compat shim for pydantic v2 + return self.__fields_set__ # type: ignore + + class Config(pydantic.BaseConfig): # pyright: ignore[reportDeprecated] + extra: Any = pydantic.Extra.allow # type: ignore + + @override + def __repr_args__(self) -> ReprArgs: + # we don't want these attributes to be included when something like `rich.print` is used + return [arg for arg in super().__repr_args__() if arg[0] not in {"_request_id", "__exclude_fields__"}] + + if TYPE_CHECKING: + _request_id: Optional[str] = None + """The ID of the request, returned via the X-Request-ID header. Useful for debugging requests and reporting issues to OpenAI. + + This will **only** be set for the top-level response object, it will not be defined for nested objects. For example: + + ```py + completion = await client.chat.completions.create(...) + completion._request_id # req_id_xxx + completion.usage._request_id # raises `AttributeError` + ``` + + Note: unlike other properties that use an `_` prefix, this property + *is* public. Unless documented otherwise, all other `_` prefix properties, + methods and modules are *private*. + """ + + def to_dict( + self, + *, + mode: Literal["json", "python"] = "python", + use_api_names: bool = True, + exclude_unset: bool = True, + exclude_defaults: bool = False, + exclude_none: bool = False, + warnings: bool = True, + ) -> dict[str, object]: + """Recursively generate a dictionary representation of the model, optionally specifying which fields to include or exclude. + + By default, fields that were not set by the API will not be included, + and keys will match the API response, *not* the property names from the model. + + For example, if the API responds with `"fooBar": true` but we've defined a `foo_bar: bool` property, + the output will use the `"fooBar"` key (unless `use_api_names=False` is passed). + + Args: + mode: + If mode is 'json', the dictionary will only contain JSON serializable types. e.g. `datetime` will be turned into a string, `"2024-3-22T18:11:19.117000Z"`. + If mode is 'python', the dictionary may contain any Python objects. e.g. `datetime(2024, 3, 22)` + + use_api_names: Whether to use the key that the API responded with or the property name. Defaults to `True`. + exclude_unset: Whether to exclude fields that have not been explicitly set. + exclude_defaults: Whether to exclude fields that are set to their default value from the output. + exclude_none: Whether to exclude fields that have a value of `None` from the output. + warnings: Whether to log warnings when invalid fields are encountered. This is only supported in Pydantic v2. + """ + return self.model_dump( + mode=mode, + by_alias=use_api_names, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + exclude_none=exclude_none, + warnings=warnings, + ) + + def to_json( + self, + *, + indent: int | None = 2, + use_api_names: bool = True, + exclude_unset: bool = True, + exclude_defaults: bool = False, + exclude_none: bool = False, + warnings: bool = True, + ) -> str: + """Generates a JSON string representing this model as it would be received from or sent to the API (but with indentation). + + By default, fields that were not set by the API will not be included, + and keys will match the API response, *not* the property names from the model. + + For example, if the API responds with `"fooBar": true` but we've defined a `foo_bar: bool` property, + the output will use the `"fooBar"` key (unless `use_api_names=False` is passed). + + Args: + indent: Indentation to use in the JSON output. If `None` is passed, the output will be compact. Defaults to `2` + use_api_names: Whether to use the key that the API responded with or the property name. Defaults to `True`. + exclude_unset: Whether to exclude fields that have not been explicitly set. + exclude_defaults: Whether to exclude fields that have the default value. + exclude_none: Whether to exclude fields that have a value of `None`. + warnings: Whether to show any warnings that occurred during serialization. This is only supported in Pydantic v2. + """ + return self.model_dump_json( + indent=indent, + by_alias=use_api_names, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + exclude_none=exclude_none, + warnings=warnings, + ) + + @override + def __str__(self) -> str: + # mypy complains about an invalid self arg + return f"{self.__repr_name__()}({self.__repr_str__(', ')})" # type: ignore[misc] + + # Override the 'construct' method in a way that supports recursive parsing without validation. + # Based on https://github.com/samuelcolvin/pydantic/issues/1168#issuecomment-817742836. + @classmethod + @override + def construct( # pyright: ignore[reportIncompatibleMethodOverride] + __cls: Type[ModelT], + _fields_set: set[str] | None = None, + **values: object, + ) -> ModelT: + m = __cls.__new__(__cls) + fields_values: dict[str, object] = {} + + config = get_model_config(__cls) + populate_by_name = ( + config.allow_population_by_field_name + if isinstance(config, _ConfigProtocol) + else config.get("populate_by_name") + ) + + if _fields_set is None: + _fields_set = set() + + model_fields = get_model_fields(__cls) + for name, field in model_fields.items(): + key = field.alias + if key is None or (key not in values and populate_by_name): + key = name + + if key in values: + fields_values[name] = _construct_field(value=values[key], field=field, key=key) + _fields_set.add(name) + else: + fields_values[name] = field_get_default(field) + + _extra = {} + for key, value in values.items(): + if key not in model_fields: + if PYDANTIC_V2: + _extra[key] = value + else: + _fields_set.add(key) + fields_values[key] = value + + object.__setattr__(m, "__dict__", fields_values) + + if PYDANTIC_V2: + # these properties are copied from Pydantic's `model_construct()` method + object.__setattr__(m, "__pydantic_private__", None) + object.__setattr__(m, "__pydantic_extra__", _extra) + object.__setattr__(m, "__pydantic_fields_set__", _fields_set) + else: + # init_private_attributes() does not exist in v2 + m._init_private_attributes() # type: ignore + + # copied from Pydantic v1's `construct()` method + object.__setattr__(m, "__fields_set__", _fields_set) + + return m + + if not TYPE_CHECKING: + # type checkers incorrectly complain about this assignment + # because the type signatures are technically different + # although not in practice + model_construct = construct + + if not PYDANTIC_V2: + # we define aliases for some of the new pydantic v2 methods so + # that we can just document these methods without having to specify + # a specific pydantic version as some users may not know which + # pydantic version they are currently using + + @override + def model_dump( + self, + *, + mode: Literal["json", "python"] | str = "python", + include: IncEx | None = None, + exclude: IncEx | None = None, + by_alias: bool = False, + exclude_unset: bool = False, + exclude_defaults: bool = False, + exclude_none: bool = False, + round_trip: bool = False, + warnings: bool | Literal["none", "warn", "error"] = True, + context: dict[str, Any] | None = None, + serialize_as_any: bool = False, + ) -> dict[str, Any]: + """Usage docs: https://docs.pydantic.dev/2.4/concepts/serialization/#modelmodel_dump + + Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. + + Args: + mode: The mode in which `to_python` should run. + If mode is 'json', the dictionary will only contain JSON serializable types. + If mode is 'python', the dictionary may contain any Python objects. + include: A list of fields to include in the output. + exclude: A list of fields to exclude from the output. + by_alias: Whether to use the field's alias in the dictionary key if defined. + exclude_unset: Whether to exclude fields that are unset or None from the output. + exclude_defaults: Whether to exclude fields that are set to their default value from the output. + exclude_none: Whether to exclude fields that have a value of `None` from the output. + round_trip: Whether to enable serialization and deserialization round-trip support. + warnings: Whether to log warnings when invalid fields are encountered. + + Returns: + A dictionary representation of the model. + """ + if mode not in {"json", "python"}: + raise ValueError("mode must be either 'json' or 'python'") + if round_trip != False: + raise ValueError("round_trip is only supported in Pydantic v2") + if warnings != True: + raise ValueError("warnings is only supported in Pydantic v2") + if context is not None: + raise ValueError("context is only supported in Pydantic v2") + if serialize_as_any != False: + raise ValueError("serialize_as_any is only supported in Pydantic v2") + dumped = super().dict( # pyright: ignore[reportDeprecated] + include=include, + exclude=exclude, + by_alias=by_alias, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + exclude_none=exclude_none, + ) + + return cast(dict[str, Any], json_safe(dumped)) if mode == "json" else dumped + + @override + def model_dump_json( + self, + *, + indent: int | None = None, + include: IncEx | None = None, + exclude: IncEx | None = None, + by_alias: bool = False, + exclude_unset: bool = False, + exclude_defaults: bool = False, + exclude_none: bool = False, + round_trip: bool = False, + warnings: bool | Literal["none", "warn", "error"] = True, + context: dict[str, Any] | None = None, + serialize_as_any: bool = False, + ) -> str: + """Usage docs: https://docs.pydantic.dev/2.4/concepts/serialization/#modelmodel_dump_json + + Generates a JSON representation of the model using Pydantic's `to_json` method. + + Args: + indent: Indentation to use in the JSON output. If None is passed, the output will be compact. + include: Field(s) to include in the JSON output. Can take either a string or set of strings. + exclude: Field(s) to exclude from the JSON output. Can take either a string or set of strings. + by_alias: Whether to serialize using field aliases. + exclude_unset: Whether to exclude fields that have not been explicitly set. + exclude_defaults: Whether to exclude fields that have the default value. + exclude_none: Whether to exclude fields that have a value of `None`. + round_trip: Whether to use serialization/deserialization between JSON and class instance. + warnings: Whether to show any warnings that occurred during serialization. + + Returns: + A JSON string representation of the model. + """ + if round_trip != False: + raise ValueError("round_trip is only supported in Pydantic v2") + if warnings != True: + raise ValueError("warnings is only supported in Pydantic v2") + if context is not None: + raise ValueError("context is only supported in Pydantic v2") + if serialize_as_any != False: + raise ValueError("serialize_as_any is only supported in Pydantic v2") + return super().json( # type: ignore[reportDeprecated] + indent=indent, + include=include, + exclude=exclude, + by_alias=by_alias, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + exclude_none=exclude_none, + ) + + +def _construct_field(value: object, field: FieldInfo, key: str) -> object: + if value is None: + return field_get_default(field) + + if PYDANTIC_V2: + type_ = field.annotation + else: + type_ = cast(type, field.outer_type_) # type: ignore + + if type_ is None: + raise RuntimeError(f"Unexpected field type is None for {key}") + + return construct_type(value=value, type_=type_) + + +def is_basemodel(type_: type) -> bool: + """Returns whether or not the given type is either a `BaseModel` or a union of `BaseModel`""" + if is_union(type_): + for variant in get_args(type_): + if is_basemodel(variant): + return True + + return False + + return is_basemodel_type(type_) + + +def is_basemodel_type(type_: type) -> TypeGuard[type[BaseModel] | type[GenericModel]]: + origin = get_origin(type_) or type_ + if not inspect.isclass(origin): + return False + return issubclass(origin, BaseModel) or issubclass(origin, GenericModel) + + +def build( + base_model_cls: Callable[P, _BaseModelT], + *args: P.args, + **kwargs: P.kwargs, +) -> _BaseModelT: + """Construct a BaseModel class without validation. + + This is useful for cases where you need to instantiate a `BaseModel` + from an API response as this provides type-safe params which isn't supported + by helpers like `construct_type()`. + + ```py + build(MyModel, my_field_a="foo", my_field_b=123) + ``` + """ + if args: + raise TypeError( + "Received positional arguments which are not supported; Keyword arguments must be used instead", + ) + + return cast(_BaseModelT, construct_type(type_=base_model_cls, value=kwargs)) + + +def construct_type_unchecked(*, value: object, type_: type[_T]) -> _T: + """Loose coercion to the expected type with construction of nested values. + + Note: the returned value from this function is not guaranteed to match the + given type. + """ + return cast(_T, construct_type(value=value, type_=type_)) + + +def construct_type(*, value: object, type_: object) -> object: + """Loose coercion to the expected type with construction of nested values. + + If the given value does not match the expected type then it is returned as-is. + """ + + # store a reference to the original type we were given before we extract any inner + # types so that we can properly resolve forward references in `TypeAliasType` annotations + original_type = None + + # we allow `object` as the input type because otherwise, passing things like + # `Literal['value']` will be reported as a type error by type checkers + type_ = cast("type[object]", type_) + if is_type_alias_type(type_): + original_type = type_ # type: ignore[unreachable] + type_ = type_.__value__ # type: ignore[unreachable] + + # unwrap `Annotated[T, ...]` -> `T` + if is_annotated_type(type_): + meta: tuple[Any, ...] = get_args(type_)[1:] + type_ = extract_type_arg(type_, 0) + else: + meta = tuple() + + # we need to use the origin class for any types that are subscripted generics + # e.g. Dict[str, object] + origin = get_origin(type_) or type_ + args = get_args(type_) + + if is_union(origin): + try: + return validate_type(type_=cast("type[object]", original_type or type_), value=value) + except Exception: + pass + + # if the type is a discriminated union then we want to construct the right variant + # in the union, even if the data doesn't match exactly, otherwise we'd break code + # that relies on the constructed class types, e.g. + # + # class FooType: + # kind: Literal['foo'] + # value: str + # + # class BarType: + # kind: Literal['bar'] + # value: int + # + # without this block, if the data we get is something like `{'kind': 'bar', 'value': 'foo'}` then + # we'd end up constructing `FooType` when it should be `BarType`. + discriminator = _build_discriminated_union_meta(union=type_, meta_annotations=meta) + if discriminator and is_mapping(value): + variant_value = value.get(discriminator.field_alias_from or discriminator.field_name) + if variant_value and isinstance(variant_value, str): + variant_type = discriminator.mapping.get(variant_value) + if variant_type: + return construct_type(type_=variant_type, value=value) + + # if the data is not valid, use the first variant that doesn't fail while deserializing + for variant in args: + try: + return construct_type(value=value, type_=variant) + except Exception: + continue + + raise RuntimeError(f"Could not convert data into a valid instance of {type_}") + + if origin == dict: + if not is_mapping(value): + return value + + _, items_type = get_args(type_) # Dict[_, items_type] + return {key: construct_type(value=item, type_=items_type) for key, item in value.items()} + + if ( + not is_literal_type(type_) + and inspect.isclass(origin) + and (issubclass(origin, BaseModel) or issubclass(origin, GenericModel)) + ): + if is_list(value): + return [cast(Any, type_).construct(**entry) if is_mapping(entry) else entry for entry in value] + + if is_mapping(value): + if issubclass(type_, BaseModel): + return type_.construct(**value) # type: ignore[arg-type] + + return cast(Any, type_).construct(**value) + + if origin == list: + if not is_list(value): + return value + + inner_type = args[0] # List[inner_type] + return [construct_type(value=entry, type_=inner_type) for entry in value] + + if origin == float: + if isinstance(value, int): + coerced = float(value) + if coerced != value: + return value + return coerced + + return value + + if type_ == datetime: + try: + return parse_datetime(value) # type: ignore + except Exception: + return value + + if type_ == date: + try: + return parse_date(value) # type: ignore + except Exception: + return value + + return value + + +@runtime_checkable +class CachedDiscriminatorType(Protocol): + __discriminator__: DiscriminatorDetails + + +class DiscriminatorDetails: + field_name: str + """The name of the discriminator field in the variant class, e.g. + + ```py + class Foo(BaseModel): + type: Literal['foo'] + ``` + + Will result in field_name='type' + """ + + field_alias_from: str | None + """The name of the discriminator field in the API response, e.g. + + ```py + class Foo(BaseModel): + type: Literal['foo'] = Field(alias='type_from_api') + ``` + + Will result in field_alias_from='type_from_api' + """ + + mapping: dict[str, type] + """Mapping of discriminator value to variant type, e.g. + + {'foo': FooVariant, 'bar': BarVariant} + """ + + def __init__( + self, + *, + mapping: dict[str, type], + discriminator_field: str, + discriminator_alias: str | None, + ) -> None: + self.mapping = mapping + self.field_name = discriminator_field + self.field_alias_from = discriminator_alias + + +def _build_discriminated_union_meta(*, union: type, meta_annotations: tuple[Any, ...]) -> DiscriminatorDetails | None: + if isinstance(union, CachedDiscriminatorType): + return union.__discriminator__ + + discriminator_field_name: str | None = None + + for annotation in meta_annotations: + if isinstance(annotation, PropertyInfo) and annotation.discriminator is not None: + discriminator_field_name = annotation.discriminator + break + + if not discriminator_field_name: + return None + + mapping: dict[str, type] = {} + discriminator_alias: str | None = None + + for variant in get_args(union): + variant = strip_annotated_type(variant) + if is_basemodel_type(variant): + if PYDANTIC_V2: + field = _extract_field_schema_pv2(variant, discriminator_field_name) + if not field: + continue + + # Note: if one variant defines an alias then they all should + discriminator_alias = field.get("serialization_alias") + + field_schema = field["schema"] + + if field_schema["type"] == "literal": + for entry in cast("LiteralSchema", field_schema)["expected"]: + if isinstance(entry, str): + mapping[entry] = variant + else: + field_info = cast("dict[str, FieldInfo]", variant.__fields__).get(discriminator_field_name) # pyright: ignore[reportDeprecated, reportUnnecessaryCast] + if not field_info: + continue + + # Note: if one variant defines an alias then they all should + discriminator_alias = field_info.alias + + if field_info.annotation and is_literal_type(field_info.annotation): + for entry in get_args(field_info.annotation): + if isinstance(entry, str): + mapping[entry] = variant + + if not mapping: + return None + + details = DiscriminatorDetails( + mapping=mapping, + discriminator_field=discriminator_field_name, + discriminator_alias=discriminator_alias, + ) + cast(CachedDiscriminatorType, union).__discriminator__ = details + return details + + +def _extract_field_schema_pv2(model: type[BaseModel], field_name: str) -> ModelField | None: + schema = model.__pydantic_core_schema__ + if schema["type"] == "definitions": + schema = schema["schema"] + + if schema["type"] != "model": + return None + + schema = cast("ModelSchema", schema) + fields_schema = schema["schema"] + if fields_schema["type"] != "model-fields": + return None + + fields_schema = cast("ModelFieldsSchema", fields_schema) + field = fields_schema["fields"].get(field_name) + if not field: + return None + + return cast("ModelField", field) # pyright: ignore[reportUnnecessaryCast] + + +def validate_type(*, type_: type[_T], value: object) -> _T: + """Strict validation that the given value matches the expected type""" + if inspect.isclass(type_) and issubclass(type_, pydantic.BaseModel): + return cast(_T, parse_obj(type_, value)) + + return cast(_T, _validate_non_model_type(type_=type_, value=value)) + + +def set_pydantic_config(typ: Any, config: pydantic.ConfigDict) -> None: + """Add a pydantic config for the given type. + + Note: this is a no-op on Pydantic v1. + """ + setattr(typ, "__pydantic_config__", config) # noqa: B010 + + +def add_request_id(obj: BaseModel, request_id: str | None) -> None: + obj._request_id = request_id + + # in Pydantic v1, using setattr like we do above causes the attribute + # to be included when serializing the model which we don't want in this + # case so we need to explicitly exclude it + if not PYDANTIC_V2: + try: + exclude_fields = obj.__exclude_fields__ # type: ignore + except AttributeError: + cast(Any, obj).__exclude_fields__ = {"_request_id", "__exclude_fields__"} + else: + cast(Any, obj).__exclude_fields__ = {*(exclude_fields or {}), "_request_id", "__exclude_fields__"} + + +# our use of subclasssing here causes weirdness for type checkers, +# so we just pretend that we don't subclass +if TYPE_CHECKING: + GenericModel = BaseModel +else: + + class GenericModel(BaseGenericModel, BaseModel): + pass + + +if PYDANTIC_V2: + from pydantic import TypeAdapter as _TypeAdapter + + _CachedTypeAdapter = cast("TypeAdapter[object]", lru_cache(maxsize=None)(_TypeAdapter)) + + if TYPE_CHECKING: + from pydantic import TypeAdapter + else: + TypeAdapter = _CachedTypeAdapter + + def _validate_non_model_type(*, type_: type[_T], value: object) -> _T: + return TypeAdapter(type_).validate_python(value) + +elif not TYPE_CHECKING: # TODO: condition is weird + + class RootModel(GenericModel, Generic[_T]): + """Used as a placeholder to easily convert runtime types to a Pydantic format + to provide validation. + + For example: + ```py + validated = RootModel[int](__root__="5").__root__ + # validated: 5 + ``` + """ + + __root__: _T + + def _validate_non_model_type(*, type_: type[_T], value: object) -> _T: + model = _create_pydantic_model(type_).validate(value) + return cast(_T, model.__root__) + + def _create_pydantic_model(type_: _T) -> Type[RootModel[_T]]: + return RootModel[type_] # type: ignore + + +class FinalRequestOptionsInput(TypedDict, total=False): + method: Required[str] + url: Required[str] + params: Query + headers: Headers + max_retries: int + timeout: float | Timeout | None + files: HttpxRequestFiles | None + idempotency_key: str + json_data: Body + extra_json: AnyMapping + + +@final +class FinalRequestOptions(pydantic.BaseModel): + method: str + url: str + params: Query = {} + headers: Union[Headers, NotGiven] = NotGiven() + max_retries: Union[int, NotGiven] = NotGiven() + timeout: Union[float, Timeout, None, NotGiven] = NotGiven() + files: Union[HttpxRequestFiles, None] = None + idempotency_key: Union[str, None] = None + post_parser: Union[Callable[[Any], Any], NotGiven] = NotGiven() + + # It should be noted that we cannot use `json` here as that would override + # a BaseModel method in an incompatible fashion. + json_data: Union[Body, None] = None + extra_json: Union[AnyMapping, None] = None + + if PYDANTIC_V2: + model_config: ClassVar[ConfigDict] = ConfigDict(arbitrary_types_allowed=True) + else: + + class Config(pydantic.BaseConfig): # pyright: ignore[reportDeprecated] + arbitrary_types_allowed: bool = True + + def get_max_retries(self, max_retries: int) -> int: + if isinstance(self.max_retries, NotGiven): + return max_retries + return self.max_retries + + def _strip_raw_response_header(self) -> None: + if not is_given(self.headers): + return + + if self.headers.get(RAW_RESPONSE_HEADER): + self.headers = {**self.headers} + self.headers.pop(RAW_RESPONSE_HEADER) + + # override the `construct` method so that we can run custom transformations. + # this is necessary as we don't want to do any actual runtime type checking + # (which means we can't use validators) but we do want to ensure that `NotGiven` + # values are not present + # + # type ignore required because we're adding explicit types to `**values` + @classmethod + def construct( # type: ignore + cls, + _fields_set: set[str] | None = None, + **values: Unpack[FinalRequestOptionsInput], + ) -> FinalRequestOptions: + kwargs: dict[str, Any] = { + # we unconditionally call `strip_not_given` on any value + # as it will just ignore any non-mapping types + key: strip_not_given(value) + for key, value in values.items() + } + if PYDANTIC_V2: + return super().model_construct(_fields_set, **kwargs) + return cast(FinalRequestOptions, super().construct(_fields_set, **kwargs)) # pyright: ignore[reportDeprecated] + + if not TYPE_CHECKING: + # type checkers incorrectly complain about this assignment + model_construct = construct diff --git a/.venv/lib/python3.12/site-packages/openai/_module_client.py b/.venv/lib/python3.12/site-packages/openai/_module_client.py new file mode 100644 index 00000000..e7d26578 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_module_client.py @@ -0,0 +1,106 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import override + +from . import resources, _load_client +from ._utils import LazyProxy + + +class ChatProxy(LazyProxy[resources.Chat]): + @override + def __load__(self) -> resources.Chat: + return _load_client().chat + + +class BetaProxy(LazyProxy[resources.Beta]): + @override + def __load__(self) -> resources.Beta: + return _load_client().beta + + +class FilesProxy(LazyProxy[resources.Files]): + @override + def __load__(self) -> resources.Files: + return _load_client().files + + +class AudioProxy(LazyProxy[resources.Audio]): + @override + def __load__(self) -> resources.Audio: + return _load_client().audio + + +class ImagesProxy(LazyProxy[resources.Images]): + @override + def __load__(self) -> resources.Images: + return _load_client().images + + +class ModelsProxy(LazyProxy[resources.Models]): + @override + def __load__(self) -> resources.Models: + return _load_client().models + + +class BatchesProxy(LazyProxy[resources.Batches]): + @override + def __load__(self) -> resources.Batches: + return _load_client().batches + + +class UploadsProxy(LazyProxy[resources.Uploads]): + @override + def __load__(self) -> resources.Uploads: + return _load_client().uploads + + +class ResponsesProxy(LazyProxy[resources.Responses]): + @override + def __load__(self) -> resources.Responses: + return _load_client().responses + + +class EmbeddingsProxy(LazyProxy[resources.Embeddings]): + @override + def __load__(self) -> resources.Embeddings: + return _load_client().embeddings + + +class CompletionsProxy(LazyProxy[resources.Completions]): + @override + def __load__(self) -> resources.Completions: + return _load_client().completions + + +class ModerationsProxy(LazyProxy[resources.Moderations]): + @override + def __load__(self) -> resources.Moderations: + return _load_client().moderations + + +class FineTuningProxy(LazyProxy[resources.FineTuning]): + @override + def __load__(self) -> resources.FineTuning: + return _load_client().fine_tuning + + +class VectorStoresProxy(LazyProxy[resources.VectorStores]): + @override + def __load__(self) -> resources.VectorStores: + return _load_client().vector_stores + + +chat: resources.Chat = ChatProxy().__as_proxied__() +beta: resources.Beta = BetaProxy().__as_proxied__() +files: resources.Files = FilesProxy().__as_proxied__() +audio: resources.Audio = AudioProxy().__as_proxied__() +images: resources.Images = ImagesProxy().__as_proxied__() +models: resources.Models = ModelsProxy().__as_proxied__() +batches: resources.Batches = BatchesProxy().__as_proxied__() +uploads: resources.Uploads = UploadsProxy().__as_proxied__() +responses: resources.Responses = ResponsesProxy().__as_proxied__() +embeddings: resources.Embeddings = EmbeddingsProxy().__as_proxied__() +completions: resources.Completions = CompletionsProxy().__as_proxied__() +moderations: resources.Moderations = ModerationsProxy().__as_proxied__() +fine_tuning: resources.FineTuning = FineTuningProxy().__as_proxied__() +vector_stores: resources.VectorStores = VectorStoresProxy().__as_proxied__() diff --git a/.venv/lib/python3.12/site-packages/openai/_qs.py b/.venv/lib/python3.12/site-packages/openai/_qs.py new file mode 100644 index 00000000..274320ca --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_qs.py @@ -0,0 +1,150 @@ +from __future__ import annotations + +from typing import Any, List, Tuple, Union, Mapping, TypeVar +from urllib.parse import parse_qs, urlencode +from typing_extensions import Literal, get_args + +from ._types import NOT_GIVEN, NotGiven, NotGivenOr +from ._utils import flatten + +_T = TypeVar("_T") + + +ArrayFormat = Literal["comma", "repeat", "indices", "brackets"] +NestedFormat = Literal["dots", "brackets"] + +PrimitiveData = Union[str, int, float, bool, None] +# this should be Data = Union[PrimitiveData, "List[Data]", "Tuple[Data]", "Mapping[str, Data]"] +# https://github.com/microsoft/pyright/issues/3555 +Data = Union[PrimitiveData, List[Any], Tuple[Any], "Mapping[str, Any]"] +Params = Mapping[str, Data] + + +class Querystring: + array_format: ArrayFormat + nested_format: NestedFormat + + def __init__( + self, + *, + array_format: ArrayFormat = "repeat", + nested_format: NestedFormat = "brackets", + ) -> None: + self.array_format = array_format + self.nested_format = nested_format + + def parse(self, query: str) -> Mapping[str, object]: + # Note: custom format syntax is not supported yet + return parse_qs(query) + + def stringify( + self, + params: Params, + *, + array_format: NotGivenOr[ArrayFormat] = NOT_GIVEN, + nested_format: NotGivenOr[NestedFormat] = NOT_GIVEN, + ) -> str: + return urlencode( + self.stringify_items( + params, + array_format=array_format, + nested_format=nested_format, + ) + ) + + def stringify_items( + self, + params: Params, + *, + array_format: NotGivenOr[ArrayFormat] = NOT_GIVEN, + nested_format: NotGivenOr[NestedFormat] = NOT_GIVEN, + ) -> list[tuple[str, str]]: + opts = Options( + qs=self, + array_format=array_format, + nested_format=nested_format, + ) + return flatten([self._stringify_item(key, value, opts) for key, value in params.items()]) + + def _stringify_item( + self, + key: str, + value: Data, + opts: Options, + ) -> list[tuple[str, str]]: + if isinstance(value, Mapping): + items: list[tuple[str, str]] = [] + nested_format = opts.nested_format + for subkey, subvalue in value.items(): + items.extend( + self._stringify_item( + # TODO: error if unknown format + f"{key}.{subkey}" if nested_format == "dots" else f"{key}[{subkey}]", + subvalue, + opts, + ) + ) + return items + + if isinstance(value, (list, tuple)): + array_format = opts.array_format + if array_format == "comma": + return [ + ( + key, + ",".join(self._primitive_value_to_str(item) for item in value if item is not None), + ), + ] + elif array_format == "repeat": + items = [] + for item in value: + items.extend(self._stringify_item(key, item, opts)) + return items + elif array_format == "indices": + raise NotImplementedError("The array indices format is not supported yet") + elif array_format == "brackets": + items = [] + key = key + "[]" + for item in value: + items.extend(self._stringify_item(key, item, opts)) + return items + else: + raise NotImplementedError( + f"Unknown array_format value: {array_format}, choose from {', '.join(get_args(ArrayFormat))}" + ) + + serialised = self._primitive_value_to_str(value) + if not serialised: + return [] + return [(key, serialised)] + + def _primitive_value_to_str(self, value: PrimitiveData) -> str: + # copied from httpx + if value is True: + return "true" + elif value is False: + return "false" + elif value is None: + return "" + return str(value) + + +_qs = Querystring() +parse = _qs.parse +stringify = _qs.stringify +stringify_items = _qs.stringify_items + + +class Options: + array_format: ArrayFormat + nested_format: NestedFormat + + def __init__( + self, + qs: Querystring = _qs, + *, + array_format: NotGivenOr[ArrayFormat] = NOT_GIVEN, + nested_format: NotGivenOr[NestedFormat] = NOT_GIVEN, + ) -> None: + self.array_format = qs.array_format if isinstance(array_format, NotGiven) else array_format + self.nested_format = qs.nested_format if isinstance(nested_format, NotGiven) else nested_format diff --git a/.venv/lib/python3.12/site-packages/openai/_resource.py b/.venv/lib/python3.12/site-packages/openai/_resource.py new file mode 100644 index 00000000..fff9ba19 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_resource.py @@ -0,0 +1,43 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import time +from typing import TYPE_CHECKING + +import anyio + +if TYPE_CHECKING: + from ._client import OpenAI, AsyncOpenAI + + +class SyncAPIResource: + _client: OpenAI + + def __init__(self, client: OpenAI) -> None: + self._client = client + self._get = client.get + self._post = client.post + self._patch = client.patch + self._put = client.put + self._delete = client.delete + self._get_api_list = client.get_api_list + + def _sleep(self, seconds: float) -> None: + time.sleep(seconds) + + +class AsyncAPIResource: + _client: AsyncOpenAI + + def __init__(self, client: AsyncOpenAI) -> None: + self._client = client + self._get = client.get + self._post = client.post + self._patch = client.patch + self._put = client.put + self._delete = client.delete + self._get_api_list = client.get_api_list + + async def _sleep(self, seconds: float) -> None: + await anyio.sleep(seconds) diff --git a/.venv/lib/python3.12/site-packages/openai/_response.py b/.venv/lib/python3.12/site-packages/openai/_response.py new file mode 100644 index 00000000..95e94e65 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_response.py @@ -0,0 +1,848 @@ +from __future__ import annotations + +import os +import inspect +import logging +import datetime +import functools +from types import TracebackType +from typing import ( + TYPE_CHECKING, + Any, + Union, + Generic, + TypeVar, + Callable, + Iterator, + AsyncIterator, + cast, + overload, +) +from typing_extensions import Awaitable, ParamSpec, override, get_origin + +import anyio +import httpx +import pydantic + +from ._types import NoneType +from ._utils import is_given, extract_type_arg, is_annotated_type, is_type_alias_type, extract_type_var_from_base +from ._models import BaseModel, is_basemodel, add_request_id +from ._constants import RAW_RESPONSE_HEADER, OVERRIDE_CAST_TO_HEADER +from ._streaming import Stream, AsyncStream, is_stream_class_type, extract_stream_chunk_type +from ._exceptions import OpenAIError, APIResponseValidationError + +if TYPE_CHECKING: + from ._models import FinalRequestOptions + from ._base_client import BaseClient + + +P = ParamSpec("P") +R = TypeVar("R") +_T = TypeVar("_T") +_APIResponseT = TypeVar("_APIResponseT", bound="APIResponse[Any]") +_AsyncAPIResponseT = TypeVar("_AsyncAPIResponseT", bound="AsyncAPIResponse[Any]") + +log: logging.Logger = logging.getLogger(__name__) + + +class BaseAPIResponse(Generic[R]): + _cast_to: type[R] + _client: BaseClient[Any, Any] + _parsed_by_type: dict[type[Any], Any] + _is_sse_stream: bool + _stream_cls: type[Stream[Any]] | type[AsyncStream[Any]] | None + _options: FinalRequestOptions + + http_response: httpx.Response + + retries_taken: int + """The number of retries made. If no retries happened this will be `0`""" + + def __init__( + self, + *, + raw: httpx.Response, + cast_to: type[R], + client: BaseClient[Any, Any], + stream: bool, + stream_cls: type[Stream[Any]] | type[AsyncStream[Any]] | None, + options: FinalRequestOptions, + retries_taken: int = 0, + ) -> None: + self._cast_to = cast_to + self._client = client + self._parsed_by_type = {} + self._is_sse_stream = stream + self._stream_cls = stream_cls + self._options = options + self.http_response = raw + self.retries_taken = retries_taken + + @property + def headers(self) -> httpx.Headers: + return self.http_response.headers + + @property + def http_request(self) -> httpx.Request: + """Returns the httpx Request instance associated with the current response.""" + return self.http_response.request + + @property + def status_code(self) -> int: + return self.http_response.status_code + + @property + def url(self) -> httpx.URL: + """Returns the URL for which the request was made.""" + return self.http_response.url + + @property + def method(self) -> str: + return self.http_request.method + + @property + def http_version(self) -> str: + return self.http_response.http_version + + @property + def elapsed(self) -> datetime.timedelta: + """The time taken for the complete request/response cycle to complete.""" + return self.http_response.elapsed + + @property + def is_closed(self) -> bool: + """Whether or not the response body has been closed. + + If this is False then there is response data that has not been read yet. + You must either fully consume the response body or call `.close()` + before discarding the response to prevent resource leaks. + """ + return self.http_response.is_closed + + @override + def __repr__(self) -> str: + return ( + f"<{self.__class__.__name__} [{self.status_code} {self.http_response.reason_phrase}] type={self._cast_to}>" + ) + + def _parse(self, *, to: type[_T] | None = None) -> R | _T: + cast_to = to if to is not None else self._cast_to + + # unwrap `TypeAlias('Name', T)` -> `T` + if is_type_alias_type(cast_to): + cast_to = cast_to.__value__ # type: ignore[unreachable] + + # unwrap `Annotated[T, ...]` -> `T` + if cast_to and is_annotated_type(cast_to): + cast_to = extract_type_arg(cast_to, 0) + + origin = get_origin(cast_to) or cast_to + + if self._is_sse_stream: + if to: + if not is_stream_class_type(to): + raise TypeError(f"Expected custom parse type to be a subclass of {Stream} or {AsyncStream}") + + return cast( + _T, + to( + cast_to=extract_stream_chunk_type( + to, + failure_message="Expected custom stream type to be passed with a type argument, e.g. Stream[ChunkType]", + ), + response=self.http_response, + client=cast(Any, self._client), + ), + ) + + if self._stream_cls: + return cast( + R, + self._stream_cls( + cast_to=extract_stream_chunk_type(self._stream_cls), + response=self.http_response, + client=cast(Any, self._client), + ), + ) + + stream_cls = cast("type[Stream[Any]] | type[AsyncStream[Any]] | None", self._client._default_stream_cls) + if stream_cls is None: + raise MissingStreamClassError() + + return cast( + R, + stream_cls( + cast_to=cast_to, + response=self.http_response, + client=cast(Any, self._client), + ), + ) + + if cast_to is NoneType: + return cast(R, None) + + response = self.http_response + if cast_to == str: + return cast(R, response.text) + + if cast_to == bytes: + return cast(R, response.content) + + if cast_to == int: + return cast(R, int(response.text)) + + if cast_to == float: + return cast(R, float(response.text)) + + if cast_to == bool: + return cast(R, response.text.lower() == "true") + + # handle the legacy binary response case + if inspect.isclass(cast_to) and cast_to.__name__ == "HttpxBinaryResponseContent": + return cast(R, cast_to(response)) # type: ignore + + if origin == APIResponse: + raise RuntimeError("Unexpected state - cast_to is `APIResponse`") + + if inspect.isclass(origin) and issubclass(origin, httpx.Response): + # Because of the invariance of our ResponseT TypeVar, users can subclass httpx.Response + # and pass that class to our request functions. We cannot change the variance to be either + # covariant or contravariant as that makes our usage of ResponseT illegal. We could construct + # the response class ourselves but that is something that should be supported directly in httpx + # as it would be easy to incorrectly construct the Response object due to the multitude of arguments. + if cast_to != httpx.Response: + raise ValueError(f"Subclasses of httpx.Response cannot be passed to `cast_to`") + return cast(R, response) + + if ( + inspect.isclass( + origin # pyright: ignore[reportUnknownArgumentType] + ) + and not issubclass(origin, BaseModel) + and issubclass(origin, pydantic.BaseModel) + ): + raise TypeError("Pydantic models must subclass our base model type, e.g. `from openai import BaseModel`") + + if ( + cast_to is not object + and not origin is list + and not origin is dict + and not origin is Union + and not issubclass(origin, BaseModel) + ): + raise RuntimeError( + f"Unsupported type, expected {cast_to} to be a subclass of {BaseModel}, {dict}, {list}, {Union}, {NoneType}, {str} or {httpx.Response}." + ) + + # split is required to handle cases where additional information is included + # in the response, e.g. application/json; charset=utf-8 + content_type, *_ = response.headers.get("content-type", "*").split(";") + if content_type != "application/json": + if is_basemodel(cast_to): + try: + data = response.json() + except Exception as exc: + log.debug("Could not read JSON from response data due to %s - %s", type(exc), exc) + else: + return self._client._process_response_data( + data=data, + cast_to=cast_to, # type: ignore + response=response, + ) + + if self._client._strict_response_validation: + raise APIResponseValidationError( + response=response, + message=f"Expected Content-Type response header to be `application/json` but received `{content_type}` instead.", + body=response.text, + ) + + # If the API responds with content that isn't JSON then we just return + # the (decoded) text without performing any parsing so that you can still + # handle the response however you need to. + return response.text # type: ignore + + data = response.json() + + return self._client._process_response_data( + data=data, + cast_to=cast_to, # type: ignore + response=response, + ) + + +class APIResponse(BaseAPIResponse[R]): + @property + def request_id(self) -> str | None: + return self.http_response.headers.get("x-request-id") # type: ignore[no-any-return] + + @overload + def parse(self, *, to: type[_T]) -> _T: ... + + @overload + def parse(self) -> R: ... + + def parse(self, *, to: type[_T] | None = None) -> R | _T: + """Returns the rich python representation of this response's data. + + For lower-level control, see `.read()`, `.json()`, `.iter_bytes()`. + + You can customise the type that the response is parsed into through + the `to` argument, e.g. + + ```py + from openai import BaseModel + + + class MyModel(BaseModel): + foo: str + + + obj = response.parse(to=MyModel) + print(obj.foo) + ``` + + We support parsing: + - `BaseModel` + - `dict` + - `list` + - `Union` + - `str` + - `int` + - `float` + - `httpx.Response` + """ + cache_key = to if to is not None else self._cast_to + cached = self._parsed_by_type.get(cache_key) + if cached is not None: + return cached # type: ignore[no-any-return] + + if not self._is_sse_stream: + self.read() + + parsed = self._parse(to=to) + if is_given(self._options.post_parser): + parsed = self._options.post_parser(parsed) + + if isinstance(parsed, BaseModel): + add_request_id(parsed, self.request_id) + + self._parsed_by_type[cache_key] = parsed + return cast(R, parsed) + + def read(self) -> bytes: + """Read and return the binary response content.""" + try: + return self.http_response.read() + except httpx.StreamConsumed as exc: + # The default error raised by httpx isn't very + # helpful in our case so we re-raise it with + # a different error message. + raise StreamAlreadyConsumed() from exc + + def text(self) -> str: + """Read and decode the response content into a string.""" + self.read() + return self.http_response.text + + def json(self) -> object: + """Read and decode the JSON response content.""" + self.read() + return self.http_response.json() + + def close(self) -> None: + """Close the response and release the connection. + + Automatically called if the response body is read to completion. + """ + self.http_response.close() + + def iter_bytes(self, chunk_size: int | None = None) -> Iterator[bytes]: + """ + A byte-iterator over the decoded response content. + + This automatically handles gzip, deflate and brotli encoded responses. + """ + for chunk in self.http_response.iter_bytes(chunk_size): + yield chunk + + def iter_text(self, chunk_size: int | None = None) -> Iterator[str]: + """A str-iterator over the decoded response content + that handles both gzip, deflate, etc but also detects the content's + string encoding. + """ + for chunk in self.http_response.iter_text(chunk_size): + yield chunk + + def iter_lines(self) -> Iterator[str]: + """Like `iter_text()` but will only yield chunks for each line""" + for chunk in self.http_response.iter_lines(): + yield chunk + + +class AsyncAPIResponse(BaseAPIResponse[R]): + @property + def request_id(self) -> str | None: + return self.http_response.headers.get("x-request-id") # type: ignore[no-any-return] + + @overload + async def parse(self, *, to: type[_T]) -> _T: ... + + @overload + async def parse(self) -> R: ... + + async def parse(self, *, to: type[_T] | None = None) -> R | _T: + """Returns the rich python representation of this response's data. + + For lower-level control, see `.read()`, `.json()`, `.iter_bytes()`. + + You can customise the type that the response is parsed into through + the `to` argument, e.g. + + ```py + from openai import BaseModel + + + class MyModel(BaseModel): + foo: str + + + obj = response.parse(to=MyModel) + print(obj.foo) + ``` + + We support parsing: + - `BaseModel` + - `dict` + - `list` + - `Union` + - `str` + - `httpx.Response` + """ + cache_key = to if to is not None else self._cast_to + cached = self._parsed_by_type.get(cache_key) + if cached is not None: + return cached # type: ignore[no-any-return] + + if not self._is_sse_stream: + await self.read() + + parsed = self._parse(to=to) + if is_given(self._options.post_parser): + parsed = self._options.post_parser(parsed) + + if isinstance(parsed, BaseModel): + add_request_id(parsed, self.request_id) + + self._parsed_by_type[cache_key] = parsed + return cast(R, parsed) + + async def read(self) -> bytes: + """Read and return the binary response content.""" + try: + return await self.http_response.aread() + except httpx.StreamConsumed as exc: + # the default error raised by httpx isn't very + # helpful in our case so we re-raise it with + # a different error message + raise StreamAlreadyConsumed() from exc + + async def text(self) -> str: + """Read and decode the response content into a string.""" + await self.read() + return self.http_response.text + + async def json(self) -> object: + """Read and decode the JSON response content.""" + await self.read() + return self.http_response.json() + + async def close(self) -> None: + """Close the response and release the connection. + + Automatically called if the response body is read to completion. + """ + await self.http_response.aclose() + + async def iter_bytes(self, chunk_size: int | None = None) -> AsyncIterator[bytes]: + """ + A byte-iterator over the decoded response content. + + This automatically handles gzip, deflate and brotli encoded responses. + """ + async for chunk in self.http_response.aiter_bytes(chunk_size): + yield chunk + + async def iter_text(self, chunk_size: int | None = None) -> AsyncIterator[str]: + """A str-iterator over the decoded response content + that handles both gzip, deflate, etc but also detects the content's + string encoding. + """ + async for chunk in self.http_response.aiter_text(chunk_size): + yield chunk + + async def iter_lines(self) -> AsyncIterator[str]: + """Like `iter_text()` but will only yield chunks for each line""" + async for chunk in self.http_response.aiter_lines(): + yield chunk + + +class BinaryAPIResponse(APIResponse[bytes]): + """Subclass of APIResponse providing helpers for dealing with binary data. + + Note: If you want to stream the response data instead of eagerly reading it + all at once then you should use `.with_streaming_response` when making + the API request, e.g. `.with_streaming_response.get_binary_response()` + """ + + def write_to_file( + self, + file: str | os.PathLike[str], + ) -> None: + """Write the output to the given file. + + Accepts a filename or any path-like object, e.g. pathlib.Path + + Note: if you want to stream the data to the file instead of writing + all at once then you should use `.with_streaming_response` when making + the API request, e.g. `.with_streaming_response.get_binary_response()` + """ + with open(file, mode="wb") as f: + for data in self.iter_bytes(): + f.write(data) + + +class AsyncBinaryAPIResponse(AsyncAPIResponse[bytes]): + """Subclass of APIResponse providing helpers for dealing with binary data. + + Note: If you want to stream the response data instead of eagerly reading it + all at once then you should use `.with_streaming_response` when making + the API request, e.g. `.with_streaming_response.get_binary_response()` + """ + + async def write_to_file( + self, + file: str | os.PathLike[str], + ) -> None: + """Write the output to the given file. + + Accepts a filename or any path-like object, e.g. pathlib.Path + + Note: if you want to stream the data to the file instead of writing + all at once then you should use `.with_streaming_response` when making + the API request, e.g. `.with_streaming_response.get_binary_response()` + """ + path = anyio.Path(file) + async with await path.open(mode="wb") as f: + async for data in self.iter_bytes(): + await f.write(data) + + +class StreamedBinaryAPIResponse(APIResponse[bytes]): + def stream_to_file( + self, + file: str | os.PathLike[str], + *, + chunk_size: int | None = None, + ) -> None: + """Streams the output to the given file. + + Accepts a filename or any path-like object, e.g. pathlib.Path + """ + with open(file, mode="wb") as f: + for data in self.iter_bytes(chunk_size): + f.write(data) + + +class AsyncStreamedBinaryAPIResponse(AsyncAPIResponse[bytes]): + async def stream_to_file( + self, + file: str | os.PathLike[str], + *, + chunk_size: int | None = None, + ) -> None: + """Streams the output to the given file. + + Accepts a filename or any path-like object, e.g. pathlib.Path + """ + path = anyio.Path(file) + async with await path.open(mode="wb") as f: + async for data in self.iter_bytes(chunk_size): + await f.write(data) + + +class MissingStreamClassError(TypeError): + def __init__(self) -> None: + super().__init__( + "The `stream` argument was set to `True` but the `stream_cls` argument was not given. See `openai._streaming` for reference", + ) + + +class StreamAlreadyConsumed(OpenAIError): + """ + Attempted to read or stream content, but the content has already + been streamed. + + This can happen if you use a method like `.iter_lines()` and then attempt + to read th entire response body afterwards, e.g. + + ```py + response = await client.post(...) + async for line in response.iter_lines(): + ... # do something with `line` + + content = await response.read() + # ^ error + ``` + + If you want this behaviour you'll need to either manually accumulate the response + content or call `await response.read()` before iterating over the stream. + """ + + def __init__(self) -> None: + message = ( + "Attempted to read or stream some content, but the content has " + "already been streamed. " + "This could be due to attempting to stream the response " + "content more than once." + "\n\n" + "You can fix this by manually accumulating the response content while streaming " + "or by calling `.read()` before starting to stream." + ) + super().__init__(message) + + +class ResponseContextManager(Generic[_APIResponseT]): + """Context manager for ensuring that a request is not made + until it is entered and that the response will always be closed + when the context manager exits + """ + + def __init__(self, request_func: Callable[[], _APIResponseT]) -> None: + self._request_func = request_func + self.__response: _APIResponseT | None = None + + def __enter__(self) -> _APIResponseT: + self.__response = self._request_func() + return self.__response + + def __exit__( + self, + exc_type: type[BaseException] | None, + exc: BaseException | None, + exc_tb: TracebackType | None, + ) -> None: + if self.__response is not None: + self.__response.close() + + +class AsyncResponseContextManager(Generic[_AsyncAPIResponseT]): + """Context manager for ensuring that a request is not made + until it is entered and that the response will always be closed + when the context manager exits + """ + + def __init__(self, api_request: Awaitable[_AsyncAPIResponseT]) -> None: + self._api_request = api_request + self.__response: _AsyncAPIResponseT | None = None + + async def __aenter__(self) -> _AsyncAPIResponseT: + self.__response = await self._api_request + return self.__response + + async def __aexit__( + self, + exc_type: type[BaseException] | None, + exc: BaseException | None, + exc_tb: TracebackType | None, + ) -> None: + if self.__response is not None: + await self.__response.close() + + +def to_streamed_response_wrapper(func: Callable[P, R]) -> Callable[P, ResponseContextManager[APIResponse[R]]]: + """Higher order function that takes one of our bound API methods and wraps it + to support streaming and returning the raw `APIResponse` object directly. + """ + + @functools.wraps(func) + def wrapped(*args: P.args, **kwargs: P.kwargs) -> ResponseContextManager[APIResponse[R]]: + extra_headers: dict[str, str] = {**(cast(Any, kwargs.get("extra_headers")) or {})} + extra_headers[RAW_RESPONSE_HEADER] = "stream" + + kwargs["extra_headers"] = extra_headers + + make_request = functools.partial(func, *args, **kwargs) + + return ResponseContextManager(cast(Callable[[], APIResponse[R]], make_request)) + + return wrapped + + +def async_to_streamed_response_wrapper( + func: Callable[P, Awaitable[R]], +) -> Callable[P, AsyncResponseContextManager[AsyncAPIResponse[R]]]: + """Higher order function that takes one of our bound API methods and wraps it + to support streaming and returning the raw `APIResponse` object directly. + """ + + @functools.wraps(func) + def wrapped(*args: P.args, **kwargs: P.kwargs) -> AsyncResponseContextManager[AsyncAPIResponse[R]]: + extra_headers: dict[str, str] = {**(cast(Any, kwargs.get("extra_headers")) or {})} + extra_headers[RAW_RESPONSE_HEADER] = "stream" + + kwargs["extra_headers"] = extra_headers + + make_request = func(*args, **kwargs) + + return AsyncResponseContextManager(cast(Awaitable[AsyncAPIResponse[R]], make_request)) + + return wrapped + + +def to_custom_streamed_response_wrapper( + func: Callable[P, object], + response_cls: type[_APIResponseT], +) -> Callable[P, ResponseContextManager[_APIResponseT]]: + """Higher order function that takes one of our bound API methods and an `APIResponse` class + and wraps the method to support streaming and returning the given response class directly. + + Note: the given `response_cls` *must* be concrete, e.g. `class BinaryAPIResponse(APIResponse[bytes])` + """ + + @functools.wraps(func) + def wrapped(*args: P.args, **kwargs: P.kwargs) -> ResponseContextManager[_APIResponseT]: + extra_headers: dict[str, Any] = {**(cast(Any, kwargs.get("extra_headers")) or {})} + extra_headers[RAW_RESPONSE_HEADER] = "stream" + extra_headers[OVERRIDE_CAST_TO_HEADER] = response_cls + + kwargs["extra_headers"] = extra_headers + + make_request = functools.partial(func, *args, **kwargs) + + return ResponseContextManager(cast(Callable[[], _APIResponseT], make_request)) + + return wrapped + + +def async_to_custom_streamed_response_wrapper( + func: Callable[P, Awaitable[object]], + response_cls: type[_AsyncAPIResponseT], +) -> Callable[P, AsyncResponseContextManager[_AsyncAPIResponseT]]: + """Higher order function that takes one of our bound API methods and an `APIResponse` class + and wraps the method to support streaming and returning the given response class directly. + + Note: the given `response_cls` *must* be concrete, e.g. `class BinaryAPIResponse(APIResponse[bytes])` + """ + + @functools.wraps(func) + def wrapped(*args: P.args, **kwargs: P.kwargs) -> AsyncResponseContextManager[_AsyncAPIResponseT]: + extra_headers: dict[str, Any] = {**(cast(Any, kwargs.get("extra_headers")) or {})} + extra_headers[RAW_RESPONSE_HEADER] = "stream" + extra_headers[OVERRIDE_CAST_TO_HEADER] = response_cls + + kwargs["extra_headers"] = extra_headers + + make_request = func(*args, **kwargs) + + return AsyncResponseContextManager(cast(Awaitable[_AsyncAPIResponseT], make_request)) + + return wrapped + + +def to_raw_response_wrapper(func: Callable[P, R]) -> Callable[P, APIResponse[R]]: + """Higher order function that takes one of our bound API methods and wraps it + to support returning the raw `APIResponse` object directly. + """ + + @functools.wraps(func) + def wrapped(*args: P.args, **kwargs: P.kwargs) -> APIResponse[R]: + extra_headers: dict[str, str] = {**(cast(Any, kwargs.get("extra_headers")) or {})} + extra_headers[RAW_RESPONSE_HEADER] = "raw" + + kwargs["extra_headers"] = extra_headers + + return cast(APIResponse[R], func(*args, **kwargs)) + + return wrapped + + +def async_to_raw_response_wrapper(func: Callable[P, Awaitable[R]]) -> Callable[P, Awaitable[AsyncAPIResponse[R]]]: + """Higher order function that takes one of our bound API methods and wraps it + to support returning the raw `APIResponse` object directly. + """ + + @functools.wraps(func) + async def wrapped(*args: P.args, **kwargs: P.kwargs) -> AsyncAPIResponse[R]: + extra_headers: dict[str, str] = {**(cast(Any, kwargs.get("extra_headers")) or {})} + extra_headers[RAW_RESPONSE_HEADER] = "raw" + + kwargs["extra_headers"] = extra_headers + + return cast(AsyncAPIResponse[R], await func(*args, **kwargs)) + + return wrapped + + +def to_custom_raw_response_wrapper( + func: Callable[P, object], + response_cls: type[_APIResponseT], +) -> Callable[P, _APIResponseT]: + """Higher order function that takes one of our bound API methods and an `APIResponse` class + and wraps the method to support returning the given response class directly. + + Note: the given `response_cls` *must* be concrete, e.g. `class BinaryAPIResponse(APIResponse[bytes])` + """ + + @functools.wraps(func) + def wrapped(*args: P.args, **kwargs: P.kwargs) -> _APIResponseT: + extra_headers: dict[str, Any] = {**(cast(Any, kwargs.get("extra_headers")) or {})} + extra_headers[RAW_RESPONSE_HEADER] = "raw" + extra_headers[OVERRIDE_CAST_TO_HEADER] = response_cls + + kwargs["extra_headers"] = extra_headers + + return cast(_APIResponseT, func(*args, **kwargs)) + + return wrapped + + +def async_to_custom_raw_response_wrapper( + func: Callable[P, Awaitable[object]], + response_cls: type[_AsyncAPIResponseT], +) -> Callable[P, Awaitable[_AsyncAPIResponseT]]: + """Higher order function that takes one of our bound API methods and an `APIResponse` class + and wraps the method to support returning the given response class directly. + + Note: the given `response_cls` *must* be concrete, e.g. `class BinaryAPIResponse(APIResponse[bytes])` + """ + + @functools.wraps(func) + def wrapped(*args: P.args, **kwargs: P.kwargs) -> Awaitable[_AsyncAPIResponseT]: + extra_headers: dict[str, Any] = {**(cast(Any, kwargs.get("extra_headers")) or {})} + extra_headers[RAW_RESPONSE_HEADER] = "raw" + extra_headers[OVERRIDE_CAST_TO_HEADER] = response_cls + + kwargs["extra_headers"] = extra_headers + + return cast(Awaitable[_AsyncAPIResponseT], func(*args, **kwargs)) + + return wrapped + + +def extract_response_type(typ: type[BaseAPIResponse[Any]]) -> type: + """Given a type like `APIResponse[T]`, returns the generic type variable `T`. + + This also handles the case where a concrete subclass is given, e.g. + ```py + class MyResponse(APIResponse[bytes]): + ... + + extract_response_type(MyResponse) -> bytes + ``` + """ + return extract_type_var_from_base( + typ, + generic_bases=cast("tuple[type, ...]", (BaseAPIResponse, APIResponse, AsyncAPIResponse)), + index=0, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/_streaming.py b/.venv/lib/python3.12/site-packages/openai/_streaming.py new file mode 100644 index 00000000..9cb72ffe --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_streaming.py @@ -0,0 +1,410 @@ +# Note: initially copied from https://github.com/florimondmanca/httpx-sse/blob/master/src/httpx_sse/_decoders.py +from __future__ import annotations + +import json +import inspect +from types import TracebackType +from typing import TYPE_CHECKING, Any, Generic, TypeVar, Iterator, AsyncIterator, cast +from typing_extensions import Self, Protocol, TypeGuard, override, get_origin, runtime_checkable + +import httpx + +from ._utils import is_mapping, extract_type_var_from_base +from ._exceptions import APIError + +if TYPE_CHECKING: + from ._client import OpenAI, AsyncOpenAI + + +_T = TypeVar("_T") + + +class Stream(Generic[_T]): + """Provides the core interface to iterate over a synchronous stream response.""" + + response: httpx.Response + + _decoder: SSEBytesDecoder + + def __init__( + self, + *, + cast_to: type[_T], + response: httpx.Response, + client: OpenAI, + ) -> None: + self.response = response + self._cast_to = cast_to + self._client = client + self._decoder = client._make_sse_decoder() + self._iterator = self.__stream__() + + def __next__(self) -> _T: + return self._iterator.__next__() + + def __iter__(self) -> Iterator[_T]: + for item in self._iterator: + yield item + + def _iter_events(self) -> Iterator[ServerSentEvent]: + yield from self._decoder.iter_bytes(self.response.iter_bytes()) + + def __stream__(self) -> Iterator[_T]: + cast_to = cast(Any, self._cast_to) + response = self.response + process_data = self._client._process_response_data + iterator = self._iter_events() + + for sse in iterator: + if sse.data.startswith("[DONE]"): + break + + if sse.event is None or sse.event.startswith("response."): + data = sse.json() + if is_mapping(data) and data.get("error"): + message = None + error = data.get("error") + if is_mapping(error): + message = error.get("message") + if not message or not isinstance(message, str): + message = "An error occurred during streaming" + + raise APIError( + message=message, + request=self.response.request, + body=data["error"], + ) + + yield process_data(data=data, cast_to=cast_to, response=response) + + else: + data = sse.json() + + if sse.event == "error" and is_mapping(data) and data.get("error"): + message = None + error = data.get("error") + if is_mapping(error): + message = error.get("message") + if not message or not isinstance(message, str): + message = "An error occurred during streaming" + + raise APIError( + message=message, + request=self.response.request, + body=data["error"], + ) + + yield process_data(data={"data": data, "event": sse.event}, cast_to=cast_to, response=response) + + # Ensure the entire stream is consumed + for _sse in iterator: + ... + + def __enter__(self) -> Self: + return self + + def __exit__( + self, + exc_type: type[BaseException] | None, + exc: BaseException | None, + exc_tb: TracebackType | None, + ) -> None: + self.close() + + def close(self) -> None: + """ + Close the response and release the connection. + + Automatically called if the response body is read to completion. + """ + self.response.close() + + +class AsyncStream(Generic[_T]): + """Provides the core interface to iterate over an asynchronous stream response.""" + + response: httpx.Response + + _decoder: SSEDecoder | SSEBytesDecoder + + def __init__( + self, + *, + cast_to: type[_T], + response: httpx.Response, + client: AsyncOpenAI, + ) -> None: + self.response = response + self._cast_to = cast_to + self._client = client + self._decoder = client._make_sse_decoder() + self._iterator = self.__stream__() + + async def __anext__(self) -> _T: + return await self._iterator.__anext__() + + async def __aiter__(self) -> AsyncIterator[_T]: + async for item in self._iterator: + yield item + + async def _iter_events(self) -> AsyncIterator[ServerSentEvent]: + async for sse in self._decoder.aiter_bytes(self.response.aiter_bytes()): + yield sse + + async def __stream__(self) -> AsyncIterator[_T]: + cast_to = cast(Any, self._cast_to) + response = self.response + process_data = self._client._process_response_data + iterator = self._iter_events() + + async for sse in iterator: + if sse.data.startswith("[DONE]"): + break + + if sse.event is None or sse.event.startswith("response."): + data = sse.json() + if is_mapping(data) and data.get("error"): + message = None + error = data.get("error") + if is_mapping(error): + message = error.get("message") + if not message or not isinstance(message, str): + message = "An error occurred during streaming" + + raise APIError( + message=message, + request=self.response.request, + body=data["error"], + ) + + yield process_data(data=data, cast_to=cast_to, response=response) + + else: + data = sse.json() + + if sse.event == "error" and is_mapping(data) and data.get("error"): + message = None + error = data.get("error") + if is_mapping(error): + message = error.get("message") + if not message or not isinstance(message, str): + message = "An error occurred during streaming" + + raise APIError( + message=message, + request=self.response.request, + body=data["error"], + ) + + yield process_data(data={"data": data, "event": sse.event}, cast_to=cast_to, response=response) + + # Ensure the entire stream is consumed + async for _sse in iterator: + ... + + async def __aenter__(self) -> Self: + return self + + async def __aexit__( + self, + exc_type: type[BaseException] | None, + exc: BaseException | None, + exc_tb: TracebackType | None, + ) -> None: + await self.close() + + async def close(self) -> None: + """ + Close the response and release the connection. + + Automatically called if the response body is read to completion. + """ + await self.response.aclose() + + +class ServerSentEvent: + def __init__( + self, + *, + event: str | None = None, + data: str | None = None, + id: str | None = None, + retry: int | None = None, + ) -> None: + if data is None: + data = "" + + self._id = id + self._data = data + self._event = event or None + self._retry = retry + + @property + def event(self) -> str | None: + return self._event + + @property + def id(self) -> str | None: + return self._id + + @property + def retry(self) -> int | None: + return self._retry + + @property + def data(self) -> str: + return self._data + + def json(self) -> Any: + return json.loads(self.data) + + @override + def __repr__(self) -> str: + return f"ServerSentEvent(event={self.event}, data={self.data}, id={self.id}, retry={self.retry})" + + +class SSEDecoder: + _data: list[str] + _event: str | None + _retry: int | None + _last_event_id: str | None + + def __init__(self) -> None: + self._event = None + self._data = [] + self._last_event_id = None + self._retry = None + + def iter_bytes(self, iterator: Iterator[bytes]) -> Iterator[ServerSentEvent]: + """Given an iterator that yields raw binary data, iterate over it & yield every event encountered""" + for chunk in self._iter_chunks(iterator): + # Split before decoding so splitlines() only uses \r and \n + for raw_line in chunk.splitlines(): + line = raw_line.decode("utf-8") + sse = self.decode(line) + if sse: + yield sse + + def _iter_chunks(self, iterator: Iterator[bytes]) -> Iterator[bytes]: + """Given an iterator that yields raw binary data, iterate over it and yield individual SSE chunks""" + data = b"" + for chunk in iterator: + for line in chunk.splitlines(keepends=True): + data += line + if data.endswith((b"\r\r", b"\n\n", b"\r\n\r\n")): + yield data + data = b"" + if data: + yield data + + async def aiter_bytes(self, iterator: AsyncIterator[bytes]) -> AsyncIterator[ServerSentEvent]: + """Given an iterator that yields raw binary data, iterate over it & yield every event encountered""" + async for chunk in self._aiter_chunks(iterator): + # Split before decoding so splitlines() only uses \r and \n + for raw_line in chunk.splitlines(): + line = raw_line.decode("utf-8") + sse = self.decode(line) + if sse: + yield sse + + async def _aiter_chunks(self, iterator: AsyncIterator[bytes]) -> AsyncIterator[bytes]: + """Given an iterator that yields raw binary data, iterate over it and yield individual SSE chunks""" + data = b"" + async for chunk in iterator: + for line in chunk.splitlines(keepends=True): + data += line + if data.endswith((b"\r\r", b"\n\n", b"\r\n\r\n")): + yield data + data = b"" + if data: + yield data + + def decode(self, line: str) -> ServerSentEvent | None: + # See: https://html.spec.whatwg.org/multipage/server-sent-events.html#event-stream-interpretation # noqa: E501 + + if not line: + if not self._event and not self._data and not self._last_event_id and self._retry is None: + return None + + sse = ServerSentEvent( + event=self._event, + data="\n".join(self._data), + id=self._last_event_id, + retry=self._retry, + ) + + # NOTE: as per the SSE spec, do not reset last_event_id. + self._event = None + self._data = [] + self._retry = None + + return sse + + if line.startswith(":"): + return None + + fieldname, _, value = line.partition(":") + + if value.startswith(" "): + value = value[1:] + + if fieldname == "event": + self._event = value + elif fieldname == "data": + self._data.append(value) + elif fieldname == "id": + if "\0" in value: + pass + else: + self._last_event_id = value + elif fieldname == "retry": + try: + self._retry = int(value) + except (TypeError, ValueError): + pass + else: + pass # Field is ignored. + + return None + + +@runtime_checkable +class SSEBytesDecoder(Protocol): + def iter_bytes(self, iterator: Iterator[bytes]) -> Iterator[ServerSentEvent]: + """Given an iterator that yields raw binary data, iterate over it & yield every event encountered""" + ... + + def aiter_bytes(self, iterator: AsyncIterator[bytes]) -> AsyncIterator[ServerSentEvent]: + """Given an async iterator that yields raw binary data, iterate over it & yield every event encountered""" + ... + + +def is_stream_class_type(typ: type) -> TypeGuard[type[Stream[object]] | type[AsyncStream[object]]]: + """TypeGuard for determining whether or not the given type is a subclass of `Stream` / `AsyncStream`""" + origin = get_origin(typ) or typ + return inspect.isclass(origin) and issubclass(origin, (Stream, AsyncStream)) + + +def extract_stream_chunk_type( + stream_cls: type, + *, + failure_message: str | None = None, +) -> type: + """Given a type like `Stream[T]`, returns the generic type variable `T`. + + This also handles the case where a concrete subclass is given, e.g. + ```py + class MyStream(Stream[bytes]): + ... + + extract_stream_chunk_type(MyStream) -> bytes + ``` + """ + from ._base_client import Stream, AsyncStream + + return extract_type_var_from_base( + stream_cls, + index=0, + generic_bases=cast("tuple[type, ...]", (Stream, AsyncStream)), + failure_message=failure_message, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/_types.py b/.venv/lib/python3.12/site-packages/openai/_types.py new file mode 100644 index 00000000..a5cf207a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_types.py @@ -0,0 +1,219 @@ +from __future__ import annotations + +from os import PathLike +from typing import ( + IO, + TYPE_CHECKING, + Any, + Dict, + List, + Type, + Tuple, + Union, + Mapping, + TypeVar, + Callable, + Optional, + Sequence, +) +from typing_extensions import Set, Literal, Protocol, TypeAlias, TypedDict, override, runtime_checkable + +import httpx +import pydantic +from httpx import URL, Proxy, Timeout, Response, BaseTransport, AsyncBaseTransport + +if TYPE_CHECKING: + from ._models import BaseModel + from ._response import APIResponse, AsyncAPIResponse + from ._legacy_response import HttpxBinaryResponseContent + +Transport = BaseTransport +AsyncTransport = AsyncBaseTransport +Query = Mapping[str, object] +Body = object +AnyMapping = Mapping[str, object] +ModelT = TypeVar("ModelT", bound=pydantic.BaseModel) +_T = TypeVar("_T") + + +# Approximates httpx internal ProxiesTypes and RequestFiles types +# while adding support for `PathLike` instances +ProxiesDict = Dict["str | URL", Union[None, str, URL, Proxy]] +ProxiesTypes = Union[str, Proxy, ProxiesDict] +if TYPE_CHECKING: + Base64FileInput = Union[IO[bytes], PathLike[str]] + FileContent = Union[IO[bytes], bytes, PathLike[str]] +else: + Base64FileInput = Union[IO[bytes], PathLike] + FileContent = Union[IO[bytes], bytes, PathLike] # PathLike is not subscriptable in Python 3.8. +FileTypes = Union[ + # file (or bytes) + FileContent, + # (filename, file (or bytes)) + Tuple[Optional[str], FileContent], + # (filename, file (or bytes), content_type) + Tuple[Optional[str], FileContent, Optional[str]], + # (filename, file (or bytes), content_type, headers) + Tuple[Optional[str], FileContent, Optional[str], Mapping[str, str]], +] +RequestFiles = Union[Mapping[str, FileTypes], Sequence[Tuple[str, FileTypes]]] + +# duplicate of the above but without our custom file support +HttpxFileContent = Union[IO[bytes], bytes] +HttpxFileTypes = Union[ + # file (or bytes) + HttpxFileContent, + # (filename, file (or bytes)) + Tuple[Optional[str], HttpxFileContent], + # (filename, file (or bytes), content_type) + Tuple[Optional[str], HttpxFileContent, Optional[str]], + # (filename, file (or bytes), content_type, headers) + Tuple[Optional[str], HttpxFileContent, Optional[str], Mapping[str, str]], +] +HttpxRequestFiles = Union[Mapping[str, HttpxFileTypes], Sequence[Tuple[str, HttpxFileTypes]]] + +# Workaround to support (cast_to: Type[ResponseT]) -> ResponseT +# where ResponseT includes `None`. In order to support directly +# passing `None`, overloads would have to be defined for every +# method that uses `ResponseT` which would lead to an unacceptable +# amount of code duplication and make it unreadable. See _base_client.py +# for example usage. +# +# This unfortunately means that you will either have +# to import this type and pass it explicitly: +# +# from openai import NoneType +# client.get('/foo', cast_to=NoneType) +# +# or build it yourself: +# +# client.get('/foo', cast_to=type(None)) +if TYPE_CHECKING: + NoneType: Type[None] +else: + NoneType = type(None) + + +class RequestOptions(TypedDict, total=False): + headers: Headers + max_retries: int + timeout: float | Timeout | None + params: Query + extra_json: AnyMapping + idempotency_key: str + + +# Sentinel class used until PEP 0661 is accepted +class NotGiven: + """ + A sentinel singleton class used to distinguish omitted keyword arguments + from those passed in with the value None (which may have different behavior). + + For example: + + ```py + def get(timeout: Union[int, NotGiven, None] = NotGiven()) -> Response: ... + + + get(timeout=1) # 1s timeout + get(timeout=None) # No timeout + get() # Default timeout behavior, which may not be statically known at the method definition. + ``` + """ + + def __bool__(self) -> Literal[False]: + return False + + @override + def __repr__(self) -> str: + return "NOT_GIVEN" + + +NotGivenOr = Union[_T, NotGiven] +NOT_GIVEN = NotGiven() + + +class Omit: + """In certain situations you need to be able to represent a case where a default value has + to be explicitly removed and `None` is not an appropriate substitute, for example: + + ```py + # as the default `Content-Type` header is `application/json` that will be sent + client.post("/upload/files", files={"file": b"my raw file content"}) + + # you can't explicitly override the header as it has to be dynamically generated + # to look something like: 'multipart/form-data; boundary=0d8382fcf5f8c3be01ca2e11002d2983' + client.post(..., headers={"Content-Type": "multipart/form-data"}) + + # instead you can remove the default `application/json` header by passing Omit + client.post(..., headers={"Content-Type": Omit()}) + ``` + """ + + def __bool__(self) -> Literal[False]: + return False + + +@runtime_checkable +class ModelBuilderProtocol(Protocol): + @classmethod + def build( + cls: type[_T], + *, + response: Response, + data: object, + ) -> _T: ... + + +Headers = Mapping[str, Union[str, Omit]] + + +class HeadersLikeProtocol(Protocol): + def get(self, __key: str) -> str | None: ... + + +HeadersLike = Union[Headers, HeadersLikeProtocol] + +ResponseT = TypeVar( + "ResponseT", + bound=Union[ + object, + str, + None, + "BaseModel", + List[Any], + Dict[str, Any], + Response, + ModelBuilderProtocol, + "APIResponse[Any]", + "AsyncAPIResponse[Any]", + "HttpxBinaryResponseContent", + ], +) + +StrBytesIntFloat = Union[str, bytes, int, float] + +# Note: copied from Pydantic +# https://github.com/pydantic/pydantic/blob/6f31f8f68ef011f84357330186f603ff295312fd/pydantic/main.py#L79 +IncEx: TypeAlias = Union[Set[int], Set[str], Mapping[int, Union["IncEx", bool]], Mapping[str, Union["IncEx", bool]]] + +PostParser = Callable[[Any], Any] + + +@runtime_checkable +class InheritsGeneric(Protocol): + """Represents a type that has inherited from `Generic` + + The `__orig_bases__` property can be used to determine the resolved + type variable for a given base class. + """ + + __orig_bases__: tuple[_GenericAlias] + + +class _GenericAlias(Protocol): + __origin__: type[object] + + +class HttpxSendArgs(TypedDict, total=False): + auth: httpx.Auth diff --git a/.venv/lib/python3.12/site-packages/openai/_utils/__init__.py b/.venv/lib/python3.12/site-packages/openai/_utils/__init__.py new file mode 100644 index 00000000..bd01c088 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_utils/__init__.py @@ -0,0 +1,60 @@ +from ._logs import SensitiveHeadersFilter as SensitiveHeadersFilter +from ._sync import asyncify as asyncify +from ._proxy import LazyProxy as LazyProxy +from ._utils import ( + flatten as flatten, + is_dict as is_dict, + is_list as is_list, + is_given as is_given, + is_tuple as is_tuple, + json_safe as json_safe, + lru_cache as lru_cache, + is_mapping as is_mapping, + is_tuple_t as is_tuple_t, + parse_date as parse_date, + is_iterable as is_iterable, + is_sequence as is_sequence, + coerce_float as coerce_float, + is_mapping_t as is_mapping_t, + removeprefix as removeprefix, + removesuffix as removesuffix, + extract_files as extract_files, + is_sequence_t as is_sequence_t, + required_args as required_args, + coerce_boolean as coerce_boolean, + coerce_integer as coerce_integer, + file_from_path as file_from_path, + parse_datetime as parse_datetime, + is_azure_client as is_azure_client, + strip_not_given as strip_not_given, + deepcopy_minimal as deepcopy_minimal, + get_async_library as get_async_library, + maybe_coerce_float as maybe_coerce_float, + get_required_header as get_required_header, + maybe_coerce_boolean as maybe_coerce_boolean, + maybe_coerce_integer as maybe_coerce_integer, + is_async_azure_client as is_async_azure_client, +) +from ._typing import ( + is_list_type as is_list_type, + is_union_type as is_union_type, + extract_type_arg as extract_type_arg, + is_iterable_type as is_iterable_type, + is_required_type as is_required_type, + is_annotated_type as is_annotated_type, + is_type_alias_type as is_type_alias_type, + strip_annotated_type as strip_annotated_type, + extract_type_var_from_base as extract_type_var_from_base, +) +from ._streams import consume_sync_iterator as consume_sync_iterator, consume_async_iterator as consume_async_iterator +from ._transform import ( + PropertyInfo as PropertyInfo, + transform as transform, + async_transform as async_transform, + maybe_transform as maybe_transform, + async_maybe_transform as async_maybe_transform, +) +from ._reflection import ( + function_has_argument as function_has_argument, + assert_signatures_in_sync as assert_signatures_in_sync, +) diff --git a/.venv/lib/python3.12/site-packages/openai/_utils/_logs.py b/.venv/lib/python3.12/site-packages/openai/_utils/_logs.py new file mode 100644 index 00000000..37694693 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_utils/_logs.py @@ -0,0 +1,42 @@ +import os +import logging +from typing_extensions import override + +from ._utils import is_dict + +logger: logging.Logger = logging.getLogger("openai") +httpx_logger: logging.Logger = logging.getLogger("httpx") + + +SENSITIVE_HEADERS = {"api-key", "authorization"} + + +def _basic_config() -> None: + # e.g. [2023-10-05 14:12:26 - openai._base_client:818 - DEBUG] HTTP Request: POST http://127.0.0.1:4010/foo/bar "200 OK" + logging.basicConfig( + format="[%(asctime)s - %(name)s:%(lineno)d - %(levelname)s] %(message)s", + datefmt="%Y-%m-%d %H:%M:%S", + ) + + +def setup_logging() -> None: + env = os.environ.get("OPENAI_LOG") + if env == "debug": + _basic_config() + logger.setLevel(logging.DEBUG) + httpx_logger.setLevel(logging.DEBUG) + elif env == "info": + _basic_config() + logger.setLevel(logging.INFO) + httpx_logger.setLevel(logging.INFO) + + +class SensitiveHeadersFilter(logging.Filter): + @override + def filter(self, record: logging.LogRecord) -> bool: + if is_dict(record.args) and "headers" in record.args and is_dict(record.args["headers"]): + headers = record.args["headers"] = {**record.args["headers"]} + for header in headers: + if str(header).lower() in SENSITIVE_HEADERS: + headers[header] = "<redacted>" + return True diff --git a/.venv/lib/python3.12/site-packages/openai/_utils/_proxy.py b/.venv/lib/python3.12/site-packages/openai/_utils/_proxy.py new file mode 100644 index 00000000..ffd883e9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_utils/_proxy.py @@ -0,0 +1,62 @@ +from __future__ import annotations + +from abc import ABC, abstractmethod +from typing import Generic, TypeVar, Iterable, cast +from typing_extensions import override + +T = TypeVar("T") + + +class LazyProxy(Generic[T], ABC): + """Implements data methods to pretend that an instance is another instance. + + This includes forwarding attribute access and other methods. + """ + + # Note: we have to special case proxies that themselves return proxies + # to support using a proxy as a catch-all for any random access, e.g. `proxy.foo.bar.baz` + + def __getattr__(self, attr: str) -> object: + proxied = self.__get_proxied__() + if isinstance(proxied, LazyProxy): + return proxied # pyright: ignore + return getattr(proxied, attr) + + @override + def __repr__(self) -> str: + proxied = self.__get_proxied__() + if isinstance(proxied, LazyProxy): + return proxied.__class__.__name__ + return repr(self.__get_proxied__()) + + @override + def __str__(self) -> str: + proxied = self.__get_proxied__() + if isinstance(proxied, LazyProxy): + return proxied.__class__.__name__ + return str(proxied) + + @override + def __dir__(self) -> Iterable[str]: + proxied = self.__get_proxied__() + if isinstance(proxied, LazyProxy): + return [] + return proxied.__dir__() + + @property # type: ignore + @override + def __class__(self) -> type: # pyright: ignore + proxied = self.__get_proxied__() + if issubclass(type(proxied), LazyProxy): + return type(proxied) + return proxied.__class__ + + def __get_proxied__(self) -> T: + return self.__load__() + + def __as_proxied__(self) -> T: + """Helper method that returns the current proxy, typed as the loaded object""" + return cast(T, self) + + @abstractmethod + def __load__(self) -> T: ... diff --git a/.venv/lib/python3.12/site-packages/openai/_utils/_reflection.py b/.venv/lib/python3.12/site-packages/openai/_utils/_reflection.py new file mode 100644 index 00000000..bdaca29e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_utils/_reflection.py @@ -0,0 +1,45 @@ +from __future__ import annotations + +import inspect +from typing import Any, Callable + + +def function_has_argument(func: Callable[..., Any], arg_name: str) -> bool: + """Returns whether or not the given function has a specific parameter""" + sig = inspect.signature(func) + return arg_name in sig.parameters + + +def assert_signatures_in_sync( + source_func: Callable[..., Any], + check_func: Callable[..., Any], + *, + exclude_params: set[str] = set(), + description: str = "", +) -> None: + """Ensure that the signature of the second function matches the first.""" + + check_sig = inspect.signature(check_func) + source_sig = inspect.signature(source_func) + + errors: list[str] = [] + + for name, source_param in source_sig.parameters.items(): + if name in exclude_params: + continue + + custom_param = check_sig.parameters.get(name) + if not custom_param: + errors.append(f"the `{name}` param is missing") + continue + + if custom_param.annotation != source_param.annotation: + errors.append( + f"types for the `{name}` param are do not match; source={repr(source_param.annotation)} checking={repr(custom_param.annotation)}" + ) + continue + + if errors: + raise AssertionError( + f"{len(errors)} errors encountered when comparing signatures{description}:\n\n" + "\n\n".join(errors) + ) diff --git a/.venv/lib/python3.12/site-packages/openai/_utils/_streams.py b/.venv/lib/python3.12/site-packages/openai/_utils/_streams.py new file mode 100644 index 00000000..f4a0208f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_utils/_streams.py @@ -0,0 +1,12 @@ +from typing import Any +from typing_extensions import Iterator, AsyncIterator + + +def consume_sync_iterator(iterator: Iterator[Any]) -> None: + for _ in iterator: + ... + + +async def consume_async_iterator(iterator: AsyncIterator[Any]) -> None: + async for _ in iterator: + ... diff --git a/.venv/lib/python3.12/site-packages/openai/_utils/_sync.py b/.venv/lib/python3.12/site-packages/openai/_utils/_sync.py new file mode 100644 index 00000000..ad7ec71b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_utils/_sync.py @@ -0,0 +1,86 @@ +from __future__ import annotations + +import sys +import asyncio +import functools +import contextvars +from typing import Any, TypeVar, Callable, Awaitable +from typing_extensions import ParamSpec + +import anyio +import sniffio +import anyio.to_thread + +T_Retval = TypeVar("T_Retval") +T_ParamSpec = ParamSpec("T_ParamSpec") + + +if sys.version_info >= (3, 9): + _asyncio_to_thread = asyncio.to_thread +else: + # backport of https://docs.python.org/3/library/asyncio-task.html#asyncio.to_thread + # for Python 3.8 support + async def _asyncio_to_thread( + func: Callable[T_ParamSpec, T_Retval], /, *args: T_ParamSpec.args, **kwargs: T_ParamSpec.kwargs + ) -> Any: + """Asynchronously run function *func* in a separate thread. + + Any *args and **kwargs supplied for this function are directly passed + to *func*. Also, the current :class:`contextvars.Context` is propagated, + allowing context variables from the main thread to be accessed in the + separate thread. + + Returns a coroutine that can be awaited to get the eventual result of *func*. + """ + loop = asyncio.events.get_running_loop() + ctx = contextvars.copy_context() + func_call = functools.partial(ctx.run, func, *args, **kwargs) + return await loop.run_in_executor(None, func_call) + + +async def to_thread( + func: Callable[T_ParamSpec, T_Retval], /, *args: T_ParamSpec.args, **kwargs: T_ParamSpec.kwargs +) -> T_Retval: + if sniffio.current_async_library() == "asyncio": + return await _asyncio_to_thread(func, *args, **kwargs) + + return await anyio.to_thread.run_sync( + functools.partial(func, *args, **kwargs), + ) + + +# inspired by `asyncer`, https://github.com/tiangolo/asyncer +def asyncify(function: Callable[T_ParamSpec, T_Retval]) -> Callable[T_ParamSpec, Awaitable[T_Retval]]: + """ + Take a blocking function and create an async one that receives the same + positional and keyword arguments. For python version 3.9 and above, it uses + asyncio.to_thread to run the function in a separate thread. For python version + 3.8, it uses locally defined copy of the asyncio.to_thread function which was + introduced in python 3.9. + + Usage: + + ```python + def blocking_func(arg1, arg2, kwarg1=None): + # blocking code + return result + + + result = asyncify(blocking_function)(arg1, arg2, kwarg1=value1) + ``` + + ## Arguments + + `function`: a blocking regular callable (e.g. a function) + + ## Return + + An async function that takes the same positional and keyword arguments as the + original one, that when called runs the same original function in a thread worker + and returns the result. + """ + + async def wrapper(*args: T_ParamSpec.args, **kwargs: T_ParamSpec.kwargs) -> T_Retval: + return await to_thread(function, *args, **kwargs) + + return wrapper diff --git a/.venv/lib/python3.12/site-packages/openai/_utils/_transform.py b/.venv/lib/python3.12/site-packages/openai/_utils/_transform.py new file mode 100644 index 00000000..18afd9d8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_utils/_transform.py @@ -0,0 +1,402 @@ +from __future__ import annotations + +import io +import base64 +import pathlib +from typing import Any, Mapping, TypeVar, cast +from datetime import date, datetime +from typing_extensions import Literal, get_args, override, get_type_hints + +import anyio +import pydantic + +from ._utils import ( + is_list, + is_mapping, + is_iterable, +) +from .._files import is_base64_file_input +from ._typing import ( + is_list_type, + is_union_type, + extract_type_arg, + is_iterable_type, + is_required_type, + is_annotated_type, + strip_annotated_type, +) +from .._compat import get_origin, model_dump, is_typeddict + +_T = TypeVar("_T") + + +# TODO: support for drilling globals() and locals() +# TODO: ensure works correctly with forward references in all cases + + +PropertyFormat = Literal["iso8601", "base64", "custom"] + + +class PropertyInfo: + """Metadata class to be used in Annotated types to provide information about a given type. + + For example: + + class MyParams(TypedDict): + account_holder_name: Annotated[str, PropertyInfo(alias='accountHolderName')] + + This means that {'account_holder_name': 'Robert'} will be transformed to {'accountHolderName': 'Robert'} before being sent to the API. + """ + + alias: str | None + format: PropertyFormat | None + format_template: str | None + discriminator: str | None + + def __init__( + self, + *, + alias: str | None = None, + format: PropertyFormat | None = None, + format_template: str | None = None, + discriminator: str | None = None, + ) -> None: + self.alias = alias + self.format = format + self.format_template = format_template + self.discriminator = discriminator + + @override + def __repr__(self) -> str: + return f"{self.__class__.__name__}(alias='{self.alias}', format={self.format}, format_template='{self.format_template}', discriminator='{self.discriminator}')" + + +def maybe_transform( + data: object, + expected_type: object, +) -> Any | None: + """Wrapper over `transform()` that allows `None` to be passed. + + See `transform()` for more details. + """ + if data is None: + return None + return transform(data, expected_type) + + +# Wrapper over _transform_recursive providing fake types +def transform( + data: _T, + expected_type: object, +) -> _T: + """Transform dictionaries based off of type information from the given type, for example: + + ```py + class Params(TypedDict, total=False): + card_id: Required[Annotated[str, PropertyInfo(alias="cardID")]] + + + transformed = transform({"card_id": "<my card ID>"}, Params) + # {'cardID': '<my card ID>'} + ``` + + Any keys / data that does not have type information given will be included as is. + + It should be noted that the transformations that this function does are not represented in the type system. + """ + transformed = _transform_recursive(data, annotation=cast(type, expected_type)) + return cast(_T, transformed) + + +def _get_annotated_type(type_: type) -> type | None: + """If the given type is an `Annotated` type then it is returned, if not `None` is returned. + + This also unwraps the type when applicable, e.g. `Required[Annotated[T, ...]]` + """ + if is_required_type(type_): + # Unwrap `Required[Annotated[T, ...]]` to `Annotated[T, ...]` + type_ = get_args(type_)[0] + + if is_annotated_type(type_): + return type_ + + return None + + +def _maybe_transform_key(key: str, type_: type) -> str: + """Transform the given `data` based on the annotations provided in `type_`. + + Note: this function only looks at `Annotated` types that contain `PropertInfo` metadata. + """ + annotated_type = _get_annotated_type(type_) + if annotated_type is None: + # no `Annotated` definition for this type, no transformation needed + return key + + # ignore the first argument as it is the actual type + annotations = get_args(annotated_type)[1:] + for annotation in annotations: + if isinstance(annotation, PropertyInfo) and annotation.alias is not None: + return annotation.alias + + return key + + +def _transform_recursive( + data: object, + *, + annotation: type, + inner_type: type | None = None, +) -> object: + """Transform the given data against the expected type. + + Args: + annotation: The direct type annotation given to the particular piece of data. + This may or may not be wrapped in metadata types, e.g. `Required[T]`, `Annotated[T, ...]` etc + + inner_type: If applicable, this is the "inside" type. This is useful in certain cases where the outside type + is a container type such as `List[T]`. In that case `inner_type` should be set to `T` so that each entry in + the list can be transformed using the metadata from the container type. + + Defaults to the same value as the `annotation` argument. + """ + if inner_type is None: + inner_type = annotation + + stripped_type = strip_annotated_type(inner_type) + origin = get_origin(stripped_type) or stripped_type + if is_typeddict(stripped_type) and is_mapping(data): + return _transform_typeddict(data, stripped_type) + + if origin == dict and is_mapping(data): + items_type = get_args(stripped_type)[1] + return {key: _transform_recursive(value, annotation=items_type) for key, value in data.items()} + + if ( + # List[T] + (is_list_type(stripped_type) and is_list(data)) + # Iterable[T] + or (is_iterable_type(stripped_type) and is_iterable(data) and not isinstance(data, str)) + ): + # dicts are technically iterable, but it is an iterable on the keys of the dict and is not usually + # intended as an iterable, so we don't transform it. + if isinstance(data, dict): + return cast(object, data) + + inner_type = extract_type_arg(stripped_type, 0) + return [_transform_recursive(d, annotation=annotation, inner_type=inner_type) for d in data] + + if is_union_type(stripped_type): + # For union types we run the transformation against all subtypes to ensure that everything is transformed. + # + # TODO: there may be edge cases where the same normalized field name will transform to two different names + # in different subtypes. + for subtype in get_args(stripped_type): + data = _transform_recursive(data, annotation=annotation, inner_type=subtype) + return data + + if isinstance(data, pydantic.BaseModel): + return model_dump(data, exclude_unset=True, mode="json") + + annotated_type = _get_annotated_type(annotation) + if annotated_type is None: + return data + + # ignore the first argument as it is the actual type + annotations = get_args(annotated_type)[1:] + for annotation in annotations: + if isinstance(annotation, PropertyInfo) and annotation.format is not None: + return _format_data(data, annotation.format, annotation.format_template) + + return data + + +def _format_data(data: object, format_: PropertyFormat, format_template: str | None) -> object: + if isinstance(data, (date, datetime)): + if format_ == "iso8601": + return data.isoformat() + + if format_ == "custom" and format_template is not None: + return data.strftime(format_template) + + if format_ == "base64" and is_base64_file_input(data): + binary: str | bytes | None = None + + if isinstance(data, pathlib.Path): + binary = data.read_bytes() + elif isinstance(data, io.IOBase): + binary = data.read() + + if isinstance(binary, str): # type: ignore[unreachable] + binary = binary.encode() + + if not isinstance(binary, bytes): + raise RuntimeError(f"Could not read bytes from {data}; Received {type(binary)}") + + return base64.b64encode(binary).decode("ascii") + + return data + + +def _transform_typeddict( + data: Mapping[str, object], + expected_type: type, +) -> Mapping[str, object]: + result: dict[str, object] = {} + annotations = get_type_hints(expected_type, include_extras=True) + for key, value in data.items(): + type_ = annotations.get(key) + if type_ is None: + # we do not have a type annotation for this field, leave it as is + result[key] = value + else: + result[_maybe_transform_key(key, type_)] = _transform_recursive(value, annotation=type_) + return result + + +async def async_maybe_transform( + data: object, + expected_type: object, +) -> Any | None: + """Wrapper over `async_transform()` that allows `None` to be passed. + + See `async_transform()` for more details. + """ + if data is None: + return None + return await async_transform(data, expected_type) + + +async def async_transform( + data: _T, + expected_type: object, +) -> _T: + """Transform dictionaries based off of type information from the given type, for example: + + ```py + class Params(TypedDict, total=False): + card_id: Required[Annotated[str, PropertyInfo(alias="cardID")]] + + + transformed = transform({"card_id": "<my card ID>"}, Params) + # {'cardID': '<my card ID>'} + ``` + + Any keys / data that does not have type information given will be included as is. + + It should be noted that the transformations that this function does are not represented in the type system. + """ + transformed = await _async_transform_recursive(data, annotation=cast(type, expected_type)) + return cast(_T, transformed) + + +async def _async_transform_recursive( + data: object, + *, + annotation: type, + inner_type: type | None = None, +) -> object: + """Transform the given data against the expected type. + + Args: + annotation: The direct type annotation given to the particular piece of data. + This may or may not be wrapped in metadata types, e.g. `Required[T]`, `Annotated[T, ...]` etc + + inner_type: If applicable, this is the "inside" type. This is useful in certain cases where the outside type + is a container type such as `List[T]`. In that case `inner_type` should be set to `T` so that each entry in + the list can be transformed using the metadata from the container type. + + Defaults to the same value as the `annotation` argument. + """ + if inner_type is None: + inner_type = annotation + + stripped_type = strip_annotated_type(inner_type) + origin = get_origin(stripped_type) or stripped_type + if is_typeddict(stripped_type) and is_mapping(data): + return await _async_transform_typeddict(data, stripped_type) + + if origin == dict and is_mapping(data): + items_type = get_args(stripped_type)[1] + return {key: _transform_recursive(value, annotation=items_type) for key, value in data.items()} + + if ( + # List[T] + (is_list_type(stripped_type) and is_list(data)) + # Iterable[T] + or (is_iterable_type(stripped_type) and is_iterable(data) and not isinstance(data, str)) + ): + # dicts are technically iterable, but it is an iterable on the keys of the dict and is not usually + # intended as an iterable, so we don't transform it. + if isinstance(data, dict): + return cast(object, data) + + inner_type = extract_type_arg(stripped_type, 0) + return [await _async_transform_recursive(d, annotation=annotation, inner_type=inner_type) for d in data] + + if is_union_type(stripped_type): + # For union types we run the transformation against all subtypes to ensure that everything is transformed. + # + # TODO: there may be edge cases where the same normalized field name will transform to two different names + # in different subtypes. + for subtype in get_args(stripped_type): + data = await _async_transform_recursive(data, annotation=annotation, inner_type=subtype) + return data + + if isinstance(data, pydantic.BaseModel): + return model_dump(data, exclude_unset=True, mode="json") + + annotated_type = _get_annotated_type(annotation) + if annotated_type is None: + return data + + # ignore the first argument as it is the actual type + annotations = get_args(annotated_type)[1:] + for annotation in annotations: + if isinstance(annotation, PropertyInfo) and annotation.format is not None: + return await _async_format_data(data, annotation.format, annotation.format_template) + + return data + + +async def _async_format_data(data: object, format_: PropertyFormat, format_template: str | None) -> object: + if isinstance(data, (date, datetime)): + if format_ == "iso8601": + return data.isoformat() + + if format_ == "custom" and format_template is not None: + return data.strftime(format_template) + + if format_ == "base64" and is_base64_file_input(data): + binary: str | bytes | None = None + + if isinstance(data, pathlib.Path): + binary = await anyio.Path(data).read_bytes() + elif isinstance(data, io.IOBase): + binary = data.read() + + if isinstance(binary, str): # type: ignore[unreachable] + binary = binary.encode() + + if not isinstance(binary, bytes): + raise RuntimeError(f"Could not read bytes from {data}; Received {type(binary)}") + + return base64.b64encode(binary).decode("ascii") + + return data + + +async def _async_transform_typeddict( + data: Mapping[str, object], + expected_type: type, +) -> Mapping[str, object]: + result: dict[str, object] = {} + annotations = get_type_hints(expected_type, include_extras=True) + for key, value in data.items(): + type_ = annotations.get(key) + if type_ is None: + # we do not have a type annotation for this field, leave it as is + result[key] = value + else: + result[_maybe_transform_key(key, type_)] = await _async_transform_recursive(value, annotation=type_) + return result diff --git a/.venv/lib/python3.12/site-packages/openai/_utils/_typing.py b/.venv/lib/python3.12/site-packages/openai/_utils/_typing.py new file mode 100644 index 00000000..278749b1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_utils/_typing.py @@ -0,0 +1,149 @@ +from __future__ import annotations + +import sys +import typing +import typing_extensions +from typing import Any, TypeVar, Iterable, cast +from collections import abc as _c_abc +from typing_extensions import ( + TypeIs, + Required, + Annotated, + get_args, + get_origin, +) + +from .._types import InheritsGeneric +from .._compat import is_union as _is_union + + +def is_annotated_type(typ: type) -> bool: + return get_origin(typ) == Annotated + + +def is_list_type(typ: type) -> bool: + return (get_origin(typ) or typ) == list + + +def is_iterable_type(typ: type) -> bool: + """If the given type is `typing.Iterable[T]`""" + origin = get_origin(typ) or typ + return origin == Iterable or origin == _c_abc.Iterable + + +def is_union_type(typ: type) -> bool: + return _is_union(get_origin(typ)) + + +def is_required_type(typ: type) -> bool: + return get_origin(typ) == Required + + +def is_typevar(typ: type) -> bool: + # type ignore is required because type checkers + # think this expression will always return False + return type(typ) == TypeVar # type: ignore + + +_TYPE_ALIAS_TYPES: tuple[type[typing_extensions.TypeAliasType], ...] = (typing_extensions.TypeAliasType,) +if sys.version_info >= (3, 12): + _TYPE_ALIAS_TYPES = (*_TYPE_ALIAS_TYPES, typing.TypeAliasType) + + +def is_type_alias_type(tp: Any, /) -> TypeIs[typing_extensions.TypeAliasType]: + """Return whether the provided argument is an instance of `TypeAliasType`. + + ```python + type Int = int + is_type_alias_type(Int) + # > True + Str = TypeAliasType("Str", str) + is_type_alias_type(Str) + # > True + ``` + """ + return isinstance(tp, _TYPE_ALIAS_TYPES) + + +# Extracts T from Annotated[T, ...] or from Required[Annotated[T, ...]] +def strip_annotated_type(typ: type) -> type: + if is_required_type(typ) or is_annotated_type(typ): + return strip_annotated_type(cast(type, get_args(typ)[0])) + + return typ + + +def extract_type_arg(typ: type, index: int) -> type: + args = get_args(typ) + try: + return cast(type, args[index]) + except IndexError as err: + raise RuntimeError(f"Expected type {typ} to have a type argument at index {index} but it did not") from err + + +def extract_type_var_from_base( + typ: type, + *, + generic_bases: tuple[type, ...], + index: int, + failure_message: str | None = None, +) -> type: + """Given a type like `Foo[T]`, returns the generic type variable `T`. + + This also handles the case where a concrete subclass is given, e.g. + ```py + class MyResponse(Foo[bytes]): + ... + + extract_type_var(MyResponse, bases=(Foo,), index=0) -> bytes + ``` + + And where a generic subclass is given: + ```py + _T = TypeVar('_T') + class MyResponse(Foo[_T]): + ... + + extract_type_var(MyResponse[bytes], bases=(Foo,), index=0) -> bytes + ``` + """ + cls = cast(object, get_origin(typ) or typ) + if cls in generic_bases: + # we're given the class directly + return extract_type_arg(typ, index) + + # if a subclass is given + # --- + # this is needed as __orig_bases__ is not present in the typeshed stubs + # because it is intended to be for internal use only, however there does + # not seem to be a way to resolve generic TypeVars for inherited subclasses + # without using it. + if isinstance(cls, InheritsGeneric): + target_base_class: Any | None = None + for base in cls.__orig_bases__: + if base.__origin__ in generic_bases: + target_base_class = base + break + + if target_base_class is None: + raise RuntimeError( + "Could not find the generic base class;\n" + "This should never happen;\n" + f"Does {cls} inherit from one of {generic_bases} ?" + ) + + extracted = extract_type_arg(target_base_class, index) + if is_typevar(extracted): + # If the extracted type argument is itself a type variable + # then that means the subclass itself is generic, so we have + # to resolve the type argument from the class itself, not + # the base class. + # + # Note: if there is more than 1 type argument, the subclass could + # change the ordering of the type arguments, this is not currently + # supported. + return extract_type_arg(typ, index) + + return extracted + + raise RuntimeError(failure_message or f"Could not resolve inner type variable at index {index} for {typ}") diff --git a/.venv/lib/python3.12/site-packages/openai/_utils/_utils.py b/.venv/lib/python3.12/site-packages/openai/_utils/_utils.py new file mode 100644 index 00000000..d6734e6b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_utils/_utils.py @@ -0,0 +1,430 @@ +from __future__ import annotations + +import os +import re +import inspect +import functools +from typing import ( + TYPE_CHECKING, + Any, + Tuple, + Mapping, + TypeVar, + Callable, + Iterable, + Sequence, + cast, + overload, +) +from pathlib import Path +from datetime import date, datetime +from typing_extensions import TypeGuard + +import sniffio + +from .._types import NotGiven, FileTypes, NotGivenOr, HeadersLike +from .._compat import parse_date as parse_date, parse_datetime as parse_datetime + +_T = TypeVar("_T") +_TupleT = TypeVar("_TupleT", bound=Tuple[object, ...]) +_MappingT = TypeVar("_MappingT", bound=Mapping[str, object]) +_SequenceT = TypeVar("_SequenceT", bound=Sequence[object]) +CallableT = TypeVar("CallableT", bound=Callable[..., Any]) + +if TYPE_CHECKING: + from ..lib.azure import AzureOpenAI, AsyncAzureOpenAI + + +def flatten(t: Iterable[Iterable[_T]]) -> list[_T]: + return [item for sublist in t for item in sublist] + + +def extract_files( + # TODO: this needs to take Dict but variance issues..... + # create protocol type ? + query: Mapping[str, object], + *, + paths: Sequence[Sequence[str]], +) -> list[tuple[str, FileTypes]]: + """Recursively extract files from the given dictionary based on specified paths. + + A path may look like this ['foo', 'files', '<array>', 'data']. + + Note: this mutates the given dictionary. + """ + files: list[tuple[str, FileTypes]] = [] + for path in paths: + files.extend(_extract_items(query, path, index=0, flattened_key=None)) + return files + + +def _extract_items( + obj: object, + path: Sequence[str], + *, + index: int, + flattened_key: str | None, +) -> list[tuple[str, FileTypes]]: + try: + key = path[index] + except IndexError: + if isinstance(obj, NotGiven): + # no value was provided - we can safely ignore + return [] + + # cyclical import + from .._files import assert_is_file_content + + # We have exhausted the path, return the entry we found. + assert_is_file_content(obj, key=flattened_key) + assert flattened_key is not None + return [(flattened_key, cast(FileTypes, obj))] + + index += 1 + if is_dict(obj): + try: + # We are at the last entry in the path so we must remove the field + if (len(path)) == index: + item = obj.pop(key) + else: + item = obj[key] + except KeyError: + # Key was not present in the dictionary, this is not indicative of an error + # as the given path may not point to a required field. We also do not want + # to enforce required fields as the API may differ from the spec in some cases. + return [] + if flattened_key is None: + flattened_key = key + else: + flattened_key += f"[{key}]" + return _extract_items( + item, + path, + index=index, + flattened_key=flattened_key, + ) + elif is_list(obj): + if key != "<array>": + return [] + + return flatten( + [ + _extract_items( + item, + path, + index=index, + flattened_key=flattened_key + "[]" if flattened_key is not None else "[]", + ) + for item in obj + ] + ) + + # Something unexpected was passed, just ignore it. + return [] + + +def is_given(obj: NotGivenOr[_T]) -> TypeGuard[_T]: + return not isinstance(obj, NotGiven) + + +# Type safe methods for narrowing types with TypeVars. +# The default narrowing for isinstance(obj, dict) is dict[unknown, unknown], +# however this cause Pyright to rightfully report errors. As we know we don't +# care about the contained types we can safely use `object` in it's place. +# +# There are two separate functions defined, `is_*` and `is_*_t` for different use cases. +# `is_*` is for when you're dealing with an unknown input +# `is_*_t` is for when you're narrowing a known union type to a specific subset + + +def is_tuple(obj: object) -> TypeGuard[tuple[object, ...]]: + return isinstance(obj, tuple) + + +def is_tuple_t(obj: _TupleT | object) -> TypeGuard[_TupleT]: + return isinstance(obj, tuple) + + +def is_sequence(obj: object) -> TypeGuard[Sequence[object]]: + return isinstance(obj, Sequence) + + +def is_sequence_t(obj: _SequenceT | object) -> TypeGuard[_SequenceT]: + return isinstance(obj, Sequence) + + +def is_mapping(obj: object) -> TypeGuard[Mapping[str, object]]: + return isinstance(obj, Mapping) + + +def is_mapping_t(obj: _MappingT | object) -> TypeGuard[_MappingT]: + return isinstance(obj, Mapping) + + +def is_dict(obj: object) -> TypeGuard[dict[object, object]]: + return isinstance(obj, dict) + + +def is_list(obj: object) -> TypeGuard[list[object]]: + return isinstance(obj, list) + + +def is_iterable(obj: object) -> TypeGuard[Iterable[object]]: + return isinstance(obj, Iterable) + + +def deepcopy_minimal(item: _T) -> _T: + """Minimal reimplementation of copy.deepcopy() that will only copy certain object types: + + - mappings, e.g. `dict` + - list + + This is done for performance reasons. + """ + if is_mapping(item): + return cast(_T, {k: deepcopy_minimal(v) for k, v in item.items()}) + if is_list(item): + return cast(_T, [deepcopy_minimal(entry) for entry in item]) + return item + + +# copied from https://github.com/Rapptz/RoboDanny +def human_join(seq: Sequence[str], *, delim: str = ", ", final: str = "or") -> str: + size = len(seq) + if size == 0: + return "" + + if size == 1: + return seq[0] + + if size == 2: + return f"{seq[0]} {final} {seq[1]}" + + return delim.join(seq[:-1]) + f" {final} {seq[-1]}" + + +def quote(string: str) -> str: + """Add single quotation marks around the given string. Does *not* do any escaping.""" + return f"'{string}'" + + +def required_args(*variants: Sequence[str]) -> Callable[[CallableT], CallableT]: + """Decorator to enforce a given set of arguments or variants of arguments are passed to the decorated function. + + Useful for enforcing runtime validation of overloaded functions. + + Example usage: + ```py + @overload + def foo(*, a: str) -> str: ... + + + @overload + def foo(*, b: bool) -> str: ... + + + # This enforces the same constraints that a static type checker would + # i.e. that either a or b must be passed to the function + @required_args(["a"], ["b"]) + def foo(*, a: str | None = None, b: bool | None = None) -> str: ... + ``` + """ + + def inner(func: CallableT) -> CallableT: + params = inspect.signature(func).parameters + positional = [ + name + for name, param in params.items() + if param.kind + in { + param.POSITIONAL_ONLY, + param.POSITIONAL_OR_KEYWORD, + } + ] + + @functools.wraps(func) + def wrapper(*args: object, **kwargs: object) -> object: + given_params: set[str] = set() + for i, _ in enumerate(args): + try: + given_params.add(positional[i]) + except IndexError: + raise TypeError( + f"{func.__name__}() takes {len(positional)} argument(s) but {len(args)} were given" + ) from None + + for key in kwargs.keys(): + given_params.add(key) + + for variant in variants: + matches = all((param in given_params for param in variant)) + if matches: + break + else: # no break + if len(variants) > 1: + variations = human_join( + ["(" + human_join([quote(arg) for arg in variant], final="and") + ")" for variant in variants] + ) + msg = f"Missing required arguments; Expected either {variations} arguments to be given" + else: + assert len(variants) > 0 + + # TODO: this error message is not deterministic + missing = list(set(variants[0]) - given_params) + if len(missing) > 1: + msg = f"Missing required arguments: {human_join([quote(arg) for arg in missing])}" + else: + msg = f"Missing required argument: {quote(missing[0])}" + raise TypeError(msg) + return func(*args, **kwargs) + + return wrapper # type: ignore + + return inner + + +_K = TypeVar("_K") +_V = TypeVar("_V") + + +@overload +def strip_not_given(obj: None) -> None: ... + + +@overload +def strip_not_given(obj: Mapping[_K, _V | NotGiven]) -> dict[_K, _V]: ... + + +@overload +def strip_not_given(obj: object) -> object: ... + + +def strip_not_given(obj: object | None) -> object: + """Remove all top-level keys where their values are instances of `NotGiven`""" + if obj is None: + return None + + if not is_mapping(obj): + return obj + + return {key: value for key, value in obj.items() if not isinstance(value, NotGiven)} + + +def coerce_integer(val: str) -> int: + return int(val, base=10) + + +def coerce_float(val: str) -> float: + return float(val) + + +def coerce_boolean(val: str) -> bool: + return val == "true" or val == "1" or val == "on" + + +def maybe_coerce_integer(val: str | None) -> int | None: + if val is None: + return None + return coerce_integer(val) + + +def maybe_coerce_float(val: str | None) -> float | None: + if val is None: + return None + return coerce_float(val) + + +def maybe_coerce_boolean(val: str | None) -> bool | None: + if val is None: + return None + return coerce_boolean(val) + + +def removeprefix(string: str, prefix: str) -> str: + """Remove a prefix from a string. + + Backport of `str.removeprefix` for Python < 3.9 + """ + if string.startswith(prefix): + return string[len(prefix) :] + return string + + +def removesuffix(string: str, suffix: str) -> str: + """Remove a suffix from a string. + + Backport of `str.removesuffix` for Python < 3.9 + """ + if string.endswith(suffix): + return string[: -len(suffix)] + return string + + +def file_from_path(path: str) -> FileTypes: + contents = Path(path).read_bytes() + file_name = os.path.basename(path) + return (file_name, contents) + + +def get_required_header(headers: HeadersLike, header: str) -> str: + lower_header = header.lower() + if is_mapping_t(headers): + # mypy doesn't understand the type narrowing here + for k, v in headers.items(): # type: ignore + if k.lower() == lower_header and isinstance(v, str): + return v + + # to deal with the case where the header looks like Stainless-Event-Id + intercaps_header = re.sub(r"([^\w])(\w)", lambda pat: pat.group(1) + pat.group(2).upper(), header.capitalize()) + + for normalized_header in [header, lower_header, header.upper(), intercaps_header]: + value = headers.get(normalized_header) + if value: + return value + + raise ValueError(f"Could not find {header} header") + + +def get_async_library() -> str: + try: + return sniffio.current_async_library() + except Exception: + return "false" + + +def lru_cache(*, maxsize: int | None = 128) -> Callable[[CallableT], CallableT]: + """A version of functools.lru_cache that retains the type signature + for the wrapped function arguments. + """ + wrapper = functools.lru_cache( # noqa: TID251 + maxsize=maxsize, + ) + return cast(Any, wrapper) # type: ignore[no-any-return] + + +def json_safe(data: object) -> object: + """Translates a mapping / sequence recursively in the same fashion + as `pydantic` v2's `model_dump(mode="json")`. + """ + if is_mapping(data): + return {json_safe(key): json_safe(value) for key, value in data.items()} + + if is_iterable(data) and not isinstance(data, (str, bytes, bytearray)): + return [json_safe(item) for item in data] + + if isinstance(data, (datetime, date)): + return data.isoformat() + + return data + + +def is_azure_client(client: object) -> TypeGuard[AzureOpenAI]: + from ..lib.azure import AzureOpenAI + + return isinstance(client, AzureOpenAI) + + +def is_async_azure_client(client: object) -> TypeGuard[AsyncAzureOpenAI]: + from ..lib.azure import AsyncAzureOpenAI + + return isinstance(client, AsyncAzureOpenAI) diff --git a/.venv/lib/python3.12/site-packages/openai/_version.py b/.venv/lib/python3.12/site-packages/openai/_version.py new file mode 100644 index 00000000..a29ce4e8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_version.py @@ -0,0 +1,4 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +__title__ = "openai" +__version__ = "1.68.2" # x-release-please-version diff --git a/.venv/lib/python3.12/site-packages/openai/cli/__init__.py b/.venv/lib/python3.12/site-packages/openai/cli/__init__.py new file mode 100644 index 00000000..d453d5e1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/cli/__init__.py @@ -0,0 +1 @@ +from ._cli import main as main diff --git a/.venv/lib/python3.12/site-packages/openai/cli/_api/__init__.py b/.venv/lib/python3.12/site-packages/openai/cli/_api/__init__.py new file mode 100644 index 00000000..56a0260a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/cli/_api/__init__.py @@ -0,0 +1 @@ +from ._main import register_commands as register_commands diff --git a/.venv/lib/python3.12/site-packages/openai/cli/_api/_main.py b/.venv/lib/python3.12/site-packages/openai/cli/_api/_main.py new file mode 100644 index 00000000..fe5a5e6f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/cli/_api/_main.py @@ -0,0 +1,16 @@ +from __future__ import annotations + +from argparse import ArgumentParser + +from . import chat, audio, files, image, models, completions + + +def register_commands(parser: ArgumentParser) -> None: + subparsers = parser.add_subparsers(help="All API subcommands") + + chat.register(subparsers) + image.register(subparsers) + audio.register(subparsers) + files.register(subparsers) + models.register(subparsers) + completions.register(subparsers) diff --git a/.venv/lib/python3.12/site-packages/openai/cli/_api/audio.py b/.venv/lib/python3.12/site-packages/openai/cli/_api/audio.py new file mode 100644 index 00000000..269c67df --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/cli/_api/audio.py @@ -0,0 +1,108 @@ +from __future__ import annotations + +import sys +from typing import TYPE_CHECKING, Any, Optional, cast +from argparse import ArgumentParser + +from .._utils import get_client, print_model +from ..._types import NOT_GIVEN +from .._models import BaseModel +from .._progress import BufferReader +from ...types.audio import Transcription + +if TYPE_CHECKING: + from argparse import _SubParsersAction + + +def register(subparser: _SubParsersAction[ArgumentParser]) -> None: + # transcriptions + sub = subparser.add_parser("audio.transcriptions.create") + + # Required + sub.add_argument("-m", "--model", type=str, default="whisper-1") + sub.add_argument("-f", "--file", type=str, required=True) + # Optional + sub.add_argument("--response-format", type=str) + sub.add_argument("--language", type=str) + sub.add_argument("-t", "--temperature", type=float) + sub.add_argument("--prompt", type=str) + sub.set_defaults(func=CLIAudio.transcribe, args_model=CLITranscribeArgs) + + # translations + sub = subparser.add_parser("audio.translations.create") + + # Required + sub.add_argument("-f", "--file", type=str, required=True) + # Optional + sub.add_argument("-m", "--model", type=str, default="whisper-1") + sub.add_argument("--response-format", type=str) + # TODO: doesn't seem to be supported by the API + # sub.add_argument("--language", type=str) + sub.add_argument("-t", "--temperature", type=float) + sub.add_argument("--prompt", type=str) + sub.set_defaults(func=CLIAudio.translate, args_model=CLITranslationArgs) + + +class CLITranscribeArgs(BaseModel): + model: str + file: str + response_format: Optional[str] = None + language: Optional[str] = None + temperature: Optional[float] = None + prompt: Optional[str] = None + + +class CLITranslationArgs(BaseModel): + model: str + file: str + response_format: Optional[str] = None + language: Optional[str] = None + temperature: Optional[float] = None + prompt: Optional[str] = None + + +class CLIAudio: + @staticmethod + def transcribe(args: CLITranscribeArgs) -> None: + with open(args.file, "rb") as file_reader: + buffer_reader = BufferReader(file_reader.read(), desc="Upload progress") + + model = cast( + "Transcription | str", + get_client().audio.transcriptions.create( + file=(args.file, buffer_reader), + model=args.model, + language=args.language or NOT_GIVEN, + temperature=args.temperature or NOT_GIVEN, + prompt=args.prompt or NOT_GIVEN, + # casts required because the API is typed for enums + # but we don't want to validate that here for forwards-compat + response_format=cast(Any, args.response_format), + ), + ) + if isinstance(model, str): + sys.stdout.write(model + "\n") + else: + print_model(model) + + @staticmethod + def translate(args: CLITranslationArgs) -> None: + with open(args.file, "rb") as file_reader: + buffer_reader = BufferReader(file_reader.read(), desc="Upload progress") + + model = cast( + "Transcription | str", + get_client().audio.translations.create( + file=(args.file, buffer_reader), + model=args.model, + temperature=args.temperature or NOT_GIVEN, + prompt=args.prompt or NOT_GIVEN, + # casts required because the API is typed for enums + # but we don't want to validate that here for forwards-compat + response_format=cast(Any, args.response_format), + ), + ) + if isinstance(model, str): + sys.stdout.write(model + "\n") + else: + print_model(model) diff --git a/.venv/lib/python3.12/site-packages/openai/cli/_api/chat/__init__.py b/.venv/lib/python3.12/site-packages/openai/cli/_api/chat/__init__.py new file mode 100644 index 00000000..87d97163 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/cli/_api/chat/__init__.py @@ -0,0 +1,13 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING +from argparse import ArgumentParser + +from . import completions + +if TYPE_CHECKING: + from argparse import _SubParsersAction + + +def register(subparser: _SubParsersAction[ArgumentParser]) -> None: + completions.register(subparser) diff --git a/.venv/lib/python3.12/site-packages/openai/cli/_api/chat/completions.py b/.venv/lib/python3.12/site-packages/openai/cli/_api/chat/completions.py new file mode 100644 index 00000000..344eeff3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/cli/_api/chat/completions.py @@ -0,0 +1,160 @@ +from __future__ import annotations + +import sys +from typing import TYPE_CHECKING, List, Optional, cast +from argparse import ArgumentParser +from typing_extensions import Literal, NamedTuple + +from ..._utils import get_client +from ..._models import BaseModel +from ...._streaming import Stream +from ....types.chat import ( + ChatCompletionRole, + ChatCompletionChunk, + CompletionCreateParams, +) +from ....types.chat.completion_create_params import ( + CompletionCreateParamsStreaming, + CompletionCreateParamsNonStreaming, +) + +if TYPE_CHECKING: + from argparse import _SubParsersAction + + +def register(subparser: _SubParsersAction[ArgumentParser]) -> None: + sub = subparser.add_parser("chat.completions.create") + + sub._action_groups.pop() + req = sub.add_argument_group("required arguments") + opt = sub.add_argument_group("optional arguments") + + req.add_argument( + "-g", + "--message", + action="append", + nargs=2, + metavar=("ROLE", "CONTENT"), + help="A message in `{role} {content}` format. Use this argument multiple times to add multiple messages.", + required=True, + ) + req.add_argument( + "-m", + "--model", + help="The model to use.", + required=True, + ) + + opt.add_argument( + "-n", + "--n", + help="How many completions to generate for the conversation.", + type=int, + ) + opt.add_argument("-M", "--max-tokens", help="The maximum number of tokens to generate.", type=int) + opt.add_argument( + "-t", + "--temperature", + help="""What sampling temperature to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer. + +Mutually exclusive with `top_p`.""", + type=float, + ) + opt.add_argument( + "-P", + "--top_p", + help="""An alternative to sampling with temperature, called nucleus sampling, where the considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10%% probability mass are considered. + + Mutually exclusive with `temperature`.""", + type=float, + ) + opt.add_argument( + "--stop", + help="A stop sequence at which to stop generating tokens for the message.", + ) + opt.add_argument("--stream", help="Stream messages as they're ready.", action="store_true") + sub.set_defaults(func=CLIChatCompletion.create, args_model=CLIChatCompletionCreateArgs) + + +class CLIMessage(NamedTuple): + role: ChatCompletionRole + content: str + + +class CLIChatCompletionCreateArgs(BaseModel): + message: List[CLIMessage] + model: str + n: Optional[int] = None + max_tokens: Optional[int] = None + temperature: Optional[float] = None + top_p: Optional[float] = None + stop: Optional[str] = None + stream: bool = False + + +class CLIChatCompletion: + @staticmethod + def create(args: CLIChatCompletionCreateArgs) -> None: + params: CompletionCreateParams = { + "model": args.model, + "messages": [ + {"role": cast(Literal["user"], message.role), "content": message.content} for message in args.message + ], + # type checkers are not good at inferring union types so we have to set stream afterwards + "stream": False, + } + if args.temperature is not None: + params["temperature"] = args.temperature + if args.stop is not None: + params["stop"] = args.stop + if args.top_p is not None: + params["top_p"] = args.top_p + if args.n is not None: + params["n"] = args.n + if args.stream: + params["stream"] = args.stream # type: ignore + if args.max_tokens is not None: + params["max_tokens"] = args.max_tokens + + if args.stream: + return CLIChatCompletion._stream_create(cast(CompletionCreateParamsStreaming, params)) + + return CLIChatCompletion._create(cast(CompletionCreateParamsNonStreaming, params)) + + @staticmethod + def _create(params: CompletionCreateParamsNonStreaming) -> None: + completion = get_client().chat.completions.create(**params) + should_print_header = len(completion.choices) > 1 + for choice in completion.choices: + if should_print_header: + sys.stdout.write("===== Chat Completion {} =====\n".format(choice.index)) + + content = choice.message.content if choice.message.content is not None else "None" + sys.stdout.write(content) + + if should_print_header or not content.endswith("\n"): + sys.stdout.write("\n") + + sys.stdout.flush() + + @staticmethod + def _stream_create(params: CompletionCreateParamsStreaming) -> None: + # cast is required for mypy + stream = cast( # pyright: ignore[reportUnnecessaryCast] + Stream[ChatCompletionChunk], get_client().chat.completions.create(**params) + ) + for chunk in stream: + should_print_header = len(chunk.choices) > 1 + for choice in chunk.choices: + if should_print_header: + sys.stdout.write("===== Chat Completion {} =====\n".format(choice.index)) + + content = choice.delta.content or "" + sys.stdout.write(content) + + if should_print_header: + sys.stdout.write("\n") + + sys.stdout.flush() + + sys.stdout.write("\n") diff --git a/.venv/lib/python3.12/site-packages/openai/cli/_api/completions.py b/.venv/lib/python3.12/site-packages/openai/cli/_api/completions.py new file mode 100644 index 00000000..cbdb35bf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/cli/_api/completions.py @@ -0,0 +1,173 @@ +from __future__ import annotations + +import sys +from typing import TYPE_CHECKING, Optional, cast +from argparse import ArgumentParser +from functools import partial + +from openai.types.completion import Completion + +from .._utils import get_client +from ..._types import NOT_GIVEN, NotGivenOr +from ..._utils import is_given +from .._errors import CLIError +from .._models import BaseModel +from ..._streaming import Stream + +if TYPE_CHECKING: + from argparse import _SubParsersAction + + +def register(subparser: _SubParsersAction[ArgumentParser]) -> None: + sub = subparser.add_parser("completions.create") + + # Required + sub.add_argument( + "-m", + "--model", + help="The model to use", + required=True, + ) + + # Optional + sub.add_argument("-p", "--prompt", help="An optional prompt to complete from") + sub.add_argument("--stream", help="Stream tokens as they're ready.", action="store_true") + sub.add_argument("-M", "--max-tokens", help="The maximum number of tokens to generate", type=int) + sub.add_argument( + "-t", + "--temperature", + help="""What sampling temperature to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer. + +Mutually exclusive with `top_p`.""", + type=float, + ) + sub.add_argument( + "-P", + "--top_p", + help="""An alternative to sampling with temperature, called nucleus sampling, where the considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10%% probability mass are considered. + + Mutually exclusive with `temperature`.""", + type=float, + ) + sub.add_argument( + "-n", + "--n", + help="How many sub-completions to generate for each prompt.", + type=int, + ) + sub.add_argument( + "--logprobs", + help="Include the log probabilities on the `logprobs` most likely tokens, as well the chosen tokens. So for example, if `logprobs` is 10, the API will return a list of the 10 most likely tokens. If `logprobs` is 0, only the chosen tokens will have logprobs returned.", + type=int, + ) + sub.add_argument( + "--best_of", + help="Generates `best_of` completions server-side and returns the 'best' (the one with the highest log probability per token). Results cannot be streamed.", + type=int, + ) + sub.add_argument( + "--echo", + help="Echo back the prompt in addition to the completion", + action="store_true", + ) + sub.add_argument( + "--frequency_penalty", + help="Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.", + type=float, + ) + sub.add_argument( + "--presence_penalty", + help="Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.", + type=float, + ) + sub.add_argument("--suffix", help="The suffix that comes after a completion of inserted text.") + sub.add_argument("--stop", help="A stop sequence at which to stop generating tokens.") + sub.add_argument( + "--user", + help="A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.", + ) + # TODO: add support for logit_bias + sub.set_defaults(func=CLICompletions.create, args_model=CLICompletionCreateArgs) + + +class CLICompletionCreateArgs(BaseModel): + model: str + stream: bool = False + + prompt: Optional[str] = None + n: NotGivenOr[int] = NOT_GIVEN + stop: NotGivenOr[str] = NOT_GIVEN + user: NotGivenOr[str] = NOT_GIVEN + echo: NotGivenOr[bool] = NOT_GIVEN + suffix: NotGivenOr[str] = NOT_GIVEN + best_of: NotGivenOr[int] = NOT_GIVEN + top_p: NotGivenOr[float] = NOT_GIVEN + logprobs: NotGivenOr[int] = NOT_GIVEN + max_tokens: NotGivenOr[int] = NOT_GIVEN + temperature: NotGivenOr[float] = NOT_GIVEN + presence_penalty: NotGivenOr[float] = NOT_GIVEN + frequency_penalty: NotGivenOr[float] = NOT_GIVEN + + +class CLICompletions: + @staticmethod + def create(args: CLICompletionCreateArgs) -> None: + if is_given(args.n) and args.n > 1 and args.stream: + raise CLIError("Can't stream completions with n>1 with the current CLI") + + make_request = partial( + get_client().completions.create, + n=args.n, + echo=args.echo, + stop=args.stop, + user=args.user, + model=args.model, + top_p=args.top_p, + prompt=args.prompt, + suffix=args.suffix, + best_of=args.best_of, + logprobs=args.logprobs, + max_tokens=args.max_tokens, + temperature=args.temperature, + presence_penalty=args.presence_penalty, + frequency_penalty=args.frequency_penalty, + ) + + if args.stream: + return CLICompletions._stream_create( + # mypy doesn't understand the `partial` function but pyright does + cast(Stream[Completion], make_request(stream=True)) # pyright: ignore[reportUnnecessaryCast] + ) + + return CLICompletions._create(make_request()) + + @staticmethod + def _create(completion: Completion) -> None: + should_print_header = len(completion.choices) > 1 + for choice in completion.choices: + if should_print_header: + sys.stdout.write("===== Completion {} =====\n".format(choice.index)) + + sys.stdout.write(choice.text) + + if should_print_header or not choice.text.endswith("\n"): + sys.stdout.write("\n") + + sys.stdout.flush() + + @staticmethod + def _stream_create(stream: Stream[Completion]) -> None: + for completion in stream: + should_print_header = len(completion.choices) > 1 + for choice in sorted(completion.choices, key=lambda c: c.index): + if should_print_header: + sys.stdout.write("===== Chat Completion {} =====\n".format(choice.index)) + + sys.stdout.write(choice.text) + + if should_print_header: + sys.stdout.write("\n") + + sys.stdout.flush() + + sys.stdout.write("\n") diff --git a/.venv/lib/python3.12/site-packages/openai/cli/_api/files.py b/.venv/lib/python3.12/site-packages/openai/cli/_api/files.py new file mode 100644 index 00000000..5f3631b2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/cli/_api/files.py @@ -0,0 +1,80 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING, Any, cast +from argparse import ArgumentParser + +from .._utils import get_client, print_model +from .._models import BaseModel +from .._progress import BufferReader + +if TYPE_CHECKING: + from argparse import _SubParsersAction + + +def register(subparser: _SubParsersAction[ArgumentParser]) -> None: + sub = subparser.add_parser("files.create") + + sub.add_argument( + "-f", + "--file", + required=True, + help="File to upload", + ) + sub.add_argument( + "-p", + "--purpose", + help="Why are you uploading this file? (see https://platform.openai.com/docs/api-reference/ for purposes)", + required=True, + ) + sub.set_defaults(func=CLIFile.create, args_model=CLIFileCreateArgs) + + sub = subparser.add_parser("files.retrieve") + sub.add_argument("-i", "--id", required=True, help="The files ID") + sub.set_defaults(func=CLIFile.get, args_model=CLIFileCreateArgs) + + sub = subparser.add_parser("files.delete") + sub.add_argument("-i", "--id", required=True, help="The files ID") + sub.set_defaults(func=CLIFile.delete, args_model=CLIFileCreateArgs) + + sub = subparser.add_parser("files.list") + sub.set_defaults(func=CLIFile.list) + + +class CLIFileIDArgs(BaseModel): + id: str + + +class CLIFileCreateArgs(BaseModel): + file: str + purpose: str + + +class CLIFile: + @staticmethod + def create(args: CLIFileCreateArgs) -> None: + with open(args.file, "rb") as file_reader: + buffer_reader = BufferReader(file_reader.read(), desc="Upload progress") + + file = get_client().files.create( + file=(args.file, buffer_reader), + # casts required because the API is typed for enums + # but we don't want to validate that here for forwards-compat + purpose=cast(Any, args.purpose), + ) + print_model(file) + + @staticmethod + def get(args: CLIFileIDArgs) -> None: + file = get_client().files.retrieve(file_id=args.id) + print_model(file) + + @staticmethod + def delete(args: CLIFileIDArgs) -> None: + file = get_client().files.delete(file_id=args.id) + print_model(file) + + @staticmethod + def list() -> None: + files = get_client().files.list() + for file in files: + print_model(file) diff --git a/.venv/lib/python3.12/site-packages/openai/cli/_api/image.py b/.venv/lib/python3.12/site-packages/openai/cli/_api/image.py new file mode 100644 index 00000000..3e2a0a90 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/cli/_api/image.py @@ -0,0 +1,139 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING, Any, cast +from argparse import ArgumentParser + +from .._utils import get_client, print_model +from ..._types import NOT_GIVEN, NotGiven, NotGivenOr +from .._models import BaseModel +from .._progress import BufferReader + +if TYPE_CHECKING: + from argparse import _SubParsersAction + + +def register(subparser: _SubParsersAction[ArgumentParser]) -> None: + sub = subparser.add_parser("images.generate") + sub.add_argument("-m", "--model", type=str) + sub.add_argument("-p", "--prompt", type=str, required=True) + sub.add_argument("-n", "--num-images", type=int, default=1) + sub.add_argument("-s", "--size", type=str, default="1024x1024", help="Size of the output image") + sub.add_argument("--response-format", type=str, default="url") + sub.set_defaults(func=CLIImage.create, args_model=CLIImageCreateArgs) + + sub = subparser.add_parser("images.edit") + sub.add_argument("-m", "--model", type=str) + sub.add_argument("-p", "--prompt", type=str, required=True) + sub.add_argument("-n", "--num-images", type=int, default=1) + sub.add_argument( + "-I", + "--image", + type=str, + required=True, + help="Image to modify. Should be a local path and a PNG encoded image.", + ) + sub.add_argument("-s", "--size", type=str, default="1024x1024", help="Size of the output image") + sub.add_argument("--response-format", type=str, default="url") + sub.add_argument( + "-M", + "--mask", + type=str, + required=False, + help="Path to a mask image. It should be the same size as the image you're editing and a RGBA PNG image. The Alpha channel acts as the mask.", + ) + sub.set_defaults(func=CLIImage.edit, args_model=CLIImageEditArgs) + + sub = subparser.add_parser("images.create_variation") + sub.add_argument("-m", "--model", type=str) + sub.add_argument("-n", "--num-images", type=int, default=1) + sub.add_argument( + "-I", + "--image", + type=str, + required=True, + help="Image to modify. Should be a local path and a PNG encoded image.", + ) + sub.add_argument("-s", "--size", type=str, default="1024x1024", help="Size of the output image") + sub.add_argument("--response-format", type=str, default="url") + sub.set_defaults(func=CLIImage.create_variation, args_model=CLIImageCreateVariationArgs) + + +class CLIImageCreateArgs(BaseModel): + prompt: str + num_images: int + size: str + response_format: str + model: NotGivenOr[str] = NOT_GIVEN + + +class CLIImageCreateVariationArgs(BaseModel): + image: str + num_images: int + size: str + response_format: str + model: NotGivenOr[str] = NOT_GIVEN + + +class CLIImageEditArgs(BaseModel): + image: str + num_images: int + size: str + response_format: str + prompt: str + mask: NotGivenOr[str] = NOT_GIVEN + model: NotGivenOr[str] = NOT_GIVEN + + +class CLIImage: + @staticmethod + def create(args: CLIImageCreateArgs) -> None: + image = get_client().images.generate( + model=args.model, + prompt=args.prompt, + n=args.num_images, + # casts required because the API is typed for enums + # but we don't want to validate that here for forwards-compat + size=cast(Any, args.size), + response_format=cast(Any, args.response_format), + ) + print_model(image) + + @staticmethod + def create_variation(args: CLIImageCreateVariationArgs) -> None: + with open(args.image, "rb") as file_reader: + buffer_reader = BufferReader(file_reader.read(), desc="Upload progress") + + image = get_client().images.create_variation( + model=args.model, + image=("image", buffer_reader), + n=args.num_images, + # casts required because the API is typed for enums + # but we don't want to validate that here for forwards-compat + size=cast(Any, args.size), + response_format=cast(Any, args.response_format), + ) + print_model(image) + + @staticmethod + def edit(args: CLIImageEditArgs) -> None: + with open(args.image, "rb") as file_reader: + buffer_reader = BufferReader(file_reader.read(), desc="Image upload progress") + + if isinstance(args.mask, NotGiven): + mask: NotGivenOr[BufferReader] = NOT_GIVEN + else: + with open(args.mask, "rb") as file_reader: + mask = BufferReader(file_reader.read(), desc="Mask progress") + + image = get_client().images.edit( + model=args.model, + prompt=args.prompt, + image=("image", buffer_reader), + n=args.num_images, + mask=("mask", mask) if not isinstance(mask, NotGiven) else mask, + # casts required because the API is typed for enums + # but we don't want to validate that here for forwards-compat + size=cast(Any, args.size), + response_format=cast(Any, args.response_format), + ) + print_model(image) diff --git a/.venv/lib/python3.12/site-packages/openai/cli/_api/models.py b/.venv/lib/python3.12/site-packages/openai/cli/_api/models.py new file mode 100644 index 00000000..017218fa --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/cli/_api/models.py @@ -0,0 +1,45 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING +from argparse import ArgumentParser + +from .._utils import get_client, print_model +from .._models import BaseModel + +if TYPE_CHECKING: + from argparse import _SubParsersAction + + +def register(subparser: _SubParsersAction[ArgumentParser]) -> None: + sub = subparser.add_parser("models.list") + sub.set_defaults(func=CLIModels.list) + + sub = subparser.add_parser("models.retrieve") + sub.add_argument("-i", "--id", required=True, help="The model ID") + sub.set_defaults(func=CLIModels.get, args_model=CLIModelIDArgs) + + sub = subparser.add_parser("models.delete") + sub.add_argument("-i", "--id", required=True, help="The model ID") + sub.set_defaults(func=CLIModels.delete, args_model=CLIModelIDArgs) + + +class CLIModelIDArgs(BaseModel): + id: str + + +class CLIModels: + @staticmethod + def get(args: CLIModelIDArgs) -> None: + model = get_client().models.retrieve(model=args.id) + print_model(model) + + @staticmethod + def delete(args: CLIModelIDArgs) -> None: + model = get_client().models.delete(model=args.id) + print_model(model) + + @staticmethod + def list() -> None: + models = get_client().models.list() + for model in models: + print_model(model) diff --git a/.venv/lib/python3.12/site-packages/openai/cli/_cli.py b/.venv/lib/python3.12/site-packages/openai/cli/_cli.py new file mode 100644 index 00000000..fd165f48 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/cli/_cli.py @@ -0,0 +1,233 @@ +from __future__ import annotations + +import sys +import logging +import argparse +from typing import Any, List, Type, Optional +from typing_extensions import ClassVar + +import httpx +import pydantic + +import openai + +from . import _tools +from .. import _ApiType, __version__ +from ._api import register_commands +from ._utils import can_use_http2 +from ._errors import CLIError, display_error +from .._compat import PYDANTIC_V2, ConfigDict, model_parse +from .._models import BaseModel +from .._exceptions import APIError + +logger = logging.getLogger() +formatter = logging.Formatter("[%(asctime)s] %(message)s") +handler = logging.StreamHandler(sys.stderr) +handler.setFormatter(formatter) +logger.addHandler(handler) + + +class Arguments(BaseModel): + if PYDANTIC_V2: + model_config: ClassVar[ConfigDict] = ConfigDict( + extra="ignore", + ) + else: + + class Config(pydantic.BaseConfig): # type: ignore + extra: Any = pydantic.Extra.ignore # type: ignore + + verbosity: int + version: Optional[str] = None + + api_key: Optional[str] + api_base: Optional[str] + organization: Optional[str] + proxy: Optional[List[str]] + api_type: Optional[_ApiType] = None + api_version: Optional[str] = None + + # azure + azure_endpoint: Optional[str] = None + azure_ad_token: Optional[str] = None + + # internal, set by subparsers to parse their specific args + args_model: Optional[Type[BaseModel]] = None + + # internal, used so that subparsers can forward unknown arguments + unknown_args: List[str] = [] + allow_unknown_args: bool = False + + +def _build_parser() -> argparse.ArgumentParser: + parser = argparse.ArgumentParser(description=None, prog="openai") + parser.add_argument( + "-v", + "--verbose", + action="count", + dest="verbosity", + default=0, + help="Set verbosity.", + ) + parser.add_argument("-b", "--api-base", help="What API base url to use.") + parser.add_argument("-k", "--api-key", help="What API key to use.") + parser.add_argument("-p", "--proxy", nargs="+", help="What proxy to use.") + parser.add_argument( + "-o", + "--organization", + help="Which organization to run as (will use your default organization if not specified)", + ) + parser.add_argument( + "-t", + "--api-type", + type=str, + choices=("openai", "azure"), + help="The backend API to call, must be `openai` or `azure`", + ) + parser.add_argument( + "--api-version", + help="The Azure API version, e.g. 'https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#rest-api-versioning'", + ) + + # azure + parser.add_argument( + "--azure-endpoint", + help="The Azure endpoint, e.g. 'https://endpoint.openai.azure.com'", + ) + parser.add_argument( + "--azure-ad-token", + help="A token from Azure Active Directory, https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id", + ) + + # prints the package version + parser.add_argument( + "-V", + "--version", + action="version", + version="%(prog)s " + __version__, + ) + + def help() -> None: + parser.print_help() + + parser.set_defaults(func=help) + + subparsers = parser.add_subparsers() + sub_api = subparsers.add_parser("api", help="Direct API calls") + + register_commands(sub_api) + + sub_tools = subparsers.add_parser("tools", help="Client side tools for convenience") + _tools.register_commands(sub_tools, subparsers) + + return parser + + +def main() -> int: + try: + _main() + except (APIError, CLIError, pydantic.ValidationError) as err: + display_error(err) + return 1 + except KeyboardInterrupt: + sys.stderr.write("\n") + return 1 + return 0 + + +def _parse_args(parser: argparse.ArgumentParser) -> tuple[argparse.Namespace, Arguments, list[str]]: + # argparse by default will strip out the `--` but we want to keep it for unknown arguments + if "--" in sys.argv: + idx = sys.argv.index("--") + known_args = sys.argv[1:idx] + unknown_args = sys.argv[idx:] + else: + known_args = sys.argv[1:] + unknown_args = [] + + parsed, remaining_unknown = parser.parse_known_args(known_args) + + # append any remaining unknown arguments from the initial parsing + remaining_unknown.extend(unknown_args) + + args = model_parse(Arguments, vars(parsed)) + if not args.allow_unknown_args: + # we have to parse twice to ensure any unknown arguments + # result in an error if that behaviour is desired + parser.parse_args() + + return parsed, args, remaining_unknown + + +def _main() -> None: + parser = _build_parser() + parsed, args, unknown = _parse_args(parser) + + if args.verbosity != 0: + sys.stderr.write("Warning: --verbosity isn't supported yet\n") + + proxies: dict[str, httpx.BaseTransport] = {} + if args.proxy is not None: + for proxy in args.proxy: + key = "https://" if proxy.startswith("https") else "http://" + if key in proxies: + raise CLIError(f"Multiple {key} proxies given - only the last one would be used") + + proxies[key] = httpx.HTTPTransport(proxy=httpx.Proxy(httpx.URL(proxy))) + + http_client = httpx.Client( + mounts=proxies or None, + http2=can_use_http2(), + ) + openai.http_client = http_client + + if args.organization: + openai.organization = args.organization + + if args.api_key: + openai.api_key = args.api_key + + if args.api_base: + openai.base_url = args.api_base + + # azure + if args.api_type is not None: + openai.api_type = args.api_type + + if args.azure_endpoint is not None: + openai.azure_endpoint = args.azure_endpoint + + if args.api_version is not None: + openai.api_version = args.api_version + + if args.azure_ad_token is not None: + openai.azure_ad_token = args.azure_ad_token + + try: + if args.args_model: + parsed.func( + model_parse( + args.args_model, + { + **{ + # we omit None values so that they can be defaulted to `NotGiven` + # and we'll strip it from the API request + key: value + for key, value in vars(parsed).items() + if value is not None + }, + "unknown_args": unknown, + }, + ) + ) + else: + parsed.func() + finally: + try: + http_client.close() + except Exception: + pass + + +if __name__ == "__main__": + sys.exit(main()) diff --git a/.venv/lib/python3.12/site-packages/openai/cli/_errors.py b/.venv/lib/python3.12/site-packages/openai/cli/_errors.py new file mode 100644 index 00000000..7d0292da --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/cli/_errors.py @@ -0,0 +1,21 @@ +from __future__ import annotations + +import sys + +import pydantic + +from ._utils import Colors, organization_info +from .._exceptions import APIError, OpenAIError + + +class CLIError(OpenAIError): ... + + +class SilentCLIError(CLIError): ... + + +def display_error(err: CLIError | APIError | pydantic.ValidationError) -> None: + if isinstance(err, SilentCLIError): + return + + sys.stderr.write("{}{}Error:{} {}\n".format(organization_info(), Colors.FAIL, Colors.ENDC, err)) diff --git a/.venv/lib/python3.12/site-packages/openai/cli/_models.py b/.venv/lib/python3.12/site-packages/openai/cli/_models.py new file mode 100644 index 00000000..5583db26 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/cli/_models.py @@ -0,0 +1,17 @@ +from typing import Any +from typing_extensions import ClassVar + +import pydantic + +from .. import _models +from .._compat import PYDANTIC_V2, ConfigDict + + +class BaseModel(_models.BaseModel): + if PYDANTIC_V2: + model_config: ClassVar[ConfigDict] = ConfigDict(extra="ignore", arbitrary_types_allowed=True) + else: + + class Config(pydantic.BaseConfig): # type: ignore + extra: Any = pydantic.Extra.ignore # type: ignore + arbitrary_types_allowed: bool = True diff --git a/.venv/lib/python3.12/site-packages/openai/cli/_progress.py b/.venv/lib/python3.12/site-packages/openai/cli/_progress.py new file mode 100644 index 00000000..8a7f2525 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/cli/_progress.py @@ -0,0 +1,59 @@ +from __future__ import annotations + +import io +from typing import Callable +from typing_extensions import override + + +class CancelledError(Exception): + def __init__(self, msg: str) -> None: + self.msg = msg + super().__init__(msg) + + @override + def __str__(self) -> str: + return self.msg + + __repr__ = __str__ + + +class BufferReader(io.BytesIO): + def __init__(self, buf: bytes = b"", desc: str | None = None) -> None: + super().__init__(buf) + self._len = len(buf) + self._progress = 0 + self._callback = progress(len(buf), desc=desc) + + def __len__(self) -> int: + return self._len + + @override + def read(self, n: int | None = -1) -> bytes: + chunk = io.BytesIO.read(self, n) + self._progress += len(chunk) + + try: + self._callback(self._progress) + except Exception as e: # catches exception from the callback + raise CancelledError("The upload was cancelled: {}".format(e)) from e + + return chunk + + +def progress(total: float, desc: str | None) -> Callable[[float], None]: + import tqdm + + meter = tqdm.tqdm(total=total, unit_scale=True, desc=desc) + + def incr(progress: float) -> None: + meter.n = progress + if progress == total: + meter.close() + else: + meter.refresh() + + return incr + + +def MB(i: int) -> int: + return int(i // 1024**2) diff --git a/.venv/lib/python3.12/site-packages/openai/cli/_tools/__init__.py b/.venv/lib/python3.12/site-packages/openai/cli/_tools/__init__.py new file mode 100644 index 00000000..56a0260a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/cli/_tools/__init__.py @@ -0,0 +1 @@ +from ._main import register_commands as register_commands diff --git a/.venv/lib/python3.12/site-packages/openai/cli/_tools/_main.py b/.venv/lib/python3.12/site-packages/openai/cli/_tools/_main.py new file mode 100644 index 00000000..bd6cda40 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/cli/_tools/_main.py @@ -0,0 +1,17 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING +from argparse import ArgumentParser + +from . import migrate, fine_tunes + +if TYPE_CHECKING: + from argparse import _SubParsersAction + + +def register_commands(parser: ArgumentParser, subparser: _SubParsersAction[ArgumentParser]) -> None: + migrate.register(subparser) + + namespaced = parser.add_subparsers(title="Tools", help="Convenience client side tools") + + fine_tunes.register(namespaced) diff --git a/.venv/lib/python3.12/site-packages/openai/cli/_tools/fine_tunes.py b/.venv/lib/python3.12/site-packages/openai/cli/_tools/fine_tunes.py new file mode 100644 index 00000000..2128b889 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/cli/_tools/fine_tunes.py @@ -0,0 +1,63 @@ +from __future__ import annotations + +import sys +from typing import TYPE_CHECKING +from argparse import ArgumentParser + +from .._models import BaseModel +from ...lib._validators import ( + get_validators, + write_out_file, + read_any_format, + apply_validators, + apply_necessary_remediation, +) + +if TYPE_CHECKING: + from argparse import _SubParsersAction + + +def register(subparser: _SubParsersAction[ArgumentParser]) -> None: + sub = subparser.add_parser("fine_tunes.prepare_data") + sub.add_argument( + "-f", + "--file", + required=True, + help="JSONL, JSON, CSV, TSV, TXT or XLSX file containing prompt-completion examples to be analyzed." + "This should be the local file path.", + ) + sub.add_argument( + "-q", + "--quiet", + required=False, + action="store_true", + help="Auto accepts all suggestions, without asking for user input. To be used within scripts.", + ) + sub.set_defaults(func=prepare_data, args_model=PrepareDataArgs) + + +class PrepareDataArgs(BaseModel): + file: str + + quiet: bool + + +def prepare_data(args: PrepareDataArgs) -> None: + sys.stdout.write("Analyzing...\n") + fname = args.file + auto_accept = args.quiet + df, remediation = read_any_format(fname) + apply_necessary_remediation(None, remediation) + + validators = get_validators() + + assert df is not None + + apply_validators( + df, + fname, + remediation, + validators, + auto_accept, + write_out_file_func=write_out_file, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/cli/_tools/migrate.py b/.venv/lib/python3.12/site-packages/openai/cli/_tools/migrate.py new file mode 100644 index 00000000..841b7775 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/cli/_tools/migrate.py @@ -0,0 +1,164 @@ +from __future__ import annotations + +import os +import sys +import shutil +import tarfile +import platform +import subprocess +from typing import TYPE_CHECKING, List +from pathlib import Path +from argparse import ArgumentParser + +import httpx + +from .._errors import CLIError, SilentCLIError +from .._models import BaseModel + +if TYPE_CHECKING: + from argparse import _SubParsersAction + + +def register(subparser: _SubParsersAction[ArgumentParser]) -> None: + sub = subparser.add_parser("migrate") + sub.set_defaults(func=migrate, args_model=MigrateArgs, allow_unknown_args=True) + + sub = subparser.add_parser("grit") + sub.set_defaults(func=grit, args_model=GritArgs, allow_unknown_args=True) + + +class GritArgs(BaseModel): + # internal + unknown_args: List[str] = [] + + +def grit(args: GritArgs) -> None: + grit_path = install() + + try: + subprocess.check_call([grit_path, *args.unknown_args]) + except subprocess.CalledProcessError: + # stdout and stderr are forwarded by subprocess so an error will already + # have been displayed + raise SilentCLIError() from None + + +class MigrateArgs(BaseModel): + # internal + unknown_args: List[str] = [] + + +def migrate(args: MigrateArgs) -> None: + grit_path = install() + + try: + subprocess.check_call([grit_path, "apply", "openai", *args.unknown_args]) + except subprocess.CalledProcessError: + # stdout and stderr are forwarded by subprocess so an error will already + # have been displayed + raise SilentCLIError() from None + + +# handles downloading the Grit CLI until they provide their own PyPi package + +KEYGEN_ACCOUNT = "custodian-dev" + + +def _cache_dir() -> Path: + xdg = os.environ.get("XDG_CACHE_HOME") + if xdg is not None: + return Path(xdg) + + return Path.home() / ".cache" + + +def _debug(message: str) -> None: + if not os.environ.get("DEBUG"): + return + + sys.stdout.write(f"[DEBUG]: {message}\n") + + +def install() -> Path: + """Installs the Grit CLI and returns the location of the binary""" + if sys.platform == "win32": + raise CLIError("Windows is not supported yet in the migration CLI") + + _debug("Using Grit installer from GitHub") + + platform = "apple-darwin" if sys.platform == "darwin" else "unknown-linux-gnu" + + dir_name = _cache_dir() / "openai-python" + install_dir = dir_name / ".install" + target_dir = install_dir / "bin" + + target_path = target_dir / "grit" + temp_file = target_dir / "grit.tmp" + + if target_path.exists(): + _debug(f"{target_path} already exists") + sys.stdout.flush() + return target_path + + _debug(f"Using Grit CLI path: {target_path}") + + target_dir.mkdir(parents=True, exist_ok=True) + + if temp_file.exists(): + temp_file.unlink() + + arch = _get_arch() + _debug(f"Using architecture {arch}") + + file_name = f"grit-{arch}-{platform}" + download_url = f"https://github.com/getgrit/gritql/releases/latest/download/{file_name}.tar.gz" + + sys.stdout.write(f"Downloading Grit CLI from {download_url}\n") + with httpx.Client() as client: + download_response = client.get(download_url, follow_redirects=True) + if download_response.status_code != 200: + raise CLIError(f"Failed to download Grit CLI from {download_url}") + with open(temp_file, "wb") as file: + for chunk in download_response.iter_bytes(): + file.write(chunk) + + unpacked_dir = target_dir / "cli-bin" + unpacked_dir.mkdir(parents=True, exist_ok=True) + + with tarfile.open(temp_file, "r:gz") as archive: + if sys.version_info >= (3, 12): + archive.extractall(unpacked_dir, filter="data") + else: + archive.extractall(unpacked_dir) + + _move_files_recursively(unpacked_dir, target_dir) + + shutil.rmtree(unpacked_dir) + os.remove(temp_file) + os.chmod(target_path, 0o755) + + sys.stdout.flush() + + return target_path + + +def _move_files_recursively(source_dir: Path, target_dir: Path) -> None: + for item in source_dir.iterdir(): + if item.is_file(): + item.rename(target_dir / item.name) + elif item.is_dir(): + _move_files_recursively(item, target_dir) + + +def _get_arch() -> str: + architecture = platform.machine().lower() + + # Map the architecture names to Grit equivalents + arch_map = { + "x86_64": "x86_64", + "amd64": "x86_64", + "armv7l": "aarch64", + "arm64": "aarch64", + } + + return arch_map.get(architecture, architecture) diff --git a/.venv/lib/python3.12/site-packages/openai/cli/_utils.py b/.venv/lib/python3.12/site-packages/openai/cli/_utils.py new file mode 100644 index 00000000..673eed61 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/cli/_utils.py @@ -0,0 +1,45 @@ +from __future__ import annotations + +import sys + +import openai + +from .. import OpenAI, _load_client +from .._compat import model_json +from .._models import BaseModel + + +class Colors: + HEADER = "\033[95m" + OKBLUE = "\033[94m" + OKGREEN = "\033[92m" + WARNING = "\033[93m" + FAIL = "\033[91m" + ENDC = "\033[0m" + BOLD = "\033[1m" + UNDERLINE = "\033[4m" + + +def get_client() -> OpenAI: + return _load_client() + + +def organization_info() -> str: + organization = openai.organization + if organization is not None: + return "[organization={}] ".format(organization) + + return "" + + +def print_model(model: BaseModel) -> None: + sys.stdout.write(model_json(model, indent=2) + "\n") + + +def can_use_http2() -> bool: + try: + import h2 # type: ignore # noqa + except ImportError: + return False + + return True diff --git a/.venv/lib/python3.12/site-packages/openai/helpers/__init__.py b/.venv/lib/python3.12/site-packages/openai/helpers/__init__.py new file mode 100644 index 00000000..ab3044da --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/helpers/__init__.py @@ -0,0 +1,4 @@ +from .microphone import Microphone +from .local_audio_player import LocalAudioPlayer + +__all__ = ["Microphone", "LocalAudioPlayer"] diff --git a/.venv/lib/python3.12/site-packages/openai/helpers/local_audio_player.py b/.venv/lib/python3.12/site-packages/openai/helpers/local_audio_player.py new file mode 100644 index 00000000..eed68aa2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/helpers/local_audio_player.py @@ -0,0 +1,165 @@ +# mypy: ignore-errors +from __future__ import annotations + +import queue +import asyncio +from typing import Any, Union, Callable, AsyncGenerator, cast +from typing_extensions import TYPE_CHECKING + +from .. import _legacy_response +from .._extras import numpy as np, sounddevice as sd +from .._response import StreamedBinaryAPIResponse, AsyncStreamedBinaryAPIResponse + +if TYPE_CHECKING: + import numpy.typing as npt + +SAMPLE_RATE = 24000 + + +class LocalAudioPlayer: + def __init__( + self, + should_stop: Union[Callable[[], bool], None] = None, + ): + self.channels = 1 + self.dtype = np.float32 + self.should_stop = should_stop + + async def _tts_response_to_buffer( + self, + response: Union[ + _legacy_response.HttpxBinaryResponseContent, + AsyncStreamedBinaryAPIResponse, + StreamedBinaryAPIResponse, + ], + ) -> npt.NDArray[np.float32]: + chunks: list[bytes] = [] + if isinstance(response, _legacy_response.HttpxBinaryResponseContent) or isinstance( + response, StreamedBinaryAPIResponse + ): + for chunk in response.iter_bytes(chunk_size=1024): + if chunk: + chunks.append(chunk) + else: + async for chunk in response.iter_bytes(chunk_size=1024): + if chunk: + chunks.append(chunk) + + audio_bytes = b"".join(chunks) + audio_np = np.frombuffer(audio_bytes, dtype=np.int16).astype(np.float32) / 32767.0 + audio_np = audio_np.reshape(-1, 1) + return audio_np + + async def play( + self, + input: Union[ + npt.NDArray[np.int16], + npt.NDArray[np.float32], + _legacy_response.HttpxBinaryResponseContent, + AsyncStreamedBinaryAPIResponse, + StreamedBinaryAPIResponse, + ], + ) -> None: + audio_content: npt.NDArray[np.float32] + if isinstance(input, np.ndarray): + if input.dtype == np.int16 and self.dtype == np.float32: + audio_content = (input.astype(np.float32) / 32767.0).reshape(-1, self.channels) + elif input.dtype == np.float32: + audio_content = cast('npt.NDArray[np.float32]', input) + else: + raise ValueError(f"Unsupported dtype: {input.dtype}") + else: + audio_content = await self._tts_response_to_buffer(input) + + loop = asyncio.get_event_loop() + event = asyncio.Event() + idx = 0 + + def callback( + outdata: npt.NDArray[np.float32], + frame_count: int, + _time_info: Any, + _status: Any, + ): + nonlocal idx + + remainder = len(audio_content) - idx + if remainder == 0 or (callable(self.should_stop) and self.should_stop()): + loop.call_soon_threadsafe(event.set) + raise sd.CallbackStop + valid_frames = frame_count if remainder >= frame_count else remainder + outdata[:valid_frames] = audio_content[idx : idx + valid_frames] + outdata[valid_frames:] = 0 + idx += valid_frames + + stream = sd.OutputStream( + samplerate=SAMPLE_RATE, + callback=callback, + dtype=audio_content.dtype, + channels=audio_content.shape[1], + ) + with stream: + await event.wait() + + async def play_stream( + self, + buffer_stream: AsyncGenerator[Union[npt.NDArray[np.float32], npt.NDArray[np.int16], None], None], + ) -> None: + loop = asyncio.get_event_loop() + event = asyncio.Event() + buffer_queue: queue.Queue[Union[npt.NDArray[np.float32], npt.NDArray[np.int16], None]] = queue.Queue(maxsize=50) + + async def buffer_producer(): + async for buffer in buffer_stream: + if buffer is None: + break + await loop.run_in_executor(None, buffer_queue.put, buffer) + await loop.run_in_executor(None, buffer_queue.put, None) # Signal completion + + def callback( + outdata: npt.NDArray[np.float32], + frame_count: int, + _time_info: Any, + _status: Any, + ): + nonlocal current_buffer, buffer_pos + + frames_written = 0 + while frames_written < frame_count: + if current_buffer is None or buffer_pos >= len(current_buffer): + try: + current_buffer = buffer_queue.get(timeout=0.1) + if current_buffer is None: + loop.call_soon_threadsafe(event.set) + raise sd.CallbackStop + buffer_pos = 0 + + if current_buffer.dtype == np.int16 and self.dtype == np.float32: + current_buffer = (current_buffer.astype(np.float32) / 32767.0).reshape(-1, self.channels) + + except queue.Empty: + outdata[frames_written:] = 0 + return + + remaining_frames = len(current_buffer) - buffer_pos + frames_to_write = min(frame_count - frames_written, remaining_frames) + outdata[frames_written : frames_written + frames_to_write] = current_buffer[ + buffer_pos : buffer_pos + frames_to_write + ] + buffer_pos += frames_to_write + frames_written += frames_to_write + + current_buffer = None + buffer_pos = 0 + + producer_task = asyncio.create_task(buffer_producer()) + + with sd.OutputStream( + samplerate=SAMPLE_RATE, + channels=self.channels, + dtype=self.dtype, + callback=callback, + ): + await event.wait() + + await producer_task diff --git a/.venv/lib/python3.12/site-packages/openai/helpers/microphone.py b/.venv/lib/python3.12/site-packages/openai/helpers/microphone.py new file mode 100644 index 00000000..62a6d8d8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/helpers/microphone.py @@ -0,0 +1,100 @@ +# mypy: ignore-errors +from __future__ import annotations + +import io +import time +import wave +import asyncio +from typing import Any, Type, Union, Generic, TypeVar, Callable, overload +from typing_extensions import TYPE_CHECKING, Literal + +from .._types import FileTypes, FileContent +from .._extras import numpy as np, sounddevice as sd + +if TYPE_CHECKING: + import numpy.typing as npt + +SAMPLE_RATE = 24000 + +DType = TypeVar("DType", bound=np.generic) + + +class Microphone(Generic[DType]): + def __init__( + self, + channels: int = 1, + dtype: Type[DType] = np.int16, + should_record: Union[Callable[[], bool], None] = None, + timeout: Union[float, None] = None, + ): + self.channels = channels + self.dtype = dtype + self.should_record = should_record + self.buffer_chunks = [] + self.timeout = timeout + self.has_record_function = callable(should_record) + + def _ndarray_to_wav(self, audio_data: npt.NDArray[DType]) -> FileTypes: + buffer: FileContent = io.BytesIO() + with wave.open(buffer, "w") as wav_file: + wav_file.setnchannels(self.channels) + wav_file.setsampwidth(np.dtype(self.dtype).itemsize) + wav_file.setframerate(SAMPLE_RATE) + wav_file.writeframes(audio_data.tobytes()) + buffer.seek(0) + return ("audio.wav", buffer, "audio/wav") + + @overload + async def record(self, return_ndarray: Literal[True]) -> npt.NDArray[DType]: ... + + @overload + async def record(self, return_ndarray: Literal[False]) -> FileTypes: ... + + @overload + async def record(self, return_ndarray: None = ...) -> FileTypes: ... + + async def record(self, return_ndarray: Union[bool, None] = False) -> Union[npt.NDArray[DType], FileTypes]: + loop = asyncio.get_event_loop() + event = asyncio.Event() + self.buffer_chunks: list[npt.NDArray[DType]] = [] + start_time = time.perf_counter() + + def callback( + indata: npt.NDArray[DType], + _frame_count: int, + _time_info: Any, + _status: Any, + ): + execution_time = time.perf_counter() - start_time + reached_recording_timeout = execution_time > self.timeout if self.timeout is not None else False + if reached_recording_timeout: + loop.call_soon_threadsafe(event.set) + raise sd.CallbackStop + + should_be_recording = self.should_record() if callable(self.should_record) else True + if not should_be_recording: + loop.call_soon_threadsafe(event.set) + raise sd.CallbackStop + + self.buffer_chunks.append(indata.copy()) + + stream = sd.InputStream( + callback=callback, + dtype=self.dtype, + samplerate=SAMPLE_RATE, + channels=self.channels, + ) + with stream: + await event.wait() + + # Concatenate all chunks into a single buffer, handle empty case + concatenated_chunks: npt.NDArray[DType] = ( + np.concatenate(self.buffer_chunks, axis=0) + if len(self.buffer_chunks) > 0 + else np.array([], dtype=self.dtype) + ) + + if return_ndarray: + return concatenated_chunks + else: + return self._ndarray_to_wav(concatenated_chunks) diff --git a/.venv/lib/python3.12/site-packages/openai/lib/.keep b/.venv/lib/python3.12/site-packages/openai/lib/.keep new file mode 100644 index 00000000..5e2c99fd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/.keep @@ -0,0 +1,4 @@ +File generated from our OpenAPI spec by Stainless. + +This directory can be used to store custom files to expand the SDK. +It is ignored by Stainless code generation and its content (other than this keep file) won't be touched.
\ No newline at end of file diff --git a/.venv/lib/python3.12/site-packages/openai/lib/__init__.py b/.venv/lib/python3.12/site-packages/openai/lib/__init__.py new file mode 100644 index 00000000..5c6cb782 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/__init__.py @@ -0,0 +1,2 @@ +from ._tools import pydantic_function_tool as pydantic_function_tool +from ._parsing import ResponseFormatT as ResponseFormatT diff --git a/.venv/lib/python3.12/site-packages/openai/lib/_old_api.py b/.venv/lib/python3.12/site-packages/openai/lib/_old_api.py new file mode 100644 index 00000000..929c87e8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/_old_api.py @@ -0,0 +1,72 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING, Any +from typing_extensions import override + +from .._utils import LazyProxy +from .._exceptions import OpenAIError + +INSTRUCTIONS = """ + +You tried to access openai.{symbol}, but this is no longer supported in openai>=1.0.0 - see the README at https://github.com/openai/openai-python for the API. + +You can run `openai migrate` to automatically upgrade your codebase to use the 1.0.0 interface. + +Alternatively, you can pin your installation to the old version, e.g. `pip install openai==0.28` + +A detailed migration guide is available here: https://github.com/openai/openai-python/discussions/742 +""" + + +class APIRemovedInV1(OpenAIError): + def __init__(self, *, symbol: str) -> None: + super().__init__(INSTRUCTIONS.format(symbol=symbol)) + + +class APIRemovedInV1Proxy(LazyProxy[Any]): + def __init__(self, *, symbol: str) -> None: + super().__init__() + self._symbol = symbol + + @override + def __load__(self) -> Any: + # return the proxy until it is eventually called so that + # we don't break people that are just checking the attributes + # of a module + return self + + def __call__(self, *_args: Any, **_kwargs: Any) -> Any: + raise APIRemovedInV1(symbol=self._symbol) + + +SYMBOLS = [ + "Edit", + "File", + "Audio", + "Image", + "Model", + "Engine", + "Customer", + "FineTune", + "Embedding", + "Completion", + "Deployment", + "Moderation", + "ErrorObject", + "FineTuningJob", + "ChatCompletion", +] + +# we explicitly tell type checkers that nothing is exported +# from this file so that when we re-export the old symbols +# in `openai/__init__.py` they aren't added to the auto-complete +# suggestions given by editors +if TYPE_CHECKING: + __all__: list[str] = [] +else: + __all__ = SYMBOLS + + +__locals = locals() +for symbol in SYMBOLS: + __locals[symbol] = APIRemovedInV1Proxy(symbol=symbol) diff --git a/.venv/lib/python3.12/site-packages/openai/lib/_parsing/__init__.py b/.venv/lib/python3.12/site-packages/openai/lib/_parsing/__init__.py new file mode 100644 index 00000000..4d454c3a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/_parsing/__init__.py @@ -0,0 +1,12 @@ +from ._completions import ( + ResponseFormatT as ResponseFormatT, + has_parseable_input, + has_parseable_input as has_parseable_input, + maybe_parse_content as maybe_parse_content, + validate_input_tools as validate_input_tools, + parse_chat_completion as parse_chat_completion, + get_input_tool_by_name as get_input_tool_by_name, + solve_response_format_t as solve_response_format_t, + parse_function_tool_arguments as parse_function_tool_arguments, + type_to_response_format_param as type_to_response_format_param, +) diff --git a/.venv/lib/python3.12/site-packages/openai/lib/_parsing/_completions.py b/.venv/lib/python3.12/site-packages/openai/lib/_parsing/_completions.py new file mode 100644 index 00000000..c160070b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/_parsing/_completions.py @@ -0,0 +1,264 @@ +from __future__ import annotations + +import json +from typing import TYPE_CHECKING, Any, Iterable, cast +from typing_extensions import TypeVar, TypeGuard, assert_never + +import pydantic + +from .._tools import PydanticFunctionTool +from ..._types import NOT_GIVEN, NotGiven +from ..._utils import is_dict, is_given +from ..._compat import PYDANTIC_V2, model_parse_json +from ..._models import construct_type_unchecked +from .._pydantic import is_basemodel_type, to_strict_json_schema, is_dataclass_like_type +from ...types.chat import ( + ParsedChoice, + ChatCompletion, + ParsedFunction, + ParsedChatCompletion, + ChatCompletionMessage, + ParsedFunctionToolCall, + ChatCompletionToolParam, + ParsedChatCompletionMessage, + completion_create_params, +) +from ..._exceptions import LengthFinishReasonError, ContentFilterFinishReasonError +from ...types.shared_params import FunctionDefinition +from ...types.chat.completion_create_params import ResponseFormat as ResponseFormatParam +from ...types.chat.chat_completion_message_tool_call import Function + +ResponseFormatT = TypeVar( + "ResponseFormatT", + # if it isn't given then we don't do any parsing + default=None, +) +_default_response_format: None = None + + +def validate_input_tools( + tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN, +) -> None: + if not is_given(tools): + return + + for tool in tools: + if tool["type"] != "function": + raise ValueError( + f"Currently only `function` tool types support auto-parsing; Received `{tool['type']}`", + ) + + strict = tool["function"].get("strict") + if strict is not True: + raise ValueError( + f"`{tool['function']['name']}` is not strict. Only `strict` function tools can be auto-parsed" + ) + + +def parse_chat_completion( + *, + response_format: type[ResponseFormatT] | completion_create_params.ResponseFormat | NotGiven, + input_tools: Iterable[ChatCompletionToolParam] | NotGiven, + chat_completion: ChatCompletion | ParsedChatCompletion[object], +) -> ParsedChatCompletion[ResponseFormatT]: + if is_given(input_tools): + input_tools = [t for t in input_tools] + else: + input_tools = [] + + choices: list[ParsedChoice[ResponseFormatT]] = [] + for choice in chat_completion.choices: + if choice.finish_reason == "length": + raise LengthFinishReasonError(completion=chat_completion) + + if choice.finish_reason == "content_filter": + raise ContentFilterFinishReasonError() + + message = choice.message + + tool_calls: list[ParsedFunctionToolCall] = [] + if message.tool_calls: + for tool_call in message.tool_calls: + if tool_call.type == "function": + tool_call_dict = tool_call.to_dict() + tool_calls.append( + construct_type_unchecked( + value={ + **tool_call_dict, + "function": { + **cast(Any, tool_call_dict["function"]), + "parsed_arguments": parse_function_tool_arguments( + input_tools=input_tools, function=tool_call.function + ), + }, + }, + type_=ParsedFunctionToolCall, + ) + ) + elif TYPE_CHECKING: # type: ignore[unreachable] + assert_never(tool_call) + else: + tool_calls.append(tool_call) + + choices.append( + construct_type_unchecked( + type_=cast(Any, ParsedChoice)[solve_response_format_t(response_format)], + value={ + **choice.to_dict(), + "message": { + **message.to_dict(), + "parsed": maybe_parse_content( + response_format=response_format, + message=message, + ), + "tool_calls": tool_calls if tool_calls else None, + }, + }, + ) + ) + + return cast( + ParsedChatCompletion[ResponseFormatT], + construct_type_unchecked( + type_=cast(Any, ParsedChatCompletion)[solve_response_format_t(response_format)], + value={ + **chat_completion.to_dict(), + "choices": choices, + }, + ), + ) + + +def get_input_tool_by_name(*, input_tools: list[ChatCompletionToolParam], name: str) -> ChatCompletionToolParam | None: + return next((t for t in input_tools if t.get("function", {}).get("name") == name), None) + + +def parse_function_tool_arguments( + *, input_tools: list[ChatCompletionToolParam], function: Function | ParsedFunction +) -> object: + input_tool = get_input_tool_by_name(input_tools=input_tools, name=function.name) + if not input_tool: + return None + + input_fn = cast(object, input_tool.get("function")) + if isinstance(input_fn, PydanticFunctionTool): + return model_parse_json(input_fn.model, function.arguments) + + input_fn = cast(FunctionDefinition, input_fn) + + if not input_fn.get("strict"): + return None + + return json.loads(function.arguments) + + +def maybe_parse_content( + *, + response_format: type[ResponseFormatT] | ResponseFormatParam | NotGiven, + message: ChatCompletionMessage | ParsedChatCompletionMessage[object], +) -> ResponseFormatT | None: + if has_rich_response_format(response_format) and message.content and not message.refusal: + return _parse_content(response_format, message.content) + + return None + + +def solve_response_format_t( + response_format: type[ResponseFormatT] | ResponseFormatParam | NotGiven, +) -> type[ResponseFormatT]: + """Return the runtime type for the given response format. + + If no response format is given, or if we won't auto-parse the response format + then we default to `None`. + """ + if has_rich_response_format(response_format): + return response_format + + return cast("type[ResponseFormatT]", _default_response_format) + + +def has_parseable_input( + *, + response_format: type | ResponseFormatParam | NotGiven, + input_tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN, +) -> bool: + if has_rich_response_format(response_format): + return True + + for input_tool in input_tools or []: + if is_parseable_tool(input_tool): + return True + + return False + + +def has_rich_response_format( + response_format: type[ResponseFormatT] | ResponseFormatParam | NotGiven, +) -> TypeGuard[type[ResponseFormatT]]: + if not is_given(response_format): + return False + + if is_response_format_param(response_format): + return False + + return True + + +def is_response_format_param(response_format: object) -> TypeGuard[ResponseFormatParam]: + return is_dict(response_format) + + +def is_parseable_tool(input_tool: ChatCompletionToolParam) -> bool: + input_fn = cast(object, input_tool.get("function")) + if isinstance(input_fn, PydanticFunctionTool): + return True + + return cast(FunctionDefinition, input_fn).get("strict") or False + + +def _parse_content(response_format: type[ResponseFormatT], content: str) -> ResponseFormatT: + if is_basemodel_type(response_format): + return cast(ResponseFormatT, model_parse_json(response_format, content)) + + if is_dataclass_like_type(response_format): + if not PYDANTIC_V2: + raise TypeError(f"Non BaseModel types are only supported with Pydantic v2 - {response_format}") + + return pydantic.TypeAdapter(response_format).validate_json(content) + + raise TypeError(f"Unable to automatically parse response format type {response_format}") + + +def type_to_response_format_param( + response_format: type | completion_create_params.ResponseFormat | NotGiven, +) -> ResponseFormatParam | NotGiven: + if not is_given(response_format): + return NOT_GIVEN + + if is_response_format_param(response_format): + return response_format + + # type checkers don't narrow the negation of a `TypeGuard` as it isn't + # a safe default behaviour but we know that at this point the `response_format` + # can only be a `type` + response_format = cast(type, response_format) + + json_schema_type: type[pydantic.BaseModel] | pydantic.TypeAdapter[Any] | None = None + + if is_basemodel_type(response_format): + name = response_format.__name__ + json_schema_type = response_format + elif is_dataclass_like_type(response_format): + name = response_format.__name__ + json_schema_type = pydantic.TypeAdapter(response_format) + else: + raise TypeError(f"Unsupported response_format type - {response_format}") + + return { + "type": "json_schema", + "json_schema": { + "schema": to_strict_json_schema(json_schema_type), + "name": name, + "strict": True, + }, + } diff --git a/.venv/lib/python3.12/site-packages/openai/lib/_parsing/_responses.py b/.venv/lib/python3.12/site-packages/openai/lib/_parsing/_responses.py new file mode 100644 index 00000000..a189dcf9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/_parsing/_responses.py @@ -0,0 +1,168 @@ +from __future__ import annotations + +import json +from typing import TYPE_CHECKING, Any, List, Iterable, cast +from typing_extensions import TypeVar, assert_never + +import pydantic + +from .._tools import ResponsesPydanticFunctionTool +from ..._types import NotGiven +from ..._utils import is_given +from ..._compat import PYDANTIC_V2, model_parse_json +from ..._models import construct_type_unchecked +from .._pydantic import is_basemodel_type, is_dataclass_like_type +from ._completions import solve_response_format_t, type_to_response_format_param +from ...types.responses import ( + Response, + ToolParam, + ParsedContent, + ParsedResponse, + FunctionToolParam, + ParsedResponseOutputItem, + ParsedResponseOutputText, + ResponseFunctionToolCall, + ParsedResponseOutputMessage, + ResponseFormatTextConfigParam, + ParsedResponseFunctionToolCall, +) +from ...types.chat.completion_create_params import ResponseFormat + +TextFormatT = TypeVar( + "TextFormatT", + # if it isn't given then we don't do any parsing + default=None, +) + + +def type_to_text_format_param(type_: type) -> ResponseFormatTextConfigParam: + response_format_dict = type_to_response_format_param(type_) + assert is_given(response_format_dict) + response_format_dict = cast(ResponseFormat, response_format_dict) # pyright: ignore[reportUnnecessaryCast] + assert response_format_dict["type"] == "json_schema" + assert "schema" in response_format_dict["json_schema"] + + return { + "type": "json_schema", + "strict": True, + "name": response_format_dict["json_schema"]["name"], + "schema": response_format_dict["json_schema"]["schema"], + } + + +def parse_response( + *, + text_format: type[TextFormatT] | NotGiven, + input_tools: Iterable[ToolParam] | NotGiven | None, + response: Response | ParsedResponse[object], +) -> ParsedResponse[TextFormatT]: + solved_t = solve_response_format_t(text_format) + output_list: List[ParsedResponseOutputItem[TextFormatT]] = [] + + for output in response.output: + if output.type == "message": + content_list: List[ParsedContent[TextFormatT]] = [] + for item in output.content: + if item.type != "output_text": + content_list.append(item) + continue + + content_list.append( + construct_type_unchecked( + type_=cast(Any, ParsedResponseOutputText)[solved_t], + value={ + **item.to_dict(), + "parsed": parse_text(item.text, text_format=text_format), + }, + ) + ) + + output_list.append( + construct_type_unchecked( + type_=cast(Any, ParsedResponseOutputMessage)[solved_t], + value={ + **output.to_dict(), + "content": content_list, + }, + ) + ) + elif output.type == "function_call": + output_list.append( + construct_type_unchecked( + type_=ParsedResponseFunctionToolCall, + value={ + **output.to_dict(), + "parsed_arguments": parse_function_tool_arguments( + input_tools=input_tools, function_call=output + ), + }, + ) + ) + elif ( + output.type == "computer_call" + or output.type == "file_search_call" + or output.type == "web_search_call" + or output.type == "reasoning" + ): + output_list.append(output) + elif TYPE_CHECKING: # type: ignore + assert_never(output) + else: + output_list.append(output) + + return cast( + ParsedResponse[TextFormatT], + construct_type_unchecked( + type_=cast(Any, ParsedResponse)[solved_t], + value={ + **response.to_dict(), + "output": output_list, + }, + ), + ) + + +def parse_text(text: str, text_format: type[TextFormatT] | NotGiven) -> TextFormatT | None: + if not is_given(text_format): + return None + + if is_basemodel_type(text_format): + return cast(TextFormatT, model_parse_json(text_format, text)) + + if is_dataclass_like_type(text_format): + if not PYDANTIC_V2: + raise TypeError(f"Non BaseModel types are only supported with Pydantic v2 - {text_format}") + + return pydantic.TypeAdapter(text_format).validate_json(text) + + raise TypeError(f"Unable to automatically parse response format type {text_format}") + + +def get_input_tool_by_name(*, input_tools: Iterable[ToolParam], name: str) -> FunctionToolParam | None: + for tool in input_tools: + if tool["type"] == "function" and tool.get("name") == name: + return tool + + return None + + +def parse_function_tool_arguments( + *, + input_tools: Iterable[ToolParam] | NotGiven | None, + function_call: ParsedResponseFunctionToolCall | ResponseFunctionToolCall, +) -> object: + if input_tools is None or not is_given(input_tools): + return None + + input_tool = get_input_tool_by_name(input_tools=input_tools, name=function_call.name) + if not input_tool: + return None + + tool = cast(object, input_tool) + if isinstance(tool, ResponsesPydanticFunctionTool): + return model_parse_json(tool.model, function_call.arguments) + + if not input_tool.get("strict"): + return None + + return json.loads(function_call.arguments) diff --git a/.venv/lib/python3.12/site-packages/openai/lib/_pydantic.py b/.venv/lib/python3.12/site-packages/openai/lib/_pydantic.py new file mode 100644 index 00000000..c2d73e5f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/_pydantic.py @@ -0,0 +1,155 @@ +from __future__ import annotations + +import inspect +from typing import Any, TypeVar +from typing_extensions import TypeGuard + +import pydantic + +from .._types import NOT_GIVEN +from .._utils import is_dict as _is_dict, is_list +from .._compat import PYDANTIC_V2, model_json_schema + +_T = TypeVar("_T") + + +def to_strict_json_schema(model: type[pydantic.BaseModel] | pydantic.TypeAdapter[Any]) -> dict[str, Any]: + if inspect.isclass(model) and is_basemodel_type(model): + schema = model_json_schema(model) + elif PYDANTIC_V2 and isinstance(model, pydantic.TypeAdapter): + schema = model.json_schema() + else: + raise TypeError(f"Non BaseModel types are only supported with Pydantic v2 - {model}") + + return _ensure_strict_json_schema(schema, path=(), root=schema) + + +def _ensure_strict_json_schema( + json_schema: object, + *, + path: tuple[str, ...], + root: dict[str, object], +) -> dict[str, Any]: + """Mutates the given JSON schema to ensure it conforms to the `strict` standard + that the API expects. + """ + if not is_dict(json_schema): + raise TypeError(f"Expected {json_schema} to be a dictionary; path={path}") + + defs = json_schema.get("$defs") + if is_dict(defs): + for def_name, def_schema in defs.items(): + _ensure_strict_json_schema(def_schema, path=(*path, "$defs", def_name), root=root) + + definitions = json_schema.get("definitions") + if is_dict(definitions): + for definition_name, definition_schema in definitions.items(): + _ensure_strict_json_schema(definition_schema, path=(*path, "definitions", definition_name), root=root) + + typ = json_schema.get("type") + if typ == "object" and "additionalProperties" not in json_schema: + json_schema["additionalProperties"] = False + + # object types + # { 'type': 'object', 'properties': { 'a': {...} } } + properties = json_schema.get("properties") + if is_dict(properties): + json_schema["required"] = [prop for prop in properties.keys()] + json_schema["properties"] = { + key: _ensure_strict_json_schema(prop_schema, path=(*path, "properties", key), root=root) + for key, prop_schema in properties.items() + } + + # arrays + # { 'type': 'array', 'items': {...} } + items = json_schema.get("items") + if is_dict(items): + json_schema["items"] = _ensure_strict_json_schema(items, path=(*path, "items"), root=root) + + # unions + any_of = json_schema.get("anyOf") + if is_list(any_of): + json_schema["anyOf"] = [ + _ensure_strict_json_schema(variant, path=(*path, "anyOf", str(i)), root=root) + for i, variant in enumerate(any_of) + ] + + # intersections + all_of = json_schema.get("allOf") + if is_list(all_of): + if len(all_of) == 1: + json_schema.update(_ensure_strict_json_schema(all_of[0], path=(*path, "allOf", "0"), root=root)) + json_schema.pop("allOf") + else: + json_schema["allOf"] = [ + _ensure_strict_json_schema(entry, path=(*path, "allOf", str(i)), root=root) + for i, entry in enumerate(all_of) + ] + + # strip `None` defaults as there's no meaningful distinction here + # the schema will still be `nullable` and the model will default + # to using `None` anyway + if json_schema.get("default", NOT_GIVEN) is None: + json_schema.pop("default") + + # we can't use `$ref`s if there are also other properties defined, e.g. + # `{"$ref": "...", "description": "my description"}` + # + # so we unravel the ref + # `{"type": "string", "description": "my description"}` + ref = json_schema.get("$ref") + if ref and has_more_than_n_keys(json_schema, 1): + assert isinstance(ref, str), f"Received non-string $ref - {ref}" + + resolved = resolve_ref(root=root, ref=ref) + if not is_dict(resolved): + raise ValueError(f"Expected `$ref: {ref}` to resolved to a dictionary but got {resolved}") + + # properties from the json schema take priority over the ones on the `$ref` + json_schema.update({**resolved, **json_schema}) + json_schema.pop("$ref") + # Since the schema expanded from `$ref` might not have `additionalProperties: false` applied, + # we call `_ensure_strict_json_schema` again to fix the inlined schema and ensure it's valid. + return _ensure_strict_json_schema(json_schema, path=path, root=root) + + return json_schema + + +def resolve_ref(*, root: dict[str, object], ref: str) -> object: + if not ref.startswith("#/"): + raise ValueError(f"Unexpected $ref format {ref!r}; Does not start with #/") + + path = ref[2:].split("/") + resolved = root + for key in path: + value = resolved[key] + assert is_dict(value), f"encountered non-dictionary entry while resolving {ref} - {resolved}" + resolved = value + + return resolved + + +def is_basemodel_type(typ: type) -> TypeGuard[type[pydantic.BaseModel]]: + if not inspect.isclass(typ): + return False + return issubclass(typ, pydantic.BaseModel) + + +def is_dataclass_like_type(typ: type) -> bool: + """Returns True if the given type likely used `@pydantic.dataclass`""" + return hasattr(typ, "__pydantic_config__") + + +def is_dict(obj: object) -> TypeGuard[dict[str, object]]: + # just pretend that we know there are only `str` keys + # as that check is not worth the performance cost + return _is_dict(obj) + + +def has_more_than_n_keys(obj: dict[str, object], n: int) -> bool: + i = 0 + for _ in obj.keys(): + i += 1 + if i > n: + return True + return False diff --git a/.venv/lib/python3.12/site-packages/openai/lib/_tools.py b/.venv/lib/python3.12/site-packages/openai/lib/_tools.py new file mode 100644 index 00000000..415d7500 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/_tools.py @@ -0,0 +1,66 @@ +from __future__ import annotations + +from typing import Any, Dict, cast + +import pydantic + +from ._pydantic import to_strict_json_schema +from ..types.chat import ChatCompletionToolParam +from ..types.shared_params import FunctionDefinition +from ..types.responses.function_tool_param import FunctionToolParam as ResponsesFunctionToolParam + + +class PydanticFunctionTool(Dict[str, Any]): + """Dictionary wrapper so we can pass the given base model + throughout the entire request stack without having to special + case it. + """ + + model: type[pydantic.BaseModel] + + def __init__(self, defn: FunctionDefinition, model: type[pydantic.BaseModel]) -> None: + super().__init__(defn) + self.model = model + + def cast(self) -> FunctionDefinition: + return cast(FunctionDefinition, self) + + +class ResponsesPydanticFunctionTool(Dict[str, Any]): + model: type[pydantic.BaseModel] + + def __init__(self, tool: ResponsesFunctionToolParam, model: type[pydantic.BaseModel]) -> None: + super().__init__(tool) + self.model = model + + def cast(self) -> ResponsesFunctionToolParam: + return cast(ResponsesFunctionToolParam, self) + + +def pydantic_function_tool( + model: type[pydantic.BaseModel], + *, + name: str | None = None, # inferred from class name by default + description: str | None = None, # inferred from class docstring by default +) -> ChatCompletionToolParam: + if description is None: + # note: we intentionally don't use `.getdoc()` to avoid + # including pydantic's docstrings + description = model.__doc__ + + function = PydanticFunctionTool( + { + "name": name or model.__name__, + "strict": True, + "parameters": to_strict_json_schema(model), + }, + model, + ).cast() + + if description is not None: + function["description"] = description + + return { + "type": "function", + "function": function, + } diff --git a/.venv/lib/python3.12/site-packages/openai/lib/_validators.py b/.venv/lib/python3.12/site-packages/openai/lib/_validators.py new file mode 100644 index 00000000..cf24cd22 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/_validators.py @@ -0,0 +1,809 @@ +# pyright: basic +from __future__ import annotations + +import os +import sys +from typing import Any, TypeVar, Callable, Optional, NamedTuple +from typing_extensions import TypeAlias + +from .._extras import pandas as pd + + +class Remediation(NamedTuple): + name: str + immediate_msg: Optional[str] = None + necessary_msg: Optional[str] = None + necessary_fn: Optional[Callable[[Any], Any]] = None + optional_msg: Optional[str] = None + optional_fn: Optional[Callable[[Any], Any]] = None + error_msg: Optional[str] = None + + +OptionalDataFrameT = TypeVar("OptionalDataFrameT", bound="Optional[pd.DataFrame]") + + +def num_examples_validator(df: pd.DataFrame) -> Remediation: + """ + This validator will only print out the number of examples and recommend to the user to increase the number of examples if less than 100. + """ + MIN_EXAMPLES = 100 + optional_suggestion = ( + "" + if len(df) >= MIN_EXAMPLES + else ". In general, we recommend having at least a few hundred examples. We've found that performance tends to linearly increase for every doubling of the number of examples" + ) + immediate_msg = f"\n- Your file contains {len(df)} prompt-completion pairs{optional_suggestion}" + return Remediation(name="num_examples", immediate_msg=immediate_msg) + + +def necessary_column_validator(df: pd.DataFrame, necessary_column: str) -> Remediation: + """ + This validator will ensure that the necessary column is present in the dataframe. + """ + + def lower_case_column(df: pd.DataFrame, column: Any) -> pd.DataFrame: + cols = [c for c in df.columns if str(c).lower() == column] + df.rename(columns={cols[0]: column.lower()}, inplace=True) + return df + + immediate_msg = None + necessary_fn = None + necessary_msg = None + error_msg = None + + if necessary_column not in df.columns: + if necessary_column in [str(c).lower() for c in df.columns]: + + def lower_case_column_creator(df: pd.DataFrame) -> pd.DataFrame: + return lower_case_column(df, necessary_column) + + necessary_fn = lower_case_column_creator + immediate_msg = f"\n- The `{necessary_column}` column/key should be lowercase" + necessary_msg = f"Lower case column name to `{necessary_column}`" + else: + error_msg = f"`{necessary_column}` column/key is missing. Please make sure you name your columns/keys appropriately, then retry" + + return Remediation( + name="necessary_column", + immediate_msg=immediate_msg, + necessary_msg=necessary_msg, + necessary_fn=necessary_fn, + error_msg=error_msg, + ) + + +def additional_column_validator(df: pd.DataFrame, fields: list[str] = ["prompt", "completion"]) -> Remediation: + """ + This validator will remove additional columns from the dataframe. + """ + additional_columns = [] + necessary_msg = None + immediate_msg = None + necessary_fn = None # type: ignore + + if len(df.columns) > 2: + additional_columns = [c for c in df.columns if c not in fields] + warn_message = "" + for ac in additional_columns: + dups = [c for c in additional_columns if ac in c] + if len(dups) > 0: + warn_message += f"\n WARNING: Some of the additional columns/keys contain `{ac}` in their name. These will be ignored, and the column/key `{ac}` will be used instead. This could also result from a duplicate column/key in the provided file." + immediate_msg = f"\n- The input file should contain exactly two columns/keys per row. Additional columns/keys present are: {additional_columns}{warn_message}" + necessary_msg = f"Remove additional columns/keys: {additional_columns}" + + def necessary_fn(x: Any) -> Any: + return x[fields] + + return Remediation( + name="additional_column", + immediate_msg=immediate_msg, + necessary_msg=necessary_msg, + necessary_fn=necessary_fn, + ) + + +def non_empty_field_validator(df: pd.DataFrame, field: str = "completion") -> Remediation: + """ + This validator will ensure that no completion is empty. + """ + necessary_msg = None + necessary_fn = None # type: ignore + immediate_msg = None + + if df[field].apply(lambda x: x == "").any() or df[field].isnull().any(): + empty_rows = (df[field] == "") | (df[field].isnull()) + empty_indexes = df.reset_index().index[empty_rows].tolist() + immediate_msg = f"\n- `{field}` column/key should not contain empty strings. These are rows: {empty_indexes}" + + def necessary_fn(x: Any) -> Any: + return x[x[field] != ""].dropna(subset=[field]) + + necessary_msg = f"Remove {len(empty_indexes)} rows with empty {field}s" + + return Remediation( + name=f"empty_{field}", + immediate_msg=immediate_msg, + necessary_msg=necessary_msg, + necessary_fn=necessary_fn, + ) + + +def duplicated_rows_validator(df: pd.DataFrame, fields: list[str] = ["prompt", "completion"]) -> Remediation: + """ + This validator will suggest to the user to remove duplicate rows if they exist. + """ + duplicated_rows = df.duplicated(subset=fields) + duplicated_indexes = df.reset_index().index[duplicated_rows].tolist() + immediate_msg = None + optional_msg = None + optional_fn = None # type: ignore + + if len(duplicated_indexes) > 0: + immediate_msg = f"\n- There are {len(duplicated_indexes)} duplicated {'-'.join(fields)} sets. These are rows: {duplicated_indexes}" + optional_msg = f"Remove {len(duplicated_indexes)} duplicate rows" + + def optional_fn(x: Any) -> Any: + return x.drop_duplicates(subset=fields) + + return Remediation( + name="duplicated_rows", + immediate_msg=immediate_msg, + optional_msg=optional_msg, + optional_fn=optional_fn, + ) + + +def long_examples_validator(df: pd.DataFrame) -> Remediation: + """ + This validator will suggest to the user to remove examples that are too long. + """ + immediate_msg = None + optional_msg = None + optional_fn = None # type: ignore + + ft_type = infer_task_type(df) + if ft_type != "open-ended generation": + + def get_long_indexes(d: pd.DataFrame) -> Any: + long_examples = d.apply(lambda x: len(x.prompt) + len(x.completion) > 10000, axis=1) + return d.reset_index().index[long_examples].tolist() + + long_indexes = get_long_indexes(df) + + if len(long_indexes) > 0: + immediate_msg = f"\n- There are {len(long_indexes)} examples that are very long. These are rows: {long_indexes}\nFor conditional generation, and for classification the examples shouldn't be longer than 2048 tokens." + optional_msg = f"Remove {len(long_indexes)} long examples" + + def optional_fn(x: Any) -> Any: + long_indexes_to_drop = get_long_indexes(x) + if long_indexes != long_indexes_to_drop: + sys.stdout.write( + f"The indices of the long examples has changed as a result of a previously applied recommendation.\nThe {len(long_indexes_to_drop)} long examples to be dropped are now at the following indices: {long_indexes_to_drop}\n" + ) + return x.drop(long_indexes_to_drop) + + return Remediation( + name="long_examples", + immediate_msg=immediate_msg, + optional_msg=optional_msg, + optional_fn=optional_fn, + ) + + +def common_prompt_suffix_validator(df: pd.DataFrame) -> Remediation: + """ + This validator will suggest to add a common suffix to the prompt if one doesn't already exist in case of classification or conditional generation. + """ + error_msg = None + immediate_msg = None + optional_msg = None + optional_fn = None # type: ignore + + # Find a suffix which is not contained within the prompt otherwise + suggested_suffix = "\n\n### =>\n\n" + suffix_options = [ + " ->", + "\n\n###\n\n", + "\n\n===\n\n", + "\n\n---\n\n", + "\n\n===>\n\n", + "\n\n--->\n\n", + ] + for suffix_option in suffix_options: + if suffix_option == " ->": + if df.prompt.str.contains("\n").any(): + continue + if df.prompt.str.contains(suffix_option, regex=False).any(): + continue + suggested_suffix = suffix_option + break + display_suggested_suffix = suggested_suffix.replace("\n", "\\n") + + ft_type = infer_task_type(df) + if ft_type == "open-ended generation": + return Remediation(name="common_suffix") + + def add_suffix(x: Any, suffix: Any) -> Any: + x["prompt"] += suffix + return x + + common_suffix = get_common_xfix(df.prompt, xfix="suffix") + if (df.prompt == common_suffix).all(): + error_msg = f"All prompts are identical: `{common_suffix}`\nConsider leaving the prompts blank if you want to do open-ended generation, otherwise ensure prompts are different" + return Remediation(name="common_suffix", error_msg=error_msg) + + if common_suffix != "": + common_suffix_new_line_handled = common_suffix.replace("\n", "\\n") + immediate_msg = f"\n- All prompts end with suffix `{common_suffix_new_line_handled}`" + if len(common_suffix) > 10: + immediate_msg += f". This suffix seems very long. Consider replacing with a shorter suffix, such as `{display_suggested_suffix}`" + if df.prompt.str[: -len(common_suffix)].str.contains(common_suffix, regex=False).any(): + immediate_msg += f"\n WARNING: Some of your prompts contain the suffix `{common_suffix}` more than once. We strongly suggest that you review your prompts and add a unique suffix" + + else: + immediate_msg = "\n- Your data does not contain a common separator at the end of your prompts. Having a separator string appended to the end of the prompt makes it clearer to the fine-tuned model where the completion should begin. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples. If you intend to do open-ended generation, then you should leave the prompts empty" + + if common_suffix == "": + optional_msg = f"Add a suffix separator `{display_suggested_suffix}` to all prompts" + + def optional_fn(x: Any) -> Any: + return add_suffix(x, suggested_suffix) + + return Remediation( + name="common_completion_suffix", + immediate_msg=immediate_msg, + optional_msg=optional_msg, + optional_fn=optional_fn, + error_msg=error_msg, + ) + + +def common_prompt_prefix_validator(df: pd.DataFrame) -> Remediation: + """ + This validator will suggest to remove a common prefix from the prompt if a long one exist. + """ + MAX_PREFIX_LEN = 12 + + immediate_msg = None + optional_msg = None + optional_fn = None # type: ignore + + common_prefix = get_common_xfix(df.prompt, xfix="prefix") + if common_prefix == "": + return Remediation(name="common_prefix") + + def remove_common_prefix(x: Any, prefix: Any) -> Any: + x["prompt"] = x["prompt"].str[len(prefix) :] + return x + + if (df.prompt == common_prefix).all(): + # already handled by common_suffix_validator + return Remediation(name="common_prefix") + + if common_prefix != "": + immediate_msg = f"\n- All prompts start with prefix `{common_prefix}`" + if MAX_PREFIX_LEN < len(common_prefix): + immediate_msg += ". Fine-tuning doesn't require the instruction specifying the task, or a few-shot example scenario. Most of the time you should only add the input data into the prompt, and the desired output into the completion" + optional_msg = f"Remove prefix `{common_prefix}` from all prompts" + + def optional_fn(x: Any) -> Any: + return remove_common_prefix(x, common_prefix) + + return Remediation( + name="common_prompt_prefix", + immediate_msg=immediate_msg, + optional_msg=optional_msg, + optional_fn=optional_fn, + ) + + +def common_completion_prefix_validator(df: pd.DataFrame) -> Remediation: + """ + This validator will suggest to remove a common prefix from the completion if a long one exist. + """ + MAX_PREFIX_LEN = 5 + + common_prefix = get_common_xfix(df.completion, xfix="prefix") + ws_prefix = len(common_prefix) > 0 and common_prefix[0] == " " + if len(common_prefix) < MAX_PREFIX_LEN: + return Remediation(name="common_prefix") + + def remove_common_prefix(x: Any, prefix: Any, ws_prefix: Any) -> Any: + x["completion"] = x["completion"].str[len(prefix) :] + if ws_prefix: + # keep the single whitespace as prefix + x["completion"] = f" {x['completion']}" + return x + + if (df.completion == common_prefix).all(): + # already handled by common_suffix_validator + return Remediation(name="common_prefix") + + immediate_msg = f"\n- All completions start with prefix `{common_prefix}`. Most of the time you should only add the output data into the completion, without any prefix" + optional_msg = f"Remove prefix `{common_prefix}` from all completions" + + def optional_fn(x: Any) -> Any: + return remove_common_prefix(x, common_prefix, ws_prefix) + + return Remediation( + name="common_completion_prefix", + immediate_msg=immediate_msg, + optional_msg=optional_msg, + optional_fn=optional_fn, + ) + + +def common_completion_suffix_validator(df: pd.DataFrame) -> Remediation: + """ + This validator will suggest to add a common suffix to the completion if one doesn't already exist in case of classification or conditional generation. + """ + error_msg = None + immediate_msg = None + optional_msg = None + optional_fn = None # type: ignore + + ft_type = infer_task_type(df) + if ft_type == "open-ended generation" or ft_type == "classification": + return Remediation(name="common_suffix") + + common_suffix = get_common_xfix(df.completion, xfix="suffix") + if (df.completion == common_suffix).all(): + error_msg = f"All completions are identical: `{common_suffix}`\nEnsure completions are different, otherwise the model will just repeat `{common_suffix}`" + return Remediation(name="common_suffix", error_msg=error_msg) + + # Find a suffix which is not contained within the completion otherwise + suggested_suffix = " [END]" + suffix_options = [ + "\n", + ".", + " END", + "***", + "+++", + "&&&", + "$$$", + "@@@", + "%%%", + ] + for suffix_option in suffix_options: + if df.completion.str.contains(suffix_option, regex=False).any(): + continue + suggested_suffix = suffix_option + break + display_suggested_suffix = suggested_suffix.replace("\n", "\\n") + + def add_suffix(x: Any, suffix: Any) -> Any: + x["completion"] += suffix + return x + + if common_suffix != "": + common_suffix_new_line_handled = common_suffix.replace("\n", "\\n") + immediate_msg = f"\n- All completions end with suffix `{common_suffix_new_line_handled}`" + if len(common_suffix) > 10: + immediate_msg += f". This suffix seems very long. Consider replacing with a shorter suffix, such as `{display_suggested_suffix}`" + if df.completion.str[: -len(common_suffix)].str.contains(common_suffix, regex=False).any(): + immediate_msg += f"\n WARNING: Some of your completions contain the suffix `{common_suffix}` more than once. We suggest that you review your completions and add a unique ending" + + else: + immediate_msg = "\n- Your data does not contain a common ending at the end of your completions. Having a common ending string appended to the end of the completion makes it clearer to the fine-tuned model where the completion should end. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples." + + if common_suffix == "": + optional_msg = f"Add a suffix ending `{display_suggested_suffix}` to all completions" + + def optional_fn(x: Any) -> Any: + return add_suffix(x, suggested_suffix) + + return Remediation( + name="common_completion_suffix", + immediate_msg=immediate_msg, + optional_msg=optional_msg, + optional_fn=optional_fn, + error_msg=error_msg, + ) + + +def completions_space_start_validator(df: pd.DataFrame) -> Remediation: + """ + This validator will suggest to add a space at the start of the completion if it doesn't already exist. This helps with tokenization. + """ + + def add_space_start(x: Any) -> Any: + x["completion"] = x["completion"].apply(lambda s: ("" if s.startswith(" ") else " ") + s) + return x + + optional_msg = None + optional_fn = None + immediate_msg = None + + if df.completion.str[:1].nunique() != 1 or df.completion.values[0][0] != " ": + immediate_msg = "\n- The completion should start with a whitespace character (` `). This tends to produce better results due to the tokenization we use. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more details" + optional_msg = "Add a whitespace character to the beginning of the completion" + optional_fn = add_space_start + return Remediation( + name="completion_space_start", + immediate_msg=immediate_msg, + optional_msg=optional_msg, + optional_fn=optional_fn, + ) + + +def lower_case_validator(df: pd.DataFrame, column: Any) -> Remediation | None: + """ + This validator will suggest to lowercase the column values, if more than a third of letters are uppercase. + """ + + def lower_case(x: Any) -> Any: + x[column] = x[column].str.lower() + return x + + count_upper = df[column].apply(lambda x: sum(1 for c in x if c.isalpha() and c.isupper())).sum() + count_lower = df[column].apply(lambda x: sum(1 for c in x if c.isalpha() and c.islower())).sum() + + if count_upper * 2 > count_lower: + return Remediation( + name="lower_case", + immediate_msg=f"\n- More than a third of your `{column}` column/key is uppercase. Uppercase {column}s tends to perform worse than a mixture of case encountered in normal language. We recommend to lower case the data if that makes sense in your domain. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more details", + optional_msg=f"Lowercase all your data in column/key `{column}`", + optional_fn=lower_case, + ) + return None + + +def read_any_format( + fname: str, fields: list[str] = ["prompt", "completion"] +) -> tuple[pd.DataFrame | None, Remediation]: + """ + This function will read a file saved in .csv, .json, .txt, .xlsx or .tsv format using pandas. + - for .xlsx it will read the first sheet + - for .txt it will assume completions and split on newline + """ + remediation = None + necessary_msg = None + immediate_msg = None + error_msg = None + df = None + + if os.path.isfile(fname): + try: + if fname.lower().endswith(".csv") or fname.lower().endswith(".tsv"): + file_extension_str, separator = ("CSV", ",") if fname.lower().endswith(".csv") else ("TSV", "\t") + immediate_msg = ( + f"\n- Based on your file extension, your file is formatted as a {file_extension_str} file" + ) + necessary_msg = f"Your format `{file_extension_str}` will be converted to `JSONL`" + df = pd.read_csv(fname, sep=separator, dtype=str).fillna("") + elif fname.lower().endswith(".xlsx"): + immediate_msg = "\n- Based on your file extension, your file is formatted as an Excel file" + necessary_msg = "Your format `XLSX` will be converted to `JSONL`" + xls = pd.ExcelFile(fname) + sheets = xls.sheet_names + if len(sheets) > 1: + immediate_msg += "\n- Your Excel file contains more than one sheet. Please either save as csv or ensure all data is present in the first sheet. WARNING: Reading only the first sheet..." + df = pd.read_excel(fname, dtype=str).fillna("") + elif fname.lower().endswith(".txt"): + immediate_msg = "\n- Based on your file extension, you provided a text file" + necessary_msg = "Your format `TXT` will be converted to `JSONL`" + with open(fname, "r") as f: + content = f.read() + df = pd.DataFrame( + [["", line] for line in content.split("\n")], + columns=fields, + dtype=str, + ).fillna("") + elif fname.lower().endswith(".jsonl"): + df = pd.read_json(fname, lines=True, dtype=str).fillna("") # type: ignore + if len(df) == 1: # type: ignore + # this is NOT what we expect for a .jsonl file + immediate_msg = "\n- Your JSONL file appears to be in a JSON format. Your file will be converted to JSONL format" + necessary_msg = "Your format `JSON` will be converted to `JSONL`" + df = pd.read_json(fname, dtype=str).fillna("") # type: ignore + else: + pass # this is what we expect for a .jsonl file + elif fname.lower().endswith(".json"): + try: + # to handle case where .json file is actually a .jsonl file + df = pd.read_json(fname, lines=True, dtype=str).fillna("") # type: ignore + if len(df) == 1: # type: ignore + # this code path corresponds to a .json file that has one line + df = pd.read_json(fname, dtype=str).fillna("") # type: ignore + else: + # this is NOT what we expect for a .json file + immediate_msg = "\n- Your JSON file appears to be in a JSONL format. Your file will be converted to JSONL format" + necessary_msg = "Your format `JSON` will be converted to `JSONL`" + except ValueError: + # this code path corresponds to a .json file that has multiple lines (i.e. it is indented) + df = pd.read_json(fname, dtype=str).fillna("") # type: ignore + else: + error_msg = ( + "Your file must have one of the following extensions: .CSV, .TSV, .XLSX, .TXT, .JSON or .JSONL" + ) + if "." in fname: + error_msg += f" Your file `{fname}` ends with the extension `.{fname.split('.')[-1]}` which is not supported." + else: + error_msg += f" Your file `{fname}` is missing a file extension." + + except (ValueError, TypeError): + file_extension_str = fname.split(".")[-1].upper() + error_msg = f"Your file `{fname}` does not appear to be in valid {file_extension_str} format. Please ensure your file is formatted as a valid {file_extension_str} file." + + else: + error_msg = f"File {fname} does not exist." + + remediation = Remediation( + name="read_any_format", + necessary_msg=necessary_msg, + immediate_msg=immediate_msg, + error_msg=error_msg, + ) + return df, remediation + + +def format_inferrer_validator(df: pd.DataFrame) -> Remediation: + """ + This validator will infer the likely fine-tuning format of the data, and display it to the user if it is classification. + It will also suggest to use ada and explain train/validation split benefits. + """ + ft_type = infer_task_type(df) + immediate_msg = None + if ft_type == "classification": + immediate_msg = f"\n- Based on your data it seems like you're trying to fine-tune a model for {ft_type}\n- For classification, we recommend you try one of the faster and cheaper models, such as `ada`\n- For classification, you can estimate the expected model performance by keeping a held out dataset, which is not used for training" + return Remediation(name="num_examples", immediate_msg=immediate_msg) + + +def apply_necessary_remediation(df: OptionalDataFrameT, remediation: Remediation) -> OptionalDataFrameT: + """ + This function will apply a necessary remediation to a dataframe, or print an error message if one exists. + """ + if remediation.error_msg is not None: + sys.stderr.write(f"\n\nERROR in {remediation.name} validator: {remediation.error_msg}\n\nAborting...") + sys.exit(1) + if remediation.immediate_msg is not None: + sys.stdout.write(remediation.immediate_msg) + if remediation.necessary_fn is not None: + df = remediation.necessary_fn(df) + return df + + +def accept_suggestion(input_text: str, auto_accept: bool) -> bool: + sys.stdout.write(input_text) + if auto_accept: + sys.stdout.write("Y\n") + return True + return input().lower() != "n" + + +def apply_optional_remediation( + df: pd.DataFrame, remediation: Remediation, auto_accept: bool +) -> tuple[pd.DataFrame, bool]: + """ + This function will apply an optional remediation to a dataframe, based on the user input. + """ + optional_applied = False + input_text = f"- [Recommended] {remediation.optional_msg} [Y/n]: " + if remediation.optional_msg is not None: + if accept_suggestion(input_text, auto_accept): + assert remediation.optional_fn is not None + df = remediation.optional_fn(df) + optional_applied = True + if remediation.necessary_msg is not None: + sys.stdout.write(f"- [Necessary] {remediation.necessary_msg}\n") + return df, optional_applied + + +def estimate_fine_tuning_time(df: pd.DataFrame) -> None: + """ + Estimate the time it'll take to fine-tune the dataset + """ + ft_format = infer_task_type(df) + expected_time = 1.0 + if ft_format == "classification": + num_examples = len(df) + expected_time = num_examples * 1.44 + else: + size = df.memory_usage(index=True).sum() + expected_time = size * 0.0515 + + def format_time(time: float) -> str: + if time < 60: + return f"{round(time, 2)} seconds" + elif time < 3600: + return f"{round(time / 60, 2)} minutes" + elif time < 86400: + return f"{round(time / 3600, 2)} hours" + else: + return f"{round(time / 86400, 2)} days" + + time_string = format_time(expected_time + 140) + sys.stdout.write( + f"Once your model starts training, it'll approximately take {time_string} to train a `curie` model, and less for `ada` and `babbage`. Queue will approximately take half an hour per job ahead of you.\n" + ) + + +def get_outfnames(fname: str, split: bool) -> list[str]: + suffixes = ["_train", "_valid"] if split else [""] + i = 0 + while True: + index_suffix = f" ({i})" if i > 0 else "" + candidate_fnames = [f"{os.path.splitext(fname)[0]}_prepared{suffix}{index_suffix}.jsonl" for suffix in suffixes] + if not any(os.path.isfile(f) for f in candidate_fnames): + return candidate_fnames + i += 1 + + +def get_classification_hyperparams(df: pd.DataFrame) -> tuple[int, object]: + n_classes = df.completion.nunique() + pos_class = None + if n_classes == 2: + pos_class = df.completion.value_counts().index[0] + return n_classes, pos_class + + +def write_out_file(df: pd.DataFrame, fname: str, any_remediations: bool, auto_accept: bool) -> None: + """ + This function will write out a dataframe to a file, if the user would like to proceed, and also offer a fine-tuning command with the newly created file. + For classification it will optionally ask the user if they would like to split the data into train/valid files, and modify the suggested command to include the valid set. + """ + ft_format = infer_task_type(df) + common_prompt_suffix = get_common_xfix(df.prompt, xfix="suffix") + common_completion_suffix = get_common_xfix(df.completion, xfix="suffix") + + split = False + input_text = "- [Recommended] Would you like to split into training and validation set? [Y/n]: " + if ft_format == "classification": + if accept_suggestion(input_text, auto_accept): + split = True + + additional_params = "" + common_prompt_suffix_new_line_handled = common_prompt_suffix.replace("\n", "\\n") + common_completion_suffix_new_line_handled = common_completion_suffix.replace("\n", "\\n") + optional_ending_string = ( + f' Make sure to include `stop=["{common_completion_suffix_new_line_handled}"]` so that the generated texts ends at the expected place.' + if len(common_completion_suffix_new_line_handled) > 0 + else "" + ) + + input_text = "\n\nYour data will be written to a new JSONL file. Proceed [Y/n]: " + + if not any_remediations and not split: + sys.stdout.write( + f'\nYou can use your file for fine-tuning:\n> openai api fine_tunes.create -t "{fname}"{additional_params}\n\nAfter you’ve fine-tuned a model, remember that your prompt has to end with the indicator string `{common_prompt_suffix_new_line_handled}` for the model to start generating completions, rather than continuing with the prompt.{optional_ending_string}\n' + ) + estimate_fine_tuning_time(df) + + elif accept_suggestion(input_text, auto_accept): + fnames = get_outfnames(fname, split) + if split: + assert len(fnames) == 2 and "train" in fnames[0] and "valid" in fnames[1] + MAX_VALID_EXAMPLES = 1000 + n_train = max(len(df) - MAX_VALID_EXAMPLES, int(len(df) * 0.8)) + df_train = df.sample(n=n_train, random_state=42) + df_valid = df.drop(df_train.index) + df_train[["prompt", "completion"]].to_json( # type: ignore + fnames[0], lines=True, orient="records", force_ascii=False, indent=None + ) + df_valid[["prompt", "completion"]].to_json( + fnames[1], lines=True, orient="records", force_ascii=False, indent=None + ) + + n_classes, pos_class = get_classification_hyperparams(df) + additional_params += " --compute_classification_metrics" + if n_classes == 2: + additional_params += f' --classification_positive_class "{pos_class}"' + else: + additional_params += f" --classification_n_classes {n_classes}" + else: + assert len(fnames) == 1 + df[["prompt", "completion"]].to_json( + fnames[0], lines=True, orient="records", force_ascii=False, indent=None + ) + + # Add -v VALID_FILE if we split the file into train / valid + files_string = ("s" if split else "") + " to `" + ("` and `".join(fnames)) + valid_string = f' -v "{fnames[1]}"' if split else "" + separator_reminder = ( + "" + if len(common_prompt_suffix_new_line_handled) == 0 + else f"After you’ve fine-tuned a model, remember that your prompt has to end with the indicator string `{common_prompt_suffix_new_line_handled}` for the model to start generating completions, rather than continuing with the prompt." + ) + sys.stdout.write( + f'\nWrote modified file{files_string}`\nFeel free to take a look!\n\nNow use that file when fine-tuning:\n> openai api fine_tunes.create -t "{fnames[0]}"{valid_string}{additional_params}\n\n{separator_reminder}{optional_ending_string}\n' + ) + estimate_fine_tuning_time(df) + else: + sys.stdout.write("Aborting... did not write the file\n") + + +def infer_task_type(df: pd.DataFrame) -> str: + """ + Infer the likely fine-tuning task type from the data + """ + CLASSIFICATION_THRESHOLD = 3 # min_average instances of each class + if sum(df.prompt.str.len()) == 0: + return "open-ended generation" + + if len(df.completion.unique()) < len(df) / CLASSIFICATION_THRESHOLD: + return "classification" + + return "conditional generation" + + +def get_common_xfix(series: Any, xfix: str = "suffix") -> str: + """ + Finds the longest common suffix or prefix of all the values in a series + """ + common_xfix = "" + while True: + common_xfixes = ( + series.str[-(len(common_xfix) + 1) :] if xfix == "suffix" else series.str[: len(common_xfix) + 1] + ) # first few or last few characters + if common_xfixes.nunique() != 1: # we found the character at which we don't have a unique xfix anymore + break + elif common_xfix == common_xfixes.values[0]: # the entire first row is a prefix of every other row + break + else: # the first or last few characters are still common across all rows - let's try to add one more + common_xfix = common_xfixes.values[0] + return common_xfix + + +Validator: TypeAlias = "Callable[[pd.DataFrame], Remediation | None]" + + +def get_validators() -> list[Validator]: + return [ + num_examples_validator, + lambda x: necessary_column_validator(x, "prompt"), + lambda x: necessary_column_validator(x, "completion"), + additional_column_validator, + non_empty_field_validator, + format_inferrer_validator, + duplicated_rows_validator, + long_examples_validator, + lambda x: lower_case_validator(x, "prompt"), + lambda x: lower_case_validator(x, "completion"), + common_prompt_suffix_validator, + common_prompt_prefix_validator, + common_completion_prefix_validator, + common_completion_suffix_validator, + completions_space_start_validator, + ] + + +def apply_validators( + df: pd.DataFrame, + fname: str, + remediation: Remediation | None, + validators: list[Validator], + auto_accept: bool, + write_out_file_func: Callable[..., Any], +) -> None: + optional_remediations: list[Remediation] = [] + if remediation is not None: + optional_remediations.append(remediation) + for validator in validators: + remediation = validator(df) + if remediation is not None: + optional_remediations.append(remediation) + df = apply_necessary_remediation(df, remediation) + + any_optional_or_necessary_remediations = any( + [ + remediation + for remediation in optional_remediations + if remediation.optional_msg is not None or remediation.necessary_msg is not None + ] + ) + any_necessary_applied = any( + [remediation for remediation in optional_remediations if remediation.necessary_msg is not None] + ) + any_optional_applied = False + + if any_optional_or_necessary_remediations: + sys.stdout.write("\n\nBased on the analysis we will perform the following actions:\n") + for remediation in optional_remediations: + df, optional_applied = apply_optional_remediation(df, remediation, auto_accept) + any_optional_applied = any_optional_applied or optional_applied + else: + sys.stdout.write("\n\nNo remediations found.\n") + + any_optional_or_necessary_applied = any_optional_applied or any_necessary_applied + + write_out_file_func(df, fname, any_optional_or_necessary_applied, auto_accept) diff --git a/.venv/lib/python3.12/site-packages/openai/lib/azure.py b/.venv/lib/python3.12/site-packages/openai/lib/azure.py new file mode 100644 index 00000000..ea7bd20d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/azure.py @@ -0,0 +1,632 @@ +from __future__ import annotations + +import os +import inspect +from typing import Any, Union, Mapping, TypeVar, Callable, Awaitable, cast, overload +from typing_extensions import Self, override + +import httpx + +from .._types import NOT_GIVEN, Omit, Query, Timeout, NotGiven +from .._utils import is_given, is_mapping +from .._client import OpenAI, AsyncOpenAI +from .._compat import model_copy +from .._models import FinalRequestOptions +from .._streaming import Stream, AsyncStream +from .._exceptions import OpenAIError +from .._base_client import DEFAULT_MAX_RETRIES, BaseClient + +_deployments_endpoints = set( + [ + "/completions", + "/chat/completions", + "/embeddings", + "/audio/transcriptions", + "/audio/translations", + "/audio/speech", + "/images/generations", + ] +) + + +AzureADTokenProvider = Callable[[], str] +AsyncAzureADTokenProvider = Callable[[], "str | Awaitable[str]"] +_HttpxClientT = TypeVar("_HttpxClientT", bound=Union[httpx.Client, httpx.AsyncClient]) +_DefaultStreamT = TypeVar("_DefaultStreamT", bound=Union[Stream[Any], AsyncStream[Any]]) + + +# we need to use a sentinel API key value for Azure AD +# as we don't want to make the `api_key` in the main client Optional +# and Azure AD tokens may be retrieved on a per-request basis +API_KEY_SENTINEL = "".join(["<", "missing API key", ">"]) + + +class MutuallyExclusiveAuthError(OpenAIError): + def __init__(self) -> None: + super().__init__( + "The `api_key`, `azure_ad_token` and `azure_ad_token_provider` arguments are mutually exclusive; Only one can be passed at a time" + ) + + +class BaseAzureClient(BaseClient[_HttpxClientT, _DefaultStreamT]): + _azure_endpoint: httpx.URL | None + _azure_deployment: str | None + + @override + def _build_request( + self, + options: FinalRequestOptions, + *, + retries_taken: int = 0, + ) -> httpx.Request: + if options.url in _deployments_endpoints and is_mapping(options.json_data): + model = options.json_data.get("model") + if model is not None and "/deployments" not in str(self.base_url.path): + options.url = f"/deployments/{model}{options.url}" + + return super()._build_request(options, retries_taken=retries_taken) + + @override + def _prepare_url(self, url: str) -> httpx.URL: + """Adjust the URL if the client was configured with an Azure endpoint + deployment + and the API feature being called is **not** a deployments-based endpoint + (i.e. requires /deployments/deployment-name in the URL path). + """ + if self._azure_deployment and self._azure_endpoint and url not in _deployments_endpoints: + merge_url = httpx.URL(url) + if merge_url.is_relative_url: + merge_raw_path = ( + self._azure_endpoint.raw_path.rstrip(b"/") + b"/openai/" + merge_url.raw_path.lstrip(b"/") + ) + return self._azure_endpoint.copy_with(raw_path=merge_raw_path) + + return merge_url + + return super()._prepare_url(url) + + +class AzureOpenAI(BaseAzureClient[httpx.Client, Stream[Any]], OpenAI): + @overload + def __init__( + self, + *, + azure_endpoint: str, + azure_deployment: str | None = None, + api_version: str | None = None, + api_key: str | None = None, + azure_ad_token: str | None = None, + azure_ad_token_provider: AzureADTokenProvider | None = None, + organization: str | None = None, + websocket_base_url: str | httpx.URL | None = None, + timeout: float | Timeout | None | NotGiven = NOT_GIVEN, + max_retries: int = DEFAULT_MAX_RETRIES, + default_headers: Mapping[str, str] | None = None, + default_query: Mapping[str, object] | None = None, + http_client: httpx.Client | None = None, + _strict_response_validation: bool = False, + ) -> None: ... + + @overload + def __init__( + self, + *, + azure_deployment: str | None = None, + api_version: str | None = None, + api_key: str | None = None, + azure_ad_token: str | None = None, + azure_ad_token_provider: AzureADTokenProvider | None = None, + organization: str | None = None, + websocket_base_url: str | httpx.URL | None = None, + timeout: float | Timeout | None | NotGiven = NOT_GIVEN, + max_retries: int = DEFAULT_MAX_RETRIES, + default_headers: Mapping[str, str] | None = None, + default_query: Mapping[str, object] | None = None, + http_client: httpx.Client | None = None, + _strict_response_validation: bool = False, + ) -> None: ... + + @overload + def __init__( + self, + *, + base_url: str, + api_version: str | None = None, + api_key: str | None = None, + azure_ad_token: str | None = None, + azure_ad_token_provider: AzureADTokenProvider | None = None, + organization: str | None = None, + websocket_base_url: str | httpx.URL | None = None, + timeout: float | Timeout | None | NotGiven = NOT_GIVEN, + max_retries: int = DEFAULT_MAX_RETRIES, + default_headers: Mapping[str, str] | None = None, + default_query: Mapping[str, object] | None = None, + http_client: httpx.Client | None = None, + _strict_response_validation: bool = False, + ) -> None: ... + + def __init__( + self, + *, + api_version: str | None = None, + azure_endpoint: str | None = None, + azure_deployment: str | None = None, + api_key: str | None = None, + azure_ad_token: str | None = None, + azure_ad_token_provider: AzureADTokenProvider | None = None, + organization: str | None = None, + project: str | None = None, + websocket_base_url: str | httpx.URL | None = None, + base_url: str | None = None, + timeout: float | Timeout | None | NotGiven = NOT_GIVEN, + max_retries: int = DEFAULT_MAX_RETRIES, + default_headers: Mapping[str, str] | None = None, + default_query: Mapping[str, object] | None = None, + http_client: httpx.Client | None = None, + _strict_response_validation: bool = False, + ) -> None: + """Construct a new synchronous azure openai client instance. + + This automatically infers the following arguments from their corresponding environment variables if they are not provided: + - `api_key` from `AZURE_OPENAI_API_KEY` + - `organization` from `OPENAI_ORG_ID` + - `project` from `OPENAI_PROJECT_ID` + - `azure_ad_token` from `AZURE_OPENAI_AD_TOKEN` + - `api_version` from `OPENAI_API_VERSION` + - `azure_endpoint` from `AZURE_OPENAI_ENDPOINT` + + Args: + azure_endpoint: Your Azure endpoint, including the resource, e.g. `https://example-resource.azure.openai.com/` + + azure_ad_token: Your Azure Active Directory token, https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id + + azure_ad_token_provider: A function that returns an Azure Active Directory token, will be invoked on every request. + + azure_deployment: A model deployment, if given with `azure_endpoint`, sets the base client URL to include `/deployments/{azure_deployment}`. + Not supported with Assistants APIs. + """ + if api_key is None: + api_key = os.environ.get("AZURE_OPENAI_API_KEY") + + if azure_ad_token is None: + azure_ad_token = os.environ.get("AZURE_OPENAI_AD_TOKEN") + + if api_key is None and azure_ad_token is None and azure_ad_token_provider is None: + raise OpenAIError( + "Missing credentials. Please pass one of `api_key`, `azure_ad_token`, `azure_ad_token_provider`, or the `AZURE_OPENAI_API_KEY` or `AZURE_OPENAI_AD_TOKEN` environment variables." + ) + + if api_version is None: + api_version = os.environ.get("OPENAI_API_VERSION") + + if api_version is None: + raise ValueError( + "Must provide either the `api_version` argument or the `OPENAI_API_VERSION` environment variable" + ) + + if default_query is None: + default_query = {"api-version": api_version} + else: + default_query = {**default_query, "api-version": api_version} + + if base_url is None: + if azure_endpoint is None: + azure_endpoint = os.environ.get("AZURE_OPENAI_ENDPOINT") + + if azure_endpoint is None: + raise ValueError( + "Must provide one of the `base_url` or `azure_endpoint` arguments, or the `AZURE_OPENAI_ENDPOINT` environment variable" + ) + + if azure_deployment is not None: + base_url = f"{azure_endpoint.rstrip('/')}/openai/deployments/{azure_deployment}" + else: + base_url = f"{azure_endpoint.rstrip('/')}/openai" + else: + if azure_endpoint is not None: + raise ValueError("base_url and azure_endpoint are mutually exclusive") + + if api_key is None: + # define a sentinel value to avoid any typing issues + api_key = API_KEY_SENTINEL + + super().__init__( + api_key=api_key, + organization=organization, + project=project, + base_url=base_url, + timeout=timeout, + max_retries=max_retries, + default_headers=default_headers, + default_query=default_query, + http_client=http_client, + websocket_base_url=websocket_base_url, + _strict_response_validation=_strict_response_validation, + ) + self._api_version = api_version + self._azure_ad_token = azure_ad_token + self._azure_ad_token_provider = azure_ad_token_provider + self._azure_deployment = azure_deployment if azure_endpoint else None + self._azure_endpoint = httpx.URL(azure_endpoint) if azure_endpoint else None + + @override + def copy( + self, + *, + api_key: str | None = None, + organization: str | None = None, + project: str | None = None, + websocket_base_url: str | httpx.URL | None = None, + api_version: str | None = None, + azure_ad_token: str | None = None, + azure_ad_token_provider: AzureADTokenProvider | None = None, + base_url: str | httpx.URL | None = None, + timeout: float | Timeout | None | NotGiven = NOT_GIVEN, + http_client: httpx.Client | None = None, + max_retries: int | NotGiven = NOT_GIVEN, + default_headers: Mapping[str, str] | None = None, + set_default_headers: Mapping[str, str] | None = None, + default_query: Mapping[str, object] | None = None, + set_default_query: Mapping[str, object] | None = None, + _extra_kwargs: Mapping[str, Any] = {}, + ) -> Self: + """ + Create a new client instance re-using the same options given to the current client with optional overriding. + """ + return super().copy( + api_key=api_key, + organization=organization, + project=project, + websocket_base_url=websocket_base_url, + base_url=base_url, + timeout=timeout, + http_client=http_client, + max_retries=max_retries, + default_headers=default_headers, + set_default_headers=set_default_headers, + default_query=default_query, + set_default_query=set_default_query, + _extra_kwargs={ + "api_version": api_version or self._api_version, + "azure_ad_token": azure_ad_token or self._azure_ad_token, + "azure_ad_token_provider": azure_ad_token_provider or self._azure_ad_token_provider, + **_extra_kwargs, + }, + ) + + with_options = copy + + def _get_azure_ad_token(self) -> str | None: + if self._azure_ad_token is not None: + return self._azure_ad_token + + provider = self._azure_ad_token_provider + if provider is not None: + token = provider() + if not token or not isinstance(token, str): # pyright: ignore[reportUnnecessaryIsInstance] + raise ValueError( + f"Expected `azure_ad_token_provider` argument to return a string but it returned {token}", + ) + return token + + return None + + @override + def _prepare_options(self, options: FinalRequestOptions) -> FinalRequestOptions: + headers: dict[str, str | Omit] = {**options.headers} if is_given(options.headers) else {} + + options = model_copy(options) + options.headers = headers + + azure_ad_token = self._get_azure_ad_token() + if azure_ad_token is not None: + if headers.get("Authorization") is None: + headers["Authorization"] = f"Bearer {azure_ad_token}" + elif self.api_key is not API_KEY_SENTINEL: + if headers.get("api-key") is None: + headers["api-key"] = self.api_key + else: + # should never be hit + raise ValueError("Unable to handle auth") + + return options + + def _configure_realtime(self, model: str, extra_query: Query) -> tuple[httpx.URL, dict[str, str]]: + auth_headers = {} + query = { + **extra_query, + "api-version": self._api_version, + "deployment": self._azure_deployment or model, + } + if self.api_key != "<missing API key>": + auth_headers = {"api-key": self.api_key} + else: + token = self._get_azure_ad_token() + if token: + auth_headers = {"Authorization": f"Bearer {token}"} + + if self.websocket_base_url is not None: + base_url = httpx.URL(self.websocket_base_url) + merge_raw_path = base_url.raw_path.rstrip(b"/") + b"/realtime" + realtime_url = base_url.copy_with(raw_path=merge_raw_path) + else: + base_url = self._prepare_url("/realtime") + realtime_url = base_url.copy_with(scheme="wss") + + url = realtime_url.copy_with(params={**query}) + return url, auth_headers + + +class AsyncAzureOpenAI(BaseAzureClient[httpx.AsyncClient, AsyncStream[Any]], AsyncOpenAI): + @overload + def __init__( + self, + *, + azure_endpoint: str, + azure_deployment: str | None = None, + api_version: str | None = None, + api_key: str | None = None, + azure_ad_token: str | None = None, + azure_ad_token_provider: AsyncAzureADTokenProvider | None = None, + organization: str | None = None, + project: str | None = None, + websocket_base_url: str | httpx.URL | None = None, + timeout: float | Timeout | None | NotGiven = NOT_GIVEN, + max_retries: int = DEFAULT_MAX_RETRIES, + default_headers: Mapping[str, str] | None = None, + default_query: Mapping[str, object] | None = None, + http_client: httpx.AsyncClient | None = None, + _strict_response_validation: bool = False, + ) -> None: ... + + @overload + def __init__( + self, + *, + azure_deployment: str | None = None, + api_version: str | None = None, + api_key: str | None = None, + azure_ad_token: str | None = None, + azure_ad_token_provider: AsyncAzureADTokenProvider | None = None, + organization: str | None = None, + project: str | None = None, + websocket_base_url: str | httpx.URL | None = None, + timeout: float | Timeout | None | NotGiven = NOT_GIVEN, + max_retries: int = DEFAULT_MAX_RETRIES, + default_headers: Mapping[str, str] | None = None, + default_query: Mapping[str, object] | None = None, + http_client: httpx.AsyncClient | None = None, + _strict_response_validation: bool = False, + ) -> None: ... + + @overload + def __init__( + self, + *, + base_url: str, + api_version: str | None = None, + api_key: str | None = None, + azure_ad_token: str | None = None, + azure_ad_token_provider: AsyncAzureADTokenProvider | None = None, + organization: str | None = None, + project: str | None = None, + websocket_base_url: str | httpx.URL | None = None, + timeout: float | Timeout | None | NotGiven = NOT_GIVEN, + max_retries: int = DEFAULT_MAX_RETRIES, + default_headers: Mapping[str, str] | None = None, + default_query: Mapping[str, object] | None = None, + http_client: httpx.AsyncClient | None = None, + _strict_response_validation: bool = False, + ) -> None: ... + + def __init__( + self, + *, + azure_endpoint: str | None = None, + azure_deployment: str | None = None, + api_version: str | None = None, + api_key: str | None = None, + azure_ad_token: str | None = None, + azure_ad_token_provider: AsyncAzureADTokenProvider | None = None, + organization: str | None = None, + project: str | None = None, + base_url: str | None = None, + websocket_base_url: str | httpx.URL | None = None, + timeout: float | Timeout | None | NotGiven = NOT_GIVEN, + max_retries: int = DEFAULT_MAX_RETRIES, + default_headers: Mapping[str, str] | None = None, + default_query: Mapping[str, object] | None = None, + http_client: httpx.AsyncClient | None = None, + _strict_response_validation: bool = False, + ) -> None: + """Construct a new asynchronous azure openai client instance. + + This automatically infers the following arguments from their corresponding environment variables if they are not provided: + - `api_key` from `AZURE_OPENAI_API_KEY` + - `organization` from `OPENAI_ORG_ID` + - `project` from `OPENAI_PROJECT_ID` + - `azure_ad_token` from `AZURE_OPENAI_AD_TOKEN` + - `api_version` from `OPENAI_API_VERSION` + - `azure_endpoint` from `AZURE_OPENAI_ENDPOINT` + + Args: + azure_endpoint: Your Azure endpoint, including the resource, e.g. `https://example-resource.azure.openai.com/` + + azure_ad_token: Your Azure Active Directory token, https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id + + azure_ad_token_provider: A function that returns an Azure Active Directory token, will be invoked on every request. + + azure_deployment: A model deployment, if given with `azure_endpoint`, sets the base client URL to include `/deployments/{azure_deployment}`. + Not supported with Assistants APIs. + """ + if api_key is None: + api_key = os.environ.get("AZURE_OPENAI_API_KEY") + + if azure_ad_token is None: + azure_ad_token = os.environ.get("AZURE_OPENAI_AD_TOKEN") + + if api_key is None and azure_ad_token is None and azure_ad_token_provider is None: + raise OpenAIError( + "Missing credentials. Please pass one of `api_key`, `azure_ad_token`, `azure_ad_token_provider`, or the `AZURE_OPENAI_API_KEY` or `AZURE_OPENAI_AD_TOKEN` environment variables." + ) + + if api_version is None: + api_version = os.environ.get("OPENAI_API_VERSION") + + if api_version is None: + raise ValueError( + "Must provide either the `api_version` argument or the `OPENAI_API_VERSION` environment variable" + ) + + if default_query is None: + default_query = {"api-version": api_version} + else: + default_query = {**default_query, "api-version": api_version} + + if base_url is None: + if azure_endpoint is None: + azure_endpoint = os.environ.get("AZURE_OPENAI_ENDPOINT") + + if azure_endpoint is None: + raise ValueError( + "Must provide one of the `base_url` or `azure_endpoint` arguments, or the `AZURE_OPENAI_ENDPOINT` environment variable" + ) + + if azure_deployment is not None: + base_url = f"{azure_endpoint.rstrip('/')}/openai/deployments/{azure_deployment}" + else: + base_url = f"{azure_endpoint.rstrip('/')}/openai" + else: + if azure_endpoint is not None: + raise ValueError("base_url and azure_endpoint are mutually exclusive") + + if api_key is None: + # define a sentinel value to avoid any typing issues + api_key = API_KEY_SENTINEL + + super().__init__( + api_key=api_key, + organization=organization, + project=project, + base_url=base_url, + timeout=timeout, + max_retries=max_retries, + default_headers=default_headers, + default_query=default_query, + http_client=http_client, + websocket_base_url=websocket_base_url, + _strict_response_validation=_strict_response_validation, + ) + self._api_version = api_version + self._azure_ad_token = azure_ad_token + self._azure_ad_token_provider = azure_ad_token_provider + self._azure_deployment = azure_deployment if azure_endpoint else None + self._azure_endpoint = httpx.URL(azure_endpoint) if azure_endpoint else None + + @override + def copy( + self, + *, + api_key: str | None = None, + organization: str | None = None, + project: str | None = None, + websocket_base_url: str | httpx.URL | None = None, + api_version: str | None = None, + azure_ad_token: str | None = None, + azure_ad_token_provider: AsyncAzureADTokenProvider | None = None, + base_url: str | httpx.URL | None = None, + timeout: float | Timeout | None | NotGiven = NOT_GIVEN, + http_client: httpx.AsyncClient | None = None, + max_retries: int | NotGiven = NOT_GIVEN, + default_headers: Mapping[str, str] | None = None, + set_default_headers: Mapping[str, str] | None = None, + default_query: Mapping[str, object] | None = None, + set_default_query: Mapping[str, object] | None = None, + _extra_kwargs: Mapping[str, Any] = {}, + ) -> Self: + """ + Create a new client instance re-using the same options given to the current client with optional overriding. + """ + return super().copy( + api_key=api_key, + organization=organization, + project=project, + websocket_base_url=websocket_base_url, + base_url=base_url, + timeout=timeout, + http_client=http_client, + max_retries=max_retries, + default_headers=default_headers, + set_default_headers=set_default_headers, + default_query=default_query, + set_default_query=set_default_query, + _extra_kwargs={ + "api_version": api_version or self._api_version, + "azure_ad_token": azure_ad_token or self._azure_ad_token, + "azure_ad_token_provider": azure_ad_token_provider or self._azure_ad_token_provider, + **_extra_kwargs, + }, + ) + + with_options = copy + + async def _get_azure_ad_token(self) -> str | None: + if self._azure_ad_token is not None: + return self._azure_ad_token + + provider = self._azure_ad_token_provider + if provider is not None: + token = provider() + if inspect.isawaitable(token): + token = await token + if not token or not isinstance(cast(Any, token), str): + raise ValueError( + f"Expected `azure_ad_token_provider` argument to return a string but it returned {token}", + ) + return str(token) + + return None + + @override + async def _prepare_options(self, options: FinalRequestOptions) -> FinalRequestOptions: + headers: dict[str, str | Omit] = {**options.headers} if is_given(options.headers) else {} + + options = model_copy(options) + options.headers = headers + + azure_ad_token = await self._get_azure_ad_token() + if azure_ad_token is not None: + if headers.get("Authorization") is None: + headers["Authorization"] = f"Bearer {azure_ad_token}" + elif self.api_key is not API_KEY_SENTINEL: + if headers.get("api-key") is None: + headers["api-key"] = self.api_key + else: + # should never be hit + raise ValueError("Unable to handle auth") + + return options + + async def _configure_realtime(self, model: str, extra_query: Query) -> tuple[httpx.URL, dict[str, str]]: + auth_headers = {} + query = { + **extra_query, + "api-version": self._api_version, + "deployment": self._azure_deployment or model, + } + if self.api_key != "<missing API key>": + auth_headers = {"api-key": self.api_key} + else: + token = await self._get_azure_ad_token() + if token: + auth_headers = {"Authorization": f"Bearer {token}"} + + if self.websocket_base_url is not None: + base_url = httpx.URL(self.websocket_base_url) + merge_raw_path = base_url.raw_path.rstrip(b"/") + b"/realtime" + realtime_url = base_url.copy_with(raw_path=merge_raw_path) + else: + base_url = self._prepare_url("/realtime") + realtime_url = base_url.copy_with(scheme="wss") + + url = realtime_url.copy_with(params={**query}) + return url, auth_headers diff --git a/.venv/lib/python3.12/site-packages/openai/lib/streaming/__init__.py b/.venv/lib/python3.12/site-packages/openai/lib/streaming/__init__.py new file mode 100644 index 00000000..eb378d25 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/streaming/__init__.py @@ -0,0 +1,8 @@ +from ._assistants import ( + AssistantEventHandler as AssistantEventHandler, + AssistantEventHandlerT as AssistantEventHandlerT, + AssistantStreamManager as AssistantStreamManager, + AsyncAssistantEventHandler as AsyncAssistantEventHandler, + AsyncAssistantEventHandlerT as AsyncAssistantEventHandlerT, + AsyncAssistantStreamManager as AsyncAssistantStreamManager, +) diff --git a/.venv/lib/python3.12/site-packages/openai/lib/streaming/_assistants.py b/.venv/lib/python3.12/site-packages/openai/lib/streaming/_assistants.py new file mode 100644 index 00000000..6efb3ca3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/streaming/_assistants.py @@ -0,0 +1,1038 @@ +from __future__ import annotations + +import asyncio +from types import TracebackType +from typing import TYPE_CHECKING, Any, Generic, TypeVar, Callable, Iterable, Iterator, cast +from typing_extensions import Awaitable, AsyncIterable, AsyncIterator, assert_never + +import httpx + +from ..._utils import is_dict, is_list, consume_sync_iterator, consume_async_iterator +from ..._compat import model_dump +from ..._models import construct_type +from ..._streaming import Stream, AsyncStream +from ...types.beta import AssistantStreamEvent +from ...types.beta.threads import ( + Run, + Text, + Message, + ImageFile, + TextDelta, + MessageDelta, + MessageContent, + MessageContentDelta, +) +from ...types.beta.threads.runs import RunStep, ToolCall, RunStepDelta, ToolCallDelta + + +class AssistantEventHandler: + text_deltas: Iterable[str] + """Iterator over just the text deltas in the stream. + + This corresponds to the `thread.message.delta` event + in the API. + + ```py + for text in stream.text_deltas: + print(text, end="", flush=True) + print() + ``` + """ + + def __init__(self) -> None: + self._current_event: AssistantStreamEvent | None = None + self._current_message_content_index: int | None = None + self._current_message_content: MessageContent | None = None + self._current_tool_call_index: int | None = None + self._current_tool_call: ToolCall | None = None + self.__current_run_step_id: str | None = None + self.__current_run: Run | None = None + self.__run_step_snapshots: dict[str, RunStep] = {} + self.__message_snapshots: dict[str, Message] = {} + self.__current_message_snapshot: Message | None = None + + self.text_deltas = self.__text_deltas__() + self._iterator = self.__stream__() + self.__stream: Stream[AssistantStreamEvent] | None = None + + def _init(self, stream: Stream[AssistantStreamEvent]) -> None: + if self.__stream: + raise RuntimeError( + "A single event handler cannot be shared between multiple streams; You will need to construct a new event handler instance" + ) + + self.__stream = stream + + def __next__(self) -> AssistantStreamEvent: + return self._iterator.__next__() + + def __iter__(self) -> Iterator[AssistantStreamEvent]: + for item in self._iterator: + yield item + + @property + def current_event(self) -> AssistantStreamEvent | None: + return self._current_event + + @property + def current_run(self) -> Run | None: + return self.__current_run + + @property + def current_run_step_snapshot(self) -> RunStep | None: + if not self.__current_run_step_id: + return None + + return self.__run_step_snapshots[self.__current_run_step_id] + + @property + def current_message_snapshot(self) -> Message | None: + return self.__current_message_snapshot + + def close(self) -> None: + """ + Close the response and release the connection. + + Automatically called when the context manager exits. + """ + if self.__stream: + self.__stream.close() + + def until_done(self) -> None: + """Waits until the stream has been consumed""" + consume_sync_iterator(self) + + def get_final_run(self) -> Run: + """Wait for the stream to finish and returns the completed Run object""" + self.until_done() + + if not self.__current_run: + raise RuntimeError("No final run object found") + + return self.__current_run + + def get_final_run_steps(self) -> list[RunStep]: + """Wait for the stream to finish and returns the steps taken in this run""" + self.until_done() + + if not self.__run_step_snapshots: + raise RuntimeError("No run steps found") + + return [step for step in self.__run_step_snapshots.values()] + + def get_final_messages(self) -> list[Message]: + """Wait for the stream to finish and returns the messages emitted in this run""" + self.until_done() + + if not self.__message_snapshots: + raise RuntimeError("No messages found") + + return [message for message in self.__message_snapshots.values()] + + def __text_deltas__(self) -> Iterator[str]: + for event in self: + if event.event != "thread.message.delta": + continue + + for content_delta in event.data.delta.content or []: + if content_delta.type == "text" and content_delta.text and content_delta.text.value: + yield content_delta.text.value + + # event handlers + + def on_end(self) -> None: + """Fires when the stream has finished. + + This happens if the stream is read to completion + or if an exception occurs during iteration. + """ + + def on_event(self, event: AssistantStreamEvent) -> None: + """Callback that is fired for every Server-Sent-Event""" + + def on_run_step_created(self, run_step: RunStep) -> None: + """Callback that is fired when a run step is created""" + + def on_run_step_delta(self, delta: RunStepDelta, snapshot: RunStep) -> None: + """Callback that is fired whenever a run step delta is returned from the API + + The first argument is just the delta as sent by the API and the second argument + is the accumulated snapshot of the run step. For example, a tool calls event may + look like this: + + # delta + tool_calls=[ + RunStepDeltaToolCallsCodeInterpreter( + index=0, + type='code_interpreter', + id=None, + code_interpreter=CodeInterpreter(input=' sympy', outputs=None) + ) + ] + # snapshot + tool_calls=[ + CodeToolCall( + id='call_wKayJlcYV12NiadiZuJXxcfx', + code_interpreter=CodeInterpreter(input='from sympy', outputs=[]), + type='code_interpreter', + index=0 + ) + ], + """ + + def on_run_step_done(self, run_step: RunStep) -> None: + """Callback that is fired when a run step is completed""" + + def on_tool_call_created(self, tool_call: ToolCall) -> None: + """Callback that is fired when a tool call is created""" + + def on_tool_call_delta(self, delta: ToolCallDelta, snapshot: ToolCall) -> None: + """Callback that is fired when a tool call delta is encountered""" + + def on_tool_call_done(self, tool_call: ToolCall) -> None: + """Callback that is fired when a tool call delta is encountered""" + + def on_exception(self, exception: Exception) -> None: + """Fired whenever an exception happens during streaming""" + + def on_timeout(self) -> None: + """Fires if the request times out""" + + def on_message_created(self, message: Message) -> None: + """Callback that is fired when a message is created""" + + def on_message_delta(self, delta: MessageDelta, snapshot: Message) -> None: + """Callback that is fired whenever a message delta is returned from the API + + The first argument is just the delta as sent by the API and the second argument + is the accumulated snapshot of the message. For example, a text content event may + look like this: + + # delta + MessageDeltaText( + index=0, + type='text', + text=Text( + value=' Jane' + ), + ) + # snapshot + MessageContentText( + index=0, + type='text', + text=Text( + value='Certainly, Jane' + ), + ) + """ + + def on_message_done(self, message: Message) -> None: + """Callback that is fired when a message is completed""" + + def on_text_created(self, text: Text) -> None: + """Callback that is fired when a text content block is created""" + + def on_text_delta(self, delta: TextDelta, snapshot: Text) -> None: + """Callback that is fired whenever a text content delta is returned + by the API. + + The first argument is just the delta as sent by the API and the second argument + is the accumulated snapshot of the text. For example: + + on_text_delta(TextDelta(value="The"), Text(value="The")), + on_text_delta(TextDelta(value=" solution"), Text(value="The solution")), + on_text_delta(TextDelta(value=" to"), Text(value="The solution to")), + on_text_delta(TextDelta(value=" the"), Text(value="The solution to the")), + on_text_delta(TextDelta(value=" equation"), Text(value="The solution to the equation")), + """ + + def on_text_done(self, text: Text) -> None: + """Callback that is fired when a text content block is finished""" + + def on_image_file_done(self, image_file: ImageFile) -> None: + """Callback that is fired when an image file block is finished""" + + def _emit_sse_event(self, event: AssistantStreamEvent) -> None: + self._current_event = event + self.on_event(event) + + self.__current_message_snapshot, new_content = accumulate_event( + event=event, + current_message_snapshot=self.__current_message_snapshot, + ) + if self.__current_message_snapshot is not None: + self.__message_snapshots[self.__current_message_snapshot.id] = self.__current_message_snapshot + + accumulate_run_step( + event=event, + run_step_snapshots=self.__run_step_snapshots, + ) + + for content_delta in new_content: + assert self.__current_message_snapshot is not None + + block = self.__current_message_snapshot.content[content_delta.index] + if block.type == "text": + self.on_text_created(block.text) + + if ( + event.event == "thread.run.completed" + or event.event == "thread.run.cancelled" + or event.event == "thread.run.expired" + or event.event == "thread.run.failed" + or event.event == "thread.run.requires_action" + or event.event == "thread.run.incomplete" + ): + self.__current_run = event.data + if self._current_tool_call: + self.on_tool_call_done(self._current_tool_call) + elif ( + event.event == "thread.run.created" + or event.event == "thread.run.in_progress" + or event.event == "thread.run.cancelling" + or event.event == "thread.run.queued" + ): + self.__current_run = event.data + elif event.event == "thread.message.created": + self.on_message_created(event.data) + elif event.event == "thread.message.delta": + snapshot = self.__current_message_snapshot + assert snapshot is not None + + message_delta = event.data.delta + if message_delta.content is not None: + for content_delta in message_delta.content: + if content_delta.type == "text" and content_delta.text: + snapshot_content = snapshot.content[content_delta.index] + assert snapshot_content.type == "text" + self.on_text_delta(content_delta.text, snapshot_content.text) + + # If the delta is for a new message content: + # - emit on_text_done/on_image_file_done for the previous message content + # - emit on_text_created/on_image_created for the new message content + if content_delta.index != self._current_message_content_index: + if self._current_message_content is not None: + if self._current_message_content.type == "text": + self.on_text_done(self._current_message_content.text) + elif self._current_message_content.type == "image_file": + self.on_image_file_done(self._current_message_content.image_file) + + self._current_message_content_index = content_delta.index + self._current_message_content = snapshot.content[content_delta.index] + + # Update the current_message_content (delta event is correctly emitted already) + self._current_message_content = snapshot.content[content_delta.index] + + self.on_message_delta(event.data.delta, snapshot) + elif event.event == "thread.message.completed" or event.event == "thread.message.incomplete": + self.__current_message_snapshot = event.data + self.__message_snapshots[event.data.id] = event.data + + if self._current_message_content_index is not None: + content = event.data.content[self._current_message_content_index] + if content.type == "text": + self.on_text_done(content.text) + elif content.type == "image_file": + self.on_image_file_done(content.image_file) + + self.on_message_done(event.data) + elif event.event == "thread.run.step.created": + self.__current_run_step_id = event.data.id + self.on_run_step_created(event.data) + elif event.event == "thread.run.step.in_progress": + self.__current_run_step_id = event.data.id + elif event.event == "thread.run.step.delta": + step_snapshot = self.__run_step_snapshots[event.data.id] + + run_step_delta = event.data.delta + if ( + run_step_delta.step_details + and run_step_delta.step_details.type == "tool_calls" + and run_step_delta.step_details.tool_calls is not None + ): + assert step_snapshot.step_details.type == "tool_calls" + for tool_call_delta in run_step_delta.step_details.tool_calls: + if tool_call_delta.index == self._current_tool_call_index: + self.on_tool_call_delta( + tool_call_delta, + step_snapshot.step_details.tool_calls[tool_call_delta.index], + ) + + # If the delta is for a new tool call: + # - emit on_tool_call_done for the previous tool_call + # - emit on_tool_call_created for the new tool_call + if tool_call_delta.index != self._current_tool_call_index: + if self._current_tool_call is not None: + self.on_tool_call_done(self._current_tool_call) + + self._current_tool_call_index = tool_call_delta.index + self._current_tool_call = step_snapshot.step_details.tool_calls[tool_call_delta.index] + self.on_tool_call_created(self._current_tool_call) + + # Update the current_tool_call (delta event is correctly emitted already) + self._current_tool_call = step_snapshot.step_details.tool_calls[tool_call_delta.index] + + self.on_run_step_delta( + event.data.delta, + step_snapshot, + ) + elif ( + event.event == "thread.run.step.completed" + or event.event == "thread.run.step.cancelled" + or event.event == "thread.run.step.expired" + or event.event == "thread.run.step.failed" + ): + if self._current_tool_call: + self.on_tool_call_done(self._current_tool_call) + + self.on_run_step_done(event.data) + self.__current_run_step_id = None + elif event.event == "thread.created" or event.event == "thread.message.in_progress" or event.event == "error": + # currently no special handling + ... + else: + # we only want to error at build-time + if TYPE_CHECKING: # type: ignore[unreachable] + assert_never(event) + + self._current_event = None + + def __stream__(self) -> Iterator[AssistantStreamEvent]: + stream = self.__stream + if not stream: + raise RuntimeError("Stream has not been started yet") + + try: + for event in stream: + self._emit_sse_event(event) + + yield event + except (httpx.TimeoutException, asyncio.TimeoutError) as exc: + self.on_timeout() + self.on_exception(exc) + raise + except Exception as exc: + self.on_exception(exc) + raise + finally: + self.on_end() + + +AssistantEventHandlerT = TypeVar("AssistantEventHandlerT", bound=AssistantEventHandler) + + +class AssistantStreamManager(Generic[AssistantEventHandlerT]): + """Wrapper over AssistantStreamEventHandler that is returned by `.stream()` + so that a context manager can be used. + + ```py + with client.threads.create_and_run_stream(...) as stream: + for event in stream: + ... + ``` + """ + + def __init__( + self, + api_request: Callable[[], Stream[AssistantStreamEvent]], + *, + event_handler: AssistantEventHandlerT, + ) -> None: + self.__stream: Stream[AssistantStreamEvent] | None = None + self.__event_handler = event_handler + self.__api_request = api_request + + def __enter__(self) -> AssistantEventHandlerT: + self.__stream = self.__api_request() + self.__event_handler._init(self.__stream) + return self.__event_handler + + def __exit__( + self, + exc_type: type[BaseException] | None, + exc: BaseException | None, + exc_tb: TracebackType | None, + ) -> None: + if self.__stream is not None: + self.__stream.close() + + +class AsyncAssistantEventHandler: + text_deltas: AsyncIterable[str] + """Iterator over just the text deltas in the stream. + + This corresponds to the `thread.message.delta` event + in the API. + + ```py + async for text in stream.text_deltas: + print(text, end="", flush=True) + print() + ``` + """ + + def __init__(self) -> None: + self._current_event: AssistantStreamEvent | None = None + self._current_message_content_index: int | None = None + self._current_message_content: MessageContent | None = None + self._current_tool_call_index: int | None = None + self._current_tool_call: ToolCall | None = None + self.__current_run_step_id: str | None = None + self.__current_run: Run | None = None + self.__run_step_snapshots: dict[str, RunStep] = {} + self.__message_snapshots: dict[str, Message] = {} + self.__current_message_snapshot: Message | None = None + + self.text_deltas = self.__text_deltas__() + self._iterator = self.__stream__() + self.__stream: AsyncStream[AssistantStreamEvent] | None = None + + def _init(self, stream: AsyncStream[AssistantStreamEvent]) -> None: + if self.__stream: + raise RuntimeError( + "A single event handler cannot be shared between multiple streams; You will need to construct a new event handler instance" + ) + + self.__stream = stream + + async def __anext__(self) -> AssistantStreamEvent: + return await self._iterator.__anext__() + + async def __aiter__(self) -> AsyncIterator[AssistantStreamEvent]: + async for item in self._iterator: + yield item + + async def close(self) -> None: + """ + Close the response and release the connection. + + Automatically called when the context manager exits. + """ + if self.__stream: + await self.__stream.close() + + @property + def current_event(self) -> AssistantStreamEvent | None: + return self._current_event + + @property + def current_run(self) -> Run | None: + return self.__current_run + + @property + def current_run_step_snapshot(self) -> RunStep | None: + if not self.__current_run_step_id: + return None + + return self.__run_step_snapshots[self.__current_run_step_id] + + @property + def current_message_snapshot(self) -> Message | None: + return self.__current_message_snapshot + + async def until_done(self) -> None: + """Waits until the stream has been consumed""" + await consume_async_iterator(self) + + async def get_final_run(self) -> Run: + """Wait for the stream to finish and returns the completed Run object""" + await self.until_done() + + if not self.__current_run: + raise RuntimeError("No final run object found") + + return self.__current_run + + async def get_final_run_steps(self) -> list[RunStep]: + """Wait for the stream to finish and returns the steps taken in this run""" + await self.until_done() + + if not self.__run_step_snapshots: + raise RuntimeError("No run steps found") + + return [step for step in self.__run_step_snapshots.values()] + + async def get_final_messages(self) -> list[Message]: + """Wait for the stream to finish and returns the messages emitted in this run""" + await self.until_done() + + if not self.__message_snapshots: + raise RuntimeError("No messages found") + + return [message for message in self.__message_snapshots.values()] + + async def __text_deltas__(self) -> AsyncIterator[str]: + async for event in self: + if event.event != "thread.message.delta": + continue + + for content_delta in event.data.delta.content or []: + if content_delta.type == "text" and content_delta.text and content_delta.text.value: + yield content_delta.text.value + + # event handlers + + async def on_end(self) -> None: + """Fires when the stream has finished. + + This happens if the stream is read to completion + or if an exception occurs during iteration. + """ + + async def on_event(self, event: AssistantStreamEvent) -> None: + """Callback that is fired for every Server-Sent-Event""" + + async def on_run_step_created(self, run_step: RunStep) -> None: + """Callback that is fired when a run step is created""" + + async def on_run_step_delta(self, delta: RunStepDelta, snapshot: RunStep) -> None: + """Callback that is fired whenever a run step delta is returned from the API + + The first argument is just the delta as sent by the API and the second argument + is the accumulated snapshot of the run step. For example, a tool calls event may + look like this: + + # delta + tool_calls=[ + RunStepDeltaToolCallsCodeInterpreter( + index=0, + type='code_interpreter', + id=None, + code_interpreter=CodeInterpreter(input=' sympy', outputs=None) + ) + ] + # snapshot + tool_calls=[ + CodeToolCall( + id='call_wKayJlcYV12NiadiZuJXxcfx', + code_interpreter=CodeInterpreter(input='from sympy', outputs=[]), + type='code_interpreter', + index=0 + ) + ], + """ + + async def on_run_step_done(self, run_step: RunStep) -> None: + """Callback that is fired when a run step is completed""" + + async def on_tool_call_created(self, tool_call: ToolCall) -> None: + """Callback that is fired when a tool call is created""" + + async def on_tool_call_delta(self, delta: ToolCallDelta, snapshot: ToolCall) -> None: + """Callback that is fired when a tool call delta is encountered""" + + async def on_tool_call_done(self, tool_call: ToolCall) -> None: + """Callback that is fired when a tool call delta is encountered""" + + async def on_exception(self, exception: Exception) -> None: + """Fired whenever an exception happens during streaming""" + + async def on_timeout(self) -> None: + """Fires if the request times out""" + + async def on_message_created(self, message: Message) -> None: + """Callback that is fired when a message is created""" + + async def on_message_delta(self, delta: MessageDelta, snapshot: Message) -> None: + """Callback that is fired whenever a message delta is returned from the API + + The first argument is just the delta as sent by the API and the second argument + is the accumulated snapshot of the message. For example, a text content event may + look like this: + + # delta + MessageDeltaText( + index=0, + type='text', + text=Text( + value=' Jane' + ), + ) + # snapshot + MessageContentText( + index=0, + type='text', + text=Text( + value='Certainly, Jane' + ), + ) + """ + + async def on_message_done(self, message: Message) -> None: + """Callback that is fired when a message is completed""" + + async def on_text_created(self, text: Text) -> None: + """Callback that is fired when a text content block is created""" + + async def on_text_delta(self, delta: TextDelta, snapshot: Text) -> None: + """Callback that is fired whenever a text content delta is returned + by the API. + + The first argument is just the delta as sent by the API and the second argument + is the accumulated snapshot of the text. For example: + + on_text_delta(TextDelta(value="The"), Text(value="The")), + on_text_delta(TextDelta(value=" solution"), Text(value="The solution")), + on_text_delta(TextDelta(value=" to"), Text(value="The solution to")), + on_text_delta(TextDelta(value=" the"), Text(value="The solution to the")), + on_text_delta(TextDelta(value=" equation"), Text(value="The solution to the equivalent")), + """ + + async def on_text_done(self, text: Text) -> None: + """Callback that is fired when a text content block is finished""" + + async def on_image_file_done(self, image_file: ImageFile) -> None: + """Callback that is fired when an image file block is finished""" + + async def _emit_sse_event(self, event: AssistantStreamEvent) -> None: + self._current_event = event + await self.on_event(event) + + self.__current_message_snapshot, new_content = accumulate_event( + event=event, + current_message_snapshot=self.__current_message_snapshot, + ) + if self.__current_message_snapshot is not None: + self.__message_snapshots[self.__current_message_snapshot.id] = self.__current_message_snapshot + + accumulate_run_step( + event=event, + run_step_snapshots=self.__run_step_snapshots, + ) + + for content_delta in new_content: + assert self.__current_message_snapshot is not None + + block = self.__current_message_snapshot.content[content_delta.index] + if block.type == "text": + await self.on_text_created(block.text) + + if ( + event.event == "thread.run.completed" + or event.event == "thread.run.cancelled" + or event.event == "thread.run.expired" + or event.event == "thread.run.failed" + or event.event == "thread.run.requires_action" + or event.event == "thread.run.incomplete" + ): + self.__current_run = event.data + if self._current_tool_call: + await self.on_tool_call_done(self._current_tool_call) + elif ( + event.event == "thread.run.created" + or event.event == "thread.run.in_progress" + or event.event == "thread.run.cancelling" + or event.event == "thread.run.queued" + ): + self.__current_run = event.data + elif event.event == "thread.message.created": + await self.on_message_created(event.data) + elif event.event == "thread.message.delta": + snapshot = self.__current_message_snapshot + assert snapshot is not None + + message_delta = event.data.delta + if message_delta.content is not None: + for content_delta in message_delta.content: + if content_delta.type == "text" and content_delta.text: + snapshot_content = snapshot.content[content_delta.index] + assert snapshot_content.type == "text" + await self.on_text_delta(content_delta.text, snapshot_content.text) + + # If the delta is for a new message content: + # - emit on_text_done/on_image_file_done for the previous message content + # - emit on_text_created/on_image_created for the new message content + if content_delta.index != self._current_message_content_index: + if self._current_message_content is not None: + if self._current_message_content.type == "text": + await self.on_text_done(self._current_message_content.text) + elif self._current_message_content.type == "image_file": + await self.on_image_file_done(self._current_message_content.image_file) + + self._current_message_content_index = content_delta.index + self._current_message_content = snapshot.content[content_delta.index] + + # Update the current_message_content (delta event is correctly emitted already) + self._current_message_content = snapshot.content[content_delta.index] + + await self.on_message_delta(event.data.delta, snapshot) + elif event.event == "thread.message.completed" or event.event == "thread.message.incomplete": + self.__current_message_snapshot = event.data + self.__message_snapshots[event.data.id] = event.data + + if self._current_message_content_index is not None: + content = event.data.content[self._current_message_content_index] + if content.type == "text": + await self.on_text_done(content.text) + elif content.type == "image_file": + await self.on_image_file_done(content.image_file) + + await self.on_message_done(event.data) + elif event.event == "thread.run.step.created": + self.__current_run_step_id = event.data.id + await self.on_run_step_created(event.data) + elif event.event == "thread.run.step.in_progress": + self.__current_run_step_id = event.data.id + elif event.event == "thread.run.step.delta": + step_snapshot = self.__run_step_snapshots[event.data.id] + + run_step_delta = event.data.delta + if ( + run_step_delta.step_details + and run_step_delta.step_details.type == "tool_calls" + and run_step_delta.step_details.tool_calls is not None + ): + assert step_snapshot.step_details.type == "tool_calls" + for tool_call_delta in run_step_delta.step_details.tool_calls: + if tool_call_delta.index == self._current_tool_call_index: + await self.on_tool_call_delta( + tool_call_delta, + step_snapshot.step_details.tool_calls[tool_call_delta.index], + ) + + # If the delta is for a new tool call: + # - emit on_tool_call_done for the previous tool_call + # - emit on_tool_call_created for the new tool_call + if tool_call_delta.index != self._current_tool_call_index: + if self._current_tool_call is not None: + await self.on_tool_call_done(self._current_tool_call) + + self._current_tool_call_index = tool_call_delta.index + self._current_tool_call = step_snapshot.step_details.tool_calls[tool_call_delta.index] + await self.on_tool_call_created(self._current_tool_call) + + # Update the current_tool_call (delta event is correctly emitted already) + self._current_tool_call = step_snapshot.step_details.tool_calls[tool_call_delta.index] + + await self.on_run_step_delta( + event.data.delta, + step_snapshot, + ) + elif ( + event.event == "thread.run.step.completed" + or event.event == "thread.run.step.cancelled" + or event.event == "thread.run.step.expired" + or event.event == "thread.run.step.failed" + ): + if self._current_tool_call: + await self.on_tool_call_done(self._current_tool_call) + + await self.on_run_step_done(event.data) + self.__current_run_step_id = None + elif event.event == "thread.created" or event.event == "thread.message.in_progress" or event.event == "error": + # currently no special handling + ... + else: + # we only want to error at build-time + if TYPE_CHECKING: # type: ignore[unreachable] + assert_never(event) + + self._current_event = None + + async def __stream__(self) -> AsyncIterator[AssistantStreamEvent]: + stream = self.__stream + if not stream: + raise RuntimeError("Stream has not been started yet") + + try: + async for event in stream: + await self._emit_sse_event(event) + + yield event + except (httpx.TimeoutException, asyncio.TimeoutError) as exc: + await self.on_timeout() + await self.on_exception(exc) + raise + except Exception as exc: + await self.on_exception(exc) + raise + finally: + await self.on_end() + + +AsyncAssistantEventHandlerT = TypeVar("AsyncAssistantEventHandlerT", bound=AsyncAssistantEventHandler) + + +class AsyncAssistantStreamManager(Generic[AsyncAssistantEventHandlerT]): + """Wrapper over AsyncAssistantStreamEventHandler that is returned by `.stream()` + so that an async context manager can be used without `await`ing the + original client call. + + ```py + async with client.threads.create_and_run_stream(...) as stream: + async for event in stream: + ... + ``` + """ + + def __init__( + self, + api_request: Awaitable[AsyncStream[AssistantStreamEvent]], + *, + event_handler: AsyncAssistantEventHandlerT, + ) -> None: + self.__stream: AsyncStream[AssistantStreamEvent] | None = None + self.__event_handler = event_handler + self.__api_request = api_request + + async def __aenter__(self) -> AsyncAssistantEventHandlerT: + self.__stream = await self.__api_request + self.__event_handler._init(self.__stream) + return self.__event_handler + + async def __aexit__( + self, + exc_type: type[BaseException] | None, + exc: BaseException | None, + exc_tb: TracebackType | None, + ) -> None: + if self.__stream is not None: + await self.__stream.close() + + +def accumulate_run_step( + *, + event: AssistantStreamEvent, + run_step_snapshots: dict[str, RunStep], +) -> None: + if event.event == "thread.run.step.created": + run_step_snapshots[event.data.id] = event.data + return + + if event.event == "thread.run.step.delta": + data = event.data + snapshot = run_step_snapshots[data.id] + + if data.delta: + merged = accumulate_delta( + cast( + "dict[object, object]", + model_dump(snapshot, exclude_unset=True, warnings=False), + ), + cast( + "dict[object, object]", + model_dump(data.delta, exclude_unset=True, warnings=False), + ), + ) + run_step_snapshots[snapshot.id] = cast(RunStep, construct_type(type_=RunStep, value=merged)) + + return None + + +def accumulate_event( + *, + event: AssistantStreamEvent, + current_message_snapshot: Message | None, +) -> tuple[Message | None, list[MessageContentDelta]]: + """Returns a tuple of message snapshot and newly created text message deltas""" + if event.event == "thread.message.created": + return event.data, [] + + new_content: list[MessageContentDelta] = [] + + if event.event != "thread.message.delta": + return current_message_snapshot, [] + + if not current_message_snapshot: + raise RuntimeError("Encountered a message delta with no previous snapshot") + + data = event.data + if data.delta.content: + for content_delta in data.delta.content: + try: + block = current_message_snapshot.content[content_delta.index] + except IndexError: + current_message_snapshot.content.insert( + content_delta.index, + cast( + MessageContent, + construct_type( + # mypy doesn't allow Content for some reason + type_=cast(Any, MessageContent), + value=model_dump(content_delta, exclude_unset=True, warnings=False), + ), + ), + ) + new_content.append(content_delta) + else: + merged = accumulate_delta( + cast( + "dict[object, object]", + model_dump(block, exclude_unset=True, warnings=False), + ), + cast( + "dict[object, object]", + model_dump(content_delta, exclude_unset=True, warnings=False), + ), + ) + current_message_snapshot.content[content_delta.index] = cast( + MessageContent, + construct_type( + # mypy doesn't allow Content for some reason + type_=cast(Any, MessageContent), + value=merged, + ), + ) + + return current_message_snapshot, new_content + + +def accumulate_delta(acc: dict[object, object], delta: dict[object, object]) -> dict[object, object]: + for key, delta_value in delta.items(): + if key not in acc: + acc[key] = delta_value + continue + + acc_value = acc[key] + if acc_value is None: + acc[key] = delta_value + continue + + # the `index` property is used in arrays of objects so it should + # not be accumulated like other values e.g. + # [{'foo': 'bar', 'index': 0}] + # + # the same applies to `type` properties as they're used for + # discriminated unions + if key == "index" or key == "type": + acc[key] = delta_value + continue + + if isinstance(acc_value, str) and isinstance(delta_value, str): + acc_value += delta_value + elif isinstance(acc_value, (int, float)) and isinstance(delta_value, (int, float)): + acc_value += delta_value + elif is_dict(acc_value) and is_dict(delta_value): + acc_value = accumulate_delta(acc_value, delta_value) + elif is_list(acc_value) and is_list(delta_value): + # for lists of non-dictionary items we'll only ever get new entries + # in the array, existing entries will never be changed + if all(isinstance(x, (str, int, float)) for x in acc_value): + acc_value.extend(delta_value) + continue + + for delta_entry in delta_value: + if not is_dict(delta_entry): + raise TypeError(f"Unexpected list delta entry is not a dictionary: {delta_entry}") + + try: + index = delta_entry["index"] + except KeyError as exc: + raise RuntimeError(f"Expected list delta entry to have an `index` key; {delta_entry}") from exc + + if not isinstance(index, int): + raise TypeError(f"Unexpected, list delta entry `index` value is not an integer; {index}") + + try: + acc_entry = acc_value[index] + except IndexError: + acc_value.insert(index, delta_entry) + else: + if not is_dict(acc_entry): + raise TypeError("not handled yet") + + acc_value[index] = accumulate_delta(acc_entry, delta_entry) + + acc[key] = acc_value + + return acc diff --git a/.venv/lib/python3.12/site-packages/openai/lib/streaming/_deltas.py b/.venv/lib/python3.12/site-packages/openai/lib/streaming/_deltas.py new file mode 100644 index 00000000..a5e13176 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/streaming/_deltas.py @@ -0,0 +1,64 @@ +from __future__ import annotations + +from ..._utils import is_dict, is_list + + +def accumulate_delta(acc: dict[object, object], delta: dict[object, object]) -> dict[object, object]: + for key, delta_value in delta.items(): + if key not in acc: + acc[key] = delta_value + continue + + acc_value = acc[key] + if acc_value is None: + acc[key] = delta_value + continue + + # the `index` property is used in arrays of objects so it should + # not be accumulated like other values e.g. + # [{'foo': 'bar', 'index': 0}] + # + # the same applies to `type` properties as they're used for + # discriminated unions + if key == "index" or key == "type": + acc[key] = delta_value + continue + + if isinstance(acc_value, str) and isinstance(delta_value, str): + acc_value += delta_value + elif isinstance(acc_value, (int, float)) and isinstance(delta_value, (int, float)): + acc_value += delta_value + elif is_dict(acc_value) and is_dict(delta_value): + acc_value = accumulate_delta(acc_value, delta_value) + elif is_list(acc_value) and is_list(delta_value): + # for lists of non-dictionary items we'll only ever get new entries + # in the array, existing entries will never be changed + if all(isinstance(x, (str, int, float)) for x in acc_value): + acc_value.extend(delta_value) + continue + + for delta_entry in delta_value: + if not is_dict(delta_entry): + raise TypeError(f"Unexpected list delta entry is not a dictionary: {delta_entry}") + + try: + index = delta_entry["index"] + except KeyError as exc: + raise RuntimeError(f"Expected list delta entry to have an `index` key; {delta_entry}") from exc + + if not isinstance(index, int): + raise TypeError(f"Unexpected, list delta entry `index` value is not an integer; {index}") + + try: + acc_entry = acc_value[index] + except IndexError: + acc_value.insert(index, delta_entry) + else: + if not is_dict(acc_entry): + raise TypeError("not handled yet") + + acc_value[index] = accumulate_delta(acc_entry, delta_entry) + + acc[key] = acc_value + + return acc diff --git a/.venv/lib/python3.12/site-packages/openai/lib/streaming/chat/__init__.py b/.venv/lib/python3.12/site-packages/openai/lib/streaming/chat/__init__.py new file mode 100644 index 00000000..dfa3f3f2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/streaming/chat/__init__.py @@ -0,0 +1,27 @@ +from ._types import ( + ParsedChoiceSnapshot as ParsedChoiceSnapshot, + ParsedChatCompletionSnapshot as ParsedChatCompletionSnapshot, + ParsedChatCompletionMessageSnapshot as ParsedChatCompletionMessageSnapshot, +) +from ._events import ( + ChunkEvent as ChunkEvent, + ContentDoneEvent as ContentDoneEvent, + RefusalDoneEvent as RefusalDoneEvent, + ContentDeltaEvent as ContentDeltaEvent, + RefusalDeltaEvent as RefusalDeltaEvent, + LogprobsContentDoneEvent as LogprobsContentDoneEvent, + LogprobsRefusalDoneEvent as LogprobsRefusalDoneEvent, + ChatCompletionStreamEvent as ChatCompletionStreamEvent, + LogprobsContentDeltaEvent as LogprobsContentDeltaEvent, + LogprobsRefusalDeltaEvent as LogprobsRefusalDeltaEvent, + ParsedChatCompletionSnapshot as ParsedChatCompletionSnapshot, + FunctionToolCallArgumentsDoneEvent as FunctionToolCallArgumentsDoneEvent, + FunctionToolCallArgumentsDeltaEvent as FunctionToolCallArgumentsDeltaEvent, +) +from ._completions import ( + ChatCompletionStream as ChatCompletionStream, + AsyncChatCompletionStream as AsyncChatCompletionStream, + ChatCompletionStreamState as ChatCompletionStreamState, + ChatCompletionStreamManager as ChatCompletionStreamManager, + AsyncChatCompletionStreamManager as AsyncChatCompletionStreamManager, +) diff --git a/.venv/lib/python3.12/site-packages/openai/lib/streaming/chat/_completions.py b/.venv/lib/python3.12/site-packages/openai/lib/streaming/chat/_completions.py new file mode 100644 index 00000000..21460913 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/streaming/chat/_completions.py @@ -0,0 +1,755 @@ +from __future__ import annotations + +import inspect +from types import TracebackType +from typing import TYPE_CHECKING, Any, Generic, Callable, Iterable, Awaitable, AsyncIterator, cast +from typing_extensions import Self, Iterator, assert_never + +from jiter import from_json + +from ._types import ParsedChoiceSnapshot, ParsedChatCompletionSnapshot, ParsedChatCompletionMessageSnapshot +from ._events import ( + ChunkEvent, + ContentDoneEvent, + RefusalDoneEvent, + ContentDeltaEvent, + RefusalDeltaEvent, + LogprobsContentDoneEvent, + LogprobsRefusalDoneEvent, + ChatCompletionStreamEvent, + LogprobsContentDeltaEvent, + LogprobsRefusalDeltaEvent, + FunctionToolCallArgumentsDoneEvent, + FunctionToolCallArgumentsDeltaEvent, +) +from .._deltas import accumulate_delta +from ...._types import NOT_GIVEN, IncEx, NotGiven +from ...._utils import is_given, consume_sync_iterator, consume_async_iterator +from ...._compat import model_dump +from ...._models import build, construct_type +from ..._parsing import ( + ResponseFormatT, + has_parseable_input, + maybe_parse_content, + parse_chat_completion, + get_input_tool_by_name, + solve_response_format_t, + parse_function_tool_arguments, +) +from ...._streaming import Stream, AsyncStream +from ....types.chat import ChatCompletionChunk, ParsedChatCompletion, ChatCompletionToolParam +from ...._exceptions import LengthFinishReasonError, ContentFilterFinishReasonError +from ....types.chat.chat_completion import ChoiceLogprobs +from ....types.chat.chat_completion_chunk import Choice as ChoiceChunk +from ....types.chat.completion_create_params import ResponseFormat as ResponseFormatParam + + +class ChatCompletionStream(Generic[ResponseFormatT]): + """Wrapper over the Chat Completions streaming API that adds helpful + events such as `content.done`, supports automatically parsing + responses & tool calls and accumulates a `ChatCompletion` object + from each individual chunk. + + https://platform.openai.com/docs/api-reference/streaming + """ + + def __init__( + self, + *, + raw_stream: Stream[ChatCompletionChunk], + response_format: type[ResponseFormatT] | ResponseFormatParam | NotGiven, + input_tools: Iterable[ChatCompletionToolParam] | NotGiven, + ) -> None: + self._raw_stream = raw_stream + self._response = raw_stream.response + self._iterator = self.__stream__() + self._state = ChatCompletionStreamState(response_format=response_format, input_tools=input_tools) + + def __next__(self) -> ChatCompletionStreamEvent[ResponseFormatT]: + return self._iterator.__next__() + + def __iter__(self) -> Iterator[ChatCompletionStreamEvent[ResponseFormatT]]: + for item in self._iterator: + yield item + + def __enter__(self) -> Self: + return self + + def __exit__( + self, + exc_type: type[BaseException] | None, + exc: BaseException | None, + exc_tb: TracebackType | None, + ) -> None: + self.close() + + def close(self) -> None: + """ + Close the response and release the connection. + + Automatically called if the response body is read to completion. + """ + self._response.close() + + def get_final_completion(self) -> ParsedChatCompletion[ResponseFormatT]: + """Waits until the stream has been read to completion and returns + the accumulated `ParsedChatCompletion` object. + + If you passed a class type to `.stream()`, the `completion.choices[0].message.parsed` + property will be the content deserialised into that class, if there was any content returned + by the API. + """ + self.until_done() + return self._state.get_final_completion() + + def until_done(self) -> Self: + """Blocks until the stream has been consumed.""" + consume_sync_iterator(self) + return self + + @property + def current_completion_snapshot(self) -> ParsedChatCompletionSnapshot: + return self._state.current_completion_snapshot + + def __stream__(self) -> Iterator[ChatCompletionStreamEvent[ResponseFormatT]]: + for sse_event in self._raw_stream: + events_to_fire = self._state.handle_chunk(sse_event) + for event in events_to_fire: + yield event + + +class ChatCompletionStreamManager(Generic[ResponseFormatT]): + """Context manager over a `ChatCompletionStream` that is returned by `.stream()`. + + This context manager ensures the response cannot be leaked if you don't read + the stream to completion. + + Usage: + ```py + with client.beta.chat.completions.stream(...) as stream: + for event in stream: + ... + ``` + """ + + def __init__( + self, + api_request: Callable[[], Stream[ChatCompletionChunk]], + *, + response_format: type[ResponseFormatT] | ResponseFormatParam | NotGiven, + input_tools: Iterable[ChatCompletionToolParam] | NotGiven, + ) -> None: + self.__stream: ChatCompletionStream[ResponseFormatT] | None = None + self.__api_request = api_request + self.__response_format = response_format + self.__input_tools = input_tools + + def __enter__(self) -> ChatCompletionStream[ResponseFormatT]: + raw_stream = self.__api_request() + + self.__stream = ChatCompletionStream( + raw_stream=raw_stream, + response_format=self.__response_format, + input_tools=self.__input_tools, + ) + + return self.__stream + + def __exit__( + self, + exc_type: type[BaseException] | None, + exc: BaseException | None, + exc_tb: TracebackType | None, + ) -> None: + if self.__stream is not None: + self.__stream.close() + + +class AsyncChatCompletionStream(Generic[ResponseFormatT]): + """Wrapper over the Chat Completions streaming API that adds helpful + events such as `content.done`, supports automatically parsing + responses & tool calls and accumulates a `ChatCompletion` object + from each individual chunk. + + https://platform.openai.com/docs/api-reference/streaming + """ + + def __init__( + self, + *, + raw_stream: AsyncStream[ChatCompletionChunk], + response_format: type[ResponseFormatT] | ResponseFormatParam | NotGiven, + input_tools: Iterable[ChatCompletionToolParam] | NotGiven, + ) -> None: + self._raw_stream = raw_stream + self._response = raw_stream.response + self._iterator = self.__stream__() + self._state = ChatCompletionStreamState(response_format=response_format, input_tools=input_tools) + + async def __anext__(self) -> ChatCompletionStreamEvent[ResponseFormatT]: + return await self._iterator.__anext__() + + async def __aiter__(self) -> AsyncIterator[ChatCompletionStreamEvent[ResponseFormatT]]: + async for item in self._iterator: + yield item + + async def __aenter__(self) -> Self: + return self + + async def __aexit__( + self, + exc_type: type[BaseException] | None, + exc: BaseException | None, + exc_tb: TracebackType | None, + ) -> None: + await self.close() + + async def close(self) -> None: + """ + Close the response and release the connection. + + Automatically called if the response body is read to completion. + """ + await self._response.aclose() + + async def get_final_completion(self) -> ParsedChatCompletion[ResponseFormatT]: + """Waits until the stream has been read to completion and returns + the accumulated `ParsedChatCompletion` object. + + If you passed a class type to `.stream()`, the `completion.choices[0].message.parsed` + property will be the content deserialised into that class, if there was any content returned + by the API. + """ + await self.until_done() + return self._state.get_final_completion() + + async def until_done(self) -> Self: + """Blocks until the stream has been consumed.""" + await consume_async_iterator(self) + return self + + @property + def current_completion_snapshot(self) -> ParsedChatCompletionSnapshot: + return self._state.current_completion_snapshot + + async def __stream__(self) -> AsyncIterator[ChatCompletionStreamEvent[ResponseFormatT]]: + async for sse_event in self._raw_stream: + events_to_fire = self._state.handle_chunk(sse_event) + for event in events_to_fire: + yield event + + +class AsyncChatCompletionStreamManager(Generic[ResponseFormatT]): + """Context manager over a `AsyncChatCompletionStream` that is returned by `.stream()`. + + This context manager ensures the response cannot be leaked if you don't read + the stream to completion. + + Usage: + ```py + async with client.beta.chat.completions.stream(...) as stream: + for event in stream: + ... + ``` + """ + + def __init__( + self, + api_request: Awaitable[AsyncStream[ChatCompletionChunk]], + *, + response_format: type[ResponseFormatT] | ResponseFormatParam | NotGiven, + input_tools: Iterable[ChatCompletionToolParam] | NotGiven, + ) -> None: + self.__stream: AsyncChatCompletionStream[ResponseFormatT] | None = None + self.__api_request = api_request + self.__response_format = response_format + self.__input_tools = input_tools + + async def __aenter__(self) -> AsyncChatCompletionStream[ResponseFormatT]: + raw_stream = await self.__api_request + + self.__stream = AsyncChatCompletionStream( + raw_stream=raw_stream, + response_format=self.__response_format, + input_tools=self.__input_tools, + ) + + return self.__stream + + async def __aexit__( + self, + exc_type: type[BaseException] | None, + exc: BaseException | None, + exc_tb: TracebackType | None, + ) -> None: + if self.__stream is not None: + await self.__stream.close() + + +class ChatCompletionStreamState(Generic[ResponseFormatT]): + """Helper class for manually accumulating `ChatCompletionChunk`s into a final `ChatCompletion` object. + + This is useful in cases where you can't always use the `.stream()` method, e.g. + + ```py + from openai.lib.streaming.chat import ChatCompletionStreamState + + state = ChatCompletionStreamState() + + stream = client.chat.completions.create(..., stream=True) + for chunk in response: + state.handle_chunk(chunk) + + # can also access the accumulated `ChatCompletion` mid-stream + state.current_completion_snapshot + + print(state.get_final_completion()) + ``` + """ + + def __init__( + self, + *, + input_tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN, + response_format: type[ResponseFormatT] | ResponseFormatParam | NotGiven = NOT_GIVEN, + ) -> None: + self.__current_completion_snapshot: ParsedChatCompletionSnapshot | None = None + self.__choice_event_states: list[ChoiceEventState] = [] + + self._input_tools = [tool for tool in input_tools] if is_given(input_tools) else [] + self._response_format = response_format + self._rich_response_format: type | NotGiven = response_format if inspect.isclass(response_format) else NOT_GIVEN + + def get_final_completion(self) -> ParsedChatCompletion[ResponseFormatT]: + """Parse the final completion object. + + Note this does not provide any guarantees that the stream has actually finished, you must + only call this method when the stream is finished. + """ + return parse_chat_completion( + chat_completion=self.current_completion_snapshot, + response_format=self._rich_response_format, + input_tools=self._input_tools, + ) + + @property + def current_completion_snapshot(self) -> ParsedChatCompletionSnapshot: + assert self.__current_completion_snapshot is not None + return self.__current_completion_snapshot + + def handle_chunk(self, chunk: ChatCompletionChunk) -> Iterable[ChatCompletionStreamEvent[ResponseFormatT]]: + """Accumulate a new chunk into the snapshot and returns an iterable of events to yield.""" + self.__current_completion_snapshot = self._accumulate_chunk(chunk) + + return self._build_events( + chunk=chunk, + completion_snapshot=self.__current_completion_snapshot, + ) + + def _get_choice_state(self, choice: ChoiceChunk) -> ChoiceEventState: + try: + return self.__choice_event_states[choice.index] + except IndexError: + choice_state = ChoiceEventState(input_tools=self._input_tools) + self.__choice_event_states.append(choice_state) + return choice_state + + def _accumulate_chunk(self, chunk: ChatCompletionChunk) -> ParsedChatCompletionSnapshot: + completion_snapshot = self.__current_completion_snapshot + + if completion_snapshot is None: + return _convert_initial_chunk_into_snapshot(chunk) + + for choice in chunk.choices: + try: + choice_snapshot = completion_snapshot.choices[choice.index] + previous_tool_calls = choice_snapshot.message.tool_calls or [] + + choice_snapshot.message = cast( + ParsedChatCompletionMessageSnapshot, + construct_type( + type_=ParsedChatCompletionMessageSnapshot, + value=accumulate_delta( + cast( + "dict[object, object]", + model_dump( + choice_snapshot.message, + # we don't want to serialise / deserialise our custom properties + # as they won't appear in the delta and we don't want to have to + # continuosly reparse the content + exclude=cast( + # cast required as mypy isn't smart enough to infer `True` here to `Literal[True]` + IncEx, + { + "parsed": True, + "tool_calls": { + idx: {"function": {"parsed_arguments": True}} + for idx, _ in enumerate(choice_snapshot.message.tool_calls or []) + }, + }, + ), + ), + ), + cast("dict[object, object]", choice.delta.to_dict()), + ), + ), + ) + + # ensure tools that have already been parsed are added back into the newly + # constructed message snapshot + for tool_index, prev_tool in enumerate(previous_tool_calls): + new_tool = (choice_snapshot.message.tool_calls or [])[tool_index] + + if prev_tool.type == "function": + assert new_tool.type == "function" + new_tool.function.parsed_arguments = prev_tool.function.parsed_arguments + elif TYPE_CHECKING: # type: ignore[unreachable] + assert_never(prev_tool) + except IndexError: + choice_snapshot = cast( + ParsedChoiceSnapshot, + construct_type( + type_=ParsedChoiceSnapshot, + value={ + **choice.model_dump(exclude_unset=True, exclude={"delta"}), + "message": choice.delta.to_dict(), + }, + ), + ) + completion_snapshot.choices.append(choice_snapshot) + + if choice.finish_reason: + choice_snapshot.finish_reason = choice.finish_reason + + if has_parseable_input(response_format=self._response_format, input_tools=self._input_tools): + if choice.finish_reason == "length": + # at the time of writing, `.usage` will always be `None` but + # we include it here in case that is changed in the future + raise LengthFinishReasonError(completion=completion_snapshot) + + if choice.finish_reason == "content_filter": + raise ContentFilterFinishReasonError() + + if ( + choice_snapshot.message.content + and not choice_snapshot.message.refusal + and is_given(self._rich_response_format) + ): + choice_snapshot.message.parsed = from_json( + bytes(choice_snapshot.message.content, "utf-8"), + partial_mode=True, + ) + + for tool_call_chunk in choice.delta.tool_calls or []: + tool_call_snapshot = (choice_snapshot.message.tool_calls or [])[tool_call_chunk.index] + + if tool_call_snapshot.type == "function": + input_tool = get_input_tool_by_name( + input_tools=self._input_tools, name=tool_call_snapshot.function.name + ) + + if ( + input_tool + and input_tool.get("function", {}).get("strict") + and tool_call_snapshot.function.arguments + ): + tool_call_snapshot.function.parsed_arguments = from_json( + bytes(tool_call_snapshot.function.arguments, "utf-8"), + partial_mode=True, + ) + elif TYPE_CHECKING: # type: ignore[unreachable] + assert_never(tool_call_snapshot) + + if choice.logprobs is not None: + if choice_snapshot.logprobs is None: + choice_snapshot.logprobs = build( + ChoiceLogprobs, + content=choice.logprobs.content, + refusal=choice.logprobs.refusal, + ) + else: + if choice.logprobs.content: + if choice_snapshot.logprobs.content is None: + choice_snapshot.logprobs.content = [] + + choice_snapshot.logprobs.content.extend(choice.logprobs.content) + + if choice.logprobs.refusal: + if choice_snapshot.logprobs.refusal is None: + choice_snapshot.logprobs.refusal = [] + + choice_snapshot.logprobs.refusal.extend(choice.logprobs.refusal) + + completion_snapshot.usage = chunk.usage + completion_snapshot.system_fingerprint = chunk.system_fingerprint + + return completion_snapshot + + def _build_events( + self, + *, + chunk: ChatCompletionChunk, + completion_snapshot: ParsedChatCompletionSnapshot, + ) -> list[ChatCompletionStreamEvent[ResponseFormatT]]: + events_to_fire: list[ChatCompletionStreamEvent[ResponseFormatT]] = [] + + events_to_fire.append( + build(ChunkEvent, type="chunk", chunk=chunk, snapshot=completion_snapshot), + ) + + for choice in chunk.choices: + choice_state = self._get_choice_state(choice) + choice_snapshot = completion_snapshot.choices[choice.index] + + if choice.delta.content is not None and choice_snapshot.message.content is not None: + events_to_fire.append( + build( + ContentDeltaEvent, + type="content.delta", + delta=choice.delta.content, + snapshot=choice_snapshot.message.content, + parsed=choice_snapshot.message.parsed, + ) + ) + + if choice.delta.refusal is not None and choice_snapshot.message.refusal is not None: + events_to_fire.append( + build( + RefusalDeltaEvent, + type="refusal.delta", + delta=choice.delta.refusal, + snapshot=choice_snapshot.message.refusal, + ) + ) + + if choice.delta.tool_calls: + tool_calls = choice_snapshot.message.tool_calls + assert tool_calls is not None + + for tool_call_delta in choice.delta.tool_calls: + tool_call = tool_calls[tool_call_delta.index] + + if tool_call.type == "function": + assert tool_call_delta.function is not None + events_to_fire.append( + build( + FunctionToolCallArgumentsDeltaEvent, + type="tool_calls.function.arguments.delta", + name=tool_call.function.name, + index=tool_call_delta.index, + arguments=tool_call.function.arguments, + parsed_arguments=tool_call.function.parsed_arguments, + arguments_delta=tool_call_delta.function.arguments or "", + ) + ) + elif TYPE_CHECKING: # type: ignore[unreachable] + assert_never(tool_call) + + if choice.logprobs is not None and choice_snapshot.logprobs is not None: + if choice.logprobs.content and choice_snapshot.logprobs.content: + events_to_fire.append( + build( + LogprobsContentDeltaEvent, + type="logprobs.content.delta", + content=choice.logprobs.content, + snapshot=choice_snapshot.logprobs.content, + ), + ) + + if choice.logprobs.refusal and choice_snapshot.logprobs.refusal: + events_to_fire.append( + build( + LogprobsRefusalDeltaEvent, + type="logprobs.refusal.delta", + refusal=choice.logprobs.refusal, + snapshot=choice_snapshot.logprobs.refusal, + ), + ) + + events_to_fire.extend( + choice_state.get_done_events( + choice_chunk=choice, + choice_snapshot=choice_snapshot, + response_format=self._response_format, + ) + ) + + return events_to_fire + + +class ChoiceEventState: + def __init__(self, *, input_tools: list[ChatCompletionToolParam]) -> None: + self._input_tools = input_tools + + self._content_done = False + self._refusal_done = False + self._logprobs_content_done = False + self._logprobs_refusal_done = False + self._done_tool_calls: set[int] = set() + self.__current_tool_call_index: int | None = None + + def get_done_events( + self, + *, + choice_chunk: ChoiceChunk, + choice_snapshot: ParsedChoiceSnapshot, + response_format: type[ResponseFormatT] | ResponseFormatParam | NotGiven, + ) -> list[ChatCompletionStreamEvent[ResponseFormatT]]: + events_to_fire: list[ChatCompletionStreamEvent[ResponseFormatT]] = [] + + if choice_snapshot.finish_reason: + events_to_fire.extend( + self._content_done_events(choice_snapshot=choice_snapshot, response_format=response_format) + ) + + if ( + self.__current_tool_call_index is not None + and self.__current_tool_call_index not in self._done_tool_calls + ): + self._add_tool_done_event( + events_to_fire=events_to_fire, + choice_snapshot=choice_snapshot, + tool_index=self.__current_tool_call_index, + ) + + for tool_call in choice_chunk.delta.tool_calls or []: + if self.__current_tool_call_index != tool_call.index: + events_to_fire.extend( + self._content_done_events(choice_snapshot=choice_snapshot, response_format=response_format) + ) + + if self.__current_tool_call_index is not None: + self._add_tool_done_event( + events_to_fire=events_to_fire, + choice_snapshot=choice_snapshot, + tool_index=self.__current_tool_call_index, + ) + + self.__current_tool_call_index = tool_call.index + + return events_to_fire + + def _content_done_events( + self, + *, + choice_snapshot: ParsedChoiceSnapshot, + response_format: type[ResponseFormatT] | ResponseFormatParam | NotGiven, + ) -> list[ChatCompletionStreamEvent[ResponseFormatT]]: + events_to_fire: list[ChatCompletionStreamEvent[ResponseFormatT]] = [] + + if choice_snapshot.message.content and not self._content_done: + self._content_done = True + + parsed = maybe_parse_content( + response_format=response_format, + message=choice_snapshot.message, + ) + + # update the parsed content to now use the richer `response_format` + # as opposed to the raw JSON-parsed object as the content is now + # complete and can be fully validated. + choice_snapshot.message.parsed = parsed + + events_to_fire.append( + build( + # we do this dance so that when the `ContentDoneEvent` instance + # is printed at runtime the class name will include the solved + # type variable, e.g. `ContentDoneEvent[MyModelType]` + cast( # pyright: ignore[reportUnnecessaryCast] + "type[ContentDoneEvent[ResponseFormatT]]", + cast(Any, ContentDoneEvent)[solve_response_format_t(response_format)], + ), + type="content.done", + content=choice_snapshot.message.content, + parsed=parsed, + ), + ) + + if choice_snapshot.message.refusal is not None and not self._refusal_done: + self._refusal_done = True + events_to_fire.append( + build(RefusalDoneEvent, type="refusal.done", refusal=choice_snapshot.message.refusal), + ) + + if ( + choice_snapshot.logprobs is not None + and choice_snapshot.logprobs.content is not None + and not self._logprobs_content_done + ): + self._logprobs_content_done = True + events_to_fire.append( + build(LogprobsContentDoneEvent, type="logprobs.content.done", content=choice_snapshot.logprobs.content), + ) + + if ( + choice_snapshot.logprobs is not None + and choice_snapshot.logprobs.refusal is not None + and not self._logprobs_refusal_done + ): + self._logprobs_refusal_done = True + events_to_fire.append( + build(LogprobsRefusalDoneEvent, type="logprobs.refusal.done", refusal=choice_snapshot.logprobs.refusal), + ) + + return events_to_fire + + def _add_tool_done_event( + self, + *, + events_to_fire: list[ChatCompletionStreamEvent[ResponseFormatT]], + choice_snapshot: ParsedChoiceSnapshot, + tool_index: int, + ) -> None: + if tool_index in self._done_tool_calls: + return + + self._done_tool_calls.add(tool_index) + + assert choice_snapshot.message.tool_calls is not None + tool_call_snapshot = choice_snapshot.message.tool_calls[tool_index] + + if tool_call_snapshot.type == "function": + parsed_arguments = parse_function_tool_arguments( + input_tools=self._input_tools, function=tool_call_snapshot.function + ) + + # update the parsed content to potentially use a richer type + # as opposed to the raw JSON-parsed object as the content is now + # complete and can be fully validated. + tool_call_snapshot.function.parsed_arguments = parsed_arguments + + events_to_fire.append( + build( + FunctionToolCallArgumentsDoneEvent, + type="tool_calls.function.arguments.done", + index=tool_index, + name=tool_call_snapshot.function.name, + arguments=tool_call_snapshot.function.arguments, + parsed_arguments=parsed_arguments, + ) + ) + elif TYPE_CHECKING: # type: ignore[unreachable] + assert_never(tool_call_snapshot) + + +def _convert_initial_chunk_into_snapshot(chunk: ChatCompletionChunk) -> ParsedChatCompletionSnapshot: + data = chunk.to_dict() + choices = cast("list[object]", data["choices"]) + + for choice in chunk.choices: + choices[choice.index] = { + **choice.model_dump(exclude_unset=True, exclude={"delta"}), + "message": choice.delta.to_dict(), + } + + return cast( + ParsedChatCompletionSnapshot, + construct_type( + type_=ParsedChatCompletionSnapshot, + value={ + "system_fingerprint": None, + **data, + "object": "chat.completion", + }, + ), + ) diff --git a/.venv/lib/python3.12/site-packages/openai/lib/streaming/chat/_events.py b/.venv/lib/python3.12/site-packages/openai/lib/streaming/chat/_events.py new file mode 100644 index 00000000..d4c1f283 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/streaming/chat/_events.py @@ -0,0 +1,123 @@ +from typing import List, Union, Generic, Optional +from typing_extensions import Literal + +from ._types import ParsedChatCompletionSnapshot +from ...._models import BaseModel, GenericModel +from ..._parsing import ResponseFormatT +from ....types.chat import ChatCompletionChunk, ChatCompletionTokenLogprob + + +class ChunkEvent(BaseModel): + type: Literal["chunk"] + + chunk: ChatCompletionChunk + + snapshot: ParsedChatCompletionSnapshot + + +class ContentDeltaEvent(BaseModel): + """This event is yielded for every chunk with `choice.delta.content` data.""" + + type: Literal["content.delta"] + + delta: str + + snapshot: str + + parsed: Optional[object] = None + + +class ContentDoneEvent(GenericModel, Generic[ResponseFormatT]): + type: Literal["content.done"] + + content: str + + parsed: Optional[ResponseFormatT] = None + + +class RefusalDeltaEvent(BaseModel): + type: Literal["refusal.delta"] + + delta: str + + snapshot: str + + +class RefusalDoneEvent(BaseModel): + type: Literal["refusal.done"] + + refusal: str + + +class FunctionToolCallArgumentsDeltaEvent(BaseModel): + type: Literal["tool_calls.function.arguments.delta"] + + name: str + + index: int + + arguments: str + """Accumulated raw JSON string""" + + parsed_arguments: object + """The parsed arguments so far""" + + arguments_delta: str + """The JSON string delta""" + + +class FunctionToolCallArgumentsDoneEvent(BaseModel): + type: Literal["tool_calls.function.arguments.done"] + + name: str + + index: int + + arguments: str + """Accumulated raw JSON string""" + + parsed_arguments: object + """The parsed arguments""" + + +class LogprobsContentDeltaEvent(BaseModel): + type: Literal["logprobs.content.delta"] + + content: List[ChatCompletionTokenLogprob] + + snapshot: List[ChatCompletionTokenLogprob] + + +class LogprobsContentDoneEvent(BaseModel): + type: Literal["logprobs.content.done"] + + content: List[ChatCompletionTokenLogprob] + + +class LogprobsRefusalDeltaEvent(BaseModel): + type: Literal["logprobs.refusal.delta"] + + refusal: List[ChatCompletionTokenLogprob] + + snapshot: List[ChatCompletionTokenLogprob] + + +class LogprobsRefusalDoneEvent(BaseModel): + type: Literal["logprobs.refusal.done"] + + refusal: List[ChatCompletionTokenLogprob] + + +ChatCompletionStreamEvent = Union[ + ChunkEvent, + ContentDeltaEvent, + ContentDoneEvent[ResponseFormatT], + RefusalDeltaEvent, + RefusalDoneEvent, + FunctionToolCallArgumentsDeltaEvent, + FunctionToolCallArgumentsDoneEvent, + LogprobsContentDeltaEvent, + LogprobsContentDoneEvent, + LogprobsRefusalDeltaEvent, + LogprobsRefusalDoneEvent, +] diff --git a/.venv/lib/python3.12/site-packages/openai/lib/streaming/chat/_types.py b/.venv/lib/python3.12/site-packages/openai/lib/streaming/chat/_types.py new file mode 100644 index 00000000..42552893 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/streaming/chat/_types.py @@ -0,0 +1,20 @@ +from __future__ import annotations + +from typing_extensions import TypeAlias + +from ....types.chat import ParsedChoice, ParsedChatCompletion, ParsedChatCompletionMessage + +ParsedChatCompletionSnapshot: TypeAlias = ParsedChatCompletion[object] +"""Snapshot type representing an in-progress accumulation of +a `ParsedChatCompletion` object. +""" + +ParsedChatCompletionMessageSnapshot: TypeAlias = ParsedChatCompletionMessage[object] +"""Snapshot type representing an in-progress accumulation of +a `ParsedChatCompletionMessage` object. + +If the content has been fully accumulated, the `.parsed` content will be +the `response_format` instance, otherwise it'll be the raw JSON parsed version. +""" + +ParsedChoiceSnapshot: TypeAlias = ParsedChoice[object] diff --git a/.venv/lib/python3.12/site-packages/openai/lib/streaming/responses/__init__.py b/.venv/lib/python3.12/site-packages/openai/lib/streaming/responses/__init__.py new file mode 100644 index 00000000..ff073633 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/streaming/responses/__init__.py @@ -0,0 +1,13 @@ +from ._events import ( + ResponseTextDoneEvent as ResponseTextDoneEvent, + ResponseTextDeltaEvent as ResponseTextDeltaEvent, + ResponseFunctionCallArgumentsDeltaEvent as ResponseFunctionCallArgumentsDeltaEvent, +) +from ._responses import ( + ResponseStream as ResponseStream, + AsyncResponseStream as AsyncResponseStream, + ResponseStreamEvent as ResponseStreamEvent, + ResponseStreamState as ResponseStreamState, + ResponseStreamManager as ResponseStreamManager, + AsyncResponseStreamManager as AsyncResponseStreamManager, +) diff --git a/.venv/lib/python3.12/site-packages/openai/lib/streaming/responses/_events.py b/.venv/lib/python3.12/site-packages/openai/lib/streaming/responses/_events.py new file mode 100644 index 00000000..fe17edf6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/streaming/responses/_events.py @@ -0,0 +1,106 @@ +from __future__ import annotations + +from typing import Optional +from typing_extensions import Union, Generic, TypeVar, Annotated, TypeAlias + +from ...._utils import PropertyInfo +from ...._compat import GenericModel +from ....types.responses import ( + ParsedResponse, + ResponseErrorEvent, + ResponseFailedEvent, + ResponseCreatedEvent, + ResponseTextDoneEvent as RawResponseTextDoneEvent, + ResponseAudioDoneEvent, + ResponseCompletedEvent as RawResponseCompletedEvent, + ResponseTextDeltaEvent as RawResponseTextDeltaEvent, + ResponseAudioDeltaEvent, + ResponseIncompleteEvent, + ResponseInProgressEvent, + ResponseRefusalDoneEvent, + ResponseRefusalDeltaEvent, + ResponseOutputItemDoneEvent, + ResponseContentPartDoneEvent, + ResponseOutputItemAddedEvent, + ResponseContentPartAddedEvent, + ResponseAudioTranscriptDoneEvent, + ResponseTextAnnotationDeltaEvent, + ResponseAudioTranscriptDeltaEvent, + ResponseWebSearchCallCompletedEvent, + ResponseWebSearchCallSearchingEvent, + ResponseFileSearchCallCompletedEvent, + ResponseFileSearchCallSearchingEvent, + ResponseWebSearchCallInProgressEvent, + ResponseFileSearchCallInProgressEvent, + ResponseFunctionCallArgumentsDoneEvent, + ResponseFunctionCallArgumentsDeltaEvent as RawResponseFunctionCallArgumentsDeltaEvent, + ResponseCodeInterpreterCallCodeDoneEvent, + ResponseCodeInterpreterCallCodeDeltaEvent, + ResponseCodeInterpreterCallCompletedEvent, + ResponseCodeInterpreterCallInProgressEvent, + ResponseCodeInterpreterCallInterpretingEvent, +) + +TextFormatT = TypeVar( + "TextFormatT", + # if it isn't given then we don't do any parsing + default=None, +) + + +class ResponseTextDeltaEvent(RawResponseTextDeltaEvent): + snapshot: str + + +class ResponseTextDoneEvent(RawResponseTextDoneEvent, GenericModel, Generic[TextFormatT]): + parsed: Optional[TextFormatT] = None + + +class ResponseFunctionCallArgumentsDeltaEvent(RawResponseFunctionCallArgumentsDeltaEvent): + snapshot: str + + +class ResponseCompletedEvent(RawResponseCompletedEvent, GenericModel, Generic[TextFormatT]): + response: ParsedResponse[TextFormatT] # type: ignore[assignment] + + +ResponseStreamEvent: TypeAlias = Annotated[ + Union[ + # wrappers with snapshots added on + ResponseTextDeltaEvent, + ResponseTextDoneEvent[TextFormatT], + ResponseFunctionCallArgumentsDeltaEvent, + ResponseCompletedEvent[TextFormatT], + # the same as the non-accumulated API + ResponseAudioDeltaEvent, + ResponseAudioDoneEvent, + ResponseAudioTranscriptDeltaEvent, + ResponseAudioTranscriptDoneEvent, + ResponseCodeInterpreterCallCodeDeltaEvent, + ResponseCodeInterpreterCallCodeDoneEvent, + ResponseCodeInterpreterCallCompletedEvent, + ResponseCodeInterpreterCallInProgressEvent, + ResponseCodeInterpreterCallInterpretingEvent, + ResponseContentPartAddedEvent, + ResponseContentPartDoneEvent, + ResponseCreatedEvent, + ResponseErrorEvent, + ResponseFileSearchCallCompletedEvent, + ResponseFileSearchCallInProgressEvent, + ResponseFileSearchCallSearchingEvent, + ResponseFunctionCallArgumentsDoneEvent, + ResponseInProgressEvent, + ResponseFailedEvent, + ResponseIncompleteEvent, + ResponseOutputItemAddedEvent, + ResponseOutputItemDoneEvent, + ResponseRefusalDeltaEvent, + ResponseRefusalDoneEvent, + ResponseTextAnnotationDeltaEvent, + ResponseTextDoneEvent, + ResponseWebSearchCallCompletedEvent, + ResponseWebSearchCallInProgressEvent, + ResponseWebSearchCallSearchingEvent, + ], + PropertyInfo(discriminator="type"), +] diff --git a/.venv/lib/python3.12/site-packages/openai/lib/streaming/responses/_responses.py b/.venv/lib/python3.12/site-packages/openai/lib/streaming/responses/_responses.py new file mode 100644 index 00000000..f8f4b641 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/streaming/responses/_responses.py @@ -0,0 +1,354 @@ +from __future__ import annotations + +import inspect +from types import TracebackType +from typing import Any, List, Generic, Iterable, Awaitable, cast +from typing_extensions import Self, Callable, Iterator, AsyncIterator + +from ._types import ParsedResponseSnapshot +from ._events import ( + ResponseStreamEvent, + ResponseTextDoneEvent, + ResponseCompletedEvent, + ResponseTextDeltaEvent, + ResponseFunctionCallArgumentsDeltaEvent, +) +from ...._types import NOT_GIVEN, NotGiven +from ...._utils import is_given, consume_sync_iterator, consume_async_iterator +from ...._models import build, construct_type_unchecked +from ...._streaming import Stream, AsyncStream +from ....types.responses import ParsedResponse, ResponseStreamEvent as RawResponseStreamEvent +from ..._parsing._responses import TextFormatT, parse_text, parse_response +from ....types.responses.tool_param import ToolParam +from ....types.responses.parsed_response import ( + ParsedContent, + ParsedResponseOutputMessage, + ParsedResponseFunctionToolCall, +) + + +class ResponseStream(Generic[TextFormatT]): + def __init__( + self, + *, + raw_stream: Stream[RawResponseStreamEvent], + text_format: type[TextFormatT] | NotGiven, + input_tools: Iterable[ToolParam] | NotGiven, + ) -> None: + self._raw_stream = raw_stream + self._response = raw_stream.response + self._iterator = self.__stream__() + self._state = ResponseStreamState(text_format=text_format, input_tools=input_tools) + + def __next__(self) -> ResponseStreamEvent[TextFormatT]: + return self._iterator.__next__() + + def __iter__(self) -> Iterator[ResponseStreamEvent[TextFormatT]]: + for item in self._iterator: + yield item + + def __enter__(self) -> Self: + return self + + def __stream__(self) -> Iterator[ResponseStreamEvent[TextFormatT]]: + for sse_event in self._raw_stream: + events_to_fire = self._state.handle_event(sse_event) + for event in events_to_fire: + yield event + + def __exit__( + self, + exc_type: type[BaseException] | None, + exc: BaseException | None, + exc_tb: TracebackType | None, + ) -> None: + self.close() + + def close(self) -> None: + """ + Close the response and release the connection. + + Automatically called if the response body is read to completion. + """ + self._response.close() + + def get_final_response(self) -> ParsedResponse[TextFormatT]: + """Waits until the stream has been read to completion and returns + the accumulated `ParsedResponse` object. + """ + self.until_done() + response = self._state._completed_response + if not response: + raise RuntimeError("Didn't receive a `response.completed` event.") + + return response + + def until_done(self) -> Self: + """Blocks until the stream has been consumed.""" + consume_sync_iterator(self) + return self + + +class ResponseStreamManager(Generic[TextFormatT]): + def __init__( + self, + api_request: Callable[[], Stream[RawResponseStreamEvent]], + *, + text_format: type[TextFormatT] | NotGiven, + input_tools: Iterable[ToolParam] | NotGiven, + ) -> None: + self.__stream: ResponseStream[TextFormatT] | None = None + self.__api_request = api_request + self.__text_format = text_format + self.__input_tools = input_tools + + def __enter__(self) -> ResponseStream[TextFormatT]: + raw_stream = self.__api_request() + + self.__stream = ResponseStream( + raw_stream=raw_stream, + text_format=self.__text_format, + input_tools=self.__input_tools, + ) + + return self.__stream + + def __exit__( + self, + exc_type: type[BaseException] | None, + exc: BaseException | None, + exc_tb: TracebackType | None, + ) -> None: + if self.__stream is not None: + self.__stream.close() + + +class AsyncResponseStream(Generic[TextFormatT]): + def __init__( + self, + *, + raw_stream: AsyncStream[RawResponseStreamEvent], + text_format: type[TextFormatT] | NotGiven, + input_tools: Iterable[ToolParam] | NotGiven, + ) -> None: + self._raw_stream = raw_stream + self._response = raw_stream.response + self._iterator = self.__stream__() + self._state = ResponseStreamState(text_format=text_format, input_tools=input_tools) + + async def __anext__(self) -> ResponseStreamEvent[TextFormatT]: + return await self._iterator.__anext__() + + async def __aiter__(self) -> AsyncIterator[ResponseStreamEvent[TextFormatT]]: + async for item in self._iterator: + yield item + + async def __stream__(self) -> AsyncIterator[ResponseStreamEvent[TextFormatT]]: + async for sse_event in self._raw_stream: + events_to_fire = self._state.handle_event(sse_event) + for event in events_to_fire: + yield event + + async def __aenter__(self) -> Self: + return self + + async def __aexit__( + self, + exc_type: type[BaseException] | None, + exc: BaseException | None, + exc_tb: TracebackType | None, + ) -> None: + await self.close() + + async def close(self) -> None: + """ + Close the response and release the connection. + + Automatically called if the response body is read to completion. + """ + await self._response.aclose() + + async def get_final_response(self) -> ParsedResponse[TextFormatT]: + """Waits until the stream has been read to completion and returns + the accumulated `ParsedResponse` object. + """ + await self.until_done() + response = self._state._completed_response + if not response: + raise RuntimeError("Didn't receive a `response.completed` event.") + + return response + + async def until_done(self) -> Self: + """Blocks until the stream has been consumed.""" + await consume_async_iterator(self) + return self + + +class AsyncResponseStreamManager(Generic[TextFormatT]): + def __init__( + self, + api_request: Awaitable[AsyncStream[RawResponseStreamEvent]], + *, + text_format: type[TextFormatT] | NotGiven, + input_tools: Iterable[ToolParam] | NotGiven, + ) -> None: + self.__stream: AsyncResponseStream[TextFormatT] | None = None + self.__api_request = api_request + self.__text_format = text_format + self.__input_tools = input_tools + + async def __aenter__(self) -> AsyncResponseStream[TextFormatT]: + raw_stream = await self.__api_request + + self.__stream = AsyncResponseStream( + raw_stream=raw_stream, + text_format=self.__text_format, + input_tools=self.__input_tools, + ) + + return self.__stream + + async def __aexit__( + self, + exc_type: type[BaseException] | None, + exc: BaseException | None, + exc_tb: TracebackType | None, + ) -> None: + if self.__stream is not None: + await self.__stream.close() + + +class ResponseStreamState(Generic[TextFormatT]): + def __init__( + self, + *, + input_tools: Iterable[ToolParam] | NotGiven, + text_format: type[TextFormatT] | NotGiven, + ) -> None: + self.__current_snapshot: ParsedResponseSnapshot | None = None + self._completed_response: ParsedResponse[TextFormatT] | None = None + self._input_tools = [tool for tool in input_tools] if is_given(input_tools) else [] + self._text_format = text_format + self._rich_text_format: type | NotGiven = text_format if inspect.isclass(text_format) else NOT_GIVEN + + def handle_event(self, event: RawResponseStreamEvent) -> List[ResponseStreamEvent[TextFormatT]]: + self.__current_snapshot = snapshot = self.accumulate_event(event) + + events: List[ResponseStreamEvent[TextFormatT]] = [] + + if event.type == "response.output_text.delta": + output = snapshot.output[event.output_index] + assert output.type == "message" + + content = output.content[event.content_index] + assert content.type == "output_text" + + events.append( + build( + ResponseTextDeltaEvent, + content_index=event.content_index, + delta=event.delta, + item_id=event.item_id, + output_index=event.output_index, + type="response.output_text.delta", + snapshot=content.text, + ) + ) + elif event.type == "response.output_text.done": + output = snapshot.output[event.output_index] + assert output.type == "message" + + content = output.content[event.content_index] + assert content.type == "output_text" + + events.append( + build( + ResponseTextDoneEvent[TextFormatT], + content_index=event.content_index, + item_id=event.item_id, + output_index=event.output_index, + type="response.output_text.done", + text=event.text, + parsed=parse_text(event.text, text_format=self._text_format), + ) + ) + elif event.type == "response.function_call_arguments.delta": + output = snapshot.output[event.output_index] + assert output.type == "function_call" + + events.append( + build( + ResponseFunctionCallArgumentsDeltaEvent, + delta=event.delta, + item_id=event.item_id, + output_index=event.output_index, + type="response.function_call_arguments.delta", + snapshot=output.arguments, + ) + ) + + elif event.type == "response.completed": + response = self._completed_response + assert response is not None + + events.append( + build( + ResponseCompletedEvent, + type="response.completed", + response=response, + ) + ) + else: + events.append(event) + + return events + + def accumulate_event(self, event: RawResponseStreamEvent) -> ParsedResponseSnapshot: + snapshot = self.__current_snapshot + if snapshot is None: + return self._create_initial_response(event) + + if event.type == "response.output_item.added": + if event.item.type == "function_call": + snapshot.output.append( + construct_type_unchecked( + type_=cast(Any, ParsedResponseFunctionToolCall), value=event.item.to_dict() + ) + ) + elif event.item.type == "message": + snapshot.output.append( + construct_type_unchecked(type_=cast(Any, ParsedResponseOutputMessage), value=event.item.to_dict()) + ) + else: + snapshot.output.append(event.item) + elif event.type == "response.content_part.added": + output = snapshot.output[event.output_index] + if output.type == "message": + output.content.append( + construct_type_unchecked(type_=cast(Any, ParsedContent), value=event.part.to_dict()) + ) + elif event.type == "response.output_text.delta": + output = snapshot.output[event.output_index] + if output.type == "message": + content = output.content[event.content_index] + assert content.type == "output_text" + content.text += event.delta + elif event.type == "response.function_call_arguments.delta": + output = snapshot.output[event.output_index] + if output.type == "function_call": + output.arguments += event.delta + elif event.type == "response.completed": + self._completed_response = parse_response( + text_format=self._text_format, + response=event.response, + input_tools=self._input_tools, + ) + + return snapshot + + def _create_initial_response(self, event: RawResponseStreamEvent) -> ParsedResponseSnapshot: + if event.type != "response.created": + raise RuntimeError(f"Expected to have received `response.created` before `{event.type}`") + + return construct_type_unchecked(type_=ParsedResponseSnapshot, value=event.response.to_dict()) diff --git a/.venv/lib/python3.12/site-packages/openai/lib/streaming/responses/_types.py b/.venv/lib/python3.12/site-packages/openai/lib/streaming/responses/_types.py new file mode 100644 index 00000000..6d3fd90e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/streaming/responses/_types.py @@ -0,0 +1,10 @@ +from __future__ import annotations + +from typing_extensions import TypeAlias + +from ....types.responses import ParsedResponse + +ParsedResponseSnapshot: TypeAlias = ParsedResponse[object] +"""Snapshot type representing an in-progress accumulation of +a `ParsedResponse` object. +""" diff --git a/.venv/lib/python3.12/site-packages/openai/pagination.py b/.venv/lib/python3.12/site-packages/openai/pagination.py new file mode 100644 index 00000000..a59cced8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/pagination.py @@ -0,0 +1,125 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Any, List, Generic, TypeVar, Optional, cast +from typing_extensions import Protocol, override, runtime_checkable + +from ._base_client import BasePage, PageInfo, BaseSyncPage, BaseAsyncPage + +__all__ = ["SyncPage", "AsyncPage", "SyncCursorPage", "AsyncCursorPage"] + +_T = TypeVar("_T") + + +@runtime_checkable +class CursorPageItem(Protocol): + id: Optional[str] + + +class SyncPage(BaseSyncPage[_T], BasePage[_T], Generic[_T]): + """Note: no pagination actually occurs yet, this is for forwards-compatibility.""" + + data: List[_T] + object: str + + @override + def _get_page_items(self) -> List[_T]: + data = self.data + if not data: + return [] + return data + + @override + def next_page_info(self) -> None: + """ + This page represents a response that isn't actually paginated at the API level + so there will never be a next page. + """ + return None + + +class AsyncPage(BaseAsyncPage[_T], BasePage[_T], Generic[_T]): + """Note: no pagination actually occurs yet, this is for forwards-compatibility.""" + + data: List[_T] + object: str + + @override + def _get_page_items(self) -> List[_T]: + data = self.data + if not data: + return [] + return data + + @override + def next_page_info(self) -> None: + """ + This page represents a response that isn't actually paginated at the API level + so there will never be a next page. + """ + return None + + +class SyncCursorPage(BaseSyncPage[_T], BasePage[_T], Generic[_T]): + data: List[_T] + has_more: Optional[bool] = None + + @override + def _get_page_items(self) -> List[_T]: + data = self.data + if not data: + return [] + return data + + @override + def has_next_page(self) -> bool: + has_more = self.has_more + if has_more is not None and has_more is False: + return False + + return super().has_next_page() + + @override + def next_page_info(self) -> Optional[PageInfo]: + data = self.data + if not data: + return None + + item = cast(Any, data[-1]) + if not isinstance(item, CursorPageItem) or item.id is None: + # TODO emit warning log + return None + + return PageInfo(params={"after": item.id}) + + +class AsyncCursorPage(BaseAsyncPage[_T], BasePage[_T], Generic[_T]): + data: List[_T] + has_more: Optional[bool] = None + + @override + def _get_page_items(self) -> List[_T]: + data = self.data + if not data: + return [] + return data + + @override + def has_next_page(self) -> bool: + has_more = self.has_more + if has_more is not None and has_more is False: + return False + + return super().has_next_page() + + @override + def next_page_info(self) -> Optional[PageInfo]: + data = self.data + if not data: + return None + + item = cast(Any, data[-1]) + if not isinstance(item, CursorPageItem) or item.id is None: + # TODO emit warning log + return None + + return PageInfo(params={"after": item.id}) diff --git a/.venv/lib/python3.12/site-packages/openai/py.typed b/.venv/lib/python3.12/site-packages/openai/py.typed new file mode 100644 index 00000000..e69de29b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/py.typed diff --git a/.venv/lib/python3.12/site-packages/openai/resources/__init__.py b/.venv/lib/python3.12/site-packages/openai/resources/__init__.py new file mode 100644 index 00000000..d3457cf3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/__init__.py @@ -0,0 +1,201 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from .beta import ( + Beta, + AsyncBeta, + BetaWithRawResponse, + AsyncBetaWithRawResponse, + BetaWithStreamingResponse, + AsyncBetaWithStreamingResponse, +) +from .chat import ( + Chat, + AsyncChat, + ChatWithRawResponse, + AsyncChatWithRawResponse, + ChatWithStreamingResponse, + AsyncChatWithStreamingResponse, +) +from .audio import ( + Audio, + AsyncAudio, + AudioWithRawResponse, + AsyncAudioWithRawResponse, + AudioWithStreamingResponse, + AsyncAudioWithStreamingResponse, +) +from .files import ( + Files, + AsyncFiles, + FilesWithRawResponse, + AsyncFilesWithRawResponse, + FilesWithStreamingResponse, + AsyncFilesWithStreamingResponse, +) +from .images import ( + Images, + AsyncImages, + ImagesWithRawResponse, + AsyncImagesWithRawResponse, + ImagesWithStreamingResponse, + AsyncImagesWithStreamingResponse, +) +from .models import ( + Models, + AsyncModels, + ModelsWithRawResponse, + AsyncModelsWithRawResponse, + ModelsWithStreamingResponse, + AsyncModelsWithStreamingResponse, +) +from .batches import ( + Batches, + AsyncBatches, + BatchesWithRawResponse, + AsyncBatchesWithRawResponse, + BatchesWithStreamingResponse, + AsyncBatchesWithStreamingResponse, +) +from .uploads import ( + Uploads, + AsyncUploads, + UploadsWithRawResponse, + AsyncUploadsWithRawResponse, + UploadsWithStreamingResponse, + AsyncUploadsWithStreamingResponse, +) +from .responses import ( + Responses, + AsyncResponses, + ResponsesWithRawResponse, + AsyncResponsesWithRawResponse, + ResponsesWithStreamingResponse, + AsyncResponsesWithStreamingResponse, +) +from .embeddings import ( + Embeddings, + AsyncEmbeddings, + EmbeddingsWithRawResponse, + AsyncEmbeddingsWithRawResponse, + EmbeddingsWithStreamingResponse, + AsyncEmbeddingsWithStreamingResponse, +) +from .completions import ( + Completions, + AsyncCompletions, + CompletionsWithRawResponse, + AsyncCompletionsWithRawResponse, + CompletionsWithStreamingResponse, + AsyncCompletionsWithStreamingResponse, +) +from .fine_tuning import ( + FineTuning, + AsyncFineTuning, + FineTuningWithRawResponse, + AsyncFineTuningWithRawResponse, + FineTuningWithStreamingResponse, + AsyncFineTuningWithStreamingResponse, +) +from .moderations import ( + Moderations, + AsyncModerations, + ModerationsWithRawResponse, + AsyncModerationsWithRawResponse, + ModerationsWithStreamingResponse, + AsyncModerationsWithStreamingResponse, +) +from .vector_stores import ( + VectorStores, + AsyncVectorStores, + VectorStoresWithRawResponse, + AsyncVectorStoresWithRawResponse, + VectorStoresWithStreamingResponse, + AsyncVectorStoresWithStreamingResponse, +) + +__all__ = [ + "Completions", + "AsyncCompletions", + "CompletionsWithRawResponse", + "AsyncCompletionsWithRawResponse", + "CompletionsWithStreamingResponse", + "AsyncCompletionsWithStreamingResponse", + "Chat", + "AsyncChat", + "ChatWithRawResponse", + "AsyncChatWithRawResponse", + "ChatWithStreamingResponse", + "AsyncChatWithStreamingResponse", + "Embeddings", + "AsyncEmbeddings", + "EmbeddingsWithRawResponse", + "AsyncEmbeddingsWithRawResponse", + "EmbeddingsWithStreamingResponse", + "AsyncEmbeddingsWithStreamingResponse", + "Files", + "AsyncFiles", + "FilesWithRawResponse", + "AsyncFilesWithRawResponse", + "FilesWithStreamingResponse", + "AsyncFilesWithStreamingResponse", + "Images", + "AsyncImages", + "ImagesWithRawResponse", + "AsyncImagesWithRawResponse", + "ImagesWithStreamingResponse", + "AsyncImagesWithStreamingResponse", + "Audio", + "AsyncAudio", + "AudioWithRawResponse", + "AsyncAudioWithRawResponse", + "AudioWithStreamingResponse", + "AsyncAudioWithStreamingResponse", + "Moderations", + "AsyncModerations", + "ModerationsWithRawResponse", + "AsyncModerationsWithRawResponse", + "ModerationsWithStreamingResponse", + "AsyncModerationsWithStreamingResponse", + "Models", + "AsyncModels", + "ModelsWithRawResponse", + "AsyncModelsWithRawResponse", + "ModelsWithStreamingResponse", + "AsyncModelsWithStreamingResponse", + "FineTuning", + "AsyncFineTuning", + "FineTuningWithRawResponse", + "AsyncFineTuningWithRawResponse", + "FineTuningWithStreamingResponse", + "AsyncFineTuningWithStreamingResponse", + "VectorStores", + "AsyncVectorStores", + "VectorStoresWithRawResponse", + "AsyncVectorStoresWithRawResponse", + "VectorStoresWithStreamingResponse", + "AsyncVectorStoresWithStreamingResponse", + "Beta", + "AsyncBeta", + "BetaWithRawResponse", + "AsyncBetaWithRawResponse", + "BetaWithStreamingResponse", + "AsyncBetaWithStreamingResponse", + "Batches", + "AsyncBatches", + "BatchesWithRawResponse", + "AsyncBatchesWithRawResponse", + "BatchesWithStreamingResponse", + "AsyncBatchesWithStreamingResponse", + "Uploads", + "AsyncUploads", + "UploadsWithRawResponse", + "AsyncUploadsWithRawResponse", + "UploadsWithStreamingResponse", + "AsyncUploadsWithStreamingResponse", + "Responses", + "AsyncResponses", + "ResponsesWithRawResponse", + "AsyncResponsesWithRawResponse", + "ResponsesWithStreamingResponse", + "AsyncResponsesWithStreamingResponse", +] diff --git a/.venv/lib/python3.12/site-packages/openai/resources/audio/__init__.py b/.venv/lib/python3.12/site-packages/openai/resources/audio/__init__.py new file mode 100644 index 00000000..7da1d2db --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/audio/__init__.py @@ -0,0 +1,61 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from .audio import ( + Audio, + AsyncAudio, + AudioWithRawResponse, + AsyncAudioWithRawResponse, + AudioWithStreamingResponse, + AsyncAudioWithStreamingResponse, +) +from .speech import ( + Speech, + AsyncSpeech, + SpeechWithRawResponse, + AsyncSpeechWithRawResponse, + SpeechWithStreamingResponse, + AsyncSpeechWithStreamingResponse, +) +from .translations import ( + Translations, + AsyncTranslations, + TranslationsWithRawResponse, + AsyncTranslationsWithRawResponse, + TranslationsWithStreamingResponse, + AsyncTranslationsWithStreamingResponse, +) +from .transcriptions import ( + Transcriptions, + AsyncTranscriptions, + TranscriptionsWithRawResponse, + AsyncTranscriptionsWithRawResponse, + TranscriptionsWithStreamingResponse, + AsyncTranscriptionsWithStreamingResponse, +) + +__all__ = [ + "Transcriptions", + "AsyncTranscriptions", + "TranscriptionsWithRawResponse", + "AsyncTranscriptionsWithRawResponse", + "TranscriptionsWithStreamingResponse", + "AsyncTranscriptionsWithStreamingResponse", + "Translations", + "AsyncTranslations", + "TranslationsWithRawResponse", + "AsyncTranslationsWithRawResponse", + "TranslationsWithStreamingResponse", + "AsyncTranslationsWithStreamingResponse", + "Speech", + "AsyncSpeech", + "SpeechWithRawResponse", + "AsyncSpeechWithRawResponse", + "SpeechWithStreamingResponse", + "AsyncSpeechWithStreamingResponse", + "Audio", + "AsyncAudio", + "AudioWithRawResponse", + "AsyncAudioWithRawResponse", + "AudioWithStreamingResponse", + "AsyncAudioWithStreamingResponse", +] diff --git a/.venv/lib/python3.12/site-packages/openai/resources/audio/audio.py b/.venv/lib/python3.12/site-packages/openai/resources/audio/audio.py new file mode 100644 index 00000000..383b7073 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/audio/audio.py @@ -0,0 +1,166 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from .speech import ( + Speech, + AsyncSpeech, + SpeechWithRawResponse, + AsyncSpeechWithRawResponse, + SpeechWithStreamingResponse, + AsyncSpeechWithStreamingResponse, +) +from ..._compat import cached_property +from ..._resource import SyncAPIResource, AsyncAPIResource +from .translations import ( + Translations, + AsyncTranslations, + TranslationsWithRawResponse, + AsyncTranslationsWithRawResponse, + TranslationsWithStreamingResponse, + AsyncTranslationsWithStreamingResponse, +) +from .transcriptions import ( + Transcriptions, + AsyncTranscriptions, + TranscriptionsWithRawResponse, + AsyncTranscriptionsWithRawResponse, + TranscriptionsWithStreamingResponse, + AsyncTranscriptionsWithStreamingResponse, +) + +__all__ = ["Audio", "AsyncAudio"] + + +class Audio(SyncAPIResource): + @cached_property + def transcriptions(self) -> Transcriptions: + return Transcriptions(self._client) + + @cached_property + def translations(self) -> Translations: + return Translations(self._client) + + @cached_property + def speech(self) -> Speech: + return Speech(self._client) + + @cached_property + def with_raw_response(self) -> AudioWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AudioWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AudioWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AudioWithStreamingResponse(self) + + +class AsyncAudio(AsyncAPIResource): + @cached_property + def transcriptions(self) -> AsyncTranscriptions: + return AsyncTranscriptions(self._client) + + @cached_property + def translations(self) -> AsyncTranslations: + return AsyncTranslations(self._client) + + @cached_property + def speech(self) -> AsyncSpeech: + return AsyncSpeech(self._client) + + @cached_property + def with_raw_response(self) -> AsyncAudioWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncAudioWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncAudioWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncAudioWithStreamingResponse(self) + + +class AudioWithRawResponse: + def __init__(self, audio: Audio) -> None: + self._audio = audio + + @cached_property + def transcriptions(self) -> TranscriptionsWithRawResponse: + return TranscriptionsWithRawResponse(self._audio.transcriptions) + + @cached_property + def translations(self) -> TranslationsWithRawResponse: + return TranslationsWithRawResponse(self._audio.translations) + + @cached_property + def speech(self) -> SpeechWithRawResponse: + return SpeechWithRawResponse(self._audio.speech) + + +class AsyncAudioWithRawResponse: + def __init__(self, audio: AsyncAudio) -> None: + self._audio = audio + + @cached_property + def transcriptions(self) -> AsyncTranscriptionsWithRawResponse: + return AsyncTranscriptionsWithRawResponse(self._audio.transcriptions) + + @cached_property + def translations(self) -> AsyncTranslationsWithRawResponse: + return AsyncTranslationsWithRawResponse(self._audio.translations) + + @cached_property + def speech(self) -> AsyncSpeechWithRawResponse: + return AsyncSpeechWithRawResponse(self._audio.speech) + + +class AudioWithStreamingResponse: + def __init__(self, audio: Audio) -> None: + self._audio = audio + + @cached_property + def transcriptions(self) -> TranscriptionsWithStreamingResponse: + return TranscriptionsWithStreamingResponse(self._audio.transcriptions) + + @cached_property + def translations(self) -> TranslationsWithStreamingResponse: + return TranslationsWithStreamingResponse(self._audio.translations) + + @cached_property + def speech(self) -> SpeechWithStreamingResponse: + return SpeechWithStreamingResponse(self._audio.speech) + + +class AsyncAudioWithStreamingResponse: + def __init__(self, audio: AsyncAudio) -> None: + self._audio = audio + + @cached_property + def transcriptions(self) -> AsyncTranscriptionsWithStreamingResponse: + return AsyncTranscriptionsWithStreamingResponse(self._audio.transcriptions) + + @cached_property + def translations(self) -> AsyncTranslationsWithStreamingResponse: + return AsyncTranslationsWithStreamingResponse(self._audio.translations) + + @cached_property + def speech(self) -> AsyncSpeechWithStreamingResponse: + return AsyncSpeechWithStreamingResponse(self._audio.speech) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/audio/speech.py b/.venv/lib/python3.12/site-packages/openai/resources/audio/speech.py new file mode 100644 index 00000000..529e3a47 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/audio/speech.py @@ -0,0 +1,244 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import Literal + +import httpx + +from ... import _legacy_response +from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from ..._utils import ( + maybe_transform, + async_maybe_transform, +) +from ..._compat import cached_property +from ..._resource import SyncAPIResource, AsyncAPIResource +from ..._response import ( + StreamedBinaryAPIResponse, + AsyncStreamedBinaryAPIResponse, + to_custom_streamed_response_wrapper, + async_to_custom_streamed_response_wrapper, +) +from ...types.audio import speech_create_params +from ..._base_client import make_request_options +from ...types.audio.speech_model import SpeechModel + +__all__ = ["Speech", "AsyncSpeech"] + + +class Speech(SyncAPIResource): + @cached_property + def with_raw_response(self) -> SpeechWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return SpeechWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> SpeechWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return SpeechWithStreamingResponse(self) + + def create( + self, + *, + input: str, + model: Union[str, SpeechModel], + voice: Literal["alloy", "ash", "coral", "echo", "fable", "onyx", "nova", "sage", "shimmer"], + instructions: str | NotGiven = NOT_GIVEN, + response_format: Literal["mp3", "opus", "aac", "flac", "wav", "pcm"] | NotGiven = NOT_GIVEN, + speed: float | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> _legacy_response.HttpxBinaryResponseContent: + """ + Generates audio from the input text. + + Args: + input: The text to generate audio for. The maximum length is 4096 characters. + + model: + One of the available [TTS models](https://platform.openai.com/docs/models#tts): + `tts-1`, `tts-1-hd` or `gpt-4o-mini-tts`. + + voice: The voice to use when generating the audio. Supported voices are `alloy`, `ash`, + `coral`, `echo`, `fable`, `onyx`, `nova`, `sage` and `shimmer`. Previews of the + voices are available in the + [Text to speech guide](https://platform.openai.com/docs/guides/text-to-speech#voice-options). + + instructions: Control the voice of your generated audio with additional instructions. Does not + work with `tts-1` or `tts-1-hd`. + + response_format: The format to audio in. Supported formats are `mp3`, `opus`, `aac`, `flac`, + `wav`, and `pcm`. + + speed: The speed of the generated audio. Select a value from `0.25` to `4.0`. `1.0` is + the default. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + extra_headers = {"Accept": "application/octet-stream", **(extra_headers or {})} + return self._post( + "/audio/speech", + body=maybe_transform( + { + "input": input, + "model": model, + "voice": voice, + "instructions": instructions, + "response_format": response_format, + "speed": speed, + }, + speech_create_params.SpeechCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=_legacy_response.HttpxBinaryResponseContent, + ) + + +class AsyncSpeech(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncSpeechWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncSpeechWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncSpeechWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncSpeechWithStreamingResponse(self) + + async def create( + self, + *, + input: str, + model: Union[str, SpeechModel], + voice: Literal["alloy", "ash", "coral", "echo", "fable", "onyx", "nova", "sage", "shimmer"], + instructions: str | NotGiven = NOT_GIVEN, + response_format: Literal["mp3", "opus", "aac", "flac", "wav", "pcm"] | NotGiven = NOT_GIVEN, + speed: float | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> _legacy_response.HttpxBinaryResponseContent: + """ + Generates audio from the input text. + + Args: + input: The text to generate audio for. The maximum length is 4096 characters. + + model: + One of the available [TTS models](https://platform.openai.com/docs/models#tts): + `tts-1`, `tts-1-hd` or `gpt-4o-mini-tts`. + + voice: The voice to use when generating the audio. Supported voices are `alloy`, `ash`, + `coral`, `echo`, `fable`, `onyx`, `nova`, `sage` and `shimmer`. Previews of the + voices are available in the + [Text to speech guide](https://platform.openai.com/docs/guides/text-to-speech#voice-options). + + instructions: Control the voice of your generated audio with additional instructions. Does not + work with `tts-1` or `tts-1-hd`. + + response_format: The format to audio in. Supported formats are `mp3`, `opus`, `aac`, `flac`, + `wav`, and `pcm`. + + speed: The speed of the generated audio. Select a value from `0.25` to `4.0`. `1.0` is + the default. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + extra_headers = {"Accept": "application/octet-stream", **(extra_headers or {})} + return await self._post( + "/audio/speech", + body=await async_maybe_transform( + { + "input": input, + "model": model, + "voice": voice, + "instructions": instructions, + "response_format": response_format, + "speed": speed, + }, + speech_create_params.SpeechCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=_legacy_response.HttpxBinaryResponseContent, + ) + + +class SpeechWithRawResponse: + def __init__(self, speech: Speech) -> None: + self._speech = speech + + self.create = _legacy_response.to_raw_response_wrapper( + speech.create, + ) + + +class AsyncSpeechWithRawResponse: + def __init__(self, speech: AsyncSpeech) -> None: + self._speech = speech + + self.create = _legacy_response.async_to_raw_response_wrapper( + speech.create, + ) + + +class SpeechWithStreamingResponse: + def __init__(self, speech: Speech) -> None: + self._speech = speech + + self.create = to_custom_streamed_response_wrapper( + speech.create, + StreamedBinaryAPIResponse, + ) + + +class AsyncSpeechWithStreamingResponse: + def __init__(self, speech: AsyncSpeech) -> None: + self._speech = speech + + self.create = async_to_custom_streamed_response_wrapper( + speech.create, + AsyncStreamedBinaryAPIResponse, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/audio/transcriptions.py b/.venv/lib/python3.12/site-packages/openai/resources/audio/transcriptions.py new file mode 100644 index 00000000..2a77f91d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/audio/transcriptions.py @@ -0,0 +1,682 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import logging +from typing import TYPE_CHECKING, List, Union, Mapping, Optional, cast +from typing_extensions import Literal, overload, assert_never + +import httpx + +from ... import _legacy_response +from ...types import AudioResponseFormat +from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes +from ..._utils import ( + extract_files, + required_args, + maybe_transform, + deepcopy_minimal, + async_maybe_transform, +) +from ..._compat import cached_property +from ..._resource import SyncAPIResource, AsyncAPIResource +from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ..._streaming import Stream, AsyncStream +from ...types.audio import transcription_create_params +from ..._base_client import make_request_options +from ...types.audio_model import AudioModel +from ...types.audio.transcription import Transcription +from ...types.audio_response_format import AudioResponseFormat +from ...types.audio.transcription_include import TranscriptionInclude +from ...types.audio.transcription_verbose import TranscriptionVerbose +from ...types.audio.transcription_stream_event import TranscriptionStreamEvent +from ...types.audio.transcription_create_response import TranscriptionCreateResponse + +__all__ = ["Transcriptions", "AsyncTranscriptions"] + +log: logging.Logger = logging.getLogger("openai.audio.transcriptions") + + +class Transcriptions(SyncAPIResource): + @cached_property + def with_raw_response(self) -> TranscriptionsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return TranscriptionsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> TranscriptionsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return TranscriptionsWithStreamingResponse(self) + + @overload + def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + include: List[TranscriptionInclude] | NotGiven = NOT_GIVEN, + response_format: Union[Literal["json"], NotGiven] = NOT_GIVEN, + language: str | NotGiven = NOT_GIVEN, + prompt: str | NotGiven = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Transcription: ... + + @overload + def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + include: List[TranscriptionInclude] | NotGiven = NOT_GIVEN, + response_format: Literal["verbose_json"], + language: str | NotGiven = NOT_GIVEN, + prompt: str | NotGiven = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> TranscriptionVerbose: ... + + @overload + def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + response_format: Literal["text", "srt", "vtt"], + include: List[TranscriptionInclude] | NotGiven = NOT_GIVEN, + language: str | NotGiven = NOT_GIVEN, + prompt: str | NotGiven = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> str: ... + + @overload + def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + stream: Literal[True], + include: List[TranscriptionInclude] | NotGiven = NOT_GIVEN, + language: str | NotGiven = NOT_GIVEN, + prompt: str | NotGiven = NOT_GIVEN, + response_format: Union[AudioResponseFormat, NotGiven] = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Stream[TranscriptionStreamEvent]: + """ + Transcribes audio into the input language. + + Args: + file: + The audio file object (not file name) to transcribe, in one of these formats: + flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm. + + model: ID of the model to use. The options are `gpt-4o-transcribe`, + `gpt-4o-mini-transcribe`, and `whisper-1` (which is powered by our open source + Whisper V2 model). + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section of the Speech-to-Text guide](https://platform.openai.com/docs/guides/speech-to-text?lang=curl#streaming-transcriptions) + for more information. + + Note: Streaming is not supported for the `whisper-1` model and will be ignored. + + include: Additional information to include in the transcription response. `logprobs` will + return the log probabilities of the tokens in the response to understand the + model's confidence in the transcription. `logprobs` only works with + response_format set to `json` and only with the models `gpt-4o-transcribe` and + `gpt-4o-mini-transcribe`. + + language: The language of the input audio. Supplying the input language in + [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) (e.g. `en`) + format will improve accuracy and latency. + + prompt: An optional text to guide the model's style or continue a previous audio + segment. The + [prompt](https://platform.openai.com/docs/guides/speech-to-text#prompting) + should match the audio language. + + response_format: The format of the output, in one of these options: `json`, `text`, `srt`, + `verbose_json`, or `vtt`. For `gpt-4o-transcribe` and `gpt-4o-mini-transcribe`, + the only supported format is `json`. + + temperature: The sampling temperature, between 0 and 1. Higher values like 0.8 will make the + output more random, while lower values like 0.2 will make it more focused and + deterministic. If set to 0, the model will use + [log probability](https://en.wikipedia.org/wiki/Log_probability) to + automatically increase the temperature until certain thresholds are hit. + + timestamp_granularities: The timestamp granularities to populate for this transcription. + `response_format` must be set `verbose_json` to use timestamp granularities. + Either or both of these options are supported: `word`, or `segment`. Note: There + is no additional latency for segment timestamps, but generating word timestamps + incurs additional latency. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + stream: bool, + include: List[TranscriptionInclude] | NotGiven = NOT_GIVEN, + language: str | NotGiven = NOT_GIVEN, + prompt: str | NotGiven = NOT_GIVEN, + response_format: Union[AudioResponseFormat, NotGiven] = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> TranscriptionCreateResponse | Stream[TranscriptionStreamEvent]: + """ + Transcribes audio into the input language. + + Args: + file: + The audio file object (not file name) to transcribe, in one of these formats: + flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm. + + model: ID of the model to use. The options are `gpt-4o-transcribe`, + `gpt-4o-mini-transcribe`, and `whisper-1` (which is powered by our open source + Whisper V2 model). + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section of the Speech-to-Text guide](https://platform.openai.com/docs/guides/speech-to-text?lang=curl#streaming-transcriptions) + for more information. + + Note: Streaming is not supported for the `whisper-1` model and will be ignored. + + include: Additional information to include in the transcription response. `logprobs` will + return the log probabilities of the tokens in the response to understand the + model's confidence in the transcription. `logprobs` only works with + response_format set to `json` and only with the models `gpt-4o-transcribe` and + `gpt-4o-mini-transcribe`. + + language: The language of the input audio. Supplying the input language in + [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) (e.g. `en`) + format will improve accuracy and latency. + + prompt: An optional text to guide the model's style or continue a previous audio + segment. The + [prompt](https://platform.openai.com/docs/guides/speech-to-text#prompting) + should match the audio language. + + response_format: The format of the output, in one of these options: `json`, `text`, `srt`, + `verbose_json`, or `vtt`. For `gpt-4o-transcribe` and `gpt-4o-mini-transcribe`, + the only supported format is `json`. + + temperature: The sampling temperature, between 0 and 1. Higher values like 0.8 will make the + output more random, while lower values like 0.2 will make it more focused and + deterministic. If set to 0, the model will use + [log probability](https://en.wikipedia.org/wiki/Log_probability) to + automatically increase the temperature until certain thresholds are hit. + + timestamp_granularities: The timestamp granularities to populate for this transcription. + `response_format` must be set `verbose_json` to use timestamp granularities. + Either or both of these options are supported: `word`, or `segment`. Note: There + is no additional latency for segment timestamps, but generating word timestamps + incurs additional latency. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @required_args(["file", "model"], ["file", "model", "stream"]) + def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + include: List[TranscriptionInclude] | NotGiven = NOT_GIVEN, + language: str | NotGiven = NOT_GIVEN, + prompt: str | NotGiven = NOT_GIVEN, + response_format: Union[AudioResponseFormat, NotGiven] = NOT_GIVEN, + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> str | Transcription | TranscriptionVerbose | Stream[TranscriptionStreamEvent]: + body = deepcopy_minimal( + { + "file": file, + "model": model, + "include": include, + "language": language, + "prompt": prompt, + "response_format": response_format, + "stream": stream, + "temperature": temperature, + "timestamp_granularities": timestamp_granularities, + } + ) + files = extract_files(cast(Mapping[str, object], body), paths=[["file"]]) + # It should be noted that the actual Content-Type header that will be + # sent to the server will contain a `boundary` parameter, e.g. + # multipart/form-data; boundary=---abc-- + extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})} + return self._post( # type: ignore[return-value] + "/audio/transcriptions", + body=maybe_transform(body, transcription_create_params.TranscriptionCreateParams), + files=files, + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=_get_response_format_type(response_format), + stream=stream or False, + stream_cls=Stream[TranscriptionStreamEvent], + ) + + +class AsyncTranscriptions(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncTranscriptionsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncTranscriptionsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncTranscriptionsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncTranscriptionsWithStreamingResponse(self) + + @overload + async def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + response_format: Union[Literal["json"], NotGiven] = NOT_GIVEN, + language: str | NotGiven = NOT_GIVEN, + prompt: str | NotGiven = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + include: List[TranscriptionInclude] | NotGiven = NOT_GIVEN, + timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Transcription: ... + + @overload + async def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + include: List[TranscriptionInclude] | NotGiven = NOT_GIVEN, + response_format: Literal["verbose_json"], + language: str | NotGiven = NOT_GIVEN, + prompt: str | NotGiven = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> TranscriptionVerbose: ... + + @overload + async def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + include: List[TranscriptionInclude] | NotGiven = NOT_GIVEN, + response_format: Literal["text", "srt", "vtt"], + language: str | NotGiven = NOT_GIVEN, + prompt: str | NotGiven = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> str: ... + + @overload + async def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + stream: Literal[True], + include: List[TranscriptionInclude] | NotGiven = NOT_GIVEN, + language: str | NotGiven = NOT_GIVEN, + prompt: str | NotGiven = NOT_GIVEN, + response_format: Union[AudioResponseFormat, NotGiven] = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncStream[TranscriptionStreamEvent]: + """ + Transcribes audio into the input language. + + Args: + file: + The audio file object (not file name) to transcribe, in one of these formats: + flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm. + + model: ID of the model to use. The options are `gpt-4o-transcribe`, + `gpt-4o-mini-transcribe`, and `whisper-1` (which is powered by our open source + Whisper V2 model). + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section of the Speech-to-Text guide](https://platform.openai.com/docs/guides/speech-to-text?lang=curl#streaming-transcriptions) + for more information. + + Note: Streaming is not supported for the `whisper-1` model and will be ignored. + + include: Additional information to include in the transcription response. `logprobs` will + return the log probabilities of the tokens in the response to understand the + model's confidence in the transcription. `logprobs` only works with + response_format set to `json` and only with the models `gpt-4o-transcribe` and + `gpt-4o-mini-transcribe`. + + language: The language of the input audio. Supplying the input language in + [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) (e.g. `en`) + format will improve accuracy and latency. + + prompt: An optional text to guide the model's style or continue a previous audio + segment. The + [prompt](https://platform.openai.com/docs/guides/speech-to-text#prompting) + should match the audio language. + + response_format: The format of the output, in one of these options: `json`, `text`, `srt`, + `verbose_json`, or `vtt`. For `gpt-4o-transcribe` and `gpt-4o-mini-transcribe`, + the only supported format is `json`. + + temperature: The sampling temperature, between 0 and 1. Higher values like 0.8 will make the + output more random, while lower values like 0.2 will make it more focused and + deterministic. If set to 0, the model will use + [log probability](https://en.wikipedia.org/wiki/Log_probability) to + automatically increase the temperature until certain thresholds are hit. + + timestamp_granularities: The timestamp granularities to populate for this transcription. + `response_format` must be set `verbose_json` to use timestamp granularities. + Either or both of these options are supported: `word`, or `segment`. Note: There + is no additional latency for segment timestamps, but generating word timestamps + incurs additional latency. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + async def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + stream: bool, + include: List[TranscriptionInclude] | NotGiven = NOT_GIVEN, + language: str | NotGiven = NOT_GIVEN, + prompt: str | NotGiven = NOT_GIVEN, + response_format: Union[AudioResponseFormat, NotGiven] = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> TranscriptionCreateResponse | AsyncStream[TranscriptionStreamEvent]: + """ + Transcribes audio into the input language. + + Args: + file: + The audio file object (not file name) to transcribe, in one of these formats: + flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm. + + model: ID of the model to use. The options are `gpt-4o-transcribe`, + `gpt-4o-mini-transcribe`, and `whisper-1` (which is powered by our open source + Whisper V2 model). + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section of the Speech-to-Text guide](https://platform.openai.com/docs/guides/speech-to-text?lang=curl#streaming-transcriptions) + for more information. + + Note: Streaming is not supported for the `whisper-1` model and will be ignored. + + include: Additional information to include in the transcription response. `logprobs` will + return the log probabilities of the tokens in the response to understand the + model's confidence in the transcription. `logprobs` only works with + response_format set to `json` and only with the models `gpt-4o-transcribe` and + `gpt-4o-mini-transcribe`. + + language: The language of the input audio. Supplying the input language in + [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) (e.g. `en`) + format will improve accuracy and latency. + + prompt: An optional text to guide the model's style or continue a previous audio + segment. The + [prompt](https://platform.openai.com/docs/guides/speech-to-text#prompting) + should match the audio language. + + response_format: The format of the output, in one of these options: `json`, `text`, `srt`, + `verbose_json`, or `vtt`. For `gpt-4o-transcribe` and `gpt-4o-mini-transcribe`, + the only supported format is `json`. + + temperature: The sampling temperature, between 0 and 1. Higher values like 0.8 will make the + output more random, while lower values like 0.2 will make it more focused and + deterministic. If set to 0, the model will use + [log probability](https://en.wikipedia.org/wiki/Log_probability) to + automatically increase the temperature until certain thresholds are hit. + + timestamp_granularities: The timestamp granularities to populate for this transcription. + `response_format` must be set `verbose_json` to use timestamp granularities. + Either or both of these options are supported: `word`, or `segment`. Note: There + is no additional latency for segment timestamps, but generating word timestamps + incurs additional latency. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @required_args(["file", "model"], ["file", "model", "stream"]) + async def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + include: List[TranscriptionInclude] | NotGiven = NOT_GIVEN, + language: str | NotGiven = NOT_GIVEN, + prompt: str | NotGiven = NOT_GIVEN, + response_format: Union[AudioResponseFormat, NotGiven] = NOT_GIVEN, + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Transcription | TranscriptionVerbose | str | AsyncStream[TranscriptionStreamEvent]: + body = deepcopy_minimal( + { + "file": file, + "model": model, + "include": include, + "language": language, + "prompt": prompt, + "response_format": response_format, + "stream": stream, + "temperature": temperature, + "timestamp_granularities": timestamp_granularities, + } + ) + files = extract_files(cast(Mapping[str, object], body), paths=[["file"]]) + # It should be noted that the actual Content-Type header that will be + # sent to the server will contain a `boundary` parameter, e.g. + # multipart/form-data; boundary=---abc-- + extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})} + return await self._post( + "/audio/transcriptions", + body=await async_maybe_transform(body, transcription_create_params.TranscriptionCreateParams), + files=files, + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=_get_response_format_type(response_format), + stream=stream or False, + stream_cls=AsyncStream[TranscriptionStreamEvent], + ) + + +class TranscriptionsWithRawResponse: + def __init__(self, transcriptions: Transcriptions) -> None: + self._transcriptions = transcriptions + + self.create = _legacy_response.to_raw_response_wrapper( + transcriptions.create, + ) + + +class AsyncTranscriptionsWithRawResponse: + def __init__(self, transcriptions: AsyncTranscriptions) -> None: + self._transcriptions = transcriptions + + self.create = _legacy_response.async_to_raw_response_wrapper( + transcriptions.create, + ) + + +class TranscriptionsWithStreamingResponse: + def __init__(self, transcriptions: Transcriptions) -> None: + self._transcriptions = transcriptions + + self.create = to_streamed_response_wrapper( + transcriptions.create, + ) + + +class AsyncTranscriptionsWithStreamingResponse: + def __init__(self, transcriptions: AsyncTranscriptions) -> None: + self._transcriptions = transcriptions + + self.create = async_to_streamed_response_wrapper( + transcriptions.create, + ) + + +def _get_response_format_type( + response_format: Literal["json", "text", "srt", "verbose_json", "vtt"] | NotGiven, +) -> type[Transcription | TranscriptionVerbose | str]: + if isinstance(response_format, NotGiven) or response_format is None: # pyright: ignore[reportUnnecessaryComparison] + return Transcription + + if response_format == "json": + return Transcription + elif response_format == "verbose_json": + return TranscriptionVerbose + elif response_format == "srt" or response_format == "text" or response_format == "vtt": + return str + elif TYPE_CHECKING: # type: ignore[unreachable] + assert_never(response_format) + else: + log.warn("Unexpected audio response format: %s", response_format) + return Transcription diff --git a/.venv/lib/python3.12/site-packages/openai/resources/audio/translations.py b/.venv/lib/python3.12/site-packages/openai/resources/audio/translations.py new file mode 100644 index 00000000..f55dbd0e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/audio/translations.py @@ -0,0 +1,372 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import logging +from typing import TYPE_CHECKING, Union, Mapping, cast +from typing_extensions import Literal, overload, assert_never + +import httpx + +from ... import _legacy_response +from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes +from ..._utils import ( + extract_files, + maybe_transform, + deepcopy_minimal, + async_maybe_transform, +) +from ..._compat import cached_property +from ..._resource import SyncAPIResource, AsyncAPIResource +from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ...types.audio import translation_create_params +from ..._base_client import make_request_options +from ...types.audio_model import AudioModel +from ...types.audio.translation import Translation +from ...types.audio_response_format import AudioResponseFormat +from ...types.audio.translation_verbose import TranslationVerbose + +__all__ = ["Translations", "AsyncTranslations"] + +log: logging.Logger = logging.getLogger("openai.audio.transcriptions") + + +class Translations(SyncAPIResource): + @cached_property + def with_raw_response(self) -> TranslationsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return TranslationsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> TranslationsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return TranslationsWithStreamingResponse(self) + + @overload + def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + response_format: Union[Literal["json"], NotGiven] = NOT_GIVEN, + prompt: str | NotGiven = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Translation: ... + + @overload + def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + response_format: Literal["verbose_json"], + prompt: str | NotGiven = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> TranslationVerbose: ... + + @overload + def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + response_format: Literal["text", "srt", "vtt"], + prompt: str | NotGiven = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> str: ... + + def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + prompt: str | NotGiven = NOT_GIVEN, + response_format: Union[Literal["json", "text", "srt", "verbose_json", "vtt"], NotGiven] = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Translation | TranslationVerbose | str: + """ + Translates audio into English. + + Args: + file: The audio file object (not file name) translate, in one of these formats: flac, + mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm. + + model: ID of the model to use. Only `whisper-1` (which is powered by our open source + Whisper V2 model) is currently available. + + prompt: An optional text to guide the model's style or continue a previous audio + segment. The + [prompt](https://platform.openai.com/docs/guides/speech-to-text#prompting) + should be in English. + + response_format: The format of the output, in one of these options: `json`, `text`, `srt`, + `verbose_json`, or `vtt`. + + temperature: The sampling temperature, between 0 and 1. Higher values like 0.8 will make the + output more random, while lower values like 0.2 will make it more focused and + deterministic. If set to 0, the model will use + [log probability](https://en.wikipedia.org/wiki/Log_probability) to + automatically increase the temperature until certain thresholds are hit. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + body = deepcopy_minimal( + { + "file": file, + "model": model, + "prompt": prompt, + "response_format": response_format, + "temperature": temperature, + } + ) + files = extract_files(cast(Mapping[str, object], body), paths=[["file"]]) + # It should be noted that the actual Content-Type header that will be + # sent to the server will contain a `boundary` parameter, e.g. + # multipart/form-data; boundary=---abc-- + extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})} + return self._post( # type: ignore[return-value] + "/audio/translations", + body=maybe_transform(body, translation_create_params.TranslationCreateParams), + files=files, + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=_get_response_format_type(response_format), + ) + + +class AsyncTranslations(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncTranslationsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncTranslationsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncTranslationsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncTranslationsWithStreamingResponse(self) + + @overload + async def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + response_format: Union[Literal["json"], NotGiven] = NOT_GIVEN, + prompt: str | NotGiven = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Translation: ... + + @overload + async def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + response_format: Literal["verbose_json"], + prompt: str | NotGiven = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> TranslationVerbose: ... + + @overload + async def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + response_format: Literal["text", "srt", "vtt"], + prompt: str | NotGiven = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> str: ... + + async def create( + self, + *, + file: FileTypes, + model: Union[str, AudioModel], + prompt: str | NotGiven = NOT_GIVEN, + response_format: Union[AudioResponseFormat, NotGiven] = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Translation | TranslationVerbose | str: + """ + Translates audio into English. + + Args: + file: The audio file object (not file name) translate, in one of these formats: flac, + mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm. + + model: ID of the model to use. Only `whisper-1` (which is powered by our open source + Whisper V2 model) is currently available. + + prompt: An optional text to guide the model's style or continue a previous audio + segment. The + [prompt](https://platform.openai.com/docs/guides/speech-to-text#prompting) + should be in English. + + response_format: The format of the output, in one of these options: `json`, `text`, `srt`, + `verbose_json`, or `vtt`. + + temperature: The sampling temperature, between 0 and 1. Higher values like 0.8 will make the + output more random, while lower values like 0.2 will make it more focused and + deterministic. If set to 0, the model will use + [log probability](https://en.wikipedia.org/wiki/Log_probability) to + automatically increase the temperature until certain thresholds are hit. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + body = deepcopy_minimal( + { + "file": file, + "model": model, + "prompt": prompt, + "response_format": response_format, + "temperature": temperature, + } + ) + files = extract_files(cast(Mapping[str, object], body), paths=[["file"]]) + # It should be noted that the actual Content-Type header that will be + # sent to the server will contain a `boundary` parameter, e.g. + # multipart/form-data; boundary=---abc-- + extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})} + return await self._post( + "/audio/translations", + body=await async_maybe_transform(body, translation_create_params.TranslationCreateParams), + files=files, + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=_get_response_format_type(response_format), + ) + + +class TranslationsWithRawResponse: + def __init__(self, translations: Translations) -> None: + self._translations = translations + + self.create = _legacy_response.to_raw_response_wrapper( + translations.create, + ) + + +class AsyncTranslationsWithRawResponse: + def __init__(self, translations: AsyncTranslations) -> None: + self._translations = translations + + self.create = _legacy_response.async_to_raw_response_wrapper( + translations.create, + ) + + +class TranslationsWithStreamingResponse: + def __init__(self, translations: Translations) -> None: + self._translations = translations + + self.create = to_streamed_response_wrapper( + translations.create, + ) + + +class AsyncTranslationsWithStreamingResponse: + def __init__(self, translations: AsyncTranslations) -> None: + self._translations = translations + + self.create = async_to_streamed_response_wrapper( + translations.create, + ) + + +def _get_response_format_type( + response_format: Literal["json", "text", "srt", "verbose_json", "vtt"] | NotGiven, +) -> type[Translation | TranslationVerbose | str]: + if isinstance(response_format, NotGiven) or response_format is None: # pyright: ignore[reportUnnecessaryComparison] + return Translation + + if response_format == "json": + return Translation + elif response_format == "verbose_json": + return TranslationVerbose + elif response_format == "srt" or response_format == "text" or response_format == "vtt": + return str + elif TYPE_CHECKING: # type: ignore[unreachable] + assert_never(response_format) + else: + log.warn("Unexpected audio response format: %s", response_format) + return Transcription diff --git a/.venv/lib/python3.12/site-packages/openai/resources/batches.py b/.venv/lib/python3.12/site-packages/openai/resources/batches.py new file mode 100644 index 00000000..b7a299be --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/batches.py @@ -0,0 +1,517 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Optional +from typing_extensions import Literal + +import httpx + +from .. import _legacy_response +from ..types import batch_list_params, batch_create_params +from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from .._utils import ( + maybe_transform, + async_maybe_transform, +) +from .._compat import cached_property +from .._resource import SyncAPIResource, AsyncAPIResource +from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ..pagination import SyncCursorPage, AsyncCursorPage +from ..types.batch import Batch +from .._base_client import AsyncPaginator, make_request_options +from ..types.shared_params.metadata import Metadata + +__all__ = ["Batches", "AsyncBatches"] + + +class Batches(SyncAPIResource): + @cached_property + def with_raw_response(self) -> BatchesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return BatchesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> BatchesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return BatchesWithStreamingResponse(self) + + def create( + self, + *, + completion_window: Literal["24h"], + endpoint: Literal["/v1/responses", "/v1/chat/completions", "/v1/embeddings", "/v1/completions"], + input_file_id: str, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Batch: + """ + Creates and executes a batch from an uploaded file of requests + + Args: + completion_window: The time frame within which the batch should be processed. Currently only `24h` + is supported. + + endpoint: The endpoint to be used for all requests in the batch. Currently + `/v1/responses`, `/v1/chat/completions`, `/v1/embeddings`, and `/v1/completions` + are supported. Note that `/v1/embeddings` batches are also restricted to a + maximum of 50,000 embedding inputs across all requests in the batch. + + input_file_id: The ID of an uploaded file that contains requests for the new batch. + + See [upload file](https://platform.openai.com/docs/api-reference/files/create) + for how to upload a file. + + Your input file must be formatted as a + [JSONL file](https://platform.openai.com/docs/api-reference/batch/request-input), + and must be uploaded with the purpose `batch`. The file can contain up to 50,000 + requests, and can be up to 200 MB in size. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._post( + "/batches", + body=maybe_transform( + { + "completion_window": completion_window, + "endpoint": endpoint, + "input_file_id": input_file_id, + "metadata": metadata, + }, + batch_create_params.BatchCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Batch, + ) + + def retrieve( + self, + batch_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Batch: + """ + Retrieves a batch. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not batch_id: + raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}") + return self._get( + f"/batches/{batch_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Batch, + ) + + def list( + self, + *, + after: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncCursorPage[Batch]: + """List your organization's batches. + + Args: + after: A cursor for use in pagination. + + `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._get_api_list( + "/batches", + page=SyncCursorPage[Batch], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "limit": limit, + }, + batch_list_params.BatchListParams, + ), + ), + model=Batch, + ) + + def cancel( + self, + batch_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Batch: + """Cancels an in-progress batch. + + The batch will be in status `cancelling` for up to + 10 minutes, before changing to `cancelled`, where it will have partial results + (if any) available in the output file. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not batch_id: + raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}") + return self._post( + f"/batches/{batch_id}/cancel", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Batch, + ) + + +class AsyncBatches(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncBatchesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncBatchesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncBatchesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncBatchesWithStreamingResponse(self) + + async def create( + self, + *, + completion_window: Literal["24h"], + endpoint: Literal["/v1/responses", "/v1/chat/completions", "/v1/embeddings", "/v1/completions"], + input_file_id: str, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Batch: + """ + Creates and executes a batch from an uploaded file of requests + + Args: + completion_window: The time frame within which the batch should be processed. Currently only `24h` + is supported. + + endpoint: The endpoint to be used for all requests in the batch. Currently + `/v1/responses`, `/v1/chat/completions`, `/v1/embeddings`, and `/v1/completions` + are supported. Note that `/v1/embeddings` batches are also restricted to a + maximum of 50,000 embedding inputs across all requests in the batch. + + input_file_id: The ID of an uploaded file that contains requests for the new batch. + + See [upload file](https://platform.openai.com/docs/api-reference/files/create) + for how to upload a file. + + Your input file must be formatted as a + [JSONL file](https://platform.openai.com/docs/api-reference/batch/request-input), + and must be uploaded with the purpose `batch`. The file can contain up to 50,000 + requests, and can be up to 200 MB in size. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return await self._post( + "/batches", + body=await async_maybe_transform( + { + "completion_window": completion_window, + "endpoint": endpoint, + "input_file_id": input_file_id, + "metadata": metadata, + }, + batch_create_params.BatchCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Batch, + ) + + async def retrieve( + self, + batch_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Batch: + """ + Retrieves a batch. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not batch_id: + raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}") + return await self._get( + f"/batches/{batch_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Batch, + ) + + def list( + self, + *, + after: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[Batch, AsyncCursorPage[Batch]]: + """List your organization's batches. + + Args: + after: A cursor for use in pagination. + + `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._get_api_list( + "/batches", + page=AsyncCursorPage[Batch], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "limit": limit, + }, + batch_list_params.BatchListParams, + ), + ), + model=Batch, + ) + + async def cancel( + self, + batch_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Batch: + """Cancels an in-progress batch. + + The batch will be in status `cancelling` for up to + 10 minutes, before changing to `cancelled`, where it will have partial results + (if any) available in the output file. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not batch_id: + raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}") + return await self._post( + f"/batches/{batch_id}/cancel", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Batch, + ) + + +class BatchesWithRawResponse: + def __init__(self, batches: Batches) -> None: + self._batches = batches + + self.create = _legacy_response.to_raw_response_wrapper( + batches.create, + ) + self.retrieve = _legacy_response.to_raw_response_wrapper( + batches.retrieve, + ) + self.list = _legacy_response.to_raw_response_wrapper( + batches.list, + ) + self.cancel = _legacy_response.to_raw_response_wrapper( + batches.cancel, + ) + + +class AsyncBatchesWithRawResponse: + def __init__(self, batches: AsyncBatches) -> None: + self._batches = batches + + self.create = _legacy_response.async_to_raw_response_wrapper( + batches.create, + ) + self.retrieve = _legacy_response.async_to_raw_response_wrapper( + batches.retrieve, + ) + self.list = _legacy_response.async_to_raw_response_wrapper( + batches.list, + ) + self.cancel = _legacy_response.async_to_raw_response_wrapper( + batches.cancel, + ) + + +class BatchesWithStreamingResponse: + def __init__(self, batches: Batches) -> None: + self._batches = batches + + self.create = to_streamed_response_wrapper( + batches.create, + ) + self.retrieve = to_streamed_response_wrapper( + batches.retrieve, + ) + self.list = to_streamed_response_wrapper( + batches.list, + ) + self.cancel = to_streamed_response_wrapper( + batches.cancel, + ) + + +class AsyncBatchesWithStreamingResponse: + def __init__(self, batches: AsyncBatches) -> None: + self._batches = batches + + self.create = async_to_streamed_response_wrapper( + batches.create, + ) + self.retrieve = async_to_streamed_response_wrapper( + batches.retrieve, + ) + self.list = async_to_streamed_response_wrapper( + batches.list, + ) + self.cancel = async_to_streamed_response_wrapper( + batches.cancel, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/beta/__init__.py b/.venv/lib/python3.12/site-packages/openai/resources/beta/__init__.py new file mode 100644 index 00000000..87fea252 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/beta/__init__.py @@ -0,0 +1,47 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from .beta import ( + Beta, + AsyncBeta, + BetaWithRawResponse, + AsyncBetaWithRawResponse, + BetaWithStreamingResponse, + AsyncBetaWithStreamingResponse, +) +from .threads import ( + Threads, + AsyncThreads, + ThreadsWithRawResponse, + AsyncThreadsWithRawResponse, + ThreadsWithStreamingResponse, + AsyncThreadsWithStreamingResponse, +) +from .assistants import ( + Assistants, + AsyncAssistants, + AssistantsWithRawResponse, + AsyncAssistantsWithRawResponse, + AssistantsWithStreamingResponse, + AsyncAssistantsWithStreamingResponse, +) + +__all__ = [ + "Assistants", + "AsyncAssistants", + "AssistantsWithRawResponse", + "AsyncAssistantsWithRawResponse", + "AssistantsWithStreamingResponse", + "AsyncAssistantsWithStreamingResponse", + "Threads", + "AsyncThreads", + "ThreadsWithRawResponse", + "AsyncThreadsWithRawResponse", + "ThreadsWithStreamingResponse", + "AsyncThreadsWithStreamingResponse", + "Beta", + "AsyncBeta", + "BetaWithRawResponse", + "AsyncBetaWithRawResponse", + "BetaWithStreamingResponse", + "AsyncBetaWithStreamingResponse", +] diff --git a/.venv/lib/python3.12/site-packages/openai/resources/beta/assistants.py b/.venv/lib/python3.12/site-packages/openai/resources/beta/assistants.py new file mode 100644 index 00000000..1c7cbf37 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/beta/assistants.py @@ -0,0 +1,1004 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Iterable, Optional +from typing_extensions import Literal + +import httpx + +from ... import _legacy_response +from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from ..._utils import ( + maybe_transform, + async_maybe_transform, +) +from ..._compat import cached_property +from ..._resource import SyncAPIResource, AsyncAPIResource +from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ...pagination import SyncCursorPage, AsyncCursorPage +from ...types.beta import ( + assistant_list_params, + assistant_create_params, + assistant_update_params, +) +from ..._base_client import AsyncPaginator, make_request_options +from ...types.beta.assistant import Assistant +from ...types.shared.chat_model import ChatModel +from ...types.beta.assistant_deleted import AssistantDeleted +from ...types.shared_params.metadata import Metadata +from ...types.shared.reasoning_effort import ReasoningEffort +from ...types.beta.assistant_tool_param import AssistantToolParam +from ...types.beta.assistant_response_format_option_param import AssistantResponseFormatOptionParam + +__all__ = ["Assistants", "AsyncAssistants"] + + +class Assistants(SyncAPIResource): + @cached_property + def with_raw_response(self) -> AssistantsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AssistantsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AssistantsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AssistantsWithStreamingResponse(self) + + def create( + self, + *, + model: Union[str, ChatModel], + description: Optional[str] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + name: Optional[str] | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_resources: Optional[assistant_create_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Iterable[AssistantToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Assistant: + """ + Create an assistant with a model and instructions. + + Args: + model: ID of the model to use. You can use the + [List models](https://platform.openai.com/docs/api-reference/models/list) API to + see all of your available models, or see our + [Model overview](https://platform.openai.com/docs/models) for descriptions of + them. + + description: The description of the assistant. The maximum length is 512 characters. + + instructions: The system instructions that the assistant uses. The maximum length is 256,000 + characters. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + name: The name of the assistant. The maximum length is 256 characters. + + reasoning_effort: **o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + + response_format: Specifies the format that the model must output. Compatible with + [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + tool_resources: A set of resources that are used by the assistant's tools. The resources are + specific to the type of tool. For example, the `code_interpreter` tool requires + a list of file IDs, while the `file_search` tool requires a list of vector store + IDs. + + tools: A list of tool enabled on the assistant. There can be a maximum of 128 tools per + assistant. Tools can be of types `code_interpreter`, `file_search`, or + `function`. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + "/assistants", + body=maybe_transform( + { + "model": model, + "description": description, + "instructions": instructions, + "metadata": metadata, + "name": name, + "reasoning_effort": reasoning_effort, + "response_format": response_format, + "temperature": temperature, + "tool_resources": tool_resources, + "tools": tools, + "top_p": top_p, + }, + assistant_create_params.AssistantCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Assistant, + ) + + def retrieve( + self, + assistant_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Assistant: + """ + Retrieves an assistant. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not assistant_id: + raise ValueError(f"Expected a non-empty value for `assistant_id` but received {assistant_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get( + f"/assistants/{assistant_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Assistant, + ) + + def update( + self, + assistant_id: str, + *, + description: Optional[str] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[ + str, + Literal[ + "o3-mini", + "o3-mini-2025-01-31", + "o1", + "o1-2024-12-17", + "gpt-4o", + "gpt-4o-2024-11-20", + "gpt-4o-2024-08-06", + "gpt-4o-2024-05-13", + "gpt-4o-mini", + "gpt-4o-mini-2024-07-18", + "gpt-4.5-preview", + "gpt-4.5-preview-2025-02-27", + "gpt-4-turbo", + "gpt-4-turbo-2024-04-09", + "gpt-4-0125-preview", + "gpt-4-turbo-preview", + "gpt-4-1106-preview", + "gpt-4-vision-preview", + "gpt-4", + "gpt-4-0314", + "gpt-4-0613", + "gpt-4-32k", + "gpt-4-32k-0314", + "gpt-4-32k-0613", + "gpt-3.5-turbo", + "gpt-3.5-turbo-16k", + "gpt-3.5-turbo-0613", + "gpt-3.5-turbo-1106", + "gpt-3.5-turbo-0125", + "gpt-3.5-turbo-16k-0613", + ], + ] + | NotGiven = NOT_GIVEN, + name: Optional[str] | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_resources: Optional[assistant_update_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Iterable[AssistantToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Assistant: + """Modifies an assistant. + + Args: + description: The description of the assistant. + + The maximum length is 512 characters. + + instructions: The system instructions that the assistant uses. The maximum length is 256,000 + characters. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + model: ID of the model to use. You can use the + [List models](https://platform.openai.com/docs/api-reference/models/list) API to + see all of your available models, or see our + [Model overview](https://platform.openai.com/docs/models) for descriptions of + them. + + name: The name of the assistant. The maximum length is 256 characters. + + reasoning_effort: **o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + + response_format: Specifies the format that the model must output. Compatible with + [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + tool_resources: A set of resources that are used by the assistant's tools. The resources are + specific to the type of tool. For example, the `code_interpreter` tool requires + a list of file IDs, while the `file_search` tool requires a list of vector store + IDs. + + tools: A list of tool enabled on the assistant. There can be a maximum of 128 tools per + assistant. Tools can be of types `code_interpreter`, `file_search`, or + `function`. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not assistant_id: + raise ValueError(f"Expected a non-empty value for `assistant_id` but received {assistant_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + f"/assistants/{assistant_id}", + body=maybe_transform( + { + "description": description, + "instructions": instructions, + "metadata": metadata, + "model": model, + "name": name, + "reasoning_effort": reasoning_effort, + "response_format": response_format, + "temperature": temperature, + "tool_resources": tool_resources, + "tools": tools, + "top_p": top_p, + }, + assistant_update_params.AssistantUpdateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Assistant, + ) + + def list( + self, + *, + after: str | NotGiven = NOT_GIVEN, + before: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncCursorPage[Assistant]: + """Returns a list of assistants. + + Args: + after: A cursor for use in pagination. + + `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + before: A cursor for use in pagination. `before` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + starting with obj_foo, your subsequent call can include before=obj_foo in order + to fetch the previous page of the list. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + "/assistants", + page=SyncCursorPage[Assistant], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "before": before, + "limit": limit, + "order": order, + }, + assistant_list_params.AssistantListParams, + ), + ), + model=Assistant, + ) + + def delete( + self, + assistant_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AssistantDeleted: + """ + Delete an assistant. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not assistant_id: + raise ValueError(f"Expected a non-empty value for `assistant_id` but received {assistant_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._delete( + f"/assistants/{assistant_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=AssistantDeleted, + ) + + +class AsyncAssistants(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncAssistantsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncAssistantsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncAssistantsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncAssistantsWithStreamingResponse(self) + + async def create( + self, + *, + model: Union[str, ChatModel], + description: Optional[str] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + name: Optional[str] | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_resources: Optional[assistant_create_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Iterable[AssistantToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Assistant: + """ + Create an assistant with a model and instructions. + + Args: + model: ID of the model to use. You can use the + [List models](https://platform.openai.com/docs/api-reference/models/list) API to + see all of your available models, or see our + [Model overview](https://platform.openai.com/docs/models) for descriptions of + them. + + description: The description of the assistant. The maximum length is 512 characters. + + instructions: The system instructions that the assistant uses. The maximum length is 256,000 + characters. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + name: The name of the assistant. The maximum length is 256 characters. + + reasoning_effort: **o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + + response_format: Specifies the format that the model must output. Compatible with + [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + tool_resources: A set of resources that are used by the assistant's tools. The resources are + specific to the type of tool. For example, the `code_interpreter` tool requires + a list of file IDs, while the `file_search` tool requires a list of vector store + IDs. + + tools: A list of tool enabled on the assistant. There can be a maximum of 128 tools per + assistant. Tools can be of types `code_interpreter`, `file_search`, or + `function`. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + "/assistants", + body=await async_maybe_transform( + { + "model": model, + "description": description, + "instructions": instructions, + "metadata": metadata, + "name": name, + "reasoning_effort": reasoning_effort, + "response_format": response_format, + "temperature": temperature, + "tool_resources": tool_resources, + "tools": tools, + "top_p": top_p, + }, + assistant_create_params.AssistantCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Assistant, + ) + + async def retrieve( + self, + assistant_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Assistant: + """ + Retrieves an assistant. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not assistant_id: + raise ValueError(f"Expected a non-empty value for `assistant_id` but received {assistant_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._get( + f"/assistants/{assistant_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Assistant, + ) + + async def update( + self, + assistant_id: str, + *, + description: Optional[str] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[ + str, + Literal[ + "o3-mini", + "o3-mini-2025-01-31", + "o1", + "o1-2024-12-17", + "gpt-4o", + "gpt-4o-2024-11-20", + "gpt-4o-2024-08-06", + "gpt-4o-2024-05-13", + "gpt-4o-mini", + "gpt-4o-mini-2024-07-18", + "gpt-4.5-preview", + "gpt-4.5-preview-2025-02-27", + "gpt-4-turbo", + "gpt-4-turbo-2024-04-09", + "gpt-4-0125-preview", + "gpt-4-turbo-preview", + "gpt-4-1106-preview", + "gpt-4-vision-preview", + "gpt-4", + "gpt-4-0314", + "gpt-4-0613", + "gpt-4-32k", + "gpt-4-32k-0314", + "gpt-4-32k-0613", + "gpt-3.5-turbo", + "gpt-3.5-turbo-16k", + "gpt-3.5-turbo-0613", + "gpt-3.5-turbo-1106", + "gpt-3.5-turbo-0125", + "gpt-3.5-turbo-16k-0613", + ], + ] + | NotGiven = NOT_GIVEN, + name: Optional[str] | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_resources: Optional[assistant_update_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Iterable[AssistantToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Assistant: + """Modifies an assistant. + + Args: + description: The description of the assistant. + + The maximum length is 512 characters. + + instructions: The system instructions that the assistant uses. The maximum length is 256,000 + characters. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + model: ID of the model to use. You can use the + [List models](https://platform.openai.com/docs/api-reference/models/list) API to + see all of your available models, or see our + [Model overview](https://platform.openai.com/docs/models) for descriptions of + them. + + name: The name of the assistant. The maximum length is 256 characters. + + reasoning_effort: **o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + + response_format: Specifies the format that the model must output. Compatible with + [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + tool_resources: A set of resources that are used by the assistant's tools. The resources are + specific to the type of tool. For example, the `code_interpreter` tool requires + a list of file IDs, while the `file_search` tool requires a list of vector store + IDs. + + tools: A list of tool enabled on the assistant. There can be a maximum of 128 tools per + assistant. Tools can be of types `code_interpreter`, `file_search`, or + `function`. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not assistant_id: + raise ValueError(f"Expected a non-empty value for `assistant_id` but received {assistant_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + f"/assistants/{assistant_id}", + body=await async_maybe_transform( + { + "description": description, + "instructions": instructions, + "metadata": metadata, + "model": model, + "name": name, + "reasoning_effort": reasoning_effort, + "response_format": response_format, + "temperature": temperature, + "tool_resources": tool_resources, + "tools": tools, + "top_p": top_p, + }, + assistant_update_params.AssistantUpdateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Assistant, + ) + + def list( + self, + *, + after: str | NotGiven = NOT_GIVEN, + before: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[Assistant, AsyncCursorPage[Assistant]]: + """Returns a list of assistants. + + Args: + after: A cursor for use in pagination. + + `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + before: A cursor for use in pagination. `before` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + starting with obj_foo, your subsequent call can include before=obj_foo in order + to fetch the previous page of the list. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + "/assistants", + page=AsyncCursorPage[Assistant], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "before": before, + "limit": limit, + "order": order, + }, + assistant_list_params.AssistantListParams, + ), + ), + model=Assistant, + ) + + async def delete( + self, + assistant_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AssistantDeleted: + """ + Delete an assistant. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not assistant_id: + raise ValueError(f"Expected a non-empty value for `assistant_id` but received {assistant_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._delete( + f"/assistants/{assistant_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=AssistantDeleted, + ) + + +class AssistantsWithRawResponse: + def __init__(self, assistants: Assistants) -> None: + self._assistants = assistants + + self.create = _legacy_response.to_raw_response_wrapper( + assistants.create, + ) + self.retrieve = _legacy_response.to_raw_response_wrapper( + assistants.retrieve, + ) + self.update = _legacy_response.to_raw_response_wrapper( + assistants.update, + ) + self.list = _legacy_response.to_raw_response_wrapper( + assistants.list, + ) + self.delete = _legacy_response.to_raw_response_wrapper( + assistants.delete, + ) + + +class AsyncAssistantsWithRawResponse: + def __init__(self, assistants: AsyncAssistants) -> None: + self._assistants = assistants + + self.create = _legacy_response.async_to_raw_response_wrapper( + assistants.create, + ) + self.retrieve = _legacy_response.async_to_raw_response_wrapper( + assistants.retrieve, + ) + self.update = _legacy_response.async_to_raw_response_wrapper( + assistants.update, + ) + self.list = _legacy_response.async_to_raw_response_wrapper( + assistants.list, + ) + self.delete = _legacy_response.async_to_raw_response_wrapper( + assistants.delete, + ) + + +class AssistantsWithStreamingResponse: + def __init__(self, assistants: Assistants) -> None: + self._assistants = assistants + + self.create = to_streamed_response_wrapper( + assistants.create, + ) + self.retrieve = to_streamed_response_wrapper( + assistants.retrieve, + ) + self.update = to_streamed_response_wrapper( + assistants.update, + ) + self.list = to_streamed_response_wrapper( + assistants.list, + ) + self.delete = to_streamed_response_wrapper( + assistants.delete, + ) + + +class AsyncAssistantsWithStreamingResponse: + def __init__(self, assistants: AsyncAssistants) -> None: + self._assistants = assistants + + self.create = async_to_streamed_response_wrapper( + assistants.create, + ) + self.retrieve = async_to_streamed_response_wrapper( + assistants.retrieve, + ) + self.update = async_to_streamed_response_wrapper( + assistants.update, + ) + self.list = async_to_streamed_response_wrapper( + assistants.list, + ) + self.delete = async_to_streamed_response_wrapper( + assistants.delete, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/beta/beta.py b/.venv/lib/python3.12/site-packages/openai/resources/beta/beta.py new file mode 100644 index 00000000..62fc8258 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/beta/beta.py @@ -0,0 +1,175 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from ..._compat import cached_property +from .chat.chat import Chat, AsyncChat +from .assistants import ( + Assistants, + AsyncAssistants, + AssistantsWithRawResponse, + AsyncAssistantsWithRawResponse, + AssistantsWithStreamingResponse, + AsyncAssistantsWithStreamingResponse, +) +from ..._resource import SyncAPIResource, AsyncAPIResource +from .threads.threads import ( + Threads, + AsyncThreads, + ThreadsWithRawResponse, + AsyncThreadsWithRawResponse, + ThreadsWithStreamingResponse, + AsyncThreadsWithStreamingResponse, +) +from .realtime.realtime import ( + Realtime, + AsyncRealtime, + RealtimeWithRawResponse, + AsyncRealtimeWithRawResponse, + RealtimeWithStreamingResponse, + AsyncRealtimeWithStreamingResponse, +) + +__all__ = ["Beta", "AsyncBeta"] + + +class Beta(SyncAPIResource): + @cached_property + def chat(self) -> Chat: + return Chat(self._client) + + @cached_property + def realtime(self) -> Realtime: + return Realtime(self._client) + + @cached_property + def assistants(self) -> Assistants: + return Assistants(self._client) + + @cached_property + def threads(self) -> Threads: + return Threads(self._client) + + @cached_property + def with_raw_response(self) -> BetaWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return BetaWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> BetaWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return BetaWithStreamingResponse(self) + + +class AsyncBeta(AsyncAPIResource): + @cached_property + def chat(self) -> AsyncChat: + return AsyncChat(self._client) + + @cached_property + def realtime(self) -> AsyncRealtime: + return AsyncRealtime(self._client) + + @cached_property + def assistants(self) -> AsyncAssistants: + return AsyncAssistants(self._client) + + @cached_property + def threads(self) -> AsyncThreads: + return AsyncThreads(self._client) + + @cached_property + def with_raw_response(self) -> AsyncBetaWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncBetaWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncBetaWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncBetaWithStreamingResponse(self) + + +class BetaWithRawResponse: + def __init__(self, beta: Beta) -> None: + self._beta = beta + + @cached_property + def realtime(self) -> RealtimeWithRawResponse: + return RealtimeWithRawResponse(self._beta.realtime) + + @cached_property + def assistants(self) -> AssistantsWithRawResponse: + return AssistantsWithRawResponse(self._beta.assistants) + + @cached_property + def threads(self) -> ThreadsWithRawResponse: + return ThreadsWithRawResponse(self._beta.threads) + + +class AsyncBetaWithRawResponse: + def __init__(self, beta: AsyncBeta) -> None: + self._beta = beta + + @cached_property + def realtime(self) -> AsyncRealtimeWithRawResponse: + return AsyncRealtimeWithRawResponse(self._beta.realtime) + + @cached_property + def assistants(self) -> AsyncAssistantsWithRawResponse: + return AsyncAssistantsWithRawResponse(self._beta.assistants) + + @cached_property + def threads(self) -> AsyncThreadsWithRawResponse: + return AsyncThreadsWithRawResponse(self._beta.threads) + + +class BetaWithStreamingResponse: + def __init__(self, beta: Beta) -> None: + self._beta = beta + + @cached_property + def realtime(self) -> RealtimeWithStreamingResponse: + return RealtimeWithStreamingResponse(self._beta.realtime) + + @cached_property + def assistants(self) -> AssistantsWithStreamingResponse: + return AssistantsWithStreamingResponse(self._beta.assistants) + + @cached_property + def threads(self) -> ThreadsWithStreamingResponse: + return ThreadsWithStreamingResponse(self._beta.threads) + + +class AsyncBetaWithStreamingResponse: + def __init__(self, beta: AsyncBeta) -> None: + self._beta = beta + + @cached_property + def realtime(self) -> AsyncRealtimeWithStreamingResponse: + return AsyncRealtimeWithStreamingResponse(self._beta.realtime) + + @cached_property + def assistants(self) -> AsyncAssistantsWithStreamingResponse: + return AsyncAssistantsWithStreamingResponse(self._beta.assistants) + + @cached_property + def threads(self) -> AsyncThreadsWithStreamingResponse: + return AsyncThreadsWithStreamingResponse(self._beta.threads) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/beta/chat/__init__.py b/.venv/lib/python3.12/site-packages/openai/resources/beta/chat/__init__.py new file mode 100644 index 00000000..072d7867 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/beta/chat/__init__.py @@ -0,0 +1,11 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from .chat import Chat, AsyncChat +from .completions import Completions, AsyncCompletions + +__all__ = [ + "Completions", + "AsyncCompletions", + "Chat", + "AsyncChat", +] diff --git a/.venv/lib/python3.12/site-packages/openai/resources/beta/chat/chat.py b/.venv/lib/python3.12/site-packages/openai/resources/beta/chat/chat.py new file mode 100644 index 00000000..6afdcea3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/beta/chat/chat.py @@ -0,0 +1,21 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from ...._compat import cached_property +from .completions import Completions, AsyncCompletions +from ...._resource import SyncAPIResource, AsyncAPIResource + +__all__ = ["Chat", "AsyncChat"] + + +class Chat(SyncAPIResource): + @cached_property + def completions(self) -> Completions: + return Completions(self._client) + + +class AsyncChat(AsyncAPIResource): + @cached_property + def completions(self) -> AsyncCompletions: + return AsyncCompletions(self._client) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/beta/chat/completions.py b/.venv/lib/python3.12/site-packages/openai/resources/beta/chat/completions.py new file mode 100644 index 00000000..545a3f40 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/beta/chat/completions.py @@ -0,0 +1,634 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Dict, List, Type, Union, Iterable, Optional, cast +from functools import partial +from typing_extensions import Literal + +import httpx + +from .... import _legacy_response +from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from ...._utils import maybe_transform, async_maybe_transform +from ...._compat import cached_property +from ...._resource import SyncAPIResource, AsyncAPIResource +from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ...._streaming import Stream +from ....types.chat import completion_create_params +from ...._base_client import make_request_options +from ....lib._parsing import ( + ResponseFormatT, + validate_input_tools as _validate_input_tools, + parse_chat_completion as _parse_chat_completion, + type_to_response_format_param as _type_to_response_format, +) +from ....types.chat_model import ChatModel +from ....lib.streaming.chat import ChatCompletionStreamManager, AsyncChatCompletionStreamManager +from ....types.shared_params import Metadata, ReasoningEffort +from ....types.chat.chat_completion import ChatCompletion +from ....types.chat.chat_completion_chunk import ChatCompletionChunk +from ....types.chat.parsed_chat_completion import ParsedChatCompletion +from ....types.chat.chat_completion_tool_param import ChatCompletionToolParam +from ....types.chat.chat_completion_audio_param import ChatCompletionAudioParam +from ....types.chat.chat_completion_message_param import ChatCompletionMessageParam +from ....types.chat.chat_completion_stream_options_param import ChatCompletionStreamOptionsParam +from ....types.chat.chat_completion_prediction_content_param import ChatCompletionPredictionContentParam +from ....types.chat.chat_completion_tool_choice_option_param import ChatCompletionToolChoiceOptionParam + +__all__ = ["Completions", "AsyncCompletions"] + + +class Completions(SyncAPIResource): + @cached_property + def with_raw_response(self) -> CompletionsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return the + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return CompletionsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> CompletionsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return CompletionsWithStreamingResponse(self) + + def parse( + self, + *, + messages: Iterable[ChatCompletionMessageParam], + model: Union[str, ChatModel], + audio: Optional[ChatCompletionAudioParam] | NotGiven = NOT_GIVEN, + response_format: type[ResponseFormatT] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN, + functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[bool] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + modalities: Optional[List[Literal["text", "audio"]]] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + prediction: Optional[ChatCompletionPredictionContentParam] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN, + tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN, + top_logprobs: Optional[int] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + web_search_options: completion_create_params.WebSearchOptions | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ParsedChatCompletion[ResponseFormatT]: + """Wrapper over the `client.chat.completions.create()` method that provides richer integrations with Python specific types + & returns a `ParsedChatCompletion` object, which is a subclass of the standard `ChatCompletion` class. + + You can pass a pydantic model to this method and it will automatically convert the model + into a JSON schema, send it to the API and parse the response content back into the given model. + + This method will also automatically parse `function` tool calls if: + - You use the `openai.pydantic_function_tool()` helper method + - You mark your tool schema with `"strict": True` + + Example usage: + ```py + from pydantic import BaseModel + from openai import OpenAI + + + class Step(BaseModel): + explanation: str + output: str + + + class MathResponse(BaseModel): + steps: List[Step] + final_answer: str + + + client = OpenAI() + completion = client.beta.chat.completions.parse( + model="gpt-4o-2024-08-06", + messages=[ + {"role": "system", "content": "You are a helpful math tutor."}, + {"role": "user", "content": "solve 8x + 31 = 2"}, + ], + response_format=MathResponse, + ) + + message = completion.choices[0].message + if message.parsed: + print(message.parsed.steps) + print("answer: ", message.parsed.final_answer) + ``` + """ + _validate_input_tools(tools) + + extra_headers = { + "X-Stainless-Helper-Method": "beta.chat.completions.parse", + **(extra_headers or {}), + } + + def parser(raw_completion: ChatCompletion) -> ParsedChatCompletion[ResponseFormatT]: + return _parse_chat_completion( + response_format=response_format, + chat_completion=raw_completion, + input_tools=tools, + ) + + return self._post( + "/chat/completions", + body=maybe_transform( + { + "messages": messages, + "model": model, + "audio": audio, + "frequency_penalty": frequency_penalty, + "function_call": function_call, + "functions": functions, + "logit_bias": logit_bias, + "logprobs": logprobs, + "max_completion_tokens": max_completion_tokens, + "max_tokens": max_tokens, + "metadata": metadata, + "modalities": modalities, + "n": n, + "parallel_tool_calls": parallel_tool_calls, + "prediction": prediction, + "presence_penalty": presence_penalty, + "reasoning_effort": reasoning_effort, + "response_format": _type_to_response_format(response_format), + "seed": seed, + "service_tier": service_tier, + "stop": stop, + "store": store, + "stream": False, + "stream_options": stream_options, + "temperature": temperature, + "tool_choice": tool_choice, + "tools": tools, + "top_logprobs": top_logprobs, + "top_p": top_p, + "user": user, + "web_search_options": web_search_options, + }, + completion_create_params.CompletionCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + post_parser=parser, + ), + # we turn the `ChatCompletion` instance into a `ParsedChatCompletion` + # in the `parser` function above + cast_to=cast(Type[ParsedChatCompletion[ResponseFormatT]], ChatCompletion), + stream=False, + ) + + def stream( + self, + *, + messages: Iterable[ChatCompletionMessageParam], + model: Union[str, ChatModel], + audio: Optional[ChatCompletionAudioParam] | NotGiven = NOT_GIVEN, + response_format: completion_create_params.ResponseFormat | type[ResponseFormatT] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN, + functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[bool] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + modalities: Optional[List[Literal["text", "audio"]]] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + prediction: Optional[ChatCompletionPredictionContentParam] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN, + tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN, + top_logprobs: Optional[int] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + web_search_options: completion_create_params.WebSearchOptions | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ChatCompletionStreamManager[ResponseFormatT]: + """Wrapper over the `client.chat.completions.create(stream=True)` method that provides a more granular event API + and automatic accumulation of each delta. + + This also supports all of the parsing utilities that `.parse()` does. + + Unlike `.create(stream=True)`, the `.stream()` method requires usage within a context manager to prevent accidental leakage of the response: + + ```py + with client.beta.chat.completions.stream( + model="gpt-4o-2024-08-06", + messages=[...], + ) as stream: + for event in stream: + if event.type == "content.delta": + print(event.delta, flush=True, end="") + ``` + + When the context manager is entered, a `ChatCompletionStream` instance is returned which, like `.create(stream=True)` is an iterator. The full list of events that are yielded by the iterator are outlined in [these docs](https://github.com/openai/openai-python/blob/main/helpers.md#chat-completions-events). + + When the context manager exits, the response will be closed, however the `stream` instance is still available outside + the context manager. + """ + extra_headers = { + "X-Stainless-Helper-Method": "beta.chat.completions.stream", + **(extra_headers or {}), + } + + api_request: partial[Stream[ChatCompletionChunk]] = partial( + self._client.chat.completions.create, + messages=messages, + model=model, + audio=audio, + stream=True, + response_format=_type_to_response_format(response_format), + frequency_penalty=frequency_penalty, + function_call=function_call, + functions=functions, + logit_bias=logit_bias, + logprobs=logprobs, + max_completion_tokens=max_completion_tokens, + max_tokens=max_tokens, + metadata=metadata, + modalities=modalities, + n=n, + parallel_tool_calls=parallel_tool_calls, + prediction=prediction, + presence_penalty=presence_penalty, + reasoning_effort=reasoning_effort, + seed=seed, + service_tier=service_tier, + store=store, + stop=stop, + stream_options=stream_options, + temperature=temperature, + tool_choice=tool_choice, + tools=tools, + top_logprobs=top_logprobs, + top_p=top_p, + user=user, + web_search_options=web_search_options, + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + ) + return ChatCompletionStreamManager( + api_request, + response_format=response_format, + input_tools=tools, + ) + + +class AsyncCompletions(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncCompletionsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return the + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncCompletionsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncCompletionsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncCompletionsWithStreamingResponse(self) + + async def parse( + self, + *, + messages: Iterable[ChatCompletionMessageParam], + model: Union[str, ChatModel], + audio: Optional[ChatCompletionAudioParam] | NotGiven = NOT_GIVEN, + response_format: type[ResponseFormatT] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN, + functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[bool] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + modalities: Optional[List[Literal["text", "audio"]]] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + prediction: Optional[ChatCompletionPredictionContentParam] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN, + tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN, + top_logprobs: Optional[int] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + web_search_options: completion_create_params.WebSearchOptions | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ParsedChatCompletion[ResponseFormatT]: + """Wrapper over the `client.chat.completions.create()` method that provides richer integrations with Python specific types + & returns a `ParsedChatCompletion` object, which is a subclass of the standard `ChatCompletion` class. + + You can pass a pydantic model to this method and it will automatically convert the model + into a JSON schema, send it to the API and parse the response content back into the given model. + + This method will also automatically parse `function` tool calls if: + - You use the `openai.pydantic_function_tool()` helper method + - You mark your tool schema with `"strict": True` + + Example usage: + ```py + from pydantic import BaseModel + from openai import AsyncOpenAI + + + class Step(BaseModel): + explanation: str + output: str + + + class MathResponse(BaseModel): + steps: List[Step] + final_answer: str + + + client = AsyncOpenAI() + completion = await client.beta.chat.completions.parse( + model="gpt-4o-2024-08-06", + messages=[ + {"role": "system", "content": "You are a helpful math tutor."}, + {"role": "user", "content": "solve 8x + 31 = 2"}, + ], + response_format=MathResponse, + ) + + message = completion.choices[0].message + if message.parsed: + print(message.parsed.steps) + print("answer: ", message.parsed.final_answer) + ``` + """ + _validate_input_tools(tools) + + extra_headers = { + "X-Stainless-Helper-Method": "beta.chat.completions.parse", + **(extra_headers or {}), + } + + def parser(raw_completion: ChatCompletion) -> ParsedChatCompletion[ResponseFormatT]: + return _parse_chat_completion( + response_format=response_format, + chat_completion=raw_completion, + input_tools=tools, + ) + + return await self._post( + "/chat/completions", + body=await async_maybe_transform( + { + "messages": messages, + "model": model, + "audio": audio, + "frequency_penalty": frequency_penalty, + "function_call": function_call, + "functions": functions, + "logit_bias": logit_bias, + "logprobs": logprobs, + "max_completion_tokens": max_completion_tokens, + "max_tokens": max_tokens, + "metadata": metadata, + "modalities": modalities, + "n": n, + "parallel_tool_calls": parallel_tool_calls, + "prediction": prediction, + "presence_penalty": presence_penalty, + "reasoning_effort": reasoning_effort, + "response_format": _type_to_response_format(response_format), + "seed": seed, + "service_tier": service_tier, + "store": store, + "stop": stop, + "stream": False, + "stream_options": stream_options, + "temperature": temperature, + "tool_choice": tool_choice, + "tools": tools, + "top_logprobs": top_logprobs, + "top_p": top_p, + "user": user, + "web_search_options": web_search_options, + }, + completion_create_params.CompletionCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + post_parser=parser, + ), + # we turn the `ChatCompletion` instance into a `ParsedChatCompletion` + # in the `parser` function above + cast_to=cast(Type[ParsedChatCompletion[ResponseFormatT]], ChatCompletion), + stream=False, + ) + + def stream( + self, + *, + messages: Iterable[ChatCompletionMessageParam], + model: Union[str, ChatModel], + audio: Optional[ChatCompletionAudioParam] | NotGiven = NOT_GIVEN, + response_format: completion_create_params.ResponseFormat | type[ResponseFormatT] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN, + functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[bool] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + modalities: Optional[List[Literal["text", "audio"]]] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + prediction: Optional[ChatCompletionPredictionContentParam] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN, + tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN, + top_logprobs: Optional[int] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + web_search_options: completion_create_params.WebSearchOptions | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncChatCompletionStreamManager[ResponseFormatT]: + """Wrapper over the `client.chat.completions.create(stream=True)` method that provides a more granular event API + and automatic accumulation of each delta. + + This also supports all of the parsing utilities that `.parse()` does. + + Unlike `.create(stream=True)`, the `.stream()` method requires usage within a context manager to prevent accidental leakage of the response: + + ```py + async with client.beta.chat.completions.stream( + model="gpt-4o-2024-08-06", + messages=[...], + ) as stream: + async for event in stream: + if event.type == "content.delta": + print(event.delta, flush=True, end="") + ``` + + When the context manager is entered, an `AsyncChatCompletionStream` instance is returned which, like `.create(stream=True)` is an async iterator. The full list of events that are yielded by the iterator are outlined in [these docs](https://github.com/openai/openai-python/blob/main/helpers.md#chat-completions-events). + + When the context manager exits, the response will be closed, however the `stream` instance is still available outside + the context manager. + """ + _validate_input_tools(tools) + + extra_headers = { + "X-Stainless-Helper-Method": "beta.chat.completions.stream", + **(extra_headers or {}), + } + + api_request = self._client.chat.completions.create( + messages=messages, + model=model, + audio=audio, + stream=True, + response_format=_type_to_response_format(response_format), + frequency_penalty=frequency_penalty, + function_call=function_call, + functions=functions, + logit_bias=logit_bias, + logprobs=logprobs, + max_completion_tokens=max_completion_tokens, + max_tokens=max_tokens, + metadata=metadata, + modalities=modalities, + n=n, + parallel_tool_calls=parallel_tool_calls, + prediction=prediction, + presence_penalty=presence_penalty, + reasoning_effort=reasoning_effort, + seed=seed, + service_tier=service_tier, + stop=stop, + store=store, + stream_options=stream_options, + temperature=temperature, + tool_choice=tool_choice, + tools=tools, + top_logprobs=top_logprobs, + top_p=top_p, + user=user, + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + web_search_options=web_search_options, + ) + return AsyncChatCompletionStreamManager( + api_request, + response_format=response_format, + input_tools=tools, + ) + + +class CompletionsWithRawResponse: + def __init__(self, completions: Completions) -> None: + self._completions = completions + + self.parse = _legacy_response.to_raw_response_wrapper( + completions.parse, + ) + + +class AsyncCompletionsWithRawResponse: + def __init__(self, completions: AsyncCompletions) -> None: + self._completions = completions + + self.parse = _legacy_response.async_to_raw_response_wrapper( + completions.parse, + ) + + +class CompletionsWithStreamingResponse: + def __init__(self, completions: Completions) -> None: + self._completions = completions + + self.parse = to_streamed_response_wrapper( + completions.parse, + ) + + +class AsyncCompletionsWithStreamingResponse: + def __init__(self, completions: AsyncCompletions) -> None: + self._completions = completions + + self.parse = async_to_streamed_response_wrapper( + completions.parse, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/beta/realtime/__init__.py b/.venv/lib/python3.12/site-packages/openai/resources/beta/realtime/__init__.py new file mode 100644 index 00000000..7ab3d993 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/beta/realtime/__init__.py @@ -0,0 +1,47 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from .realtime import ( + Realtime, + AsyncRealtime, + RealtimeWithRawResponse, + AsyncRealtimeWithRawResponse, + RealtimeWithStreamingResponse, + AsyncRealtimeWithStreamingResponse, +) +from .sessions import ( + Sessions, + AsyncSessions, + SessionsWithRawResponse, + AsyncSessionsWithRawResponse, + SessionsWithStreamingResponse, + AsyncSessionsWithStreamingResponse, +) +from .transcription_sessions import ( + TranscriptionSessions, + AsyncTranscriptionSessions, + TranscriptionSessionsWithRawResponse, + AsyncTranscriptionSessionsWithRawResponse, + TranscriptionSessionsWithStreamingResponse, + AsyncTranscriptionSessionsWithStreamingResponse, +) + +__all__ = [ + "Sessions", + "AsyncSessions", + "SessionsWithRawResponse", + "AsyncSessionsWithRawResponse", + "SessionsWithStreamingResponse", + "AsyncSessionsWithStreamingResponse", + "TranscriptionSessions", + "AsyncTranscriptionSessions", + "TranscriptionSessionsWithRawResponse", + "AsyncTranscriptionSessionsWithRawResponse", + "TranscriptionSessionsWithStreamingResponse", + "AsyncTranscriptionSessionsWithStreamingResponse", + "Realtime", + "AsyncRealtime", + "RealtimeWithRawResponse", + "AsyncRealtimeWithRawResponse", + "RealtimeWithStreamingResponse", + "AsyncRealtimeWithStreamingResponse", +] diff --git a/.venv/lib/python3.12/site-packages/openai/resources/beta/realtime/realtime.py b/.venv/lib/python3.12/site-packages/openai/resources/beta/realtime/realtime.py new file mode 100644 index 00000000..76e57f8c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/beta/realtime/realtime.py @@ -0,0 +1,1066 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import json +import logging +from types import TracebackType +from typing import TYPE_CHECKING, Any, Iterator, cast +from typing_extensions import AsyncIterator + +import httpx +from pydantic import BaseModel + +from .sessions import ( + Sessions, + AsyncSessions, + SessionsWithRawResponse, + AsyncSessionsWithRawResponse, + SessionsWithStreamingResponse, + AsyncSessionsWithStreamingResponse, +) +from ...._types import NOT_GIVEN, Query, Headers, NotGiven +from ...._utils import ( + is_azure_client, + maybe_transform, + strip_not_given, + async_maybe_transform, + is_async_azure_client, +) +from ...._compat import cached_property +from ...._models import construct_type_unchecked +from ...._resource import SyncAPIResource, AsyncAPIResource +from ...._exceptions import OpenAIError +from ...._base_client import _merge_mappings +from ....types.beta.realtime import ( + session_update_event_param, + response_create_event_param, + transcription_session_update_param, +) +from .transcription_sessions import ( + TranscriptionSessions, + AsyncTranscriptionSessions, + TranscriptionSessionsWithRawResponse, + AsyncTranscriptionSessionsWithRawResponse, + TranscriptionSessionsWithStreamingResponse, + AsyncTranscriptionSessionsWithStreamingResponse, +) +from ....types.websocket_connection_options import WebsocketConnectionOptions +from ....types.beta.realtime.realtime_client_event import RealtimeClientEvent +from ....types.beta.realtime.realtime_server_event import RealtimeServerEvent +from ....types.beta.realtime.conversation_item_param import ConversationItemParam +from ....types.beta.realtime.realtime_client_event_param import RealtimeClientEventParam + +if TYPE_CHECKING: + from websockets.sync.client import ClientConnection as WebsocketConnection + from websockets.asyncio.client import ClientConnection as AsyncWebsocketConnection + + from ...._client import OpenAI, AsyncOpenAI + +__all__ = ["Realtime", "AsyncRealtime"] + +log: logging.Logger = logging.getLogger(__name__) + + +class Realtime(SyncAPIResource): + @cached_property + def sessions(self) -> Sessions: + return Sessions(self._client) + + @cached_property + def transcription_sessions(self) -> TranscriptionSessions: + return TranscriptionSessions(self._client) + + @cached_property + def with_raw_response(self) -> RealtimeWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return RealtimeWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> RealtimeWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return RealtimeWithStreamingResponse(self) + + def connect( + self, + *, + model: str, + extra_query: Query = {}, + extra_headers: Headers = {}, + websocket_connection_options: WebsocketConnectionOptions = {}, + ) -> RealtimeConnectionManager: + """ + The Realtime API enables you to build low-latency, multi-modal conversational experiences. It currently supports text and audio as both input and output, as well as function calling. + + Some notable benefits of the API include: + + - Native speech-to-speech: Skipping an intermediate text format means low latency and nuanced output. + - Natural, steerable voices: The models have natural inflection and can laugh, whisper, and adhere to tone direction. + - Simultaneous multimodal output: Text is useful for moderation; faster-than-realtime audio ensures stable playback. + + The Realtime API is a stateful, event-based API that communicates over a WebSocket. + """ + return RealtimeConnectionManager( + client=self._client, + extra_query=extra_query, + extra_headers=extra_headers, + websocket_connection_options=websocket_connection_options, + model=model, + ) + + +class AsyncRealtime(AsyncAPIResource): + @cached_property + def sessions(self) -> AsyncSessions: + return AsyncSessions(self._client) + + @cached_property + def transcription_sessions(self) -> AsyncTranscriptionSessions: + return AsyncTranscriptionSessions(self._client) + + @cached_property + def with_raw_response(self) -> AsyncRealtimeWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncRealtimeWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncRealtimeWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncRealtimeWithStreamingResponse(self) + + def connect( + self, + *, + model: str, + extra_query: Query = {}, + extra_headers: Headers = {}, + websocket_connection_options: WebsocketConnectionOptions = {}, + ) -> AsyncRealtimeConnectionManager: + """ + The Realtime API enables you to build low-latency, multi-modal conversational experiences. It currently supports text and audio as both input and output, as well as function calling. + + Some notable benefits of the API include: + + - Native speech-to-speech: Skipping an intermediate text format means low latency and nuanced output. + - Natural, steerable voices: The models have natural inflection and can laugh, whisper, and adhere to tone direction. + - Simultaneous multimodal output: Text is useful for moderation; faster-than-realtime audio ensures stable playback. + + The Realtime API is a stateful, event-based API that communicates over a WebSocket. + """ + return AsyncRealtimeConnectionManager( + client=self._client, + extra_query=extra_query, + extra_headers=extra_headers, + websocket_connection_options=websocket_connection_options, + model=model, + ) + + +class RealtimeWithRawResponse: + def __init__(self, realtime: Realtime) -> None: + self._realtime = realtime + + @cached_property + def sessions(self) -> SessionsWithRawResponse: + return SessionsWithRawResponse(self._realtime.sessions) + + @cached_property + def transcription_sessions(self) -> TranscriptionSessionsWithRawResponse: + return TranscriptionSessionsWithRawResponse(self._realtime.transcription_sessions) + + +class AsyncRealtimeWithRawResponse: + def __init__(self, realtime: AsyncRealtime) -> None: + self._realtime = realtime + + @cached_property + def sessions(self) -> AsyncSessionsWithRawResponse: + return AsyncSessionsWithRawResponse(self._realtime.sessions) + + @cached_property + def transcription_sessions(self) -> AsyncTranscriptionSessionsWithRawResponse: + return AsyncTranscriptionSessionsWithRawResponse(self._realtime.transcription_sessions) + + +class RealtimeWithStreamingResponse: + def __init__(self, realtime: Realtime) -> None: + self._realtime = realtime + + @cached_property + def sessions(self) -> SessionsWithStreamingResponse: + return SessionsWithStreamingResponse(self._realtime.sessions) + + @cached_property + def transcription_sessions(self) -> TranscriptionSessionsWithStreamingResponse: + return TranscriptionSessionsWithStreamingResponse(self._realtime.transcription_sessions) + + +class AsyncRealtimeWithStreamingResponse: + def __init__(self, realtime: AsyncRealtime) -> None: + self._realtime = realtime + + @cached_property + def sessions(self) -> AsyncSessionsWithStreamingResponse: + return AsyncSessionsWithStreamingResponse(self._realtime.sessions) + + @cached_property + def transcription_sessions(self) -> AsyncTranscriptionSessionsWithStreamingResponse: + return AsyncTranscriptionSessionsWithStreamingResponse(self._realtime.transcription_sessions) + + +class AsyncRealtimeConnection: + """Represents a live websocket connection to the Realtime API""" + + session: AsyncRealtimeSessionResource + response: AsyncRealtimeResponseResource + input_audio_buffer: AsyncRealtimeInputAudioBufferResource + conversation: AsyncRealtimeConversationResource + transcription_session: AsyncRealtimeTranscriptionSessionResource + + _connection: AsyncWebsocketConnection + + def __init__(self, connection: AsyncWebsocketConnection) -> None: + self._connection = connection + + self.session = AsyncRealtimeSessionResource(self) + self.response = AsyncRealtimeResponseResource(self) + self.input_audio_buffer = AsyncRealtimeInputAudioBufferResource(self) + self.conversation = AsyncRealtimeConversationResource(self) + self.transcription_session = AsyncRealtimeTranscriptionSessionResource(self) + + async def __aiter__(self) -> AsyncIterator[RealtimeServerEvent]: + """ + An infinite-iterator that will continue to yield events until + the connection is closed. + """ + from websockets.exceptions import ConnectionClosedOK + + try: + while True: + yield await self.recv() + except ConnectionClosedOK: + return + + async def recv(self) -> RealtimeServerEvent: + """ + Receive the next message from the connection and parses it into a `RealtimeServerEvent` object. + + Canceling this method is safe. There's no risk of losing data. + """ + return self.parse_event(await self.recv_bytes()) + + async def recv_bytes(self) -> bytes: + """Receive the next message from the connection as raw bytes. + + Canceling this method is safe. There's no risk of losing data. + + If you want to parse the message into a `RealtimeServerEvent` object like `.recv()` does, + then you can call `.parse_event(data)`. + """ + message = await self._connection.recv(decode=False) + log.debug(f"Received websocket message: %s", message) + if not isinstance(message, bytes): + # passing `decode=False` should always result in us getting `bytes` back + raise TypeError(f"Expected `.recv(decode=False)` to return `bytes` but got {type(message)}") + + return message + + async def send(self, event: RealtimeClientEvent | RealtimeClientEventParam) -> None: + data = ( + event.to_json(use_api_names=True, exclude_defaults=True, exclude_unset=True) + if isinstance(event, BaseModel) + else json.dumps(await async_maybe_transform(event, RealtimeClientEventParam)) + ) + await self._connection.send(data) + + async def close(self, *, code: int = 1000, reason: str = "") -> None: + await self._connection.close(code=code, reason=reason) + + def parse_event(self, data: str | bytes) -> RealtimeServerEvent: + """ + Converts a raw `str` or `bytes` message into a `RealtimeServerEvent` object. + + This is helpful if you're using `.recv_bytes()`. + """ + return cast( + RealtimeServerEvent, construct_type_unchecked(value=json.loads(data), type_=cast(Any, RealtimeServerEvent)) + ) + + +class AsyncRealtimeConnectionManager: + """ + Context manager over a `AsyncRealtimeConnection` that is returned by `beta.realtime.connect()` + + This context manager ensures that the connection will be closed when it exits. + + --- + + Note that if your application doesn't work well with the context manager approach then you + can call the `.enter()` method directly to initiate a connection. + + **Warning**: You must remember to close the connection with `.close()`. + + ```py + connection = await client.beta.realtime.connect(...).enter() + # ... + await connection.close() + ``` + """ + + def __init__( + self, + *, + client: AsyncOpenAI, + model: str, + extra_query: Query, + extra_headers: Headers, + websocket_connection_options: WebsocketConnectionOptions, + ) -> None: + self.__client = client + self.__model = model + self.__connection: AsyncRealtimeConnection | None = None + self.__extra_query = extra_query + self.__extra_headers = extra_headers + self.__websocket_connection_options = websocket_connection_options + + async def __aenter__(self) -> AsyncRealtimeConnection: + """ + 👋 If your application doesn't work well with the context manager approach then you + can call this method directly to initiate a connection. + + **Warning**: You must remember to close the connection with `.close()`. + + ```py + connection = await client.beta.realtime.connect(...).enter() + # ... + await connection.close() + ``` + """ + try: + from websockets.asyncio.client import connect + except ImportError as exc: + raise OpenAIError("You need to install `openai[realtime]` to use this method") from exc + + extra_query = self.__extra_query + auth_headers = self.__client.auth_headers + if is_async_azure_client(self.__client): + url, auth_headers = await self.__client._configure_realtime(self.__model, extra_query) + else: + url = self._prepare_url().copy_with( + params={ + **self.__client.base_url.params, + "model": self.__model, + **extra_query, + }, + ) + log.debug("Connecting to %s", url) + if self.__websocket_connection_options: + log.debug("Connection options: %s", self.__websocket_connection_options) + + self.__connection = AsyncRealtimeConnection( + await connect( + str(url), + user_agent_header=self.__client.user_agent, + additional_headers=_merge_mappings( + { + **auth_headers, + "OpenAI-Beta": "realtime=v1", + }, + self.__extra_headers, + ), + **self.__websocket_connection_options, + ) + ) + + return self.__connection + + enter = __aenter__ + + def _prepare_url(self) -> httpx.URL: + if self.__client.websocket_base_url is not None: + base_url = httpx.URL(self.__client.websocket_base_url) + else: + base_url = self.__client._base_url.copy_with(scheme="wss") + + merge_raw_path = base_url.raw_path.rstrip(b"/") + b"/realtime" + return base_url.copy_with(raw_path=merge_raw_path) + + async def __aexit__( + self, exc_type: type[BaseException] | None, exc: BaseException | None, exc_tb: TracebackType | None + ) -> None: + if self.__connection is not None: + await self.__connection.close() + + +class RealtimeConnection: + """Represents a live websocket connection to the Realtime API""" + + session: RealtimeSessionResource + response: RealtimeResponseResource + input_audio_buffer: RealtimeInputAudioBufferResource + conversation: RealtimeConversationResource + transcription_session: RealtimeTranscriptionSessionResource + + _connection: WebsocketConnection + + def __init__(self, connection: WebsocketConnection) -> None: + self._connection = connection + + self.session = RealtimeSessionResource(self) + self.response = RealtimeResponseResource(self) + self.input_audio_buffer = RealtimeInputAudioBufferResource(self) + self.conversation = RealtimeConversationResource(self) + self.transcription_session = RealtimeTranscriptionSessionResource(self) + + def __iter__(self) -> Iterator[RealtimeServerEvent]: + """ + An infinite-iterator that will continue to yield events until + the connection is closed. + """ + from websockets.exceptions import ConnectionClosedOK + + try: + while True: + yield self.recv() + except ConnectionClosedOK: + return + + def recv(self) -> RealtimeServerEvent: + """ + Receive the next message from the connection and parses it into a `RealtimeServerEvent` object. + + Canceling this method is safe. There's no risk of losing data. + """ + return self.parse_event(self.recv_bytes()) + + def recv_bytes(self) -> bytes: + """Receive the next message from the connection as raw bytes. + + Canceling this method is safe. There's no risk of losing data. + + If you want to parse the message into a `RealtimeServerEvent` object like `.recv()` does, + then you can call `.parse_event(data)`. + """ + message = self._connection.recv(decode=False) + log.debug(f"Received websocket message: %s", message) + if not isinstance(message, bytes): + # passing `decode=False` should always result in us getting `bytes` back + raise TypeError(f"Expected `.recv(decode=False)` to return `bytes` but got {type(message)}") + + return message + + def send(self, event: RealtimeClientEvent | RealtimeClientEventParam) -> None: + data = ( + event.to_json(use_api_names=True, exclude_defaults=True, exclude_unset=True) + if isinstance(event, BaseModel) + else json.dumps(maybe_transform(event, RealtimeClientEventParam)) + ) + self._connection.send(data) + + def close(self, *, code: int = 1000, reason: str = "") -> None: + self._connection.close(code=code, reason=reason) + + def parse_event(self, data: str | bytes) -> RealtimeServerEvent: + """ + Converts a raw `str` or `bytes` message into a `RealtimeServerEvent` object. + + This is helpful if you're using `.recv_bytes()`. + """ + return cast( + RealtimeServerEvent, construct_type_unchecked(value=json.loads(data), type_=cast(Any, RealtimeServerEvent)) + ) + + +class RealtimeConnectionManager: + """ + Context manager over a `RealtimeConnection` that is returned by `beta.realtime.connect()` + + This context manager ensures that the connection will be closed when it exits. + + --- + + Note that if your application doesn't work well with the context manager approach then you + can call the `.enter()` method directly to initiate a connection. + + **Warning**: You must remember to close the connection with `.close()`. + + ```py + connection = client.beta.realtime.connect(...).enter() + # ... + connection.close() + ``` + """ + + def __init__( + self, + *, + client: OpenAI, + model: str, + extra_query: Query, + extra_headers: Headers, + websocket_connection_options: WebsocketConnectionOptions, + ) -> None: + self.__client = client + self.__model = model + self.__connection: RealtimeConnection | None = None + self.__extra_query = extra_query + self.__extra_headers = extra_headers + self.__websocket_connection_options = websocket_connection_options + + def __enter__(self) -> RealtimeConnection: + """ + 👋 If your application doesn't work well with the context manager approach then you + can call this method directly to initiate a connection. + + **Warning**: You must remember to close the connection with `.close()`. + + ```py + connection = client.beta.realtime.connect(...).enter() + # ... + connection.close() + ``` + """ + try: + from websockets.sync.client import connect + except ImportError as exc: + raise OpenAIError("You need to install `openai[realtime]` to use this method") from exc + + extra_query = self.__extra_query + auth_headers = self.__client.auth_headers + if is_azure_client(self.__client): + url, auth_headers = self.__client._configure_realtime(self.__model, extra_query) + else: + url = self._prepare_url().copy_with( + params={ + **self.__client.base_url.params, + "model": self.__model, + **extra_query, + }, + ) + log.debug("Connecting to %s", url) + if self.__websocket_connection_options: + log.debug("Connection options: %s", self.__websocket_connection_options) + + self.__connection = RealtimeConnection( + connect( + str(url), + user_agent_header=self.__client.user_agent, + additional_headers=_merge_mappings( + { + **auth_headers, + "OpenAI-Beta": "realtime=v1", + }, + self.__extra_headers, + ), + **self.__websocket_connection_options, + ) + ) + + return self.__connection + + enter = __enter__ + + def _prepare_url(self) -> httpx.URL: + if self.__client.websocket_base_url is not None: + base_url = httpx.URL(self.__client.websocket_base_url) + else: + base_url = self.__client._base_url.copy_with(scheme="wss") + + merge_raw_path = base_url.raw_path.rstrip(b"/") + b"/realtime" + return base_url.copy_with(raw_path=merge_raw_path) + + def __exit__( + self, exc_type: type[BaseException] | None, exc: BaseException | None, exc_tb: TracebackType | None + ) -> None: + if self.__connection is not None: + self.__connection.close() + + +class BaseRealtimeConnectionResource: + def __init__(self, connection: RealtimeConnection) -> None: + self._connection = connection + + +class RealtimeSessionResource(BaseRealtimeConnectionResource): + def update(self, *, session: session_update_event_param.Session, event_id: str | NotGiven = NOT_GIVEN) -> None: + """ + Send this event to update the session’s default configuration. + The client may send this event at any time to update any field, + except for `voice`. However, note that once a session has been + initialized with a particular `model`, it can’t be changed to + another model using `session.update`. + + When the server receives a `session.update`, it will respond + with a `session.updated` event showing the full, effective configuration. + Only the fields that are present are updated. To clear a field like + `instructions`, pass an empty string. + """ + self._connection.send( + cast( + RealtimeClientEventParam, + strip_not_given({"type": "session.update", "session": session, "event_id": event_id}), + ) + ) + + +class RealtimeResponseResource(BaseRealtimeConnectionResource): + def create( + self, + *, + event_id: str | NotGiven = NOT_GIVEN, + response: response_create_event_param.Response | NotGiven = NOT_GIVEN, + ) -> None: + """ + This event instructs the server to create a Response, which means triggering + model inference. When in Server VAD mode, the server will create Responses + automatically. + + A Response will include at least one Item, and may have two, in which case + the second will be a function call. These Items will be appended to the + conversation history. + + The server will respond with a `response.created` event, events for Items + and content created, and finally a `response.done` event to indicate the + Response is complete. + + The `response.create` event includes inference configuration like + `instructions`, and `temperature`. These fields will override the Session's + configuration for this Response only. + """ + self._connection.send( + cast( + RealtimeClientEventParam, + strip_not_given({"type": "response.create", "event_id": event_id, "response": response}), + ) + ) + + def cancel(self, *, event_id: str | NotGiven = NOT_GIVEN, response_id: str | NotGiven = NOT_GIVEN) -> None: + """Send this event to cancel an in-progress response. + + The server will respond + with a `response.cancelled` event or an error if there is no response to + cancel. + """ + self._connection.send( + cast( + RealtimeClientEventParam, + strip_not_given({"type": "response.cancel", "event_id": event_id, "response_id": response_id}), + ) + ) + + +class RealtimeInputAudioBufferResource(BaseRealtimeConnectionResource): + def clear(self, *, event_id: str | NotGiven = NOT_GIVEN) -> None: + """Send this event to clear the audio bytes in the buffer. + + The server will + respond with an `input_audio_buffer.cleared` event. + """ + self._connection.send( + cast(RealtimeClientEventParam, strip_not_given({"type": "input_audio_buffer.clear", "event_id": event_id})) + ) + + def commit(self, *, event_id: str | NotGiven = NOT_GIVEN) -> None: + """ + Send this event to commit the user input audio buffer, which will create a + new user message item in the conversation. This event will produce an error + if the input audio buffer is empty. When in Server VAD mode, the client does + not need to send this event, the server will commit the audio buffer + automatically. + + Committing the input audio buffer will trigger input audio transcription + (if enabled in session configuration), but it will not create a response + from the model. The server will respond with an `input_audio_buffer.committed` + event. + """ + self._connection.send( + cast(RealtimeClientEventParam, strip_not_given({"type": "input_audio_buffer.commit", "event_id": event_id})) + ) + + def append(self, *, audio: str, event_id: str | NotGiven = NOT_GIVEN) -> None: + """Send this event to append audio bytes to the input audio buffer. + + The audio + buffer is temporary storage you can write to and later commit. In Server VAD + mode, the audio buffer is used to detect speech and the server will decide + when to commit. When Server VAD is disabled, you must commit the audio buffer + manually. + + The client may choose how much audio to place in each event up to a maximum + of 15 MiB, for example streaming smaller chunks from the client may allow the + VAD to be more responsive. Unlike made other client events, the server will + not send a confirmation response to this event. + """ + self._connection.send( + cast( + RealtimeClientEventParam, + strip_not_given({"type": "input_audio_buffer.append", "audio": audio, "event_id": event_id}), + ) + ) + + +class RealtimeConversationResource(BaseRealtimeConnectionResource): + @cached_property + def item(self) -> RealtimeConversationItemResource: + return RealtimeConversationItemResource(self._connection) + + +class RealtimeConversationItemResource(BaseRealtimeConnectionResource): + def delete(self, *, item_id: str, event_id: str | NotGiven = NOT_GIVEN) -> None: + """Send this event when you want to remove any item from the conversation + history. + + The server will respond with a `conversation.item.deleted` event, + unless the item does not exist in the conversation history, in which case the + server will respond with an error. + """ + self._connection.send( + cast( + RealtimeClientEventParam, + strip_not_given({"type": "conversation.item.delete", "item_id": item_id, "event_id": event_id}), + ) + ) + + def create( + self, + *, + item: ConversationItemParam, + event_id: str | NotGiven = NOT_GIVEN, + previous_item_id: str | NotGiven = NOT_GIVEN, + ) -> None: + """ + Add a new Item to the Conversation's context, including messages, function + calls, and function call responses. This event can be used both to populate a + "history" of the conversation and to add new items mid-stream, but has the + current limitation that it cannot populate assistant audio messages. + + If successful, the server will respond with a `conversation.item.created` + event, otherwise an `error` event will be sent. + """ + self._connection.send( + cast( + RealtimeClientEventParam, + strip_not_given( + { + "type": "conversation.item.create", + "item": item, + "event_id": event_id, + "previous_item_id": previous_item_id, + } + ), + ) + ) + + def truncate( + self, *, audio_end_ms: int, content_index: int, item_id: str, event_id: str | NotGiven = NOT_GIVEN + ) -> None: + """Send this event to truncate a previous assistant message’s audio. + + The server + will produce audio faster than realtime, so this event is useful when the user + interrupts to truncate audio that has already been sent to the client but not + yet played. This will synchronize the server's understanding of the audio with + the client's playback. + + Truncating audio will delete the server-side text transcript to ensure there + is not text in the context that hasn't been heard by the user. + + If successful, the server will respond with a `conversation.item.truncated` + event. + """ + self._connection.send( + cast( + RealtimeClientEventParam, + strip_not_given( + { + "type": "conversation.item.truncate", + "audio_end_ms": audio_end_ms, + "content_index": content_index, + "item_id": item_id, + "event_id": event_id, + } + ), + ) + ) + + def retrieve(self, *, item_id: str, event_id: str | NotGiven = NOT_GIVEN) -> None: + """ + Send this event when you want to retrieve the server's representation of a specific item in the conversation history. This is useful, for example, to inspect user audio after noise cancellation and VAD. + The server will respond with a `conversation.item.retrieved` event, + unless the item does not exist in the conversation history, in which case the + server will respond with an error. + """ + self._connection.send( + cast( + RealtimeClientEventParam, + strip_not_given({"type": "conversation.item.retrieve", "item_id": item_id, "event_id": event_id}), + ) + ) + + +class RealtimeTranscriptionSessionResource(BaseRealtimeConnectionResource): + def update( + self, *, session: transcription_session_update_param.Session, event_id: str | NotGiven = NOT_GIVEN + ) -> None: + """Send this event to update a transcription session.""" + self._connection.send( + cast( + RealtimeClientEventParam, + strip_not_given({"type": "transcription_session.update", "session": session, "event_id": event_id}), + ) + ) + + +class BaseAsyncRealtimeConnectionResource: + def __init__(self, connection: AsyncRealtimeConnection) -> None: + self._connection = connection + + +class AsyncRealtimeSessionResource(BaseAsyncRealtimeConnectionResource): + async def update( + self, *, session: session_update_event_param.Session, event_id: str | NotGiven = NOT_GIVEN + ) -> None: + """ + Send this event to update the session’s default configuration. + The client may send this event at any time to update any field, + except for `voice`. However, note that once a session has been + initialized with a particular `model`, it can’t be changed to + another model using `session.update`. + + When the server receives a `session.update`, it will respond + with a `session.updated` event showing the full, effective configuration. + Only the fields that are present are updated. To clear a field like + `instructions`, pass an empty string. + """ + await self._connection.send( + cast( + RealtimeClientEventParam, + strip_not_given({"type": "session.update", "session": session, "event_id": event_id}), + ) + ) + + +class AsyncRealtimeResponseResource(BaseAsyncRealtimeConnectionResource): + async def create( + self, + *, + event_id: str | NotGiven = NOT_GIVEN, + response: response_create_event_param.Response | NotGiven = NOT_GIVEN, + ) -> None: + """ + This event instructs the server to create a Response, which means triggering + model inference. When in Server VAD mode, the server will create Responses + automatically. + + A Response will include at least one Item, and may have two, in which case + the second will be a function call. These Items will be appended to the + conversation history. + + The server will respond with a `response.created` event, events for Items + and content created, and finally a `response.done` event to indicate the + Response is complete. + + The `response.create` event includes inference configuration like + `instructions`, and `temperature`. These fields will override the Session's + configuration for this Response only. + """ + await self._connection.send( + cast( + RealtimeClientEventParam, + strip_not_given({"type": "response.create", "event_id": event_id, "response": response}), + ) + ) + + async def cancel(self, *, event_id: str | NotGiven = NOT_GIVEN, response_id: str | NotGiven = NOT_GIVEN) -> None: + """Send this event to cancel an in-progress response. + + The server will respond + with a `response.cancelled` event or an error if there is no response to + cancel. + """ + await self._connection.send( + cast( + RealtimeClientEventParam, + strip_not_given({"type": "response.cancel", "event_id": event_id, "response_id": response_id}), + ) + ) + + +class AsyncRealtimeInputAudioBufferResource(BaseAsyncRealtimeConnectionResource): + async def clear(self, *, event_id: str | NotGiven = NOT_GIVEN) -> None: + """Send this event to clear the audio bytes in the buffer. + + The server will + respond with an `input_audio_buffer.cleared` event. + """ + await self._connection.send( + cast(RealtimeClientEventParam, strip_not_given({"type": "input_audio_buffer.clear", "event_id": event_id})) + ) + + async def commit(self, *, event_id: str | NotGiven = NOT_GIVEN) -> None: + """ + Send this event to commit the user input audio buffer, which will create a + new user message item in the conversation. This event will produce an error + if the input audio buffer is empty. When in Server VAD mode, the client does + not need to send this event, the server will commit the audio buffer + automatically. + + Committing the input audio buffer will trigger input audio transcription + (if enabled in session configuration), but it will not create a response + from the model. The server will respond with an `input_audio_buffer.committed` + event. + """ + await self._connection.send( + cast(RealtimeClientEventParam, strip_not_given({"type": "input_audio_buffer.commit", "event_id": event_id})) + ) + + async def append(self, *, audio: str, event_id: str | NotGiven = NOT_GIVEN) -> None: + """Send this event to append audio bytes to the input audio buffer. + + The audio + buffer is temporary storage you can write to and later commit. In Server VAD + mode, the audio buffer is used to detect speech and the server will decide + when to commit. When Server VAD is disabled, you must commit the audio buffer + manually. + + The client may choose how much audio to place in each event up to a maximum + of 15 MiB, for example streaming smaller chunks from the client may allow the + VAD to be more responsive. Unlike made other client events, the server will + not send a confirmation response to this event. + """ + await self._connection.send( + cast( + RealtimeClientEventParam, + strip_not_given({"type": "input_audio_buffer.append", "audio": audio, "event_id": event_id}), + ) + ) + + +class AsyncRealtimeConversationResource(BaseAsyncRealtimeConnectionResource): + @cached_property + def item(self) -> AsyncRealtimeConversationItemResource: + return AsyncRealtimeConversationItemResource(self._connection) + + +class AsyncRealtimeConversationItemResource(BaseAsyncRealtimeConnectionResource): + async def delete(self, *, item_id: str, event_id: str | NotGiven = NOT_GIVEN) -> None: + """Send this event when you want to remove any item from the conversation + history. + + The server will respond with a `conversation.item.deleted` event, + unless the item does not exist in the conversation history, in which case the + server will respond with an error. + """ + await self._connection.send( + cast( + RealtimeClientEventParam, + strip_not_given({"type": "conversation.item.delete", "item_id": item_id, "event_id": event_id}), + ) + ) + + async def create( + self, + *, + item: ConversationItemParam, + event_id: str | NotGiven = NOT_GIVEN, + previous_item_id: str | NotGiven = NOT_GIVEN, + ) -> None: + """ + Add a new Item to the Conversation's context, including messages, function + calls, and function call responses. This event can be used both to populate a + "history" of the conversation and to add new items mid-stream, but has the + current limitation that it cannot populate assistant audio messages. + + If successful, the server will respond with a `conversation.item.created` + event, otherwise an `error` event will be sent. + """ + await self._connection.send( + cast( + RealtimeClientEventParam, + strip_not_given( + { + "type": "conversation.item.create", + "item": item, + "event_id": event_id, + "previous_item_id": previous_item_id, + } + ), + ) + ) + + async def truncate( + self, *, audio_end_ms: int, content_index: int, item_id: str, event_id: str | NotGiven = NOT_GIVEN + ) -> None: + """Send this event to truncate a previous assistant message’s audio. + + The server + will produce audio faster than realtime, so this event is useful when the user + interrupts to truncate audio that has already been sent to the client but not + yet played. This will synchronize the server's understanding of the audio with + the client's playback. + + Truncating audio will delete the server-side text transcript to ensure there + is not text in the context that hasn't been heard by the user. + + If successful, the server will respond with a `conversation.item.truncated` + event. + """ + await self._connection.send( + cast( + RealtimeClientEventParam, + strip_not_given( + { + "type": "conversation.item.truncate", + "audio_end_ms": audio_end_ms, + "content_index": content_index, + "item_id": item_id, + "event_id": event_id, + } + ), + ) + ) + + async def retrieve(self, *, item_id: str, event_id: str | NotGiven = NOT_GIVEN) -> None: + """ + Send this event when you want to retrieve the server's representation of a specific item in the conversation history. This is useful, for example, to inspect user audio after noise cancellation and VAD. + The server will respond with a `conversation.item.retrieved` event, + unless the item does not exist in the conversation history, in which case the + server will respond with an error. + """ + await self._connection.send( + cast( + RealtimeClientEventParam, + strip_not_given({"type": "conversation.item.retrieve", "item_id": item_id, "event_id": event_id}), + ) + ) + + +class AsyncRealtimeTranscriptionSessionResource(BaseAsyncRealtimeConnectionResource): + async def update( + self, *, session: transcription_session_update_param.Session, event_id: str | NotGiven = NOT_GIVEN + ) -> None: + """Send this event to update a transcription session.""" + await self._connection.send( + cast( + RealtimeClientEventParam, + strip_not_given({"type": "transcription_session.update", "session": session, "event_id": event_id}), + ) + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/beta/realtime/sessions.py b/.venv/lib/python3.12/site-packages/openai/resources/beta/realtime/sessions.py new file mode 100644 index 00000000..5884e54d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/beta/realtime/sessions.py @@ -0,0 +1,383 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union, Iterable +from typing_extensions import Literal + +import httpx + +from .... import _legacy_response +from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from ...._utils import ( + maybe_transform, + async_maybe_transform, +) +from ...._compat import cached_property +from ...._resource import SyncAPIResource, AsyncAPIResource +from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ...._base_client import make_request_options +from ....types.beta.realtime import session_create_params +from ....types.beta.realtime.session_create_response import SessionCreateResponse + +__all__ = ["Sessions", "AsyncSessions"] + + +class Sessions(SyncAPIResource): + @cached_property + def with_raw_response(self) -> SessionsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return SessionsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> SessionsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return SessionsWithStreamingResponse(self) + + def create( + self, + *, + input_audio_format: Literal["pcm16", "g711_ulaw", "g711_alaw"] | NotGiven = NOT_GIVEN, + input_audio_noise_reduction: session_create_params.InputAudioNoiseReduction | NotGiven = NOT_GIVEN, + input_audio_transcription: session_create_params.InputAudioTranscription | NotGiven = NOT_GIVEN, + instructions: str | NotGiven = NOT_GIVEN, + max_response_output_tokens: Union[int, Literal["inf"]] | NotGiven = NOT_GIVEN, + modalities: List[Literal["text", "audio"]] | NotGiven = NOT_GIVEN, + model: Literal[ + "gpt-4o-realtime-preview", + "gpt-4o-realtime-preview-2024-10-01", + "gpt-4o-realtime-preview-2024-12-17", + "gpt-4o-mini-realtime-preview", + "gpt-4o-mini-realtime-preview-2024-12-17", + ] + | NotGiven = NOT_GIVEN, + output_audio_format: Literal["pcm16", "g711_ulaw", "g711_alaw"] | NotGiven = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + tool_choice: str | NotGiven = NOT_GIVEN, + tools: Iterable[session_create_params.Tool] | NotGiven = NOT_GIVEN, + turn_detection: session_create_params.TurnDetection | NotGiven = NOT_GIVEN, + voice: Literal["alloy", "ash", "ballad", "coral", "echo", "sage", "shimmer", "verse"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SessionCreateResponse: + """ + Create an ephemeral API token for use in client-side applications with the + Realtime API. Can be configured with the same session parameters as the + `session.update` client event. + + It responds with a session object, plus a `client_secret` key which contains a + usable ephemeral API token that can be used to authenticate browser clients for + the Realtime API. + + Args: + input_audio_format: The format of input audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For + `pcm16`, input audio must be 16-bit PCM at a 24kHz sample rate, single channel + (mono), and little-endian byte order. + + input_audio_noise_reduction: Configuration for input audio noise reduction. This can be set to `null` to turn + off. Noise reduction filters audio added to the input audio buffer before it is + sent to VAD and the model. Filtering the audio can improve VAD and turn + detection accuracy (reducing false positives) and model performance by improving + perception of the input audio. + + input_audio_transcription: Configuration for input audio transcription, defaults to off and can be set to + `null` to turn off once on. Input audio transcription is not native to the + model, since the model consumes audio directly. Transcription runs + asynchronously through + [the /audio/transcriptions endpoint](https://platform.openai.com/docs/api-reference/audio/createTranscription) + and should be treated as guidance of input audio content rather than precisely + what the model heard. The client can optionally set the language and prompt for + transcription, these offer additional guidance to the transcription service. + + instructions: The default system instructions (i.e. system message) prepended to model calls. + This field allows the client to guide the model on desired responses. The model + can be instructed on response content and format, (e.g. "be extremely succinct", + "act friendly", "here are examples of good responses") and on audio behavior + (e.g. "talk quickly", "inject emotion into your voice", "laugh frequently"). The + instructions are not guaranteed to be followed by the model, but they provide + guidance to the model on the desired behavior. + + Note that the server sets default instructions which will be used if this field + is not set and are visible in the `session.created` event at the start of the + session. + + max_response_output_tokens: Maximum number of output tokens for a single assistant response, inclusive of + tool calls. Provide an integer between 1 and 4096 to limit output tokens, or + `inf` for the maximum available tokens for a given model. Defaults to `inf`. + + modalities: The set of modalities the model can respond with. To disable audio, set this to + ["text"]. + + model: The Realtime model used for this session. + + output_audio_format: The format of output audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. + For `pcm16`, output audio is sampled at a rate of 24kHz. + + temperature: Sampling temperature for the model, limited to [0.6, 1.2]. For audio models a + temperature of 0.8 is highly recommended for best performance. + + tool_choice: How the model chooses tools. Options are `auto`, `none`, `required`, or specify + a function. + + tools: Tools (functions) available to the model. + + turn_detection: Configuration for turn detection, ether Server VAD or Semantic VAD. This can be + set to `null` to turn off, in which case the client must manually trigger model + response. Server VAD means that the model will detect the start and end of + speech based on audio volume and respond at the end of user speech. Semantic VAD + is more advanced and uses a turn detection model (in conjuction with VAD) to + semantically estimate whether the user has finished speaking, then dynamically + sets a timeout based on this probability. For example, if user audio trails off + with "uhhm", the model will score a low probability of turn end and wait longer + for the user to continue speaking. This can be useful for more natural + conversations, but may have a higher latency. + + voice: The voice the model uses to respond. Voice cannot be changed during the session + once the model has responded with audio at least once. Current voice options are + `alloy`, `ash`, `ballad`, `coral`, `echo` `sage`, `shimmer` and `verse`. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + "/realtime/sessions", + body=maybe_transform( + { + "input_audio_format": input_audio_format, + "input_audio_noise_reduction": input_audio_noise_reduction, + "input_audio_transcription": input_audio_transcription, + "instructions": instructions, + "max_response_output_tokens": max_response_output_tokens, + "modalities": modalities, + "model": model, + "output_audio_format": output_audio_format, + "temperature": temperature, + "tool_choice": tool_choice, + "tools": tools, + "turn_detection": turn_detection, + "voice": voice, + }, + session_create_params.SessionCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=SessionCreateResponse, + ) + + +class AsyncSessions(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncSessionsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncSessionsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncSessionsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncSessionsWithStreamingResponse(self) + + async def create( + self, + *, + input_audio_format: Literal["pcm16", "g711_ulaw", "g711_alaw"] | NotGiven = NOT_GIVEN, + input_audio_noise_reduction: session_create_params.InputAudioNoiseReduction | NotGiven = NOT_GIVEN, + input_audio_transcription: session_create_params.InputAudioTranscription | NotGiven = NOT_GIVEN, + instructions: str | NotGiven = NOT_GIVEN, + max_response_output_tokens: Union[int, Literal["inf"]] | NotGiven = NOT_GIVEN, + modalities: List[Literal["text", "audio"]] | NotGiven = NOT_GIVEN, + model: Literal[ + "gpt-4o-realtime-preview", + "gpt-4o-realtime-preview-2024-10-01", + "gpt-4o-realtime-preview-2024-12-17", + "gpt-4o-mini-realtime-preview", + "gpt-4o-mini-realtime-preview-2024-12-17", + ] + | NotGiven = NOT_GIVEN, + output_audio_format: Literal["pcm16", "g711_ulaw", "g711_alaw"] | NotGiven = NOT_GIVEN, + temperature: float | NotGiven = NOT_GIVEN, + tool_choice: str | NotGiven = NOT_GIVEN, + tools: Iterable[session_create_params.Tool] | NotGiven = NOT_GIVEN, + turn_detection: session_create_params.TurnDetection | NotGiven = NOT_GIVEN, + voice: Literal["alloy", "ash", "ballad", "coral", "echo", "sage", "shimmer", "verse"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SessionCreateResponse: + """ + Create an ephemeral API token for use in client-side applications with the + Realtime API. Can be configured with the same session parameters as the + `session.update` client event. + + It responds with a session object, plus a `client_secret` key which contains a + usable ephemeral API token that can be used to authenticate browser clients for + the Realtime API. + + Args: + input_audio_format: The format of input audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For + `pcm16`, input audio must be 16-bit PCM at a 24kHz sample rate, single channel + (mono), and little-endian byte order. + + input_audio_noise_reduction: Configuration for input audio noise reduction. This can be set to `null` to turn + off. Noise reduction filters audio added to the input audio buffer before it is + sent to VAD and the model. Filtering the audio can improve VAD and turn + detection accuracy (reducing false positives) and model performance by improving + perception of the input audio. + + input_audio_transcription: Configuration for input audio transcription, defaults to off and can be set to + `null` to turn off once on. Input audio transcription is not native to the + model, since the model consumes audio directly. Transcription runs + asynchronously through + [the /audio/transcriptions endpoint](https://platform.openai.com/docs/api-reference/audio/createTranscription) + and should be treated as guidance of input audio content rather than precisely + what the model heard. The client can optionally set the language and prompt for + transcription, these offer additional guidance to the transcription service. + + instructions: The default system instructions (i.e. system message) prepended to model calls. + This field allows the client to guide the model on desired responses. The model + can be instructed on response content and format, (e.g. "be extremely succinct", + "act friendly", "here are examples of good responses") and on audio behavior + (e.g. "talk quickly", "inject emotion into your voice", "laugh frequently"). The + instructions are not guaranteed to be followed by the model, but they provide + guidance to the model on the desired behavior. + + Note that the server sets default instructions which will be used if this field + is not set and are visible in the `session.created` event at the start of the + session. + + max_response_output_tokens: Maximum number of output tokens for a single assistant response, inclusive of + tool calls. Provide an integer between 1 and 4096 to limit output tokens, or + `inf` for the maximum available tokens for a given model. Defaults to `inf`. + + modalities: The set of modalities the model can respond with. To disable audio, set this to + ["text"]. + + model: The Realtime model used for this session. + + output_audio_format: The format of output audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. + For `pcm16`, output audio is sampled at a rate of 24kHz. + + temperature: Sampling temperature for the model, limited to [0.6, 1.2]. For audio models a + temperature of 0.8 is highly recommended for best performance. + + tool_choice: How the model chooses tools. Options are `auto`, `none`, `required`, or specify + a function. + + tools: Tools (functions) available to the model. + + turn_detection: Configuration for turn detection, ether Server VAD or Semantic VAD. This can be + set to `null` to turn off, in which case the client must manually trigger model + response. Server VAD means that the model will detect the start and end of + speech based on audio volume and respond at the end of user speech. Semantic VAD + is more advanced and uses a turn detection model (in conjuction with VAD) to + semantically estimate whether the user has finished speaking, then dynamically + sets a timeout based on this probability. For example, if user audio trails off + with "uhhm", the model will score a low probability of turn end and wait longer + for the user to continue speaking. This can be useful for more natural + conversations, but may have a higher latency. + + voice: The voice the model uses to respond. Voice cannot be changed during the session + once the model has responded with audio at least once. Current voice options are + `alloy`, `ash`, `ballad`, `coral`, `echo` `sage`, `shimmer` and `verse`. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + "/realtime/sessions", + body=await async_maybe_transform( + { + "input_audio_format": input_audio_format, + "input_audio_noise_reduction": input_audio_noise_reduction, + "input_audio_transcription": input_audio_transcription, + "instructions": instructions, + "max_response_output_tokens": max_response_output_tokens, + "modalities": modalities, + "model": model, + "output_audio_format": output_audio_format, + "temperature": temperature, + "tool_choice": tool_choice, + "tools": tools, + "turn_detection": turn_detection, + "voice": voice, + }, + session_create_params.SessionCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=SessionCreateResponse, + ) + + +class SessionsWithRawResponse: + def __init__(self, sessions: Sessions) -> None: + self._sessions = sessions + + self.create = _legacy_response.to_raw_response_wrapper( + sessions.create, + ) + + +class AsyncSessionsWithRawResponse: + def __init__(self, sessions: AsyncSessions) -> None: + self._sessions = sessions + + self.create = _legacy_response.async_to_raw_response_wrapper( + sessions.create, + ) + + +class SessionsWithStreamingResponse: + def __init__(self, sessions: Sessions) -> None: + self._sessions = sessions + + self.create = to_streamed_response_wrapper( + sessions.create, + ) + + +class AsyncSessionsWithStreamingResponse: + def __init__(self, sessions: AsyncSessions) -> None: + self._sessions = sessions + + self.create = async_to_streamed_response_wrapper( + sessions.create, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/beta/realtime/transcription_sessions.py b/.venv/lib/python3.12/site-packages/openai/resources/beta/realtime/transcription_sessions.py new file mode 100644 index 00000000..0917da71 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/beta/realtime/transcription_sessions.py @@ -0,0 +1,277 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List +from typing_extensions import Literal + +import httpx + +from .... import _legacy_response +from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from ...._utils import ( + maybe_transform, + async_maybe_transform, +) +from ...._compat import cached_property +from ...._resource import SyncAPIResource, AsyncAPIResource +from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ...._base_client import make_request_options +from ....types.beta.realtime import transcription_session_create_params +from ....types.beta.realtime.transcription_session import TranscriptionSession + +__all__ = ["TranscriptionSessions", "AsyncTranscriptionSessions"] + + +class TranscriptionSessions(SyncAPIResource): + @cached_property + def with_raw_response(self) -> TranscriptionSessionsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return TranscriptionSessionsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> TranscriptionSessionsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return TranscriptionSessionsWithStreamingResponse(self) + + def create( + self, + *, + include: List[str] | NotGiven = NOT_GIVEN, + input_audio_format: Literal["pcm16", "g711_ulaw", "g711_alaw"] | NotGiven = NOT_GIVEN, + input_audio_noise_reduction: transcription_session_create_params.InputAudioNoiseReduction + | NotGiven = NOT_GIVEN, + input_audio_transcription: transcription_session_create_params.InputAudioTranscription | NotGiven = NOT_GIVEN, + modalities: List[Literal["text", "audio"]] | NotGiven = NOT_GIVEN, + turn_detection: transcription_session_create_params.TurnDetection | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> TranscriptionSession: + """ + Create an ephemeral API token for use in client-side applications with the + Realtime API specifically for realtime transcriptions. Can be configured with + the same session parameters as the `transcription_session.update` client event. + + It responds with a session object, plus a `client_secret` key which contains a + usable ephemeral API token that can be used to authenticate browser clients for + the Realtime API. + + Args: + include: + The set of items to include in the transcription. Current available items are: + + - `item.input_audio_transcription.logprobs` + + input_audio_format: The format of input audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For + `pcm16`, input audio must be 16-bit PCM at a 24kHz sample rate, single channel + (mono), and little-endian byte order. + + input_audio_noise_reduction: Configuration for input audio noise reduction. This can be set to `null` to turn + off. Noise reduction filters audio added to the input audio buffer before it is + sent to VAD and the model. Filtering the audio can improve VAD and turn + detection accuracy (reducing false positives) and model performance by improving + perception of the input audio. + + input_audio_transcription: Configuration for input audio transcription. The client can optionally set the + language and prompt for transcription, these offer additional guidance to the + transcription service. + + modalities: The set of modalities the model can respond with. To disable audio, set this to + ["text"]. + + turn_detection: Configuration for turn detection, ether Server VAD or Semantic VAD. This can be + set to `null` to turn off, in which case the client must manually trigger model + response. Server VAD means that the model will detect the start and end of + speech based on audio volume and respond at the end of user speech. Semantic VAD + is more advanced and uses a turn detection model (in conjuction with VAD) to + semantically estimate whether the user has finished speaking, then dynamically + sets a timeout based on this probability. For example, if user audio trails off + with "uhhm", the model will score a low probability of turn end and wait longer + for the user to continue speaking. This can be useful for more natural + conversations, but may have a higher latency. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + "/realtime/transcription_sessions", + body=maybe_transform( + { + "include": include, + "input_audio_format": input_audio_format, + "input_audio_noise_reduction": input_audio_noise_reduction, + "input_audio_transcription": input_audio_transcription, + "modalities": modalities, + "turn_detection": turn_detection, + }, + transcription_session_create_params.TranscriptionSessionCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=TranscriptionSession, + ) + + +class AsyncTranscriptionSessions(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncTranscriptionSessionsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncTranscriptionSessionsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncTranscriptionSessionsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncTranscriptionSessionsWithStreamingResponse(self) + + async def create( + self, + *, + include: List[str] | NotGiven = NOT_GIVEN, + input_audio_format: Literal["pcm16", "g711_ulaw", "g711_alaw"] | NotGiven = NOT_GIVEN, + input_audio_noise_reduction: transcription_session_create_params.InputAudioNoiseReduction + | NotGiven = NOT_GIVEN, + input_audio_transcription: transcription_session_create_params.InputAudioTranscription | NotGiven = NOT_GIVEN, + modalities: List[Literal["text", "audio"]] | NotGiven = NOT_GIVEN, + turn_detection: transcription_session_create_params.TurnDetection | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> TranscriptionSession: + """ + Create an ephemeral API token for use in client-side applications with the + Realtime API specifically for realtime transcriptions. Can be configured with + the same session parameters as the `transcription_session.update` client event. + + It responds with a session object, plus a `client_secret` key which contains a + usable ephemeral API token that can be used to authenticate browser clients for + the Realtime API. + + Args: + include: + The set of items to include in the transcription. Current available items are: + + - `item.input_audio_transcription.logprobs` + + input_audio_format: The format of input audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For + `pcm16`, input audio must be 16-bit PCM at a 24kHz sample rate, single channel + (mono), and little-endian byte order. + + input_audio_noise_reduction: Configuration for input audio noise reduction. This can be set to `null` to turn + off. Noise reduction filters audio added to the input audio buffer before it is + sent to VAD and the model. Filtering the audio can improve VAD and turn + detection accuracy (reducing false positives) and model performance by improving + perception of the input audio. + + input_audio_transcription: Configuration for input audio transcription. The client can optionally set the + language and prompt for transcription, these offer additional guidance to the + transcription service. + + modalities: The set of modalities the model can respond with. To disable audio, set this to + ["text"]. + + turn_detection: Configuration for turn detection, ether Server VAD or Semantic VAD. This can be + set to `null` to turn off, in which case the client must manually trigger model + response. Server VAD means that the model will detect the start and end of + speech based on audio volume and respond at the end of user speech. Semantic VAD + is more advanced and uses a turn detection model (in conjuction with VAD) to + semantically estimate whether the user has finished speaking, then dynamically + sets a timeout based on this probability. For example, if user audio trails off + with "uhhm", the model will score a low probability of turn end and wait longer + for the user to continue speaking. This can be useful for more natural + conversations, but may have a higher latency. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + "/realtime/transcription_sessions", + body=await async_maybe_transform( + { + "include": include, + "input_audio_format": input_audio_format, + "input_audio_noise_reduction": input_audio_noise_reduction, + "input_audio_transcription": input_audio_transcription, + "modalities": modalities, + "turn_detection": turn_detection, + }, + transcription_session_create_params.TranscriptionSessionCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=TranscriptionSession, + ) + + +class TranscriptionSessionsWithRawResponse: + def __init__(self, transcription_sessions: TranscriptionSessions) -> None: + self._transcription_sessions = transcription_sessions + + self.create = _legacy_response.to_raw_response_wrapper( + transcription_sessions.create, + ) + + +class AsyncTranscriptionSessionsWithRawResponse: + def __init__(self, transcription_sessions: AsyncTranscriptionSessions) -> None: + self._transcription_sessions = transcription_sessions + + self.create = _legacy_response.async_to_raw_response_wrapper( + transcription_sessions.create, + ) + + +class TranscriptionSessionsWithStreamingResponse: + def __init__(self, transcription_sessions: TranscriptionSessions) -> None: + self._transcription_sessions = transcription_sessions + + self.create = to_streamed_response_wrapper( + transcription_sessions.create, + ) + + +class AsyncTranscriptionSessionsWithStreamingResponse: + def __init__(self, transcription_sessions: AsyncTranscriptionSessions) -> None: + self._transcription_sessions = transcription_sessions + + self.create = async_to_streamed_response_wrapper( + transcription_sessions.create, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/beta/threads/__init__.py b/.venv/lib/python3.12/site-packages/openai/resources/beta/threads/__init__.py new file mode 100644 index 00000000..a66e445b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/beta/threads/__init__.py @@ -0,0 +1,47 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from .runs import ( + Runs, + AsyncRuns, + RunsWithRawResponse, + AsyncRunsWithRawResponse, + RunsWithStreamingResponse, + AsyncRunsWithStreamingResponse, +) +from .threads import ( + Threads, + AsyncThreads, + ThreadsWithRawResponse, + AsyncThreadsWithRawResponse, + ThreadsWithStreamingResponse, + AsyncThreadsWithStreamingResponse, +) +from .messages import ( + Messages, + AsyncMessages, + MessagesWithRawResponse, + AsyncMessagesWithRawResponse, + MessagesWithStreamingResponse, + AsyncMessagesWithStreamingResponse, +) + +__all__ = [ + "Runs", + "AsyncRuns", + "RunsWithRawResponse", + "AsyncRunsWithRawResponse", + "RunsWithStreamingResponse", + "AsyncRunsWithStreamingResponse", + "Messages", + "AsyncMessages", + "MessagesWithRawResponse", + "AsyncMessagesWithRawResponse", + "MessagesWithStreamingResponse", + "AsyncMessagesWithStreamingResponse", + "Threads", + "AsyncThreads", + "ThreadsWithRawResponse", + "AsyncThreadsWithRawResponse", + "ThreadsWithStreamingResponse", + "AsyncThreadsWithStreamingResponse", +] diff --git a/.venv/lib/python3.12/site-packages/openai/resources/beta/threads/messages.py b/.venv/lib/python3.12/site-packages/openai/resources/beta/threads/messages.py new file mode 100644 index 00000000..e3374aba --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/beta/threads/messages.py @@ -0,0 +1,670 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Iterable, Optional +from typing_extensions import Literal + +import httpx + +from .... import _legacy_response +from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from ...._utils import ( + maybe_transform, + async_maybe_transform, +) +from ...._compat import cached_property +from ...._resource import SyncAPIResource, AsyncAPIResource +from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ....pagination import SyncCursorPage, AsyncCursorPage +from ...._base_client import ( + AsyncPaginator, + make_request_options, +) +from ....types.beta.threads import message_list_params, message_create_params, message_update_params +from ....types.beta.threads.message import Message +from ....types.shared_params.metadata import Metadata +from ....types.beta.threads.message_deleted import MessageDeleted +from ....types.beta.threads.message_content_part_param import MessageContentPartParam + +__all__ = ["Messages", "AsyncMessages"] + + +class Messages(SyncAPIResource): + @cached_property + def with_raw_response(self) -> MessagesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return MessagesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> MessagesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return MessagesWithStreamingResponse(self) + + def create( + self, + thread_id: str, + *, + content: Union[str, Iterable[MessageContentPartParam]], + role: Literal["user", "assistant"], + attachments: Optional[Iterable[message_create_params.Attachment]] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Message: + """ + Create a message. + + Args: + content: The text contents of the message. + + role: + The role of the entity that is creating the message. Allowed values include: + + - `user`: Indicates the message is sent by an actual user and should be used in + most cases to represent user-generated messages. + - `assistant`: Indicates the message is generated by the assistant. Use this + value to insert messages from the assistant into the conversation. + + attachments: A list of files attached to the message, and the tools they should be added to. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + f"/threads/{thread_id}/messages", + body=maybe_transform( + { + "content": content, + "role": role, + "attachments": attachments, + "metadata": metadata, + }, + message_create_params.MessageCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Message, + ) + + def retrieve( + self, + message_id: str, + *, + thread_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Message: + """ + Retrieve a message. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + if not message_id: + raise ValueError(f"Expected a non-empty value for `message_id` but received {message_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get( + f"/threads/{thread_id}/messages/{message_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Message, + ) + + def update( + self, + message_id: str, + *, + thread_id: str, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Message: + """ + Modifies a message. + + Args: + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + if not message_id: + raise ValueError(f"Expected a non-empty value for `message_id` but received {message_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + f"/threads/{thread_id}/messages/{message_id}", + body=maybe_transform({"metadata": metadata}, message_update_params.MessageUpdateParams), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Message, + ) + + def list( + self, + thread_id: str, + *, + after: str | NotGiven = NOT_GIVEN, + before: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + run_id: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncCursorPage[Message]: + """ + Returns a list of messages for a given thread. + + Args: + after: A cursor for use in pagination. `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + before: A cursor for use in pagination. `before` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + starting with obj_foo, your subsequent call can include before=obj_foo in order + to fetch the previous page of the list. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + + run_id: Filter messages by the run ID that generated them. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + f"/threads/{thread_id}/messages", + page=SyncCursorPage[Message], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "before": before, + "limit": limit, + "order": order, + "run_id": run_id, + }, + message_list_params.MessageListParams, + ), + ), + model=Message, + ) + + def delete( + self, + message_id: str, + *, + thread_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> MessageDeleted: + """ + Deletes a message. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + if not message_id: + raise ValueError(f"Expected a non-empty value for `message_id` but received {message_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._delete( + f"/threads/{thread_id}/messages/{message_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=MessageDeleted, + ) + + +class AsyncMessages(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncMessagesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncMessagesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncMessagesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncMessagesWithStreamingResponse(self) + + async def create( + self, + thread_id: str, + *, + content: Union[str, Iterable[MessageContentPartParam]], + role: Literal["user", "assistant"], + attachments: Optional[Iterable[message_create_params.Attachment]] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Message: + """ + Create a message. + + Args: + content: The text contents of the message. + + role: + The role of the entity that is creating the message. Allowed values include: + + - `user`: Indicates the message is sent by an actual user and should be used in + most cases to represent user-generated messages. + - `assistant`: Indicates the message is generated by the assistant. Use this + value to insert messages from the assistant into the conversation. + + attachments: A list of files attached to the message, and the tools they should be added to. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + f"/threads/{thread_id}/messages", + body=await async_maybe_transform( + { + "content": content, + "role": role, + "attachments": attachments, + "metadata": metadata, + }, + message_create_params.MessageCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Message, + ) + + async def retrieve( + self, + message_id: str, + *, + thread_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Message: + """ + Retrieve a message. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + if not message_id: + raise ValueError(f"Expected a non-empty value for `message_id` but received {message_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._get( + f"/threads/{thread_id}/messages/{message_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Message, + ) + + async def update( + self, + message_id: str, + *, + thread_id: str, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Message: + """ + Modifies a message. + + Args: + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + if not message_id: + raise ValueError(f"Expected a non-empty value for `message_id` but received {message_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + f"/threads/{thread_id}/messages/{message_id}", + body=await async_maybe_transform({"metadata": metadata}, message_update_params.MessageUpdateParams), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Message, + ) + + def list( + self, + thread_id: str, + *, + after: str | NotGiven = NOT_GIVEN, + before: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + run_id: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[Message, AsyncCursorPage[Message]]: + """ + Returns a list of messages for a given thread. + + Args: + after: A cursor for use in pagination. `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + before: A cursor for use in pagination. `before` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + starting with obj_foo, your subsequent call can include before=obj_foo in order + to fetch the previous page of the list. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + + run_id: Filter messages by the run ID that generated them. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + f"/threads/{thread_id}/messages", + page=AsyncCursorPage[Message], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "before": before, + "limit": limit, + "order": order, + "run_id": run_id, + }, + message_list_params.MessageListParams, + ), + ), + model=Message, + ) + + async def delete( + self, + message_id: str, + *, + thread_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> MessageDeleted: + """ + Deletes a message. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + if not message_id: + raise ValueError(f"Expected a non-empty value for `message_id` but received {message_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._delete( + f"/threads/{thread_id}/messages/{message_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=MessageDeleted, + ) + + +class MessagesWithRawResponse: + def __init__(self, messages: Messages) -> None: + self._messages = messages + + self.create = _legacy_response.to_raw_response_wrapper( + messages.create, + ) + self.retrieve = _legacy_response.to_raw_response_wrapper( + messages.retrieve, + ) + self.update = _legacy_response.to_raw_response_wrapper( + messages.update, + ) + self.list = _legacy_response.to_raw_response_wrapper( + messages.list, + ) + self.delete = _legacy_response.to_raw_response_wrapper( + messages.delete, + ) + + +class AsyncMessagesWithRawResponse: + def __init__(self, messages: AsyncMessages) -> None: + self._messages = messages + + self.create = _legacy_response.async_to_raw_response_wrapper( + messages.create, + ) + self.retrieve = _legacy_response.async_to_raw_response_wrapper( + messages.retrieve, + ) + self.update = _legacy_response.async_to_raw_response_wrapper( + messages.update, + ) + self.list = _legacy_response.async_to_raw_response_wrapper( + messages.list, + ) + self.delete = _legacy_response.async_to_raw_response_wrapper( + messages.delete, + ) + + +class MessagesWithStreamingResponse: + def __init__(self, messages: Messages) -> None: + self._messages = messages + + self.create = to_streamed_response_wrapper( + messages.create, + ) + self.retrieve = to_streamed_response_wrapper( + messages.retrieve, + ) + self.update = to_streamed_response_wrapper( + messages.update, + ) + self.list = to_streamed_response_wrapper( + messages.list, + ) + self.delete = to_streamed_response_wrapper( + messages.delete, + ) + + +class AsyncMessagesWithStreamingResponse: + def __init__(self, messages: AsyncMessages) -> None: + self._messages = messages + + self.create = async_to_streamed_response_wrapper( + messages.create, + ) + self.retrieve = async_to_streamed_response_wrapper( + messages.retrieve, + ) + self.update = async_to_streamed_response_wrapper( + messages.update, + ) + self.list = async_to_streamed_response_wrapper( + messages.list, + ) + self.delete = async_to_streamed_response_wrapper( + messages.delete, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/beta/threads/runs/__init__.py b/.venv/lib/python3.12/site-packages/openai/resources/beta/threads/runs/__init__.py new file mode 100644 index 00000000..50aa9fae --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/beta/threads/runs/__init__.py @@ -0,0 +1,33 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from .runs import ( + Runs, + AsyncRuns, + RunsWithRawResponse, + AsyncRunsWithRawResponse, + RunsWithStreamingResponse, + AsyncRunsWithStreamingResponse, +) +from .steps import ( + Steps, + AsyncSteps, + StepsWithRawResponse, + AsyncStepsWithRawResponse, + StepsWithStreamingResponse, + AsyncStepsWithStreamingResponse, +) + +__all__ = [ + "Steps", + "AsyncSteps", + "StepsWithRawResponse", + "AsyncStepsWithRawResponse", + "StepsWithStreamingResponse", + "AsyncStepsWithStreamingResponse", + "Runs", + "AsyncRuns", + "RunsWithRawResponse", + "AsyncRunsWithRawResponse", + "RunsWithStreamingResponse", + "AsyncRunsWithStreamingResponse", +] diff --git a/.venv/lib/python3.12/site-packages/openai/resources/beta/threads/runs/runs.py b/.venv/lib/python3.12/site-packages/openai/resources/beta/threads/runs/runs.py new file mode 100644 index 00000000..acb1c9b2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/beta/threads/runs/runs.py @@ -0,0 +1,2989 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import typing_extensions +from typing import List, Union, Iterable, Optional +from functools import partial +from typing_extensions import Literal, overload + +import httpx + +from ..... import _legacy_response +from .steps import ( + Steps, + AsyncSteps, + StepsWithRawResponse, + AsyncStepsWithRawResponse, + StepsWithStreamingResponse, + AsyncStepsWithStreamingResponse, +) +from ....._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from ....._utils import ( + is_given, + required_args, + maybe_transform, + async_maybe_transform, +) +from ....._compat import cached_property +from ....._resource import SyncAPIResource, AsyncAPIResource +from ....._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ....._streaming import Stream, AsyncStream +from .....pagination import SyncCursorPage, AsyncCursorPage +from ....._base_client import AsyncPaginator, make_request_options +from .....lib.streaming import ( + AssistantEventHandler, + AssistantEventHandlerT, + AssistantStreamManager, + AsyncAssistantEventHandler, + AsyncAssistantEventHandlerT, + AsyncAssistantStreamManager, +) +from .....types.beta.threads import ( + run_list_params, + run_create_params, + run_update_params, + run_submit_tool_outputs_params, +) +from .....types.beta.threads.run import Run +from .....types.shared.chat_model import ChatModel +from .....types.shared_params.metadata import Metadata +from .....types.shared.reasoning_effort import ReasoningEffort +from .....types.beta.assistant_tool_param import AssistantToolParam +from .....types.beta.assistant_stream_event import AssistantStreamEvent +from .....types.beta.threads.runs.run_step_include import RunStepInclude +from .....types.beta.assistant_tool_choice_option_param import AssistantToolChoiceOptionParam +from .....types.beta.assistant_response_format_option_param import AssistantResponseFormatOptionParam + +__all__ = ["Runs", "AsyncRuns"] + + +class Runs(SyncAPIResource): + @cached_property + def steps(self) -> Steps: + return Steps(self._client) + + @cached_property + def with_raw_response(self) -> RunsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return RunsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> RunsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return RunsWithStreamingResponse(self) + + @overload + def create( + self, + thread_id: str, + *, + assistant_id: str, + include: List[RunStepInclude] | NotGiven = NOT_GIVEN, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run: + """ + Create a run. + + Args: + assistant_id: The ID of the + [assistant](https://platform.openai.com/docs/api-reference/assistants) to use to + execute this run. + + include: A list of additional fields to include in the response. Currently the only + supported value is `step_details.tool_calls[*].file_search.results[*].content` + to fetch the file search result content. + + See the + [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) + for more information. + + additional_instructions: Appends additional instructions at the end of the instructions for the run. This + is useful for modifying the behavior on a per-run basis without overriding other + instructions. + + additional_messages: Adds additional messages to the thread before creating the run. + + instructions: Overrides the + [instructions](https://platform.openai.com/docs/api-reference/assistants/createAssistant) + of the assistant. This is useful for modifying the behavior on a per-run basis. + + max_completion_tokens: The maximum number of completion tokens that may be used over the course of the + run. The run will make a best effort to use only the number of completion tokens + specified, across multiple turns of the run. If the run exceeds the number of + completion tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + max_prompt_tokens: The maximum number of prompt tokens that may be used over the course of the run. + The run will make a best effort to use only the number of prompt tokens + specified, across multiple turns of the run. If the run exceeds the number of + prompt tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + model: The ID of the [Model](https://platform.openai.com/docs/api-reference/models) to + be used to execute this run. If a value is provided here, it will override the + model associated with the assistant. If not, the model associated with the + assistant will be used. + + parallel_tool_calls: Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + + reasoning_effort: **o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + + response_format: Specifies the format that the model must output. Compatible with + [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + + stream: If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + tool_choice: Controls which (if any) tool is called by the model. `none` means the model will + not call any tools and instead generates a message. `auto` is the default value + and means the model can pick between generating a message or calling one or more + tools. `required` means the model must call one or more tools before responding + to the user. Specifying a particular tool like `{"type": "file_search"}` or + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + + tools: Override the tools the assistant can use for this run. This is useful for + modifying the behavior on a per-run basis. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + + truncation_strategy: Controls for how a thread will be truncated prior to the run. Use this to + control the intial context window of the run. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + def create( + self, + thread_id: str, + *, + assistant_id: str, + stream: Literal[True], + include: List[RunStepInclude] | NotGiven = NOT_GIVEN, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Stream[AssistantStreamEvent]: + """ + Create a run. + + Args: + assistant_id: The ID of the + [assistant](https://platform.openai.com/docs/api-reference/assistants) to use to + execute this run. + + stream: If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + + include: A list of additional fields to include in the response. Currently the only + supported value is `step_details.tool_calls[*].file_search.results[*].content` + to fetch the file search result content. + + See the + [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) + for more information. + + additional_instructions: Appends additional instructions at the end of the instructions for the run. This + is useful for modifying the behavior on a per-run basis without overriding other + instructions. + + additional_messages: Adds additional messages to the thread before creating the run. + + instructions: Overrides the + [instructions](https://platform.openai.com/docs/api-reference/assistants/createAssistant) + of the assistant. This is useful for modifying the behavior on a per-run basis. + + max_completion_tokens: The maximum number of completion tokens that may be used over the course of the + run. The run will make a best effort to use only the number of completion tokens + specified, across multiple turns of the run. If the run exceeds the number of + completion tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + max_prompt_tokens: The maximum number of prompt tokens that may be used over the course of the run. + The run will make a best effort to use only the number of prompt tokens + specified, across multiple turns of the run. If the run exceeds the number of + prompt tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + model: The ID of the [Model](https://platform.openai.com/docs/api-reference/models) to + be used to execute this run. If a value is provided here, it will override the + model associated with the assistant. If not, the model associated with the + assistant will be used. + + parallel_tool_calls: Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + + reasoning_effort: **o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + + response_format: Specifies the format that the model must output. Compatible with + [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + tool_choice: Controls which (if any) tool is called by the model. `none` means the model will + not call any tools and instead generates a message. `auto` is the default value + and means the model can pick between generating a message or calling one or more + tools. `required` means the model must call one or more tools before responding + to the user. Specifying a particular tool like `{"type": "file_search"}` or + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + + tools: Override the tools the assistant can use for this run. This is useful for + modifying the behavior on a per-run basis. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + + truncation_strategy: Controls for how a thread will be truncated prior to the run. Use this to + control the intial context window of the run. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + def create( + self, + thread_id: str, + *, + assistant_id: str, + stream: bool, + include: List[RunStepInclude] | NotGiven = NOT_GIVEN, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run | Stream[AssistantStreamEvent]: + """ + Create a run. + + Args: + assistant_id: The ID of the + [assistant](https://platform.openai.com/docs/api-reference/assistants) to use to + execute this run. + + stream: If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + + include: A list of additional fields to include in the response. Currently the only + supported value is `step_details.tool_calls[*].file_search.results[*].content` + to fetch the file search result content. + + See the + [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) + for more information. + + additional_instructions: Appends additional instructions at the end of the instructions for the run. This + is useful for modifying the behavior on a per-run basis without overriding other + instructions. + + additional_messages: Adds additional messages to the thread before creating the run. + + instructions: Overrides the + [instructions](https://platform.openai.com/docs/api-reference/assistants/createAssistant) + of the assistant. This is useful for modifying the behavior on a per-run basis. + + max_completion_tokens: The maximum number of completion tokens that may be used over the course of the + run. The run will make a best effort to use only the number of completion tokens + specified, across multiple turns of the run. If the run exceeds the number of + completion tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + max_prompt_tokens: The maximum number of prompt tokens that may be used over the course of the run. + The run will make a best effort to use only the number of prompt tokens + specified, across multiple turns of the run. If the run exceeds the number of + prompt tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + model: The ID of the [Model](https://platform.openai.com/docs/api-reference/models) to + be used to execute this run. If a value is provided here, it will override the + model associated with the assistant. If not, the model associated with the + assistant will be used. + + parallel_tool_calls: Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + + reasoning_effort: **o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + + response_format: Specifies the format that the model must output. Compatible with + [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + tool_choice: Controls which (if any) tool is called by the model. `none` means the model will + not call any tools and instead generates a message. `auto` is the default value + and means the model can pick between generating a message or calling one or more + tools. `required` means the model must call one or more tools before responding + to the user. Specifying a particular tool like `{"type": "file_search"}` or + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + + tools: Override the tools the assistant can use for this run. This is useful for + modifying the behavior on a per-run basis. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + + truncation_strategy: Controls for how a thread will be truncated prior to the run. Use this to + control the intial context window of the run. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @required_args(["assistant_id"], ["assistant_id", "stream"]) + def create( + self, + thread_id: str, + *, + assistant_id: str, + include: List[RunStepInclude] | NotGiven = NOT_GIVEN, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run | Stream[AssistantStreamEvent]: + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + f"/threads/{thread_id}/runs", + body=maybe_transform( + { + "assistant_id": assistant_id, + "additional_instructions": additional_instructions, + "additional_messages": additional_messages, + "instructions": instructions, + "max_completion_tokens": max_completion_tokens, + "max_prompt_tokens": max_prompt_tokens, + "metadata": metadata, + "model": model, + "parallel_tool_calls": parallel_tool_calls, + "reasoning_effort": reasoning_effort, + "response_format": response_format, + "stream": stream, + "temperature": temperature, + "tool_choice": tool_choice, + "tools": tools, + "top_p": top_p, + "truncation_strategy": truncation_strategy, + }, + run_create_params.RunCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform({"include": include}, run_create_params.RunCreateParams), + ), + cast_to=Run, + stream=stream or False, + stream_cls=Stream[AssistantStreamEvent], + ) + + def retrieve( + self, + run_id: str, + *, + thread_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run: + """ + Retrieves a run. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + if not run_id: + raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get( + f"/threads/{thread_id}/runs/{run_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Run, + ) + + def update( + self, + run_id: str, + *, + thread_id: str, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run: + """ + Modifies a run. + + Args: + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + if not run_id: + raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + f"/threads/{thread_id}/runs/{run_id}", + body=maybe_transform({"metadata": metadata}, run_update_params.RunUpdateParams), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Run, + ) + + def list( + self, + thread_id: str, + *, + after: str | NotGiven = NOT_GIVEN, + before: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncCursorPage[Run]: + """ + Returns a list of runs belonging to a thread. + + Args: + after: A cursor for use in pagination. `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + before: A cursor for use in pagination. `before` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + starting with obj_foo, your subsequent call can include before=obj_foo in order + to fetch the previous page of the list. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + f"/threads/{thread_id}/runs", + page=SyncCursorPage[Run], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "before": before, + "limit": limit, + "order": order, + }, + run_list_params.RunListParams, + ), + ), + model=Run, + ) + + def cancel( + self, + run_id: str, + *, + thread_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run: + """ + Cancels a run that is `in_progress`. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + if not run_id: + raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + f"/threads/{thread_id}/runs/{run_id}/cancel", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Run, + ) + + def create_and_poll( + self, + *, + assistant_id: str, + include: List[RunStepInclude] | NotGiven = NOT_GIVEN, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + poll_interval_ms: int | NotGiven = NOT_GIVEN, + thread_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run: + """ + A helper to create a run an poll for a terminal state. More information on Run + lifecycles can be found here: + https://platform.openai.com/docs/assistants/how-it-works/runs-and-run-steps + """ + run = self.create( + thread_id=thread_id, + assistant_id=assistant_id, + include=include, + additional_instructions=additional_instructions, + additional_messages=additional_messages, + instructions=instructions, + max_completion_tokens=max_completion_tokens, + max_prompt_tokens=max_prompt_tokens, + metadata=metadata, + model=model, + response_format=response_format, + temperature=temperature, + tool_choice=tool_choice, + parallel_tool_calls=parallel_tool_calls, + reasoning_effort=reasoning_effort, + # We assume we are not streaming when polling + stream=False, + tools=tools, + truncation_strategy=truncation_strategy, + top_p=top_p, + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + ) + return self.poll( + run.id, + thread_id=thread_id, + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + poll_interval_ms=poll_interval_ms, + timeout=timeout, + ) + + @overload + @typing_extensions.deprecated("use `stream` instead") + def create_and_stream( + self, + *, + assistant_id: str, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + thread_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AssistantStreamManager[AssistantEventHandler]: + """Create a Run stream""" + ... + + @overload + @typing_extensions.deprecated("use `stream` instead") + def create_and_stream( + self, + *, + assistant_id: str, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + thread_id: str, + event_handler: AssistantEventHandlerT, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AssistantStreamManager[AssistantEventHandlerT]: + """Create a Run stream""" + ... + + @typing_extensions.deprecated("use `stream` instead") + def create_and_stream( + self, + *, + assistant_id: str, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + thread_id: str, + event_handler: AssistantEventHandlerT | None = None, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AssistantStreamManager[AssistantEventHandler] | AssistantStreamManager[AssistantEventHandlerT]: + """Create a Run stream""" + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + + extra_headers = { + "OpenAI-Beta": "assistants=v2", + "X-Stainless-Stream-Helper": "threads.runs.create_and_stream", + "X-Stainless-Custom-Event-Handler": "true" if event_handler else "false", + **(extra_headers or {}), + } + make_request = partial( + self._post, + f"/threads/{thread_id}/runs", + body=maybe_transform( + { + "assistant_id": assistant_id, + "additional_instructions": additional_instructions, + "additional_messages": additional_messages, + "instructions": instructions, + "max_completion_tokens": max_completion_tokens, + "max_prompt_tokens": max_prompt_tokens, + "metadata": metadata, + "model": model, + "response_format": response_format, + "temperature": temperature, + "tool_choice": tool_choice, + "stream": True, + "tools": tools, + "truncation_strategy": truncation_strategy, + "parallel_tool_calls": parallel_tool_calls, + "reasoning_effort": reasoning_effort, + "top_p": top_p, + }, + run_create_params.RunCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Run, + stream=True, + stream_cls=Stream[AssistantStreamEvent], + ) + return AssistantStreamManager(make_request, event_handler=event_handler or AssistantEventHandler()) + + def poll( + self, + run_id: str, + thread_id: str, + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + poll_interval_ms: int | NotGiven = NOT_GIVEN, + ) -> Run: + """ + A helper to poll a run status until it reaches a terminal state. More + information on Run lifecycles can be found here: + https://platform.openai.com/docs/assistants/how-it-works/runs-and-run-steps + """ + extra_headers = {"X-Stainless-Poll-Helper": "true", **(extra_headers or {})} + + if is_given(poll_interval_ms): + extra_headers["X-Stainless-Custom-Poll-Interval"] = str(poll_interval_ms) + + terminal_states = {"requires_action", "cancelled", "completed", "failed", "expired", "incomplete"} + while True: + response = self.with_raw_response.retrieve( + thread_id=thread_id, + run_id=run_id, + extra_headers=extra_headers, + extra_body=extra_body, + extra_query=extra_query, + timeout=timeout, + ) + + run = response.parse() + # Return if we reached a terminal state + if run.status in terminal_states: + return run + + if not is_given(poll_interval_ms): + from_header = response.headers.get("openai-poll-after-ms") + if from_header is not None: + poll_interval_ms = int(from_header) + else: + poll_interval_ms = 1000 + + self._sleep(poll_interval_ms / 1000) + + @overload + def stream( + self, + *, + assistant_id: str, + include: List[RunStepInclude] | NotGiven = NOT_GIVEN, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + thread_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AssistantStreamManager[AssistantEventHandler]: + """Create a Run stream""" + ... + + @overload + def stream( + self, + *, + assistant_id: str, + include: List[RunStepInclude] | NotGiven = NOT_GIVEN, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + thread_id: str, + event_handler: AssistantEventHandlerT, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AssistantStreamManager[AssistantEventHandlerT]: + """Create a Run stream""" + ... + + def stream( + self, + *, + assistant_id: str, + include: List[RunStepInclude] | NotGiven = NOT_GIVEN, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + thread_id: str, + event_handler: AssistantEventHandlerT | None = None, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AssistantStreamManager[AssistantEventHandler] | AssistantStreamManager[AssistantEventHandlerT]: + """Create a Run stream""" + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + + extra_headers = { + "OpenAI-Beta": "assistants=v2", + "X-Stainless-Stream-Helper": "threads.runs.create_and_stream", + "X-Stainless-Custom-Event-Handler": "true" if event_handler else "false", + **(extra_headers or {}), + } + make_request = partial( + self._post, + f"/threads/{thread_id}/runs", + body=maybe_transform( + { + "assistant_id": assistant_id, + "additional_instructions": additional_instructions, + "additional_messages": additional_messages, + "instructions": instructions, + "max_completion_tokens": max_completion_tokens, + "max_prompt_tokens": max_prompt_tokens, + "metadata": metadata, + "model": model, + "response_format": response_format, + "temperature": temperature, + "tool_choice": tool_choice, + "stream": True, + "tools": tools, + "parallel_tool_calls": parallel_tool_calls, + "reasoning_effort": reasoning_effort, + "truncation_strategy": truncation_strategy, + "top_p": top_p, + }, + run_create_params.RunCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform({"include": include}, run_create_params.RunCreateParams), + ), + cast_to=Run, + stream=True, + stream_cls=Stream[AssistantStreamEvent], + ) + return AssistantStreamManager(make_request, event_handler=event_handler or AssistantEventHandler()) + + @overload + def submit_tool_outputs( + self, + run_id: str, + *, + thread_id: str, + tool_outputs: Iterable[run_submit_tool_outputs_params.ToolOutput], + stream: Optional[Literal[False]] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run: + """ + When a run has the `status: "requires_action"` and `required_action.type` is + `submit_tool_outputs`, this endpoint can be used to submit the outputs from the + tool calls once they're all completed. All outputs must be submitted in a single + request. + + Args: + tool_outputs: A list of tools for which the outputs are being submitted. + + stream: If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + def submit_tool_outputs( + self, + run_id: str, + *, + thread_id: str, + stream: Literal[True], + tool_outputs: Iterable[run_submit_tool_outputs_params.ToolOutput], + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Stream[AssistantStreamEvent]: + """ + When a run has the `status: "requires_action"` and `required_action.type` is + `submit_tool_outputs`, this endpoint can be used to submit the outputs from the + tool calls once they're all completed. All outputs must be submitted in a single + request. + + Args: + stream: If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + + tool_outputs: A list of tools for which the outputs are being submitted. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + def submit_tool_outputs( + self, + run_id: str, + *, + thread_id: str, + stream: bool, + tool_outputs: Iterable[run_submit_tool_outputs_params.ToolOutput], + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run | Stream[AssistantStreamEvent]: + """ + When a run has the `status: "requires_action"` and `required_action.type` is + `submit_tool_outputs`, this endpoint can be used to submit the outputs from the + tool calls once they're all completed. All outputs must be submitted in a single + request. + + Args: + stream: If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + + tool_outputs: A list of tools for which the outputs are being submitted. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @required_args(["thread_id", "tool_outputs"], ["thread_id", "stream", "tool_outputs"]) + def submit_tool_outputs( + self, + run_id: str, + *, + thread_id: str, + tool_outputs: Iterable[run_submit_tool_outputs_params.ToolOutput], + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run | Stream[AssistantStreamEvent]: + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + if not run_id: + raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + f"/threads/{thread_id}/runs/{run_id}/submit_tool_outputs", + body=maybe_transform( + { + "tool_outputs": tool_outputs, + "stream": stream, + }, + run_submit_tool_outputs_params.RunSubmitToolOutputsParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Run, + stream=stream or False, + stream_cls=Stream[AssistantStreamEvent], + ) + + def submit_tool_outputs_and_poll( + self, + *, + tool_outputs: Iterable[run_submit_tool_outputs_params.ToolOutput], + run_id: str, + thread_id: str, + poll_interval_ms: int | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run: + """ + A helper to submit a tool output to a run and poll for a terminal run state. + More information on Run lifecycles can be found here: + https://platform.openai.com/docs/assistants/how-it-works/runs-and-run-steps + """ + run = self.submit_tool_outputs( + run_id=run_id, + thread_id=thread_id, + tool_outputs=tool_outputs, + stream=False, + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + ) + return self.poll( + run_id=run.id, + thread_id=thread_id, + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + poll_interval_ms=poll_interval_ms, + ) + + @overload + def submit_tool_outputs_stream( + self, + *, + tool_outputs: Iterable[run_submit_tool_outputs_params.ToolOutput], + run_id: str, + thread_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AssistantStreamManager[AssistantEventHandler]: + """ + Submit the tool outputs from a previous run and stream the run to a terminal + state. More information on Run lifecycles can be found here: + https://platform.openai.com/docs/assistants/how-it-works/runs-and-run-steps + """ + ... + + @overload + def submit_tool_outputs_stream( + self, + *, + tool_outputs: Iterable[run_submit_tool_outputs_params.ToolOutput], + run_id: str, + thread_id: str, + event_handler: AssistantEventHandlerT, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AssistantStreamManager[AssistantEventHandlerT]: + """ + Submit the tool outputs from a previous run and stream the run to a terminal + state. More information on Run lifecycles can be found here: + https://platform.openai.com/docs/assistants/how-it-works/runs-and-run-steps + """ + ... + + def submit_tool_outputs_stream( + self, + *, + tool_outputs: Iterable[run_submit_tool_outputs_params.ToolOutput], + run_id: str, + thread_id: str, + event_handler: AssistantEventHandlerT | None = None, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AssistantStreamManager[AssistantEventHandler] | AssistantStreamManager[AssistantEventHandlerT]: + """ + Submit the tool outputs from a previous run and stream the run to a terminal + state. More information on Run lifecycles can be found here: + https://platform.openai.com/docs/assistants/how-it-works/runs-and-run-steps + """ + if not run_id: + raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}") + + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + + extra_headers = { + "OpenAI-Beta": "assistants=v2", + "X-Stainless-Stream-Helper": "threads.runs.submit_tool_outputs_stream", + "X-Stainless-Custom-Event-Handler": "true" if event_handler else "false", + **(extra_headers or {}), + } + request = partial( + self._post, + f"/threads/{thread_id}/runs/{run_id}/submit_tool_outputs", + body=maybe_transform( + { + "tool_outputs": tool_outputs, + "stream": True, + }, + run_submit_tool_outputs_params.RunSubmitToolOutputsParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Run, + stream=True, + stream_cls=Stream[AssistantStreamEvent], + ) + return AssistantStreamManager(request, event_handler=event_handler or AssistantEventHandler()) + + +class AsyncRuns(AsyncAPIResource): + @cached_property + def steps(self) -> AsyncSteps: + return AsyncSteps(self._client) + + @cached_property + def with_raw_response(self) -> AsyncRunsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncRunsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncRunsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncRunsWithStreamingResponse(self) + + @overload + async def create( + self, + thread_id: str, + *, + assistant_id: str, + include: List[RunStepInclude] | NotGiven = NOT_GIVEN, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run: + """ + Create a run. + + Args: + assistant_id: The ID of the + [assistant](https://platform.openai.com/docs/api-reference/assistants) to use to + execute this run. + + include: A list of additional fields to include in the response. Currently the only + supported value is `step_details.tool_calls[*].file_search.results[*].content` + to fetch the file search result content. + + See the + [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) + for more information. + + additional_instructions: Appends additional instructions at the end of the instructions for the run. This + is useful for modifying the behavior on a per-run basis without overriding other + instructions. + + additional_messages: Adds additional messages to the thread before creating the run. + + instructions: Overrides the + [instructions](https://platform.openai.com/docs/api-reference/assistants/createAssistant) + of the assistant. This is useful for modifying the behavior on a per-run basis. + + max_completion_tokens: The maximum number of completion tokens that may be used over the course of the + run. The run will make a best effort to use only the number of completion tokens + specified, across multiple turns of the run. If the run exceeds the number of + completion tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + max_prompt_tokens: The maximum number of prompt tokens that may be used over the course of the run. + The run will make a best effort to use only the number of prompt tokens + specified, across multiple turns of the run. If the run exceeds the number of + prompt tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + model: The ID of the [Model](https://platform.openai.com/docs/api-reference/models) to + be used to execute this run. If a value is provided here, it will override the + model associated with the assistant. If not, the model associated with the + assistant will be used. + + parallel_tool_calls: Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + + reasoning_effort: **o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + + response_format: Specifies the format that the model must output. Compatible with + [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + + stream: If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + tool_choice: Controls which (if any) tool is called by the model. `none` means the model will + not call any tools and instead generates a message. `auto` is the default value + and means the model can pick between generating a message or calling one or more + tools. `required` means the model must call one or more tools before responding + to the user. Specifying a particular tool like `{"type": "file_search"}` or + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + + tools: Override the tools the assistant can use for this run. This is useful for + modifying the behavior on a per-run basis. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + + truncation_strategy: Controls for how a thread will be truncated prior to the run. Use this to + control the intial context window of the run. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + async def create( + self, + thread_id: str, + *, + assistant_id: str, + stream: Literal[True], + include: List[RunStepInclude] | NotGiven = NOT_GIVEN, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncStream[AssistantStreamEvent]: + """ + Create a run. + + Args: + assistant_id: The ID of the + [assistant](https://platform.openai.com/docs/api-reference/assistants) to use to + execute this run. + + stream: If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + + include: A list of additional fields to include in the response. Currently the only + supported value is `step_details.tool_calls[*].file_search.results[*].content` + to fetch the file search result content. + + See the + [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) + for more information. + + additional_instructions: Appends additional instructions at the end of the instructions for the run. This + is useful for modifying the behavior on a per-run basis without overriding other + instructions. + + additional_messages: Adds additional messages to the thread before creating the run. + + instructions: Overrides the + [instructions](https://platform.openai.com/docs/api-reference/assistants/createAssistant) + of the assistant. This is useful for modifying the behavior on a per-run basis. + + max_completion_tokens: The maximum number of completion tokens that may be used over the course of the + run. The run will make a best effort to use only the number of completion tokens + specified, across multiple turns of the run. If the run exceeds the number of + completion tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + max_prompt_tokens: The maximum number of prompt tokens that may be used over the course of the run. + The run will make a best effort to use only the number of prompt tokens + specified, across multiple turns of the run. If the run exceeds the number of + prompt tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + model: The ID of the [Model](https://platform.openai.com/docs/api-reference/models) to + be used to execute this run. If a value is provided here, it will override the + model associated with the assistant. If not, the model associated with the + assistant will be used. + + parallel_tool_calls: Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + + reasoning_effort: **o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + + response_format: Specifies the format that the model must output. Compatible with + [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + tool_choice: Controls which (if any) tool is called by the model. `none` means the model will + not call any tools and instead generates a message. `auto` is the default value + and means the model can pick between generating a message or calling one or more + tools. `required` means the model must call one or more tools before responding + to the user. Specifying a particular tool like `{"type": "file_search"}` or + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + + tools: Override the tools the assistant can use for this run. This is useful for + modifying the behavior on a per-run basis. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + + truncation_strategy: Controls for how a thread will be truncated prior to the run. Use this to + control the intial context window of the run. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + async def create( + self, + thread_id: str, + *, + assistant_id: str, + stream: bool, + include: List[RunStepInclude] | NotGiven = NOT_GIVEN, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run | AsyncStream[AssistantStreamEvent]: + """ + Create a run. + + Args: + assistant_id: The ID of the + [assistant](https://platform.openai.com/docs/api-reference/assistants) to use to + execute this run. + + stream: If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + + include: A list of additional fields to include in the response. Currently the only + supported value is `step_details.tool_calls[*].file_search.results[*].content` + to fetch the file search result content. + + See the + [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) + for more information. + + additional_instructions: Appends additional instructions at the end of the instructions for the run. This + is useful for modifying the behavior on a per-run basis without overriding other + instructions. + + additional_messages: Adds additional messages to the thread before creating the run. + + instructions: Overrides the + [instructions](https://platform.openai.com/docs/api-reference/assistants/createAssistant) + of the assistant. This is useful for modifying the behavior on a per-run basis. + + max_completion_tokens: The maximum number of completion tokens that may be used over the course of the + run. The run will make a best effort to use only the number of completion tokens + specified, across multiple turns of the run. If the run exceeds the number of + completion tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + max_prompt_tokens: The maximum number of prompt tokens that may be used over the course of the run. + The run will make a best effort to use only the number of prompt tokens + specified, across multiple turns of the run. If the run exceeds the number of + prompt tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + model: The ID of the [Model](https://platform.openai.com/docs/api-reference/models) to + be used to execute this run. If a value is provided here, it will override the + model associated with the assistant. If not, the model associated with the + assistant will be used. + + parallel_tool_calls: Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + + reasoning_effort: **o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + + response_format: Specifies the format that the model must output. Compatible with + [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + tool_choice: Controls which (if any) tool is called by the model. `none` means the model will + not call any tools and instead generates a message. `auto` is the default value + and means the model can pick between generating a message or calling one or more + tools. `required` means the model must call one or more tools before responding + to the user. Specifying a particular tool like `{"type": "file_search"}` or + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + + tools: Override the tools the assistant can use for this run. This is useful for + modifying the behavior on a per-run basis. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + + truncation_strategy: Controls for how a thread will be truncated prior to the run. Use this to + control the intial context window of the run. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @required_args(["assistant_id"], ["assistant_id", "stream"]) + async def create( + self, + thread_id: str, + *, + assistant_id: str, + include: List[RunStepInclude] | NotGiven = NOT_GIVEN, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run | AsyncStream[AssistantStreamEvent]: + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + f"/threads/{thread_id}/runs", + body=await async_maybe_transform( + { + "assistant_id": assistant_id, + "additional_instructions": additional_instructions, + "additional_messages": additional_messages, + "instructions": instructions, + "max_completion_tokens": max_completion_tokens, + "max_prompt_tokens": max_prompt_tokens, + "metadata": metadata, + "model": model, + "parallel_tool_calls": parallel_tool_calls, + "reasoning_effort": reasoning_effort, + "response_format": response_format, + "stream": stream, + "temperature": temperature, + "tool_choice": tool_choice, + "tools": tools, + "top_p": top_p, + "truncation_strategy": truncation_strategy, + }, + run_create_params.RunCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=await async_maybe_transform({"include": include}, run_create_params.RunCreateParams), + ), + cast_to=Run, + stream=stream or False, + stream_cls=AsyncStream[AssistantStreamEvent], + ) + + async def retrieve( + self, + run_id: str, + *, + thread_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run: + """ + Retrieves a run. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + if not run_id: + raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._get( + f"/threads/{thread_id}/runs/{run_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Run, + ) + + async def update( + self, + run_id: str, + *, + thread_id: str, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run: + """ + Modifies a run. + + Args: + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + if not run_id: + raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + f"/threads/{thread_id}/runs/{run_id}", + body=await async_maybe_transform({"metadata": metadata}, run_update_params.RunUpdateParams), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Run, + ) + + def list( + self, + thread_id: str, + *, + after: str | NotGiven = NOT_GIVEN, + before: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[Run, AsyncCursorPage[Run]]: + """ + Returns a list of runs belonging to a thread. + + Args: + after: A cursor for use in pagination. `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + before: A cursor for use in pagination. `before` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + starting with obj_foo, your subsequent call can include before=obj_foo in order + to fetch the previous page of the list. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + f"/threads/{thread_id}/runs", + page=AsyncCursorPage[Run], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "before": before, + "limit": limit, + "order": order, + }, + run_list_params.RunListParams, + ), + ), + model=Run, + ) + + async def cancel( + self, + run_id: str, + *, + thread_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run: + """ + Cancels a run that is `in_progress`. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + if not run_id: + raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + f"/threads/{thread_id}/runs/{run_id}/cancel", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Run, + ) + + async def create_and_poll( + self, + *, + assistant_id: str, + include: List[RunStepInclude] | NotGiven = NOT_GIVEN, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + poll_interval_ms: int | NotGiven = NOT_GIVEN, + thread_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run: + """ + A helper to create a run an poll for a terminal state. More information on Run + lifecycles can be found here: + https://platform.openai.com/docs/assistants/how-it-works/runs-and-run-steps + """ + run = await self.create( + thread_id=thread_id, + assistant_id=assistant_id, + include=include, + additional_instructions=additional_instructions, + additional_messages=additional_messages, + instructions=instructions, + max_completion_tokens=max_completion_tokens, + max_prompt_tokens=max_prompt_tokens, + metadata=metadata, + model=model, + response_format=response_format, + temperature=temperature, + tool_choice=tool_choice, + parallel_tool_calls=parallel_tool_calls, + reasoning_effort=reasoning_effort, + # We assume we are not streaming when polling + stream=False, + tools=tools, + truncation_strategy=truncation_strategy, + top_p=top_p, + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + ) + return await self.poll( + run.id, + thread_id=thread_id, + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + poll_interval_ms=poll_interval_ms, + timeout=timeout, + ) + + @overload + @typing_extensions.deprecated("use `stream` instead") + def create_and_stream( + self, + *, + assistant_id: str, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + thread_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncAssistantStreamManager[AsyncAssistantEventHandler]: + """Create a Run stream""" + ... + + @overload + @typing_extensions.deprecated("use `stream` instead") + def create_and_stream( + self, + *, + assistant_id: str, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + thread_id: str, + event_handler: AsyncAssistantEventHandlerT, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncAssistantStreamManager[AsyncAssistantEventHandlerT]: + """Create a Run stream""" + ... + + @typing_extensions.deprecated("use `stream` instead") + def create_and_stream( + self, + *, + assistant_id: str, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + thread_id: str, + event_handler: AsyncAssistantEventHandlerT | None = None, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ( + AsyncAssistantStreamManager[AsyncAssistantEventHandler] + | AsyncAssistantStreamManager[AsyncAssistantEventHandlerT] + ): + """Create a Run stream""" + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + + extra_headers = { + "OpenAI-Beta": "assistants=v2", + "X-Stainless-Stream-Helper": "threads.runs.create_and_stream", + "X-Stainless-Custom-Event-Handler": "true" if event_handler else "false", + **(extra_headers or {}), + } + request = self._post( + f"/threads/{thread_id}/runs", + body=maybe_transform( + { + "assistant_id": assistant_id, + "additional_instructions": additional_instructions, + "additional_messages": additional_messages, + "instructions": instructions, + "max_completion_tokens": max_completion_tokens, + "max_prompt_tokens": max_prompt_tokens, + "metadata": metadata, + "model": model, + "response_format": response_format, + "temperature": temperature, + "tool_choice": tool_choice, + "stream": True, + "tools": tools, + "truncation_strategy": truncation_strategy, + "top_p": top_p, + "parallel_tool_calls": parallel_tool_calls, + }, + run_create_params.RunCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Run, + stream=True, + stream_cls=AsyncStream[AssistantStreamEvent], + ) + return AsyncAssistantStreamManager(request, event_handler=event_handler or AsyncAssistantEventHandler()) + + async def poll( + self, + run_id: str, + thread_id: str, + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + poll_interval_ms: int | NotGiven = NOT_GIVEN, + ) -> Run: + """ + A helper to poll a run status until it reaches a terminal state. More + information on Run lifecycles can be found here: + https://platform.openai.com/docs/assistants/how-it-works/runs-and-run-steps + """ + extra_headers = {"X-Stainless-Poll-Helper": "true", **(extra_headers or {})} + + if is_given(poll_interval_ms): + extra_headers["X-Stainless-Custom-Poll-Interval"] = str(poll_interval_ms) + + terminal_states = {"requires_action", "cancelled", "completed", "failed", "expired", "incomplete"} + while True: + response = await self.with_raw_response.retrieve( + thread_id=thread_id, + run_id=run_id, + extra_headers=extra_headers, + extra_body=extra_body, + extra_query=extra_query, + timeout=timeout, + ) + + run = response.parse() + # Return if we reached a terminal state + if run.status in terminal_states: + return run + + if not is_given(poll_interval_ms): + from_header = response.headers.get("openai-poll-after-ms") + if from_header is not None: + poll_interval_ms = int(from_header) + else: + poll_interval_ms = 1000 + + await self._sleep(poll_interval_ms / 1000) + + @overload + def stream( + self, + *, + assistant_id: str, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + thread_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncAssistantStreamManager[AsyncAssistantEventHandler]: + """Create a Run stream""" + ... + + @overload + def stream( + self, + *, + assistant_id: str, + include: List[RunStepInclude] | NotGiven = NOT_GIVEN, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + thread_id: str, + event_handler: AsyncAssistantEventHandlerT, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncAssistantStreamManager[AsyncAssistantEventHandlerT]: + """Create a Run stream""" + ... + + def stream( + self, + *, + assistant_id: str, + include: List[RunStepInclude] | NotGiven = NOT_GIVEN, + additional_instructions: Optional[str] | NotGiven = NOT_GIVEN, + additional_messages: Optional[Iterable[run_create_params.AdditionalMessage]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[AssistantToolParam]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[run_create_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + thread_id: str, + event_handler: AsyncAssistantEventHandlerT | None = None, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ( + AsyncAssistantStreamManager[AsyncAssistantEventHandler] + | AsyncAssistantStreamManager[AsyncAssistantEventHandlerT] + ): + """Create a Run stream""" + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + + extra_headers = { + "OpenAI-Beta": "assistants=v2", + "X-Stainless-Stream-Helper": "threads.runs.create_and_stream", + "X-Stainless-Custom-Event-Handler": "true" if event_handler else "false", + **(extra_headers or {}), + } + request = self._post( + f"/threads/{thread_id}/runs", + body=maybe_transform( + { + "assistant_id": assistant_id, + "additional_instructions": additional_instructions, + "additional_messages": additional_messages, + "instructions": instructions, + "max_completion_tokens": max_completion_tokens, + "max_prompt_tokens": max_prompt_tokens, + "metadata": metadata, + "model": model, + "response_format": response_format, + "temperature": temperature, + "tool_choice": tool_choice, + "stream": True, + "tools": tools, + "parallel_tool_calls": parallel_tool_calls, + "reasoning_effort": reasoning_effort, + "truncation_strategy": truncation_strategy, + "top_p": top_p, + }, + run_create_params.RunCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform({"include": include}, run_create_params.RunCreateParams), + ), + cast_to=Run, + stream=True, + stream_cls=AsyncStream[AssistantStreamEvent], + ) + return AsyncAssistantStreamManager(request, event_handler=event_handler or AsyncAssistantEventHandler()) + + @overload + async def submit_tool_outputs( + self, + run_id: str, + *, + thread_id: str, + tool_outputs: Iterable[run_submit_tool_outputs_params.ToolOutput], + stream: Optional[Literal[False]] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run: + """ + When a run has the `status: "requires_action"` and `required_action.type` is + `submit_tool_outputs`, this endpoint can be used to submit the outputs from the + tool calls once they're all completed. All outputs must be submitted in a single + request. + + Args: + tool_outputs: A list of tools for which the outputs are being submitted. + + stream: If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + async def submit_tool_outputs( + self, + run_id: str, + *, + thread_id: str, + stream: Literal[True], + tool_outputs: Iterable[run_submit_tool_outputs_params.ToolOutput], + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncStream[AssistantStreamEvent]: + """ + When a run has the `status: "requires_action"` and `required_action.type` is + `submit_tool_outputs`, this endpoint can be used to submit the outputs from the + tool calls once they're all completed. All outputs must be submitted in a single + request. + + Args: + stream: If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + + tool_outputs: A list of tools for which the outputs are being submitted. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + async def submit_tool_outputs( + self, + run_id: str, + *, + thread_id: str, + stream: bool, + tool_outputs: Iterable[run_submit_tool_outputs_params.ToolOutput], + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run | AsyncStream[AssistantStreamEvent]: + """ + When a run has the `status: "requires_action"` and `required_action.type` is + `submit_tool_outputs`, this endpoint can be used to submit the outputs from the + tool calls once they're all completed. All outputs must be submitted in a single + request. + + Args: + stream: If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + + tool_outputs: A list of tools for which the outputs are being submitted. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @required_args(["thread_id", "tool_outputs"], ["thread_id", "stream", "tool_outputs"]) + async def submit_tool_outputs( + self, + run_id: str, + *, + thread_id: str, + tool_outputs: Iterable[run_submit_tool_outputs_params.ToolOutput], + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run | AsyncStream[AssistantStreamEvent]: + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + if not run_id: + raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + f"/threads/{thread_id}/runs/{run_id}/submit_tool_outputs", + body=await async_maybe_transform( + { + "tool_outputs": tool_outputs, + "stream": stream, + }, + run_submit_tool_outputs_params.RunSubmitToolOutputsParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Run, + stream=stream or False, + stream_cls=AsyncStream[AssistantStreamEvent], + ) + + async def submit_tool_outputs_and_poll( + self, + *, + tool_outputs: Iterable[run_submit_tool_outputs_params.ToolOutput], + run_id: str, + thread_id: str, + poll_interval_ms: int | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run: + """ + A helper to submit a tool output to a run and poll for a terminal run state. + More information on Run lifecycles can be found here: + https://platform.openai.com/docs/assistants/how-it-works/runs-and-run-steps + """ + run = await self.submit_tool_outputs( + run_id=run_id, + thread_id=thread_id, + tool_outputs=tool_outputs, + stream=False, + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + ) + return await self.poll( + run_id=run.id, + thread_id=thread_id, + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + poll_interval_ms=poll_interval_ms, + ) + + @overload + def submit_tool_outputs_stream( + self, + *, + tool_outputs: Iterable[run_submit_tool_outputs_params.ToolOutput], + run_id: str, + thread_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncAssistantStreamManager[AsyncAssistantEventHandler]: + """ + Submit the tool outputs from a previous run and stream the run to a terminal + state. More information on Run lifecycles can be found here: + https://platform.openai.com/docs/assistants/how-it-works/runs-and-run-steps + """ + ... + + @overload + def submit_tool_outputs_stream( + self, + *, + tool_outputs: Iterable[run_submit_tool_outputs_params.ToolOutput], + run_id: str, + thread_id: str, + event_handler: AsyncAssistantEventHandlerT, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncAssistantStreamManager[AsyncAssistantEventHandlerT]: + """ + Submit the tool outputs from a previous run and stream the run to a terminal + state. More information on Run lifecycles can be found here: + https://platform.openai.com/docs/assistants/how-it-works/runs-and-run-steps + """ + ... + + def submit_tool_outputs_stream( + self, + *, + tool_outputs: Iterable[run_submit_tool_outputs_params.ToolOutput], + run_id: str, + thread_id: str, + event_handler: AsyncAssistantEventHandlerT | None = None, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ( + AsyncAssistantStreamManager[AsyncAssistantEventHandler] + | AsyncAssistantStreamManager[AsyncAssistantEventHandlerT] + ): + """ + Submit the tool outputs from a previous run and stream the run to a terminal + state. More information on Run lifecycles can be found here: + https://platform.openai.com/docs/assistants/how-it-works/runs-and-run-steps + """ + if not run_id: + raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}") + + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + + extra_headers = { + "OpenAI-Beta": "assistants=v2", + "X-Stainless-Stream-Helper": "threads.runs.submit_tool_outputs_stream", + "X-Stainless-Custom-Event-Handler": "true" if event_handler else "false", + **(extra_headers or {}), + } + request = self._post( + f"/threads/{thread_id}/runs/{run_id}/submit_tool_outputs", + body=maybe_transform( + { + "tool_outputs": tool_outputs, + "stream": True, + }, + run_submit_tool_outputs_params.RunSubmitToolOutputsParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Run, + stream=True, + stream_cls=AsyncStream[AssistantStreamEvent], + ) + return AsyncAssistantStreamManager(request, event_handler=event_handler or AsyncAssistantEventHandler()) + + +class RunsWithRawResponse: + def __init__(self, runs: Runs) -> None: + self._runs = runs + + self.create = _legacy_response.to_raw_response_wrapper( + runs.create, + ) + self.retrieve = _legacy_response.to_raw_response_wrapper( + runs.retrieve, + ) + self.update = _legacy_response.to_raw_response_wrapper( + runs.update, + ) + self.list = _legacy_response.to_raw_response_wrapper( + runs.list, + ) + self.cancel = _legacy_response.to_raw_response_wrapper( + runs.cancel, + ) + self.submit_tool_outputs = _legacy_response.to_raw_response_wrapper( + runs.submit_tool_outputs, + ) + + @cached_property + def steps(self) -> StepsWithRawResponse: + return StepsWithRawResponse(self._runs.steps) + + +class AsyncRunsWithRawResponse: + def __init__(self, runs: AsyncRuns) -> None: + self._runs = runs + + self.create = _legacy_response.async_to_raw_response_wrapper( + runs.create, + ) + self.retrieve = _legacy_response.async_to_raw_response_wrapper( + runs.retrieve, + ) + self.update = _legacy_response.async_to_raw_response_wrapper( + runs.update, + ) + self.list = _legacy_response.async_to_raw_response_wrapper( + runs.list, + ) + self.cancel = _legacy_response.async_to_raw_response_wrapper( + runs.cancel, + ) + self.submit_tool_outputs = _legacy_response.async_to_raw_response_wrapper( + runs.submit_tool_outputs, + ) + + @cached_property + def steps(self) -> AsyncStepsWithRawResponse: + return AsyncStepsWithRawResponse(self._runs.steps) + + +class RunsWithStreamingResponse: + def __init__(self, runs: Runs) -> None: + self._runs = runs + + self.create = to_streamed_response_wrapper( + runs.create, + ) + self.retrieve = to_streamed_response_wrapper( + runs.retrieve, + ) + self.update = to_streamed_response_wrapper( + runs.update, + ) + self.list = to_streamed_response_wrapper( + runs.list, + ) + self.cancel = to_streamed_response_wrapper( + runs.cancel, + ) + self.submit_tool_outputs = to_streamed_response_wrapper( + runs.submit_tool_outputs, + ) + + @cached_property + def steps(self) -> StepsWithStreamingResponse: + return StepsWithStreamingResponse(self._runs.steps) + + +class AsyncRunsWithStreamingResponse: + def __init__(self, runs: AsyncRuns) -> None: + self._runs = runs + + self.create = async_to_streamed_response_wrapper( + runs.create, + ) + self.retrieve = async_to_streamed_response_wrapper( + runs.retrieve, + ) + self.update = async_to_streamed_response_wrapper( + runs.update, + ) + self.list = async_to_streamed_response_wrapper( + runs.list, + ) + self.cancel = async_to_streamed_response_wrapper( + runs.cancel, + ) + self.submit_tool_outputs = async_to_streamed_response_wrapper( + runs.submit_tool_outputs, + ) + + @cached_property + def steps(self) -> AsyncStepsWithStreamingResponse: + return AsyncStepsWithStreamingResponse(self._runs.steps) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/beta/threads/runs/steps.py b/.venv/lib/python3.12/site-packages/openai/resources/beta/threads/runs/steps.py new file mode 100644 index 00000000..709c729d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/beta/threads/runs/steps.py @@ -0,0 +1,381 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List +from typing_extensions import Literal + +import httpx + +from ..... import _legacy_response +from ....._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from ....._utils import ( + maybe_transform, + async_maybe_transform, +) +from ....._compat import cached_property +from ....._resource import SyncAPIResource, AsyncAPIResource +from ....._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from .....pagination import SyncCursorPage, AsyncCursorPage +from ....._base_client import AsyncPaginator, make_request_options +from .....types.beta.threads.runs import step_list_params, step_retrieve_params +from .....types.beta.threads.runs.run_step import RunStep +from .....types.beta.threads.runs.run_step_include import RunStepInclude + +__all__ = ["Steps", "AsyncSteps"] + + +class Steps(SyncAPIResource): + @cached_property + def with_raw_response(self) -> StepsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return StepsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> StepsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return StepsWithStreamingResponse(self) + + def retrieve( + self, + step_id: str, + *, + thread_id: str, + run_id: str, + include: List[RunStepInclude] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> RunStep: + """ + Retrieves a run step. + + Args: + include: A list of additional fields to include in the response. Currently the only + supported value is `step_details.tool_calls[*].file_search.results[*].content` + to fetch the file search result content. + + See the + [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) + for more information. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + if not run_id: + raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}") + if not step_id: + raise ValueError(f"Expected a non-empty value for `step_id` but received {step_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get( + f"/threads/{thread_id}/runs/{run_id}/steps/{step_id}", + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform({"include": include}, step_retrieve_params.StepRetrieveParams), + ), + cast_to=RunStep, + ) + + def list( + self, + run_id: str, + *, + thread_id: str, + after: str | NotGiven = NOT_GIVEN, + before: str | NotGiven = NOT_GIVEN, + include: List[RunStepInclude] | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncCursorPage[RunStep]: + """ + Returns a list of run steps belonging to a run. + + Args: + after: A cursor for use in pagination. `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + before: A cursor for use in pagination. `before` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + starting with obj_foo, your subsequent call can include before=obj_foo in order + to fetch the previous page of the list. + + include: A list of additional fields to include in the response. Currently the only + supported value is `step_details.tool_calls[*].file_search.results[*].content` + to fetch the file search result content. + + See the + [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) + for more information. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + if not run_id: + raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + f"/threads/{thread_id}/runs/{run_id}/steps", + page=SyncCursorPage[RunStep], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "before": before, + "include": include, + "limit": limit, + "order": order, + }, + step_list_params.StepListParams, + ), + ), + model=RunStep, + ) + + +class AsyncSteps(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncStepsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncStepsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncStepsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncStepsWithStreamingResponse(self) + + async def retrieve( + self, + step_id: str, + *, + thread_id: str, + run_id: str, + include: List[RunStepInclude] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> RunStep: + """ + Retrieves a run step. + + Args: + include: A list of additional fields to include in the response. Currently the only + supported value is `step_details.tool_calls[*].file_search.results[*].content` + to fetch the file search result content. + + See the + [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) + for more information. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + if not run_id: + raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}") + if not step_id: + raise ValueError(f"Expected a non-empty value for `step_id` but received {step_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._get( + f"/threads/{thread_id}/runs/{run_id}/steps/{step_id}", + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=await async_maybe_transform({"include": include}, step_retrieve_params.StepRetrieveParams), + ), + cast_to=RunStep, + ) + + def list( + self, + run_id: str, + *, + thread_id: str, + after: str | NotGiven = NOT_GIVEN, + before: str | NotGiven = NOT_GIVEN, + include: List[RunStepInclude] | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[RunStep, AsyncCursorPage[RunStep]]: + """ + Returns a list of run steps belonging to a run. + + Args: + after: A cursor for use in pagination. `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + before: A cursor for use in pagination. `before` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + starting with obj_foo, your subsequent call can include before=obj_foo in order + to fetch the previous page of the list. + + include: A list of additional fields to include in the response. Currently the only + supported value is `step_details.tool_calls[*].file_search.results[*].content` + to fetch the file search result content. + + See the + [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) + for more information. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + if not run_id: + raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + f"/threads/{thread_id}/runs/{run_id}/steps", + page=AsyncCursorPage[RunStep], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "before": before, + "include": include, + "limit": limit, + "order": order, + }, + step_list_params.StepListParams, + ), + ), + model=RunStep, + ) + + +class StepsWithRawResponse: + def __init__(self, steps: Steps) -> None: + self._steps = steps + + self.retrieve = _legacy_response.to_raw_response_wrapper( + steps.retrieve, + ) + self.list = _legacy_response.to_raw_response_wrapper( + steps.list, + ) + + +class AsyncStepsWithRawResponse: + def __init__(self, steps: AsyncSteps) -> None: + self._steps = steps + + self.retrieve = _legacy_response.async_to_raw_response_wrapper( + steps.retrieve, + ) + self.list = _legacy_response.async_to_raw_response_wrapper( + steps.list, + ) + + +class StepsWithStreamingResponse: + def __init__(self, steps: Steps) -> None: + self._steps = steps + + self.retrieve = to_streamed_response_wrapper( + steps.retrieve, + ) + self.list = to_streamed_response_wrapper( + steps.list, + ) + + +class AsyncStepsWithStreamingResponse: + def __init__(self, steps: AsyncSteps) -> None: + self._steps = steps + + self.retrieve = async_to_streamed_response_wrapper( + steps.retrieve, + ) + self.list = async_to_streamed_response_wrapper( + steps.list, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/beta/threads/threads.py b/.venv/lib/python3.12/site-packages/openai/resources/beta/threads/threads.py new file mode 100644 index 00000000..d88559bd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/beta/threads/threads.py @@ -0,0 +1,1875 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Iterable, Optional +from functools import partial +from typing_extensions import Literal, overload + +import httpx + +from .... import _legacy_response +from .messages import ( + Messages, + AsyncMessages, + MessagesWithRawResponse, + AsyncMessagesWithRawResponse, + MessagesWithStreamingResponse, + AsyncMessagesWithStreamingResponse, +) +from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from ...._utils import ( + required_args, + maybe_transform, + async_maybe_transform, +) +from .runs.runs import ( + Runs, + AsyncRuns, + RunsWithRawResponse, + AsyncRunsWithRawResponse, + RunsWithStreamingResponse, + AsyncRunsWithStreamingResponse, +) +from ...._compat import cached_property +from ...._resource import SyncAPIResource, AsyncAPIResource +from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ...._streaming import Stream, AsyncStream +from ....types.beta import ( + thread_create_params, + thread_update_params, + thread_create_and_run_params, +) +from ...._base_client import make_request_options +from ....lib.streaming import ( + AssistantEventHandler, + AssistantEventHandlerT, + AssistantStreamManager, + AsyncAssistantEventHandler, + AsyncAssistantEventHandlerT, + AsyncAssistantStreamManager, +) +from ....types.beta.thread import Thread +from ....types.beta.threads.run import Run +from ....types.shared.chat_model import ChatModel +from ....types.beta.thread_deleted import ThreadDeleted +from ....types.shared_params.metadata import Metadata +from ....types.beta.assistant_stream_event import AssistantStreamEvent +from ....types.beta.assistant_tool_choice_option_param import AssistantToolChoiceOptionParam +from ....types.beta.assistant_response_format_option_param import AssistantResponseFormatOptionParam + +__all__ = ["Threads", "AsyncThreads"] + + +class Threads(SyncAPIResource): + @cached_property + def runs(self) -> Runs: + return Runs(self._client) + + @cached_property + def messages(self) -> Messages: + return Messages(self._client) + + @cached_property + def with_raw_response(self) -> ThreadsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return ThreadsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> ThreadsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return ThreadsWithStreamingResponse(self) + + def create( + self, + *, + messages: Iterable[thread_create_params.Message] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_create_params.ToolResources] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Thread: + """ + Create a thread. + + Args: + messages: A list of [messages](https://platform.openai.com/docs/api-reference/messages) to + start the thread with. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + tool_resources: A set of resources that are made available to the assistant's tools in this + thread. The resources are specific to the type of tool. For example, the + `code_interpreter` tool requires a list of file IDs, while the `file_search` + tool requires a list of vector store IDs. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + "/threads", + body=maybe_transform( + { + "messages": messages, + "metadata": metadata, + "tool_resources": tool_resources, + }, + thread_create_params.ThreadCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Thread, + ) + + def retrieve( + self, + thread_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Thread: + """ + Retrieves a thread. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get( + f"/threads/{thread_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Thread, + ) + + def update( + self, + thread_id: str, + *, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_update_params.ToolResources] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Thread: + """ + Modifies a thread. + + Args: + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + tool_resources: A set of resources that are made available to the assistant's tools in this + thread. The resources are specific to the type of tool. For example, the + `code_interpreter` tool requires a list of file IDs, while the `file_search` + tool requires a list of vector store IDs. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + f"/threads/{thread_id}", + body=maybe_transform( + { + "metadata": metadata, + "tool_resources": tool_resources, + }, + thread_update_params.ThreadUpdateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Thread, + ) + + def delete( + self, + thread_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ThreadDeleted: + """ + Delete a thread. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._delete( + f"/threads/{thread_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ThreadDeleted, + ) + + @overload + def create_and_run( + self, + *, + assistant_id: str, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + thread: thread_create_and_run_params.Thread | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_create_and_run_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[thread_create_and_run_params.Tool]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[thread_create_and_run_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run: + """ + Create a thread and run it in one request. + + Args: + assistant_id: The ID of the + [assistant](https://platform.openai.com/docs/api-reference/assistants) to use to + execute this run. + + instructions: Override the default system message of the assistant. This is useful for + modifying the behavior on a per-run basis. + + max_completion_tokens: The maximum number of completion tokens that may be used over the course of the + run. The run will make a best effort to use only the number of completion tokens + specified, across multiple turns of the run. If the run exceeds the number of + completion tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + max_prompt_tokens: The maximum number of prompt tokens that may be used over the course of the run. + The run will make a best effort to use only the number of prompt tokens + specified, across multiple turns of the run. If the run exceeds the number of + prompt tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + model: The ID of the [Model](https://platform.openai.com/docs/api-reference/models) to + be used to execute this run. If a value is provided here, it will override the + model associated with the assistant. If not, the model associated with the + assistant will be used. + + parallel_tool_calls: Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + + response_format: Specifies the format that the model must output. Compatible with + [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + + stream: If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + thread: Options to create a new thread. If no thread is provided when running a request, + an empty thread will be created. + + tool_choice: Controls which (if any) tool is called by the model. `none` means the model will + not call any tools and instead generates a message. `auto` is the default value + and means the model can pick between generating a message or calling one or more + tools. `required` means the model must call one or more tools before responding + to the user. Specifying a particular tool like `{"type": "file_search"}` or + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + + tool_resources: A set of resources that are used by the assistant's tools. The resources are + specific to the type of tool. For example, the `code_interpreter` tool requires + a list of file IDs, while the `file_search` tool requires a list of vector store + IDs. + + tools: Override the tools the assistant can use for this run. This is useful for + modifying the behavior on a per-run basis. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + + truncation_strategy: Controls for how a thread will be truncated prior to the run. Use this to + control the intial context window of the run. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + def create_and_run( + self, + *, + assistant_id: str, + stream: Literal[True], + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + thread: thread_create_and_run_params.Thread | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_create_and_run_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[thread_create_and_run_params.Tool]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[thread_create_and_run_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Stream[AssistantStreamEvent]: + """ + Create a thread and run it in one request. + + Args: + assistant_id: The ID of the + [assistant](https://platform.openai.com/docs/api-reference/assistants) to use to + execute this run. + + stream: If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + + instructions: Override the default system message of the assistant. This is useful for + modifying the behavior on a per-run basis. + + max_completion_tokens: The maximum number of completion tokens that may be used over the course of the + run. The run will make a best effort to use only the number of completion tokens + specified, across multiple turns of the run. If the run exceeds the number of + completion tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + max_prompt_tokens: The maximum number of prompt tokens that may be used over the course of the run. + The run will make a best effort to use only the number of prompt tokens + specified, across multiple turns of the run. If the run exceeds the number of + prompt tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + model: The ID of the [Model](https://platform.openai.com/docs/api-reference/models) to + be used to execute this run. If a value is provided here, it will override the + model associated with the assistant. If not, the model associated with the + assistant will be used. + + parallel_tool_calls: Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + + response_format: Specifies the format that the model must output. Compatible with + [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + thread: Options to create a new thread. If no thread is provided when running a request, + an empty thread will be created. + + tool_choice: Controls which (if any) tool is called by the model. `none` means the model will + not call any tools and instead generates a message. `auto` is the default value + and means the model can pick between generating a message or calling one or more + tools. `required` means the model must call one or more tools before responding + to the user. Specifying a particular tool like `{"type": "file_search"}` or + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + + tool_resources: A set of resources that are used by the assistant's tools. The resources are + specific to the type of tool. For example, the `code_interpreter` tool requires + a list of file IDs, while the `file_search` tool requires a list of vector store + IDs. + + tools: Override the tools the assistant can use for this run. This is useful for + modifying the behavior on a per-run basis. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + + truncation_strategy: Controls for how a thread will be truncated prior to the run. Use this to + control the intial context window of the run. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + def create_and_run( + self, + *, + assistant_id: str, + stream: bool, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + thread: thread_create_and_run_params.Thread | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_create_and_run_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[thread_create_and_run_params.Tool]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[thread_create_and_run_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run | Stream[AssistantStreamEvent]: + """ + Create a thread and run it in one request. + + Args: + assistant_id: The ID of the + [assistant](https://platform.openai.com/docs/api-reference/assistants) to use to + execute this run. + + stream: If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + + instructions: Override the default system message of the assistant. This is useful for + modifying the behavior on a per-run basis. + + max_completion_tokens: The maximum number of completion tokens that may be used over the course of the + run. The run will make a best effort to use only the number of completion tokens + specified, across multiple turns of the run. If the run exceeds the number of + completion tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + max_prompt_tokens: The maximum number of prompt tokens that may be used over the course of the run. + The run will make a best effort to use only the number of prompt tokens + specified, across multiple turns of the run. If the run exceeds the number of + prompt tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + model: The ID of the [Model](https://platform.openai.com/docs/api-reference/models) to + be used to execute this run. If a value is provided here, it will override the + model associated with the assistant. If not, the model associated with the + assistant will be used. + + parallel_tool_calls: Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + + response_format: Specifies the format that the model must output. Compatible with + [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + thread: Options to create a new thread. If no thread is provided when running a request, + an empty thread will be created. + + tool_choice: Controls which (if any) tool is called by the model. `none` means the model will + not call any tools and instead generates a message. `auto` is the default value + and means the model can pick between generating a message or calling one or more + tools. `required` means the model must call one or more tools before responding + to the user. Specifying a particular tool like `{"type": "file_search"}` or + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + + tool_resources: A set of resources that are used by the assistant's tools. The resources are + specific to the type of tool. For example, the `code_interpreter` tool requires + a list of file IDs, while the `file_search` tool requires a list of vector store + IDs. + + tools: Override the tools the assistant can use for this run. This is useful for + modifying the behavior on a per-run basis. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + + truncation_strategy: Controls for how a thread will be truncated prior to the run. Use this to + control the intial context window of the run. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @required_args(["assistant_id"], ["assistant_id", "stream"]) + def create_and_run( + self, + *, + assistant_id: str, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + thread: thread_create_and_run_params.Thread | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_create_and_run_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[thread_create_and_run_params.Tool]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[thread_create_and_run_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run | Stream[AssistantStreamEvent]: + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + "/threads/runs", + body=maybe_transform( + { + "assistant_id": assistant_id, + "instructions": instructions, + "max_completion_tokens": max_completion_tokens, + "max_prompt_tokens": max_prompt_tokens, + "metadata": metadata, + "model": model, + "parallel_tool_calls": parallel_tool_calls, + "response_format": response_format, + "stream": stream, + "temperature": temperature, + "thread": thread, + "tool_choice": tool_choice, + "tool_resources": tool_resources, + "tools": tools, + "top_p": top_p, + "truncation_strategy": truncation_strategy, + }, + thread_create_and_run_params.ThreadCreateAndRunParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Run, + stream=stream or False, + stream_cls=Stream[AssistantStreamEvent], + ) + + def create_and_run_poll( + self, + *, + assistant_id: str, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + thread: thread_create_and_run_params.Thread | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_create_and_run_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[thread_create_and_run_params.Tool]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[thread_create_and_run_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + poll_interval_ms: int | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run: + """ + A helper to create a thread, start a run and then poll for a terminal state. + More information on Run lifecycles can be found here: + https://platform.openai.com/docs/assistants/how-it-works/runs-and-run-steps + """ + run = self.create_and_run( + assistant_id=assistant_id, + instructions=instructions, + max_completion_tokens=max_completion_tokens, + max_prompt_tokens=max_prompt_tokens, + metadata=metadata, + model=model, + parallel_tool_calls=parallel_tool_calls, + response_format=response_format, + temperature=temperature, + stream=False, + thread=thread, + tool_resources=tool_resources, + tool_choice=tool_choice, + truncation_strategy=truncation_strategy, + top_p=top_p, + tools=tools, + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + ) + return self.runs.poll(run.id, run.thread_id, extra_headers, extra_query, extra_body, timeout, poll_interval_ms) + + @overload + def create_and_run_stream( + self, + *, + assistant_id: str, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + thread: thread_create_and_run_params.Thread | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_create_and_run_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[thread_create_and_run_params.Tool]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[thread_create_and_run_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AssistantStreamManager[AssistantEventHandler]: + """Create a thread and stream the run back""" + ... + + @overload + def create_and_run_stream( + self, + *, + assistant_id: str, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + thread: thread_create_and_run_params.Thread | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_create_and_run_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[thread_create_and_run_params.Tool]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[thread_create_and_run_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + event_handler: AssistantEventHandlerT, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AssistantStreamManager[AssistantEventHandlerT]: + """Create a thread and stream the run back""" + ... + + def create_and_run_stream( + self, + *, + assistant_id: str, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + thread: thread_create_and_run_params.Thread | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_create_and_run_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[thread_create_and_run_params.Tool]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[thread_create_and_run_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + event_handler: AssistantEventHandlerT | None = None, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AssistantStreamManager[AssistantEventHandler] | AssistantStreamManager[AssistantEventHandlerT]: + """Create a thread and stream the run back""" + extra_headers = { + "OpenAI-Beta": "assistants=v2", + "X-Stainless-Stream-Helper": "threads.create_and_run_stream", + "X-Stainless-Custom-Event-Handler": "true" if event_handler else "false", + **(extra_headers or {}), + } + make_request = partial( + self._post, + "/threads/runs", + body=maybe_transform( + { + "assistant_id": assistant_id, + "instructions": instructions, + "max_completion_tokens": max_completion_tokens, + "max_prompt_tokens": max_prompt_tokens, + "metadata": metadata, + "model": model, + "parallel_tool_calls": parallel_tool_calls, + "response_format": response_format, + "temperature": temperature, + "tool_choice": tool_choice, + "stream": True, + "thread": thread, + "tools": tools, + "tool_resources": tool_resources, + "truncation_strategy": truncation_strategy, + "top_p": top_p, + }, + thread_create_and_run_params.ThreadCreateAndRunParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Run, + stream=True, + stream_cls=Stream[AssistantStreamEvent], + ) + return AssistantStreamManager(make_request, event_handler=event_handler or AssistantEventHandler()) + + +class AsyncThreads(AsyncAPIResource): + @cached_property + def runs(self) -> AsyncRuns: + return AsyncRuns(self._client) + + @cached_property + def messages(self) -> AsyncMessages: + return AsyncMessages(self._client) + + @cached_property + def with_raw_response(self) -> AsyncThreadsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncThreadsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncThreadsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncThreadsWithStreamingResponse(self) + + async def create( + self, + *, + messages: Iterable[thread_create_params.Message] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_create_params.ToolResources] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Thread: + """ + Create a thread. + + Args: + messages: A list of [messages](https://platform.openai.com/docs/api-reference/messages) to + start the thread with. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + tool_resources: A set of resources that are made available to the assistant's tools in this + thread. The resources are specific to the type of tool. For example, the + `code_interpreter` tool requires a list of file IDs, while the `file_search` + tool requires a list of vector store IDs. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + "/threads", + body=await async_maybe_transform( + { + "messages": messages, + "metadata": metadata, + "tool_resources": tool_resources, + }, + thread_create_params.ThreadCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Thread, + ) + + async def retrieve( + self, + thread_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Thread: + """ + Retrieves a thread. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._get( + f"/threads/{thread_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Thread, + ) + + async def update( + self, + thread_id: str, + *, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_update_params.ToolResources] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Thread: + """ + Modifies a thread. + + Args: + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + tool_resources: A set of resources that are made available to the assistant's tools in this + thread. The resources are specific to the type of tool. For example, the + `code_interpreter` tool requires a list of file IDs, while the `file_search` + tool requires a list of vector store IDs. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + f"/threads/{thread_id}", + body=await async_maybe_transform( + { + "metadata": metadata, + "tool_resources": tool_resources, + }, + thread_update_params.ThreadUpdateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Thread, + ) + + async def delete( + self, + thread_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ThreadDeleted: + """ + Delete a thread. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not thread_id: + raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._delete( + f"/threads/{thread_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ThreadDeleted, + ) + + @overload + async def create_and_run( + self, + *, + assistant_id: str, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + thread: thread_create_and_run_params.Thread | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_create_and_run_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[thread_create_and_run_params.Tool]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[thread_create_and_run_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run: + """ + Create a thread and run it in one request. + + Args: + assistant_id: The ID of the + [assistant](https://platform.openai.com/docs/api-reference/assistants) to use to + execute this run. + + instructions: Override the default system message of the assistant. This is useful for + modifying the behavior on a per-run basis. + + max_completion_tokens: The maximum number of completion tokens that may be used over the course of the + run. The run will make a best effort to use only the number of completion tokens + specified, across multiple turns of the run. If the run exceeds the number of + completion tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + max_prompt_tokens: The maximum number of prompt tokens that may be used over the course of the run. + The run will make a best effort to use only the number of prompt tokens + specified, across multiple turns of the run. If the run exceeds the number of + prompt tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + model: The ID of the [Model](https://platform.openai.com/docs/api-reference/models) to + be used to execute this run. If a value is provided here, it will override the + model associated with the assistant. If not, the model associated with the + assistant will be used. + + parallel_tool_calls: Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + + response_format: Specifies the format that the model must output. Compatible with + [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + + stream: If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + thread: Options to create a new thread. If no thread is provided when running a request, + an empty thread will be created. + + tool_choice: Controls which (if any) tool is called by the model. `none` means the model will + not call any tools and instead generates a message. `auto` is the default value + and means the model can pick between generating a message or calling one or more + tools. `required` means the model must call one or more tools before responding + to the user. Specifying a particular tool like `{"type": "file_search"}` or + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + + tool_resources: A set of resources that are used by the assistant's tools. The resources are + specific to the type of tool. For example, the `code_interpreter` tool requires + a list of file IDs, while the `file_search` tool requires a list of vector store + IDs. + + tools: Override the tools the assistant can use for this run. This is useful for + modifying the behavior on a per-run basis. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + + truncation_strategy: Controls for how a thread will be truncated prior to the run. Use this to + control the intial context window of the run. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + async def create_and_run( + self, + *, + assistant_id: str, + stream: Literal[True], + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + thread: thread_create_and_run_params.Thread | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_create_and_run_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[thread_create_and_run_params.Tool]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[thread_create_and_run_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncStream[AssistantStreamEvent]: + """ + Create a thread and run it in one request. + + Args: + assistant_id: The ID of the + [assistant](https://platform.openai.com/docs/api-reference/assistants) to use to + execute this run. + + stream: If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + + instructions: Override the default system message of the assistant. This is useful for + modifying the behavior on a per-run basis. + + max_completion_tokens: The maximum number of completion tokens that may be used over the course of the + run. The run will make a best effort to use only the number of completion tokens + specified, across multiple turns of the run. If the run exceeds the number of + completion tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + max_prompt_tokens: The maximum number of prompt tokens that may be used over the course of the run. + The run will make a best effort to use only the number of prompt tokens + specified, across multiple turns of the run. If the run exceeds the number of + prompt tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + model: The ID of the [Model](https://platform.openai.com/docs/api-reference/models) to + be used to execute this run. If a value is provided here, it will override the + model associated with the assistant. If not, the model associated with the + assistant will be used. + + parallel_tool_calls: Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + + response_format: Specifies the format that the model must output. Compatible with + [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + thread: Options to create a new thread. If no thread is provided when running a request, + an empty thread will be created. + + tool_choice: Controls which (if any) tool is called by the model. `none` means the model will + not call any tools and instead generates a message. `auto` is the default value + and means the model can pick between generating a message or calling one or more + tools. `required` means the model must call one or more tools before responding + to the user. Specifying a particular tool like `{"type": "file_search"}` or + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + + tool_resources: A set of resources that are used by the assistant's tools. The resources are + specific to the type of tool. For example, the `code_interpreter` tool requires + a list of file IDs, while the `file_search` tool requires a list of vector store + IDs. + + tools: Override the tools the assistant can use for this run. This is useful for + modifying the behavior on a per-run basis. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + + truncation_strategy: Controls for how a thread will be truncated prior to the run. Use this to + control the intial context window of the run. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + async def create_and_run( + self, + *, + assistant_id: str, + stream: bool, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + thread: thread_create_and_run_params.Thread | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_create_and_run_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[thread_create_and_run_params.Tool]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[thread_create_and_run_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run | AsyncStream[AssistantStreamEvent]: + """ + Create a thread and run it in one request. + + Args: + assistant_id: The ID of the + [assistant](https://platform.openai.com/docs/api-reference/assistants) to use to + execute this run. + + stream: If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + + instructions: Override the default system message of the assistant. This is useful for + modifying the behavior on a per-run basis. + + max_completion_tokens: The maximum number of completion tokens that may be used over the course of the + run. The run will make a best effort to use only the number of completion tokens + specified, across multiple turns of the run. If the run exceeds the number of + completion tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + max_prompt_tokens: The maximum number of prompt tokens that may be used over the course of the run. + The run will make a best effort to use only the number of prompt tokens + specified, across multiple turns of the run. If the run exceeds the number of + prompt tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + model: The ID of the [Model](https://platform.openai.com/docs/api-reference/models) to + be used to execute this run. If a value is provided here, it will override the + model associated with the assistant. If not, the model associated with the + assistant will be used. + + parallel_tool_calls: Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + + response_format: Specifies the format that the model must output. Compatible with + [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + thread: Options to create a new thread. If no thread is provided when running a request, + an empty thread will be created. + + tool_choice: Controls which (if any) tool is called by the model. `none` means the model will + not call any tools and instead generates a message. `auto` is the default value + and means the model can pick between generating a message or calling one or more + tools. `required` means the model must call one or more tools before responding + to the user. Specifying a particular tool like `{"type": "file_search"}` or + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + + tool_resources: A set of resources that are used by the assistant's tools. The resources are + specific to the type of tool. For example, the `code_interpreter` tool requires + a list of file IDs, while the `file_search` tool requires a list of vector store + IDs. + + tools: Override the tools the assistant can use for this run. This is useful for + modifying the behavior on a per-run basis. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + + truncation_strategy: Controls for how a thread will be truncated prior to the run. Use this to + control the intial context window of the run. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @required_args(["assistant_id"], ["assistant_id", "stream"]) + async def create_and_run( + self, + *, + assistant_id: str, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + thread: thread_create_and_run_params.Thread | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_create_and_run_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[thread_create_and_run_params.Tool]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[thread_create_and_run_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run | AsyncStream[AssistantStreamEvent]: + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + "/threads/runs", + body=await async_maybe_transform( + { + "assistant_id": assistant_id, + "instructions": instructions, + "max_completion_tokens": max_completion_tokens, + "max_prompt_tokens": max_prompt_tokens, + "metadata": metadata, + "model": model, + "parallel_tool_calls": parallel_tool_calls, + "response_format": response_format, + "stream": stream, + "temperature": temperature, + "thread": thread, + "tool_choice": tool_choice, + "tool_resources": tool_resources, + "tools": tools, + "top_p": top_p, + "truncation_strategy": truncation_strategy, + }, + thread_create_and_run_params.ThreadCreateAndRunParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Run, + stream=stream or False, + stream_cls=AsyncStream[AssistantStreamEvent], + ) + + async def create_and_run_poll( + self, + *, + assistant_id: str, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + thread: thread_create_and_run_params.Thread | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_create_and_run_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[thread_create_and_run_params.Tool]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[thread_create_and_run_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + poll_interval_ms: int | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Run: + """ + A helper to create a thread, start a run and then poll for a terminal state. + More information on Run lifecycles can be found here: + https://platform.openai.com/docs/assistants/how-it-works/runs-and-run-steps + """ + run = await self.create_and_run( + assistant_id=assistant_id, + instructions=instructions, + max_completion_tokens=max_completion_tokens, + max_prompt_tokens=max_prompt_tokens, + metadata=metadata, + model=model, + parallel_tool_calls=parallel_tool_calls, + response_format=response_format, + temperature=temperature, + stream=False, + thread=thread, + tool_resources=tool_resources, + tool_choice=tool_choice, + truncation_strategy=truncation_strategy, + top_p=top_p, + tools=tools, + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + ) + return await self.runs.poll( + run.id, run.thread_id, extra_headers, extra_query, extra_body, timeout, poll_interval_ms + ) + + @overload + def create_and_run_stream( + self, + *, + assistant_id: str, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + thread: thread_create_and_run_params.Thread | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_create_and_run_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[thread_create_and_run_params.Tool]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[thread_create_and_run_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncAssistantStreamManager[AsyncAssistantEventHandler]: + """Create a thread and stream the run back""" + ... + + @overload + def create_and_run_stream( + self, + *, + assistant_id: str, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + thread: thread_create_and_run_params.Thread | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_create_and_run_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[thread_create_and_run_params.Tool]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[thread_create_and_run_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + event_handler: AsyncAssistantEventHandlerT, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncAssistantStreamManager[AsyncAssistantEventHandlerT]: + """Create a thread and stream the run back""" + ... + + def create_and_run_stream( + self, + *, + assistant_id: str, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_prompt_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: Union[str, ChatModel, None] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + response_format: Optional[AssistantResponseFormatOptionParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + thread: thread_create_and_run_params.Thread | NotGiven = NOT_GIVEN, + tool_choice: Optional[AssistantToolChoiceOptionParam] | NotGiven = NOT_GIVEN, + tool_resources: Optional[thread_create_and_run_params.ToolResources] | NotGiven = NOT_GIVEN, + tools: Optional[Iterable[thread_create_and_run_params.Tool]] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation_strategy: Optional[thread_create_and_run_params.TruncationStrategy] | NotGiven = NOT_GIVEN, + event_handler: AsyncAssistantEventHandlerT | None = None, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ( + AsyncAssistantStreamManager[AsyncAssistantEventHandler] + | AsyncAssistantStreamManager[AsyncAssistantEventHandlerT] + ): + """Create a thread and stream the run back""" + extra_headers = { + "OpenAI-Beta": "assistants=v2", + "X-Stainless-Stream-Helper": "threads.create_and_run_stream", + "X-Stainless-Custom-Event-Handler": "true" if event_handler else "false", + **(extra_headers or {}), + } + request = self._post( + "/threads/runs", + body=maybe_transform( + { + "assistant_id": assistant_id, + "instructions": instructions, + "max_completion_tokens": max_completion_tokens, + "max_prompt_tokens": max_prompt_tokens, + "metadata": metadata, + "model": model, + "parallel_tool_calls": parallel_tool_calls, + "response_format": response_format, + "temperature": temperature, + "tool_choice": tool_choice, + "stream": True, + "thread": thread, + "tools": tools, + "tool_resources": tool_resources, + "truncation_strategy": truncation_strategy, + "top_p": top_p, + }, + thread_create_and_run_params.ThreadCreateAndRunParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Run, + stream=True, + stream_cls=AsyncStream[AssistantStreamEvent], + ) + return AsyncAssistantStreamManager(request, event_handler=event_handler or AsyncAssistantEventHandler()) + + +class ThreadsWithRawResponse: + def __init__(self, threads: Threads) -> None: + self._threads = threads + + self.create = _legacy_response.to_raw_response_wrapper( + threads.create, + ) + self.retrieve = _legacy_response.to_raw_response_wrapper( + threads.retrieve, + ) + self.update = _legacy_response.to_raw_response_wrapper( + threads.update, + ) + self.delete = _legacy_response.to_raw_response_wrapper( + threads.delete, + ) + self.create_and_run = _legacy_response.to_raw_response_wrapper( + threads.create_and_run, + ) + + @cached_property + def runs(self) -> RunsWithRawResponse: + return RunsWithRawResponse(self._threads.runs) + + @cached_property + def messages(self) -> MessagesWithRawResponse: + return MessagesWithRawResponse(self._threads.messages) + + +class AsyncThreadsWithRawResponse: + def __init__(self, threads: AsyncThreads) -> None: + self._threads = threads + + self.create = _legacy_response.async_to_raw_response_wrapper( + threads.create, + ) + self.retrieve = _legacy_response.async_to_raw_response_wrapper( + threads.retrieve, + ) + self.update = _legacy_response.async_to_raw_response_wrapper( + threads.update, + ) + self.delete = _legacy_response.async_to_raw_response_wrapper( + threads.delete, + ) + self.create_and_run = _legacy_response.async_to_raw_response_wrapper( + threads.create_and_run, + ) + + @cached_property + def runs(self) -> AsyncRunsWithRawResponse: + return AsyncRunsWithRawResponse(self._threads.runs) + + @cached_property + def messages(self) -> AsyncMessagesWithRawResponse: + return AsyncMessagesWithRawResponse(self._threads.messages) + + +class ThreadsWithStreamingResponse: + def __init__(self, threads: Threads) -> None: + self._threads = threads + + self.create = to_streamed_response_wrapper( + threads.create, + ) + self.retrieve = to_streamed_response_wrapper( + threads.retrieve, + ) + self.update = to_streamed_response_wrapper( + threads.update, + ) + self.delete = to_streamed_response_wrapper( + threads.delete, + ) + self.create_and_run = to_streamed_response_wrapper( + threads.create_and_run, + ) + + @cached_property + def runs(self) -> RunsWithStreamingResponse: + return RunsWithStreamingResponse(self._threads.runs) + + @cached_property + def messages(self) -> MessagesWithStreamingResponse: + return MessagesWithStreamingResponse(self._threads.messages) + + +class AsyncThreadsWithStreamingResponse: + def __init__(self, threads: AsyncThreads) -> None: + self._threads = threads + + self.create = async_to_streamed_response_wrapper( + threads.create, + ) + self.retrieve = async_to_streamed_response_wrapper( + threads.retrieve, + ) + self.update = async_to_streamed_response_wrapper( + threads.update, + ) + self.delete = async_to_streamed_response_wrapper( + threads.delete, + ) + self.create_and_run = async_to_streamed_response_wrapper( + threads.create_and_run, + ) + + @cached_property + def runs(self) -> AsyncRunsWithStreamingResponse: + return AsyncRunsWithStreamingResponse(self._threads.runs) + + @cached_property + def messages(self) -> AsyncMessagesWithStreamingResponse: + return AsyncMessagesWithStreamingResponse(self._threads.messages) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/chat/__init__.py b/.venv/lib/python3.12/site-packages/openai/resources/chat/__init__.py new file mode 100644 index 00000000..52dfdcea --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/chat/__init__.py @@ -0,0 +1,33 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from .chat import ( + Chat, + AsyncChat, + ChatWithRawResponse, + AsyncChatWithRawResponse, + ChatWithStreamingResponse, + AsyncChatWithStreamingResponse, +) +from .completions import ( + Completions, + AsyncCompletions, + CompletionsWithRawResponse, + AsyncCompletionsWithRawResponse, + CompletionsWithStreamingResponse, + AsyncCompletionsWithStreamingResponse, +) + +__all__ = [ + "Completions", + "AsyncCompletions", + "CompletionsWithRawResponse", + "AsyncCompletionsWithRawResponse", + "CompletionsWithStreamingResponse", + "AsyncCompletionsWithStreamingResponse", + "Chat", + "AsyncChat", + "ChatWithRawResponse", + "AsyncChatWithRawResponse", + "ChatWithStreamingResponse", + "AsyncChatWithStreamingResponse", +] diff --git a/.venv/lib/python3.12/site-packages/openai/resources/chat/chat.py b/.venv/lib/python3.12/site-packages/openai/resources/chat/chat.py new file mode 100644 index 00000000..14f9224b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/chat/chat.py @@ -0,0 +1,102 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from ..._compat import cached_property +from ..._resource import SyncAPIResource, AsyncAPIResource +from .completions.completions import ( + Completions, + AsyncCompletions, + CompletionsWithRawResponse, + AsyncCompletionsWithRawResponse, + CompletionsWithStreamingResponse, + AsyncCompletionsWithStreamingResponse, +) + +__all__ = ["Chat", "AsyncChat"] + + +class Chat(SyncAPIResource): + @cached_property + def completions(self) -> Completions: + return Completions(self._client) + + @cached_property + def with_raw_response(self) -> ChatWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return ChatWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> ChatWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return ChatWithStreamingResponse(self) + + +class AsyncChat(AsyncAPIResource): + @cached_property + def completions(self) -> AsyncCompletions: + return AsyncCompletions(self._client) + + @cached_property + def with_raw_response(self) -> AsyncChatWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncChatWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncChatWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncChatWithStreamingResponse(self) + + +class ChatWithRawResponse: + def __init__(self, chat: Chat) -> None: + self._chat = chat + + @cached_property + def completions(self) -> CompletionsWithRawResponse: + return CompletionsWithRawResponse(self._chat.completions) + + +class AsyncChatWithRawResponse: + def __init__(self, chat: AsyncChat) -> None: + self._chat = chat + + @cached_property + def completions(self) -> AsyncCompletionsWithRawResponse: + return AsyncCompletionsWithRawResponse(self._chat.completions) + + +class ChatWithStreamingResponse: + def __init__(self, chat: Chat) -> None: + self._chat = chat + + @cached_property + def completions(self) -> CompletionsWithStreamingResponse: + return CompletionsWithStreamingResponse(self._chat.completions) + + +class AsyncChatWithStreamingResponse: + def __init__(self, chat: AsyncChat) -> None: + self._chat = chat + + @cached_property + def completions(self) -> AsyncCompletionsWithStreamingResponse: + return AsyncCompletionsWithStreamingResponse(self._chat.completions) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/chat/completions/__init__.py b/.venv/lib/python3.12/site-packages/openai/resources/chat/completions/__init__.py new file mode 100644 index 00000000..12d3b3aa --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/chat/completions/__init__.py @@ -0,0 +1,33 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from .messages import ( + Messages, + AsyncMessages, + MessagesWithRawResponse, + AsyncMessagesWithRawResponse, + MessagesWithStreamingResponse, + AsyncMessagesWithStreamingResponse, +) +from .completions import ( + Completions, + AsyncCompletions, + CompletionsWithRawResponse, + AsyncCompletionsWithRawResponse, + CompletionsWithStreamingResponse, + AsyncCompletionsWithStreamingResponse, +) + +__all__ = [ + "Messages", + "AsyncMessages", + "MessagesWithRawResponse", + "AsyncMessagesWithRawResponse", + "MessagesWithStreamingResponse", + "AsyncMessagesWithStreamingResponse", + "Completions", + "AsyncCompletions", + "CompletionsWithRawResponse", + "AsyncCompletionsWithRawResponse", + "CompletionsWithStreamingResponse", + "AsyncCompletionsWithStreamingResponse", +] diff --git a/.venv/lib/python3.12/site-packages/openai/resources/chat/completions/completions.py b/.venv/lib/python3.12/site-packages/openai/resources/chat/completions/completions.py new file mode 100644 index 00000000..d28be012 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/chat/completions/completions.py @@ -0,0 +1,2331 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import inspect +from typing import Dict, List, Union, Iterable, Optional +from typing_extensions import Literal, overload + +import httpx +import pydantic + +from .... import _legacy_response +from .messages import ( + Messages, + AsyncMessages, + MessagesWithRawResponse, + AsyncMessagesWithRawResponse, + MessagesWithStreamingResponse, + AsyncMessagesWithStreamingResponse, +) +from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from ...._utils import ( + required_args, + maybe_transform, + async_maybe_transform, +) +from ...._compat import cached_property +from ...._resource import SyncAPIResource, AsyncAPIResource +from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ...._streaming import Stream, AsyncStream +from ....pagination import SyncCursorPage, AsyncCursorPage +from ....types.chat import ( + ChatCompletionAudioParam, + completion_list_params, + completion_create_params, + completion_update_params, +) +from ...._base_client import AsyncPaginator, make_request_options +from ....types.shared.chat_model import ChatModel +from ....types.chat.chat_completion import ChatCompletion +from ....types.shared_params.metadata import Metadata +from ....types.shared.reasoning_effort import ReasoningEffort +from ....types.chat.chat_completion_chunk import ChatCompletionChunk +from ....types.chat.chat_completion_deleted import ChatCompletionDeleted +from ....types.chat.chat_completion_tool_param import ChatCompletionToolParam +from ....types.chat.chat_completion_audio_param import ChatCompletionAudioParam +from ....types.chat.chat_completion_message_param import ChatCompletionMessageParam +from ....types.chat.chat_completion_stream_options_param import ChatCompletionStreamOptionsParam +from ....types.chat.chat_completion_prediction_content_param import ChatCompletionPredictionContentParam +from ....types.chat.chat_completion_tool_choice_option_param import ChatCompletionToolChoiceOptionParam + +__all__ = ["Completions", "AsyncCompletions"] + + +class Completions(SyncAPIResource): + @cached_property + def messages(self) -> Messages: + return Messages(self._client) + + @cached_property + def with_raw_response(self) -> CompletionsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return CompletionsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> CompletionsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return CompletionsWithStreamingResponse(self) + + @overload + def create( + self, + *, + messages: Iterable[ChatCompletionMessageParam], + model: Union[str, ChatModel], + audio: Optional[ChatCompletionAudioParam] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN, + functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[bool] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + modalities: Optional[List[Literal["text", "audio"]]] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + prediction: Optional[ChatCompletionPredictionContentParam] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: completion_create_params.ResponseFormat | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN, + tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN, + top_logprobs: Optional[int] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + web_search_options: completion_create_params.WebSearchOptions | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ChatCompletion: + """ + **Starting a new project?** We recommend trying + [Responses](https://platform.openai.com/docs/api-reference/responses) to take + advantage of the latest OpenAI platform features. Compare + [Chat Completions with Responses](https://platform.openai.com/docs/guides/responses-vs-chat-completions?api-mode=responses). + + --- + + Creates a model response for the given chat conversation. Learn more in the + [text generation](https://platform.openai.com/docs/guides/text-generation), + [vision](https://platform.openai.com/docs/guides/vision), and + [audio](https://platform.openai.com/docs/guides/audio) guides. + + Parameter support can differ depending on the model used to generate the + response, particularly for newer reasoning models. Parameters that are only + supported for reasoning models are noted below. For the current state of + unsupported parameters in reasoning models, + [refer to the reasoning guide](https://platform.openai.com/docs/guides/reasoning). + + Args: + messages: A list of messages comprising the conversation so far. Depending on the + [model](https://platform.openai.com/docs/models) you use, different message + types (modalities) are supported, like + [text](https://platform.openai.com/docs/guides/text-generation), + [images](https://platform.openai.com/docs/guides/vision), and + [audio](https://platform.openai.com/docs/guides/audio). + + model: Model ID used to generate the response, like `gpt-4o` or `o1`. OpenAI offers a + wide range of models with different capabilities, performance characteristics, + and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + + audio: Parameters for audio output. Required when audio output is requested with + `modalities: ["audio"]`. + [Learn more](https://platform.openai.com/docs/guides/audio). + + frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their + existing frequency in the text so far, decreasing the model's likelihood to + repeat the same line verbatim. + + function_call: Deprecated in favor of `tool_choice`. + + Controls which (if any) function is called by the model. + + `none` means the model will not call a function and instead generates a message. + + `auto` means the model can pick between generating a message or calling a + function. + + Specifying a particular function via `{"name": "my_function"}` forces the model + to call that function. + + `none` is the default when no functions are present. `auto` is the default if + functions are present. + + functions: Deprecated in favor of `tools`. + + A list of functions the model may generate JSON inputs for. + + logit_bias: Modify the likelihood of specified tokens appearing in the completion. + + Accepts a JSON object that maps tokens (specified by their token ID in the + tokenizer) to an associated bias value from -100 to 100. Mathematically, the + bias is added to the logits generated by the model prior to sampling. The exact + effect will vary per model, but values between -1 and 1 should decrease or + increase likelihood of selection; values like -100 or 100 should result in a ban + or exclusive selection of the relevant token. + + logprobs: Whether to return log probabilities of the output tokens or not. If true, + returns the log probabilities of each output token returned in the `content` of + `message`. + + max_completion_tokens: An upper bound for the number of tokens that can be generated for a completion, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + + max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the chat + completion. This value can be used to control + [costs](https://openai.com/api/pricing/) for text generated via API. + + This value is now deprecated in favor of `max_completion_tokens`, and is not + compatible with + [o1 series models](https://platform.openai.com/docs/guides/reasoning). + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + modalities: Output types that you would like the model to generate. Most models are capable + of generating text, which is the default: + + `["text"]` + + The `gpt-4o-audio-preview` model can also be used to + [generate audio](https://platform.openai.com/docs/guides/audio). To request that + this model generate both text and audio responses, you can use: + + `["text", "audio"]` + + n: How many chat completion choices to generate for each input message. Note that + you will be charged based on the number of generated tokens across all of the + choices. Keep `n` as `1` to minimize costs. + + parallel_tool_calls: Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + + prediction: Static predicted output content, such as the content of a text file that is + being regenerated. + + presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on + whether they appear in the text so far, increasing the model's likelihood to + talk about new topics. + + reasoning_effort: **o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + + response_format: An object specifying the format that the model must output. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables the older JSON mode, which + ensures the message the model generates is valid JSON. Using `json_schema` is + preferred for models that support it. + + seed: This feature is in Beta. If specified, our system will make a best effort to + sample deterministically, such that repeated requests with the same `seed` and + parameters should return the same result. Determinism is not guaranteed, and you + should refer to the `system_fingerprint` response parameter to monitor changes + in the backend. + + service_tier: Specifies the latency tier to use for processing the request. This parameter is + relevant for customers subscribed to the scale tier service: + + - If set to 'auto', and the Project is Scale tier enabled, the system will + utilize scale tier credits until they are exhausted. + - If set to 'auto', and the Project is not Scale tier enabled, the request will + be processed using the default service tier with a lower uptime SLA and no + latency guarentee. + - If set to 'default', the request will be processed using the default service + tier with a lower uptime SLA and no latency guarentee. + - When not set, the default behavior is 'auto'. + + When this parameter is set, the response body will include the `service_tier` + utilized. + + stop: Up to 4 sequences where the API will stop generating further tokens. The + returned text will not contain the stop sequence. + + store: Whether or not to store the output of this chat completion request for use in + our [model distillation](https://platform.openai.com/docs/guides/distillation) + or [evals](https://platform.openai.com/docs/guides/evals) products. + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/chat/streaming) + for more information, along with the + [streaming responses](https://platform.openai.com/docs/guides/streaming-responses) + guide for more information on how to handle the streaming events. + + stream_options: Options for streaming response. Only set this when you set `stream: true`. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. We generally recommend altering this or `top_p` but + not both. + + tool_choice: Controls which (if any) tool is called by the model. `none` means the model will + not call any tool and instead generates a message. `auto` means the model can + pick between generating a message or calling one or more tools. `required` means + the model must call one or more tools. Specifying a particular tool via + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + + `none` is the default when no tools are present. `auto` is the default if tools + are present. + + tools: A list of tools the model may call. Currently, only functions are supported as a + tool. Use this to provide a list of functions the model may generate JSON inputs + for. A max of 128 functions are supported. + + top_logprobs: An integer between 0 and 20 specifying the number of most likely tokens to + return at each token position, each with an associated log probability. + `logprobs` must be set to `true` if this parameter is used. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + web_search_options: This tool searches the web for relevant results to use in a response. Learn more + about the + [web search tool](https://platform.openai.com/docs/guides/tools-web-search?api-mode=chat). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + def create( + self, + *, + messages: Iterable[ChatCompletionMessageParam], + model: Union[str, ChatModel], + stream: Literal[True], + audio: Optional[ChatCompletionAudioParam] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN, + functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[bool] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + modalities: Optional[List[Literal["text", "audio"]]] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + prediction: Optional[ChatCompletionPredictionContentParam] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: completion_create_params.ResponseFormat | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN, + tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN, + top_logprobs: Optional[int] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + web_search_options: completion_create_params.WebSearchOptions | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Stream[ChatCompletionChunk]: + """ + **Starting a new project?** We recommend trying + [Responses](https://platform.openai.com/docs/api-reference/responses) to take + advantage of the latest OpenAI platform features. Compare + [Chat Completions with Responses](https://platform.openai.com/docs/guides/responses-vs-chat-completions?api-mode=responses). + + --- + + Creates a model response for the given chat conversation. Learn more in the + [text generation](https://platform.openai.com/docs/guides/text-generation), + [vision](https://platform.openai.com/docs/guides/vision), and + [audio](https://platform.openai.com/docs/guides/audio) guides. + + Parameter support can differ depending on the model used to generate the + response, particularly for newer reasoning models. Parameters that are only + supported for reasoning models are noted below. For the current state of + unsupported parameters in reasoning models, + [refer to the reasoning guide](https://platform.openai.com/docs/guides/reasoning). + + Args: + messages: A list of messages comprising the conversation so far. Depending on the + [model](https://platform.openai.com/docs/models) you use, different message + types (modalities) are supported, like + [text](https://platform.openai.com/docs/guides/text-generation), + [images](https://platform.openai.com/docs/guides/vision), and + [audio](https://platform.openai.com/docs/guides/audio). + + model: Model ID used to generate the response, like `gpt-4o` or `o1`. OpenAI offers a + wide range of models with different capabilities, performance characteristics, + and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/chat/streaming) + for more information, along with the + [streaming responses](https://platform.openai.com/docs/guides/streaming-responses) + guide for more information on how to handle the streaming events. + + audio: Parameters for audio output. Required when audio output is requested with + `modalities: ["audio"]`. + [Learn more](https://platform.openai.com/docs/guides/audio). + + frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their + existing frequency in the text so far, decreasing the model's likelihood to + repeat the same line verbatim. + + function_call: Deprecated in favor of `tool_choice`. + + Controls which (if any) function is called by the model. + + `none` means the model will not call a function and instead generates a message. + + `auto` means the model can pick between generating a message or calling a + function. + + Specifying a particular function via `{"name": "my_function"}` forces the model + to call that function. + + `none` is the default when no functions are present. `auto` is the default if + functions are present. + + functions: Deprecated in favor of `tools`. + + A list of functions the model may generate JSON inputs for. + + logit_bias: Modify the likelihood of specified tokens appearing in the completion. + + Accepts a JSON object that maps tokens (specified by their token ID in the + tokenizer) to an associated bias value from -100 to 100. Mathematically, the + bias is added to the logits generated by the model prior to sampling. The exact + effect will vary per model, but values between -1 and 1 should decrease or + increase likelihood of selection; values like -100 or 100 should result in a ban + or exclusive selection of the relevant token. + + logprobs: Whether to return log probabilities of the output tokens or not. If true, + returns the log probabilities of each output token returned in the `content` of + `message`. + + max_completion_tokens: An upper bound for the number of tokens that can be generated for a completion, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + + max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the chat + completion. This value can be used to control + [costs](https://openai.com/api/pricing/) for text generated via API. + + This value is now deprecated in favor of `max_completion_tokens`, and is not + compatible with + [o1 series models](https://platform.openai.com/docs/guides/reasoning). + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + modalities: Output types that you would like the model to generate. Most models are capable + of generating text, which is the default: + + `["text"]` + + The `gpt-4o-audio-preview` model can also be used to + [generate audio](https://platform.openai.com/docs/guides/audio). To request that + this model generate both text and audio responses, you can use: + + `["text", "audio"]` + + n: How many chat completion choices to generate for each input message. Note that + you will be charged based on the number of generated tokens across all of the + choices. Keep `n` as `1` to minimize costs. + + parallel_tool_calls: Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + + prediction: Static predicted output content, such as the content of a text file that is + being regenerated. + + presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on + whether they appear in the text so far, increasing the model's likelihood to + talk about new topics. + + reasoning_effort: **o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + + response_format: An object specifying the format that the model must output. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables the older JSON mode, which + ensures the message the model generates is valid JSON. Using `json_schema` is + preferred for models that support it. + + seed: This feature is in Beta. If specified, our system will make a best effort to + sample deterministically, such that repeated requests with the same `seed` and + parameters should return the same result. Determinism is not guaranteed, and you + should refer to the `system_fingerprint` response parameter to monitor changes + in the backend. + + service_tier: Specifies the latency tier to use for processing the request. This parameter is + relevant for customers subscribed to the scale tier service: + + - If set to 'auto', and the Project is Scale tier enabled, the system will + utilize scale tier credits until they are exhausted. + - If set to 'auto', and the Project is not Scale tier enabled, the request will + be processed using the default service tier with a lower uptime SLA and no + latency guarentee. + - If set to 'default', the request will be processed using the default service + tier with a lower uptime SLA and no latency guarentee. + - When not set, the default behavior is 'auto'. + + When this parameter is set, the response body will include the `service_tier` + utilized. + + stop: Up to 4 sequences where the API will stop generating further tokens. The + returned text will not contain the stop sequence. + + store: Whether or not to store the output of this chat completion request for use in + our [model distillation](https://platform.openai.com/docs/guides/distillation) + or [evals](https://platform.openai.com/docs/guides/evals) products. + + stream_options: Options for streaming response. Only set this when you set `stream: true`. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. We generally recommend altering this or `top_p` but + not both. + + tool_choice: Controls which (if any) tool is called by the model. `none` means the model will + not call any tool and instead generates a message. `auto` means the model can + pick between generating a message or calling one or more tools. `required` means + the model must call one or more tools. Specifying a particular tool via + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + + `none` is the default when no tools are present. `auto` is the default if tools + are present. + + tools: A list of tools the model may call. Currently, only functions are supported as a + tool. Use this to provide a list of functions the model may generate JSON inputs + for. A max of 128 functions are supported. + + top_logprobs: An integer between 0 and 20 specifying the number of most likely tokens to + return at each token position, each with an associated log probability. + `logprobs` must be set to `true` if this parameter is used. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + web_search_options: This tool searches the web for relevant results to use in a response. Learn more + about the + [web search tool](https://platform.openai.com/docs/guides/tools-web-search?api-mode=chat). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + def create( + self, + *, + messages: Iterable[ChatCompletionMessageParam], + model: Union[str, ChatModel], + stream: bool, + audio: Optional[ChatCompletionAudioParam] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN, + functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[bool] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + modalities: Optional[List[Literal["text", "audio"]]] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + prediction: Optional[ChatCompletionPredictionContentParam] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: completion_create_params.ResponseFormat | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN, + tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN, + top_logprobs: Optional[int] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + web_search_options: completion_create_params.WebSearchOptions | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ChatCompletion | Stream[ChatCompletionChunk]: + """ + **Starting a new project?** We recommend trying + [Responses](https://platform.openai.com/docs/api-reference/responses) to take + advantage of the latest OpenAI platform features. Compare + [Chat Completions with Responses](https://platform.openai.com/docs/guides/responses-vs-chat-completions?api-mode=responses). + + --- + + Creates a model response for the given chat conversation. Learn more in the + [text generation](https://platform.openai.com/docs/guides/text-generation), + [vision](https://platform.openai.com/docs/guides/vision), and + [audio](https://platform.openai.com/docs/guides/audio) guides. + + Parameter support can differ depending on the model used to generate the + response, particularly for newer reasoning models. Parameters that are only + supported for reasoning models are noted below. For the current state of + unsupported parameters in reasoning models, + [refer to the reasoning guide](https://platform.openai.com/docs/guides/reasoning). + + Args: + messages: A list of messages comprising the conversation so far. Depending on the + [model](https://platform.openai.com/docs/models) you use, different message + types (modalities) are supported, like + [text](https://platform.openai.com/docs/guides/text-generation), + [images](https://platform.openai.com/docs/guides/vision), and + [audio](https://platform.openai.com/docs/guides/audio). + + model: Model ID used to generate the response, like `gpt-4o` or `o1`. OpenAI offers a + wide range of models with different capabilities, performance characteristics, + and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/chat/streaming) + for more information, along with the + [streaming responses](https://platform.openai.com/docs/guides/streaming-responses) + guide for more information on how to handle the streaming events. + + audio: Parameters for audio output. Required when audio output is requested with + `modalities: ["audio"]`. + [Learn more](https://platform.openai.com/docs/guides/audio). + + frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their + existing frequency in the text so far, decreasing the model's likelihood to + repeat the same line verbatim. + + function_call: Deprecated in favor of `tool_choice`. + + Controls which (if any) function is called by the model. + + `none` means the model will not call a function and instead generates a message. + + `auto` means the model can pick between generating a message or calling a + function. + + Specifying a particular function via `{"name": "my_function"}` forces the model + to call that function. + + `none` is the default when no functions are present. `auto` is the default if + functions are present. + + functions: Deprecated in favor of `tools`. + + A list of functions the model may generate JSON inputs for. + + logit_bias: Modify the likelihood of specified tokens appearing in the completion. + + Accepts a JSON object that maps tokens (specified by their token ID in the + tokenizer) to an associated bias value from -100 to 100. Mathematically, the + bias is added to the logits generated by the model prior to sampling. The exact + effect will vary per model, but values between -1 and 1 should decrease or + increase likelihood of selection; values like -100 or 100 should result in a ban + or exclusive selection of the relevant token. + + logprobs: Whether to return log probabilities of the output tokens or not. If true, + returns the log probabilities of each output token returned in the `content` of + `message`. + + max_completion_tokens: An upper bound for the number of tokens that can be generated for a completion, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + + max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the chat + completion. This value can be used to control + [costs](https://openai.com/api/pricing/) for text generated via API. + + This value is now deprecated in favor of `max_completion_tokens`, and is not + compatible with + [o1 series models](https://platform.openai.com/docs/guides/reasoning). + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + modalities: Output types that you would like the model to generate. Most models are capable + of generating text, which is the default: + + `["text"]` + + The `gpt-4o-audio-preview` model can also be used to + [generate audio](https://platform.openai.com/docs/guides/audio). To request that + this model generate both text and audio responses, you can use: + + `["text", "audio"]` + + n: How many chat completion choices to generate for each input message. Note that + you will be charged based on the number of generated tokens across all of the + choices. Keep `n` as `1` to minimize costs. + + parallel_tool_calls: Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + + prediction: Static predicted output content, such as the content of a text file that is + being regenerated. + + presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on + whether they appear in the text so far, increasing the model's likelihood to + talk about new topics. + + reasoning_effort: **o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + + response_format: An object specifying the format that the model must output. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables the older JSON mode, which + ensures the message the model generates is valid JSON. Using `json_schema` is + preferred for models that support it. + + seed: This feature is in Beta. If specified, our system will make a best effort to + sample deterministically, such that repeated requests with the same `seed` and + parameters should return the same result. Determinism is not guaranteed, and you + should refer to the `system_fingerprint` response parameter to monitor changes + in the backend. + + service_tier: Specifies the latency tier to use for processing the request. This parameter is + relevant for customers subscribed to the scale tier service: + + - If set to 'auto', and the Project is Scale tier enabled, the system will + utilize scale tier credits until they are exhausted. + - If set to 'auto', and the Project is not Scale tier enabled, the request will + be processed using the default service tier with a lower uptime SLA and no + latency guarentee. + - If set to 'default', the request will be processed using the default service + tier with a lower uptime SLA and no latency guarentee. + - When not set, the default behavior is 'auto'. + + When this parameter is set, the response body will include the `service_tier` + utilized. + + stop: Up to 4 sequences where the API will stop generating further tokens. The + returned text will not contain the stop sequence. + + store: Whether or not to store the output of this chat completion request for use in + our [model distillation](https://platform.openai.com/docs/guides/distillation) + or [evals](https://platform.openai.com/docs/guides/evals) products. + + stream_options: Options for streaming response. Only set this when you set `stream: true`. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. We generally recommend altering this or `top_p` but + not both. + + tool_choice: Controls which (if any) tool is called by the model. `none` means the model will + not call any tool and instead generates a message. `auto` means the model can + pick between generating a message or calling one or more tools. `required` means + the model must call one or more tools. Specifying a particular tool via + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + + `none` is the default when no tools are present. `auto` is the default if tools + are present. + + tools: A list of tools the model may call. Currently, only functions are supported as a + tool. Use this to provide a list of functions the model may generate JSON inputs + for. A max of 128 functions are supported. + + top_logprobs: An integer between 0 and 20 specifying the number of most likely tokens to + return at each token position, each with an associated log probability. + `logprobs` must be set to `true` if this parameter is used. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + web_search_options: This tool searches the web for relevant results to use in a response. Learn more + about the + [web search tool](https://platform.openai.com/docs/guides/tools-web-search?api-mode=chat). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @required_args(["messages", "model"], ["messages", "model", "stream"]) + def create( + self, + *, + messages: Iterable[ChatCompletionMessageParam], + model: Union[str, ChatModel], + audio: Optional[ChatCompletionAudioParam] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN, + functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[bool] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + modalities: Optional[List[Literal["text", "audio"]]] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + prediction: Optional[ChatCompletionPredictionContentParam] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: completion_create_params.ResponseFormat | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN, + tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN, + top_logprobs: Optional[int] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + web_search_options: completion_create_params.WebSearchOptions | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ChatCompletion | Stream[ChatCompletionChunk]: + validate_response_format(response_format) + return self._post( + "/chat/completions", + body=maybe_transform( + { + "messages": messages, + "model": model, + "audio": audio, + "frequency_penalty": frequency_penalty, + "function_call": function_call, + "functions": functions, + "logit_bias": logit_bias, + "logprobs": logprobs, + "max_completion_tokens": max_completion_tokens, + "max_tokens": max_tokens, + "metadata": metadata, + "modalities": modalities, + "n": n, + "parallel_tool_calls": parallel_tool_calls, + "prediction": prediction, + "presence_penalty": presence_penalty, + "reasoning_effort": reasoning_effort, + "response_format": response_format, + "seed": seed, + "service_tier": service_tier, + "stop": stop, + "store": store, + "stream": stream, + "stream_options": stream_options, + "temperature": temperature, + "tool_choice": tool_choice, + "tools": tools, + "top_logprobs": top_logprobs, + "top_p": top_p, + "user": user, + "web_search_options": web_search_options, + }, + completion_create_params.CompletionCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ChatCompletion, + stream=stream or False, + stream_cls=Stream[ChatCompletionChunk], + ) + + def retrieve( + self, + completion_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ChatCompletion: + """Get a stored chat completion. + + Only Chat Completions that have been created with + the `store` parameter set to `true` will be returned. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not completion_id: + raise ValueError(f"Expected a non-empty value for `completion_id` but received {completion_id!r}") + return self._get( + f"/chat/completions/{completion_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ChatCompletion, + ) + + def update( + self, + completion_id: str, + *, + metadata: Optional[Metadata], + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ChatCompletion: + """Modify a stored chat completion. + + Only Chat Completions that have been created + with the `store` parameter set to `true` can be modified. Currently, the only + supported modification is to update the `metadata` field. + + Args: + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not completion_id: + raise ValueError(f"Expected a non-empty value for `completion_id` but received {completion_id!r}") + return self._post( + f"/chat/completions/{completion_id}", + body=maybe_transform({"metadata": metadata}, completion_update_params.CompletionUpdateParams), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ChatCompletion, + ) + + def list( + self, + *, + after: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: str | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncCursorPage[ChatCompletion]: + """List stored Chat Completions. + + Only Chat Completions that have been stored with + the `store` parameter set to `true` will be returned. + + Args: + after: Identifier for the last chat completion from the previous pagination request. + + limit: Number of Chat Completions to retrieve. + + metadata: + A list of metadata keys to filter the Chat Completions by. Example: + + `metadata[key1]=value1&metadata[key2]=value2` + + model: The model used to generate the Chat Completions. + + order: Sort order for Chat Completions by timestamp. Use `asc` for ascending order or + `desc` for descending order. Defaults to `asc`. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._get_api_list( + "/chat/completions", + page=SyncCursorPage[ChatCompletion], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "limit": limit, + "metadata": metadata, + "model": model, + "order": order, + }, + completion_list_params.CompletionListParams, + ), + ), + model=ChatCompletion, + ) + + def delete( + self, + completion_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ChatCompletionDeleted: + """Delete a stored chat completion. + + Only Chat Completions that have been created + with the `store` parameter set to `true` can be deleted. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not completion_id: + raise ValueError(f"Expected a non-empty value for `completion_id` but received {completion_id!r}") + return self._delete( + f"/chat/completions/{completion_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ChatCompletionDeleted, + ) + + +class AsyncCompletions(AsyncAPIResource): + @cached_property + def messages(self) -> AsyncMessages: + return AsyncMessages(self._client) + + @cached_property + def with_raw_response(self) -> AsyncCompletionsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncCompletionsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncCompletionsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncCompletionsWithStreamingResponse(self) + + @overload + async def create( + self, + *, + messages: Iterable[ChatCompletionMessageParam], + model: Union[str, ChatModel], + audio: Optional[ChatCompletionAudioParam] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN, + functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[bool] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + modalities: Optional[List[Literal["text", "audio"]]] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + prediction: Optional[ChatCompletionPredictionContentParam] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: completion_create_params.ResponseFormat | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN, + tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN, + top_logprobs: Optional[int] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + web_search_options: completion_create_params.WebSearchOptions | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ChatCompletion: + """ + **Starting a new project?** We recommend trying + [Responses](https://platform.openai.com/docs/api-reference/responses) to take + advantage of the latest OpenAI platform features. Compare + [Chat Completions with Responses](https://platform.openai.com/docs/guides/responses-vs-chat-completions?api-mode=responses). + + --- + + Creates a model response for the given chat conversation. Learn more in the + [text generation](https://platform.openai.com/docs/guides/text-generation), + [vision](https://platform.openai.com/docs/guides/vision), and + [audio](https://platform.openai.com/docs/guides/audio) guides. + + Parameter support can differ depending on the model used to generate the + response, particularly for newer reasoning models. Parameters that are only + supported for reasoning models are noted below. For the current state of + unsupported parameters in reasoning models, + [refer to the reasoning guide](https://platform.openai.com/docs/guides/reasoning). + + Args: + messages: A list of messages comprising the conversation so far. Depending on the + [model](https://platform.openai.com/docs/models) you use, different message + types (modalities) are supported, like + [text](https://platform.openai.com/docs/guides/text-generation), + [images](https://platform.openai.com/docs/guides/vision), and + [audio](https://platform.openai.com/docs/guides/audio). + + model: Model ID used to generate the response, like `gpt-4o` or `o1`. OpenAI offers a + wide range of models with different capabilities, performance characteristics, + and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + + audio: Parameters for audio output. Required when audio output is requested with + `modalities: ["audio"]`. + [Learn more](https://platform.openai.com/docs/guides/audio). + + frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their + existing frequency in the text so far, decreasing the model's likelihood to + repeat the same line verbatim. + + function_call: Deprecated in favor of `tool_choice`. + + Controls which (if any) function is called by the model. + + `none` means the model will not call a function and instead generates a message. + + `auto` means the model can pick between generating a message or calling a + function. + + Specifying a particular function via `{"name": "my_function"}` forces the model + to call that function. + + `none` is the default when no functions are present. `auto` is the default if + functions are present. + + functions: Deprecated in favor of `tools`. + + A list of functions the model may generate JSON inputs for. + + logit_bias: Modify the likelihood of specified tokens appearing in the completion. + + Accepts a JSON object that maps tokens (specified by their token ID in the + tokenizer) to an associated bias value from -100 to 100. Mathematically, the + bias is added to the logits generated by the model prior to sampling. The exact + effect will vary per model, but values between -1 and 1 should decrease or + increase likelihood of selection; values like -100 or 100 should result in a ban + or exclusive selection of the relevant token. + + logprobs: Whether to return log probabilities of the output tokens or not. If true, + returns the log probabilities of each output token returned in the `content` of + `message`. + + max_completion_tokens: An upper bound for the number of tokens that can be generated for a completion, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + + max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the chat + completion. This value can be used to control + [costs](https://openai.com/api/pricing/) for text generated via API. + + This value is now deprecated in favor of `max_completion_tokens`, and is not + compatible with + [o1 series models](https://platform.openai.com/docs/guides/reasoning). + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + modalities: Output types that you would like the model to generate. Most models are capable + of generating text, which is the default: + + `["text"]` + + The `gpt-4o-audio-preview` model can also be used to + [generate audio](https://platform.openai.com/docs/guides/audio). To request that + this model generate both text and audio responses, you can use: + + `["text", "audio"]` + + n: How many chat completion choices to generate for each input message. Note that + you will be charged based on the number of generated tokens across all of the + choices. Keep `n` as `1` to minimize costs. + + parallel_tool_calls: Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + + prediction: Static predicted output content, such as the content of a text file that is + being regenerated. + + presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on + whether they appear in the text so far, increasing the model's likelihood to + talk about new topics. + + reasoning_effort: **o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + + response_format: An object specifying the format that the model must output. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables the older JSON mode, which + ensures the message the model generates is valid JSON. Using `json_schema` is + preferred for models that support it. + + seed: This feature is in Beta. If specified, our system will make a best effort to + sample deterministically, such that repeated requests with the same `seed` and + parameters should return the same result. Determinism is not guaranteed, and you + should refer to the `system_fingerprint` response parameter to monitor changes + in the backend. + + service_tier: Specifies the latency tier to use for processing the request. This parameter is + relevant for customers subscribed to the scale tier service: + + - If set to 'auto', and the Project is Scale tier enabled, the system will + utilize scale tier credits until they are exhausted. + - If set to 'auto', and the Project is not Scale tier enabled, the request will + be processed using the default service tier with a lower uptime SLA and no + latency guarentee. + - If set to 'default', the request will be processed using the default service + tier with a lower uptime SLA and no latency guarentee. + - When not set, the default behavior is 'auto'. + + When this parameter is set, the response body will include the `service_tier` + utilized. + + stop: Up to 4 sequences where the API will stop generating further tokens. The + returned text will not contain the stop sequence. + + store: Whether or not to store the output of this chat completion request for use in + our [model distillation](https://platform.openai.com/docs/guides/distillation) + or [evals](https://platform.openai.com/docs/guides/evals) products. + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/chat/streaming) + for more information, along with the + [streaming responses](https://platform.openai.com/docs/guides/streaming-responses) + guide for more information on how to handle the streaming events. + + stream_options: Options for streaming response. Only set this when you set `stream: true`. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. We generally recommend altering this or `top_p` but + not both. + + tool_choice: Controls which (if any) tool is called by the model. `none` means the model will + not call any tool and instead generates a message. `auto` means the model can + pick between generating a message or calling one or more tools. `required` means + the model must call one or more tools. Specifying a particular tool via + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + + `none` is the default when no tools are present. `auto` is the default if tools + are present. + + tools: A list of tools the model may call. Currently, only functions are supported as a + tool. Use this to provide a list of functions the model may generate JSON inputs + for. A max of 128 functions are supported. + + top_logprobs: An integer between 0 and 20 specifying the number of most likely tokens to + return at each token position, each with an associated log probability. + `logprobs` must be set to `true` if this parameter is used. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + web_search_options: This tool searches the web for relevant results to use in a response. Learn more + about the + [web search tool](https://platform.openai.com/docs/guides/tools-web-search?api-mode=chat). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + async def create( + self, + *, + messages: Iterable[ChatCompletionMessageParam], + model: Union[str, ChatModel], + stream: Literal[True], + audio: Optional[ChatCompletionAudioParam] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN, + functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[bool] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + modalities: Optional[List[Literal["text", "audio"]]] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + prediction: Optional[ChatCompletionPredictionContentParam] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: completion_create_params.ResponseFormat | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN, + tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN, + top_logprobs: Optional[int] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + web_search_options: completion_create_params.WebSearchOptions | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncStream[ChatCompletionChunk]: + """ + **Starting a new project?** We recommend trying + [Responses](https://platform.openai.com/docs/api-reference/responses) to take + advantage of the latest OpenAI platform features. Compare + [Chat Completions with Responses](https://platform.openai.com/docs/guides/responses-vs-chat-completions?api-mode=responses). + + --- + + Creates a model response for the given chat conversation. Learn more in the + [text generation](https://platform.openai.com/docs/guides/text-generation), + [vision](https://platform.openai.com/docs/guides/vision), and + [audio](https://platform.openai.com/docs/guides/audio) guides. + + Parameter support can differ depending on the model used to generate the + response, particularly for newer reasoning models. Parameters that are only + supported for reasoning models are noted below. For the current state of + unsupported parameters in reasoning models, + [refer to the reasoning guide](https://platform.openai.com/docs/guides/reasoning). + + Args: + messages: A list of messages comprising the conversation so far. Depending on the + [model](https://platform.openai.com/docs/models) you use, different message + types (modalities) are supported, like + [text](https://platform.openai.com/docs/guides/text-generation), + [images](https://platform.openai.com/docs/guides/vision), and + [audio](https://platform.openai.com/docs/guides/audio). + + model: Model ID used to generate the response, like `gpt-4o` or `o1`. OpenAI offers a + wide range of models with different capabilities, performance characteristics, + and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/chat/streaming) + for more information, along with the + [streaming responses](https://platform.openai.com/docs/guides/streaming-responses) + guide for more information on how to handle the streaming events. + + audio: Parameters for audio output. Required when audio output is requested with + `modalities: ["audio"]`. + [Learn more](https://platform.openai.com/docs/guides/audio). + + frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their + existing frequency in the text so far, decreasing the model's likelihood to + repeat the same line verbatim. + + function_call: Deprecated in favor of `tool_choice`. + + Controls which (if any) function is called by the model. + + `none` means the model will not call a function and instead generates a message. + + `auto` means the model can pick between generating a message or calling a + function. + + Specifying a particular function via `{"name": "my_function"}` forces the model + to call that function. + + `none` is the default when no functions are present. `auto` is the default if + functions are present. + + functions: Deprecated in favor of `tools`. + + A list of functions the model may generate JSON inputs for. + + logit_bias: Modify the likelihood of specified tokens appearing in the completion. + + Accepts a JSON object that maps tokens (specified by their token ID in the + tokenizer) to an associated bias value from -100 to 100. Mathematically, the + bias is added to the logits generated by the model prior to sampling. The exact + effect will vary per model, but values between -1 and 1 should decrease or + increase likelihood of selection; values like -100 or 100 should result in a ban + or exclusive selection of the relevant token. + + logprobs: Whether to return log probabilities of the output tokens or not. If true, + returns the log probabilities of each output token returned in the `content` of + `message`. + + max_completion_tokens: An upper bound for the number of tokens that can be generated for a completion, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + + max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the chat + completion. This value can be used to control + [costs](https://openai.com/api/pricing/) for text generated via API. + + This value is now deprecated in favor of `max_completion_tokens`, and is not + compatible with + [o1 series models](https://platform.openai.com/docs/guides/reasoning). + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + modalities: Output types that you would like the model to generate. Most models are capable + of generating text, which is the default: + + `["text"]` + + The `gpt-4o-audio-preview` model can also be used to + [generate audio](https://platform.openai.com/docs/guides/audio). To request that + this model generate both text and audio responses, you can use: + + `["text", "audio"]` + + n: How many chat completion choices to generate for each input message. Note that + you will be charged based on the number of generated tokens across all of the + choices. Keep `n` as `1` to minimize costs. + + parallel_tool_calls: Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + + prediction: Static predicted output content, such as the content of a text file that is + being regenerated. + + presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on + whether they appear in the text so far, increasing the model's likelihood to + talk about new topics. + + reasoning_effort: **o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + + response_format: An object specifying the format that the model must output. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables the older JSON mode, which + ensures the message the model generates is valid JSON. Using `json_schema` is + preferred for models that support it. + + seed: This feature is in Beta. If specified, our system will make a best effort to + sample deterministically, such that repeated requests with the same `seed` and + parameters should return the same result. Determinism is not guaranteed, and you + should refer to the `system_fingerprint` response parameter to monitor changes + in the backend. + + service_tier: Specifies the latency tier to use for processing the request. This parameter is + relevant for customers subscribed to the scale tier service: + + - If set to 'auto', and the Project is Scale tier enabled, the system will + utilize scale tier credits until they are exhausted. + - If set to 'auto', and the Project is not Scale tier enabled, the request will + be processed using the default service tier with a lower uptime SLA and no + latency guarentee. + - If set to 'default', the request will be processed using the default service + tier with a lower uptime SLA and no latency guarentee. + - When not set, the default behavior is 'auto'. + + When this parameter is set, the response body will include the `service_tier` + utilized. + + stop: Up to 4 sequences where the API will stop generating further tokens. The + returned text will not contain the stop sequence. + + store: Whether or not to store the output of this chat completion request for use in + our [model distillation](https://platform.openai.com/docs/guides/distillation) + or [evals](https://platform.openai.com/docs/guides/evals) products. + + stream_options: Options for streaming response. Only set this when you set `stream: true`. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. We generally recommend altering this or `top_p` but + not both. + + tool_choice: Controls which (if any) tool is called by the model. `none` means the model will + not call any tool and instead generates a message. `auto` means the model can + pick between generating a message or calling one or more tools. `required` means + the model must call one or more tools. Specifying a particular tool via + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + + `none` is the default when no tools are present. `auto` is the default if tools + are present. + + tools: A list of tools the model may call. Currently, only functions are supported as a + tool. Use this to provide a list of functions the model may generate JSON inputs + for. A max of 128 functions are supported. + + top_logprobs: An integer between 0 and 20 specifying the number of most likely tokens to + return at each token position, each with an associated log probability. + `logprobs` must be set to `true` if this parameter is used. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + web_search_options: This tool searches the web for relevant results to use in a response. Learn more + about the + [web search tool](https://platform.openai.com/docs/guides/tools-web-search?api-mode=chat). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + async def create( + self, + *, + messages: Iterable[ChatCompletionMessageParam], + model: Union[str, ChatModel], + stream: bool, + audio: Optional[ChatCompletionAudioParam] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN, + functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[bool] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + modalities: Optional[List[Literal["text", "audio"]]] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + prediction: Optional[ChatCompletionPredictionContentParam] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: completion_create_params.ResponseFormat | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN, + tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN, + top_logprobs: Optional[int] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + web_search_options: completion_create_params.WebSearchOptions | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ChatCompletion | AsyncStream[ChatCompletionChunk]: + """ + **Starting a new project?** We recommend trying + [Responses](https://platform.openai.com/docs/api-reference/responses) to take + advantage of the latest OpenAI platform features. Compare + [Chat Completions with Responses](https://platform.openai.com/docs/guides/responses-vs-chat-completions?api-mode=responses). + + --- + + Creates a model response for the given chat conversation. Learn more in the + [text generation](https://platform.openai.com/docs/guides/text-generation), + [vision](https://platform.openai.com/docs/guides/vision), and + [audio](https://platform.openai.com/docs/guides/audio) guides. + + Parameter support can differ depending on the model used to generate the + response, particularly for newer reasoning models. Parameters that are only + supported for reasoning models are noted below. For the current state of + unsupported parameters in reasoning models, + [refer to the reasoning guide](https://platform.openai.com/docs/guides/reasoning). + + Args: + messages: A list of messages comprising the conversation so far. Depending on the + [model](https://platform.openai.com/docs/models) you use, different message + types (modalities) are supported, like + [text](https://platform.openai.com/docs/guides/text-generation), + [images](https://platform.openai.com/docs/guides/vision), and + [audio](https://platform.openai.com/docs/guides/audio). + + model: Model ID used to generate the response, like `gpt-4o` or `o1`. OpenAI offers a + wide range of models with different capabilities, performance characteristics, + and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/chat/streaming) + for more information, along with the + [streaming responses](https://platform.openai.com/docs/guides/streaming-responses) + guide for more information on how to handle the streaming events. + + audio: Parameters for audio output. Required when audio output is requested with + `modalities: ["audio"]`. + [Learn more](https://platform.openai.com/docs/guides/audio). + + frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their + existing frequency in the text so far, decreasing the model's likelihood to + repeat the same line verbatim. + + function_call: Deprecated in favor of `tool_choice`. + + Controls which (if any) function is called by the model. + + `none` means the model will not call a function and instead generates a message. + + `auto` means the model can pick between generating a message or calling a + function. + + Specifying a particular function via `{"name": "my_function"}` forces the model + to call that function. + + `none` is the default when no functions are present. `auto` is the default if + functions are present. + + functions: Deprecated in favor of `tools`. + + A list of functions the model may generate JSON inputs for. + + logit_bias: Modify the likelihood of specified tokens appearing in the completion. + + Accepts a JSON object that maps tokens (specified by their token ID in the + tokenizer) to an associated bias value from -100 to 100. Mathematically, the + bias is added to the logits generated by the model prior to sampling. The exact + effect will vary per model, but values between -1 and 1 should decrease or + increase likelihood of selection; values like -100 or 100 should result in a ban + or exclusive selection of the relevant token. + + logprobs: Whether to return log probabilities of the output tokens or not. If true, + returns the log probabilities of each output token returned in the `content` of + `message`. + + max_completion_tokens: An upper bound for the number of tokens that can be generated for a completion, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + + max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the chat + completion. This value can be used to control + [costs](https://openai.com/api/pricing/) for text generated via API. + + This value is now deprecated in favor of `max_completion_tokens`, and is not + compatible with + [o1 series models](https://platform.openai.com/docs/guides/reasoning). + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + modalities: Output types that you would like the model to generate. Most models are capable + of generating text, which is the default: + + `["text"]` + + The `gpt-4o-audio-preview` model can also be used to + [generate audio](https://platform.openai.com/docs/guides/audio). To request that + this model generate both text and audio responses, you can use: + + `["text", "audio"]` + + n: How many chat completion choices to generate for each input message. Note that + you will be charged based on the number of generated tokens across all of the + choices. Keep `n` as `1` to minimize costs. + + parallel_tool_calls: Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + + prediction: Static predicted output content, such as the content of a text file that is + being regenerated. + + presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on + whether they appear in the text so far, increasing the model's likelihood to + talk about new topics. + + reasoning_effort: **o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + + response_format: An object specifying the format that the model must output. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables the older JSON mode, which + ensures the message the model generates is valid JSON. Using `json_schema` is + preferred for models that support it. + + seed: This feature is in Beta. If specified, our system will make a best effort to + sample deterministically, such that repeated requests with the same `seed` and + parameters should return the same result. Determinism is not guaranteed, and you + should refer to the `system_fingerprint` response parameter to monitor changes + in the backend. + + service_tier: Specifies the latency tier to use for processing the request. This parameter is + relevant for customers subscribed to the scale tier service: + + - If set to 'auto', and the Project is Scale tier enabled, the system will + utilize scale tier credits until they are exhausted. + - If set to 'auto', and the Project is not Scale tier enabled, the request will + be processed using the default service tier with a lower uptime SLA and no + latency guarentee. + - If set to 'default', the request will be processed using the default service + tier with a lower uptime SLA and no latency guarentee. + - When not set, the default behavior is 'auto'. + + When this parameter is set, the response body will include the `service_tier` + utilized. + + stop: Up to 4 sequences where the API will stop generating further tokens. The + returned text will not contain the stop sequence. + + store: Whether or not to store the output of this chat completion request for use in + our [model distillation](https://platform.openai.com/docs/guides/distillation) + or [evals](https://platform.openai.com/docs/guides/evals) products. + + stream_options: Options for streaming response. Only set this when you set `stream: true`. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. We generally recommend altering this or `top_p` but + not both. + + tool_choice: Controls which (if any) tool is called by the model. `none` means the model will + not call any tool and instead generates a message. `auto` means the model can + pick between generating a message or calling one or more tools. `required` means + the model must call one or more tools. Specifying a particular tool via + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + + `none` is the default when no tools are present. `auto` is the default if tools + are present. + + tools: A list of tools the model may call. Currently, only functions are supported as a + tool. Use this to provide a list of functions the model may generate JSON inputs + for. A max of 128 functions are supported. + + top_logprobs: An integer between 0 and 20 specifying the number of most likely tokens to + return at each token position, each with an associated log probability. + `logprobs` must be set to `true` if this parameter is used. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + web_search_options: This tool searches the web for relevant results to use in a response. Learn more + about the + [web search tool](https://platform.openai.com/docs/guides/tools-web-search?api-mode=chat). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @required_args(["messages", "model"], ["messages", "model", "stream"]) + async def create( + self, + *, + messages: Iterable[ChatCompletionMessageParam], + model: Union[str, ChatModel], + audio: Optional[ChatCompletionAudioParam] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN, + functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[bool] | NotGiven = NOT_GIVEN, + max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + modalities: Optional[List[Literal["text", "audio"]]] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + parallel_tool_calls: bool | NotGiven = NOT_GIVEN, + prediction: Optional[ChatCompletionPredictionContentParam] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + reasoning_effort: Optional[ReasoningEffort] | NotGiven = NOT_GIVEN, + response_format: completion_create_params.ResponseFormat | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN, + tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN, + top_logprobs: Optional[int] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + web_search_options: completion_create_params.WebSearchOptions | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ChatCompletion | AsyncStream[ChatCompletionChunk]: + validate_response_format(response_format) + return await self._post( + "/chat/completions", + body=await async_maybe_transform( + { + "messages": messages, + "model": model, + "audio": audio, + "frequency_penalty": frequency_penalty, + "function_call": function_call, + "functions": functions, + "logit_bias": logit_bias, + "logprobs": logprobs, + "max_completion_tokens": max_completion_tokens, + "max_tokens": max_tokens, + "metadata": metadata, + "modalities": modalities, + "n": n, + "parallel_tool_calls": parallel_tool_calls, + "prediction": prediction, + "presence_penalty": presence_penalty, + "reasoning_effort": reasoning_effort, + "response_format": response_format, + "seed": seed, + "service_tier": service_tier, + "stop": stop, + "store": store, + "stream": stream, + "stream_options": stream_options, + "temperature": temperature, + "tool_choice": tool_choice, + "tools": tools, + "top_logprobs": top_logprobs, + "top_p": top_p, + "user": user, + "web_search_options": web_search_options, + }, + completion_create_params.CompletionCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ChatCompletion, + stream=stream or False, + stream_cls=AsyncStream[ChatCompletionChunk], + ) + + async def retrieve( + self, + completion_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ChatCompletion: + """Get a stored chat completion. + + Only Chat Completions that have been created with + the `store` parameter set to `true` will be returned. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not completion_id: + raise ValueError(f"Expected a non-empty value for `completion_id` but received {completion_id!r}") + return await self._get( + f"/chat/completions/{completion_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ChatCompletion, + ) + + async def update( + self, + completion_id: str, + *, + metadata: Optional[Metadata], + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ChatCompletion: + """Modify a stored chat completion. + + Only Chat Completions that have been created + with the `store` parameter set to `true` can be modified. Currently, the only + supported modification is to update the `metadata` field. + + Args: + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not completion_id: + raise ValueError(f"Expected a non-empty value for `completion_id` but received {completion_id!r}") + return await self._post( + f"/chat/completions/{completion_id}", + body=await async_maybe_transform({"metadata": metadata}, completion_update_params.CompletionUpdateParams), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ChatCompletion, + ) + + def list( + self, + *, + after: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + model: str | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[ChatCompletion, AsyncCursorPage[ChatCompletion]]: + """List stored Chat Completions. + + Only Chat Completions that have been stored with + the `store` parameter set to `true` will be returned. + + Args: + after: Identifier for the last chat completion from the previous pagination request. + + limit: Number of Chat Completions to retrieve. + + metadata: + A list of metadata keys to filter the Chat Completions by. Example: + + `metadata[key1]=value1&metadata[key2]=value2` + + model: The model used to generate the Chat Completions. + + order: Sort order for Chat Completions by timestamp. Use `asc` for ascending order or + `desc` for descending order. Defaults to `asc`. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._get_api_list( + "/chat/completions", + page=AsyncCursorPage[ChatCompletion], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "limit": limit, + "metadata": metadata, + "model": model, + "order": order, + }, + completion_list_params.CompletionListParams, + ), + ), + model=ChatCompletion, + ) + + async def delete( + self, + completion_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ChatCompletionDeleted: + """Delete a stored chat completion. + + Only Chat Completions that have been created + with the `store` parameter set to `true` can be deleted. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not completion_id: + raise ValueError(f"Expected a non-empty value for `completion_id` but received {completion_id!r}") + return await self._delete( + f"/chat/completions/{completion_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ChatCompletionDeleted, + ) + + +class CompletionsWithRawResponse: + def __init__(self, completions: Completions) -> None: + self._completions = completions + + self.create = _legacy_response.to_raw_response_wrapper( + completions.create, + ) + self.retrieve = _legacy_response.to_raw_response_wrapper( + completions.retrieve, + ) + self.update = _legacy_response.to_raw_response_wrapper( + completions.update, + ) + self.list = _legacy_response.to_raw_response_wrapper( + completions.list, + ) + self.delete = _legacy_response.to_raw_response_wrapper( + completions.delete, + ) + + @cached_property + def messages(self) -> MessagesWithRawResponse: + return MessagesWithRawResponse(self._completions.messages) + + +class AsyncCompletionsWithRawResponse: + def __init__(self, completions: AsyncCompletions) -> None: + self._completions = completions + + self.create = _legacy_response.async_to_raw_response_wrapper( + completions.create, + ) + self.retrieve = _legacy_response.async_to_raw_response_wrapper( + completions.retrieve, + ) + self.update = _legacy_response.async_to_raw_response_wrapper( + completions.update, + ) + self.list = _legacy_response.async_to_raw_response_wrapper( + completions.list, + ) + self.delete = _legacy_response.async_to_raw_response_wrapper( + completions.delete, + ) + + @cached_property + def messages(self) -> AsyncMessagesWithRawResponse: + return AsyncMessagesWithRawResponse(self._completions.messages) + + +class CompletionsWithStreamingResponse: + def __init__(self, completions: Completions) -> None: + self._completions = completions + + self.create = to_streamed_response_wrapper( + completions.create, + ) + self.retrieve = to_streamed_response_wrapper( + completions.retrieve, + ) + self.update = to_streamed_response_wrapper( + completions.update, + ) + self.list = to_streamed_response_wrapper( + completions.list, + ) + self.delete = to_streamed_response_wrapper( + completions.delete, + ) + + @cached_property + def messages(self) -> MessagesWithStreamingResponse: + return MessagesWithStreamingResponse(self._completions.messages) + + +class AsyncCompletionsWithStreamingResponse: + def __init__(self, completions: AsyncCompletions) -> None: + self._completions = completions + + self.create = async_to_streamed_response_wrapper( + completions.create, + ) + self.retrieve = async_to_streamed_response_wrapper( + completions.retrieve, + ) + self.update = async_to_streamed_response_wrapper( + completions.update, + ) + self.list = async_to_streamed_response_wrapper( + completions.list, + ) + self.delete = async_to_streamed_response_wrapper( + completions.delete, + ) + + @cached_property + def messages(self) -> AsyncMessagesWithStreamingResponse: + return AsyncMessagesWithStreamingResponse(self._completions.messages) + + +def validate_response_format(response_format: object) -> None: + if inspect.isclass(response_format) and issubclass(response_format, pydantic.BaseModel): + raise TypeError( + "You tried to pass a `BaseModel` class to `chat.completions.create()`; You must use `beta.chat.completions.parse()` instead" + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/chat/completions/messages.py b/.venv/lib/python3.12/site-packages/openai/resources/chat/completions/messages.py new file mode 100644 index 00000000..fac15fba --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/chat/completions/messages.py @@ -0,0 +1,212 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal + +import httpx + +from .... import _legacy_response +from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from ...._utils import maybe_transform +from ...._compat import cached_property +from ...._resource import SyncAPIResource, AsyncAPIResource +from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ....pagination import SyncCursorPage, AsyncCursorPage +from ...._base_client import AsyncPaginator, make_request_options +from ....types.chat.completions import message_list_params +from ....types.chat.chat_completion_store_message import ChatCompletionStoreMessage + +__all__ = ["Messages", "AsyncMessages"] + + +class Messages(SyncAPIResource): + @cached_property + def with_raw_response(self) -> MessagesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return MessagesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> MessagesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return MessagesWithStreamingResponse(self) + + def list( + self, + completion_id: str, + *, + after: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncCursorPage[ChatCompletionStoreMessage]: + """Get the messages in a stored chat completion. + + Only Chat Completions that have + been created with the `store` parameter set to `true` will be returned. + + Args: + after: Identifier for the last message from the previous pagination request. + + limit: Number of messages to retrieve. + + order: Sort order for messages by timestamp. Use `asc` for ascending order or `desc` + for descending order. Defaults to `asc`. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not completion_id: + raise ValueError(f"Expected a non-empty value for `completion_id` but received {completion_id!r}") + return self._get_api_list( + f"/chat/completions/{completion_id}/messages", + page=SyncCursorPage[ChatCompletionStoreMessage], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "limit": limit, + "order": order, + }, + message_list_params.MessageListParams, + ), + ), + model=ChatCompletionStoreMessage, + ) + + +class AsyncMessages(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncMessagesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncMessagesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncMessagesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncMessagesWithStreamingResponse(self) + + def list( + self, + completion_id: str, + *, + after: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[ChatCompletionStoreMessage, AsyncCursorPage[ChatCompletionStoreMessage]]: + """Get the messages in a stored chat completion. + + Only Chat Completions that have + been created with the `store` parameter set to `true` will be returned. + + Args: + after: Identifier for the last message from the previous pagination request. + + limit: Number of messages to retrieve. + + order: Sort order for messages by timestamp. Use `asc` for ascending order or `desc` + for descending order. Defaults to `asc`. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not completion_id: + raise ValueError(f"Expected a non-empty value for `completion_id` but received {completion_id!r}") + return self._get_api_list( + f"/chat/completions/{completion_id}/messages", + page=AsyncCursorPage[ChatCompletionStoreMessage], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "limit": limit, + "order": order, + }, + message_list_params.MessageListParams, + ), + ), + model=ChatCompletionStoreMessage, + ) + + +class MessagesWithRawResponse: + def __init__(self, messages: Messages) -> None: + self._messages = messages + + self.list = _legacy_response.to_raw_response_wrapper( + messages.list, + ) + + +class AsyncMessagesWithRawResponse: + def __init__(self, messages: AsyncMessages) -> None: + self._messages = messages + + self.list = _legacy_response.async_to_raw_response_wrapper( + messages.list, + ) + + +class MessagesWithStreamingResponse: + def __init__(self, messages: Messages) -> None: + self._messages = messages + + self.list = to_streamed_response_wrapper( + messages.list, + ) + + +class AsyncMessagesWithStreamingResponse: + def __init__(self, messages: AsyncMessages) -> None: + self._messages = messages + + self.list = async_to_streamed_response_wrapper( + messages.list, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/completions.py b/.venv/lib/python3.12/site-packages/openai/resources/completions.py new file mode 100644 index 00000000..171f5093 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/completions.py @@ -0,0 +1,1148 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Dict, List, Union, Iterable, Optional +from typing_extensions import Literal, overload + +import httpx + +from .. import _legacy_response +from ..types import completion_create_params +from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from .._utils import ( + required_args, + maybe_transform, + async_maybe_transform, +) +from .._compat import cached_property +from .._resource import SyncAPIResource, AsyncAPIResource +from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from .._streaming import Stream, AsyncStream +from .._base_client import ( + make_request_options, +) +from ..types.completion import Completion +from ..types.chat.chat_completion_stream_options_param import ChatCompletionStreamOptionsParam + +__all__ = ["Completions", "AsyncCompletions"] + + +class Completions(SyncAPIResource): + @cached_property + def with_raw_response(self) -> CompletionsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return CompletionsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> CompletionsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return CompletionsWithStreamingResponse(self) + + @overload + def create( + self, + *, + model: Union[str, Literal["gpt-3.5-turbo-instruct", "davinci-002", "babbage-002"]], + prompt: Union[str, List[str], Iterable[int], Iterable[Iterable[int]], None], + best_of: Optional[int] | NotGiven = NOT_GIVEN, + echo: Optional[bool] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + suffix: Optional[str] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Completion: + """ + Creates a completion for the provided prompt and parameters. + + Args: + model: ID of the model to use. You can use the + [List models](https://platform.openai.com/docs/api-reference/models/list) API to + see all of your available models, or see our + [Model overview](https://platform.openai.com/docs/models) for descriptions of + them. + + prompt: The prompt(s) to generate completions for, encoded as a string, array of + strings, array of tokens, or array of token arrays. + + Note that <|endoftext|> is the document separator that the model sees during + training, so if a prompt is not specified the model will generate as if from the + beginning of a new document. + + best_of: Generates `best_of` completions server-side and returns the "best" (the one with + the highest log probability per token). Results cannot be streamed. + + When used with `n`, `best_of` controls the number of candidate completions and + `n` specifies how many to return – `best_of` must be greater than `n`. + + **Note:** Because this parameter generates many completions, it can quickly + consume your token quota. Use carefully and ensure that you have reasonable + settings for `max_tokens` and `stop`. + + echo: Echo back the prompt in addition to the completion + + frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their + existing frequency in the text so far, decreasing the model's likelihood to + repeat the same line verbatim. + + [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation) + + logit_bias: Modify the likelihood of specified tokens appearing in the completion. + + Accepts a JSON object that maps tokens (specified by their token ID in the GPT + tokenizer) to an associated bias value from -100 to 100. You can use this + [tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs. + Mathematically, the bias is added to the logits generated by the model prior to + sampling. The exact effect will vary per model, but values between -1 and 1 + should decrease or increase likelihood of selection; values like -100 or 100 + should result in a ban or exclusive selection of the relevant token. + + As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token + from being generated. + + logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as + well the chosen tokens. For example, if `logprobs` is 5, the API will return a + list of the 5 most likely tokens. The API will always return the `logprob` of + the sampled token, so there may be up to `logprobs+1` elements in the response. + + The maximum value for `logprobs` is 5. + + max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the + completion. + + The token count of your prompt plus `max_tokens` cannot exceed the model's + context length. + [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) + for counting tokens. + + n: How many completions to generate for each prompt. + + **Note:** Because this parameter generates many completions, it can quickly + consume your token quota. Use carefully and ensure that you have reasonable + settings for `max_tokens` and `stop`. + + presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on + whether they appear in the text so far, increasing the model's likelihood to + talk about new topics. + + [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation) + + seed: If specified, our system will make a best effort to sample deterministically, + such that repeated requests with the same `seed` and parameters should return + the same result. + + Determinism is not guaranteed, and you should refer to the `system_fingerprint` + response parameter to monitor changes in the backend. + + stop: Up to 4 sequences where the API will stop generating further tokens. The + returned text will not contain the stop sequence. + + stream: Whether to stream back partial progress. If set, tokens will be sent as + data-only + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format) + as they become available, with the stream terminated by a `data: [DONE]` + message. + [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions). + + stream_options: Options for streaming response. Only set this when you set `stream: true`. + + suffix: The suffix that comes after a completion of inserted text. + + This parameter is only supported for `gpt-3.5-turbo-instruct`. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + We generally recommend altering this or `top_p` but not both. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + def create( + self, + *, + model: Union[str, Literal["gpt-3.5-turbo-instruct", "davinci-002", "babbage-002"]], + prompt: Union[str, List[str], Iterable[int], Iterable[Iterable[int]], None], + stream: Literal[True], + best_of: Optional[int] | NotGiven = NOT_GIVEN, + echo: Optional[bool] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + suffix: Optional[str] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Stream[Completion]: + """ + Creates a completion for the provided prompt and parameters. + + Args: + model: ID of the model to use. You can use the + [List models](https://platform.openai.com/docs/api-reference/models/list) API to + see all of your available models, or see our + [Model overview](https://platform.openai.com/docs/models) for descriptions of + them. + + prompt: The prompt(s) to generate completions for, encoded as a string, array of + strings, array of tokens, or array of token arrays. + + Note that <|endoftext|> is the document separator that the model sees during + training, so if a prompt is not specified the model will generate as if from the + beginning of a new document. + + stream: Whether to stream back partial progress. If set, tokens will be sent as + data-only + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format) + as they become available, with the stream terminated by a `data: [DONE]` + message. + [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions). + + best_of: Generates `best_of` completions server-side and returns the "best" (the one with + the highest log probability per token). Results cannot be streamed. + + When used with `n`, `best_of` controls the number of candidate completions and + `n` specifies how many to return – `best_of` must be greater than `n`. + + **Note:** Because this parameter generates many completions, it can quickly + consume your token quota. Use carefully and ensure that you have reasonable + settings for `max_tokens` and `stop`. + + echo: Echo back the prompt in addition to the completion + + frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their + existing frequency in the text so far, decreasing the model's likelihood to + repeat the same line verbatim. + + [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation) + + logit_bias: Modify the likelihood of specified tokens appearing in the completion. + + Accepts a JSON object that maps tokens (specified by their token ID in the GPT + tokenizer) to an associated bias value from -100 to 100. You can use this + [tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs. + Mathematically, the bias is added to the logits generated by the model prior to + sampling. The exact effect will vary per model, but values between -1 and 1 + should decrease or increase likelihood of selection; values like -100 or 100 + should result in a ban or exclusive selection of the relevant token. + + As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token + from being generated. + + logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as + well the chosen tokens. For example, if `logprobs` is 5, the API will return a + list of the 5 most likely tokens. The API will always return the `logprob` of + the sampled token, so there may be up to `logprobs+1` elements in the response. + + The maximum value for `logprobs` is 5. + + max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the + completion. + + The token count of your prompt plus `max_tokens` cannot exceed the model's + context length. + [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) + for counting tokens. + + n: How many completions to generate for each prompt. + + **Note:** Because this parameter generates many completions, it can quickly + consume your token quota. Use carefully and ensure that you have reasonable + settings for `max_tokens` and `stop`. + + presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on + whether they appear in the text so far, increasing the model's likelihood to + talk about new topics. + + [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation) + + seed: If specified, our system will make a best effort to sample deterministically, + such that repeated requests with the same `seed` and parameters should return + the same result. + + Determinism is not guaranteed, and you should refer to the `system_fingerprint` + response parameter to monitor changes in the backend. + + stop: Up to 4 sequences where the API will stop generating further tokens. The + returned text will not contain the stop sequence. + + stream_options: Options for streaming response. Only set this when you set `stream: true`. + + suffix: The suffix that comes after a completion of inserted text. + + This parameter is only supported for `gpt-3.5-turbo-instruct`. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + We generally recommend altering this or `top_p` but not both. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + def create( + self, + *, + model: Union[str, Literal["gpt-3.5-turbo-instruct", "davinci-002", "babbage-002"]], + prompt: Union[str, List[str], Iterable[int], Iterable[Iterable[int]], None], + stream: bool, + best_of: Optional[int] | NotGiven = NOT_GIVEN, + echo: Optional[bool] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + suffix: Optional[str] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Completion | Stream[Completion]: + """ + Creates a completion for the provided prompt and parameters. + + Args: + model: ID of the model to use. You can use the + [List models](https://platform.openai.com/docs/api-reference/models/list) API to + see all of your available models, or see our + [Model overview](https://platform.openai.com/docs/models) for descriptions of + them. + + prompt: The prompt(s) to generate completions for, encoded as a string, array of + strings, array of tokens, or array of token arrays. + + Note that <|endoftext|> is the document separator that the model sees during + training, so if a prompt is not specified the model will generate as if from the + beginning of a new document. + + stream: Whether to stream back partial progress. If set, tokens will be sent as + data-only + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format) + as they become available, with the stream terminated by a `data: [DONE]` + message. + [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions). + + best_of: Generates `best_of` completions server-side and returns the "best" (the one with + the highest log probability per token). Results cannot be streamed. + + When used with `n`, `best_of` controls the number of candidate completions and + `n` specifies how many to return – `best_of` must be greater than `n`. + + **Note:** Because this parameter generates many completions, it can quickly + consume your token quota. Use carefully and ensure that you have reasonable + settings for `max_tokens` and `stop`. + + echo: Echo back the prompt in addition to the completion + + frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their + existing frequency in the text so far, decreasing the model's likelihood to + repeat the same line verbatim. + + [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation) + + logit_bias: Modify the likelihood of specified tokens appearing in the completion. + + Accepts a JSON object that maps tokens (specified by their token ID in the GPT + tokenizer) to an associated bias value from -100 to 100. You can use this + [tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs. + Mathematically, the bias is added to the logits generated by the model prior to + sampling. The exact effect will vary per model, but values between -1 and 1 + should decrease or increase likelihood of selection; values like -100 or 100 + should result in a ban or exclusive selection of the relevant token. + + As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token + from being generated. + + logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as + well the chosen tokens. For example, if `logprobs` is 5, the API will return a + list of the 5 most likely tokens. The API will always return the `logprob` of + the sampled token, so there may be up to `logprobs+1` elements in the response. + + The maximum value for `logprobs` is 5. + + max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the + completion. + + The token count of your prompt plus `max_tokens` cannot exceed the model's + context length. + [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) + for counting tokens. + + n: How many completions to generate for each prompt. + + **Note:** Because this parameter generates many completions, it can quickly + consume your token quota. Use carefully and ensure that you have reasonable + settings for `max_tokens` and `stop`. + + presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on + whether they appear in the text so far, increasing the model's likelihood to + talk about new topics. + + [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation) + + seed: If specified, our system will make a best effort to sample deterministically, + such that repeated requests with the same `seed` and parameters should return + the same result. + + Determinism is not guaranteed, and you should refer to the `system_fingerprint` + response parameter to monitor changes in the backend. + + stop: Up to 4 sequences where the API will stop generating further tokens. The + returned text will not contain the stop sequence. + + stream_options: Options for streaming response. Only set this when you set `stream: true`. + + suffix: The suffix that comes after a completion of inserted text. + + This parameter is only supported for `gpt-3.5-turbo-instruct`. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + We generally recommend altering this or `top_p` but not both. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @required_args(["model", "prompt"], ["model", "prompt", "stream"]) + def create( + self, + *, + model: Union[str, Literal["gpt-3.5-turbo-instruct", "davinci-002", "babbage-002"]], + prompt: Union[str, List[str], Iterable[int], Iterable[Iterable[int]], None], + best_of: Optional[int] | NotGiven = NOT_GIVEN, + echo: Optional[bool] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + suffix: Optional[str] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Completion | Stream[Completion]: + return self._post( + "/completions", + body=maybe_transform( + { + "model": model, + "prompt": prompt, + "best_of": best_of, + "echo": echo, + "frequency_penalty": frequency_penalty, + "logit_bias": logit_bias, + "logprobs": logprobs, + "max_tokens": max_tokens, + "n": n, + "presence_penalty": presence_penalty, + "seed": seed, + "stop": stop, + "stream": stream, + "stream_options": stream_options, + "suffix": suffix, + "temperature": temperature, + "top_p": top_p, + "user": user, + }, + completion_create_params.CompletionCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Completion, + stream=stream or False, + stream_cls=Stream[Completion], + ) + + +class AsyncCompletions(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncCompletionsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncCompletionsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncCompletionsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncCompletionsWithStreamingResponse(self) + + @overload + async def create( + self, + *, + model: Union[str, Literal["gpt-3.5-turbo-instruct", "davinci-002", "babbage-002"]], + prompt: Union[str, List[str], Iterable[int], Iterable[Iterable[int]], None], + best_of: Optional[int] | NotGiven = NOT_GIVEN, + echo: Optional[bool] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + suffix: Optional[str] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Completion: + """ + Creates a completion for the provided prompt and parameters. + + Args: + model: ID of the model to use. You can use the + [List models](https://platform.openai.com/docs/api-reference/models/list) API to + see all of your available models, or see our + [Model overview](https://platform.openai.com/docs/models) for descriptions of + them. + + prompt: The prompt(s) to generate completions for, encoded as a string, array of + strings, array of tokens, or array of token arrays. + + Note that <|endoftext|> is the document separator that the model sees during + training, so if a prompt is not specified the model will generate as if from the + beginning of a new document. + + best_of: Generates `best_of` completions server-side and returns the "best" (the one with + the highest log probability per token). Results cannot be streamed. + + When used with `n`, `best_of` controls the number of candidate completions and + `n` specifies how many to return – `best_of` must be greater than `n`. + + **Note:** Because this parameter generates many completions, it can quickly + consume your token quota. Use carefully and ensure that you have reasonable + settings for `max_tokens` and `stop`. + + echo: Echo back the prompt in addition to the completion + + frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their + existing frequency in the text so far, decreasing the model's likelihood to + repeat the same line verbatim. + + [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation) + + logit_bias: Modify the likelihood of specified tokens appearing in the completion. + + Accepts a JSON object that maps tokens (specified by their token ID in the GPT + tokenizer) to an associated bias value from -100 to 100. You can use this + [tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs. + Mathematically, the bias is added to the logits generated by the model prior to + sampling. The exact effect will vary per model, but values between -1 and 1 + should decrease or increase likelihood of selection; values like -100 or 100 + should result in a ban or exclusive selection of the relevant token. + + As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token + from being generated. + + logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as + well the chosen tokens. For example, if `logprobs` is 5, the API will return a + list of the 5 most likely tokens. The API will always return the `logprob` of + the sampled token, so there may be up to `logprobs+1` elements in the response. + + The maximum value for `logprobs` is 5. + + max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the + completion. + + The token count of your prompt plus `max_tokens` cannot exceed the model's + context length. + [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) + for counting tokens. + + n: How many completions to generate for each prompt. + + **Note:** Because this parameter generates many completions, it can quickly + consume your token quota. Use carefully and ensure that you have reasonable + settings for `max_tokens` and `stop`. + + presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on + whether they appear in the text so far, increasing the model's likelihood to + talk about new topics. + + [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation) + + seed: If specified, our system will make a best effort to sample deterministically, + such that repeated requests with the same `seed` and parameters should return + the same result. + + Determinism is not guaranteed, and you should refer to the `system_fingerprint` + response parameter to monitor changes in the backend. + + stop: Up to 4 sequences where the API will stop generating further tokens. The + returned text will not contain the stop sequence. + + stream: Whether to stream back partial progress. If set, tokens will be sent as + data-only + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format) + as they become available, with the stream terminated by a `data: [DONE]` + message. + [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions). + + stream_options: Options for streaming response. Only set this when you set `stream: true`. + + suffix: The suffix that comes after a completion of inserted text. + + This parameter is only supported for `gpt-3.5-turbo-instruct`. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + We generally recommend altering this or `top_p` but not both. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + async def create( + self, + *, + model: Union[str, Literal["gpt-3.5-turbo-instruct", "davinci-002", "babbage-002"]], + prompt: Union[str, List[str], Iterable[int], Iterable[Iterable[int]], None], + stream: Literal[True], + best_of: Optional[int] | NotGiven = NOT_GIVEN, + echo: Optional[bool] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + suffix: Optional[str] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncStream[Completion]: + """ + Creates a completion for the provided prompt and parameters. + + Args: + model: ID of the model to use. You can use the + [List models](https://platform.openai.com/docs/api-reference/models/list) API to + see all of your available models, or see our + [Model overview](https://platform.openai.com/docs/models) for descriptions of + them. + + prompt: The prompt(s) to generate completions for, encoded as a string, array of + strings, array of tokens, or array of token arrays. + + Note that <|endoftext|> is the document separator that the model sees during + training, so if a prompt is not specified the model will generate as if from the + beginning of a new document. + + stream: Whether to stream back partial progress. If set, tokens will be sent as + data-only + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format) + as they become available, with the stream terminated by a `data: [DONE]` + message. + [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions). + + best_of: Generates `best_of` completions server-side and returns the "best" (the one with + the highest log probability per token). Results cannot be streamed. + + When used with `n`, `best_of` controls the number of candidate completions and + `n` specifies how many to return – `best_of` must be greater than `n`. + + **Note:** Because this parameter generates many completions, it can quickly + consume your token quota. Use carefully and ensure that you have reasonable + settings for `max_tokens` and `stop`. + + echo: Echo back the prompt in addition to the completion + + frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their + existing frequency in the text so far, decreasing the model's likelihood to + repeat the same line verbatim. + + [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation) + + logit_bias: Modify the likelihood of specified tokens appearing in the completion. + + Accepts a JSON object that maps tokens (specified by their token ID in the GPT + tokenizer) to an associated bias value from -100 to 100. You can use this + [tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs. + Mathematically, the bias is added to the logits generated by the model prior to + sampling. The exact effect will vary per model, but values between -1 and 1 + should decrease or increase likelihood of selection; values like -100 or 100 + should result in a ban or exclusive selection of the relevant token. + + As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token + from being generated. + + logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as + well the chosen tokens. For example, if `logprobs` is 5, the API will return a + list of the 5 most likely tokens. The API will always return the `logprob` of + the sampled token, so there may be up to `logprobs+1` elements in the response. + + The maximum value for `logprobs` is 5. + + max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the + completion. + + The token count of your prompt plus `max_tokens` cannot exceed the model's + context length. + [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) + for counting tokens. + + n: How many completions to generate for each prompt. + + **Note:** Because this parameter generates many completions, it can quickly + consume your token quota. Use carefully and ensure that you have reasonable + settings for `max_tokens` and `stop`. + + presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on + whether they appear in the text so far, increasing the model's likelihood to + talk about new topics. + + [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation) + + seed: If specified, our system will make a best effort to sample deterministically, + such that repeated requests with the same `seed` and parameters should return + the same result. + + Determinism is not guaranteed, and you should refer to the `system_fingerprint` + response parameter to monitor changes in the backend. + + stop: Up to 4 sequences where the API will stop generating further tokens. The + returned text will not contain the stop sequence. + + stream_options: Options for streaming response. Only set this when you set `stream: true`. + + suffix: The suffix that comes after a completion of inserted text. + + This parameter is only supported for `gpt-3.5-turbo-instruct`. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + We generally recommend altering this or `top_p` but not both. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + async def create( + self, + *, + model: Union[str, Literal["gpt-3.5-turbo-instruct", "davinci-002", "babbage-002"]], + prompt: Union[str, List[str], Iterable[int], Iterable[Iterable[int]], None], + stream: bool, + best_of: Optional[int] | NotGiven = NOT_GIVEN, + echo: Optional[bool] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + suffix: Optional[str] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Completion | AsyncStream[Completion]: + """ + Creates a completion for the provided prompt and parameters. + + Args: + model: ID of the model to use. You can use the + [List models](https://platform.openai.com/docs/api-reference/models/list) API to + see all of your available models, or see our + [Model overview](https://platform.openai.com/docs/models) for descriptions of + them. + + prompt: The prompt(s) to generate completions for, encoded as a string, array of + strings, array of tokens, or array of token arrays. + + Note that <|endoftext|> is the document separator that the model sees during + training, so if a prompt is not specified the model will generate as if from the + beginning of a new document. + + stream: Whether to stream back partial progress. If set, tokens will be sent as + data-only + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format) + as they become available, with the stream terminated by a `data: [DONE]` + message. + [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions). + + best_of: Generates `best_of` completions server-side and returns the "best" (the one with + the highest log probability per token). Results cannot be streamed. + + When used with `n`, `best_of` controls the number of candidate completions and + `n` specifies how many to return – `best_of` must be greater than `n`. + + **Note:** Because this parameter generates many completions, it can quickly + consume your token quota. Use carefully and ensure that you have reasonable + settings for `max_tokens` and `stop`. + + echo: Echo back the prompt in addition to the completion + + frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their + existing frequency in the text so far, decreasing the model's likelihood to + repeat the same line verbatim. + + [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation) + + logit_bias: Modify the likelihood of specified tokens appearing in the completion. + + Accepts a JSON object that maps tokens (specified by their token ID in the GPT + tokenizer) to an associated bias value from -100 to 100. You can use this + [tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs. + Mathematically, the bias is added to the logits generated by the model prior to + sampling. The exact effect will vary per model, but values between -1 and 1 + should decrease or increase likelihood of selection; values like -100 or 100 + should result in a ban or exclusive selection of the relevant token. + + As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token + from being generated. + + logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as + well the chosen tokens. For example, if `logprobs` is 5, the API will return a + list of the 5 most likely tokens. The API will always return the `logprob` of + the sampled token, so there may be up to `logprobs+1` elements in the response. + + The maximum value for `logprobs` is 5. + + max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the + completion. + + The token count of your prompt plus `max_tokens` cannot exceed the model's + context length. + [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) + for counting tokens. + + n: How many completions to generate for each prompt. + + **Note:** Because this parameter generates many completions, it can quickly + consume your token quota. Use carefully and ensure that you have reasonable + settings for `max_tokens` and `stop`. + + presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on + whether they appear in the text so far, increasing the model's likelihood to + talk about new topics. + + [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation) + + seed: If specified, our system will make a best effort to sample deterministically, + such that repeated requests with the same `seed` and parameters should return + the same result. + + Determinism is not guaranteed, and you should refer to the `system_fingerprint` + response parameter to monitor changes in the backend. + + stop: Up to 4 sequences where the API will stop generating further tokens. The + returned text will not contain the stop sequence. + + stream_options: Options for streaming response. Only set this when you set `stream: true`. + + suffix: The suffix that comes after a completion of inserted text. + + This parameter is only supported for `gpt-3.5-turbo-instruct`. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. + + We generally recommend altering this or `top_p` but not both. + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @required_args(["model", "prompt"], ["model", "prompt", "stream"]) + async def create( + self, + *, + model: Union[str, Literal["gpt-3.5-turbo-instruct", "davinci-002", "babbage-002"]], + prompt: Union[str, List[str], Iterable[int], Iterable[Iterable[int]], None], + best_of: Optional[int] | NotGiven = NOT_GIVEN, + echo: Optional[bool] | NotGiven = NOT_GIVEN, + frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN, + logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN, + logprobs: Optional[int] | NotGiven = NOT_GIVEN, + max_tokens: Optional[int] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + presence_penalty: Optional[float] | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN, + suffix: Optional[str] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Completion | AsyncStream[Completion]: + return await self._post( + "/completions", + body=await async_maybe_transform( + { + "model": model, + "prompt": prompt, + "best_of": best_of, + "echo": echo, + "frequency_penalty": frequency_penalty, + "logit_bias": logit_bias, + "logprobs": logprobs, + "max_tokens": max_tokens, + "n": n, + "presence_penalty": presence_penalty, + "seed": seed, + "stop": stop, + "stream": stream, + "stream_options": stream_options, + "suffix": suffix, + "temperature": temperature, + "top_p": top_p, + "user": user, + }, + completion_create_params.CompletionCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Completion, + stream=stream or False, + stream_cls=AsyncStream[Completion], + ) + + +class CompletionsWithRawResponse: + def __init__(self, completions: Completions) -> None: + self._completions = completions + + self.create = _legacy_response.to_raw_response_wrapper( + completions.create, + ) + + +class AsyncCompletionsWithRawResponse: + def __init__(self, completions: AsyncCompletions) -> None: + self._completions = completions + + self.create = _legacy_response.async_to_raw_response_wrapper( + completions.create, + ) + + +class CompletionsWithStreamingResponse: + def __init__(self, completions: Completions) -> None: + self._completions = completions + + self.create = to_streamed_response_wrapper( + completions.create, + ) + + +class AsyncCompletionsWithStreamingResponse: + def __init__(self, completions: AsyncCompletions) -> None: + self._completions = completions + + self.create = async_to_streamed_response_wrapper( + completions.create, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/embeddings.py b/.venv/lib/python3.12/site-packages/openai/resources/embeddings.py new file mode 100644 index 00000000..a392d5eb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/embeddings.py @@ -0,0 +1,290 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import array +import base64 +from typing import List, Union, Iterable, cast +from typing_extensions import Literal + +import httpx + +from .. import _legacy_response +from ..types import embedding_create_params +from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from .._utils import is_given, maybe_transform +from .._compat import cached_property +from .._extras import numpy as np, has_numpy +from .._resource import SyncAPIResource, AsyncAPIResource +from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from .._base_client import make_request_options +from ..types.embedding_model import EmbeddingModel +from ..types.create_embedding_response import CreateEmbeddingResponse + +__all__ = ["Embeddings", "AsyncEmbeddings"] + + +class Embeddings(SyncAPIResource): + @cached_property + def with_raw_response(self) -> EmbeddingsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return EmbeddingsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> EmbeddingsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return EmbeddingsWithStreamingResponse(self) + + def create( + self, + *, + input: Union[str, List[str], Iterable[int], Iterable[Iterable[int]]], + model: Union[str, EmbeddingModel], + dimensions: int | NotGiven = NOT_GIVEN, + encoding_format: Literal["float", "base64"] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> CreateEmbeddingResponse: + """ + Creates an embedding vector representing the input text. + + Args: + input: Input text to embed, encoded as a string or array of tokens. To embed multiple + inputs in a single request, pass an array of strings or array of token arrays. + The input must not exceed the max input tokens for the model (8192 tokens for + `text-embedding-ada-002`), cannot be an empty string, and any array must be 2048 + dimensions or less. + [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) + for counting tokens. Some models may also impose a limit on total number of + tokens summed across inputs. + + model: ID of the model to use. You can use the + [List models](https://platform.openai.com/docs/api-reference/models/list) API to + see all of your available models, or see our + [Model overview](https://platform.openai.com/docs/models) for descriptions of + them. + + dimensions: The number of dimensions the resulting output embeddings should have. Only + supported in `text-embedding-3` and later models. + + encoding_format: The format to return the embeddings in. Can be either `float` or + [`base64`](https://pypi.org/project/pybase64/). + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + params = { + "input": input, + "model": model, + "user": user, + "dimensions": dimensions, + "encoding_format": encoding_format, + } + if not is_given(encoding_format): + params["encoding_format"] = "base64" + + def parser(obj: CreateEmbeddingResponse) -> CreateEmbeddingResponse: + if is_given(encoding_format): + # don't modify the response object if a user explicitly asked for a format + return obj + + for embedding in obj.data: + data = cast(object, embedding.embedding) + if not isinstance(data, str): + continue + if not has_numpy(): + # use array for base64 optimisation + embedding.embedding = array.array("f", base64.b64decode(data)).tolist() + else: + embedding.embedding = np.frombuffer( # type: ignore[no-untyped-call] + base64.b64decode(data), dtype="float32" + ).tolist() + + return obj + + return self._post( + "/embeddings", + body=maybe_transform(params, embedding_create_params.EmbeddingCreateParams), + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + post_parser=parser, + ), + cast_to=CreateEmbeddingResponse, + ) + + +class AsyncEmbeddings(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncEmbeddingsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncEmbeddingsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncEmbeddingsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncEmbeddingsWithStreamingResponse(self) + + async def create( + self, + *, + input: Union[str, List[str], Iterable[int], Iterable[Iterable[int]]], + model: Union[str, EmbeddingModel], + dimensions: int | NotGiven = NOT_GIVEN, + encoding_format: Literal["float", "base64"] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> CreateEmbeddingResponse: + """ + Creates an embedding vector representing the input text. + + Args: + input: Input text to embed, encoded as a string or array of tokens. To embed multiple + inputs in a single request, pass an array of strings or array of token arrays. + The input must not exceed the max input tokens for the model (8192 tokens for + `text-embedding-ada-002`), cannot be an empty string, and any array must be 2048 + dimensions or less. + [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) + for counting tokens. Some models may also impose a limit on total number of + tokens summed across inputs. + + model: ID of the model to use. You can use the + [List models](https://platform.openai.com/docs/api-reference/models/list) API to + see all of your available models, or see our + [Model overview](https://platform.openai.com/docs/models) for descriptions of + them. + + dimensions: The number of dimensions the resulting output embeddings should have. Only + supported in `text-embedding-3` and later models. + + encoding_format: The format to return the embeddings in. Can be either `float` or + [`base64`](https://pypi.org/project/pybase64/). + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + params = { + "input": input, + "model": model, + "user": user, + "dimensions": dimensions, + "encoding_format": encoding_format, + } + if not is_given(encoding_format): + params["encoding_format"] = "base64" + + def parser(obj: CreateEmbeddingResponse) -> CreateEmbeddingResponse: + if is_given(encoding_format): + # don't modify the response object if a user explicitly asked for a format + return obj + + for embedding in obj.data: + data = cast(object, embedding.embedding) + if not isinstance(data, str): + continue + if not has_numpy(): + # use array for base64 optimisation + embedding.embedding = array.array("f", base64.b64decode(data)).tolist() + else: + embedding.embedding = np.frombuffer( # type: ignore[no-untyped-call] + base64.b64decode(data), dtype="float32" + ).tolist() + + return obj + + return await self._post( + "/embeddings", + body=maybe_transform(params, embedding_create_params.EmbeddingCreateParams), + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + post_parser=parser, + ), + cast_to=CreateEmbeddingResponse, + ) + + +class EmbeddingsWithRawResponse: + def __init__(self, embeddings: Embeddings) -> None: + self._embeddings = embeddings + + self.create = _legacy_response.to_raw_response_wrapper( + embeddings.create, + ) + + +class AsyncEmbeddingsWithRawResponse: + def __init__(self, embeddings: AsyncEmbeddings) -> None: + self._embeddings = embeddings + + self.create = _legacy_response.async_to_raw_response_wrapper( + embeddings.create, + ) + + +class EmbeddingsWithStreamingResponse: + def __init__(self, embeddings: Embeddings) -> None: + self._embeddings = embeddings + + self.create = to_streamed_response_wrapper( + embeddings.create, + ) + + +class AsyncEmbeddingsWithStreamingResponse: + def __init__(self, embeddings: AsyncEmbeddings) -> None: + self._embeddings = embeddings + + self.create = async_to_streamed_response_wrapper( + embeddings.create, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/files.py b/.venv/lib/python3.12/site-packages/openai/resources/files.py new file mode 100644 index 00000000..2eaa4a64 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/files.py @@ -0,0 +1,767 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import time +import typing_extensions +from typing import Mapping, cast +from typing_extensions import Literal + +import httpx + +from .. import _legacy_response +from ..types import FilePurpose, file_list_params, file_create_params +from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes +from .._utils import ( + extract_files, + maybe_transform, + deepcopy_minimal, + async_maybe_transform, +) +from .._compat import cached_property +from .._resource import SyncAPIResource, AsyncAPIResource +from .._response import ( + StreamedBinaryAPIResponse, + AsyncStreamedBinaryAPIResponse, + to_streamed_response_wrapper, + async_to_streamed_response_wrapper, + to_custom_streamed_response_wrapper, + async_to_custom_streamed_response_wrapper, +) +from ..pagination import SyncCursorPage, AsyncCursorPage +from .._base_client import AsyncPaginator, make_request_options +from ..types.file_object import FileObject +from ..types.file_deleted import FileDeleted +from ..types.file_purpose import FilePurpose + +__all__ = ["Files", "AsyncFiles"] + + +class Files(SyncAPIResource): + @cached_property + def with_raw_response(self) -> FilesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return FilesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> FilesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return FilesWithStreamingResponse(self) + + def create( + self, + *, + file: FileTypes, + purpose: FilePurpose, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> FileObject: + """Upload a file that can be used across various endpoints. + + Individual files can be + up to 512 MB, and the size of all files uploaded by one organization can be up + to 100 GB. + + The Assistants API supports files up to 2 million tokens and of specific file + types. See the + [Assistants Tools guide](https://platform.openai.com/docs/assistants/tools) for + details. + + The Fine-tuning API only supports `.jsonl` files. The input also has certain + required formats for fine-tuning + [chat](https://platform.openai.com/docs/api-reference/fine-tuning/chat-input) or + [completions](https://platform.openai.com/docs/api-reference/fine-tuning/completions-input) + models. + + The Batch API only supports `.jsonl` files up to 200 MB in size. The input also + has a specific required + [format](https://platform.openai.com/docs/api-reference/batch/request-input). + + Please [contact us](https://help.openai.com/) if you need to increase these + storage limits. + + Args: + file: The File object (not file name) to be uploaded. + + purpose: The intended purpose of the uploaded file. One of: - `assistants`: Used in the + Assistants API - `batch`: Used in the Batch API - `fine-tune`: Used for + fine-tuning - `vision`: Images used for vision fine-tuning - `user_data`: + Flexible file type for any purpose - `evals`: Used for eval data sets + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + body = deepcopy_minimal( + { + "file": file, + "purpose": purpose, + } + ) + files = extract_files(cast(Mapping[str, object], body), paths=[["file"]]) + # It should be noted that the actual Content-Type header that will be + # sent to the server will contain a `boundary` parameter, e.g. + # multipart/form-data; boundary=---abc-- + extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})} + return self._post( + "/files", + body=maybe_transform(body, file_create_params.FileCreateParams), + files=files, + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=FileObject, + ) + + def retrieve( + self, + file_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> FileObject: + """ + Returns information about a specific file. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not file_id: + raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}") + return self._get( + f"/files/{file_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=FileObject, + ) + + def list( + self, + *, + after: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + purpose: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncCursorPage[FileObject]: + """Returns a list of files. + + Args: + after: A cursor for use in pagination. + + `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 10,000, and the default is 10,000. + + order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + + purpose: Only return files with the given purpose. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._get_api_list( + "/files", + page=SyncCursorPage[FileObject], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "limit": limit, + "order": order, + "purpose": purpose, + }, + file_list_params.FileListParams, + ), + ), + model=FileObject, + ) + + def delete( + self, + file_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> FileDeleted: + """ + Delete a file. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not file_id: + raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}") + return self._delete( + f"/files/{file_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=FileDeleted, + ) + + def content( + self, + file_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> _legacy_response.HttpxBinaryResponseContent: + """ + Returns the contents of the specified file. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not file_id: + raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}") + extra_headers = {"Accept": "application/binary", **(extra_headers or {})} + return self._get( + f"/files/{file_id}/content", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=_legacy_response.HttpxBinaryResponseContent, + ) + + @typing_extensions.deprecated("The `.content()` method should be used instead") + def retrieve_content( + self, + file_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> str: + """ + Returns the contents of the specified file. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not file_id: + raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}") + return self._get( + f"/files/{file_id}/content", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=str, + ) + + def wait_for_processing( + self, + id: str, + *, + poll_interval: float = 5.0, + max_wait_seconds: float = 30 * 60, + ) -> FileObject: + """Waits for the given file to be processed, default timeout is 30 mins.""" + TERMINAL_STATES = {"processed", "error", "deleted"} + + start = time.time() + file = self.retrieve(id) + while file.status not in TERMINAL_STATES: + self._sleep(poll_interval) + + file = self.retrieve(id) + if time.time() - start > max_wait_seconds: + raise RuntimeError( + f"Giving up on waiting for file {id} to finish processing after {max_wait_seconds} seconds." + ) + + return file + + +class AsyncFiles(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncFilesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncFilesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncFilesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncFilesWithStreamingResponse(self) + + async def create( + self, + *, + file: FileTypes, + purpose: FilePurpose, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> FileObject: + """Upload a file that can be used across various endpoints. + + Individual files can be + up to 512 MB, and the size of all files uploaded by one organization can be up + to 100 GB. + + The Assistants API supports files up to 2 million tokens and of specific file + types. See the + [Assistants Tools guide](https://platform.openai.com/docs/assistants/tools) for + details. + + The Fine-tuning API only supports `.jsonl` files. The input also has certain + required formats for fine-tuning + [chat](https://platform.openai.com/docs/api-reference/fine-tuning/chat-input) or + [completions](https://platform.openai.com/docs/api-reference/fine-tuning/completions-input) + models. + + The Batch API only supports `.jsonl` files up to 200 MB in size. The input also + has a specific required + [format](https://platform.openai.com/docs/api-reference/batch/request-input). + + Please [contact us](https://help.openai.com/) if you need to increase these + storage limits. + + Args: + file: The File object (not file name) to be uploaded. + + purpose: The intended purpose of the uploaded file. One of: - `assistants`: Used in the + Assistants API - `batch`: Used in the Batch API - `fine-tune`: Used for + fine-tuning - `vision`: Images used for vision fine-tuning - `user_data`: + Flexible file type for any purpose - `evals`: Used for eval data sets + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + body = deepcopy_minimal( + { + "file": file, + "purpose": purpose, + } + ) + files = extract_files(cast(Mapping[str, object], body), paths=[["file"]]) + # It should be noted that the actual Content-Type header that will be + # sent to the server will contain a `boundary` parameter, e.g. + # multipart/form-data; boundary=---abc-- + extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})} + return await self._post( + "/files", + body=await async_maybe_transform(body, file_create_params.FileCreateParams), + files=files, + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=FileObject, + ) + + async def retrieve( + self, + file_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> FileObject: + """ + Returns information about a specific file. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not file_id: + raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}") + return await self._get( + f"/files/{file_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=FileObject, + ) + + def list( + self, + *, + after: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + purpose: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[FileObject, AsyncCursorPage[FileObject]]: + """Returns a list of files. + + Args: + after: A cursor for use in pagination. + + `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 10,000, and the default is 10,000. + + order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + + purpose: Only return files with the given purpose. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._get_api_list( + "/files", + page=AsyncCursorPage[FileObject], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "limit": limit, + "order": order, + "purpose": purpose, + }, + file_list_params.FileListParams, + ), + ), + model=FileObject, + ) + + async def delete( + self, + file_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> FileDeleted: + """ + Delete a file. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not file_id: + raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}") + return await self._delete( + f"/files/{file_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=FileDeleted, + ) + + async def content( + self, + file_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> _legacy_response.HttpxBinaryResponseContent: + """ + Returns the contents of the specified file. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not file_id: + raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}") + extra_headers = {"Accept": "application/binary", **(extra_headers or {})} + return await self._get( + f"/files/{file_id}/content", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=_legacy_response.HttpxBinaryResponseContent, + ) + + @typing_extensions.deprecated("The `.content()` method should be used instead") + async def retrieve_content( + self, + file_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> str: + """ + Returns the contents of the specified file. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not file_id: + raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}") + return await self._get( + f"/files/{file_id}/content", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=str, + ) + + async def wait_for_processing( + self, + id: str, + *, + poll_interval: float = 5.0, + max_wait_seconds: float = 30 * 60, + ) -> FileObject: + """Waits for the given file to be processed, default timeout is 30 mins.""" + TERMINAL_STATES = {"processed", "error", "deleted"} + + start = time.time() + file = await self.retrieve(id) + while file.status not in TERMINAL_STATES: + await self._sleep(poll_interval) + + file = await self.retrieve(id) + if time.time() - start > max_wait_seconds: + raise RuntimeError( + f"Giving up on waiting for file {id} to finish processing after {max_wait_seconds} seconds." + ) + + return file + + +class FilesWithRawResponse: + def __init__(self, files: Files) -> None: + self._files = files + + self.create = _legacy_response.to_raw_response_wrapper( + files.create, + ) + self.retrieve = _legacy_response.to_raw_response_wrapper( + files.retrieve, + ) + self.list = _legacy_response.to_raw_response_wrapper( + files.list, + ) + self.delete = _legacy_response.to_raw_response_wrapper( + files.delete, + ) + self.content = _legacy_response.to_raw_response_wrapper( + files.content, + ) + self.retrieve_content = ( # pyright: ignore[reportDeprecated] + _legacy_response.to_raw_response_wrapper( + files.retrieve_content # pyright: ignore[reportDeprecated], + ) + ) + + +class AsyncFilesWithRawResponse: + def __init__(self, files: AsyncFiles) -> None: + self._files = files + + self.create = _legacy_response.async_to_raw_response_wrapper( + files.create, + ) + self.retrieve = _legacy_response.async_to_raw_response_wrapper( + files.retrieve, + ) + self.list = _legacy_response.async_to_raw_response_wrapper( + files.list, + ) + self.delete = _legacy_response.async_to_raw_response_wrapper( + files.delete, + ) + self.content = _legacy_response.async_to_raw_response_wrapper( + files.content, + ) + self.retrieve_content = ( # pyright: ignore[reportDeprecated] + _legacy_response.async_to_raw_response_wrapper( + files.retrieve_content # pyright: ignore[reportDeprecated], + ) + ) + + +class FilesWithStreamingResponse: + def __init__(self, files: Files) -> None: + self._files = files + + self.create = to_streamed_response_wrapper( + files.create, + ) + self.retrieve = to_streamed_response_wrapper( + files.retrieve, + ) + self.list = to_streamed_response_wrapper( + files.list, + ) + self.delete = to_streamed_response_wrapper( + files.delete, + ) + self.content = to_custom_streamed_response_wrapper( + files.content, + StreamedBinaryAPIResponse, + ) + self.retrieve_content = ( # pyright: ignore[reportDeprecated] + to_streamed_response_wrapper( + files.retrieve_content # pyright: ignore[reportDeprecated], + ) + ) + + +class AsyncFilesWithStreamingResponse: + def __init__(self, files: AsyncFiles) -> None: + self._files = files + + self.create = async_to_streamed_response_wrapper( + files.create, + ) + self.retrieve = async_to_streamed_response_wrapper( + files.retrieve, + ) + self.list = async_to_streamed_response_wrapper( + files.list, + ) + self.delete = async_to_streamed_response_wrapper( + files.delete, + ) + self.content = async_to_custom_streamed_response_wrapper( + files.content, + AsyncStreamedBinaryAPIResponse, + ) + self.retrieve_content = ( # pyright: ignore[reportDeprecated] + async_to_streamed_response_wrapper( + files.retrieve_content # pyright: ignore[reportDeprecated], + ) + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/fine_tuning/__init__.py b/.venv/lib/python3.12/site-packages/openai/resources/fine_tuning/__init__.py new file mode 100644 index 00000000..7765231f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/fine_tuning/__init__.py @@ -0,0 +1,33 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from .jobs import ( + Jobs, + AsyncJobs, + JobsWithRawResponse, + AsyncJobsWithRawResponse, + JobsWithStreamingResponse, + AsyncJobsWithStreamingResponse, +) +from .fine_tuning import ( + FineTuning, + AsyncFineTuning, + FineTuningWithRawResponse, + AsyncFineTuningWithRawResponse, + FineTuningWithStreamingResponse, + AsyncFineTuningWithStreamingResponse, +) + +__all__ = [ + "Jobs", + "AsyncJobs", + "JobsWithRawResponse", + "AsyncJobsWithRawResponse", + "JobsWithStreamingResponse", + "AsyncJobsWithStreamingResponse", + "FineTuning", + "AsyncFineTuning", + "FineTuningWithRawResponse", + "AsyncFineTuningWithRawResponse", + "FineTuningWithStreamingResponse", + "AsyncFineTuningWithStreamingResponse", +] diff --git a/.venv/lib/python3.12/site-packages/openai/resources/fine_tuning/fine_tuning.py b/.venv/lib/python3.12/site-packages/openai/resources/fine_tuning/fine_tuning.py new file mode 100644 index 00000000..eebde07d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/fine_tuning/fine_tuning.py @@ -0,0 +1,102 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from ..._compat import cached_property +from .jobs.jobs import ( + Jobs, + AsyncJobs, + JobsWithRawResponse, + AsyncJobsWithRawResponse, + JobsWithStreamingResponse, + AsyncJobsWithStreamingResponse, +) +from ..._resource import SyncAPIResource, AsyncAPIResource + +__all__ = ["FineTuning", "AsyncFineTuning"] + + +class FineTuning(SyncAPIResource): + @cached_property + def jobs(self) -> Jobs: + return Jobs(self._client) + + @cached_property + def with_raw_response(self) -> FineTuningWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return FineTuningWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> FineTuningWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return FineTuningWithStreamingResponse(self) + + +class AsyncFineTuning(AsyncAPIResource): + @cached_property + def jobs(self) -> AsyncJobs: + return AsyncJobs(self._client) + + @cached_property + def with_raw_response(self) -> AsyncFineTuningWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncFineTuningWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncFineTuningWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncFineTuningWithStreamingResponse(self) + + +class FineTuningWithRawResponse: + def __init__(self, fine_tuning: FineTuning) -> None: + self._fine_tuning = fine_tuning + + @cached_property + def jobs(self) -> JobsWithRawResponse: + return JobsWithRawResponse(self._fine_tuning.jobs) + + +class AsyncFineTuningWithRawResponse: + def __init__(self, fine_tuning: AsyncFineTuning) -> None: + self._fine_tuning = fine_tuning + + @cached_property + def jobs(self) -> AsyncJobsWithRawResponse: + return AsyncJobsWithRawResponse(self._fine_tuning.jobs) + + +class FineTuningWithStreamingResponse: + def __init__(self, fine_tuning: FineTuning) -> None: + self._fine_tuning = fine_tuning + + @cached_property + def jobs(self) -> JobsWithStreamingResponse: + return JobsWithStreamingResponse(self._fine_tuning.jobs) + + +class AsyncFineTuningWithStreamingResponse: + def __init__(self, fine_tuning: AsyncFineTuning) -> None: + self._fine_tuning = fine_tuning + + @cached_property + def jobs(self) -> AsyncJobsWithStreamingResponse: + return AsyncJobsWithStreamingResponse(self._fine_tuning.jobs) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/fine_tuning/jobs/__init__.py b/.venv/lib/python3.12/site-packages/openai/resources/fine_tuning/jobs/__init__.py new file mode 100644 index 00000000..94cd1fb7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/fine_tuning/jobs/__init__.py @@ -0,0 +1,33 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from .jobs import ( + Jobs, + AsyncJobs, + JobsWithRawResponse, + AsyncJobsWithRawResponse, + JobsWithStreamingResponse, + AsyncJobsWithStreamingResponse, +) +from .checkpoints import ( + Checkpoints, + AsyncCheckpoints, + CheckpointsWithRawResponse, + AsyncCheckpointsWithRawResponse, + CheckpointsWithStreamingResponse, + AsyncCheckpointsWithStreamingResponse, +) + +__all__ = [ + "Checkpoints", + "AsyncCheckpoints", + "CheckpointsWithRawResponse", + "AsyncCheckpointsWithRawResponse", + "CheckpointsWithStreamingResponse", + "AsyncCheckpointsWithStreamingResponse", + "Jobs", + "AsyncJobs", + "JobsWithRawResponse", + "AsyncJobsWithRawResponse", + "JobsWithStreamingResponse", + "AsyncJobsWithStreamingResponse", +] diff --git a/.venv/lib/python3.12/site-packages/openai/resources/fine_tuning/jobs/checkpoints.py b/.venv/lib/python3.12/site-packages/openai/resources/fine_tuning/jobs/checkpoints.py new file mode 100644 index 00000000..f86462e5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/fine_tuning/jobs/checkpoints.py @@ -0,0 +1,199 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import httpx + +from .... import _legacy_response +from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from ...._utils import maybe_transform +from ...._compat import cached_property +from ...._resource import SyncAPIResource, AsyncAPIResource +from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ....pagination import SyncCursorPage, AsyncCursorPage +from ...._base_client import ( + AsyncPaginator, + make_request_options, +) +from ....types.fine_tuning.jobs import checkpoint_list_params +from ....types.fine_tuning.jobs.fine_tuning_job_checkpoint import FineTuningJobCheckpoint + +__all__ = ["Checkpoints", "AsyncCheckpoints"] + + +class Checkpoints(SyncAPIResource): + @cached_property + def with_raw_response(self) -> CheckpointsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return CheckpointsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> CheckpointsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return CheckpointsWithStreamingResponse(self) + + def list( + self, + fine_tuning_job_id: str, + *, + after: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncCursorPage[FineTuningJobCheckpoint]: + """ + List checkpoints for a fine-tuning job. + + Args: + after: Identifier for the last checkpoint ID from the previous pagination request. + + limit: Number of checkpoints to retrieve. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not fine_tuning_job_id: + raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}") + return self._get_api_list( + f"/fine_tuning/jobs/{fine_tuning_job_id}/checkpoints", + page=SyncCursorPage[FineTuningJobCheckpoint], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "limit": limit, + }, + checkpoint_list_params.CheckpointListParams, + ), + ), + model=FineTuningJobCheckpoint, + ) + + +class AsyncCheckpoints(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncCheckpointsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncCheckpointsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncCheckpointsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncCheckpointsWithStreamingResponse(self) + + def list( + self, + fine_tuning_job_id: str, + *, + after: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[FineTuningJobCheckpoint, AsyncCursorPage[FineTuningJobCheckpoint]]: + """ + List checkpoints for a fine-tuning job. + + Args: + after: Identifier for the last checkpoint ID from the previous pagination request. + + limit: Number of checkpoints to retrieve. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not fine_tuning_job_id: + raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}") + return self._get_api_list( + f"/fine_tuning/jobs/{fine_tuning_job_id}/checkpoints", + page=AsyncCursorPage[FineTuningJobCheckpoint], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "limit": limit, + }, + checkpoint_list_params.CheckpointListParams, + ), + ), + model=FineTuningJobCheckpoint, + ) + + +class CheckpointsWithRawResponse: + def __init__(self, checkpoints: Checkpoints) -> None: + self._checkpoints = checkpoints + + self.list = _legacy_response.to_raw_response_wrapper( + checkpoints.list, + ) + + +class AsyncCheckpointsWithRawResponse: + def __init__(self, checkpoints: AsyncCheckpoints) -> None: + self._checkpoints = checkpoints + + self.list = _legacy_response.async_to_raw_response_wrapper( + checkpoints.list, + ) + + +class CheckpointsWithStreamingResponse: + def __init__(self, checkpoints: Checkpoints) -> None: + self._checkpoints = checkpoints + + self.list = to_streamed_response_wrapper( + checkpoints.list, + ) + + +class AsyncCheckpointsWithStreamingResponse: + def __init__(self, checkpoints: AsyncCheckpoints) -> None: + self._checkpoints = checkpoints + + self.list = async_to_streamed_response_wrapper( + checkpoints.list, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/fine_tuning/jobs/jobs.py b/.venv/lib/python3.12/site-packages/openai/resources/fine_tuning/jobs/jobs.py new file mode 100644 index 00000000..bbeff60b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/fine_tuning/jobs/jobs.py @@ -0,0 +1,761 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Dict, Union, Iterable, Optional +from typing_extensions import Literal + +import httpx + +from .... import _legacy_response +from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from ...._utils import ( + maybe_transform, + async_maybe_transform, +) +from ...._compat import cached_property +from .checkpoints import ( + Checkpoints, + AsyncCheckpoints, + CheckpointsWithRawResponse, + AsyncCheckpointsWithRawResponse, + CheckpointsWithStreamingResponse, + AsyncCheckpointsWithStreamingResponse, +) +from ...._resource import SyncAPIResource, AsyncAPIResource +from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ....pagination import SyncCursorPage, AsyncCursorPage +from ...._base_client import ( + AsyncPaginator, + make_request_options, +) +from ....types.fine_tuning import job_list_params, job_create_params, job_list_events_params +from ....types.shared_params.metadata import Metadata +from ....types.fine_tuning.fine_tuning_job import FineTuningJob +from ....types.fine_tuning.fine_tuning_job_event import FineTuningJobEvent + +__all__ = ["Jobs", "AsyncJobs"] + + +class Jobs(SyncAPIResource): + @cached_property + def checkpoints(self) -> Checkpoints: + return Checkpoints(self._client) + + @cached_property + def with_raw_response(self) -> JobsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return JobsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> JobsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return JobsWithStreamingResponse(self) + + def create( + self, + *, + model: Union[str, Literal["babbage-002", "davinci-002", "gpt-3.5-turbo", "gpt-4o-mini"]], + training_file: str, + hyperparameters: job_create_params.Hyperparameters | NotGiven = NOT_GIVEN, + integrations: Optional[Iterable[job_create_params.Integration]] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + method: job_create_params.Method | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + suffix: Optional[str] | NotGiven = NOT_GIVEN, + validation_file: Optional[str] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> FineTuningJob: + """ + Creates a fine-tuning job which begins the process of creating a new model from + a given dataset. + + Response includes details of the enqueued job including job status and the name + of the fine-tuned models once complete. + + [Learn more about fine-tuning](https://platform.openai.com/docs/guides/fine-tuning) + + Args: + model: The name of the model to fine-tune. You can select one of the + [supported models](https://platform.openai.com/docs/guides/fine-tuning#which-models-can-be-fine-tuned). + + training_file: The ID of an uploaded file that contains training data. + + See [upload file](https://platform.openai.com/docs/api-reference/files/create) + for how to upload a file. + + Your dataset must be formatted as a JSONL file. Additionally, you must upload + your file with the purpose `fine-tune`. + + The contents of the file should differ depending on if the model uses the + [chat](https://platform.openai.com/docs/api-reference/fine-tuning/chat-input), + [completions](https://platform.openai.com/docs/api-reference/fine-tuning/completions-input) + format, or if the fine-tuning method uses the + [preference](https://platform.openai.com/docs/api-reference/fine-tuning/preference-input) + format. + + See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning) + for more details. + + hyperparameters: The hyperparameters used for the fine-tuning job. This value is now deprecated + in favor of `method`, and should be passed in under the `method` parameter. + + integrations: A list of integrations to enable for your fine-tuning job. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + method: The method used for fine-tuning. + + seed: The seed controls the reproducibility of the job. Passing in the same seed and + job parameters should produce the same results, but may differ in rare cases. If + a seed is not specified, one will be generated for you. + + suffix: A string of up to 64 characters that will be added to your fine-tuned model + name. + + For example, a `suffix` of "custom-model-name" would produce a model name like + `ft:gpt-4o-mini:openai:custom-model-name:7p4lURel`. + + validation_file: The ID of an uploaded file that contains validation data. + + If you provide this file, the data is used to generate validation metrics + periodically during fine-tuning. These metrics can be viewed in the fine-tuning + results file. The same data should not be present in both train and validation + files. + + Your dataset must be formatted as a JSONL file. You must upload your file with + the purpose `fine-tune`. + + See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning) + for more details. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._post( + "/fine_tuning/jobs", + body=maybe_transform( + { + "model": model, + "training_file": training_file, + "hyperparameters": hyperparameters, + "integrations": integrations, + "metadata": metadata, + "method": method, + "seed": seed, + "suffix": suffix, + "validation_file": validation_file, + }, + job_create_params.JobCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=FineTuningJob, + ) + + def retrieve( + self, + fine_tuning_job_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> FineTuningJob: + """ + Get info about a fine-tuning job. + + [Learn more about fine-tuning](https://platform.openai.com/docs/guides/fine-tuning) + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not fine_tuning_job_id: + raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}") + return self._get( + f"/fine_tuning/jobs/{fine_tuning_job_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=FineTuningJob, + ) + + def list( + self, + *, + after: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + metadata: Optional[Dict[str, str]] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncCursorPage[FineTuningJob]: + """ + List your organization's fine-tuning jobs + + Args: + after: Identifier for the last job from the previous pagination request. + + limit: Number of fine-tuning jobs to retrieve. + + metadata: Optional metadata filter. To filter, use the syntax `metadata[k]=v`. + Alternatively, set `metadata=null` to indicate no metadata. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._get_api_list( + "/fine_tuning/jobs", + page=SyncCursorPage[FineTuningJob], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "limit": limit, + "metadata": metadata, + }, + job_list_params.JobListParams, + ), + ), + model=FineTuningJob, + ) + + def cancel( + self, + fine_tuning_job_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> FineTuningJob: + """ + Immediately cancel a fine-tune job. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not fine_tuning_job_id: + raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}") + return self._post( + f"/fine_tuning/jobs/{fine_tuning_job_id}/cancel", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=FineTuningJob, + ) + + def list_events( + self, + fine_tuning_job_id: str, + *, + after: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncCursorPage[FineTuningJobEvent]: + """ + Get status updates for a fine-tuning job. + + Args: + after: Identifier for the last event from the previous pagination request. + + limit: Number of events to retrieve. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not fine_tuning_job_id: + raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}") + return self._get_api_list( + f"/fine_tuning/jobs/{fine_tuning_job_id}/events", + page=SyncCursorPage[FineTuningJobEvent], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "limit": limit, + }, + job_list_events_params.JobListEventsParams, + ), + ), + model=FineTuningJobEvent, + ) + + +class AsyncJobs(AsyncAPIResource): + @cached_property + def checkpoints(self) -> AsyncCheckpoints: + return AsyncCheckpoints(self._client) + + @cached_property + def with_raw_response(self) -> AsyncJobsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncJobsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncJobsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncJobsWithStreamingResponse(self) + + async def create( + self, + *, + model: Union[str, Literal["babbage-002", "davinci-002", "gpt-3.5-turbo", "gpt-4o-mini"]], + training_file: str, + hyperparameters: job_create_params.Hyperparameters | NotGiven = NOT_GIVEN, + integrations: Optional[Iterable[job_create_params.Integration]] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + method: job_create_params.Method | NotGiven = NOT_GIVEN, + seed: Optional[int] | NotGiven = NOT_GIVEN, + suffix: Optional[str] | NotGiven = NOT_GIVEN, + validation_file: Optional[str] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> FineTuningJob: + """ + Creates a fine-tuning job which begins the process of creating a new model from + a given dataset. + + Response includes details of the enqueued job including job status and the name + of the fine-tuned models once complete. + + [Learn more about fine-tuning](https://platform.openai.com/docs/guides/fine-tuning) + + Args: + model: The name of the model to fine-tune. You can select one of the + [supported models](https://platform.openai.com/docs/guides/fine-tuning#which-models-can-be-fine-tuned). + + training_file: The ID of an uploaded file that contains training data. + + See [upload file](https://platform.openai.com/docs/api-reference/files/create) + for how to upload a file. + + Your dataset must be formatted as a JSONL file. Additionally, you must upload + your file with the purpose `fine-tune`. + + The contents of the file should differ depending on if the model uses the + [chat](https://platform.openai.com/docs/api-reference/fine-tuning/chat-input), + [completions](https://platform.openai.com/docs/api-reference/fine-tuning/completions-input) + format, or if the fine-tuning method uses the + [preference](https://platform.openai.com/docs/api-reference/fine-tuning/preference-input) + format. + + See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning) + for more details. + + hyperparameters: The hyperparameters used for the fine-tuning job. This value is now deprecated + in favor of `method`, and should be passed in under the `method` parameter. + + integrations: A list of integrations to enable for your fine-tuning job. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + method: The method used for fine-tuning. + + seed: The seed controls the reproducibility of the job. Passing in the same seed and + job parameters should produce the same results, but may differ in rare cases. If + a seed is not specified, one will be generated for you. + + suffix: A string of up to 64 characters that will be added to your fine-tuned model + name. + + For example, a `suffix` of "custom-model-name" would produce a model name like + `ft:gpt-4o-mini:openai:custom-model-name:7p4lURel`. + + validation_file: The ID of an uploaded file that contains validation data. + + If you provide this file, the data is used to generate validation metrics + periodically during fine-tuning. These metrics can be viewed in the fine-tuning + results file. The same data should not be present in both train and validation + files. + + Your dataset must be formatted as a JSONL file. You must upload your file with + the purpose `fine-tune`. + + See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning) + for more details. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return await self._post( + "/fine_tuning/jobs", + body=await async_maybe_transform( + { + "model": model, + "training_file": training_file, + "hyperparameters": hyperparameters, + "integrations": integrations, + "metadata": metadata, + "method": method, + "seed": seed, + "suffix": suffix, + "validation_file": validation_file, + }, + job_create_params.JobCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=FineTuningJob, + ) + + async def retrieve( + self, + fine_tuning_job_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> FineTuningJob: + """ + Get info about a fine-tuning job. + + [Learn more about fine-tuning](https://platform.openai.com/docs/guides/fine-tuning) + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not fine_tuning_job_id: + raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}") + return await self._get( + f"/fine_tuning/jobs/{fine_tuning_job_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=FineTuningJob, + ) + + def list( + self, + *, + after: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + metadata: Optional[Dict[str, str]] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[FineTuningJob, AsyncCursorPage[FineTuningJob]]: + """ + List your organization's fine-tuning jobs + + Args: + after: Identifier for the last job from the previous pagination request. + + limit: Number of fine-tuning jobs to retrieve. + + metadata: Optional metadata filter. To filter, use the syntax `metadata[k]=v`. + Alternatively, set `metadata=null` to indicate no metadata. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._get_api_list( + "/fine_tuning/jobs", + page=AsyncCursorPage[FineTuningJob], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "limit": limit, + "metadata": metadata, + }, + job_list_params.JobListParams, + ), + ), + model=FineTuningJob, + ) + + async def cancel( + self, + fine_tuning_job_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> FineTuningJob: + """ + Immediately cancel a fine-tune job. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not fine_tuning_job_id: + raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}") + return await self._post( + f"/fine_tuning/jobs/{fine_tuning_job_id}/cancel", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=FineTuningJob, + ) + + def list_events( + self, + fine_tuning_job_id: str, + *, + after: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[FineTuningJobEvent, AsyncCursorPage[FineTuningJobEvent]]: + """ + Get status updates for a fine-tuning job. + + Args: + after: Identifier for the last event from the previous pagination request. + + limit: Number of events to retrieve. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not fine_tuning_job_id: + raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}") + return self._get_api_list( + f"/fine_tuning/jobs/{fine_tuning_job_id}/events", + page=AsyncCursorPage[FineTuningJobEvent], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "limit": limit, + }, + job_list_events_params.JobListEventsParams, + ), + ), + model=FineTuningJobEvent, + ) + + +class JobsWithRawResponse: + def __init__(self, jobs: Jobs) -> None: + self._jobs = jobs + + self.create = _legacy_response.to_raw_response_wrapper( + jobs.create, + ) + self.retrieve = _legacy_response.to_raw_response_wrapper( + jobs.retrieve, + ) + self.list = _legacy_response.to_raw_response_wrapper( + jobs.list, + ) + self.cancel = _legacy_response.to_raw_response_wrapper( + jobs.cancel, + ) + self.list_events = _legacy_response.to_raw_response_wrapper( + jobs.list_events, + ) + + @cached_property + def checkpoints(self) -> CheckpointsWithRawResponse: + return CheckpointsWithRawResponse(self._jobs.checkpoints) + + +class AsyncJobsWithRawResponse: + def __init__(self, jobs: AsyncJobs) -> None: + self._jobs = jobs + + self.create = _legacy_response.async_to_raw_response_wrapper( + jobs.create, + ) + self.retrieve = _legacy_response.async_to_raw_response_wrapper( + jobs.retrieve, + ) + self.list = _legacy_response.async_to_raw_response_wrapper( + jobs.list, + ) + self.cancel = _legacy_response.async_to_raw_response_wrapper( + jobs.cancel, + ) + self.list_events = _legacy_response.async_to_raw_response_wrapper( + jobs.list_events, + ) + + @cached_property + def checkpoints(self) -> AsyncCheckpointsWithRawResponse: + return AsyncCheckpointsWithRawResponse(self._jobs.checkpoints) + + +class JobsWithStreamingResponse: + def __init__(self, jobs: Jobs) -> None: + self._jobs = jobs + + self.create = to_streamed_response_wrapper( + jobs.create, + ) + self.retrieve = to_streamed_response_wrapper( + jobs.retrieve, + ) + self.list = to_streamed_response_wrapper( + jobs.list, + ) + self.cancel = to_streamed_response_wrapper( + jobs.cancel, + ) + self.list_events = to_streamed_response_wrapper( + jobs.list_events, + ) + + @cached_property + def checkpoints(self) -> CheckpointsWithStreamingResponse: + return CheckpointsWithStreamingResponse(self._jobs.checkpoints) + + +class AsyncJobsWithStreamingResponse: + def __init__(self, jobs: AsyncJobs) -> None: + self._jobs = jobs + + self.create = async_to_streamed_response_wrapper( + jobs.create, + ) + self.retrieve = async_to_streamed_response_wrapper( + jobs.retrieve, + ) + self.list = async_to_streamed_response_wrapper( + jobs.list, + ) + self.cancel = async_to_streamed_response_wrapper( + jobs.cancel, + ) + self.list_events = async_to_streamed_response_wrapper( + jobs.list_events, + ) + + @cached_property + def checkpoints(self) -> AsyncCheckpointsWithStreamingResponse: + return AsyncCheckpointsWithStreamingResponse(self._jobs.checkpoints) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/images.py b/.venv/lib/python3.12/site-packages/openai/resources/images.py new file mode 100644 index 00000000..30473c14 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/images.py @@ -0,0 +1,600 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Mapping, Optional, cast +from typing_extensions import Literal + +import httpx + +from .. import _legacy_response +from ..types import image_edit_params, image_generate_params, image_create_variation_params +from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes +from .._utils import ( + extract_files, + maybe_transform, + deepcopy_minimal, + async_maybe_transform, +) +from .._compat import cached_property +from .._resource import SyncAPIResource, AsyncAPIResource +from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from .._base_client import make_request_options +from ..types.image_model import ImageModel +from ..types.images_response import ImagesResponse + +__all__ = ["Images", "AsyncImages"] + + +class Images(SyncAPIResource): + @cached_property + def with_raw_response(self) -> ImagesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return ImagesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> ImagesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return ImagesWithStreamingResponse(self) + + def create_variation( + self, + *, + image: FileTypes, + model: Union[str, ImageModel, None] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + response_format: Optional[Literal["url", "b64_json"]] | NotGiven = NOT_GIVEN, + size: Optional[Literal["256x256", "512x512", "1024x1024"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ImagesResponse: + """ + Creates a variation of a given image. + + Args: + image: The image to use as the basis for the variation(s). Must be a valid PNG file, + less than 4MB, and square. + + model: The model to use for image generation. Only `dall-e-2` is supported at this + time. + + n: The number of images to generate. Must be between 1 and 10. For `dall-e-3`, only + `n=1` is supported. + + response_format: The format in which the generated images are returned. Must be one of `url` or + `b64_json`. URLs are only valid for 60 minutes after the image has been + generated. + + size: The size of the generated images. Must be one of `256x256`, `512x512`, or + `1024x1024`. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + body = deepcopy_minimal( + { + "image": image, + "model": model, + "n": n, + "response_format": response_format, + "size": size, + "user": user, + } + ) + files = extract_files(cast(Mapping[str, object], body), paths=[["image"]]) + # It should be noted that the actual Content-Type header that will be + # sent to the server will contain a `boundary` parameter, e.g. + # multipart/form-data; boundary=---abc-- + extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})} + return self._post( + "/images/variations", + body=maybe_transform(body, image_create_variation_params.ImageCreateVariationParams), + files=files, + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ImagesResponse, + ) + + def edit( + self, + *, + image: FileTypes, + prompt: str, + mask: FileTypes | NotGiven = NOT_GIVEN, + model: Union[str, ImageModel, None] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + response_format: Optional[Literal["url", "b64_json"]] | NotGiven = NOT_GIVEN, + size: Optional[Literal["256x256", "512x512", "1024x1024"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ImagesResponse: + """ + Creates an edited or extended image given an original image and a prompt. + + Args: + image: The image to edit. Must be a valid PNG file, less than 4MB, and square. If mask + is not provided, image must have transparency, which will be used as the mask. + + prompt: A text description of the desired image(s). The maximum length is 1000 + characters. + + mask: An additional image whose fully transparent areas (e.g. where alpha is zero) + indicate where `image` should be edited. Must be a valid PNG file, less than + 4MB, and have the same dimensions as `image`. + + model: The model to use for image generation. Only `dall-e-2` is supported at this + time. + + n: The number of images to generate. Must be between 1 and 10. + + response_format: The format in which the generated images are returned. Must be one of `url` or + `b64_json`. URLs are only valid for 60 minutes after the image has been + generated. + + size: The size of the generated images. Must be one of `256x256`, `512x512`, or + `1024x1024`. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + body = deepcopy_minimal( + { + "image": image, + "prompt": prompt, + "mask": mask, + "model": model, + "n": n, + "response_format": response_format, + "size": size, + "user": user, + } + ) + files = extract_files(cast(Mapping[str, object], body), paths=[["image"], ["mask"]]) + # It should be noted that the actual Content-Type header that will be + # sent to the server will contain a `boundary` parameter, e.g. + # multipart/form-data; boundary=---abc-- + extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})} + return self._post( + "/images/edits", + body=maybe_transform(body, image_edit_params.ImageEditParams), + files=files, + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ImagesResponse, + ) + + def generate( + self, + *, + prompt: str, + model: Union[str, ImageModel, None] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + quality: Literal["standard", "hd"] | NotGiven = NOT_GIVEN, + response_format: Optional[Literal["url", "b64_json"]] | NotGiven = NOT_GIVEN, + size: Optional[Literal["256x256", "512x512", "1024x1024", "1792x1024", "1024x1792"]] | NotGiven = NOT_GIVEN, + style: Optional[Literal["vivid", "natural"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ImagesResponse: + """ + Creates an image given a prompt. + + Args: + prompt: A text description of the desired image(s). The maximum length is 1000 + characters for `dall-e-2` and 4000 characters for `dall-e-3`. + + model: The model to use for image generation. + + n: The number of images to generate. Must be between 1 and 10. For `dall-e-3`, only + `n=1` is supported. + + quality: The quality of the image that will be generated. `hd` creates images with finer + details and greater consistency across the image. This param is only supported + for `dall-e-3`. + + response_format: The format in which the generated images are returned. Must be one of `url` or + `b64_json`. URLs are only valid for 60 minutes after the image has been + generated. + + size: The size of the generated images. Must be one of `256x256`, `512x512`, or + `1024x1024` for `dall-e-2`. Must be one of `1024x1024`, `1792x1024`, or + `1024x1792` for `dall-e-3` models. + + style: The style of the generated images. Must be one of `vivid` or `natural`. Vivid + causes the model to lean towards generating hyper-real and dramatic images. + Natural causes the model to produce more natural, less hyper-real looking + images. This param is only supported for `dall-e-3`. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._post( + "/images/generations", + body=maybe_transform( + { + "prompt": prompt, + "model": model, + "n": n, + "quality": quality, + "response_format": response_format, + "size": size, + "style": style, + "user": user, + }, + image_generate_params.ImageGenerateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ImagesResponse, + ) + + +class AsyncImages(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncImagesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncImagesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncImagesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncImagesWithStreamingResponse(self) + + async def create_variation( + self, + *, + image: FileTypes, + model: Union[str, ImageModel, None] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + response_format: Optional[Literal["url", "b64_json"]] | NotGiven = NOT_GIVEN, + size: Optional[Literal["256x256", "512x512", "1024x1024"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ImagesResponse: + """ + Creates a variation of a given image. + + Args: + image: The image to use as the basis for the variation(s). Must be a valid PNG file, + less than 4MB, and square. + + model: The model to use for image generation. Only `dall-e-2` is supported at this + time. + + n: The number of images to generate. Must be between 1 and 10. For `dall-e-3`, only + `n=1` is supported. + + response_format: The format in which the generated images are returned. Must be one of `url` or + `b64_json`. URLs are only valid for 60 minutes after the image has been + generated. + + size: The size of the generated images. Must be one of `256x256`, `512x512`, or + `1024x1024`. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + body = deepcopy_minimal( + { + "image": image, + "model": model, + "n": n, + "response_format": response_format, + "size": size, + "user": user, + } + ) + files = extract_files(cast(Mapping[str, object], body), paths=[["image"]]) + # It should be noted that the actual Content-Type header that will be + # sent to the server will contain a `boundary` parameter, e.g. + # multipart/form-data; boundary=---abc-- + extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})} + return await self._post( + "/images/variations", + body=await async_maybe_transform(body, image_create_variation_params.ImageCreateVariationParams), + files=files, + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ImagesResponse, + ) + + async def edit( + self, + *, + image: FileTypes, + prompt: str, + mask: FileTypes | NotGiven = NOT_GIVEN, + model: Union[str, ImageModel, None] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + response_format: Optional[Literal["url", "b64_json"]] | NotGiven = NOT_GIVEN, + size: Optional[Literal["256x256", "512x512", "1024x1024"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ImagesResponse: + """ + Creates an edited or extended image given an original image and a prompt. + + Args: + image: The image to edit. Must be a valid PNG file, less than 4MB, and square. If mask + is not provided, image must have transparency, which will be used as the mask. + + prompt: A text description of the desired image(s). The maximum length is 1000 + characters. + + mask: An additional image whose fully transparent areas (e.g. where alpha is zero) + indicate where `image` should be edited. Must be a valid PNG file, less than + 4MB, and have the same dimensions as `image`. + + model: The model to use for image generation. Only `dall-e-2` is supported at this + time. + + n: The number of images to generate. Must be between 1 and 10. + + response_format: The format in which the generated images are returned. Must be one of `url` or + `b64_json`. URLs are only valid for 60 minutes after the image has been + generated. + + size: The size of the generated images. Must be one of `256x256`, `512x512`, or + `1024x1024`. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + body = deepcopy_minimal( + { + "image": image, + "prompt": prompt, + "mask": mask, + "model": model, + "n": n, + "response_format": response_format, + "size": size, + "user": user, + } + ) + files = extract_files(cast(Mapping[str, object], body), paths=[["image"], ["mask"]]) + # It should be noted that the actual Content-Type header that will be + # sent to the server will contain a `boundary` parameter, e.g. + # multipart/form-data; boundary=---abc-- + extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})} + return await self._post( + "/images/edits", + body=await async_maybe_transform(body, image_edit_params.ImageEditParams), + files=files, + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ImagesResponse, + ) + + async def generate( + self, + *, + prompt: str, + model: Union[str, ImageModel, None] | NotGiven = NOT_GIVEN, + n: Optional[int] | NotGiven = NOT_GIVEN, + quality: Literal["standard", "hd"] | NotGiven = NOT_GIVEN, + response_format: Optional[Literal["url", "b64_json"]] | NotGiven = NOT_GIVEN, + size: Optional[Literal["256x256", "512x512", "1024x1024", "1792x1024", "1024x1792"]] | NotGiven = NOT_GIVEN, + style: Optional[Literal["vivid", "natural"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ImagesResponse: + """ + Creates an image given a prompt. + + Args: + prompt: A text description of the desired image(s). The maximum length is 1000 + characters for `dall-e-2` and 4000 characters for `dall-e-3`. + + model: The model to use for image generation. + + n: The number of images to generate. Must be between 1 and 10. For `dall-e-3`, only + `n=1` is supported. + + quality: The quality of the image that will be generated. `hd` creates images with finer + details and greater consistency across the image. This param is only supported + for `dall-e-3`. + + response_format: The format in which the generated images are returned. Must be one of `url` or + `b64_json`. URLs are only valid for 60 minutes after the image has been + generated. + + size: The size of the generated images. Must be one of `256x256`, `512x512`, or + `1024x1024` for `dall-e-2`. Must be one of `1024x1024`, `1792x1024`, or + `1024x1792` for `dall-e-3` models. + + style: The style of the generated images. Must be one of `vivid` or `natural`. Vivid + causes the model to lean towards generating hyper-real and dramatic images. + Natural causes the model to produce more natural, less hyper-real looking + images. This param is only supported for `dall-e-3`. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return await self._post( + "/images/generations", + body=await async_maybe_transform( + { + "prompt": prompt, + "model": model, + "n": n, + "quality": quality, + "response_format": response_format, + "size": size, + "style": style, + "user": user, + }, + image_generate_params.ImageGenerateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ImagesResponse, + ) + + +class ImagesWithRawResponse: + def __init__(self, images: Images) -> None: + self._images = images + + self.create_variation = _legacy_response.to_raw_response_wrapper( + images.create_variation, + ) + self.edit = _legacy_response.to_raw_response_wrapper( + images.edit, + ) + self.generate = _legacy_response.to_raw_response_wrapper( + images.generate, + ) + + +class AsyncImagesWithRawResponse: + def __init__(self, images: AsyncImages) -> None: + self._images = images + + self.create_variation = _legacy_response.async_to_raw_response_wrapper( + images.create_variation, + ) + self.edit = _legacy_response.async_to_raw_response_wrapper( + images.edit, + ) + self.generate = _legacy_response.async_to_raw_response_wrapper( + images.generate, + ) + + +class ImagesWithStreamingResponse: + def __init__(self, images: Images) -> None: + self._images = images + + self.create_variation = to_streamed_response_wrapper( + images.create_variation, + ) + self.edit = to_streamed_response_wrapper( + images.edit, + ) + self.generate = to_streamed_response_wrapper( + images.generate, + ) + + +class AsyncImagesWithStreamingResponse: + def __init__(self, images: AsyncImages) -> None: + self._images = images + + self.create_variation = async_to_streamed_response_wrapper( + images.create_variation, + ) + self.edit = async_to_streamed_response_wrapper( + images.edit, + ) + self.generate = async_to_streamed_response_wrapper( + images.generate, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/models.py b/.venv/lib/python3.12/site-packages/openai/resources/models.py new file mode 100644 index 00000000..a9693a6b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/models.py @@ -0,0 +1,306 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import httpx + +from .. import _legacy_response +from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from .._compat import cached_property +from .._resource import SyncAPIResource, AsyncAPIResource +from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ..pagination import SyncPage, AsyncPage +from ..types.model import Model +from .._base_client import ( + AsyncPaginator, + make_request_options, +) +from ..types.model_deleted import ModelDeleted + +__all__ = ["Models", "AsyncModels"] + + +class Models(SyncAPIResource): + @cached_property + def with_raw_response(self) -> ModelsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return ModelsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> ModelsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return ModelsWithStreamingResponse(self) + + def retrieve( + self, + model: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Model: + """ + Retrieves a model instance, providing basic information about the model such as + the owner and permissioning. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not model: + raise ValueError(f"Expected a non-empty value for `model` but received {model!r}") + return self._get( + f"/models/{model}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Model, + ) + + def list( + self, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncPage[Model]: + """ + Lists the currently available models, and provides basic information about each + one such as the owner and availability. + """ + return self._get_api_list( + "/models", + page=SyncPage[Model], + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + model=Model, + ) + + def delete( + self, + model: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ModelDeleted: + """Delete a fine-tuned model. + + You must have the Owner role in your organization to + delete a model. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not model: + raise ValueError(f"Expected a non-empty value for `model` but received {model!r}") + return self._delete( + f"/models/{model}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ModelDeleted, + ) + + +class AsyncModels(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncModelsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncModelsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncModelsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncModelsWithStreamingResponse(self) + + async def retrieve( + self, + model: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Model: + """ + Retrieves a model instance, providing basic information about the model such as + the owner and permissioning. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not model: + raise ValueError(f"Expected a non-empty value for `model` but received {model!r}") + return await self._get( + f"/models/{model}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Model, + ) + + def list( + self, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[Model, AsyncPage[Model]]: + """ + Lists the currently available models, and provides basic information about each + one such as the owner and availability. + """ + return self._get_api_list( + "/models", + page=AsyncPage[Model], + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + model=Model, + ) + + async def delete( + self, + model: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ModelDeleted: + """Delete a fine-tuned model. + + You must have the Owner role in your organization to + delete a model. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not model: + raise ValueError(f"Expected a non-empty value for `model` but received {model!r}") + return await self._delete( + f"/models/{model}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ModelDeleted, + ) + + +class ModelsWithRawResponse: + def __init__(self, models: Models) -> None: + self._models = models + + self.retrieve = _legacy_response.to_raw_response_wrapper( + models.retrieve, + ) + self.list = _legacy_response.to_raw_response_wrapper( + models.list, + ) + self.delete = _legacy_response.to_raw_response_wrapper( + models.delete, + ) + + +class AsyncModelsWithRawResponse: + def __init__(self, models: AsyncModels) -> None: + self._models = models + + self.retrieve = _legacy_response.async_to_raw_response_wrapper( + models.retrieve, + ) + self.list = _legacy_response.async_to_raw_response_wrapper( + models.list, + ) + self.delete = _legacy_response.async_to_raw_response_wrapper( + models.delete, + ) + + +class ModelsWithStreamingResponse: + def __init__(self, models: Models) -> None: + self._models = models + + self.retrieve = to_streamed_response_wrapper( + models.retrieve, + ) + self.list = to_streamed_response_wrapper( + models.list, + ) + self.delete = to_streamed_response_wrapper( + models.delete, + ) + + +class AsyncModelsWithStreamingResponse: + def __init__(self, models: AsyncModels) -> None: + self._models = models + + self.retrieve = async_to_streamed_response_wrapper( + models.retrieve, + ) + self.list = async_to_streamed_response_wrapper( + models.list, + ) + self.delete = async_to_streamed_response_wrapper( + models.delete, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/moderations.py b/.venv/lib/python3.12/site-packages/openai/resources/moderations.py new file mode 100644 index 00000000..a8f03142 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/moderations.py @@ -0,0 +1,200 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union, Iterable + +import httpx + +from .. import _legacy_response +from ..types import moderation_create_params +from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from .._utils import ( + maybe_transform, + async_maybe_transform, +) +from .._compat import cached_property +from .._resource import SyncAPIResource, AsyncAPIResource +from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from .._base_client import make_request_options +from ..types.moderation_model import ModerationModel +from ..types.moderation_create_response import ModerationCreateResponse +from ..types.moderation_multi_modal_input_param import ModerationMultiModalInputParam + +__all__ = ["Moderations", "AsyncModerations"] + + +class Moderations(SyncAPIResource): + @cached_property + def with_raw_response(self) -> ModerationsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return ModerationsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> ModerationsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return ModerationsWithStreamingResponse(self) + + def create( + self, + *, + input: Union[str, List[str], Iterable[ModerationMultiModalInputParam]], + model: Union[str, ModerationModel] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ModerationCreateResponse: + """Classifies if text and/or image inputs are potentially harmful. + + Learn more in + the [moderation guide](https://platform.openai.com/docs/guides/moderation). + + Args: + input: Input (or inputs) to classify. Can be a single string, an array of strings, or + an array of multi-modal input objects similar to other models. + + model: The content moderation model you would like to use. Learn more in + [the moderation guide](https://platform.openai.com/docs/guides/moderation), and + learn about available models + [here](https://platform.openai.com/docs/models#moderation). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._post( + "/moderations", + body=maybe_transform( + { + "input": input, + "model": model, + }, + moderation_create_params.ModerationCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ModerationCreateResponse, + ) + + +class AsyncModerations(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncModerationsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncModerationsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncModerationsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncModerationsWithStreamingResponse(self) + + async def create( + self, + *, + input: Union[str, List[str], Iterable[ModerationMultiModalInputParam]], + model: Union[str, ModerationModel] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ModerationCreateResponse: + """Classifies if text and/or image inputs are potentially harmful. + + Learn more in + the [moderation guide](https://platform.openai.com/docs/guides/moderation). + + Args: + input: Input (or inputs) to classify. Can be a single string, an array of strings, or + an array of multi-modal input objects similar to other models. + + model: The content moderation model you would like to use. Learn more in + [the moderation guide](https://platform.openai.com/docs/guides/moderation), and + learn about available models + [here](https://platform.openai.com/docs/models#moderation). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return await self._post( + "/moderations", + body=await async_maybe_transform( + { + "input": input, + "model": model, + }, + moderation_create_params.ModerationCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ModerationCreateResponse, + ) + + +class ModerationsWithRawResponse: + def __init__(self, moderations: Moderations) -> None: + self._moderations = moderations + + self.create = _legacy_response.to_raw_response_wrapper( + moderations.create, + ) + + +class AsyncModerationsWithRawResponse: + def __init__(self, moderations: AsyncModerations) -> None: + self._moderations = moderations + + self.create = _legacy_response.async_to_raw_response_wrapper( + moderations.create, + ) + + +class ModerationsWithStreamingResponse: + def __init__(self, moderations: Moderations) -> None: + self._moderations = moderations + + self.create = to_streamed_response_wrapper( + moderations.create, + ) + + +class AsyncModerationsWithStreamingResponse: + def __init__(self, moderations: AsyncModerations) -> None: + self._moderations = moderations + + self.create = async_to_streamed_response_wrapper( + moderations.create, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/responses/__init__.py b/.venv/lib/python3.12/site-packages/openai/resources/responses/__init__.py new file mode 100644 index 00000000..ad19218b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/responses/__init__.py @@ -0,0 +1,33 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from .responses import ( + Responses, + AsyncResponses, + ResponsesWithRawResponse, + AsyncResponsesWithRawResponse, + ResponsesWithStreamingResponse, + AsyncResponsesWithStreamingResponse, +) +from .input_items import ( + InputItems, + AsyncInputItems, + InputItemsWithRawResponse, + AsyncInputItemsWithRawResponse, + InputItemsWithStreamingResponse, + AsyncInputItemsWithStreamingResponse, +) + +__all__ = [ + "InputItems", + "AsyncInputItems", + "InputItemsWithRawResponse", + "AsyncInputItemsWithRawResponse", + "InputItemsWithStreamingResponse", + "AsyncInputItemsWithStreamingResponse", + "Responses", + "AsyncResponses", + "ResponsesWithRawResponse", + "AsyncResponsesWithRawResponse", + "ResponsesWithStreamingResponse", + "AsyncResponsesWithStreamingResponse", +] diff --git a/.venv/lib/python3.12/site-packages/openai/resources/responses/input_items.py b/.venv/lib/python3.12/site-packages/openai/resources/responses/input_items.py new file mode 100644 index 00000000..e341393c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/responses/input_items.py @@ -0,0 +1,223 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Any, cast +from typing_extensions import Literal + +import httpx + +from ... import _legacy_response +from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from ..._utils import maybe_transform +from ..._compat import cached_property +from ..._resource import SyncAPIResource, AsyncAPIResource +from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ...pagination import SyncCursorPage, AsyncCursorPage +from ..._base_client import AsyncPaginator, make_request_options +from ...types.responses import input_item_list_params +from ...types.responses.response_item import ResponseItem + +__all__ = ["InputItems", "AsyncInputItems"] + + +class InputItems(SyncAPIResource): + @cached_property + def with_raw_response(self) -> InputItemsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return InputItemsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> InputItemsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return InputItemsWithStreamingResponse(self) + + def list( + self, + response_id: str, + *, + after: str | NotGiven = NOT_GIVEN, + before: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncCursorPage[ResponseItem]: + """ + Returns a list of input items for a given response. + + Args: + after: An item ID to list items after, used in pagination. + + before: An item ID to list items before, used in pagination. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + order: The order to return the input items in. Default is `asc`. + + - `asc`: Return the input items in ascending order. + - `desc`: Return the input items in descending order. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not response_id: + raise ValueError(f"Expected a non-empty value for `response_id` but received {response_id!r}") + return self._get_api_list( + f"/responses/{response_id}/input_items", + page=SyncCursorPage[ResponseItem], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "before": before, + "limit": limit, + "order": order, + }, + input_item_list_params.InputItemListParams, + ), + ), + model=cast(Any, ResponseItem), # Union types cannot be passed in as arguments in the type system + ) + + +class AsyncInputItems(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncInputItemsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncInputItemsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncInputItemsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncInputItemsWithStreamingResponse(self) + + def list( + self, + response_id: str, + *, + after: str | NotGiven = NOT_GIVEN, + before: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[ResponseItem, AsyncCursorPage[ResponseItem]]: + """ + Returns a list of input items for a given response. + + Args: + after: An item ID to list items after, used in pagination. + + before: An item ID to list items before, used in pagination. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + order: The order to return the input items in. Default is `asc`. + + - `asc`: Return the input items in ascending order. + - `desc`: Return the input items in descending order. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not response_id: + raise ValueError(f"Expected a non-empty value for `response_id` but received {response_id!r}") + return self._get_api_list( + f"/responses/{response_id}/input_items", + page=AsyncCursorPage[ResponseItem], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "before": before, + "limit": limit, + "order": order, + }, + input_item_list_params.InputItemListParams, + ), + ), + model=cast(Any, ResponseItem), # Union types cannot be passed in as arguments in the type system + ) + + +class InputItemsWithRawResponse: + def __init__(self, input_items: InputItems) -> None: + self._input_items = input_items + + self.list = _legacy_response.to_raw_response_wrapper( + input_items.list, + ) + + +class AsyncInputItemsWithRawResponse: + def __init__(self, input_items: AsyncInputItems) -> None: + self._input_items = input_items + + self.list = _legacy_response.async_to_raw_response_wrapper( + input_items.list, + ) + + +class InputItemsWithStreamingResponse: + def __init__(self, input_items: InputItems) -> None: + self._input_items = input_items + + self.list = to_streamed_response_wrapper( + input_items.list, + ) + + +class AsyncInputItemsWithStreamingResponse: + def __init__(self, input_items: AsyncInputItems) -> None: + self._input_items = input_items + + self.list = async_to_streamed_response_wrapper( + input_items.list, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/responses/responses.py b/.venv/lib/python3.12/site-packages/openai/resources/responses/responses.py new file mode 100644 index 00000000..668f4db8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/responses/responses.py @@ -0,0 +1,1791 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Any, List, Type, Union, Iterable, Optional, cast +from functools import partial +from typing_extensions import Literal, overload + +import httpx + +from ... import _legacy_response +from ..._types import NOT_GIVEN, Body, Query, Headers, NoneType, NotGiven +from ..._utils import ( + is_given, + required_args, + maybe_transform, + async_maybe_transform, +) +from ..._compat import cached_property +from ..._resource import SyncAPIResource, AsyncAPIResource +from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from .input_items import ( + InputItems, + AsyncInputItems, + InputItemsWithRawResponse, + AsyncInputItemsWithRawResponse, + InputItemsWithStreamingResponse, + AsyncInputItemsWithStreamingResponse, +) +from ..._streaming import Stream, AsyncStream +from ...lib._tools import PydanticFunctionTool, ResponsesPydanticFunctionTool +from ..._base_client import make_request_options +from ...types.responses import response_create_params, response_retrieve_params +from ...lib._parsing._responses import ( + TextFormatT, + parse_response, + type_to_text_format_param as _type_to_text_format_param, +) +from ...types.shared.chat_model import ChatModel +from ...types.responses.response import Response +from ...types.responses.tool_param import ToolParam, ParseableToolParam +from ...types.shared_params.metadata import Metadata +from ...types.shared_params.reasoning import Reasoning +from ...types.responses.parsed_response import ParsedResponse +from ...lib.streaming.responses._responses import ResponseStreamManager, AsyncResponseStreamManager +from ...types.responses.response_includable import ResponseIncludable +from ...types.shared_params.responses_model import ResponsesModel +from ...types.responses.response_input_param import ResponseInputParam +from ...types.responses.response_stream_event import ResponseStreamEvent +from ...types.responses.response_text_config_param import ResponseTextConfigParam + +__all__ = ["Responses", "AsyncResponses"] + + +class Responses(SyncAPIResource): + @cached_property + def input_items(self) -> InputItems: + return InputItems(self._client) + + @cached_property + def with_raw_response(self) -> ResponsesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return ResponsesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> ResponsesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return ResponsesWithStreamingResponse(self) + + @overload + def create( + self, + *, + input: Union[str, ResponseInputParam], + model: ResponsesModel, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Response: + """Creates a model response. + + Provide + [text](https://platform.openai.com/docs/guides/text) or + [image](https://platform.openai.com/docs/guides/images) inputs to generate + [text](https://platform.openai.com/docs/guides/text) or + [JSON](https://platform.openai.com/docs/guides/structured-outputs) outputs. Have + the model call your own + [custom code](https://platform.openai.com/docs/guides/function-calling) or use + built-in [tools](https://platform.openai.com/docs/guides/tools) like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search) to use + your own data as input for the model's response. + + Args: + input: Text, image, or file inputs to the model, used to generate a response. + + Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Image inputs](https://platform.openai.com/docs/guides/images) + - [File inputs](https://platform.openai.com/docs/guides/pdf-files) + - [Conversation state](https://platform.openai.com/docs/guides/conversation-state) + - [Function calling](https://platform.openai.com/docs/guides/function-calling) + + model: Model ID used to generate the response, like `gpt-4o` or `o1`. OpenAI offers a + wide range of models with different capabilities, performance characteristics, + and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + + include: Specify additional output data to include in the model response. Currently + supported values are: + + - `file_search_call.results`: Include the search results of the file search tool + call. + - `message.input_image.image_url`: Include image urls from the input message. + - `computer_call_output.output.image_url`: Include image urls from the computer + call output. + + instructions: Inserts a system (or developer) message as the first item in the model's + context. + + When using along with `previous_response_id`, the instructions from a previous + response will be not be carried over to the next response. This makes it simple + to swap out system (or developer) messages in new responses. + + max_output_tokens: An upper bound for the number of tokens that can be generated for a response, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + parallel_tool_calls: Whether to allow the model to run tool calls in parallel. + + previous_response_id: The unique ID of the previous response to the model. Use this to create + multi-turn conversations. Learn more about + [conversation state](https://platform.openai.com/docs/guides/conversation-state). + + reasoning: **o-series models only** + + Configuration options for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). + + store: Whether to store the generated model response for later retrieval via API. + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/responses-streaming) + for more information. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. We generally recommend altering this or `top_p` but + not both. + + text: Configuration options for a text response from the model. Can be plain text or + structured JSON data. Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs) + + tool_choice: How the model should select which tool (or tools) to use when generating a + response. See the `tools` parameter to see how to specify which tools the model + can call. + + tools: An array of tools the model may call while generating a response. You can + specify which tool to use by setting the `tool_choice` parameter. + + The two categories of tools you can provide the model are: + + - **Built-in tools**: Tools that are provided by OpenAI that extend the model's + capabilities, like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search). + Learn more about + [built-in tools](https://platform.openai.com/docs/guides/tools). + - **Function calls (custom tools)**: Functions that are defined by you, enabling + the model to call your own code. Learn more about + [function calling](https://platform.openai.com/docs/guides/function-calling). + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + truncation: The truncation strategy to use for the model response. + + - `auto`: If the context of this response and previous ones exceeds the model's + context window size, the model will truncate the response to fit the context + window by dropping input items in the middle of the conversation. + - `disabled` (default): If a model response will exceed the context window size + for a model, the request will fail with a 400 error. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + def create( + self, + *, + input: Union[str, ResponseInputParam], + model: ResponsesModel, + stream: Literal[True], + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Stream[ResponseStreamEvent]: + """Creates a model response. + + Provide + [text](https://platform.openai.com/docs/guides/text) or + [image](https://platform.openai.com/docs/guides/images) inputs to generate + [text](https://platform.openai.com/docs/guides/text) or + [JSON](https://platform.openai.com/docs/guides/structured-outputs) outputs. Have + the model call your own + [custom code](https://platform.openai.com/docs/guides/function-calling) or use + built-in [tools](https://platform.openai.com/docs/guides/tools) like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search) to use + your own data as input for the model's response. + + Args: + input: Text, image, or file inputs to the model, used to generate a response. + + Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Image inputs](https://platform.openai.com/docs/guides/images) + - [File inputs](https://platform.openai.com/docs/guides/pdf-files) + - [Conversation state](https://platform.openai.com/docs/guides/conversation-state) + - [Function calling](https://platform.openai.com/docs/guides/function-calling) + + model: Model ID used to generate the response, like `gpt-4o` or `o1`. OpenAI offers a + wide range of models with different capabilities, performance characteristics, + and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/responses-streaming) + for more information. + + include: Specify additional output data to include in the model response. Currently + supported values are: + + - `file_search_call.results`: Include the search results of the file search tool + call. + - `message.input_image.image_url`: Include image urls from the input message. + - `computer_call_output.output.image_url`: Include image urls from the computer + call output. + + instructions: Inserts a system (or developer) message as the first item in the model's + context. + + When using along with `previous_response_id`, the instructions from a previous + response will be not be carried over to the next response. This makes it simple + to swap out system (or developer) messages in new responses. + + max_output_tokens: An upper bound for the number of tokens that can be generated for a response, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + parallel_tool_calls: Whether to allow the model to run tool calls in parallel. + + previous_response_id: The unique ID of the previous response to the model. Use this to create + multi-turn conversations. Learn more about + [conversation state](https://platform.openai.com/docs/guides/conversation-state). + + reasoning: **o-series models only** + + Configuration options for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). + + store: Whether to store the generated model response for later retrieval via API. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. We generally recommend altering this or `top_p` but + not both. + + text: Configuration options for a text response from the model. Can be plain text or + structured JSON data. Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs) + + tool_choice: How the model should select which tool (or tools) to use when generating a + response. See the `tools` parameter to see how to specify which tools the model + can call. + + tools: An array of tools the model may call while generating a response. You can + specify which tool to use by setting the `tool_choice` parameter. + + The two categories of tools you can provide the model are: + + - **Built-in tools**: Tools that are provided by OpenAI that extend the model's + capabilities, like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search). + Learn more about + [built-in tools](https://platform.openai.com/docs/guides/tools). + - **Function calls (custom tools)**: Functions that are defined by you, enabling + the model to call your own code. Learn more about + [function calling](https://platform.openai.com/docs/guides/function-calling). + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + truncation: The truncation strategy to use for the model response. + + - `auto`: If the context of this response and previous ones exceeds the model's + context window size, the model will truncate the response to fit the context + window by dropping input items in the middle of the conversation. + - `disabled` (default): If a model response will exceed the context window size + for a model, the request will fail with a 400 error. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + def create( + self, + *, + input: Union[str, ResponseInputParam], + model: ResponsesModel, + stream: bool, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Response | Stream[ResponseStreamEvent]: + """Creates a model response. + + Provide + [text](https://platform.openai.com/docs/guides/text) or + [image](https://platform.openai.com/docs/guides/images) inputs to generate + [text](https://platform.openai.com/docs/guides/text) or + [JSON](https://platform.openai.com/docs/guides/structured-outputs) outputs. Have + the model call your own + [custom code](https://platform.openai.com/docs/guides/function-calling) or use + built-in [tools](https://platform.openai.com/docs/guides/tools) like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search) to use + your own data as input for the model's response. + + Args: + input: Text, image, or file inputs to the model, used to generate a response. + + Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Image inputs](https://platform.openai.com/docs/guides/images) + - [File inputs](https://platform.openai.com/docs/guides/pdf-files) + - [Conversation state](https://platform.openai.com/docs/guides/conversation-state) + - [Function calling](https://platform.openai.com/docs/guides/function-calling) + + model: Model ID used to generate the response, like `gpt-4o` or `o1`. OpenAI offers a + wide range of models with different capabilities, performance characteristics, + and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/responses-streaming) + for more information. + + include: Specify additional output data to include in the model response. Currently + supported values are: + + - `file_search_call.results`: Include the search results of the file search tool + call. + - `message.input_image.image_url`: Include image urls from the input message. + - `computer_call_output.output.image_url`: Include image urls from the computer + call output. + + instructions: Inserts a system (or developer) message as the first item in the model's + context. + + When using along with `previous_response_id`, the instructions from a previous + response will be not be carried over to the next response. This makes it simple + to swap out system (or developer) messages in new responses. + + max_output_tokens: An upper bound for the number of tokens that can be generated for a response, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + parallel_tool_calls: Whether to allow the model to run tool calls in parallel. + + previous_response_id: The unique ID of the previous response to the model. Use this to create + multi-turn conversations. Learn more about + [conversation state](https://platform.openai.com/docs/guides/conversation-state). + + reasoning: **o-series models only** + + Configuration options for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). + + store: Whether to store the generated model response for later retrieval via API. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. We generally recommend altering this or `top_p` but + not both. + + text: Configuration options for a text response from the model. Can be plain text or + structured JSON data. Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs) + + tool_choice: How the model should select which tool (or tools) to use when generating a + response. See the `tools` parameter to see how to specify which tools the model + can call. + + tools: An array of tools the model may call while generating a response. You can + specify which tool to use by setting the `tool_choice` parameter. + + The two categories of tools you can provide the model are: + + - **Built-in tools**: Tools that are provided by OpenAI that extend the model's + capabilities, like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search). + Learn more about + [built-in tools](https://platform.openai.com/docs/guides/tools). + - **Function calls (custom tools)**: Functions that are defined by you, enabling + the model to call your own code. Learn more about + [function calling](https://platform.openai.com/docs/guides/function-calling). + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + truncation: The truncation strategy to use for the model response. + + - `auto`: If the context of this response and previous ones exceeds the model's + context window size, the model will truncate the response to fit the context + window by dropping input items in the middle of the conversation. + - `disabled` (default): If a model response will exceed the context window size + for a model, the request will fail with a 400 error. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @required_args(["input", "model"], ["input", "model", "stream"]) + def create( + self, + *, + input: Union[str, ResponseInputParam], + model: ResponsesModel, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Response | Stream[ResponseStreamEvent]: + return self._post( + "/responses", + body=maybe_transform( + { + "input": input, + "model": model, + "include": include, + "instructions": instructions, + "max_output_tokens": max_output_tokens, + "metadata": metadata, + "parallel_tool_calls": parallel_tool_calls, + "previous_response_id": previous_response_id, + "reasoning": reasoning, + "store": store, + "stream": stream, + "temperature": temperature, + "text": text, + "tool_choice": tool_choice, + "tools": tools, + "top_p": top_p, + "truncation": truncation, + "user": user, + }, + response_create_params.ResponseCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Response, + stream=stream or False, + stream_cls=Stream[ResponseStreamEvent], + ) + + def stream( + self, + *, + input: Union[str, ResponseInputParam], + model: Union[str, ChatModel], + text_format: type[TextFormatT] | NotGiven = NOT_GIVEN, + tools: Iterable[ParseableToolParam] | NotGiven = NOT_GIVEN, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ResponseStreamManager[TextFormatT]: + if is_given(text_format): + if not text: + text = {} + + if "format" in text: + raise TypeError("Cannot mix and match text.format with text_format") + + text["format"] = _type_to_text_format_param(text_format) + + tools = _make_tools(tools) + + api_request: partial[Stream[ResponseStreamEvent]] = partial( + self.create, + input=input, + model=model, + tools=tools, + include=include, + instructions=instructions, + max_output_tokens=max_output_tokens, + metadata=metadata, + parallel_tool_calls=parallel_tool_calls, + previous_response_id=previous_response_id, + store=store, + stream=True, + temperature=temperature, + text=text, + tool_choice=tool_choice, + reasoning=reasoning, + top_p=top_p, + truncation=truncation, + user=user, + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + ) + + return ResponseStreamManager( + api_request, + text_format=text_format, + input_tools=tools, + ) + + def parse( + self, + *, + input: Union[str, ResponseInputParam], + model: Union[str, ChatModel], + text_format: type[TextFormatT] | NotGiven = NOT_GIVEN, + tools: Iterable[ParseableToolParam] | NotGiven = NOT_GIVEN, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ParsedResponse[TextFormatT]: + if is_given(text_format): + if not text: + text = {} + + if "format" in text: + raise TypeError("Cannot mix and match text.format with text_format") + + text["format"] = _type_to_text_format_param(text_format) + + tools = _make_tools(tools) + + def parser(raw_response: Response) -> ParsedResponse[TextFormatT]: + return parse_response( + input_tools=tools, + text_format=text_format, + response=raw_response, + ) + + return self._post( + "/responses", + body=maybe_transform( + { + "input": input, + "model": model, + "include": include, + "instructions": instructions, + "max_output_tokens": max_output_tokens, + "metadata": metadata, + "parallel_tool_calls": parallel_tool_calls, + "previous_response_id": previous_response_id, + "reasoning": reasoning, + "store": store, + "stream": stream, + "temperature": temperature, + "text": text, + "tool_choice": tool_choice, + "tools": tools, + "top_p": top_p, + "truncation": truncation, + "user": user, + }, + response_create_params.ResponseCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + post_parser=parser, + ), + # we turn the `Response` instance into a `ParsedResponse` + # in the `parser` function above + cast_to=cast(Type[ParsedResponse[TextFormatT]], Response), + ) + + def retrieve( + self, + response_id: str, + *, + include: List[ResponseIncludable] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Response: + """ + Retrieves a model response with the given ID. + + Args: + include: Additional fields to include in the response. See the `include` parameter for + Response creation above for more information. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not response_id: + raise ValueError(f"Expected a non-empty value for `response_id` but received {response_id!r}") + return self._get( + f"/responses/{response_id}", + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform({"include": include}, response_retrieve_params.ResponseRetrieveParams), + ), + cast_to=Response, + ) + + def delete( + self, + response_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> None: + """ + Deletes a model response with the given ID. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not response_id: + raise ValueError(f"Expected a non-empty value for `response_id` but received {response_id!r}") + extra_headers = {"Accept": "*/*", **(extra_headers or {})} + return self._delete( + f"/responses/{response_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=NoneType, + ) + + +class AsyncResponses(AsyncAPIResource): + @cached_property + def input_items(self) -> AsyncInputItems: + return AsyncInputItems(self._client) + + @cached_property + def with_raw_response(self) -> AsyncResponsesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncResponsesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncResponsesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncResponsesWithStreamingResponse(self) + + @overload + async def create( + self, + *, + input: Union[str, ResponseInputParam], + model: ResponsesModel, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Response: + """Creates a model response. + + Provide + [text](https://platform.openai.com/docs/guides/text) or + [image](https://platform.openai.com/docs/guides/images) inputs to generate + [text](https://platform.openai.com/docs/guides/text) or + [JSON](https://platform.openai.com/docs/guides/structured-outputs) outputs. Have + the model call your own + [custom code](https://platform.openai.com/docs/guides/function-calling) or use + built-in [tools](https://platform.openai.com/docs/guides/tools) like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search) to use + your own data as input for the model's response. + + Args: + input: Text, image, or file inputs to the model, used to generate a response. + + Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Image inputs](https://platform.openai.com/docs/guides/images) + - [File inputs](https://platform.openai.com/docs/guides/pdf-files) + - [Conversation state](https://platform.openai.com/docs/guides/conversation-state) + - [Function calling](https://platform.openai.com/docs/guides/function-calling) + + model: Model ID used to generate the response, like `gpt-4o` or `o1`. OpenAI offers a + wide range of models with different capabilities, performance characteristics, + and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + + include: Specify additional output data to include in the model response. Currently + supported values are: + + - `file_search_call.results`: Include the search results of the file search tool + call. + - `message.input_image.image_url`: Include image urls from the input message. + - `computer_call_output.output.image_url`: Include image urls from the computer + call output. + + instructions: Inserts a system (or developer) message as the first item in the model's + context. + + When using along with `previous_response_id`, the instructions from a previous + response will be not be carried over to the next response. This makes it simple + to swap out system (or developer) messages in new responses. + + max_output_tokens: An upper bound for the number of tokens that can be generated for a response, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + parallel_tool_calls: Whether to allow the model to run tool calls in parallel. + + previous_response_id: The unique ID of the previous response to the model. Use this to create + multi-turn conversations. Learn more about + [conversation state](https://platform.openai.com/docs/guides/conversation-state). + + reasoning: **o-series models only** + + Configuration options for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). + + store: Whether to store the generated model response for later retrieval via API. + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/responses-streaming) + for more information. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. We generally recommend altering this or `top_p` but + not both. + + text: Configuration options for a text response from the model. Can be plain text or + structured JSON data. Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs) + + tool_choice: How the model should select which tool (or tools) to use when generating a + response. See the `tools` parameter to see how to specify which tools the model + can call. + + tools: An array of tools the model may call while generating a response. You can + specify which tool to use by setting the `tool_choice` parameter. + + The two categories of tools you can provide the model are: + + - **Built-in tools**: Tools that are provided by OpenAI that extend the model's + capabilities, like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search). + Learn more about + [built-in tools](https://platform.openai.com/docs/guides/tools). + - **Function calls (custom tools)**: Functions that are defined by you, enabling + the model to call your own code. Learn more about + [function calling](https://platform.openai.com/docs/guides/function-calling). + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + truncation: The truncation strategy to use for the model response. + + - `auto`: If the context of this response and previous ones exceeds the model's + context window size, the model will truncate the response to fit the context + window by dropping input items in the middle of the conversation. + - `disabled` (default): If a model response will exceed the context window size + for a model, the request will fail with a 400 error. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + async def create( + self, + *, + input: Union[str, ResponseInputParam], + model: ResponsesModel, + stream: Literal[True], + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncStream[ResponseStreamEvent]: + """Creates a model response. + + Provide + [text](https://platform.openai.com/docs/guides/text) or + [image](https://platform.openai.com/docs/guides/images) inputs to generate + [text](https://platform.openai.com/docs/guides/text) or + [JSON](https://platform.openai.com/docs/guides/structured-outputs) outputs. Have + the model call your own + [custom code](https://platform.openai.com/docs/guides/function-calling) or use + built-in [tools](https://platform.openai.com/docs/guides/tools) like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search) to use + your own data as input for the model's response. + + Args: + input: Text, image, or file inputs to the model, used to generate a response. + + Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Image inputs](https://platform.openai.com/docs/guides/images) + - [File inputs](https://platform.openai.com/docs/guides/pdf-files) + - [Conversation state](https://platform.openai.com/docs/guides/conversation-state) + - [Function calling](https://platform.openai.com/docs/guides/function-calling) + + model: Model ID used to generate the response, like `gpt-4o` or `o1`. OpenAI offers a + wide range of models with different capabilities, performance characteristics, + and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/responses-streaming) + for more information. + + include: Specify additional output data to include in the model response. Currently + supported values are: + + - `file_search_call.results`: Include the search results of the file search tool + call. + - `message.input_image.image_url`: Include image urls from the input message. + - `computer_call_output.output.image_url`: Include image urls from the computer + call output. + + instructions: Inserts a system (or developer) message as the first item in the model's + context. + + When using along with `previous_response_id`, the instructions from a previous + response will be not be carried over to the next response. This makes it simple + to swap out system (or developer) messages in new responses. + + max_output_tokens: An upper bound for the number of tokens that can be generated for a response, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + parallel_tool_calls: Whether to allow the model to run tool calls in parallel. + + previous_response_id: The unique ID of the previous response to the model. Use this to create + multi-turn conversations. Learn more about + [conversation state](https://platform.openai.com/docs/guides/conversation-state). + + reasoning: **o-series models only** + + Configuration options for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). + + store: Whether to store the generated model response for later retrieval via API. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. We generally recommend altering this or `top_p` but + not both. + + text: Configuration options for a text response from the model. Can be plain text or + structured JSON data. Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs) + + tool_choice: How the model should select which tool (or tools) to use when generating a + response. See the `tools` parameter to see how to specify which tools the model + can call. + + tools: An array of tools the model may call while generating a response. You can + specify which tool to use by setting the `tool_choice` parameter. + + The two categories of tools you can provide the model are: + + - **Built-in tools**: Tools that are provided by OpenAI that extend the model's + capabilities, like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search). + Learn more about + [built-in tools](https://platform.openai.com/docs/guides/tools). + - **Function calls (custom tools)**: Functions that are defined by you, enabling + the model to call your own code. Learn more about + [function calling](https://platform.openai.com/docs/guides/function-calling). + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + truncation: The truncation strategy to use for the model response. + + - `auto`: If the context of this response and previous ones exceeds the model's + context window size, the model will truncate the response to fit the context + window by dropping input items in the middle of the conversation. + - `disabled` (default): If a model response will exceed the context window size + for a model, the request will fail with a 400 error. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + async def create( + self, + *, + input: Union[str, ResponseInputParam], + model: ResponsesModel, + stream: bool, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Response | AsyncStream[ResponseStreamEvent]: + """Creates a model response. + + Provide + [text](https://platform.openai.com/docs/guides/text) or + [image](https://platform.openai.com/docs/guides/images) inputs to generate + [text](https://platform.openai.com/docs/guides/text) or + [JSON](https://platform.openai.com/docs/guides/structured-outputs) outputs. Have + the model call your own + [custom code](https://platform.openai.com/docs/guides/function-calling) or use + built-in [tools](https://platform.openai.com/docs/guides/tools) like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search) to use + your own data as input for the model's response. + + Args: + input: Text, image, or file inputs to the model, used to generate a response. + + Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Image inputs](https://platform.openai.com/docs/guides/images) + - [File inputs](https://platform.openai.com/docs/guides/pdf-files) + - [Conversation state](https://platform.openai.com/docs/guides/conversation-state) + - [Function calling](https://platform.openai.com/docs/guides/function-calling) + + model: Model ID used to generate the response, like `gpt-4o` or `o1`. OpenAI offers a + wide range of models with different capabilities, performance characteristics, + and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/responses-streaming) + for more information. + + include: Specify additional output data to include in the model response. Currently + supported values are: + + - `file_search_call.results`: Include the search results of the file search tool + call. + - `message.input_image.image_url`: Include image urls from the input message. + - `computer_call_output.output.image_url`: Include image urls from the computer + call output. + + instructions: Inserts a system (or developer) message as the first item in the model's + context. + + When using along with `previous_response_id`, the instructions from a previous + response will be not be carried over to the next response. This makes it simple + to swap out system (or developer) messages in new responses. + + max_output_tokens: An upper bound for the number of tokens that can be generated for a response, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + parallel_tool_calls: Whether to allow the model to run tool calls in parallel. + + previous_response_id: The unique ID of the previous response to the model. Use this to create + multi-turn conversations. Learn more about + [conversation state](https://platform.openai.com/docs/guides/conversation-state). + + reasoning: **o-series models only** + + Configuration options for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). + + store: Whether to store the generated model response for later retrieval via API. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. We generally recommend altering this or `top_p` but + not both. + + text: Configuration options for a text response from the model. Can be plain text or + structured JSON data. Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs) + + tool_choice: How the model should select which tool (or tools) to use when generating a + response. See the `tools` parameter to see how to specify which tools the model + can call. + + tools: An array of tools the model may call while generating a response. You can + specify which tool to use by setting the `tool_choice` parameter. + + The two categories of tools you can provide the model are: + + - **Built-in tools**: Tools that are provided by OpenAI that extend the model's + capabilities, like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search). + Learn more about + [built-in tools](https://platform.openai.com/docs/guides/tools). + - **Function calls (custom tools)**: Functions that are defined by you, enabling + the model to call your own code. Learn more about + [function calling](https://platform.openai.com/docs/guides/function-calling). + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + truncation: The truncation strategy to use for the model response. + + - `auto`: If the context of this response and previous ones exceeds the model's + context window size, the model will truncate the response to fit the context + window by dropping input items in the middle of the conversation. + - `disabled` (default): If a model response will exceed the context window size + for a model, the request will fail with a 400 error. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @required_args(["input", "model"], ["input", "model", "stream"]) + async def create( + self, + *, + input: Union[str, ResponseInputParam], + model: ResponsesModel, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Response | AsyncStream[ResponseStreamEvent]: + return await self._post( + "/responses", + body=await async_maybe_transform( + { + "input": input, + "model": model, + "include": include, + "instructions": instructions, + "max_output_tokens": max_output_tokens, + "metadata": metadata, + "parallel_tool_calls": parallel_tool_calls, + "previous_response_id": previous_response_id, + "reasoning": reasoning, + "store": store, + "stream": stream, + "temperature": temperature, + "text": text, + "tool_choice": tool_choice, + "tools": tools, + "top_p": top_p, + "truncation": truncation, + "user": user, + }, + response_create_params.ResponseCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Response, + stream=stream or False, + stream_cls=AsyncStream[ResponseStreamEvent], + ) + + def stream( + self, + *, + input: Union[str, ResponseInputParam], + model: Union[str, ChatModel], + text_format: type[TextFormatT] | NotGiven = NOT_GIVEN, + tools: Iterable[ParseableToolParam] | NotGiven = NOT_GIVEN, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncResponseStreamManager[TextFormatT]: + if is_given(text_format): + if not text: + text = {} + + if "format" in text: + raise TypeError("Cannot mix and match text.format with text_format") + + text["format"] = _type_to_text_format_param(text_format) + + tools = _make_tools(tools) + + api_request = self.create( + input=input, + model=model, + tools=tools, + include=include, + instructions=instructions, + max_output_tokens=max_output_tokens, + metadata=metadata, + parallel_tool_calls=parallel_tool_calls, + previous_response_id=previous_response_id, + store=store, + stream=True, + temperature=temperature, + text=text, + tool_choice=tool_choice, + reasoning=reasoning, + top_p=top_p, + truncation=truncation, + user=user, + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + ) + + return AsyncResponseStreamManager( + api_request, + text_format=text_format, + input_tools=tools, + ) + + async def parse( + self, + *, + input: Union[str, ResponseInputParam], + model: Union[str, ChatModel], + text_format: type[TextFormatT] | NotGiven = NOT_GIVEN, + tools: Iterable[ParseableToolParam] | NotGiven = NOT_GIVEN, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ParsedResponse[TextFormatT]: + if is_given(text_format): + if not text: + text = {} + + if "format" in text: + raise TypeError("Cannot mix and match text.format with text_format") + + text["format"] = _type_to_text_format_param(text_format) + + tools = _make_tools(tools) + + def parser(raw_response: Response) -> ParsedResponse[TextFormatT]: + return parse_response( + input_tools=tools, + text_format=text_format, + response=raw_response, + ) + + return await self._post( + "/responses", + body=maybe_transform( + { + "input": input, + "model": model, + "include": include, + "instructions": instructions, + "max_output_tokens": max_output_tokens, + "metadata": metadata, + "parallel_tool_calls": parallel_tool_calls, + "previous_response_id": previous_response_id, + "reasoning": reasoning, + "store": store, + "stream": stream, + "temperature": temperature, + "text": text, + "tool_choice": tool_choice, + "tools": tools, + "top_p": top_p, + "truncation": truncation, + "user": user, + }, + response_create_params.ResponseCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + post_parser=parser, + ), + # we turn the `Response` instance into a `ParsedResponse` + # in the `parser` function above + cast_to=cast(Type[ParsedResponse[TextFormatT]], Response), + ) + + async def retrieve( + self, + response_id: str, + *, + include: List[ResponseIncludable] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Response: + """ + Retrieves a model response with the given ID. + + Args: + include: Additional fields to include in the response. See the `include` parameter for + Response creation above for more information. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not response_id: + raise ValueError(f"Expected a non-empty value for `response_id` but received {response_id!r}") + return await self._get( + f"/responses/{response_id}", + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=await async_maybe_transform( + {"include": include}, response_retrieve_params.ResponseRetrieveParams + ), + ), + cast_to=Response, + ) + + async def delete( + self, + response_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> None: + """ + Deletes a model response with the given ID. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not response_id: + raise ValueError(f"Expected a non-empty value for `response_id` but received {response_id!r}") + extra_headers = {"Accept": "*/*", **(extra_headers or {})} + return await self._delete( + f"/responses/{response_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=NoneType, + ) + + +class ResponsesWithRawResponse: + def __init__(self, responses: Responses) -> None: + self._responses = responses + + self.create = _legacy_response.to_raw_response_wrapper( + responses.create, + ) + self.retrieve = _legacy_response.to_raw_response_wrapper( + responses.retrieve, + ) + self.delete = _legacy_response.to_raw_response_wrapper( + responses.delete, + ) + + @cached_property + def input_items(self) -> InputItemsWithRawResponse: + return InputItemsWithRawResponse(self._responses.input_items) + + +class AsyncResponsesWithRawResponse: + def __init__(self, responses: AsyncResponses) -> None: + self._responses = responses + + self.create = _legacy_response.async_to_raw_response_wrapper( + responses.create, + ) + self.retrieve = _legacy_response.async_to_raw_response_wrapper( + responses.retrieve, + ) + self.delete = _legacy_response.async_to_raw_response_wrapper( + responses.delete, + ) + + @cached_property + def input_items(self) -> AsyncInputItemsWithRawResponse: + return AsyncInputItemsWithRawResponse(self._responses.input_items) + + +class ResponsesWithStreamingResponse: + def __init__(self, responses: Responses) -> None: + self._responses = responses + + self.create = to_streamed_response_wrapper( + responses.create, + ) + self.retrieve = to_streamed_response_wrapper( + responses.retrieve, + ) + self.delete = to_streamed_response_wrapper( + responses.delete, + ) + + @cached_property + def input_items(self) -> InputItemsWithStreamingResponse: + return InputItemsWithStreamingResponse(self._responses.input_items) + + +class AsyncResponsesWithStreamingResponse: + def __init__(self, responses: AsyncResponses) -> None: + self._responses = responses + + self.create = async_to_streamed_response_wrapper( + responses.create, + ) + self.retrieve = async_to_streamed_response_wrapper( + responses.retrieve, + ) + self.delete = async_to_streamed_response_wrapper( + responses.delete, + ) + + @cached_property + def input_items(self) -> AsyncInputItemsWithStreamingResponse: + return AsyncInputItemsWithStreamingResponse(self._responses.input_items) + + +def _make_tools(tools: Iterable[ParseableToolParam] | NotGiven) -> List[ToolParam] | NotGiven: + if not is_given(tools): + return NOT_GIVEN + + converted_tools: List[ToolParam] = [] + for tool in tools: + if tool["type"] != "function": + converted_tools.append(tool) + continue + + if "function" not in tool: + # standard Responses API case + converted_tools.append(tool) + continue + + function = cast(Any, tool)["function"] # pyright: ignore[reportUnnecessaryCast] + if not isinstance(function, PydanticFunctionTool): + raise Exception( + "Expected Chat Completions function tool shape to be created using `openai.pydantic_function_tool()`" + ) + + assert "parameters" in function + new_tool = ResponsesPydanticFunctionTool( + { + "type": "function", + "name": function["name"], + "description": function.get("description"), + "parameters": function["parameters"], + "strict": function.get("strict") or False, + }, + function.model, + ) + + converted_tools.append(new_tool.cast()) + + return converted_tools diff --git a/.venv/lib/python3.12/site-packages/openai/resources/responses/responses.py.orig b/.venv/lib/python3.12/site-packages/openai/resources/responses/responses.py.orig new file mode 100644 index 00000000..dec4c193 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/responses/responses.py.orig @@ -0,0 +1,1796 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Any, List, Type, Union, Iterable, Optional, cast +from functools import partial +from typing_extensions import Literal, overload + +import httpx + +from ... import _legacy_response +from ..._types import NOT_GIVEN, Body, Query, Headers, NoneType, NotGiven +from ..._utils import ( + is_given, + required_args, + maybe_transform, + async_maybe_transform, +) +from ..._compat import cached_property +from ..._resource import SyncAPIResource, AsyncAPIResource +from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from .input_items import ( + InputItems, + AsyncInputItems, + InputItemsWithRawResponse, + AsyncInputItemsWithRawResponse, + InputItemsWithStreamingResponse, + AsyncInputItemsWithStreamingResponse, +) +from ..._streaming import Stream, AsyncStream +from ...lib._tools import PydanticFunctionTool, ResponsesPydanticFunctionTool +from ..._base_client import make_request_options +from ...types.responses import response_create_params, response_retrieve_params +<<<<<<< HEAD +from ...lib._parsing._responses import ( + TextFormatT, + parse_response, + type_to_text_format_param as _type_to_text_format_param, +) +from ...types.shared.chat_model import ChatModel +||||||| parent of 001707b8 (feat(api): o1-pro now available through the API (#2228)) +from ...types.shared.chat_model import ChatModel +======= +>>>>>>> 001707b8 (feat(api): o1-pro now available through the API (#2228)) +from ...types.responses.response import Response +from ...types.responses.tool_param import ToolParam, ParseableToolParam +from ...types.shared_params.metadata import Metadata +from ...types.shared_params.reasoning import Reasoning +from ...types.responses.parsed_response import ParsedResponse +from ...lib.streaming.responses._responses import ResponseStreamManager, AsyncResponseStreamManager +from ...types.responses.response_includable import ResponseIncludable +from ...types.shared_params.responses_model import ResponsesModel +from ...types.responses.response_input_param import ResponseInputParam +from ...types.responses.response_stream_event import ResponseStreamEvent +from ...types.responses.response_text_config_param import ResponseTextConfigParam + +__all__ = ["Responses", "AsyncResponses"] + + +class Responses(SyncAPIResource): + @cached_property + def input_items(self) -> InputItems: + return InputItems(self._client) + + @cached_property + def with_raw_response(self) -> ResponsesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return ResponsesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> ResponsesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return ResponsesWithStreamingResponse(self) + + @overload + def create( + self, + *, + input: Union[str, ResponseInputParam], + model: ResponsesModel, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Response: + """Creates a model response. + + Provide + [text](https://platform.openai.com/docs/guides/text) or + [image](https://platform.openai.com/docs/guides/images) inputs to generate + [text](https://platform.openai.com/docs/guides/text) or + [JSON](https://platform.openai.com/docs/guides/structured-outputs) outputs. Have + the model call your own + [custom code](https://platform.openai.com/docs/guides/function-calling) or use + built-in [tools](https://platform.openai.com/docs/guides/tools) like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search) to use + your own data as input for the model's response. + + Args: + input: Text, image, or file inputs to the model, used to generate a response. + + Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Image inputs](https://platform.openai.com/docs/guides/images) + - [File inputs](https://platform.openai.com/docs/guides/pdf-files) + - [Conversation state](https://platform.openai.com/docs/guides/conversation-state) + - [Function calling](https://platform.openai.com/docs/guides/function-calling) + + model: Model ID used to generate the response, like `gpt-4o` or `o1`. OpenAI offers a + wide range of models with different capabilities, performance characteristics, + and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + + include: Specify additional output data to include in the model response. Currently + supported values are: + + - `file_search_call.results`: Include the search results of the file search tool + call. + - `message.input_image.image_url`: Include image urls from the input message. + - `computer_call_output.output.image_url`: Include image urls from the computer + call output. + + instructions: Inserts a system (or developer) message as the first item in the model's + context. + + When using along with `previous_response_id`, the instructions from a previous + response will be not be carried over to the next response. This makes it simple + to swap out system (or developer) messages in new responses. + + max_output_tokens: An upper bound for the number of tokens that can be generated for a response, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + parallel_tool_calls: Whether to allow the model to run tool calls in parallel. + + previous_response_id: The unique ID of the previous response to the model. Use this to create + multi-turn conversations. Learn more about + [conversation state](https://platform.openai.com/docs/guides/conversation-state). + + reasoning: **o-series models only** + + Configuration options for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). + + store: Whether to store the generated model response for later retrieval via API. + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/responses-streaming) + for more information. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. We generally recommend altering this or `top_p` but + not both. + + text: Configuration options for a text response from the model. Can be plain text or + structured JSON data. Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs) + + tool_choice: How the model should select which tool (or tools) to use when generating a + response. See the `tools` parameter to see how to specify which tools the model + can call. + + tools: An array of tools the model may call while generating a response. You can + specify which tool to use by setting the `tool_choice` parameter. + + The two categories of tools you can provide the model are: + + - **Built-in tools**: Tools that are provided by OpenAI that extend the model's + capabilities, like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search). + Learn more about + [built-in tools](https://platform.openai.com/docs/guides/tools). + - **Function calls (custom tools)**: Functions that are defined by you, enabling + the model to call your own code. Learn more about + [function calling](https://platform.openai.com/docs/guides/function-calling). + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + truncation: The truncation strategy to use for the model response. + + - `auto`: If the context of this response and previous ones exceeds the model's + context window size, the model will truncate the response to fit the context + window by dropping input items in the middle of the conversation. + - `disabled` (default): If a model response will exceed the context window size + for a model, the request will fail with a 400 error. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + def create( + self, + *, + input: Union[str, ResponseInputParam], + model: ResponsesModel, + stream: Literal[True], + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Stream[ResponseStreamEvent]: + """Creates a model response. + + Provide + [text](https://platform.openai.com/docs/guides/text) or + [image](https://platform.openai.com/docs/guides/images) inputs to generate + [text](https://platform.openai.com/docs/guides/text) or + [JSON](https://platform.openai.com/docs/guides/structured-outputs) outputs. Have + the model call your own + [custom code](https://platform.openai.com/docs/guides/function-calling) or use + built-in [tools](https://platform.openai.com/docs/guides/tools) like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search) to use + your own data as input for the model's response. + + Args: + input: Text, image, or file inputs to the model, used to generate a response. + + Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Image inputs](https://platform.openai.com/docs/guides/images) + - [File inputs](https://platform.openai.com/docs/guides/pdf-files) + - [Conversation state](https://platform.openai.com/docs/guides/conversation-state) + - [Function calling](https://platform.openai.com/docs/guides/function-calling) + + model: Model ID used to generate the response, like `gpt-4o` or `o1`. OpenAI offers a + wide range of models with different capabilities, performance characteristics, + and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/responses-streaming) + for more information. + + include: Specify additional output data to include in the model response. Currently + supported values are: + + - `file_search_call.results`: Include the search results of the file search tool + call. + - `message.input_image.image_url`: Include image urls from the input message. + - `computer_call_output.output.image_url`: Include image urls from the computer + call output. + + instructions: Inserts a system (or developer) message as the first item in the model's + context. + + When using along with `previous_response_id`, the instructions from a previous + response will be not be carried over to the next response. This makes it simple + to swap out system (or developer) messages in new responses. + + max_output_tokens: An upper bound for the number of tokens that can be generated for a response, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + parallel_tool_calls: Whether to allow the model to run tool calls in parallel. + + previous_response_id: The unique ID of the previous response to the model. Use this to create + multi-turn conversations. Learn more about + [conversation state](https://platform.openai.com/docs/guides/conversation-state). + + reasoning: **o-series models only** + + Configuration options for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). + + store: Whether to store the generated model response for later retrieval via API. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. We generally recommend altering this or `top_p` but + not both. + + text: Configuration options for a text response from the model. Can be plain text or + structured JSON data. Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs) + + tool_choice: How the model should select which tool (or tools) to use when generating a + response. See the `tools` parameter to see how to specify which tools the model + can call. + + tools: An array of tools the model may call while generating a response. You can + specify which tool to use by setting the `tool_choice` parameter. + + The two categories of tools you can provide the model are: + + - **Built-in tools**: Tools that are provided by OpenAI that extend the model's + capabilities, like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search). + Learn more about + [built-in tools](https://platform.openai.com/docs/guides/tools). + - **Function calls (custom tools)**: Functions that are defined by you, enabling + the model to call your own code. Learn more about + [function calling](https://platform.openai.com/docs/guides/function-calling). + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + truncation: The truncation strategy to use for the model response. + + - `auto`: If the context of this response and previous ones exceeds the model's + context window size, the model will truncate the response to fit the context + window by dropping input items in the middle of the conversation. + - `disabled` (default): If a model response will exceed the context window size + for a model, the request will fail with a 400 error. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + def create( + self, + *, + input: Union[str, ResponseInputParam], + model: ResponsesModel, + stream: bool, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Response | Stream[ResponseStreamEvent]: + """Creates a model response. + + Provide + [text](https://platform.openai.com/docs/guides/text) or + [image](https://platform.openai.com/docs/guides/images) inputs to generate + [text](https://platform.openai.com/docs/guides/text) or + [JSON](https://platform.openai.com/docs/guides/structured-outputs) outputs. Have + the model call your own + [custom code](https://platform.openai.com/docs/guides/function-calling) or use + built-in [tools](https://platform.openai.com/docs/guides/tools) like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search) to use + your own data as input for the model's response. + + Args: + input: Text, image, or file inputs to the model, used to generate a response. + + Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Image inputs](https://platform.openai.com/docs/guides/images) + - [File inputs](https://platform.openai.com/docs/guides/pdf-files) + - [Conversation state](https://platform.openai.com/docs/guides/conversation-state) + - [Function calling](https://platform.openai.com/docs/guides/function-calling) + + model: Model ID used to generate the response, like `gpt-4o` or `o1`. OpenAI offers a + wide range of models with different capabilities, performance characteristics, + and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/responses-streaming) + for more information. + + include: Specify additional output data to include in the model response. Currently + supported values are: + + - `file_search_call.results`: Include the search results of the file search tool + call. + - `message.input_image.image_url`: Include image urls from the input message. + - `computer_call_output.output.image_url`: Include image urls from the computer + call output. + + instructions: Inserts a system (or developer) message as the first item in the model's + context. + + When using along with `previous_response_id`, the instructions from a previous + response will be not be carried over to the next response. This makes it simple + to swap out system (or developer) messages in new responses. + + max_output_tokens: An upper bound for the number of tokens that can be generated for a response, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + parallel_tool_calls: Whether to allow the model to run tool calls in parallel. + + previous_response_id: The unique ID of the previous response to the model. Use this to create + multi-turn conversations. Learn more about + [conversation state](https://platform.openai.com/docs/guides/conversation-state). + + reasoning: **o-series models only** + + Configuration options for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). + + store: Whether to store the generated model response for later retrieval via API. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. We generally recommend altering this or `top_p` but + not both. + + text: Configuration options for a text response from the model. Can be plain text or + structured JSON data. Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs) + + tool_choice: How the model should select which tool (or tools) to use when generating a + response. See the `tools` parameter to see how to specify which tools the model + can call. + + tools: An array of tools the model may call while generating a response. You can + specify which tool to use by setting the `tool_choice` parameter. + + The two categories of tools you can provide the model are: + + - **Built-in tools**: Tools that are provided by OpenAI that extend the model's + capabilities, like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search). + Learn more about + [built-in tools](https://platform.openai.com/docs/guides/tools). + - **Function calls (custom tools)**: Functions that are defined by you, enabling + the model to call your own code. Learn more about + [function calling](https://platform.openai.com/docs/guides/function-calling). + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + truncation: The truncation strategy to use for the model response. + + - `auto`: If the context of this response and previous ones exceeds the model's + context window size, the model will truncate the response to fit the context + window by dropping input items in the middle of the conversation. + - `disabled` (default): If a model response will exceed the context window size + for a model, the request will fail with a 400 error. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @required_args(["input", "model"], ["input", "model", "stream"]) + def create( + self, + *, + input: Union[str, ResponseInputParam], + model: ResponsesModel, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Response | Stream[ResponseStreamEvent]: + return self._post( + "/responses", + body=maybe_transform( + { + "input": input, + "model": model, + "include": include, + "instructions": instructions, + "max_output_tokens": max_output_tokens, + "metadata": metadata, + "parallel_tool_calls": parallel_tool_calls, + "previous_response_id": previous_response_id, + "reasoning": reasoning, + "store": store, + "stream": stream, + "temperature": temperature, + "text": text, + "tool_choice": tool_choice, + "tools": tools, + "top_p": top_p, + "truncation": truncation, + "user": user, + }, + response_create_params.ResponseCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Response, + stream=stream or False, + stream_cls=Stream[ResponseStreamEvent], + ) + + def stream( + self, + *, + input: Union[str, ResponseInputParam], + model: Union[str, ChatModel], + text_format: type[TextFormatT] | NotGiven = NOT_GIVEN, + tools: Iterable[ParseableToolParam] | NotGiven = NOT_GIVEN, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ResponseStreamManager[TextFormatT]: + if is_given(text_format): + if not text: + text = {} + + if "format" in text: + raise TypeError("Cannot mix and match text.format with text_format") + + text["format"] = _type_to_text_format_param(text_format) + + tools = _make_tools(tools) + + api_request: partial[Stream[ResponseStreamEvent]] = partial( + self.create, + input=input, + model=model, + tools=tools, + include=include, + instructions=instructions, + max_output_tokens=max_output_tokens, + metadata=metadata, + parallel_tool_calls=parallel_tool_calls, + previous_response_id=previous_response_id, + store=store, + stream=True, + temperature=temperature, + text=text, + tool_choice=tool_choice, + reasoning=reasoning, + top_p=top_p, + truncation=truncation, + user=user, + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + ) + + return ResponseStreamManager( + api_request, + text_format=text_format, + input_tools=tools, + ) + + def parse( + self, + *, + input: Union[str, ResponseInputParam], + model: Union[str, ChatModel], + text_format: type[TextFormatT] | NotGiven = NOT_GIVEN, + tools: Iterable[ParseableToolParam] | NotGiven = NOT_GIVEN, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ParsedResponse[TextFormatT]: + if is_given(text_format): + if not text: + text = {} + + if "format" in text: + raise TypeError("Cannot mix and match text.format with text_format") + + text["format"] = _type_to_text_format_param(text_format) + + tools = _make_tools(tools) + + def parser(raw_response: Response) -> ParsedResponse[TextFormatT]: + return parse_response( + input_tools=tools, + text_format=text_format, + response=raw_response, + ) + + return self._post( + "/responses", + body=maybe_transform( + { + "input": input, + "model": model, + "include": include, + "instructions": instructions, + "max_output_tokens": max_output_tokens, + "metadata": metadata, + "parallel_tool_calls": parallel_tool_calls, + "previous_response_id": previous_response_id, + "reasoning": reasoning, + "store": store, + "stream": stream, + "temperature": temperature, + "text": text, + "tool_choice": tool_choice, + "tools": tools, + "top_p": top_p, + "truncation": truncation, + "user": user, + }, + response_create_params.ResponseCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + post_parser=parser, + ), + # we turn the `Response` instance into a `ParsedResponse` + # in the `parser` function above + cast_to=cast(Type[ParsedResponse[TextFormatT]], Response), + ) + + def retrieve( + self, + response_id: str, + *, + include: List[ResponseIncludable] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Response: + """ + Retrieves a model response with the given ID. + + Args: + include: Additional fields to include in the response. See the `include` parameter for + Response creation above for more information. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not response_id: + raise ValueError(f"Expected a non-empty value for `response_id` but received {response_id!r}") + return self._get( + f"/responses/{response_id}", + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform({"include": include}, response_retrieve_params.ResponseRetrieveParams), + ), + cast_to=Response, + ) + + def delete( + self, + response_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> None: + """ + Deletes a model response with the given ID. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not response_id: + raise ValueError(f"Expected a non-empty value for `response_id` but received {response_id!r}") + extra_headers = {"Accept": "*/*", **(extra_headers or {})} + return self._delete( + f"/responses/{response_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=NoneType, + ) + + +class AsyncResponses(AsyncAPIResource): + @cached_property + def input_items(self) -> AsyncInputItems: + return AsyncInputItems(self._client) + + @cached_property + def with_raw_response(self) -> AsyncResponsesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncResponsesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncResponsesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncResponsesWithStreamingResponse(self) + + @overload + async def create( + self, + *, + input: Union[str, ResponseInputParam], + model: ResponsesModel, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Response: + """Creates a model response. + + Provide + [text](https://platform.openai.com/docs/guides/text) or + [image](https://platform.openai.com/docs/guides/images) inputs to generate + [text](https://platform.openai.com/docs/guides/text) or + [JSON](https://platform.openai.com/docs/guides/structured-outputs) outputs. Have + the model call your own + [custom code](https://platform.openai.com/docs/guides/function-calling) or use + built-in [tools](https://platform.openai.com/docs/guides/tools) like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search) to use + your own data as input for the model's response. + + Args: + input: Text, image, or file inputs to the model, used to generate a response. + + Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Image inputs](https://platform.openai.com/docs/guides/images) + - [File inputs](https://platform.openai.com/docs/guides/pdf-files) + - [Conversation state](https://platform.openai.com/docs/guides/conversation-state) + - [Function calling](https://platform.openai.com/docs/guides/function-calling) + + model: Model ID used to generate the response, like `gpt-4o` or `o1`. OpenAI offers a + wide range of models with different capabilities, performance characteristics, + and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + + include: Specify additional output data to include in the model response. Currently + supported values are: + + - `file_search_call.results`: Include the search results of the file search tool + call. + - `message.input_image.image_url`: Include image urls from the input message. + - `computer_call_output.output.image_url`: Include image urls from the computer + call output. + + instructions: Inserts a system (or developer) message as the first item in the model's + context. + + When using along with `previous_response_id`, the instructions from a previous + response will be not be carried over to the next response. This makes it simple + to swap out system (or developer) messages in new responses. + + max_output_tokens: An upper bound for the number of tokens that can be generated for a response, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + parallel_tool_calls: Whether to allow the model to run tool calls in parallel. + + previous_response_id: The unique ID of the previous response to the model. Use this to create + multi-turn conversations. Learn more about + [conversation state](https://platform.openai.com/docs/guides/conversation-state). + + reasoning: **o-series models only** + + Configuration options for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). + + store: Whether to store the generated model response for later retrieval via API. + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/responses-streaming) + for more information. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. We generally recommend altering this or `top_p` but + not both. + + text: Configuration options for a text response from the model. Can be plain text or + structured JSON data. Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs) + + tool_choice: How the model should select which tool (or tools) to use when generating a + response. See the `tools` parameter to see how to specify which tools the model + can call. + + tools: An array of tools the model may call while generating a response. You can + specify which tool to use by setting the `tool_choice` parameter. + + The two categories of tools you can provide the model are: + + - **Built-in tools**: Tools that are provided by OpenAI that extend the model's + capabilities, like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search). + Learn more about + [built-in tools](https://platform.openai.com/docs/guides/tools). + - **Function calls (custom tools)**: Functions that are defined by you, enabling + the model to call your own code. Learn more about + [function calling](https://platform.openai.com/docs/guides/function-calling). + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + truncation: The truncation strategy to use for the model response. + + - `auto`: If the context of this response and previous ones exceeds the model's + context window size, the model will truncate the response to fit the context + window by dropping input items in the middle of the conversation. + - `disabled` (default): If a model response will exceed the context window size + for a model, the request will fail with a 400 error. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + async def create( + self, + *, + input: Union[str, ResponseInputParam], + model: ResponsesModel, + stream: Literal[True], + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncStream[ResponseStreamEvent]: + """Creates a model response. + + Provide + [text](https://platform.openai.com/docs/guides/text) or + [image](https://platform.openai.com/docs/guides/images) inputs to generate + [text](https://platform.openai.com/docs/guides/text) or + [JSON](https://platform.openai.com/docs/guides/structured-outputs) outputs. Have + the model call your own + [custom code](https://platform.openai.com/docs/guides/function-calling) or use + built-in [tools](https://platform.openai.com/docs/guides/tools) like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search) to use + your own data as input for the model's response. + + Args: + input: Text, image, or file inputs to the model, used to generate a response. + + Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Image inputs](https://platform.openai.com/docs/guides/images) + - [File inputs](https://platform.openai.com/docs/guides/pdf-files) + - [Conversation state](https://platform.openai.com/docs/guides/conversation-state) + - [Function calling](https://platform.openai.com/docs/guides/function-calling) + + model: Model ID used to generate the response, like `gpt-4o` or `o1`. OpenAI offers a + wide range of models with different capabilities, performance characteristics, + and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/responses-streaming) + for more information. + + include: Specify additional output data to include in the model response. Currently + supported values are: + + - `file_search_call.results`: Include the search results of the file search tool + call. + - `message.input_image.image_url`: Include image urls from the input message. + - `computer_call_output.output.image_url`: Include image urls from the computer + call output. + + instructions: Inserts a system (or developer) message as the first item in the model's + context. + + When using along with `previous_response_id`, the instructions from a previous + response will be not be carried over to the next response. This makes it simple + to swap out system (or developer) messages in new responses. + + max_output_tokens: An upper bound for the number of tokens that can be generated for a response, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + parallel_tool_calls: Whether to allow the model to run tool calls in parallel. + + previous_response_id: The unique ID of the previous response to the model. Use this to create + multi-turn conversations. Learn more about + [conversation state](https://platform.openai.com/docs/guides/conversation-state). + + reasoning: **o-series models only** + + Configuration options for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). + + store: Whether to store the generated model response for later retrieval via API. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. We generally recommend altering this or `top_p` but + not both. + + text: Configuration options for a text response from the model. Can be plain text or + structured JSON data. Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs) + + tool_choice: How the model should select which tool (or tools) to use when generating a + response. See the `tools` parameter to see how to specify which tools the model + can call. + + tools: An array of tools the model may call while generating a response. You can + specify which tool to use by setting the `tool_choice` parameter. + + The two categories of tools you can provide the model are: + + - **Built-in tools**: Tools that are provided by OpenAI that extend the model's + capabilities, like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search). + Learn more about + [built-in tools](https://platform.openai.com/docs/guides/tools). + - **Function calls (custom tools)**: Functions that are defined by you, enabling + the model to call your own code. Learn more about + [function calling](https://platform.openai.com/docs/guides/function-calling). + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + truncation: The truncation strategy to use for the model response. + + - `auto`: If the context of this response and previous ones exceeds the model's + context window size, the model will truncate the response to fit the context + window by dropping input items in the middle of the conversation. + - `disabled` (default): If a model response will exceed the context window size + for a model, the request will fail with a 400 error. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @overload + async def create( + self, + *, + input: Union[str, ResponseInputParam], + model: ResponsesModel, + stream: bool, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Response | AsyncStream[ResponseStreamEvent]: + """Creates a model response. + + Provide + [text](https://platform.openai.com/docs/guides/text) or + [image](https://platform.openai.com/docs/guides/images) inputs to generate + [text](https://platform.openai.com/docs/guides/text) or + [JSON](https://platform.openai.com/docs/guides/structured-outputs) outputs. Have + the model call your own + [custom code](https://platform.openai.com/docs/guides/function-calling) or use + built-in [tools](https://platform.openai.com/docs/guides/tools) like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search) to use + your own data as input for the model's response. + + Args: + input: Text, image, or file inputs to the model, used to generate a response. + + Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Image inputs](https://platform.openai.com/docs/guides/images) + - [File inputs](https://platform.openai.com/docs/guides/pdf-files) + - [Conversation state](https://platform.openai.com/docs/guides/conversation-state) + - [Function calling](https://platform.openai.com/docs/guides/function-calling) + + model: Model ID used to generate the response, like `gpt-4o` or `o1`. OpenAI offers a + wide range of models with different capabilities, performance characteristics, + and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + + stream: If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/responses-streaming) + for more information. + + include: Specify additional output data to include in the model response. Currently + supported values are: + + - `file_search_call.results`: Include the search results of the file search tool + call. + - `message.input_image.image_url`: Include image urls from the input message. + - `computer_call_output.output.image_url`: Include image urls from the computer + call output. + + instructions: Inserts a system (or developer) message as the first item in the model's + context. + + When using along with `previous_response_id`, the instructions from a previous + response will be not be carried over to the next response. This makes it simple + to swap out system (or developer) messages in new responses. + + max_output_tokens: An upper bound for the number of tokens that can be generated for a response, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + parallel_tool_calls: Whether to allow the model to run tool calls in parallel. + + previous_response_id: The unique ID of the previous response to the model. Use this to create + multi-turn conversations. Learn more about + [conversation state](https://platform.openai.com/docs/guides/conversation-state). + + reasoning: **o-series models only** + + Configuration options for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). + + store: Whether to store the generated model response for later retrieval via API. + + temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will + make the output more random, while lower values like 0.2 will make it more + focused and deterministic. We generally recommend altering this or `top_p` but + not both. + + text: Configuration options for a text response from the model. Can be plain text or + structured JSON data. Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs) + + tool_choice: How the model should select which tool (or tools) to use when generating a + response. See the `tools` parameter to see how to specify which tools the model + can call. + + tools: An array of tools the model may call while generating a response. You can + specify which tool to use by setting the `tool_choice` parameter. + + The two categories of tools you can provide the model are: + + - **Built-in tools**: Tools that are provided by OpenAI that extend the model's + capabilities, like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search). + Learn more about + [built-in tools](https://platform.openai.com/docs/guides/tools). + - **Function calls (custom tools)**: Functions that are defined by you, enabling + the model to call your own code. Learn more about + [function calling](https://platform.openai.com/docs/guides/function-calling). + + top_p: An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + + truncation: The truncation strategy to use for the model response. + + - `auto`: If the context of this response and previous ones exceeds the model's + context window size, the model will truncate the response to fit the context + window by dropping input items in the middle of the conversation. + - `disabled` (default): If a model response will exceed the context window size + for a model, the request will fail with a 400 error. + + user: A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + ... + + @required_args(["input", "model"], ["input", "model", "stream"]) + async def create( + self, + *, + input: Union[str, ResponseInputParam], + model: ResponsesModel, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Response | AsyncStream[ResponseStreamEvent]: + return await self._post( + "/responses", + body=await async_maybe_transform( + { + "input": input, + "model": model, + "include": include, + "instructions": instructions, + "max_output_tokens": max_output_tokens, + "metadata": metadata, + "parallel_tool_calls": parallel_tool_calls, + "previous_response_id": previous_response_id, + "reasoning": reasoning, + "store": store, + "stream": stream, + "temperature": temperature, + "text": text, + "tool_choice": tool_choice, + "tools": tools, + "top_p": top_p, + "truncation": truncation, + "user": user, + }, + response_create_params.ResponseCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Response, + stream=stream or False, + stream_cls=AsyncStream[ResponseStreamEvent], + ) + + def stream( + self, + *, + input: Union[str, ResponseInputParam], + model: Union[str, ChatModel], + text_format: type[TextFormatT] | NotGiven = NOT_GIVEN, + tools: Iterable[ParseableToolParam] | NotGiven = NOT_GIVEN, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncResponseStreamManager[TextFormatT]: + if is_given(text_format): + if not text: + text = {} + + if "format" in text: + raise TypeError("Cannot mix and match text.format with text_format") + + text["format"] = _type_to_text_format_param(text_format) + + tools = _make_tools(tools) + + api_request = self.create( + input=input, + model=model, + tools=tools, + include=include, + instructions=instructions, + max_output_tokens=max_output_tokens, + metadata=metadata, + parallel_tool_calls=parallel_tool_calls, + previous_response_id=previous_response_id, + store=store, + stream=True, + temperature=temperature, + text=text, + tool_choice=tool_choice, + reasoning=reasoning, + top_p=top_p, + truncation=truncation, + user=user, + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + ) + + return AsyncResponseStreamManager( + api_request, + text_format=text_format, + input_tools=tools, + ) + + async def parse( + self, + *, + input: Union[str, ResponseInputParam], + model: Union[str, ChatModel], + text_format: type[TextFormatT] | NotGiven = NOT_GIVEN, + tools: Iterable[ParseableToolParam] | NotGiven = NOT_GIVEN, + include: Optional[List[ResponseIncludable]] | NotGiven = NOT_GIVEN, + instructions: Optional[str] | NotGiven = NOT_GIVEN, + max_output_tokens: Optional[int] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + parallel_tool_calls: Optional[bool] | NotGiven = NOT_GIVEN, + previous_response_id: Optional[str] | NotGiven = NOT_GIVEN, + reasoning: Optional[Reasoning] | NotGiven = NOT_GIVEN, + store: Optional[bool] | NotGiven = NOT_GIVEN, + stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN, + temperature: Optional[float] | NotGiven = NOT_GIVEN, + text: ResponseTextConfigParam | NotGiven = NOT_GIVEN, + tool_choice: response_create_params.ToolChoice | NotGiven = NOT_GIVEN, + top_p: Optional[float] | NotGiven = NOT_GIVEN, + truncation: Optional[Literal["auto", "disabled"]] | NotGiven = NOT_GIVEN, + user: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ParsedResponse[TextFormatT]: + if is_given(text_format): + if not text: + text = {} + + if "format" in text: + raise TypeError("Cannot mix and match text.format with text_format") + + text["format"] = _type_to_text_format_param(text_format) + + tools = _make_tools(tools) + + def parser(raw_response: Response) -> ParsedResponse[TextFormatT]: + return parse_response( + input_tools=tools, + text_format=text_format, + response=raw_response, + ) + + return await self._post( + "/responses", + body=maybe_transform( + { + "input": input, + "model": model, + "include": include, + "instructions": instructions, + "max_output_tokens": max_output_tokens, + "metadata": metadata, + "parallel_tool_calls": parallel_tool_calls, + "previous_response_id": previous_response_id, + "reasoning": reasoning, + "store": store, + "stream": stream, + "temperature": temperature, + "text": text, + "tool_choice": tool_choice, + "tools": tools, + "top_p": top_p, + "truncation": truncation, + "user": user, + }, + response_create_params.ResponseCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + post_parser=parser, + ), + # we turn the `Response` instance into a `ParsedResponse` + # in the `parser` function above + cast_to=cast(Type[ParsedResponse[TextFormatT]], Response), + ) + + async def retrieve( + self, + response_id: str, + *, + include: List[ResponseIncludable] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Response: + """ + Retrieves a model response with the given ID. + + Args: + include: Additional fields to include in the response. See the `include` parameter for + Response creation above for more information. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not response_id: + raise ValueError(f"Expected a non-empty value for `response_id` but received {response_id!r}") + return await self._get( + f"/responses/{response_id}", + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=await async_maybe_transform( + {"include": include}, response_retrieve_params.ResponseRetrieveParams + ), + ), + cast_to=Response, + ) + + async def delete( + self, + response_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> None: + """ + Deletes a model response with the given ID. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not response_id: + raise ValueError(f"Expected a non-empty value for `response_id` but received {response_id!r}") + extra_headers = {"Accept": "*/*", **(extra_headers or {})} + return await self._delete( + f"/responses/{response_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=NoneType, + ) + + +class ResponsesWithRawResponse: + def __init__(self, responses: Responses) -> None: + self._responses = responses + + self.create = _legacy_response.to_raw_response_wrapper( + responses.create, + ) + self.retrieve = _legacy_response.to_raw_response_wrapper( + responses.retrieve, + ) + self.delete = _legacy_response.to_raw_response_wrapper( + responses.delete, + ) + + @cached_property + def input_items(self) -> InputItemsWithRawResponse: + return InputItemsWithRawResponse(self._responses.input_items) + + +class AsyncResponsesWithRawResponse: + def __init__(self, responses: AsyncResponses) -> None: + self._responses = responses + + self.create = _legacy_response.async_to_raw_response_wrapper( + responses.create, + ) + self.retrieve = _legacy_response.async_to_raw_response_wrapper( + responses.retrieve, + ) + self.delete = _legacy_response.async_to_raw_response_wrapper( + responses.delete, + ) + + @cached_property + def input_items(self) -> AsyncInputItemsWithRawResponse: + return AsyncInputItemsWithRawResponse(self._responses.input_items) + + +class ResponsesWithStreamingResponse: + def __init__(self, responses: Responses) -> None: + self._responses = responses + + self.create = to_streamed_response_wrapper( + responses.create, + ) + self.retrieve = to_streamed_response_wrapper( + responses.retrieve, + ) + self.delete = to_streamed_response_wrapper( + responses.delete, + ) + + @cached_property + def input_items(self) -> InputItemsWithStreamingResponse: + return InputItemsWithStreamingResponse(self._responses.input_items) + + +class AsyncResponsesWithStreamingResponse: + def __init__(self, responses: AsyncResponses) -> None: + self._responses = responses + + self.create = async_to_streamed_response_wrapper( + responses.create, + ) + self.retrieve = async_to_streamed_response_wrapper( + responses.retrieve, + ) + self.delete = async_to_streamed_response_wrapper( + responses.delete, + ) + + @cached_property + def input_items(self) -> AsyncInputItemsWithStreamingResponse: + return AsyncInputItemsWithStreamingResponse(self._responses.input_items) + + +def _make_tools(tools: Iterable[ParseableToolParam] | NotGiven) -> List[ToolParam] | NotGiven: + if not is_given(tools): + return NOT_GIVEN + + converted_tools: List[ToolParam] = [] + for tool in tools: + if tool["type"] != "function": + converted_tools.append(tool) + continue + + if "function" not in tool: + # standard Responses API case + converted_tools.append(tool) + continue + + function = cast(Any, tool)["function"] # pyright: ignore[reportUnnecessaryCast] + if not isinstance(function, PydanticFunctionTool): + raise Exception( + "Expected Chat Completions function tool shape to be created using `openai.pydantic_function_tool()`" + ) + + assert "parameters" in function + new_tool = ResponsesPydanticFunctionTool( + { + "type": "function", + "name": function["name"], + "description": function.get("description"), + "parameters": function["parameters"], + "strict": function.get("strict") or False, + }, + function.model, + ) + + converted_tools.append(new_tool.cast()) + + return converted_tools diff --git a/.venv/lib/python3.12/site-packages/openai/resources/uploads/__init__.py b/.venv/lib/python3.12/site-packages/openai/resources/uploads/__init__.py new file mode 100644 index 00000000..12d1056f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/uploads/__init__.py @@ -0,0 +1,33 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from .parts import ( + Parts, + AsyncParts, + PartsWithRawResponse, + AsyncPartsWithRawResponse, + PartsWithStreamingResponse, + AsyncPartsWithStreamingResponse, +) +from .uploads import ( + Uploads, + AsyncUploads, + UploadsWithRawResponse, + AsyncUploadsWithRawResponse, + UploadsWithStreamingResponse, + AsyncUploadsWithStreamingResponse, +) + +__all__ = [ + "Parts", + "AsyncParts", + "PartsWithRawResponse", + "AsyncPartsWithRawResponse", + "PartsWithStreamingResponse", + "AsyncPartsWithStreamingResponse", + "Uploads", + "AsyncUploads", + "UploadsWithRawResponse", + "AsyncUploadsWithRawResponse", + "UploadsWithStreamingResponse", + "AsyncUploadsWithStreamingResponse", +] diff --git a/.venv/lib/python3.12/site-packages/openai/resources/uploads/parts.py b/.venv/lib/python3.12/site-packages/openai/resources/uploads/parts.py new file mode 100644 index 00000000..777469ac --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/uploads/parts.py @@ -0,0 +1,210 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Mapping, cast + +import httpx + +from ... import _legacy_response +from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes +from ..._utils import ( + extract_files, + maybe_transform, + deepcopy_minimal, + async_maybe_transform, +) +from ..._compat import cached_property +from ..._resource import SyncAPIResource, AsyncAPIResource +from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ..._base_client import make_request_options +from ...types.uploads import part_create_params +from ...types.uploads.upload_part import UploadPart + +__all__ = ["Parts", "AsyncParts"] + + +class Parts(SyncAPIResource): + @cached_property + def with_raw_response(self) -> PartsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return PartsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> PartsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return PartsWithStreamingResponse(self) + + def create( + self, + upload_id: str, + *, + data: FileTypes, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> UploadPart: + """ + Adds a + [Part](https://platform.openai.com/docs/api-reference/uploads/part-object) to an + [Upload](https://platform.openai.com/docs/api-reference/uploads/object) object. + A Part represents a chunk of bytes from the file you are trying to upload. + + Each Part can be at most 64 MB, and you can add Parts until you hit the Upload + maximum of 8 GB. + + It is possible to add multiple Parts in parallel. You can decide the intended + order of the Parts when you + [complete the Upload](https://platform.openai.com/docs/api-reference/uploads/complete). + + Args: + data: The chunk of bytes for this Part. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not upload_id: + raise ValueError(f"Expected a non-empty value for `upload_id` but received {upload_id!r}") + body = deepcopy_minimal({"data": data}) + files = extract_files(cast(Mapping[str, object], body), paths=[["data"]]) + # It should be noted that the actual Content-Type header that will be + # sent to the server will contain a `boundary` parameter, e.g. + # multipart/form-data; boundary=---abc-- + extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})} + return self._post( + f"/uploads/{upload_id}/parts", + body=maybe_transform(body, part_create_params.PartCreateParams), + files=files, + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=UploadPart, + ) + + +class AsyncParts(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncPartsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncPartsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncPartsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncPartsWithStreamingResponse(self) + + async def create( + self, + upload_id: str, + *, + data: FileTypes, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> UploadPart: + """ + Adds a + [Part](https://platform.openai.com/docs/api-reference/uploads/part-object) to an + [Upload](https://platform.openai.com/docs/api-reference/uploads/object) object. + A Part represents a chunk of bytes from the file you are trying to upload. + + Each Part can be at most 64 MB, and you can add Parts until you hit the Upload + maximum of 8 GB. + + It is possible to add multiple Parts in parallel. You can decide the intended + order of the Parts when you + [complete the Upload](https://platform.openai.com/docs/api-reference/uploads/complete). + + Args: + data: The chunk of bytes for this Part. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not upload_id: + raise ValueError(f"Expected a non-empty value for `upload_id` but received {upload_id!r}") + body = deepcopy_minimal({"data": data}) + files = extract_files(cast(Mapping[str, object], body), paths=[["data"]]) + # It should be noted that the actual Content-Type header that will be + # sent to the server will contain a `boundary` parameter, e.g. + # multipart/form-data; boundary=---abc-- + extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})} + return await self._post( + f"/uploads/{upload_id}/parts", + body=await async_maybe_transform(body, part_create_params.PartCreateParams), + files=files, + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=UploadPart, + ) + + +class PartsWithRawResponse: + def __init__(self, parts: Parts) -> None: + self._parts = parts + + self.create = _legacy_response.to_raw_response_wrapper( + parts.create, + ) + + +class AsyncPartsWithRawResponse: + def __init__(self, parts: AsyncParts) -> None: + self._parts = parts + + self.create = _legacy_response.async_to_raw_response_wrapper( + parts.create, + ) + + +class PartsWithStreamingResponse: + def __init__(self, parts: Parts) -> None: + self._parts = parts + + self.create = to_streamed_response_wrapper( + parts.create, + ) + + +class AsyncPartsWithStreamingResponse: + def __init__(self, parts: AsyncParts) -> None: + self._parts = parts + + self.create = async_to_streamed_response_wrapper( + parts.create, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/uploads/uploads.py b/.venv/lib/python3.12/site-packages/openai/resources/uploads/uploads.py new file mode 100644 index 00000000..9297dbc2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/uploads/uploads.py @@ -0,0 +1,714 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import io +import os +import logging +import builtins +from typing import List, overload +from pathlib import Path + +import anyio +import httpx + +from ... import _legacy_response +from .parts import ( + Parts, + AsyncParts, + PartsWithRawResponse, + AsyncPartsWithRawResponse, + PartsWithStreamingResponse, + AsyncPartsWithStreamingResponse, +) +from ...types import FilePurpose, upload_create_params, upload_complete_params +from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from ..._utils import ( + maybe_transform, + async_maybe_transform, +) +from ..._compat import cached_property +from ..._resource import SyncAPIResource, AsyncAPIResource +from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ..._base_client import make_request_options +from ...types.upload import Upload +from ...types.file_purpose import FilePurpose + +__all__ = ["Uploads", "AsyncUploads"] + + +# 64MB +DEFAULT_PART_SIZE = 64 * 1024 * 1024 + +log: logging.Logger = logging.getLogger(__name__) + + +class Uploads(SyncAPIResource): + @cached_property + def parts(self) -> Parts: + return Parts(self._client) + + @cached_property + def with_raw_response(self) -> UploadsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return UploadsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> UploadsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return UploadsWithStreamingResponse(self) + + @overload + def upload_file_chunked( + self, + *, + file: os.PathLike[str], + mime_type: str, + purpose: FilePurpose, + bytes: int | None = None, + part_size: int | None = None, + md5: str | NotGiven = NOT_GIVEN, + ) -> Upload: + """Splits a file into multiple 64MB parts and uploads them sequentially.""" + + @overload + def upload_file_chunked( + self, + *, + file: bytes, + filename: str, + bytes: int, + mime_type: str, + purpose: FilePurpose, + part_size: int | None = None, + md5: str | NotGiven = NOT_GIVEN, + ) -> Upload: + """Splits an in-memory file into multiple 64MB parts and uploads them sequentially.""" + + def upload_file_chunked( + self, + *, + file: os.PathLike[str] | bytes, + mime_type: str, + purpose: FilePurpose, + filename: str | None = None, + bytes: int | None = None, + part_size: int | None = None, + md5: str | NotGiven = NOT_GIVEN, + ) -> Upload: + """Splits the given file into multiple parts and uploads them sequentially. + + ```py + from pathlib import Path + + client.uploads.upload_file( + file=Path("my-paper.pdf"), + mime_type="pdf", + purpose="assistants", + ) + ``` + """ + if isinstance(file, builtins.bytes): + if filename is None: + raise TypeError("The `filename` argument must be given for in-memory files") + + if bytes is None: + raise TypeError("The `bytes` argument must be given for in-memory files") + else: + if not isinstance(file, Path): + file = Path(file) + + if not filename: + filename = file.name + + if bytes is None: + bytes = file.stat().st_size + + upload = self.create( + bytes=bytes, + filename=filename, + mime_type=mime_type, + purpose=purpose, + ) + + part_ids: list[str] = [] + + if part_size is None: + part_size = DEFAULT_PART_SIZE + + if isinstance(file, builtins.bytes): + buf: io.FileIO | io.BytesIO = io.BytesIO(file) + else: + buf = io.FileIO(file) + + try: + while True: + data = buf.read(part_size) + if not data: + # EOF + break + + part = self.parts.create(upload_id=upload.id, data=data) + log.info("Uploaded part %s for upload %s", part.id, upload.id) + part_ids.append(part.id) + except Exception: + buf.close() + raise + + return self.complete(upload_id=upload.id, part_ids=part_ids, md5=md5) + + def create( + self, + *, + bytes: int, + filename: str, + mime_type: str, + purpose: FilePurpose, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Upload: + """ + Creates an intermediate + [Upload](https://platform.openai.com/docs/api-reference/uploads/object) object + that you can add + [Parts](https://platform.openai.com/docs/api-reference/uploads/part-object) to. + Currently, an Upload can accept at most 8 GB in total and expires after an hour + after you create it. + + Once you complete the Upload, we will create a + [File](https://platform.openai.com/docs/api-reference/files/object) object that + contains all the parts you uploaded. This File is usable in the rest of our + platform as a regular File object. + + For certain `purpose` values, the correct `mime_type` must be specified. Please + refer to documentation for the + [supported MIME types for your use case](https://platform.openai.com/docs/assistants/tools/file-search#supported-files). + + For guidance on the proper filename extensions for each purpose, please follow + the documentation on + [creating a File](https://platform.openai.com/docs/api-reference/files/create). + + Args: + bytes: The number of bytes in the file you are uploading. + + filename: The name of the file to upload. + + mime_type: The MIME type of the file. + + This must fall within the supported MIME types for your file purpose. See the + supported MIME types for assistants and vision. + + purpose: The intended purpose of the uploaded file. + + See the + [documentation on File purposes](https://platform.openai.com/docs/api-reference/files/create#files-create-purpose). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._post( + "/uploads", + body=maybe_transform( + { + "bytes": bytes, + "filename": filename, + "mime_type": mime_type, + "purpose": purpose, + }, + upload_create_params.UploadCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Upload, + ) + + def cancel( + self, + upload_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Upload: + """Cancels the Upload. + + No Parts may be added after an Upload is cancelled. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not upload_id: + raise ValueError(f"Expected a non-empty value for `upload_id` but received {upload_id!r}") + return self._post( + f"/uploads/{upload_id}/cancel", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Upload, + ) + + def complete( + self, + upload_id: str, + *, + part_ids: List[str], + md5: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Upload: + """ + Completes the + [Upload](https://platform.openai.com/docs/api-reference/uploads/object). + + Within the returned Upload object, there is a nested + [File](https://platform.openai.com/docs/api-reference/files/object) object that + is ready to use in the rest of the platform. + + You can specify the order of the Parts by passing in an ordered list of the Part + IDs. + + The number of bytes uploaded upon completion must match the number of bytes + initially specified when creating the Upload object. No Parts may be added after + an Upload is completed. + + Args: + part_ids: The ordered list of Part IDs. + + md5: The optional md5 checksum for the file contents to verify if the bytes uploaded + matches what you expect. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not upload_id: + raise ValueError(f"Expected a non-empty value for `upload_id` but received {upload_id!r}") + return self._post( + f"/uploads/{upload_id}/complete", + body=maybe_transform( + { + "part_ids": part_ids, + "md5": md5, + }, + upload_complete_params.UploadCompleteParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Upload, + ) + + +class AsyncUploads(AsyncAPIResource): + @cached_property + def parts(self) -> AsyncParts: + return AsyncParts(self._client) + + @cached_property + def with_raw_response(self) -> AsyncUploadsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncUploadsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncUploadsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncUploadsWithStreamingResponse(self) + + @overload + async def upload_file_chunked( + self, + *, + file: os.PathLike[str], + mime_type: str, + purpose: FilePurpose, + bytes: int | None = None, + part_size: int | None = None, + md5: str | NotGiven = NOT_GIVEN, + ) -> Upload: + """Splits a file into multiple 64MB parts and uploads them sequentially.""" + + @overload + async def upload_file_chunked( + self, + *, + file: bytes, + filename: str, + bytes: int, + mime_type: str, + purpose: FilePurpose, + part_size: int | None = None, + md5: str | NotGiven = NOT_GIVEN, + ) -> Upload: + """Splits an in-memory file into multiple 64MB parts and uploads them sequentially.""" + + async def upload_file_chunked( + self, + *, + file: os.PathLike[str] | bytes, + mime_type: str, + purpose: FilePurpose, + filename: str | None = None, + bytes: int | None = None, + part_size: int | None = None, + md5: str | NotGiven = NOT_GIVEN, + ) -> Upload: + """Splits the given file into multiple parts and uploads them sequentially. + + ```py + from pathlib import Path + + client.uploads.upload_file( + file=Path("my-paper.pdf"), + mime_type="pdf", + purpose="assistants", + ) + ``` + """ + if isinstance(file, builtins.bytes): + if filename is None: + raise TypeError("The `filename` argument must be given for in-memory files") + + if bytes is None: + raise TypeError("The `bytes` argument must be given for in-memory files") + else: + if not isinstance(file, anyio.Path): + file = anyio.Path(file) + + if not filename: + filename = file.name + + if bytes is None: + stat = await file.stat() + bytes = stat.st_size + + upload = await self.create( + bytes=bytes, + filename=filename, + mime_type=mime_type, + purpose=purpose, + ) + + part_ids: list[str] = [] + + if part_size is None: + part_size = DEFAULT_PART_SIZE + + if isinstance(file, anyio.Path): + fd = await file.open("rb") + async with fd: + while True: + data = await fd.read(part_size) + if not data: + # EOF + break + + part = await self.parts.create(upload_id=upload.id, data=data) + log.info("Uploaded part %s for upload %s", part.id, upload.id) + part_ids.append(part.id) + else: + buf = io.BytesIO(file) + + try: + while True: + data = buf.read(part_size) + if not data: + # EOF + break + + part = await self.parts.create(upload_id=upload.id, data=data) + log.info("Uploaded part %s for upload %s", part.id, upload.id) + part_ids.append(part.id) + except Exception: + buf.close() + raise + + return await self.complete(upload_id=upload.id, part_ids=part_ids, md5=md5) + + async def create( + self, + *, + bytes: int, + filename: str, + mime_type: str, + purpose: FilePurpose, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Upload: + """ + Creates an intermediate + [Upload](https://platform.openai.com/docs/api-reference/uploads/object) object + that you can add + [Parts](https://platform.openai.com/docs/api-reference/uploads/part-object) to. + Currently, an Upload can accept at most 8 GB in total and expires after an hour + after you create it. + + Once you complete the Upload, we will create a + [File](https://platform.openai.com/docs/api-reference/files/object) object that + contains all the parts you uploaded. This File is usable in the rest of our + platform as a regular File object. + + For certain `purpose` values, the correct `mime_type` must be specified. Please + refer to documentation for the + [supported MIME types for your use case](https://platform.openai.com/docs/assistants/tools/file-search#supported-files). + + For guidance on the proper filename extensions for each purpose, please follow + the documentation on + [creating a File](https://platform.openai.com/docs/api-reference/files/create). + + Args: + bytes: The number of bytes in the file you are uploading. + + filename: The name of the file to upload. + + mime_type: The MIME type of the file. + + This must fall within the supported MIME types for your file purpose. See the + supported MIME types for assistants and vision. + + purpose: The intended purpose of the uploaded file. + + See the + [documentation on File purposes](https://platform.openai.com/docs/api-reference/files/create#files-create-purpose). + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return await self._post( + "/uploads", + body=await async_maybe_transform( + { + "bytes": bytes, + "filename": filename, + "mime_type": mime_type, + "purpose": purpose, + }, + upload_create_params.UploadCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Upload, + ) + + async def cancel( + self, + upload_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Upload: + """Cancels the Upload. + + No Parts may be added after an Upload is cancelled. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not upload_id: + raise ValueError(f"Expected a non-empty value for `upload_id` but received {upload_id!r}") + return await self._post( + f"/uploads/{upload_id}/cancel", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Upload, + ) + + async def complete( + self, + upload_id: str, + *, + part_ids: List[str], + md5: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> Upload: + """ + Completes the + [Upload](https://platform.openai.com/docs/api-reference/uploads/object). + + Within the returned Upload object, there is a nested + [File](https://platform.openai.com/docs/api-reference/files/object) object that + is ready to use in the rest of the platform. + + You can specify the order of the Parts by passing in an ordered list of the Part + IDs. + + The number of bytes uploaded upon completion must match the number of bytes + initially specified when creating the Upload object. No Parts may be added after + an Upload is completed. + + Args: + part_ids: The ordered list of Part IDs. + + md5: The optional md5 checksum for the file contents to verify if the bytes uploaded + matches what you expect. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not upload_id: + raise ValueError(f"Expected a non-empty value for `upload_id` but received {upload_id!r}") + return await self._post( + f"/uploads/{upload_id}/complete", + body=await async_maybe_transform( + { + "part_ids": part_ids, + "md5": md5, + }, + upload_complete_params.UploadCompleteParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=Upload, + ) + + +class UploadsWithRawResponse: + def __init__(self, uploads: Uploads) -> None: + self._uploads = uploads + + self.create = _legacy_response.to_raw_response_wrapper( + uploads.create, + ) + self.cancel = _legacy_response.to_raw_response_wrapper( + uploads.cancel, + ) + self.complete = _legacy_response.to_raw_response_wrapper( + uploads.complete, + ) + + @cached_property + def parts(self) -> PartsWithRawResponse: + return PartsWithRawResponse(self._uploads.parts) + + +class AsyncUploadsWithRawResponse: + def __init__(self, uploads: AsyncUploads) -> None: + self._uploads = uploads + + self.create = _legacy_response.async_to_raw_response_wrapper( + uploads.create, + ) + self.cancel = _legacy_response.async_to_raw_response_wrapper( + uploads.cancel, + ) + self.complete = _legacy_response.async_to_raw_response_wrapper( + uploads.complete, + ) + + @cached_property + def parts(self) -> AsyncPartsWithRawResponse: + return AsyncPartsWithRawResponse(self._uploads.parts) + + +class UploadsWithStreamingResponse: + def __init__(self, uploads: Uploads) -> None: + self._uploads = uploads + + self.create = to_streamed_response_wrapper( + uploads.create, + ) + self.cancel = to_streamed_response_wrapper( + uploads.cancel, + ) + self.complete = to_streamed_response_wrapper( + uploads.complete, + ) + + @cached_property + def parts(self) -> PartsWithStreamingResponse: + return PartsWithStreamingResponse(self._uploads.parts) + + +class AsyncUploadsWithStreamingResponse: + def __init__(self, uploads: AsyncUploads) -> None: + self._uploads = uploads + + self.create = async_to_streamed_response_wrapper( + uploads.create, + ) + self.cancel = async_to_streamed_response_wrapper( + uploads.cancel, + ) + self.complete = async_to_streamed_response_wrapper( + uploads.complete, + ) + + @cached_property + def parts(self) -> AsyncPartsWithStreamingResponse: + return AsyncPartsWithStreamingResponse(self._uploads.parts) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/vector_stores/__init__.py b/.venv/lib/python3.12/site-packages/openai/resources/vector_stores/__init__.py new file mode 100644 index 00000000..96ae16c3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/vector_stores/__init__.py @@ -0,0 +1,47 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from .files import ( + Files, + AsyncFiles, + FilesWithRawResponse, + AsyncFilesWithRawResponse, + FilesWithStreamingResponse, + AsyncFilesWithStreamingResponse, +) +from .file_batches import ( + FileBatches, + AsyncFileBatches, + FileBatchesWithRawResponse, + AsyncFileBatchesWithRawResponse, + FileBatchesWithStreamingResponse, + AsyncFileBatchesWithStreamingResponse, +) +from .vector_stores import ( + VectorStores, + AsyncVectorStores, + VectorStoresWithRawResponse, + AsyncVectorStoresWithRawResponse, + VectorStoresWithStreamingResponse, + AsyncVectorStoresWithStreamingResponse, +) + +__all__ = [ + "Files", + "AsyncFiles", + "FilesWithRawResponse", + "AsyncFilesWithRawResponse", + "FilesWithStreamingResponse", + "AsyncFilesWithStreamingResponse", + "FileBatches", + "AsyncFileBatches", + "FileBatchesWithRawResponse", + "AsyncFileBatchesWithRawResponse", + "FileBatchesWithStreamingResponse", + "AsyncFileBatchesWithStreamingResponse", + "VectorStores", + "AsyncVectorStores", + "VectorStoresWithRawResponse", + "AsyncVectorStoresWithRawResponse", + "VectorStoresWithStreamingResponse", + "AsyncVectorStoresWithStreamingResponse", +] diff --git a/.venv/lib/python3.12/site-packages/openai/resources/vector_stores/file_batches.py b/.venv/lib/python3.12/site-packages/openai/resources/vector_stores/file_batches.py new file mode 100644 index 00000000..9b4b64d3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/vector_stores/file_batches.py @@ -0,0 +1,801 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import asyncio +from typing import Dict, List, Iterable, Optional +from typing_extensions import Union, Literal +from concurrent.futures import Future, ThreadPoolExecutor, as_completed + +import httpx +import sniffio + +from ... import _legacy_response +from ...types import FileChunkingStrategyParam +from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes +from ..._utils import ( + is_given, + maybe_transform, + async_maybe_transform, +) +from ..._compat import cached_property +from ..._resource import SyncAPIResource, AsyncAPIResource +from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ...pagination import SyncCursorPage, AsyncCursorPage +from ..._base_client import AsyncPaginator, make_request_options +from ...types.file_object import FileObject +from ...types.vector_stores import file_batch_create_params, file_batch_list_files_params +from ...types.file_chunking_strategy_param import FileChunkingStrategyParam +from ...types.vector_stores.vector_store_file import VectorStoreFile +from ...types.vector_stores.vector_store_file_batch import VectorStoreFileBatch + +__all__ = ["FileBatches", "AsyncFileBatches"] + + +class FileBatches(SyncAPIResource): + @cached_property + def with_raw_response(self) -> FileBatchesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return FileBatchesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> FileBatchesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return FileBatchesWithStreamingResponse(self) + + def create( + self, + vector_store_id: str, + *, + file_ids: List[str], + attributes: Optional[Dict[str, Union[str, float, bool]]] | NotGiven = NOT_GIVEN, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """ + Create a vector store file batch. + + Args: + file_ids: A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that + the vector store should use. Useful for tools like `file_search` that can access + files. + + attributes: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. Keys are strings with a maximum + length of 64 characters. Values are strings with a maximum length of 512 + characters, booleans, or numbers. + + chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto` + strategy. Only applicable if `file_ids` is non-empty. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + f"/vector_stores/{vector_store_id}/file_batches", + body=maybe_transform( + { + "file_ids": file_ids, + "attributes": attributes, + "chunking_strategy": chunking_strategy, + }, + file_batch_create_params.FileBatchCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFileBatch, + ) + + def retrieve( + self, + batch_id: str, + *, + vector_store_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """ + Retrieves a vector store file batch. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not batch_id: + raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get( + f"/vector_stores/{vector_store_id}/file_batches/{batch_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFileBatch, + ) + + def cancel( + self, + batch_id: str, + *, + vector_store_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """Cancel a vector store file batch. + + This attempts to cancel the processing of + files in this batch as soon as possible. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not batch_id: + raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFileBatch, + ) + + def create_and_poll( + self, + vector_store_id: str, + *, + file_ids: List[str], + poll_interval_ms: int | NotGiven = NOT_GIVEN, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """Create a vector store batch and poll until all files have been processed.""" + batch = self.create( + vector_store_id=vector_store_id, + file_ids=file_ids, + chunking_strategy=chunking_strategy, + ) + # TODO: don't poll unless necessary?? + return self.poll( + batch.id, + vector_store_id=vector_store_id, + poll_interval_ms=poll_interval_ms, + ) + + def list_files( + self, + batch_id: str, + *, + vector_store_id: str, + after: str | NotGiven = NOT_GIVEN, + before: str | NotGiven = NOT_GIVEN, + filter: Literal["in_progress", "completed", "failed", "cancelled"] | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncCursorPage[VectorStoreFile]: + """ + Returns a list of vector store files in a batch. + + Args: + after: A cursor for use in pagination. `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + before: A cursor for use in pagination. `before` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + starting with obj_foo, your subsequent call can include before=obj_foo in order + to fetch the previous page of the list. + + filter: Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not batch_id: + raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/files", + page=SyncCursorPage[VectorStoreFile], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "before": before, + "filter": filter, + "limit": limit, + "order": order, + }, + file_batch_list_files_params.FileBatchListFilesParams, + ), + ), + model=VectorStoreFile, + ) + + def poll( + self, + batch_id: str, + *, + vector_store_id: str, + poll_interval_ms: int | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """Wait for the given file batch to be processed. + + Note: this will return even if one of the files failed to process, you need to + check batch.file_counts.failed_count to handle this case. + """ + headers: dict[str, str] = {"X-Stainless-Poll-Helper": "true"} + if is_given(poll_interval_ms): + headers["X-Stainless-Custom-Poll-Interval"] = str(poll_interval_ms) + + while True: + response = self.with_raw_response.retrieve( + batch_id, + vector_store_id=vector_store_id, + extra_headers=headers, + ) + + batch = response.parse() + if batch.file_counts.in_progress > 0: + if not is_given(poll_interval_ms): + from_header = response.headers.get("openai-poll-after-ms") + if from_header is not None: + poll_interval_ms = int(from_header) + else: + poll_interval_ms = 1000 + + self._sleep(poll_interval_ms / 1000) + continue + + return batch + + def upload_and_poll( + self, + vector_store_id: str, + *, + files: Iterable[FileTypes], + max_concurrency: int = 5, + file_ids: List[str] = [], + poll_interval_ms: int | NotGiven = NOT_GIVEN, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """Uploads the given files concurrently and then creates a vector store file batch. + + If you've already uploaded certain files that you want to include in this batch + then you can pass their IDs through the `file_ids` argument. + + By default, if any file upload fails then an exception will be eagerly raised. + + The number of concurrency uploads is configurable using the `max_concurrency` + parameter. + + Note: this method only supports `asyncio` or `trio` as the backing async + runtime. + """ + results: list[FileObject] = [] + + with ThreadPoolExecutor(max_workers=max_concurrency) as executor: + futures: list[Future[FileObject]] = [ + executor.submit( + self._client.files.create, + file=file, + purpose="assistants", + ) + for file in files + ] + + for future in as_completed(futures): + exc = future.exception() + if exc: + raise exc + + results.append(future.result()) + + batch = self.create_and_poll( + vector_store_id=vector_store_id, + file_ids=[*file_ids, *(f.id for f in results)], + poll_interval_ms=poll_interval_ms, + chunking_strategy=chunking_strategy, + ) + return batch + + +class AsyncFileBatches(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncFileBatchesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncFileBatchesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncFileBatchesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncFileBatchesWithStreamingResponse(self) + + async def create( + self, + vector_store_id: str, + *, + file_ids: List[str], + attributes: Optional[Dict[str, Union[str, float, bool]]] | NotGiven = NOT_GIVEN, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """ + Create a vector store file batch. + + Args: + file_ids: A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that + the vector store should use. Useful for tools like `file_search` that can access + files. + + attributes: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. Keys are strings with a maximum + length of 64 characters. Values are strings with a maximum length of 512 + characters, booleans, or numbers. + + chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto` + strategy. Only applicable if `file_ids` is non-empty. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + f"/vector_stores/{vector_store_id}/file_batches", + body=await async_maybe_transform( + { + "file_ids": file_ids, + "attributes": attributes, + "chunking_strategy": chunking_strategy, + }, + file_batch_create_params.FileBatchCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFileBatch, + ) + + async def retrieve( + self, + batch_id: str, + *, + vector_store_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """ + Retrieves a vector store file batch. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not batch_id: + raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._get( + f"/vector_stores/{vector_store_id}/file_batches/{batch_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFileBatch, + ) + + async def cancel( + self, + batch_id: str, + *, + vector_store_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """Cancel a vector store file batch. + + This attempts to cancel the processing of + files in this batch as soon as possible. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not batch_id: + raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFileBatch, + ) + + async def create_and_poll( + self, + vector_store_id: str, + *, + file_ids: List[str], + poll_interval_ms: int | NotGiven = NOT_GIVEN, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """Create a vector store batch and poll until all files have been processed.""" + batch = await self.create( + vector_store_id=vector_store_id, + file_ids=file_ids, + chunking_strategy=chunking_strategy, + ) + # TODO: don't poll unless necessary?? + return await self.poll( + batch.id, + vector_store_id=vector_store_id, + poll_interval_ms=poll_interval_ms, + ) + + def list_files( + self, + batch_id: str, + *, + vector_store_id: str, + after: str | NotGiven = NOT_GIVEN, + before: str | NotGiven = NOT_GIVEN, + filter: Literal["in_progress", "completed", "failed", "cancelled"] | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[VectorStoreFile, AsyncCursorPage[VectorStoreFile]]: + """ + Returns a list of vector store files in a batch. + + Args: + after: A cursor for use in pagination. `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + before: A cursor for use in pagination. `before` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + starting with obj_foo, your subsequent call can include before=obj_foo in order + to fetch the previous page of the list. + + filter: Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not batch_id: + raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/files", + page=AsyncCursorPage[VectorStoreFile], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "before": before, + "filter": filter, + "limit": limit, + "order": order, + }, + file_batch_list_files_params.FileBatchListFilesParams, + ), + ), + model=VectorStoreFile, + ) + + async def poll( + self, + batch_id: str, + *, + vector_store_id: str, + poll_interval_ms: int | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """Wait for the given file batch to be processed. + + Note: this will return even if one of the files failed to process, you need to + check batch.file_counts.failed_count to handle this case. + """ + headers: dict[str, str] = {"X-Stainless-Poll-Helper": "true"} + if is_given(poll_interval_ms): + headers["X-Stainless-Custom-Poll-Interval"] = str(poll_interval_ms) + + while True: + response = await self.with_raw_response.retrieve( + batch_id, + vector_store_id=vector_store_id, + extra_headers=headers, + ) + + batch = response.parse() + if batch.file_counts.in_progress > 0: + if not is_given(poll_interval_ms): + from_header = response.headers.get("openai-poll-after-ms") + if from_header is not None: + poll_interval_ms = int(from_header) + else: + poll_interval_ms = 1000 + + await self._sleep(poll_interval_ms / 1000) + continue + + return batch + + async def upload_and_poll( + self, + vector_store_id: str, + *, + files: Iterable[FileTypes], + max_concurrency: int = 5, + file_ids: List[str] = [], + poll_interval_ms: int | NotGiven = NOT_GIVEN, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """Uploads the given files concurrently and then creates a vector store file batch. + + If you've already uploaded certain files that you want to include in this batch + then you can pass their IDs through the `file_ids` argument. + + By default, if any file upload fails then an exception will be eagerly raised. + + The number of concurrency uploads is configurable using the `max_concurrency` + parameter. + + Note: this method only supports `asyncio` or `trio` as the backing async + runtime. + """ + uploaded_files: list[FileObject] = [] + + async_library = sniffio.current_async_library() + + if async_library == "asyncio": + + async def asyncio_upload_file(semaphore: asyncio.Semaphore, file: FileTypes) -> None: + async with semaphore: + file_obj = await self._client.files.create( + file=file, + purpose="assistants", + ) + uploaded_files.append(file_obj) + + semaphore = asyncio.Semaphore(max_concurrency) + + tasks = [asyncio_upload_file(semaphore, file) for file in files] + + await asyncio.gather(*tasks) + elif async_library == "trio": + # We only import if the library is being used. + # We support Python 3.7 so are using an older version of trio that does not have type information + import trio # type: ignore # pyright: ignore[reportMissingTypeStubs] + + async def trio_upload_file(limiter: trio.CapacityLimiter, file: FileTypes) -> None: + async with limiter: + file_obj = await self._client.files.create( + file=file, + purpose="assistants", + ) + uploaded_files.append(file_obj) + + limiter = trio.CapacityLimiter(max_concurrency) + + async with trio.open_nursery() as nursery: + for file in files: + nursery.start_soon(trio_upload_file, limiter, file) # pyright: ignore [reportUnknownMemberType] + else: + raise RuntimeError( + f"Async runtime {async_library} is not supported yet. Only asyncio or trio is supported", + ) + + batch = await self.create_and_poll( + vector_store_id=vector_store_id, + file_ids=[*file_ids, *(f.id for f in uploaded_files)], + poll_interval_ms=poll_interval_ms, + chunking_strategy=chunking_strategy, + ) + return batch + + +class FileBatchesWithRawResponse: + def __init__(self, file_batches: FileBatches) -> None: + self._file_batches = file_batches + + self.create = _legacy_response.to_raw_response_wrapper( + file_batches.create, + ) + self.retrieve = _legacy_response.to_raw_response_wrapper( + file_batches.retrieve, + ) + self.cancel = _legacy_response.to_raw_response_wrapper( + file_batches.cancel, + ) + self.list_files = _legacy_response.to_raw_response_wrapper( + file_batches.list_files, + ) + + +class AsyncFileBatchesWithRawResponse: + def __init__(self, file_batches: AsyncFileBatches) -> None: + self._file_batches = file_batches + + self.create = _legacy_response.async_to_raw_response_wrapper( + file_batches.create, + ) + self.retrieve = _legacy_response.async_to_raw_response_wrapper( + file_batches.retrieve, + ) + self.cancel = _legacy_response.async_to_raw_response_wrapper( + file_batches.cancel, + ) + self.list_files = _legacy_response.async_to_raw_response_wrapper( + file_batches.list_files, + ) + + +class FileBatchesWithStreamingResponse: + def __init__(self, file_batches: FileBatches) -> None: + self._file_batches = file_batches + + self.create = to_streamed_response_wrapper( + file_batches.create, + ) + self.retrieve = to_streamed_response_wrapper( + file_batches.retrieve, + ) + self.cancel = to_streamed_response_wrapper( + file_batches.cancel, + ) + self.list_files = to_streamed_response_wrapper( + file_batches.list_files, + ) + + +class AsyncFileBatchesWithStreamingResponse: + def __init__(self, file_batches: AsyncFileBatches) -> None: + self._file_batches = file_batches + + self.create = async_to_streamed_response_wrapper( + file_batches.create, + ) + self.retrieve = async_to_streamed_response_wrapper( + file_batches.retrieve, + ) + self.cancel = async_to_streamed_response_wrapper( + file_batches.cancel, + ) + self.list_files = async_to_streamed_response_wrapper( + file_batches.list_files, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/vector_stores/files.py b/.venv/lib/python3.12/site-packages/openai/resources/vector_stores/files.py new file mode 100644 index 00000000..7d93798a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/vector_stores/files.py @@ -0,0 +1,933 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import TYPE_CHECKING, Dict, Union, Optional +from typing_extensions import Literal, assert_never + +import httpx + +from ... import _legacy_response +from ...types import FileChunkingStrategyParam +from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes +from ..._utils import ( + is_given, + maybe_transform, + async_maybe_transform, +) +from ..._compat import cached_property +from ..._resource import SyncAPIResource, AsyncAPIResource +from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ...pagination import SyncPage, AsyncPage, SyncCursorPage, AsyncCursorPage +from ..._base_client import AsyncPaginator, make_request_options +from ...types.vector_stores import file_list_params, file_create_params, file_update_params +from ...types.file_chunking_strategy_param import FileChunkingStrategyParam +from ...types.vector_stores.vector_store_file import VectorStoreFile +from ...types.vector_stores.file_content_response import FileContentResponse +from ...types.vector_stores.vector_store_file_deleted import VectorStoreFileDeleted + +__all__ = ["Files", "AsyncFiles"] + + +class Files(SyncAPIResource): + @cached_property + def with_raw_response(self) -> FilesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return FilesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> FilesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return FilesWithStreamingResponse(self) + + def create( + self, + vector_store_id: str, + *, + file_id: str, + attributes: Optional[Dict[str, Union[str, float, bool]]] | NotGiven = NOT_GIVEN, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFile: + """ + Create a vector store file by attaching a + [File](https://platform.openai.com/docs/api-reference/files) to a + [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object). + + Args: + file_id: A [File](https://platform.openai.com/docs/api-reference/files) ID that the + vector store should use. Useful for tools like `file_search` that can access + files. + + attributes: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. Keys are strings with a maximum + length of 64 characters. Values are strings with a maximum length of 512 + characters, booleans, or numbers. + + chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto` + strategy. Only applicable if `file_ids` is non-empty. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + f"/vector_stores/{vector_store_id}/files", + body=maybe_transform( + { + "file_id": file_id, + "attributes": attributes, + "chunking_strategy": chunking_strategy, + }, + file_create_params.FileCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFile, + ) + + def retrieve( + self, + file_id: str, + *, + vector_store_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFile: + """ + Retrieves a vector store file. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not file_id: + raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get( + f"/vector_stores/{vector_store_id}/files/{file_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFile, + ) + + def update( + self, + file_id: str, + *, + vector_store_id: str, + attributes: Optional[Dict[str, Union[str, float, bool]]], + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFile: + """ + Update attributes on a vector store file. + + Args: + attributes: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. Keys are strings with a maximum + length of 64 characters. Values are strings with a maximum length of 512 + characters, booleans, or numbers. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not file_id: + raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + f"/vector_stores/{vector_store_id}/files/{file_id}", + body=maybe_transform({"attributes": attributes}, file_update_params.FileUpdateParams), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFile, + ) + + def list( + self, + vector_store_id: str, + *, + after: str | NotGiven = NOT_GIVEN, + before: str | NotGiven = NOT_GIVEN, + filter: Literal["in_progress", "completed", "failed", "cancelled"] | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncCursorPage[VectorStoreFile]: + """ + Returns a list of vector store files. + + Args: + after: A cursor for use in pagination. `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + before: A cursor for use in pagination. `before` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + starting with obj_foo, your subsequent call can include before=obj_foo in order + to fetch the previous page of the list. + + filter: Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + f"/vector_stores/{vector_store_id}/files", + page=SyncCursorPage[VectorStoreFile], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "before": before, + "filter": filter, + "limit": limit, + "order": order, + }, + file_list_params.FileListParams, + ), + ), + model=VectorStoreFile, + ) + + def delete( + self, + file_id: str, + *, + vector_store_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileDeleted: + """Delete a vector store file. + + This will remove the file from the vector store but + the file itself will not be deleted. To delete the file, use the + [delete file](https://platform.openai.com/docs/api-reference/files/delete) + endpoint. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not file_id: + raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._delete( + f"/vector_stores/{vector_store_id}/files/{file_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFileDeleted, + ) + + def create_and_poll( + self, + file_id: str, + *, + vector_store_id: str, + poll_interval_ms: int | NotGiven = NOT_GIVEN, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + ) -> VectorStoreFile: + """Attach a file to the given vector store and wait for it to be processed.""" + self.create(vector_store_id=vector_store_id, file_id=file_id, chunking_strategy=chunking_strategy) + + return self.poll( + file_id, + vector_store_id=vector_store_id, + poll_interval_ms=poll_interval_ms, + ) + + def poll( + self, + file_id: str, + *, + vector_store_id: str, + poll_interval_ms: int | NotGiven = NOT_GIVEN, + ) -> VectorStoreFile: + """Wait for the vector store file to finish processing. + + Note: this will return even if the file failed to process, you need to check + file.last_error and file.status to handle these cases + """ + headers: dict[str, str] = {"X-Stainless-Poll-Helper": "true"} + if is_given(poll_interval_ms): + headers["X-Stainless-Custom-Poll-Interval"] = str(poll_interval_ms) + + while True: + response = self.with_raw_response.retrieve( + file_id, + vector_store_id=vector_store_id, + extra_headers=headers, + ) + + file = response.parse() + if file.status == "in_progress": + if not is_given(poll_interval_ms): + from_header = response.headers.get("openai-poll-after-ms") + if from_header is not None: + poll_interval_ms = int(from_header) + else: + poll_interval_ms = 1000 + + self._sleep(poll_interval_ms / 1000) + elif file.status == "cancelled" or file.status == "completed" or file.status == "failed": + return file + else: + if TYPE_CHECKING: # type: ignore[unreachable] + assert_never(file.status) + else: + return file + + def upload( + self, + *, + vector_store_id: str, + file: FileTypes, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + ) -> VectorStoreFile: + """Upload a file to the `files` API and then attach it to the given vector store. + + Note the file will be asynchronously processed (you can use the alternative + polling helper method to wait for processing to complete). + """ + file_obj = self._client.files.create(file=file, purpose="assistants") + return self.create(vector_store_id=vector_store_id, file_id=file_obj.id, chunking_strategy=chunking_strategy) + + def upload_and_poll( + self, + *, + vector_store_id: str, + file: FileTypes, + poll_interval_ms: int | NotGiven = NOT_GIVEN, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + ) -> VectorStoreFile: + """Add a file to a vector store and poll until processing is complete.""" + file_obj = self._client.files.create(file=file, purpose="assistants") + return self.create_and_poll( + vector_store_id=vector_store_id, + file_id=file_obj.id, + chunking_strategy=chunking_strategy, + poll_interval_ms=poll_interval_ms, + ) + + def content( + self, + file_id: str, + *, + vector_store_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncPage[FileContentResponse]: + """ + Retrieve the parsed contents of a vector store file. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not file_id: + raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + f"/vector_stores/{vector_store_id}/files/{file_id}/content", + page=SyncPage[FileContentResponse], + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + model=FileContentResponse, + ) + + +class AsyncFiles(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncFilesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncFilesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncFilesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncFilesWithStreamingResponse(self) + + async def create( + self, + vector_store_id: str, + *, + file_id: str, + attributes: Optional[Dict[str, Union[str, float, bool]]] | NotGiven = NOT_GIVEN, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFile: + """ + Create a vector store file by attaching a + [File](https://platform.openai.com/docs/api-reference/files) to a + [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object). + + Args: + file_id: A [File](https://platform.openai.com/docs/api-reference/files) ID that the + vector store should use. Useful for tools like `file_search` that can access + files. + + attributes: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. Keys are strings with a maximum + length of 64 characters. Values are strings with a maximum length of 512 + characters, booleans, or numbers. + + chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto` + strategy. Only applicable if `file_ids` is non-empty. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + f"/vector_stores/{vector_store_id}/files", + body=await async_maybe_transform( + { + "file_id": file_id, + "attributes": attributes, + "chunking_strategy": chunking_strategy, + }, + file_create_params.FileCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFile, + ) + + async def retrieve( + self, + file_id: str, + *, + vector_store_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFile: + """ + Retrieves a vector store file. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not file_id: + raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._get( + f"/vector_stores/{vector_store_id}/files/{file_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFile, + ) + + async def update( + self, + file_id: str, + *, + vector_store_id: str, + attributes: Optional[Dict[str, Union[str, float, bool]]], + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFile: + """ + Update attributes on a vector store file. + + Args: + attributes: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. Keys are strings with a maximum + length of 64 characters. Values are strings with a maximum length of 512 + characters, booleans, or numbers. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not file_id: + raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + f"/vector_stores/{vector_store_id}/files/{file_id}", + body=await async_maybe_transform({"attributes": attributes}, file_update_params.FileUpdateParams), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFile, + ) + + def list( + self, + vector_store_id: str, + *, + after: str | NotGiven = NOT_GIVEN, + before: str | NotGiven = NOT_GIVEN, + filter: Literal["in_progress", "completed", "failed", "cancelled"] | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[VectorStoreFile, AsyncCursorPage[VectorStoreFile]]: + """ + Returns a list of vector store files. + + Args: + after: A cursor for use in pagination. `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + before: A cursor for use in pagination. `before` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + starting with obj_foo, your subsequent call can include before=obj_foo in order + to fetch the previous page of the list. + + filter: Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + f"/vector_stores/{vector_store_id}/files", + page=AsyncCursorPage[VectorStoreFile], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "before": before, + "filter": filter, + "limit": limit, + "order": order, + }, + file_list_params.FileListParams, + ), + ), + model=VectorStoreFile, + ) + + async def delete( + self, + file_id: str, + *, + vector_store_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileDeleted: + """Delete a vector store file. + + This will remove the file from the vector store but + the file itself will not be deleted. To delete the file, use the + [delete file](https://platform.openai.com/docs/api-reference/files/delete) + endpoint. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not file_id: + raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._delete( + f"/vector_stores/{vector_store_id}/files/{file_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFileDeleted, + ) + + async def create_and_poll( + self, + file_id: str, + *, + vector_store_id: str, + poll_interval_ms: int | NotGiven = NOT_GIVEN, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + ) -> VectorStoreFile: + """Attach a file to the given vector store and wait for it to be processed.""" + await self.create(vector_store_id=vector_store_id, file_id=file_id, chunking_strategy=chunking_strategy) + + return await self.poll( + file_id, + vector_store_id=vector_store_id, + poll_interval_ms=poll_interval_ms, + ) + + async def poll( + self, + file_id: str, + *, + vector_store_id: str, + poll_interval_ms: int | NotGiven = NOT_GIVEN, + ) -> VectorStoreFile: + """Wait for the vector store file to finish processing. + + Note: this will return even if the file failed to process, you need to check + file.last_error and file.status to handle these cases + """ + headers: dict[str, str] = {"X-Stainless-Poll-Helper": "true"} + if is_given(poll_interval_ms): + headers["X-Stainless-Custom-Poll-Interval"] = str(poll_interval_ms) + + while True: + response = await self.with_raw_response.retrieve( + file_id, + vector_store_id=vector_store_id, + extra_headers=headers, + ) + + file = response.parse() + if file.status == "in_progress": + if not is_given(poll_interval_ms): + from_header = response.headers.get("openai-poll-after-ms") + if from_header is not None: + poll_interval_ms = int(from_header) + else: + poll_interval_ms = 1000 + + await self._sleep(poll_interval_ms / 1000) + elif file.status == "cancelled" or file.status == "completed" or file.status == "failed": + return file + else: + if TYPE_CHECKING: # type: ignore[unreachable] + assert_never(file.status) + else: + return file + + async def upload( + self, + *, + vector_store_id: str, + file: FileTypes, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + ) -> VectorStoreFile: + """Upload a file to the `files` API and then attach it to the given vector store. + + Note the file will be asynchronously processed (you can use the alternative + polling helper method to wait for processing to complete). + """ + file_obj = await self._client.files.create(file=file, purpose="assistants") + return await self.create( + vector_store_id=vector_store_id, file_id=file_obj.id, chunking_strategy=chunking_strategy + ) + + async def upload_and_poll( + self, + *, + vector_store_id: str, + file: FileTypes, + poll_interval_ms: int | NotGiven = NOT_GIVEN, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + ) -> VectorStoreFile: + """Add a file to a vector store and poll until processing is complete.""" + file_obj = await self._client.files.create(file=file, purpose="assistants") + return await self.create_and_poll( + vector_store_id=vector_store_id, + file_id=file_obj.id, + poll_interval_ms=poll_interval_ms, + chunking_strategy=chunking_strategy, + ) + + def content( + self, + file_id: str, + *, + vector_store_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[FileContentResponse, AsyncPage[FileContentResponse]]: + """ + Retrieve the parsed contents of a vector store file. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not file_id: + raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + f"/vector_stores/{vector_store_id}/files/{file_id}/content", + page=AsyncPage[FileContentResponse], + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + model=FileContentResponse, + ) + + +class FilesWithRawResponse: + def __init__(self, files: Files) -> None: + self._files = files + + self.create = _legacy_response.to_raw_response_wrapper( + files.create, + ) + self.retrieve = _legacy_response.to_raw_response_wrapper( + files.retrieve, + ) + self.update = _legacy_response.to_raw_response_wrapper( + files.update, + ) + self.list = _legacy_response.to_raw_response_wrapper( + files.list, + ) + self.delete = _legacy_response.to_raw_response_wrapper( + files.delete, + ) + self.content = _legacy_response.to_raw_response_wrapper( + files.content, + ) + + +class AsyncFilesWithRawResponse: + def __init__(self, files: AsyncFiles) -> None: + self._files = files + + self.create = _legacy_response.async_to_raw_response_wrapper( + files.create, + ) + self.retrieve = _legacy_response.async_to_raw_response_wrapper( + files.retrieve, + ) + self.update = _legacy_response.async_to_raw_response_wrapper( + files.update, + ) + self.list = _legacy_response.async_to_raw_response_wrapper( + files.list, + ) + self.delete = _legacy_response.async_to_raw_response_wrapper( + files.delete, + ) + self.content = _legacy_response.async_to_raw_response_wrapper( + files.content, + ) + + +class FilesWithStreamingResponse: + def __init__(self, files: Files) -> None: + self._files = files + + self.create = to_streamed_response_wrapper( + files.create, + ) + self.retrieve = to_streamed_response_wrapper( + files.retrieve, + ) + self.update = to_streamed_response_wrapper( + files.update, + ) + self.list = to_streamed_response_wrapper( + files.list, + ) + self.delete = to_streamed_response_wrapper( + files.delete, + ) + self.content = to_streamed_response_wrapper( + files.content, + ) + + +class AsyncFilesWithStreamingResponse: + def __init__(self, files: AsyncFiles) -> None: + self._files = files + + self.create = async_to_streamed_response_wrapper( + files.create, + ) + self.retrieve = async_to_streamed_response_wrapper( + files.retrieve, + ) + self.update = async_to_streamed_response_wrapper( + files.update, + ) + self.list = async_to_streamed_response_wrapper( + files.list, + ) + self.delete = async_to_streamed_response_wrapper( + files.delete, + ) + self.content = async_to_streamed_response_wrapper( + files.content, + ) diff --git a/.venv/lib/python3.12/site-packages/openai/resources/vector_stores/vector_stores.py b/.venv/lib/python3.12/site-packages/openai/resources/vector_stores/vector_stores.py new file mode 100644 index 00000000..aaa6ed27 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/vector_stores/vector_stores.py @@ -0,0 +1,868 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union, Optional +from typing_extensions import Literal + +import httpx + +from ... import _legacy_response +from .files import ( + Files, + AsyncFiles, + FilesWithRawResponse, + AsyncFilesWithRawResponse, + FilesWithStreamingResponse, + AsyncFilesWithStreamingResponse, +) +from ...types import ( + FileChunkingStrategyParam, + vector_store_list_params, + vector_store_create_params, + vector_store_search_params, + vector_store_update_params, +) +from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from ..._utils import ( + maybe_transform, + async_maybe_transform, +) +from ..._compat import cached_property +from ..._resource import SyncAPIResource, AsyncAPIResource +from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ...pagination import SyncPage, AsyncPage, SyncCursorPage, AsyncCursorPage +from .file_batches import ( + FileBatches, + AsyncFileBatches, + FileBatchesWithRawResponse, + AsyncFileBatchesWithRawResponse, + FileBatchesWithStreamingResponse, + AsyncFileBatchesWithStreamingResponse, +) +from ..._base_client import AsyncPaginator, make_request_options +from ...types.vector_store import VectorStore +from ...types.vector_store_deleted import VectorStoreDeleted +from ...types.shared_params.metadata import Metadata +from ...types.file_chunking_strategy_param import FileChunkingStrategyParam +from ...types.vector_store_search_response import VectorStoreSearchResponse + +__all__ = ["VectorStores", "AsyncVectorStores"] + + +class VectorStores(SyncAPIResource): + @cached_property + def files(self) -> Files: + return Files(self._client) + + @cached_property + def file_batches(self) -> FileBatches: + return FileBatches(self._client) + + @cached_property + def with_raw_response(self) -> VectorStoresWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return VectorStoresWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> VectorStoresWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return VectorStoresWithStreamingResponse(self) + + def create( + self, + *, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + expires_after: vector_store_create_params.ExpiresAfter | NotGiven = NOT_GIVEN, + file_ids: List[str] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + name: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStore: + """ + Create a vector store. + + Args: + chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto` + strategy. Only applicable if `file_ids` is non-empty. + + expires_after: The expiration policy for a vector store. + + file_ids: A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that + the vector store should use. Useful for tools like `file_search` that can access + files. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + name: The name of the vector store. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + "/vector_stores", + body=maybe_transform( + { + "chunking_strategy": chunking_strategy, + "expires_after": expires_after, + "file_ids": file_ids, + "metadata": metadata, + "name": name, + }, + vector_store_create_params.VectorStoreCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStore, + ) + + def retrieve( + self, + vector_store_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStore: + """ + Retrieves a vector store. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get( + f"/vector_stores/{vector_store_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStore, + ) + + def update( + self, + vector_store_id: str, + *, + expires_after: Optional[vector_store_update_params.ExpiresAfter] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + name: Optional[str] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStore: + """ + Modifies a vector store. + + Args: + expires_after: The expiration policy for a vector store. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + name: The name of the vector store. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + f"/vector_stores/{vector_store_id}", + body=maybe_transform( + { + "expires_after": expires_after, + "metadata": metadata, + "name": name, + }, + vector_store_update_params.VectorStoreUpdateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStore, + ) + + def list( + self, + *, + after: str | NotGiven = NOT_GIVEN, + before: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncCursorPage[VectorStore]: + """Returns a list of vector stores. + + Args: + after: A cursor for use in pagination. + + `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + before: A cursor for use in pagination. `before` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + starting with obj_foo, your subsequent call can include before=obj_foo in order + to fetch the previous page of the list. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + "/vector_stores", + page=SyncCursorPage[VectorStore], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "before": before, + "limit": limit, + "order": order, + }, + vector_store_list_params.VectorStoreListParams, + ), + ), + model=VectorStore, + ) + + def delete( + self, + vector_store_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreDeleted: + """ + Delete a vector store. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._delete( + f"/vector_stores/{vector_store_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreDeleted, + ) + + def search( + self, + vector_store_id: str, + *, + query: Union[str, List[str]], + filters: vector_store_search_params.Filters | NotGiven = NOT_GIVEN, + max_num_results: int | NotGiven = NOT_GIVEN, + ranking_options: vector_store_search_params.RankingOptions | NotGiven = NOT_GIVEN, + rewrite_query: bool | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncPage[VectorStoreSearchResponse]: + """ + Search a vector store for relevant chunks based on a query and file attributes + filter. + + Args: + query: A query string for a search + + filters: A filter to apply based on file attributes. + + max_num_results: The maximum number of results to return. This number should be between 1 and 50 + inclusive. + + ranking_options: Ranking options for search. + + rewrite_query: Whether to rewrite the natural language query for vector search. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + f"/vector_stores/{vector_store_id}/search", + page=SyncPage[VectorStoreSearchResponse], + body=maybe_transform( + { + "query": query, + "filters": filters, + "max_num_results": max_num_results, + "ranking_options": ranking_options, + "rewrite_query": rewrite_query, + }, + vector_store_search_params.VectorStoreSearchParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + model=VectorStoreSearchResponse, + method="post", + ) + + +class AsyncVectorStores(AsyncAPIResource): + @cached_property + def files(self) -> AsyncFiles: + return AsyncFiles(self._client) + + @cached_property + def file_batches(self) -> AsyncFileBatches: + return AsyncFileBatches(self._client) + + @cached_property + def with_raw_response(self) -> AsyncVectorStoresWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncVectorStoresWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncVectorStoresWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncVectorStoresWithStreamingResponse(self) + + async def create( + self, + *, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + expires_after: vector_store_create_params.ExpiresAfter | NotGiven = NOT_GIVEN, + file_ids: List[str] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + name: str | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStore: + """ + Create a vector store. + + Args: + chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto` + strategy. Only applicable if `file_ids` is non-empty. + + expires_after: The expiration policy for a vector store. + + file_ids: A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that + the vector store should use. Useful for tools like `file_search` that can access + files. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + name: The name of the vector store. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + "/vector_stores", + body=await async_maybe_transform( + { + "chunking_strategy": chunking_strategy, + "expires_after": expires_after, + "file_ids": file_ids, + "metadata": metadata, + "name": name, + }, + vector_store_create_params.VectorStoreCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStore, + ) + + async def retrieve( + self, + vector_store_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStore: + """ + Retrieves a vector store. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._get( + f"/vector_stores/{vector_store_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStore, + ) + + async def update( + self, + vector_store_id: str, + *, + expires_after: Optional[vector_store_update_params.ExpiresAfter] | NotGiven = NOT_GIVEN, + metadata: Optional[Metadata] | NotGiven = NOT_GIVEN, + name: Optional[str] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStore: + """ + Modifies a vector store. + + Args: + expires_after: The expiration policy for a vector store. + + metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + + name: The name of the vector store. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + f"/vector_stores/{vector_store_id}", + body=await async_maybe_transform( + { + "expires_after": expires_after, + "metadata": metadata, + "name": name, + }, + vector_store_update_params.VectorStoreUpdateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStore, + ) + + def list( + self, + *, + after: str | NotGiven = NOT_GIVEN, + before: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[VectorStore, AsyncCursorPage[VectorStore]]: + """Returns a list of vector stores. + + Args: + after: A cursor for use in pagination. + + `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + before: A cursor for use in pagination. `before` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + starting with obj_foo, your subsequent call can include before=obj_foo in order + to fetch the previous page of the list. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + "/vector_stores", + page=AsyncCursorPage[VectorStore], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "before": before, + "limit": limit, + "order": order, + }, + vector_store_list_params.VectorStoreListParams, + ), + ), + model=VectorStore, + ) + + async def delete( + self, + vector_store_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreDeleted: + """ + Delete a vector store. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._delete( + f"/vector_stores/{vector_store_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreDeleted, + ) + + def search( + self, + vector_store_id: str, + *, + query: Union[str, List[str]], + filters: vector_store_search_params.Filters | NotGiven = NOT_GIVEN, + max_num_results: int | NotGiven = NOT_GIVEN, + ranking_options: vector_store_search_params.RankingOptions | NotGiven = NOT_GIVEN, + rewrite_query: bool | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[VectorStoreSearchResponse, AsyncPage[VectorStoreSearchResponse]]: + """ + Search a vector store for relevant chunks based on a query and file attributes + filter. + + Args: + query: A query string for a search + + filters: A filter to apply based on file attributes. + + max_num_results: The maximum number of results to return. This number should be between 1 and 50 + inclusive. + + ranking_options: Ranking options for search. + + rewrite_query: Whether to rewrite the natural language query for vector search. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + f"/vector_stores/{vector_store_id}/search", + page=AsyncPage[VectorStoreSearchResponse], + body=maybe_transform( + { + "query": query, + "filters": filters, + "max_num_results": max_num_results, + "ranking_options": ranking_options, + "rewrite_query": rewrite_query, + }, + vector_store_search_params.VectorStoreSearchParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + model=VectorStoreSearchResponse, + method="post", + ) + + +class VectorStoresWithRawResponse: + def __init__(self, vector_stores: VectorStores) -> None: + self._vector_stores = vector_stores + + self.create = _legacy_response.to_raw_response_wrapper( + vector_stores.create, + ) + self.retrieve = _legacy_response.to_raw_response_wrapper( + vector_stores.retrieve, + ) + self.update = _legacy_response.to_raw_response_wrapper( + vector_stores.update, + ) + self.list = _legacy_response.to_raw_response_wrapper( + vector_stores.list, + ) + self.delete = _legacy_response.to_raw_response_wrapper( + vector_stores.delete, + ) + self.search = _legacy_response.to_raw_response_wrapper( + vector_stores.search, + ) + + @cached_property + def files(self) -> FilesWithRawResponse: + return FilesWithRawResponse(self._vector_stores.files) + + @cached_property + def file_batches(self) -> FileBatchesWithRawResponse: + return FileBatchesWithRawResponse(self._vector_stores.file_batches) + + +class AsyncVectorStoresWithRawResponse: + def __init__(self, vector_stores: AsyncVectorStores) -> None: + self._vector_stores = vector_stores + + self.create = _legacy_response.async_to_raw_response_wrapper( + vector_stores.create, + ) + self.retrieve = _legacy_response.async_to_raw_response_wrapper( + vector_stores.retrieve, + ) + self.update = _legacy_response.async_to_raw_response_wrapper( + vector_stores.update, + ) + self.list = _legacy_response.async_to_raw_response_wrapper( + vector_stores.list, + ) + self.delete = _legacy_response.async_to_raw_response_wrapper( + vector_stores.delete, + ) + self.search = _legacy_response.async_to_raw_response_wrapper( + vector_stores.search, + ) + + @cached_property + def files(self) -> AsyncFilesWithRawResponse: + return AsyncFilesWithRawResponse(self._vector_stores.files) + + @cached_property + def file_batches(self) -> AsyncFileBatchesWithRawResponse: + return AsyncFileBatchesWithRawResponse(self._vector_stores.file_batches) + + +class VectorStoresWithStreamingResponse: + def __init__(self, vector_stores: VectorStores) -> None: + self._vector_stores = vector_stores + + self.create = to_streamed_response_wrapper( + vector_stores.create, + ) + self.retrieve = to_streamed_response_wrapper( + vector_stores.retrieve, + ) + self.update = to_streamed_response_wrapper( + vector_stores.update, + ) + self.list = to_streamed_response_wrapper( + vector_stores.list, + ) + self.delete = to_streamed_response_wrapper( + vector_stores.delete, + ) + self.search = to_streamed_response_wrapper( + vector_stores.search, + ) + + @cached_property + def files(self) -> FilesWithStreamingResponse: + return FilesWithStreamingResponse(self._vector_stores.files) + + @cached_property + def file_batches(self) -> FileBatchesWithStreamingResponse: + return FileBatchesWithStreamingResponse(self._vector_stores.file_batches) + + +class AsyncVectorStoresWithStreamingResponse: + def __init__(self, vector_stores: AsyncVectorStores) -> None: + self._vector_stores = vector_stores + + self.create = async_to_streamed_response_wrapper( + vector_stores.create, + ) + self.retrieve = async_to_streamed_response_wrapper( + vector_stores.retrieve, + ) + self.update = async_to_streamed_response_wrapper( + vector_stores.update, + ) + self.list = async_to_streamed_response_wrapper( + vector_stores.list, + ) + self.delete = async_to_streamed_response_wrapper( + vector_stores.delete, + ) + self.search = async_to_streamed_response_wrapper( + vector_stores.search, + ) + + @cached_property + def files(self) -> AsyncFilesWithStreamingResponse: + return AsyncFilesWithStreamingResponse(self._vector_stores.files) + + @cached_property + def file_batches(self) -> AsyncFileBatchesWithStreamingResponse: + return AsyncFileBatchesWithStreamingResponse(self._vector_stores.file_batches) diff --git a/.venv/lib/python3.12/site-packages/openai/types/__init__.py b/.venv/lib/python3.12/site-packages/openai/types/__init__.py new file mode 100644 index 00000000..11761534 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/__init__.py @@ -0,0 +1,78 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from .batch import Batch as Batch +from .image import Image as Image +from .model import Model as Model +from .shared import ( + Metadata as Metadata, + AllModels as AllModels, + ChatModel as ChatModel, + Reasoning as Reasoning, + ErrorObject as ErrorObject, + CompoundFilter as CompoundFilter, + ResponsesModel as ResponsesModel, + ReasoningEffort as ReasoningEffort, + ComparisonFilter as ComparisonFilter, + FunctionDefinition as FunctionDefinition, + FunctionParameters as FunctionParameters, + ResponseFormatText as ResponseFormatText, + ResponseFormatJSONObject as ResponseFormatJSONObject, + ResponseFormatJSONSchema as ResponseFormatJSONSchema, +) +from .upload import Upload as Upload +from .embedding import Embedding as Embedding +from .chat_model import ChatModel as ChatModel +from .completion import Completion as Completion +from .moderation import Moderation as Moderation +from .audio_model import AudioModel as AudioModel +from .batch_error import BatchError as BatchError +from .file_object import FileObject as FileObject +from .image_model import ImageModel as ImageModel +from .file_content import FileContent as FileContent +from .file_deleted import FileDeleted as FileDeleted +from .file_purpose import FilePurpose as FilePurpose +from .vector_store import VectorStore as VectorStore +from .model_deleted import ModelDeleted as ModelDeleted +from .embedding_model import EmbeddingModel as EmbeddingModel +from .images_response import ImagesResponse as ImagesResponse +from .completion_usage import CompletionUsage as CompletionUsage +from .file_list_params import FileListParams as FileListParams +from .moderation_model import ModerationModel as ModerationModel +from .batch_list_params import BatchListParams as BatchListParams +from .completion_choice import CompletionChoice as CompletionChoice +from .image_edit_params import ImageEditParams as ImageEditParams +from .file_create_params import FileCreateParams as FileCreateParams +from .batch_create_params import BatchCreateParams as BatchCreateParams +from .batch_request_counts import BatchRequestCounts as BatchRequestCounts +from .upload_create_params import UploadCreateParams as UploadCreateParams +from .vector_store_deleted import VectorStoreDeleted as VectorStoreDeleted +from .audio_response_format import AudioResponseFormat as AudioResponseFormat +from .image_generate_params import ImageGenerateParams as ImageGenerateParams +from .file_chunking_strategy import FileChunkingStrategy as FileChunkingStrategy +from .upload_complete_params import UploadCompleteParams as UploadCompleteParams +from .embedding_create_params import EmbeddingCreateParams as EmbeddingCreateParams +from .completion_create_params import CompletionCreateParams as CompletionCreateParams +from .moderation_create_params import ModerationCreateParams as ModerationCreateParams +from .vector_store_list_params import VectorStoreListParams as VectorStoreListParams +from .create_embedding_response import CreateEmbeddingResponse as CreateEmbeddingResponse +from .moderation_create_response import ModerationCreateResponse as ModerationCreateResponse +from .vector_store_create_params import VectorStoreCreateParams as VectorStoreCreateParams +from .vector_store_search_params import VectorStoreSearchParams as VectorStoreSearchParams +from .vector_store_update_params import VectorStoreUpdateParams as VectorStoreUpdateParams +from .moderation_text_input_param import ModerationTextInputParam as ModerationTextInputParam +from .file_chunking_strategy_param import FileChunkingStrategyParam as FileChunkingStrategyParam +from .vector_store_search_response import VectorStoreSearchResponse as VectorStoreSearchResponse +from .websocket_connection_options import WebsocketConnectionOptions as WebsocketConnectionOptions +from .image_create_variation_params import ImageCreateVariationParams as ImageCreateVariationParams +from .static_file_chunking_strategy import StaticFileChunkingStrategy as StaticFileChunkingStrategy +from .moderation_image_url_input_param import ModerationImageURLInputParam as ModerationImageURLInputParam +from .auto_file_chunking_strategy_param import AutoFileChunkingStrategyParam as AutoFileChunkingStrategyParam +from .moderation_multi_modal_input_param import ModerationMultiModalInputParam as ModerationMultiModalInputParam +from .other_file_chunking_strategy_object import OtherFileChunkingStrategyObject as OtherFileChunkingStrategyObject +from .static_file_chunking_strategy_param import StaticFileChunkingStrategyParam as StaticFileChunkingStrategyParam +from .static_file_chunking_strategy_object import StaticFileChunkingStrategyObject as StaticFileChunkingStrategyObject +from .static_file_chunking_strategy_object_param import ( + StaticFileChunkingStrategyObjectParam as StaticFileChunkingStrategyObjectParam, +) diff --git a/.venv/lib/python3.12/site-packages/openai/types/audio/__init__.py b/.venv/lib/python3.12/site-packages/openai/types/audio/__init__.py new file mode 100644 index 00000000..396944ee --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/audio/__init__.py @@ -0,0 +1,20 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from .translation import Translation as Translation +from .speech_model import SpeechModel as SpeechModel +from .transcription import Transcription as Transcription +from .transcription_word import TranscriptionWord as TranscriptionWord +from .translation_verbose import TranslationVerbose as TranslationVerbose +from .speech_create_params import SpeechCreateParams as SpeechCreateParams +from .transcription_include import TranscriptionInclude as TranscriptionInclude +from .transcription_segment import TranscriptionSegment as TranscriptionSegment +from .transcription_verbose import TranscriptionVerbose as TranscriptionVerbose +from .translation_create_params import TranslationCreateParams as TranslationCreateParams +from .transcription_stream_event import TranscriptionStreamEvent as TranscriptionStreamEvent +from .transcription_create_params import TranscriptionCreateParams as TranscriptionCreateParams +from .translation_create_response import TranslationCreateResponse as TranslationCreateResponse +from .transcription_create_response import TranscriptionCreateResponse as TranscriptionCreateResponse +from .transcription_text_done_event import TranscriptionTextDoneEvent as TranscriptionTextDoneEvent +from .transcription_text_delta_event import TranscriptionTextDeltaEvent as TranscriptionTextDeltaEvent diff --git a/.venv/lib/python3.12/site-packages/openai/types/audio/speech_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/audio/speech_create_params.py new file mode 100644 index 00000000..95868071 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/audio/speech_create_params.py @@ -0,0 +1,47 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import Literal, Required, TypedDict + +from .speech_model import SpeechModel + +__all__ = ["SpeechCreateParams"] + + +class SpeechCreateParams(TypedDict, total=False): + input: Required[str] + """The text to generate audio for. The maximum length is 4096 characters.""" + + model: Required[Union[str, SpeechModel]] + """ + One of the available [TTS models](https://platform.openai.com/docs/models#tts): + `tts-1`, `tts-1-hd` or `gpt-4o-mini-tts`. + """ + + voice: Required[Literal["alloy", "ash", "coral", "echo", "fable", "onyx", "nova", "sage", "shimmer"]] + """The voice to use when generating the audio. + + Supported voices are `alloy`, `ash`, `coral`, `echo`, `fable`, `onyx`, `nova`, + `sage` and `shimmer`. Previews of the voices are available in the + [Text to speech guide](https://platform.openai.com/docs/guides/text-to-speech#voice-options). + """ + + instructions: str + """Control the voice of your generated audio with additional instructions. + + Does not work with `tts-1` or `tts-1-hd`. + """ + + response_format: Literal["mp3", "opus", "aac", "flac", "wav", "pcm"] + """The format to audio in. + + Supported formats are `mp3`, `opus`, `aac`, `flac`, `wav`, and `pcm`. + """ + + speed: float + """The speed of the generated audio. + + Select a value from `0.25` to `4.0`. `1.0` is the default. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/audio/speech_model.py b/.venv/lib/python3.12/site-packages/openai/types/audio/speech_model.py new file mode 100644 index 00000000..f004f805 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/audio/speech_model.py @@ -0,0 +1,7 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal, TypeAlias + +__all__ = ["SpeechModel"] + +SpeechModel: TypeAlias = Literal["tts-1", "tts-1-hd", "gpt-4o-mini-tts"] diff --git a/.venv/lib/python3.12/site-packages/openai/types/audio/transcription.py b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription.py new file mode 100644 index 00000000..15763854 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription.py @@ -0,0 +1,30 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional + +from ..._models import BaseModel + +__all__ = ["Transcription", "Logprob"] + + +class Logprob(BaseModel): + token: Optional[str] = None + """The token in the transcription.""" + + bytes: Optional[List[float]] = None + """The bytes of the token.""" + + logprob: Optional[float] = None + """The log probability of the token.""" + + +class Transcription(BaseModel): + text: str + """The transcribed text.""" + + logprobs: Optional[List[Logprob]] = None + """The log probabilities of the tokens in the transcription. + + Only returned with the models `gpt-4o-transcribe` and `gpt-4o-mini-transcribe` + if `logprobs` is added to the `include` array. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_create_params.py new file mode 100644 index 00000000..0cda4c79 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_create_params.py @@ -0,0 +1,113 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union, Optional +from typing_extensions import Literal, Required, TypedDict + +from ..._types import FileTypes +from ..audio_model import AudioModel +from .transcription_include import TranscriptionInclude +from ..audio_response_format import AudioResponseFormat + +__all__ = [ + "TranscriptionCreateParamsBase", + "TranscriptionCreateParamsNonStreaming", + "TranscriptionCreateParamsStreaming", +] + + +class TranscriptionCreateParamsBase(TypedDict, total=False): + file: Required[FileTypes] + """ + The audio file object (not file name) to transcribe, in one of these formats: + flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm. + """ + + model: Required[Union[str, AudioModel]] + """ID of the model to use. + + The options are `gpt-4o-transcribe`, `gpt-4o-mini-transcribe`, and `whisper-1` + (which is powered by our open source Whisper V2 model). + """ + + include: List[TranscriptionInclude] + """Additional information to include in the transcription response. + + `logprobs` will return the log probabilities of the tokens in the response to + understand the model's confidence in the transcription. `logprobs` only works + with response_format set to `json` and only with the models `gpt-4o-transcribe` + and `gpt-4o-mini-transcribe`. + """ + + language: str + """The language of the input audio. + + Supplying the input language in + [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) (e.g. `en`) + format will improve accuracy and latency. + """ + + prompt: str + """An optional text to guide the model's style or continue a previous audio + segment. + + The [prompt](https://platform.openai.com/docs/guides/speech-to-text#prompting) + should match the audio language. + """ + + response_format: AudioResponseFormat + """ + The format of the output, in one of these options: `json`, `text`, `srt`, + `verbose_json`, or `vtt`. For `gpt-4o-transcribe` and `gpt-4o-mini-transcribe`, + the only supported format is `json`. + """ + + temperature: float + """The sampling temperature, between 0 and 1. + + Higher values like 0.8 will make the output more random, while lower values like + 0.2 will make it more focused and deterministic. If set to 0, the model will use + [log probability](https://en.wikipedia.org/wiki/Log_probability) to + automatically increase the temperature until certain thresholds are hit. + """ + + timestamp_granularities: List[Literal["word", "segment"]] + """The timestamp granularities to populate for this transcription. + + `response_format` must be set `verbose_json` to use timestamp granularities. + Either or both of these options are supported: `word`, or `segment`. Note: There + is no additional latency for segment timestamps, but generating word timestamps + incurs additional latency. + """ + + +class TranscriptionCreateParamsNonStreaming(TranscriptionCreateParamsBase, total=False): + stream: Optional[Literal[False]] + """ + If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section of the Speech-to-Text guide](https://platform.openai.com/docs/guides/speech-to-text?lang=curl#streaming-transcriptions) + for more information. + + Note: Streaming is not supported for the `whisper-1` model and will be ignored. + """ + + +class TranscriptionCreateParamsStreaming(TranscriptionCreateParamsBase): + stream: Required[Literal[True]] + """ + If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section of the Speech-to-Text guide](https://platform.openai.com/docs/guides/speech-to-text?lang=curl#streaming-transcriptions) + for more information. + + Note: Streaming is not supported for the `whisper-1` model and will be ignored. + """ + + +TranscriptionCreateParams = Union[TranscriptionCreateParamsNonStreaming, TranscriptionCreateParamsStreaming] diff --git a/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_create_response.py b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_create_response.py new file mode 100644 index 00000000..2f7bed81 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_create_response.py @@ -0,0 +1,11 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import TypeAlias + +from .transcription import Transcription +from .transcription_verbose import TranscriptionVerbose + +__all__ = ["TranscriptionCreateResponse"] + +TranscriptionCreateResponse: TypeAlias = Union[Transcription, TranscriptionVerbose] diff --git a/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_include.py b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_include.py new file mode 100644 index 00000000..0e464ac9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_include.py @@ -0,0 +1,7 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal, TypeAlias + +__all__ = ["TranscriptionInclude"] + +TranscriptionInclude: TypeAlias = Literal["logprobs"] diff --git a/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_segment.py b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_segment.py new file mode 100644 index 00000000..522c401e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_segment.py @@ -0,0 +1,49 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List + +from ..._models import BaseModel + +__all__ = ["TranscriptionSegment"] + + +class TranscriptionSegment(BaseModel): + id: int + """Unique identifier of the segment.""" + + avg_logprob: float + """Average logprob of the segment. + + If the value is lower than -1, consider the logprobs failed. + """ + + compression_ratio: float + """Compression ratio of the segment. + + If the value is greater than 2.4, consider the compression failed. + """ + + end: float + """End time of the segment in seconds.""" + + no_speech_prob: float + """Probability of no speech in the segment. + + If the value is higher than 1.0 and the `avg_logprob` is below -1, consider this + segment silent. + """ + + seek: int + """Seek offset of the segment.""" + + start: float + """Start time of the segment in seconds.""" + + temperature: float + """Temperature parameter used for generating the segment.""" + + text: str + """Text content of the segment.""" + + tokens: List[int] + """Array of token IDs for the text content.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_stream_event.py b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_stream_event.py new file mode 100644 index 00000000..757077a2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_stream_event.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Annotated, TypeAlias + +from ..._utils import PropertyInfo +from .transcription_text_done_event import TranscriptionTextDoneEvent +from .transcription_text_delta_event import TranscriptionTextDeltaEvent + +__all__ = ["TranscriptionStreamEvent"] + +TranscriptionStreamEvent: TypeAlias = Annotated[ + Union[TranscriptionTextDeltaEvent, TranscriptionTextDoneEvent], PropertyInfo(discriminator="type") +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_text_delta_event.py b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_text_delta_event.py new file mode 100644 index 00000000..f8d53554 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_text_delta_event.py @@ -0,0 +1,35 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["TranscriptionTextDeltaEvent", "Logprob"] + + +class Logprob(BaseModel): + token: Optional[str] = None + """The token that was used to generate the log probability.""" + + bytes: Optional[List[object]] = None + """The bytes that were used to generate the log probability.""" + + logprob: Optional[float] = None + """The log probability of the token.""" + + +class TranscriptionTextDeltaEvent(BaseModel): + delta: str + """The text delta that was additionally transcribed.""" + + type: Literal["transcript.text.delta"] + """The type of the event. Always `transcript.text.delta`.""" + + logprobs: Optional[List[Logprob]] = None + """The log probabilities of the delta. + + Only included if you + [create a transcription](https://platform.openai.com/docs/api-reference/audio/create-transcription) + with the `include[]` parameter set to `logprobs`. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_text_done_event.py b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_text_done_event.py new file mode 100644 index 00000000..3f1a713a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_text_done_event.py @@ -0,0 +1,35 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["TranscriptionTextDoneEvent", "Logprob"] + + +class Logprob(BaseModel): + token: Optional[str] = None + """The token that was used to generate the log probability.""" + + bytes: Optional[List[object]] = None + """The bytes that were used to generate the log probability.""" + + logprob: Optional[float] = None + """The log probability of the token.""" + + +class TranscriptionTextDoneEvent(BaseModel): + text: str + """The text that was transcribed.""" + + type: Literal["transcript.text.done"] + """The type of the event. Always `transcript.text.done`.""" + + logprobs: Optional[List[Logprob]] = None + """The log probabilities of the individual tokens in the transcription. + + Only included if you + [create a transcription](https://platform.openai.com/docs/api-reference/audio/create-transcription) + with the `include[]` parameter set to `logprobs`. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_verbose.py b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_verbose.py new file mode 100644 index 00000000..2a670189 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_verbose.py @@ -0,0 +1,26 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional + +from ..._models import BaseModel +from .transcription_word import TranscriptionWord +from .transcription_segment import TranscriptionSegment + +__all__ = ["TranscriptionVerbose"] + + +class TranscriptionVerbose(BaseModel): + duration: float + """The duration of the input audio.""" + + language: str + """The language of the input audio.""" + + text: str + """The transcribed text.""" + + segments: Optional[List[TranscriptionSegment]] = None + """Segments of the transcribed text and their corresponding details.""" + + words: Optional[List[TranscriptionWord]] = None + """Extracted words and their corresponding timestamps.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_word.py b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_word.py new file mode 100644 index 00000000..969da325 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/audio/transcription_word.py @@ -0,0 +1,17 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + + +from ..._models import BaseModel + +__all__ = ["TranscriptionWord"] + + +class TranscriptionWord(BaseModel): + end: float + """End time of the word in seconds.""" + + start: float + """Start time of the word in seconds.""" + + word: str + """The text content of the word.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/audio/translation.py b/.venv/lib/python3.12/site-packages/openai/types/audio/translation.py new file mode 100644 index 00000000..7c0e9051 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/audio/translation.py @@ -0,0 +1,10 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + + +from ..._models import BaseModel + +__all__ = ["Translation"] + + +class Translation(BaseModel): + text: str diff --git a/.venv/lib/python3.12/site-packages/openai/types/audio/translation_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/audio/translation_create_params.py new file mode 100644 index 00000000..b23a1853 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/audio/translation_create_params.py @@ -0,0 +1,49 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import Literal, Required, TypedDict + +from ..._types import FileTypes +from ..audio_model import AudioModel + +__all__ = ["TranslationCreateParams"] + + +class TranslationCreateParams(TypedDict, total=False): + file: Required[FileTypes] + """ + The audio file object (not file name) translate, in one of these formats: flac, + mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm. + """ + + model: Required[Union[str, AudioModel]] + """ID of the model to use. + + Only `whisper-1` (which is powered by our open source Whisper V2 model) is + currently available. + """ + + prompt: str + """An optional text to guide the model's style or continue a previous audio + segment. + + The [prompt](https://platform.openai.com/docs/guides/speech-to-text#prompting) + should be in English. + """ + + response_format: Literal["json", "text", "srt", "verbose_json", "vtt"] + """ + The format of the output, in one of these options: `json`, `text`, `srt`, + `verbose_json`, or `vtt`. + """ + + temperature: float + """The sampling temperature, between 0 and 1. + + Higher values like 0.8 will make the output more random, while lower values like + 0.2 will make it more focused and deterministic. If set to 0, the model will use + [log probability](https://en.wikipedia.org/wiki/Log_probability) to + automatically increase the temperature until certain thresholds are hit. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/audio/translation_create_response.py b/.venv/lib/python3.12/site-packages/openai/types/audio/translation_create_response.py new file mode 100644 index 00000000..9953813c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/audio/translation_create_response.py @@ -0,0 +1,11 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import TypeAlias + +from .translation import Translation +from .translation_verbose import TranslationVerbose + +__all__ = ["TranslationCreateResponse"] + +TranslationCreateResponse: TypeAlias = Union[Translation, TranslationVerbose] diff --git a/.venv/lib/python3.12/site-packages/openai/types/audio/translation_verbose.py b/.venv/lib/python3.12/site-packages/openai/types/audio/translation_verbose.py new file mode 100644 index 00000000..27cb02d6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/audio/translation_verbose.py @@ -0,0 +1,22 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional + +from ..._models import BaseModel +from .transcription_segment import TranscriptionSegment + +__all__ = ["TranslationVerbose"] + + +class TranslationVerbose(BaseModel): + duration: float + """The duration of the input audio.""" + + language: str + """The language of the output translation (always `english`).""" + + text: str + """The translated text.""" + + segments: Optional[List[TranscriptionSegment]] = None + """Segments of the translated text and their corresponding details.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/audio_model.py b/.venv/lib/python3.12/site-packages/openai/types/audio_model.py new file mode 100644 index 00000000..4d14d601 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/audio_model.py @@ -0,0 +1,7 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal, TypeAlias + +__all__ = ["AudioModel"] + +AudioModel: TypeAlias = Literal["whisper-1", "gpt-4o-transcribe", "gpt-4o-mini-transcribe"] diff --git a/.venv/lib/python3.12/site-packages/openai/types/audio_response_format.py b/.venv/lib/python3.12/site-packages/openai/types/audio_response_format.py new file mode 100644 index 00000000..f8c8d459 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/audio_response_format.py @@ -0,0 +1,7 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal, TypeAlias + +__all__ = ["AudioResponseFormat"] + +AudioResponseFormat: TypeAlias = Literal["json", "text", "srt", "verbose_json", "vtt"] diff --git a/.venv/lib/python3.12/site-packages/openai/types/auto_file_chunking_strategy_param.py b/.venv/lib/python3.12/site-packages/openai/types/auto_file_chunking_strategy_param.py new file mode 100644 index 00000000..6f17836b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/auto_file_chunking_strategy_param.py @@ -0,0 +1,12 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["AutoFileChunkingStrategyParam"] + + +class AutoFileChunkingStrategyParam(TypedDict, total=False): + type: Required[Literal["auto"]] + """Always `auto`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/batch.py b/.venv/lib/python3.12/site-packages/openai/types/batch.py new file mode 100644 index 00000000..35de90ac --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/batch.py @@ -0,0 +1,87 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from .._models import BaseModel +from .batch_error import BatchError +from .shared.metadata import Metadata +from .batch_request_counts import BatchRequestCounts + +__all__ = ["Batch", "Errors"] + + +class Errors(BaseModel): + data: Optional[List[BatchError]] = None + + object: Optional[str] = None + """The object type, which is always `list`.""" + + +class Batch(BaseModel): + id: str + + completion_window: str + """The time frame within which the batch should be processed.""" + + created_at: int + """The Unix timestamp (in seconds) for when the batch was created.""" + + endpoint: str + """The OpenAI API endpoint used by the batch.""" + + input_file_id: str + """The ID of the input file for the batch.""" + + object: Literal["batch"] + """The object type, which is always `batch`.""" + + status: Literal[ + "validating", "failed", "in_progress", "finalizing", "completed", "expired", "cancelling", "cancelled" + ] + """The current status of the batch.""" + + cancelled_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the batch was cancelled.""" + + cancelling_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the batch started cancelling.""" + + completed_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the batch was completed.""" + + error_file_id: Optional[str] = None + """The ID of the file containing the outputs of requests with errors.""" + + errors: Optional[Errors] = None + + expired_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the batch expired.""" + + expires_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the batch will expire.""" + + failed_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the batch failed.""" + + finalizing_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the batch started finalizing.""" + + in_progress_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the batch started processing.""" + + metadata: Optional[Metadata] = None + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + output_file_id: Optional[str] = None + """The ID of the file containing the outputs of successfully executed requests.""" + + request_counts: Optional[BatchRequestCounts] = None + """The request counts for different statuses within the batch.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/batch_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/batch_create_params.py new file mode 100644 index 00000000..cc95afd3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/batch_create_params.py @@ -0,0 +1,49 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Optional +from typing_extensions import Literal, Required, TypedDict + +from .shared_params.metadata import Metadata + +__all__ = ["BatchCreateParams"] + + +class BatchCreateParams(TypedDict, total=False): + completion_window: Required[Literal["24h"]] + """The time frame within which the batch should be processed. + + Currently only `24h` is supported. + """ + + endpoint: Required[Literal["/v1/responses", "/v1/chat/completions", "/v1/embeddings", "/v1/completions"]] + """The endpoint to be used for all requests in the batch. + + Currently `/v1/responses`, `/v1/chat/completions`, `/v1/embeddings`, and + `/v1/completions` are supported. Note that `/v1/embeddings` batches are also + restricted to a maximum of 50,000 embedding inputs across all requests in the + batch. + """ + + input_file_id: Required[str] + """The ID of an uploaded file that contains requests for the new batch. + + See [upload file](https://platform.openai.com/docs/api-reference/files/create) + for how to upload a file. + + Your input file must be formatted as a + [JSONL file](https://platform.openai.com/docs/api-reference/batch/request-input), + and must be uploaded with the purpose `batch`. The file can contain up to 50,000 + requests, and can be up to 200 MB in size. + """ + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/batch_error.py b/.venv/lib/python3.12/site-packages/openai/types/batch_error.py new file mode 100644 index 00000000..1cdd808d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/batch_error.py @@ -0,0 +1,21 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional + +from .._models import BaseModel + +__all__ = ["BatchError"] + + +class BatchError(BaseModel): + code: Optional[str] = None + """An error code identifying the error type.""" + + line: Optional[int] = None + """The line number of the input file where the error occurred, if applicable.""" + + message: Optional[str] = None + """A human-readable message providing more details about the error.""" + + param: Optional[str] = None + """The name of the parameter that caused the error, if applicable.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/batch_list_params.py b/.venv/lib/python3.12/site-packages/openai/types/batch_list_params.py new file mode 100644 index 00000000..ef5e966b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/batch_list_params.py @@ -0,0 +1,24 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import TypedDict + +__all__ = ["BatchListParams"] + + +class BatchListParams(TypedDict, total=False): + after: str + """A cursor for use in pagination. + + `after` is an object ID that defines your place in the list. For instance, if + you make a list request and receive 100 objects, ending with obj_foo, your + subsequent call can include after=obj_foo in order to fetch the next page of the + list. + """ + + limit: int + """A limit on the number of objects to be returned. + + Limit can range between 1 and 100, and the default is 20. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/batch_request_counts.py b/.venv/lib/python3.12/site-packages/openai/types/batch_request_counts.py new file mode 100644 index 00000000..7e1d49fb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/batch_request_counts.py @@ -0,0 +1,17 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + + +from .._models import BaseModel + +__all__ = ["BatchRequestCounts"] + + +class BatchRequestCounts(BaseModel): + completed: int + """Number of requests that have been completed successfully.""" + + failed: int + """Number of requests that have failed.""" + + total: int + """Total number of requests in the batch.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/__init__.py b/.venv/lib/python3.12/site-packages/openai/types/beta/__init__.py new file mode 100644 index 00000000..5ba3eadf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/__init__.py @@ -0,0 +1,33 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from .thread import Thread as Thread +from .assistant import Assistant as Assistant +from .function_tool import FunctionTool as FunctionTool +from .assistant_tool import AssistantTool as AssistantTool +from .thread_deleted import ThreadDeleted as ThreadDeleted +from .file_search_tool import FileSearchTool as FileSearchTool +from .assistant_deleted import AssistantDeleted as AssistantDeleted +from .function_tool_param import FunctionToolParam as FunctionToolParam +from .assistant_tool_param import AssistantToolParam as AssistantToolParam +from .thread_create_params import ThreadCreateParams as ThreadCreateParams +from .thread_update_params import ThreadUpdateParams as ThreadUpdateParams +from .assistant_list_params import AssistantListParams as AssistantListParams +from .assistant_tool_choice import AssistantToolChoice as AssistantToolChoice +from .code_interpreter_tool import CodeInterpreterTool as CodeInterpreterTool +from .assistant_stream_event import AssistantStreamEvent as AssistantStreamEvent +from .file_search_tool_param import FileSearchToolParam as FileSearchToolParam +from .assistant_create_params import AssistantCreateParams as AssistantCreateParams +from .assistant_update_params import AssistantUpdateParams as AssistantUpdateParams +from .assistant_tool_choice_param import AssistantToolChoiceParam as AssistantToolChoiceParam +from .code_interpreter_tool_param import CodeInterpreterToolParam as CodeInterpreterToolParam +from .assistant_tool_choice_option import AssistantToolChoiceOption as AssistantToolChoiceOption +from .thread_create_and_run_params import ThreadCreateAndRunParams as ThreadCreateAndRunParams +from .assistant_tool_choice_function import AssistantToolChoiceFunction as AssistantToolChoiceFunction +from .assistant_response_format_option import AssistantResponseFormatOption as AssistantResponseFormatOption +from .assistant_tool_choice_option_param import AssistantToolChoiceOptionParam as AssistantToolChoiceOptionParam +from .assistant_tool_choice_function_param import AssistantToolChoiceFunctionParam as AssistantToolChoiceFunctionParam +from .assistant_response_format_option_param import ( + AssistantResponseFormatOptionParam as AssistantResponseFormatOptionParam, +) diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/assistant.py b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant.py new file mode 100644 index 00000000..58421e0f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant.py @@ -0,0 +1,134 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ..._models import BaseModel +from .assistant_tool import AssistantTool +from ..shared.metadata import Metadata +from .assistant_response_format_option import AssistantResponseFormatOption + +__all__ = ["Assistant", "ToolResources", "ToolResourcesCodeInterpreter", "ToolResourcesFileSearch"] + + +class ToolResourcesCodeInterpreter(BaseModel): + file_ids: Optional[List[str]] = None + """ + A list of [file](https://platform.openai.com/docs/api-reference/files) IDs made + available to the `code_interpreter`` tool. There can be a maximum of 20 files + associated with the tool. + """ + + +class ToolResourcesFileSearch(BaseModel): + vector_store_ids: Optional[List[str]] = None + """ + The ID of the + [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) + attached to this assistant. There can be a maximum of 1 vector store attached to + the assistant. + """ + + +class ToolResources(BaseModel): + code_interpreter: Optional[ToolResourcesCodeInterpreter] = None + + file_search: Optional[ToolResourcesFileSearch] = None + + +class Assistant(BaseModel): + id: str + """The identifier, which can be referenced in API endpoints.""" + + created_at: int + """The Unix timestamp (in seconds) for when the assistant was created.""" + + description: Optional[str] = None + """The description of the assistant. The maximum length is 512 characters.""" + + instructions: Optional[str] = None + """The system instructions that the assistant uses. + + The maximum length is 256,000 characters. + """ + + metadata: Optional[Metadata] = None + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + model: str + """ID of the model to use. + + You can use the + [List models](https://platform.openai.com/docs/api-reference/models/list) API to + see all of your available models, or see our + [Model overview](https://platform.openai.com/docs/models) for descriptions of + them. + """ + + name: Optional[str] = None + """The name of the assistant. The maximum length is 256 characters.""" + + object: Literal["assistant"] + """The object type, which is always `assistant`.""" + + tools: List[AssistantTool] + """A list of tool enabled on the assistant. + + There can be a maximum of 128 tools per assistant. Tools can be of types + `code_interpreter`, `file_search`, or `function`. + """ + + response_format: Optional[AssistantResponseFormatOption] = None + """Specifies the format that the model must output. + + Compatible with [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + """ + + temperature: Optional[float] = None + """What sampling temperature to use, between 0 and 2. + + Higher values like 0.8 will make the output more random, while lower values like + 0.2 will make it more focused and deterministic. + """ + + tool_resources: Optional[ToolResources] = None + """A set of resources that are used by the assistant's tools. + + The resources are specific to the type of tool. For example, the + `code_interpreter` tool requires a list of file IDs, while the `file_search` + tool requires a list of vector store IDs. + """ + + top_p: Optional[float] = None + """ + An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_create_params.py new file mode 100644 index 00000000..8b3c3318 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_create_params.py @@ -0,0 +1,212 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union, Iterable, Optional +from typing_extensions import Literal, Required, TypeAlias, TypedDict + +from ..shared.chat_model import ChatModel +from .assistant_tool_param import AssistantToolParam +from ..shared_params.metadata import Metadata +from ..shared.reasoning_effort import ReasoningEffort +from .assistant_response_format_option_param import AssistantResponseFormatOptionParam + +__all__ = [ + "AssistantCreateParams", + "ToolResources", + "ToolResourcesCodeInterpreter", + "ToolResourcesFileSearch", + "ToolResourcesFileSearchVectorStore", + "ToolResourcesFileSearchVectorStoreChunkingStrategy", + "ToolResourcesFileSearchVectorStoreChunkingStrategyAuto", + "ToolResourcesFileSearchVectorStoreChunkingStrategyStatic", + "ToolResourcesFileSearchVectorStoreChunkingStrategyStaticStatic", +] + + +class AssistantCreateParams(TypedDict, total=False): + model: Required[Union[str, ChatModel]] + """ID of the model to use. + + You can use the + [List models](https://platform.openai.com/docs/api-reference/models/list) API to + see all of your available models, or see our + [Model overview](https://platform.openai.com/docs/models) for descriptions of + them. + """ + + description: Optional[str] + """The description of the assistant. The maximum length is 512 characters.""" + + instructions: Optional[str] + """The system instructions that the assistant uses. + + The maximum length is 256,000 characters. + """ + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + name: Optional[str] + """The name of the assistant. The maximum length is 256 characters.""" + + reasoning_effort: Optional[ReasoningEffort] + """**o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + """ + + response_format: Optional[AssistantResponseFormatOptionParam] + """Specifies the format that the model must output. + + Compatible with [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + """ + + temperature: Optional[float] + """What sampling temperature to use, between 0 and 2. + + Higher values like 0.8 will make the output more random, while lower values like + 0.2 will make it more focused and deterministic. + """ + + tool_resources: Optional[ToolResources] + """A set of resources that are used by the assistant's tools. + + The resources are specific to the type of tool. For example, the + `code_interpreter` tool requires a list of file IDs, while the `file_search` + tool requires a list of vector store IDs. + """ + + tools: Iterable[AssistantToolParam] + """A list of tool enabled on the assistant. + + There can be a maximum of 128 tools per assistant. Tools can be of types + `code_interpreter`, `file_search`, or `function`. + """ + + top_p: Optional[float] + """ + An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + """ + + +class ToolResourcesCodeInterpreter(TypedDict, total=False): + file_ids: List[str] + """ + A list of [file](https://platform.openai.com/docs/api-reference/files) IDs made + available to the `code_interpreter` tool. There can be a maximum of 20 files + associated with the tool. + """ + + +class ToolResourcesFileSearchVectorStoreChunkingStrategyAuto(TypedDict, total=False): + type: Required[Literal["auto"]] + """Always `auto`.""" + + +class ToolResourcesFileSearchVectorStoreChunkingStrategyStaticStatic(TypedDict, total=False): + chunk_overlap_tokens: Required[int] + """The number of tokens that overlap between chunks. The default value is `400`. + + Note that the overlap must not exceed half of `max_chunk_size_tokens`. + """ + + max_chunk_size_tokens: Required[int] + """The maximum number of tokens in each chunk. + + The default value is `800`. The minimum value is `100` and the maximum value is + `4096`. + """ + + +class ToolResourcesFileSearchVectorStoreChunkingStrategyStatic(TypedDict, total=False): + static: Required[ToolResourcesFileSearchVectorStoreChunkingStrategyStaticStatic] + + type: Required[Literal["static"]] + """Always `static`.""" + + +ToolResourcesFileSearchVectorStoreChunkingStrategy: TypeAlias = Union[ + ToolResourcesFileSearchVectorStoreChunkingStrategyAuto, ToolResourcesFileSearchVectorStoreChunkingStrategyStatic +] + + +class ToolResourcesFileSearchVectorStore(TypedDict, total=False): + chunking_strategy: ToolResourcesFileSearchVectorStoreChunkingStrategy + """The chunking strategy used to chunk the file(s). + + If not set, will use the `auto` strategy. + """ + + file_ids: List[str] + """ + A list of [file](https://platform.openai.com/docs/api-reference/files) IDs to + add to the vector store. There can be a maximum of 10000 files in a vector + store. + """ + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + +class ToolResourcesFileSearch(TypedDict, total=False): + vector_store_ids: List[str] + """ + The + [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) + attached to this assistant. There can be a maximum of 1 vector store attached to + the assistant. + """ + + vector_stores: Iterable[ToolResourcesFileSearchVectorStore] + """ + A helper to create a + [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) + with file_ids and attach it to this assistant. There can be a maximum of 1 + vector store attached to the assistant. + """ + + +class ToolResources(TypedDict, total=False): + code_interpreter: ToolResourcesCodeInterpreter + + file_search: ToolResourcesFileSearch diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_deleted.py b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_deleted.py new file mode 100644 index 00000000..3be40cd6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_deleted.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["AssistantDeleted"] + + +class AssistantDeleted(BaseModel): + id: str + + deleted: bool + + object: Literal["assistant.deleted"] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_list_params.py b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_list_params.py new file mode 100644 index 00000000..834ffbca --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_list_params.py @@ -0,0 +1,39 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, TypedDict + +__all__ = ["AssistantListParams"] + + +class AssistantListParams(TypedDict, total=False): + after: str + """A cursor for use in pagination. + + `after` is an object ID that defines your place in the list. For instance, if + you make a list request and receive 100 objects, ending with obj_foo, your + subsequent call can include after=obj_foo in order to fetch the next page of the + list. + """ + + before: str + """A cursor for use in pagination. + + `before` is an object ID that defines your place in the list. For instance, if + you make a list request and receive 100 objects, starting with obj_foo, your + subsequent call can include before=obj_foo in order to fetch the previous page + of the list. + """ + + limit: int + """A limit on the number of objects to be returned. + + Limit can range between 1 and 100, and the default is 20. + """ + + order: Literal["asc", "desc"] + """Sort order by the `created_at` timestamp of the objects. + + `asc` for ascending order and `desc` for descending order. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_response_format_option.py b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_response_format_option.py new file mode 100644 index 00000000..6f06a344 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_response_format_option.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Literal, TypeAlias + +from ..shared.response_format_text import ResponseFormatText +from ..shared.response_format_json_object import ResponseFormatJSONObject +from ..shared.response_format_json_schema import ResponseFormatJSONSchema + +__all__ = ["AssistantResponseFormatOption"] + +AssistantResponseFormatOption: TypeAlias = Union[ + Literal["auto"], ResponseFormatText, ResponseFormatJSONObject, ResponseFormatJSONSchema +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_response_format_option_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_response_format_option_param.py new file mode 100644 index 00000000..5e724a4d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_response_format_option_param.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import Literal, TypeAlias + +from ..shared_params.response_format_text import ResponseFormatText +from ..shared_params.response_format_json_object import ResponseFormatJSONObject +from ..shared_params.response_format_json_schema import ResponseFormatJSONSchema + +__all__ = ["AssistantResponseFormatOptionParam"] + +AssistantResponseFormatOptionParam: TypeAlias = Union[ + Literal["auto"], ResponseFormatText, ResponseFormatJSONObject, ResponseFormatJSONSchema +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_stream_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_stream_event.py new file mode 100644 index 00000000..41d3a0c5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_stream_event.py @@ -0,0 +1,294 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union, Optional +from typing_extensions import Literal, Annotated, TypeAlias + +from .thread import Thread +from ..._utils import PropertyInfo +from ..._models import BaseModel +from .threads.run import Run +from .threads.message import Message +from ..shared.error_object import ErrorObject +from .threads.runs.run_step import RunStep +from .threads.message_delta_event import MessageDeltaEvent +from .threads.runs.run_step_delta_event import RunStepDeltaEvent + +__all__ = [ + "AssistantStreamEvent", + "ThreadCreated", + "ThreadRunCreated", + "ThreadRunQueued", + "ThreadRunInProgress", + "ThreadRunRequiresAction", + "ThreadRunCompleted", + "ThreadRunIncomplete", + "ThreadRunFailed", + "ThreadRunCancelling", + "ThreadRunCancelled", + "ThreadRunExpired", + "ThreadRunStepCreated", + "ThreadRunStepInProgress", + "ThreadRunStepDelta", + "ThreadRunStepCompleted", + "ThreadRunStepFailed", + "ThreadRunStepCancelled", + "ThreadRunStepExpired", + "ThreadMessageCreated", + "ThreadMessageInProgress", + "ThreadMessageDelta", + "ThreadMessageCompleted", + "ThreadMessageIncomplete", + "ErrorEvent", +] + + +class ThreadCreated(BaseModel): + data: Thread + """ + Represents a thread that contains + [messages](https://platform.openai.com/docs/api-reference/messages). + """ + + event: Literal["thread.created"] + + enabled: Optional[bool] = None + """Whether to enable input audio transcription.""" + + +class ThreadRunCreated(BaseModel): + data: Run + """ + Represents an execution run on a + [thread](https://platform.openai.com/docs/api-reference/threads). + """ + + event: Literal["thread.run.created"] + + +class ThreadRunQueued(BaseModel): + data: Run + """ + Represents an execution run on a + [thread](https://platform.openai.com/docs/api-reference/threads). + """ + + event: Literal["thread.run.queued"] + + +class ThreadRunInProgress(BaseModel): + data: Run + """ + Represents an execution run on a + [thread](https://platform.openai.com/docs/api-reference/threads). + """ + + event: Literal["thread.run.in_progress"] + + +class ThreadRunRequiresAction(BaseModel): + data: Run + """ + Represents an execution run on a + [thread](https://platform.openai.com/docs/api-reference/threads). + """ + + event: Literal["thread.run.requires_action"] + + +class ThreadRunCompleted(BaseModel): + data: Run + """ + Represents an execution run on a + [thread](https://platform.openai.com/docs/api-reference/threads). + """ + + event: Literal["thread.run.completed"] + + +class ThreadRunIncomplete(BaseModel): + data: Run + """ + Represents an execution run on a + [thread](https://platform.openai.com/docs/api-reference/threads). + """ + + event: Literal["thread.run.incomplete"] + + +class ThreadRunFailed(BaseModel): + data: Run + """ + Represents an execution run on a + [thread](https://platform.openai.com/docs/api-reference/threads). + """ + + event: Literal["thread.run.failed"] + + +class ThreadRunCancelling(BaseModel): + data: Run + """ + Represents an execution run on a + [thread](https://platform.openai.com/docs/api-reference/threads). + """ + + event: Literal["thread.run.cancelling"] + + +class ThreadRunCancelled(BaseModel): + data: Run + """ + Represents an execution run on a + [thread](https://platform.openai.com/docs/api-reference/threads). + """ + + event: Literal["thread.run.cancelled"] + + +class ThreadRunExpired(BaseModel): + data: Run + """ + Represents an execution run on a + [thread](https://platform.openai.com/docs/api-reference/threads). + """ + + event: Literal["thread.run.expired"] + + +class ThreadRunStepCreated(BaseModel): + data: RunStep + """Represents a step in execution of a run.""" + + event: Literal["thread.run.step.created"] + + +class ThreadRunStepInProgress(BaseModel): + data: RunStep + """Represents a step in execution of a run.""" + + event: Literal["thread.run.step.in_progress"] + + +class ThreadRunStepDelta(BaseModel): + data: RunStepDeltaEvent + """Represents a run step delta i.e. + + any changed fields on a run step during streaming. + """ + + event: Literal["thread.run.step.delta"] + + +class ThreadRunStepCompleted(BaseModel): + data: RunStep + """Represents a step in execution of a run.""" + + event: Literal["thread.run.step.completed"] + + +class ThreadRunStepFailed(BaseModel): + data: RunStep + """Represents a step in execution of a run.""" + + event: Literal["thread.run.step.failed"] + + +class ThreadRunStepCancelled(BaseModel): + data: RunStep + """Represents a step in execution of a run.""" + + event: Literal["thread.run.step.cancelled"] + + +class ThreadRunStepExpired(BaseModel): + data: RunStep + """Represents a step in execution of a run.""" + + event: Literal["thread.run.step.expired"] + + +class ThreadMessageCreated(BaseModel): + data: Message + """ + Represents a message within a + [thread](https://platform.openai.com/docs/api-reference/threads). + """ + + event: Literal["thread.message.created"] + + +class ThreadMessageInProgress(BaseModel): + data: Message + """ + Represents a message within a + [thread](https://platform.openai.com/docs/api-reference/threads). + """ + + event: Literal["thread.message.in_progress"] + + +class ThreadMessageDelta(BaseModel): + data: MessageDeltaEvent + """Represents a message delta i.e. + + any changed fields on a message during streaming. + """ + + event: Literal["thread.message.delta"] + + +class ThreadMessageCompleted(BaseModel): + data: Message + """ + Represents a message within a + [thread](https://platform.openai.com/docs/api-reference/threads). + """ + + event: Literal["thread.message.completed"] + + +class ThreadMessageIncomplete(BaseModel): + data: Message + """ + Represents a message within a + [thread](https://platform.openai.com/docs/api-reference/threads). + """ + + event: Literal["thread.message.incomplete"] + + +class ErrorEvent(BaseModel): + data: ErrorObject + + event: Literal["error"] + + +AssistantStreamEvent: TypeAlias = Annotated[ + Union[ + ThreadCreated, + ThreadRunCreated, + ThreadRunQueued, + ThreadRunInProgress, + ThreadRunRequiresAction, + ThreadRunCompleted, + ThreadRunIncomplete, + ThreadRunFailed, + ThreadRunCancelling, + ThreadRunCancelled, + ThreadRunExpired, + ThreadRunStepCreated, + ThreadRunStepInProgress, + ThreadRunStepDelta, + ThreadRunStepCompleted, + ThreadRunStepFailed, + ThreadRunStepCancelled, + ThreadRunStepExpired, + ThreadMessageCreated, + ThreadMessageInProgress, + ThreadMessageDelta, + ThreadMessageCompleted, + ThreadMessageIncomplete, + ErrorEvent, + ], + PropertyInfo(discriminator="event"), +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool.py b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool.py new file mode 100644 index 00000000..1bde6858 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Annotated, TypeAlias + +from ..._utils import PropertyInfo +from .function_tool import FunctionTool +from .file_search_tool import FileSearchTool +from .code_interpreter_tool import CodeInterpreterTool + +__all__ = ["AssistantTool"] + +AssistantTool: TypeAlias = Annotated[ + Union[CodeInterpreterTool, FileSearchTool, FunctionTool], PropertyInfo(discriminator="type") +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_choice.py b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_choice.py new file mode 100644 index 00000000..d73439f0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_choice.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ..._models import BaseModel +from .assistant_tool_choice_function import AssistantToolChoiceFunction + +__all__ = ["AssistantToolChoice"] + + +class AssistantToolChoice(BaseModel): + type: Literal["function", "code_interpreter", "file_search"] + """The type of the tool. If type is `function`, the function name must be set""" + + function: Optional[AssistantToolChoiceFunction] = None diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_choice_function.py b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_choice_function.py new file mode 100644 index 00000000..0c896d80 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_choice_function.py @@ -0,0 +1,11 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + + +from ..._models import BaseModel + +__all__ = ["AssistantToolChoiceFunction"] + + +class AssistantToolChoiceFunction(BaseModel): + name: str + """The name of the function to call.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_choice_function_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_choice_function_param.py new file mode 100644 index 00000000..428857de --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_choice_function_param.py @@ -0,0 +1,12 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Required, TypedDict + +__all__ = ["AssistantToolChoiceFunctionParam"] + + +class AssistantToolChoiceFunctionParam(TypedDict, total=False): + name: Required[str] + """The name of the function to call.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_choice_option.py b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_choice_option.py new file mode 100644 index 00000000..e57c3278 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_choice_option.py @@ -0,0 +1,10 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Literal, TypeAlias + +from .assistant_tool_choice import AssistantToolChoice + +__all__ = ["AssistantToolChoiceOption"] + +AssistantToolChoiceOption: TypeAlias = Union[Literal["none", "auto", "required"], AssistantToolChoice] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_choice_option_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_choice_option_param.py new file mode 100644 index 00000000..cc0053d3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_choice_option_param.py @@ -0,0 +1,12 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import Literal, TypeAlias + +from .assistant_tool_choice_param import AssistantToolChoiceParam + +__all__ = ["AssistantToolChoiceOptionParam"] + +AssistantToolChoiceOptionParam: TypeAlias = Union[Literal["none", "auto", "required"], AssistantToolChoiceParam] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_choice_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_choice_param.py new file mode 100644 index 00000000..904f489e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_choice_param.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +from .assistant_tool_choice_function_param import AssistantToolChoiceFunctionParam + +__all__ = ["AssistantToolChoiceParam"] + + +class AssistantToolChoiceParam(TypedDict, total=False): + type: Required[Literal["function", "code_interpreter", "file_search"]] + """The type of the tool. If type is `function`, the function name must be set""" + + function: AssistantToolChoiceFunctionParam diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_param.py new file mode 100644 index 00000000..321c4b1d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_tool_param.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import TypeAlias + +from .function_tool_param import FunctionToolParam +from .file_search_tool_param import FileSearchToolParam +from .code_interpreter_tool_param import CodeInterpreterToolParam + +__all__ = ["AssistantToolParam"] + +AssistantToolParam: TypeAlias = Union[CodeInterpreterToolParam, FileSearchToolParam, FunctionToolParam] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_update_params.py b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_update_params.py new file mode 100644 index 00000000..d3ec7614 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/assistant_update_params.py @@ -0,0 +1,171 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union, Iterable, Optional +from typing_extensions import Literal, TypedDict + +from .assistant_tool_param import AssistantToolParam +from ..shared_params.metadata import Metadata +from ..shared.reasoning_effort import ReasoningEffort +from .assistant_response_format_option_param import AssistantResponseFormatOptionParam + +__all__ = ["AssistantUpdateParams", "ToolResources", "ToolResourcesCodeInterpreter", "ToolResourcesFileSearch"] + + +class AssistantUpdateParams(TypedDict, total=False): + description: Optional[str] + """The description of the assistant. The maximum length is 512 characters.""" + + instructions: Optional[str] + """The system instructions that the assistant uses. + + The maximum length is 256,000 characters. + """ + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + model: Union[ + str, + Literal[ + "o3-mini", + "o3-mini-2025-01-31", + "o1", + "o1-2024-12-17", + "gpt-4o", + "gpt-4o-2024-11-20", + "gpt-4o-2024-08-06", + "gpt-4o-2024-05-13", + "gpt-4o-mini", + "gpt-4o-mini-2024-07-18", + "gpt-4.5-preview", + "gpt-4.5-preview-2025-02-27", + "gpt-4-turbo", + "gpt-4-turbo-2024-04-09", + "gpt-4-0125-preview", + "gpt-4-turbo-preview", + "gpt-4-1106-preview", + "gpt-4-vision-preview", + "gpt-4", + "gpt-4-0314", + "gpt-4-0613", + "gpt-4-32k", + "gpt-4-32k-0314", + "gpt-4-32k-0613", + "gpt-3.5-turbo", + "gpt-3.5-turbo-16k", + "gpt-3.5-turbo-0613", + "gpt-3.5-turbo-1106", + "gpt-3.5-turbo-0125", + "gpt-3.5-turbo-16k-0613", + ], + ] + """ID of the model to use. + + You can use the + [List models](https://platform.openai.com/docs/api-reference/models/list) API to + see all of your available models, or see our + [Model overview](https://platform.openai.com/docs/models) for descriptions of + them. + """ + + name: Optional[str] + """The name of the assistant. The maximum length is 256 characters.""" + + reasoning_effort: Optional[ReasoningEffort] + """**o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + """ + + response_format: Optional[AssistantResponseFormatOptionParam] + """Specifies the format that the model must output. + + Compatible with [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + """ + + temperature: Optional[float] + """What sampling temperature to use, between 0 and 2. + + Higher values like 0.8 will make the output more random, while lower values like + 0.2 will make it more focused and deterministic. + """ + + tool_resources: Optional[ToolResources] + """A set of resources that are used by the assistant's tools. + + The resources are specific to the type of tool. For example, the + `code_interpreter` tool requires a list of file IDs, while the `file_search` + tool requires a list of vector store IDs. + """ + + tools: Iterable[AssistantToolParam] + """A list of tool enabled on the assistant. + + There can be a maximum of 128 tools per assistant. Tools can be of types + `code_interpreter`, `file_search`, or `function`. + """ + + top_p: Optional[float] + """ + An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + """ + + +class ToolResourcesCodeInterpreter(TypedDict, total=False): + file_ids: List[str] + """ + Overrides the list of + [file](https://platform.openai.com/docs/api-reference/files) IDs made available + to the `code_interpreter` tool. There can be a maximum of 20 files associated + with the tool. + """ + + +class ToolResourcesFileSearch(TypedDict, total=False): + vector_store_ids: List[str] + """ + Overrides the + [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) + attached to this assistant. There can be a maximum of 1 vector store attached to + the assistant. + """ + + +class ToolResources(TypedDict, total=False): + code_interpreter: ToolResourcesCodeInterpreter + + file_search: ToolResourcesFileSearch diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/chat/__init__.py b/.venv/lib/python3.12/site-packages/openai/types/beta/chat/__init__.py new file mode 100644 index 00000000..f8ee8b14 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/chat/__init__.py @@ -0,0 +1,3 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/code_interpreter_tool.py b/.venv/lib/python3.12/site-packages/openai/types/beta/code_interpreter_tool.py new file mode 100644 index 00000000..17ab3de6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/code_interpreter_tool.py @@ -0,0 +1,12 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["CodeInterpreterTool"] + + +class CodeInterpreterTool(BaseModel): + type: Literal["code_interpreter"] + """The type of tool being defined: `code_interpreter`""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/code_interpreter_tool_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/code_interpreter_tool_param.py new file mode 100644 index 00000000..4f6916d7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/code_interpreter_tool_param.py @@ -0,0 +1,12 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["CodeInterpreterToolParam"] + + +class CodeInterpreterToolParam(TypedDict, total=False): + type: Required[Literal["code_interpreter"]] + """The type of tool being defined: `code_interpreter`""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/file_search_tool.py b/.venv/lib/python3.12/site-packages/openai/types/beta/file_search_tool.py new file mode 100644 index 00000000..89fc16c0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/file_search_tool.py @@ -0,0 +1,55 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["FileSearchTool", "FileSearch", "FileSearchRankingOptions"] + + +class FileSearchRankingOptions(BaseModel): + score_threshold: float + """The score threshold for the file search. + + All values must be a floating point number between 0 and 1. + """ + + ranker: Optional[Literal["auto", "default_2024_08_21"]] = None + """The ranker to use for the file search. + + If not specified will use the `auto` ranker. + """ + + +class FileSearch(BaseModel): + max_num_results: Optional[int] = None + """The maximum number of results the file search tool should output. + + The default is 20 for `gpt-4*` models and 5 for `gpt-3.5-turbo`. This number + should be between 1 and 50 inclusive. + + Note that the file search tool may output fewer than `max_num_results` results. + See the + [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) + for more information. + """ + + ranking_options: Optional[FileSearchRankingOptions] = None + """The ranking options for the file search. + + If not specified, the file search tool will use the `auto` ranker and a + score_threshold of 0. + + See the + [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) + for more information. + """ + + +class FileSearchTool(BaseModel): + type: Literal["file_search"] + """The type of tool being defined: `file_search`""" + + file_search: Optional[FileSearch] = None + """Overrides for the file search tool.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/file_search_tool_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/file_search_tool_param.py new file mode 100644 index 00000000..c73d0af7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/file_search_tool_param.py @@ -0,0 +1,54 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["FileSearchToolParam", "FileSearch", "FileSearchRankingOptions"] + + +class FileSearchRankingOptions(TypedDict, total=False): + score_threshold: Required[float] + """The score threshold for the file search. + + All values must be a floating point number between 0 and 1. + """ + + ranker: Literal["auto", "default_2024_08_21"] + """The ranker to use for the file search. + + If not specified will use the `auto` ranker. + """ + + +class FileSearch(TypedDict, total=False): + max_num_results: int + """The maximum number of results the file search tool should output. + + The default is 20 for `gpt-4*` models and 5 for `gpt-3.5-turbo`. This number + should be between 1 and 50 inclusive. + + Note that the file search tool may output fewer than `max_num_results` results. + See the + [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) + for more information. + """ + + ranking_options: FileSearchRankingOptions + """The ranking options for the file search. + + If not specified, the file search tool will use the `auto` ranker and a + score_threshold of 0. + + See the + [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) + for more information. + """ + + +class FileSearchToolParam(TypedDict, total=False): + type: Required[Literal["file_search"]] + """The type of tool being defined: `file_search`""" + + file_search: FileSearch + """Overrides for the file search tool.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/function_tool.py b/.venv/lib/python3.12/site-packages/openai/types/beta/function_tool.py new file mode 100644 index 00000000..f9227678 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/function_tool.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel +from ..shared.function_definition import FunctionDefinition + +__all__ = ["FunctionTool"] + + +class FunctionTool(BaseModel): + function: FunctionDefinition + + type: Literal["function"] + """The type of tool being defined: `function`""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/function_tool_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/function_tool_param.py new file mode 100644 index 00000000..d906e02b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/function_tool_param.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +from ..shared_params.function_definition import FunctionDefinition + +__all__ = ["FunctionToolParam"] + + +class FunctionToolParam(TypedDict, total=False): + function: Required[FunctionDefinition] + + type: Required[Literal["function"]] + """The type of tool being defined: `function`""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/__init__.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/__init__.py new file mode 100644 index 00000000..0374b9b4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/__init__.py @@ -0,0 +1,96 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from .session import Session as Session +from .error_event import ErrorEvent as ErrorEvent +from .conversation_item import ConversationItem as ConversationItem +from .realtime_response import RealtimeResponse as RealtimeResponse +from .response_done_event import ResponseDoneEvent as ResponseDoneEvent +from .session_update_event import SessionUpdateEvent as SessionUpdateEvent +from .realtime_client_event import RealtimeClientEvent as RealtimeClientEvent +from .realtime_server_event import RealtimeServerEvent as RealtimeServerEvent +from .response_cancel_event import ResponseCancelEvent as ResponseCancelEvent +from .response_create_event import ResponseCreateEvent as ResponseCreateEvent +from .session_create_params import SessionCreateParams as SessionCreateParams +from .session_created_event import SessionCreatedEvent as SessionCreatedEvent +from .session_updated_event import SessionUpdatedEvent as SessionUpdatedEvent +from .transcription_session import TranscriptionSession as TranscriptionSession +from .response_created_event import ResponseCreatedEvent as ResponseCreatedEvent +from .conversation_item_param import ConversationItemParam as ConversationItemParam +from .realtime_connect_params import RealtimeConnectParams as RealtimeConnectParams +from .realtime_response_usage import RealtimeResponseUsage as RealtimeResponseUsage +from .session_create_response import SessionCreateResponse as SessionCreateResponse +from .realtime_response_status import RealtimeResponseStatus as RealtimeResponseStatus +from .response_text_done_event import ResponseTextDoneEvent as ResponseTextDoneEvent +from .conversation_item_content import ConversationItemContent as ConversationItemContent +from .rate_limits_updated_event import RateLimitsUpdatedEvent as RateLimitsUpdatedEvent +from .response_audio_done_event import ResponseAudioDoneEvent as ResponseAudioDoneEvent +from .response_text_delta_event import ResponseTextDeltaEvent as ResponseTextDeltaEvent +from .conversation_created_event import ConversationCreatedEvent as ConversationCreatedEvent +from .response_audio_delta_event import ResponseAudioDeltaEvent as ResponseAudioDeltaEvent +from .session_update_event_param import SessionUpdateEventParam as SessionUpdateEventParam +from .realtime_client_event_param import RealtimeClientEventParam as RealtimeClientEventParam +from .response_cancel_event_param import ResponseCancelEventParam as ResponseCancelEventParam +from .response_create_event_param import ResponseCreateEventParam as ResponseCreateEventParam +from .transcription_session_update import TranscriptionSessionUpdate as TranscriptionSessionUpdate +from .conversation_item_create_event import ConversationItemCreateEvent as ConversationItemCreateEvent +from .conversation_item_delete_event import ConversationItemDeleteEvent as ConversationItemDeleteEvent +from .input_audio_buffer_clear_event import InputAudioBufferClearEvent as InputAudioBufferClearEvent +from .conversation_item_content_param import ConversationItemContentParam as ConversationItemContentParam +from .conversation_item_created_event import ConversationItemCreatedEvent as ConversationItemCreatedEvent +from .conversation_item_deleted_event import ConversationItemDeletedEvent as ConversationItemDeletedEvent +from .input_audio_buffer_append_event import InputAudioBufferAppendEvent as InputAudioBufferAppendEvent +from .input_audio_buffer_commit_event import InputAudioBufferCommitEvent as InputAudioBufferCommitEvent +from .response_output_item_done_event import ResponseOutputItemDoneEvent as ResponseOutputItemDoneEvent +from .conversation_item_retrieve_event import ConversationItemRetrieveEvent as ConversationItemRetrieveEvent +from .conversation_item_truncate_event import ConversationItemTruncateEvent as ConversationItemTruncateEvent +from .conversation_item_with_reference import ConversationItemWithReference as ConversationItemWithReference +from .input_audio_buffer_cleared_event import InputAudioBufferClearedEvent as InputAudioBufferClearedEvent +from .response_content_part_done_event import ResponseContentPartDoneEvent as ResponseContentPartDoneEvent +from .response_output_item_added_event import ResponseOutputItemAddedEvent as ResponseOutputItemAddedEvent +from .conversation_item_truncated_event import ConversationItemTruncatedEvent as ConversationItemTruncatedEvent +from .response_content_part_added_event import ResponseContentPartAddedEvent as ResponseContentPartAddedEvent +from .input_audio_buffer_committed_event import InputAudioBufferCommittedEvent as InputAudioBufferCommittedEvent +from .transcription_session_update_param import TranscriptionSessionUpdateParam as TranscriptionSessionUpdateParam +from .transcription_session_create_params import TranscriptionSessionCreateParams as TranscriptionSessionCreateParams +from .transcription_session_updated_event import TranscriptionSessionUpdatedEvent as TranscriptionSessionUpdatedEvent +from .conversation_item_create_event_param import ConversationItemCreateEventParam as ConversationItemCreateEventParam +from .conversation_item_delete_event_param import ConversationItemDeleteEventParam as ConversationItemDeleteEventParam +from .input_audio_buffer_clear_event_param import InputAudioBufferClearEventParam as InputAudioBufferClearEventParam +from .response_audio_transcript_done_event import ResponseAudioTranscriptDoneEvent as ResponseAudioTranscriptDoneEvent +from .input_audio_buffer_append_event_param import InputAudioBufferAppendEventParam as InputAudioBufferAppendEventParam +from .input_audio_buffer_commit_event_param import InputAudioBufferCommitEventParam as InputAudioBufferCommitEventParam +from .response_audio_transcript_delta_event import ( + ResponseAudioTranscriptDeltaEvent as ResponseAudioTranscriptDeltaEvent, +) +from .conversation_item_retrieve_event_param import ( + ConversationItemRetrieveEventParam as ConversationItemRetrieveEventParam, +) +from .conversation_item_truncate_event_param import ( + ConversationItemTruncateEventParam as ConversationItemTruncateEventParam, +) +from .conversation_item_with_reference_param import ( + ConversationItemWithReferenceParam as ConversationItemWithReferenceParam, +) +from .input_audio_buffer_speech_started_event import ( + InputAudioBufferSpeechStartedEvent as InputAudioBufferSpeechStartedEvent, +) +from .input_audio_buffer_speech_stopped_event import ( + InputAudioBufferSpeechStoppedEvent as InputAudioBufferSpeechStoppedEvent, +) +from .response_function_call_arguments_done_event import ( + ResponseFunctionCallArgumentsDoneEvent as ResponseFunctionCallArgumentsDoneEvent, +) +from .response_function_call_arguments_delta_event import ( + ResponseFunctionCallArgumentsDeltaEvent as ResponseFunctionCallArgumentsDeltaEvent, +) +from .conversation_item_input_audio_transcription_delta_event import ( + ConversationItemInputAudioTranscriptionDeltaEvent as ConversationItemInputAudioTranscriptionDeltaEvent, +) +from .conversation_item_input_audio_transcription_failed_event import ( + ConversationItemInputAudioTranscriptionFailedEvent as ConversationItemInputAudioTranscriptionFailedEvent, +) +from .conversation_item_input_audio_transcription_completed_event import ( + ConversationItemInputAudioTranscriptionCompletedEvent as ConversationItemInputAudioTranscriptionCompletedEvent, +) diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_created_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_created_event.py new file mode 100644 index 00000000..4ba05408 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_created_event.py @@ -0,0 +1,27 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ConversationCreatedEvent", "Conversation"] + + +class Conversation(BaseModel): + id: Optional[str] = None + """The unique ID of the conversation.""" + + object: Optional[Literal["realtime.conversation"]] = None + """The object type, must be `realtime.conversation`.""" + + +class ConversationCreatedEvent(BaseModel): + conversation: Conversation + """The conversation resource.""" + + event_id: str + """The unique ID of the server event.""" + + type: Literal["conversation.created"] + """The event type, must be `conversation.created`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item.py new file mode 100644 index 00000000..4edf6c4d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item.py @@ -0,0 +1,61 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ...._models import BaseModel +from .conversation_item_content import ConversationItemContent + +__all__ = ["ConversationItem"] + + +class ConversationItem(BaseModel): + id: Optional[str] = None + """ + The unique ID of the item, this can be generated by the client to help manage + server-side context, but is not required because the server will generate one if + not provided. + """ + + arguments: Optional[str] = None + """The arguments of the function call (for `function_call` items).""" + + call_id: Optional[str] = None + """ + The ID of the function call (for `function_call` and `function_call_output` + items). If passed on a `function_call_output` item, the server will check that a + `function_call` item with the same ID exists in the conversation history. + """ + + content: Optional[List[ConversationItemContent]] = None + """The content of the message, applicable for `message` items. + + - Message items of role `system` support only `input_text` content + - Message items of role `user` support `input_text` and `input_audio` content + - Message items of role `assistant` support `text` content. + """ + + name: Optional[str] = None + """The name of the function being called (for `function_call` items).""" + + object: Optional[Literal["realtime.item"]] = None + """Identifier for the API object being returned - always `realtime.item`.""" + + output: Optional[str] = None + """The output of the function call (for `function_call_output` items).""" + + role: Optional[Literal["user", "assistant", "system"]] = None + """ + The role of the message sender (`user`, `assistant`, `system`), only applicable + for `message` items. + """ + + status: Optional[Literal["completed", "incomplete"]] = None + """The status of the item (`completed`, `incomplete`). + + These have no effect on the conversation, but are accepted for consistency with + the `conversation.item.created` event. + """ + + type: Optional[Literal["message", "function_call", "function_call_output"]] = None + """The type of the item (`message`, `function_call`, `function_call_output`).""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_content.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_content.py new file mode 100644 index 00000000..ab40a4a1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_content.py @@ -0,0 +1,29 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ConversationItemContent"] + + +class ConversationItemContent(BaseModel): + id: Optional[str] = None + """ + ID of a previous conversation item to reference (for `item_reference` content + types in `response.create` events). These can reference both client and server + created items. + """ + + audio: Optional[str] = None + """Base64-encoded audio bytes, used for `input_audio` content type.""" + + text: Optional[str] = None + """The text content, used for `input_text` and `text` content types.""" + + transcript: Optional[str] = None + """The transcript of the audio, used for `input_audio` content type.""" + + type: Optional[Literal["input_text", "input_audio", "item_reference", "text"]] = None + """The content type (`input_text`, `input_audio`, `item_reference`, `text`).""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_content_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_content_param.py new file mode 100644 index 00000000..7a3a92a3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_content_param.py @@ -0,0 +1,28 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, TypedDict + +__all__ = ["ConversationItemContentParam"] + + +class ConversationItemContentParam(TypedDict, total=False): + id: str + """ + ID of a previous conversation item to reference (for `item_reference` content + types in `response.create` events). These can reference both client and server + created items. + """ + + audio: str + """Base64-encoded audio bytes, used for `input_audio` content type.""" + + text: str + """The text content, used for `input_text` and `text` content types.""" + + transcript: str + """The transcript of the audio, used for `input_audio` content type.""" + + type: Literal["input_text", "input_audio", "item_reference", "text"] + """The content type (`input_text`, `input_audio`, `item_reference`, `text`).""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_create_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_create_event.py new file mode 100644 index 00000000..f19d552a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_create_event.py @@ -0,0 +1,29 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel +from .conversation_item import ConversationItem + +__all__ = ["ConversationItemCreateEvent"] + + +class ConversationItemCreateEvent(BaseModel): + item: ConversationItem + """The item to add to the conversation.""" + + type: Literal["conversation.item.create"] + """The event type, must be `conversation.item.create`.""" + + event_id: Optional[str] = None + """Optional client-generated ID used to identify this event.""" + + previous_item_id: Optional[str] = None + """The ID of the preceding item after which the new item will be inserted. + + If not set, the new item will be appended to the end of the conversation. If set + to `root`, the new item will be added to the beginning of the conversation. If + set to an existing ID, it allows an item to be inserted mid-conversation. If the + ID cannot be found, an error will be returned and the item will not be added. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_create_event_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_create_event_param.py new file mode 100644 index 00000000..693d0fd5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_create_event_param.py @@ -0,0 +1,29 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +from .conversation_item_param import ConversationItemParam + +__all__ = ["ConversationItemCreateEventParam"] + + +class ConversationItemCreateEventParam(TypedDict, total=False): + item: Required[ConversationItemParam] + """The item to add to the conversation.""" + + type: Required[Literal["conversation.item.create"]] + """The event type, must be `conversation.item.create`.""" + + event_id: str + """Optional client-generated ID used to identify this event.""" + + previous_item_id: str + """The ID of the preceding item after which the new item will be inserted. + + If not set, the new item will be appended to the end of the conversation. If set + to `root`, the new item will be added to the beginning of the conversation. If + set to an existing ID, it allows an item to be inserted mid-conversation. If the + ID cannot be found, an error will be returned and the item will not be added. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_created_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_created_event.py new file mode 100644 index 00000000..2f203882 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_created_event.py @@ -0,0 +1,25 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel +from .conversation_item import ConversationItem + +__all__ = ["ConversationItemCreatedEvent"] + + +class ConversationItemCreatedEvent(BaseModel): + event_id: str + """The unique ID of the server event.""" + + item: ConversationItem + """The item to add to the conversation.""" + + previous_item_id: str + """ + The ID of the preceding item in the Conversation context, allows the client to + understand the order of the conversation. + """ + + type: Literal["conversation.item.created"] + """The event type, must be `conversation.item.created`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_delete_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_delete_event.py new file mode 100644 index 00000000..02ca8250 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_delete_event.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ConversationItemDeleteEvent"] + + +class ConversationItemDeleteEvent(BaseModel): + item_id: str + """The ID of the item to delete.""" + + type: Literal["conversation.item.delete"] + """The event type, must be `conversation.item.delete`.""" + + event_id: Optional[str] = None + """Optional client-generated ID used to identify this event.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_delete_event_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_delete_event_param.py new file mode 100644 index 00000000..c3f88d66 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_delete_event_param.py @@ -0,0 +1,18 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ConversationItemDeleteEventParam"] + + +class ConversationItemDeleteEventParam(TypedDict, total=False): + item_id: Required[str] + """The ID of the item to delete.""" + + type: Required[Literal["conversation.item.delete"]] + """The event type, must be `conversation.item.delete`.""" + + event_id: str + """Optional client-generated ID used to identify this event.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_deleted_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_deleted_event.py new file mode 100644 index 00000000..a35a9781 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_deleted_event.py @@ -0,0 +1,18 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ConversationItemDeletedEvent"] + + +class ConversationItemDeletedEvent(BaseModel): + event_id: str + """The unique ID of the server event.""" + + item_id: str + """The ID of the item that was deleted.""" + + type: Literal["conversation.item.deleted"] + """The event type, must be `conversation.item.deleted`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_input_audio_transcription_completed_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_input_audio_transcription_completed_event.py new file mode 100644 index 00000000..46981169 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_input_audio_transcription_completed_event.py @@ -0,0 +1,41 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ConversationItemInputAudioTranscriptionCompletedEvent", "Logprob"] + + +class Logprob(BaseModel): + token: str + """The token that was used to generate the log probability.""" + + bytes: List[int] + """The bytes that were used to generate the log probability.""" + + logprob: float + """The log probability of the token.""" + + +class ConversationItemInputAudioTranscriptionCompletedEvent(BaseModel): + content_index: int + """The index of the content part containing the audio.""" + + event_id: str + """The unique ID of the server event.""" + + item_id: str + """The ID of the user message item containing the audio.""" + + transcript: str + """The transcribed text.""" + + type: Literal["conversation.item.input_audio_transcription.completed"] + """ + The event type, must be `conversation.item.input_audio_transcription.completed`. + """ + + logprobs: Optional[List[Logprob]] = None + """The log probabilities of the transcription.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_input_audio_transcription_delta_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_input_audio_transcription_delta_event.py new file mode 100644 index 00000000..924d06d9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_input_audio_transcription_delta_event.py @@ -0,0 +1,39 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ConversationItemInputAudioTranscriptionDeltaEvent", "Logprob"] + + +class Logprob(BaseModel): + token: str + """The token that was used to generate the log probability.""" + + bytes: List[int] + """The bytes that were used to generate the log probability.""" + + logprob: float + """The log probability of the token.""" + + +class ConversationItemInputAudioTranscriptionDeltaEvent(BaseModel): + event_id: str + """The unique ID of the server event.""" + + item_id: str + """The ID of the item.""" + + type: Literal["conversation.item.input_audio_transcription.delta"] + """The event type, must be `conversation.item.input_audio_transcription.delta`.""" + + content_index: Optional[int] = None + """The index of the content part in the item's content array.""" + + delta: Optional[str] = None + """The text delta.""" + + logprobs: Optional[List[Logprob]] = None + """The log probabilities of the transcription.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_input_audio_transcription_failed_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_input_audio_transcription_failed_event.py new file mode 100644 index 00000000..cecac93e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_input_audio_transcription_failed_event.py @@ -0,0 +1,39 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ConversationItemInputAudioTranscriptionFailedEvent", "Error"] + + +class Error(BaseModel): + code: Optional[str] = None + """Error code, if any.""" + + message: Optional[str] = None + """A human-readable error message.""" + + param: Optional[str] = None + """Parameter related to the error, if any.""" + + type: Optional[str] = None + """The type of error.""" + + +class ConversationItemInputAudioTranscriptionFailedEvent(BaseModel): + content_index: int + """The index of the content part containing the audio.""" + + error: Error + """Details of the transcription error.""" + + event_id: str + """The unique ID of the server event.""" + + item_id: str + """The ID of the user message item.""" + + type: Literal["conversation.item.input_audio_transcription.failed"] + """The event type, must be `conversation.item.input_audio_transcription.failed`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_param.py new file mode 100644 index 00000000..ac0f8431 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_param.py @@ -0,0 +1,62 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Iterable +from typing_extensions import Literal, TypedDict + +from .conversation_item_content_param import ConversationItemContentParam + +__all__ = ["ConversationItemParam"] + + +class ConversationItemParam(TypedDict, total=False): + id: str + """ + The unique ID of the item, this can be generated by the client to help manage + server-side context, but is not required because the server will generate one if + not provided. + """ + + arguments: str + """The arguments of the function call (for `function_call` items).""" + + call_id: str + """ + The ID of the function call (for `function_call` and `function_call_output` + items). If passed on a `function_call_output` item, the server will check that a + `function_call` item with the same ID exists in the conversation history. + """ + + content: Iterable[ConversationItemContentParam] + """The content of the message, applicable for `message` items. + + - Message items of role `system` support only `input_text` content + - Message items of role `user` support `input_text` and `input_audio` content + - Message items of role `assistant` support `text` content. + """ + + name: str + """The name of the function being called (for `function_call` items).""" + + object: Literal["realtime.item"] + """Identifier for the API object being returned - always `realtime.item`.""" + + output: str + """The output of the function call (for `function_call_output` items).""" + + role: Literal["user", "assistant", "system"] + """ + The role of the message sender (`user`, `assistant`, `system`), only applicable + for `message` items. + """ + + status: Literal["completed", "incomplete"] + """The status of the item (`completed`, `incomplete`). + + These have no effect on the conversation, but are accepted for consistency with + the `conversation.item.created` event. + """ + + type: Literal["message", "function_call", "function_call_output"] + """The type of the item (`message`, `function_call`, `function_call_output`).""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_retrieve_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_retrieve_event.py new file mode 100644 index 00000000..82238605 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_retrieve_event.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ConversationItemRetrieveEvent"] + + +class ConversationItemRetrieveEvent(BaseModel): + item_id: str + """The ID of the item to retrieve.""" + + type: Literal["conversation.item.retrieve"] + """The event type, must be `conversation.item.retrieve`.""" + + event_id: Optional[str] = None + """Optional client-generated ID used to identify this event.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_retrieve_event_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_retrieve_event_param.py new file mode 100644 index 00000000..71b3ffa4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_retrieve_event_param.py @@ -0,0 +1,18 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ConversationItemRetrieveEventParam"] + + +class ConversationItemRetrieveEventParam(TypedDict, total=False): + item_id: Required[str] + """The ID of the item to retrieve.""" + + type: Required[Literal["conversation.item.retrieve"]] + """The event type, must be `conversation.item.retrieve`.""" + + event_id: str + """Optional client-generated ID used to identify this event.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_truncate_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_truncate_event.py new file mode 100644 index 00000000..cb336bba --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_truncate_event.py @@ -0,0 +1,32 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ConversationItemTruncateEvent"] + + +class ConversationItemTruncateEvent(BaseModel): + audio_end_ms: int + """Inclusive duration up to which audio is truncated, in milliseconds. + + If the audio_end_ms is greater than the actual audio duration, the server will + respond with an error. + """ + + content_index: int + """The index of the content part to truncate. Set this to 0.""" + + item_id: str + """The ID of the assistant message item to truncate. + + Only assistant message items can be truncated. + """ + + type: Literal["conversation.item.truncate"] + """The event type, must be `conversation.item.truncate`.""" + + event_id: Optional[str] = None + """Optional client-generated ID used to identify this event.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_truncate_event_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_truncate_event_param.py new file mode 100644 index 00000000..d3ad1e1e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_truncate_event_param.py @@ -0,0 +1,31 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ConversationItemTruncateEventParam"] + + +class ConversationItemTruncateEventParam(TypedDict, total=False): + audio_end_ms: Required[int] + """Inclusive duration up to which audio is truncated, in milliseconds. + + If the audio_end_ms is greater than the actual audio duration, the server will + respond with an error. + """ + + content_index: Required[int] + """The index of the content part to truncate. Set this to 0.""" + + item_id: Required[str] + """The ID of the assistant message item to truncate. + + Only assistant message items can be truncated. + """ + + type: Required[Literal["conversation.item.truncate"]] + """The event type, must be `conversation.item.truncate`.""" + + event_id: str + """Optional client-generated ID used to identify this event.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_truncated_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_truncated_event.py new file mode 100644 index 00000000..36368fa2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_truncated_event.py @@ -0,0 +1,24 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ConversationItemTruncatedEvent"] + + +class ConversationItemTruncatedEvent(BaseModel): + audio_end_ms: int + """The duration up to which the audio was truncated, in milliseconds.""" + + content_index: int + """The index of the content part that was truncated.""" + + event_id: str + """The unique ID of the server event.""" + + item_id: str + """The ID of the assistant message item that was truncated.""" + + type: Literal["conversation.item.truncated"] + """The event type, must be `conversation.item.truncated`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_with_reference.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_with_reference.py new file mode 100644 index 00000000..31806afc --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_with_reference.py @@ -0,0 +1,67 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ...._models import BaseModel +from .conversation_item_content import ConversationItemContent + +__all__ = ["ConversationItemWithReference"] + + +class ConversationItemWithReference(BaseModel): + id: Optional[str] = None + """ + For an item of type (`message` | `function_call` | `function_call_output`) this + field allows the client to assign the unique ID of the item. It is not required + because the server will generate one if not provided. + + For an item of type `item_reference`, this field is required and is a reference + to any item that has previously existed in the conversation. + """ + + arguments: Optional[str] = None + """The arguments of the function call (for `function_call` items).""" + + call_id: Optional[str] = None + """ + The ID of the function call (for `function_call` and `function_call_output` + items). If passed on a `function_call_output` item, the server will check that a + `function_call` item with the same ID exists in the conversation history. + """ + + content: Optional[List[ConversationItemContent]] = None + """The content of the message, applicable for `message` items. + + - Message items of role `system` support only `input_text` content + - Message items of role `user` support `input_text` and `input_audio` content + - Message items of role `assistant` support `text` content. + """ + + name: Optional[str] = None + """The name of the function being called (for `function_call` items).""" + + object: Optional[Literal["realtime.item"]] = None + """Identifier for the API object being returned - always `realtime.item`.""" + + output: Optional[str] = None + """The output of the function call (for `function_call_output` items).""" + + role: Optional[Literal["user", "assistant", "system"]] = None + """ + The role of the message sender (`user`, `assistant`, `system`), only applicable + for `message` items. + """ + + status: Optional[Literal["completed", "incomplete"]] = None + """The status of the item (`completed`, `incomplete`). + + These have no effect on the conversation, but are accepted for consistency with + the `conversation.item.created` event. + """ + + type: Optional[Literal["message", "function_call", "function_call_output", "item_reference"]] = None + """ + The type of the item (`message`, `function_call`, `function_call_output`, + `item_reference`). + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_with_reference_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_with_reference_param.py new file mode 100644 index 00000000..e266cdce --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/conversation_item_with_reference_param.py @@ -0,0 +1,68 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Iterable +from typing_extensions import Literal, TypedDict + +from .conversation_item_content_param import ConversationItemContentParam + +__all__ = ["ConversationItemWithReferenceParam"] + + +class ConversationItemWithReferenceParam(TypedDict, total=False): + id: str + """ + For an item of type (`message` | `function_call` | `function_call_output`) this + field allows the client to assign the unique ID of the item. It is not required + because the server will generate one if not provided. + + For an item of type `item_reference`, this field is required and is a reference + to any item that has previously existed in the conversation. + """ + + arguments: str + """The arguments of the function call (for `function_call` items).""" + + call_id: str + """ + The ID of the function call (for `function_call` and `function_call_output` + items). If passed on a `function_call_output` item, the server will check that a + `function_call` item with the same ID exists in the conversation history. + """ + + content: Iterable[ConversationItemContentParam] + """The content of the message, applicable for `message` items. + + - Message items of role `system` support only `input_text` content + - Message items of role `user` support `input_text` and `input_audio` content + - Message items of role `assistant` support `text` content. + """ + + name: str + """The name of the function being called (for `function_call` items).""" + + object: Literal["realtime.item"] + """Identifier for the API object being returned - always `realtime.item`.""" + + output: str + """The output of the function call (for `function_call_output` items).""" + + role: Literal["user", "assistant", "system"] + """ + The role of the message sender (`user`, `assistant`, `system`), only applicable + for `message` items. + """ + + status: Literal["completed", "incomplete"] + """The status of the item (`completed`, `incomplete`). + + These have no effect on the conversation, but are accepted for consistency with + the `conversation.item.created` event. + """ + + type: Literal["message", "function_call", "function_call_output", "item_reference"] + """ + The type of the item (`message`, `function_call`, `function_call_output`, + `item_reference`). + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/error_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/error_event.py new file mode 100644 index 00000000..e020fc38 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/error_event.py @@ -0,0 +1,36 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ErrorEvent", "Error"] + + +class Error(BaseModel): + message: str + """A human-readable error message.""" + + type: str + """The type of error (e.g., "invalid_request_error", "server_error").""" + + code: Optional[str] = None + """Error code, if any.""" + + event_id: Optional[str] = None + """The event_id of the client event that caused the error, if applicable.""" + + param: Optional[str] = None + """Parameter related to the error, if any.""" + + +class ErrorEvent(BaseModel): + error: Error + """Details of the error.""" + + event_id: str + """The unique ID of the server event.""" + + type: Literal["error"] + """The event type, must be `error`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_append_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_append_event.py new file mode 100644 index 00000000..a253a648 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_append_event.py @@ -0,0 +1,23 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["InputAudioBufferAppendEvent"] + + +class InputAudioBufferAppendEvent(BaseModel): + audio: str + """Base64-encoded audio bytes. + + This must be in the format specified by the `input_audio_format` field in the + session configuration. + """ + + type: Literal["input_audio_buffer.append"] + """The event type, must be `input_audio_buffer.append`.""" + + event_id: Optional[str] = None + """Optional client-generated ID used to identify this event.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_append_event_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_append_event_param.py new file mode 100644 index 00000000..3ad0bc73 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_append_event_param.py @@ -0,0 +1,22 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["InputAudioBufferAppendEventParam"] + + +class InputAudioBufferAppendEventParam(TypedDict, total=False): + audio: Required[str] + """Base64-encoded audio bytes. + + This must be in the format specified by the `input_audio_format` field in the + session configuration. + """ + + type: Required[Literal["input_audio_buffer.append"]] + """The event type, must be `input_audio_buffer.append`.""" + + event_id: str + """Optional client-generated ID used to identify this event.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_clear_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_clear_event.py new file mode 100644 index 00000000..b0624d34 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_clear_event.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["InputAudioBufferClearEvent"] + + +class InputAudioBufferClearEvent(BaseModel): + type: Literal["input_audio_buffer.clear"] + """The event type, must be `input_audio_buffer.clear`.""" + + event_id: Optional[str] = None + """Optional client-generated ID used to identify this event.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_clear_event_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_clear_event_param.py new file mode 100644 index 00000000..2bd6bc5a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_clear_event_param.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["InputAudioBufferClearEventParam"] + + +class InputAudioBufferClearEventParam(TypedDict, total=False): + type: Required[Literal["input_audio_buffer.clear"]] + """The event type, must be `input_audio_buffer.clear`.""" + + event_id: str + """Optional client-generated ID used to identify this event.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_cleared_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_cleared_event.py new file mode 100644 index 00000000..632e1b94 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_cleared_event.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["InputAudioBufferClearedEvent"] + + +class InputAudioBufferClearedEvent(BaseModel): + event_id: str + """The unique ID of the server event.""" + + type: Literal["input_audio_buffer.cleared"] + """The event type, must be `input_audio_buffer.cleared`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_commit_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_commit_event.py new file mode 100644 index 00000000..7b6f5e46 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_commit_event.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["InputAudioBufferCommitEvent"] + + +class InputAudioBufferCommitEvent(BaseModel): + type: Literal["input_audio_buffer.commit"] + """The event type, must be `input_audio_buffer.commit`.""" + + event_id: Optional[str] = None + """Optional client-generated ID used to identify this event.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_commit_event_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_commit_event_param.py new file mode 100644 index 00000000..c9c927ab --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_commit_event_param.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["InputAudioBufferCommitEventParam"] + + +class InputAudioBufferCommitEventParam(TypedDict, total=False): + type: Required[Literal["input_audio_buffer.commit"]] + """The event type, must be `input_audio_buffer.commit`.""" + + event_id: str + """Optional client-generated ID used to identify this event.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_committed_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_committed_event.py new file mode 100644 index 00000000..3071eff3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_committed_event.py @@ -0,0 +1,21 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["InputAudioBufferCommittedEvent"] + + +class InputAudioBufferCommittedEvent(BaseModel): + event_id: str + """The unique ID of the server event.""" + + item_id: str + """The ID of the user message item that will be created.""" + + previous_item_id: str + """The ID of the preceding item after which the new item will be inserted.""" + + type: Literal["input_audio_buffer.committed"] + """The event type, must be `input_audio_buffer.committed`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_speech_started_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_speech_started_event.py new file mode 100644 index 00000000..4f3ab082 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_speech_started_event.py @@ -0,0 +1,26 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["InputAudioBufferSpeechStartedEvent"] + + +class InputAudioBufferSpeechStartedEvent(BaseModel): + audio_start_ms: int + """ + Milliseconds from the start of all audio written to the buffer during the + session when speech was first detected. This will correspond to the beginning of + audio sent to the model, and thus includes the `prefix_padding_ms` configured in + the Session. + """ + + event_id: str + """The unique ID of the server event.""" + + item_id: str + """The ID of the user message item that will be created when speech stops.""" + + type: Literal["input_audio_buffer.speech_started"] + """The event type, must be `input_audio_buffer.speech_started`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_speech_stopped_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_speech_stopped_event.py new file mode 100644 index 00000000..40568170 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/input_audio_buffer_speech_stopped_event.py @@ -0,0 +1,25 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["InputAudioBufferSpeechStoppedEvent"] + + +class InputAudioBufferSpeechStoppedEvent(BaseModel): + audio_end_ms: int + """Milliseconds since the session started when speech stopped. + + This will correspond to the end of audio sent to the model, and thus includes + the `min_silence_duration_ms` configured in the Session. + """ + + event_id: str + """The unique ID of the server event.""" + + item_id: str + """The ID of the user message item that will be created.""" + + type: Literal["input_audio_buffer.speech_stopped"] + """The event type, must be `input_audio_buffer.speech_stopped`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/rate_limits_updated_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/rate_limits_updated_event.py new file mode 100644 index 00000000..7e12283c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/rate_limits_updated_event.py @@ -0,0 +1,33 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["RateLimitsUpdatedEvent", "RateLimit"] + + +class RateLimit(BaseModel): + limit: Optional[int] = None + """The maximum allowed value for the rate limit.""" + + name: Optional[Literal["requests", "tokens"]] = None + """The name of the rate limit (`requests`, `tokens`).""" + + remaining: Optional[int] = None + """The remaining value before the limit is reached.""" + + reset_seconds: Optional[float] = None + """Seconds until the rate limit resets.""" + + +class RateLimitsUpdatedEvent(BaseModel): + event_id: str + """The unique ID of the server event.""" + + rate_limits: List[RateLimit] + """List of rate limit information.""" + + type: Literal["rate_limits.updated"] + """The event type, must be `rate_limits.updated`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_client_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_client_event.py new file mode 100644 index 00000000..f962a505 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_client_event.py @@ -0,0 +1,36 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Annotated, TypeAlias + +from ...._utils import PropertyInfo +from .session_update_event import SessionUpdateEvent +from .response_cancel_event import ResponseCancelEvent +from .response_create_event import ResponseCreateEvent +from .transcription_session_update import TranscriptionSessionUpdate +from .conversation_item_create_event import ConversationItemCreateEvent +from .conversation_item_delete_event import ConversationItemDeleteEvent +from .input_audio_buffer_clear_event import InputAudioBufferClearEvent +from .input_audio_buffer_append_event import InputAudioBufferAppendEvent +from .input_audio_buffer_commit_event import InputAudioBufferCommitEvent +from .conversation_item_retrieve_event import ConversationItemRetrieveEvent +from .conversation_item_truncate_event import ConversationItemTruncateEvent + +__all__ = ["RealtimeClientEvent"] + +RealtimeClientEvent: TypeAlias = Annotated[ + Union[ + ConversationItemCreateEvent, + ConversationItemDeleteEvent, + ConversationItemRetrieveEvent, + ConversationItemTruncateEvent, + InputAudioBufferAppendEvent, + InputAudioBufferClearEvent, + InputAudioBufferCommitEvent, + ResponseCancelEvent, + ResponseCreateEvent, + SessionUpdateEvent, + TranscriptionSessionUpdate, + ], + PropertyInfo(discriminator="type"), +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_client_event_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_client_event_param.py new file mode 100644 index 00000000..6fdba4b8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_client_event_param.py @@ -0,0 +1,34 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import TypeAlias + +from .session_update_event_param import SessionUpdateEventParam +from .response_cancel_event_param import ResponseCancelEventParam +from .response_create_event_param import ResponseCreateEventParam +from .transcription_session_update_param import TranscriptionSessionUpdateParam +from .conversation_item_create_event_param import ConversationItemCreateEventParam +from .conversation_item_delete_event_param import ConversationItemDeleteEventParam +from .input_audio_buffer_clear_event_param import InputAudioBufferClearEventParam +from .input_audio_buffer_append_event_param import InputAudioBufferAppendEventParam +from .input_audio_buffer_commit_event_param import InputAudioBufferCommitEventParam +from .conversation_item_retrieve_event_param import ConversationItemRetrieveEventParam +from .conversation_item_truncate_event_param import ConversationItemTruncateEventParam + +__all__ = ["RealtimeClientEventParam"] + +RealtimeClientEventParam: TypeAlias = Union[ + ConversationItemCreateEventParam, + ConversationItemDeleteEventParam, + ConversationItemRetrieveEventParam, + ConversationItemTruncateEventParam, + InputAudioBufferAppendEventParam, + InputAudioBufferClearEventParam, + InputAudioBufferCommitEventParam, + ResponseCancelEventParam, + ResponseCreateEventParam, + SessionUpdateEventParam, + TranscriptionSessionUpdateParam, +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_connect_params.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_connect_params.py new file mode 100644 index 00000000..76474f3d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_connect_params.py @@ -0,0 +1,11 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Required, TypedDict + +__all__ = ["RealtimeConnectParams"] + + +class RealtimeConnectParams(TypedDict, total=False): + model: Required[str] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_response.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_response.py new file mode 100644 index 00000000..4c3c83d6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_response.py @@ -0,0 +1,87 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Union, Optional +from typing_extensions import Literal + +from ...._models import BaseModel +from ...shared.metadata import Metadata +from .conversation_item import ConversationItem +from .realtime_response_usage import RealtimeResponseUsage +from .realtime_response_status import RealtimeResponseStatus + +__all__ = ["RealtimeResponse"] + + +class RealtimeResponse(BaseModel): + id: Optional[str] = None + """The unique ID of the response.""" + + conversation_id: Optional[str] = None + """ + Which conversation the response is added to, determined by the `conversation` + field in the `response.create` event. If `auto`, the response will be added to + the default conversation and the value of `conversation_id` will be an id like + `conv_1234`. If `none`, the response will not be added to any conversation and + the value of `conversation_id` will be `null`. If responses are being triggered + by server VAD, the response will be added to the default conversation, thus the + `conversation_id` will be an id like `conv_1234`. + """ + + max_output_tokens: Union[int, Literal["inf"], None] = None + """ + Maximum number of output tokens for a single assistant response, inclusive of + tool calls, that was used in this response. + """ + + metadata: Optional[Metadata] = None + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + modalities: Optional[List[Literal["text", "audio"]]] = None + """The set of modalities the model used to respond. + + If there are multiple modalities, the model will pick one, for example if + `modalities` is `["text", "audio"]`, the model could be responding in either + text or audio. + """ + + object: Optional[Literal["realtime.response"]] = None + """The object type, must be `realtime.response`.""" + + output: Optional[List[ConversationItem]] = None + """The list of output items generated by the response.""" + + output_audio_format: Optional[Literal["pcm16", "g711_ulaw", "g711_alaw"]] = None + """The format of output audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`.""" + + status: Optional[Literal["completed", "cancelled", "failed", "incomplete"]] = None + """ + The final status of the response (`completed`, `cancelled`, `failed`, or + `incomplete`). + """ + + status_details: Optional[RealtimeResponseStatus] = None + """Additional details about the status.""" + + temperature: Optional[float] = None + """Sampling temperature for the model, limited to [0.6, 1.2]. Defaults to 0.8.""" + + usage: Optional[RealtimeResponseUsage] = None + """Usage statistics for the Response, this will correspond to billing. + + A Realtime API session will maintain a conversation context and append new Items + to the Conversation, thus output from previous turns (text and audio tokens) + will become the input for later turns. + """ + + voice: Optional[Literal["alloy", "ash", "ballad", "coral", "echo", "sage", "shimmer", "verse"]] = None + """ + The voice the model used to respond. Current voice options are `alloy`, `ash`, + `ballad`, `coral`, `echo` `sage`, `shimmer` and `verse`. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_response_status.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_response_status.py new file mode 100644 index 00000000..7189cd58 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_response_status.py @@ -0,0 +1,39 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["RealtimeResponseStatus", "Error"] + + +class Error(BaseModel): + code: Optional[str] = None + """Error code, if any.""" + + type: Optional[str] = None + """The type of error.""" + + +class RealtimeResponseStatus(BaseModel): + error: Optional[Error] = None + """ + A description of the error that caused the response to fail, populated when the + `status` is `failed`. + """ + + reason: Optional[Literal["turn_detected", "client_cancelled", "max_output_tokens", "content_filter"]] = None + """The reason the Response did not complete. + + For a `cancelled` Response, one of `turn_detected` (the server VAD detected a + new start of speech) or `client_cancelled` (the client sent a cancel event). For + an `incomplete` Response, one of `max_output_tokens` or `content_filter` (the + server-side safety filter activated and cut off the response). + """ + + type: Optional[Literal["completed", "cancelled", "incomplete", "failed"]] = None + """ + The type of error that caused the response to fail, corresponding with the + `status` field (`completed`, `cancelled`, `incomplete`, `failed`). + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_response_usage.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_response_usage.py new file mode 100644 index 00000000..7ca822e2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_response_usage.py @@ -0,0 +1,52 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional + +from ...._models import BaseModel + +__all__ = ["RealtimeResponseUsage", "InputTokenDetails", "OutputTokenDetails"] + + +class InputTokenDetails(BaseModel): + audio_tokens: Optional[int] = None + """The number of audio tokens used in the Response.""" + + cached_tokens: Optional[int] = None + """The number of cached tokens used in the Response.""" + + text_tokens: Optional[int] = None + """The number of text tokens used in the Response.""" + + +class OutputTokenDetails(BaseModel): + audio_tokens: Optional[int] = None + """The number of audio tokens used in the Response.""" + + text_tokens: Optional[int] = None + """The number of text tokens used in the Response.""" + + +class RealtimeResponseUsage(BaseModel): + input_token_details: Optional[InputTokenDetails] = None + """Details about the input tokens used in the Response.""" + + input_tokens: Optional[int] = None + """ + The number of input tokens used in the Response, including text and audio + tokens. + """ + + output_token_details: Optional[OutputTokenDetails] = None + """Details about the output tokens used in the Response.""" + + output_tokens: Optional[int] = None + """ + The number of output tokens sent in the Response, including text and audio + tokens. + """ + + total_tokens: Optional[int] = None + """ + The total number of tokens in the Response including input and output text and + audio tokens. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_server_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_server_event.py new file mode 100644 index 00000000..ba1d3244 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/realtime_server_event.py @@ -0,0 +1,91 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Literal, Annotated, TypeAlias + +from ...._utils import PropertyInfo +from ...._models import BaseModel +from .error_event import ErrorEvent +from .conversation_item import ConversationItem +from .response_done_event import ResponseDoneEvent +from .session_created_event import SessionCreatedEvent +from .session_updated_event import SessionUpdatedEvent +from .response_created_event import ResponseCreatedEvent +from .response_text_done_event import ResponseTextDoneEvent +from .rate_limits_updated_event import RateLimitsUpdatedEvent +from .response_audio_done_event import ResponseAudioDoneEvent +from .response_text_delta_event import ResponseTextDeltaEvent +from .conversation_created_event import ConversationCreatedEvent +from .response_audio_delta_event import ResponseAudioDeltaEvent +from .conversation_item_created_event import ConversationItemCreatedEvent +from .conversation_item_deleted_event import ConversationItemDeletedEvent +from .response_output_item_done_event import ResponseOutputItemDoneEvent +from .input_audio_buffer_cleared_event import InputAudioBufferClearedEvent +from .response_content_part_done_event import ResponseContentPartDoneEvent +from .response_output_item_added_event import ResponseOutputItemAddedEvent +from .conversation_item_truncated_event import ConversationItemTruncatedEvent +from .response_content_part_added_event import ResponseContentPartAddedEvent +from .input_audio_buffer_committed_event import InputAudioBufferCommittedEvent +from .transcription_session_updated_event import TranscriptionSessionUpdatedEvent +from .response_audio_transcript_done_event import ResponseAudioTranscriptDoneEvent +from .response_audio_transcript_delta_event import ResponseAudioTranscriptDeltaEvent +from .input_audio_buffer_speech_started_event import InputAudioBufferSpeechStartedEvent +from .input_audio_buffer_speech_stopped_event import InputAudioBufferSpeechStoppedEvent +from .response_function_call_arguments_done_event import ResponseFunctionCallArgumentsDoneEvent +from .response_function_call_arguments_delta_event import ResponseFunctionCallArgumentsDeltaEvent +from .conversation_item_input_audio_transcription_delta_event import ConversationItemInputAudioTranscriptionDeltaEvent +from .conversation_item_input_audio_transcription_failed_event import ConversationItemInputAudioTranscriptionFailedEvent +from .conversation_item_input_audio_transcription_completed_event import ( + ConversationItemInputAudioTranscriptionCompletedEvent, +) + +__all__ = ["RealtimeServerEvent", "ConversationItemRetrieved"] + + +class ConversationItemRetrieved(BaseModel): + event_id: str + """The unique ID of the server event.""" + + item: ConversationItem + """The item to add to the conversation.""" + + type: Literal["conversation.item.retrieved"] + """The event type, must be `conversation.item.retrieved`.""" + + +RealtimeServerEvent: TypeAlias = Annotated[ + Union[ + ConversationCreatedEvent, + ConversationItemCreatedEvent, + ConversationItemDeletedEvent, + ConversationItemInputAudioTranscriptionCompletedEvent, + ConversationItemInputAudioTranscriptionDeltaEvent, + ConversationItemInputAudioTranscriptionFailedEvent, + ConversationItemRetrieved, + ConversationItemTruncatedEvent, + ErrorEvent, + InputAudioBufferClearedEvent, + InputAudioBufferCommittedEvent, + InputAudioBufferSpeechStartedEvent, + InputAudioBufferSpeechStoppedEvent, + RateLimitsUpdatedEvent, + ResponseAudioDeltaEvent, + ResponseAudioDoneEvent, + ResponseAudioTranscriptDeltaEvent, + ResponseAudioTranscriptDoneEvent, + ResponseContentPartAddedEvent, + ResponseContentPartDoneEvent, + ResponseCreatedEvent, + ResponseDoneEvent, + ResponseFunctionCallArgumentsDeltaEvent, + ResponseFunctionCallArgumentsDoneEvent, + ResponseOutputItemAddedEvent, + ResponseOutputItemDoneEvent, + ResponseTextDeltaEvent, + ResponseTextDoneEvent, + SessionCreatedEvent, + SessionUpdatedEvent, + TranscriptionSessionUpdatedEvent, + ], + PropertyInfo(discriminator="type"), +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_audio_delta_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_audio_delta_event.py new file mode 100644 index 00000000..8e0128d9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_audio_delta_event.py @@ -0,0 +1,30 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ResponseAudioDeltaEvent"] + + +class ResponseAudioDeltaEvent(BaseModel): + content_index: int + """The index of the content part in the item's content array.""" + + delta: str + """Base64-encoded audio data delta.""" + + event_id: str + """The unique ID of the server event.""" + + item_id: str + """The ID of the item.""" + + output_index: int + """The index of the output item in the response.""" + + response_id: str + """The ID of the response.""" + + type: Literal["response.audio.delta"] + """The event type, must be `response.audio.delta`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_audio_done_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_audio_done_event.py new file mode 100644 index 00000000..68e78bc7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_audio_done_event.py @@ -0,0 +1,27 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ResponseAudioDoneEvent"] + + +class ResponseAudioDoneEvent(BaseModel): + content_index: int + """The index of the content part in the item's content array.""" + + event_id: str + """The unique ID of the server event.""" + + item_id: str + """The ID of the item.""" + + output_index: int + """The index of the output item in the response.""" + + response_id: str + """The ID of the response.""" + + type: Literal["response.audio.done"] + """The event type, must be `response.audio.done`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_audio_transcript_delta_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_audio_transcript_delta_event.py new file mode 100644 index 00000000..3609948d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_audio_transcript_delta_event.py @@ -0,0 +1,30 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ResponseAudioTranscriptDeltaEvent"] + + +class ResponseAudioTranscriptDeltaEvent(BaseModel): + content_index: int + """The index of the content part in the item's content array.""" + + delta: str + """The transcript delta.""" + + event_id: str + """The unique ID of the server event.""" + + item_id: str + """The ID of the item.""" + + output_index: int + """The index of the output item in the response.""" + + response_id: str + """The ID of the response.""" + + type: Literal["response.audio_transcript.delta"] + """The event type, must be `response.audio_transcript.delta`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_audio_transcript_done_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_audio_transcript_done_event.py new file mode 100644 index 00000000..4e4436a9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_audio_transcript_done_event.py @@ -0,0 +1,30 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ResponseAudioTranscriptDoneEvent"] + + +class ResponseAudioTranscriptDoneEvent(BaseModel): + content_index: int + """The index of the content part in the item's content array.""" + + event_id: str + """The unique ID of the server event.""" + + item_id: str + """The ID of the item.""" + + output_index: int + """The index of the output item in the response.""" + + response_id: str + """The ID of the response.""" + + transcript: str + """The final transcript of the audio.""" + + type: Literal["response.audio_transcript.done"] + """The event type, must be `response.audio_transcript.done`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_cancel_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_cancel_event.py new file mode 100644 index 00000000..c5ff991e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_cancel_event.py @@ -0,0 +1,22 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ResponseCancelEvent"] + + +class ResponseCancelEvent(BaseModel): + type: Literal["response.cancel"] + """The event type, must be `response.cancel`.""" + + event_id: Optional[str] = None + """Optional client-generated ID used to identify this event.""" + + response_id: Optional[str] = None + """ + A specific response ID to cancel - if not provided, will cancel an in-progress + response in the default conversation. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_cancel_event_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_cancel_event_param.py new file mode 100644 index 00000000..f3374073 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_cancel_event_param.py @@ -0,0 +1,21 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ResponseCancelEventParam"] + + +class ResponseCancelEventParam(TypedDict, total=False): + type: Required[Literal["response.cancel"]] + """The event type, must be `response.cancel`.""" + + event_id: str + """Optional client-generated ID used to identify this event.""" + + response_id: str + """ + A specific response ID to cancel - if not provided, will cancel an in-progress + response in the default conversation. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_content_part_added_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_content_part_added_event.py new file mode 100644 index 00000000..45c8f20f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_content_part_added_event.py @@ -0,0 +1,45 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ResponseContentPartAddedEvent", "Part"] + + +class Part(BaseModel): + audio: Optional[str] = None + """Base64-encoded audio data (if type is "audio").""" + + text: Optional[str] = None + """The text content (if type is "text").""" + + transcript: Optional[str] = None + """The transcript of the audio (if type is "audio").""" + + type: Optional[Literal["text", "audio"]] = None + """The content type ("text", "audio").""" + + +class ResponseContentPartAddedEvent(BaseModel): + content_index: int + """The index of the content part in the item's content array.""" + + event_id: str + """The unique ID of the server event.""" + + item_id: str + """The ID of the item to which the content part was added.""" + + output_index: int + """The index of the output item in the response.""" + + part: Part + """The content part that was added.""" + + response_id: str + """The ID of the response.""" + + type: Literal["response.content_part.added"] + """The event type, must be `response.content_part.added`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_content_part_done_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_content_part_done_event.py new file mode 100644 index 00000000..3d161161 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_content_part_done_event.py @@ -0,0 +1,45 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ResponseContentPartDoneEvent", "Part"] + + +class Part(BaseModel): + audio: Optional[str] = None + """Base64-encoded audio data (if type is "audio").""" + + text: Optional[str] = None + """The text content (if type is "text").""" + + transcript: Optional[str] = None + """The transcript of the audio (if type is "audio").""" + + type: Optional[Literal["text", "audio"]] = None + """The content type ("text", "audio").""" + + +class ResponseContentPartDoneEvent(BaseModel): + content_index: int + """The index of the content part in the item's content array.""" + + event_id: str + """The unique ID of the server event.""" + + item_id: str + """The ID of the item.""" + + output_index: int + """The index of the output item in the response.""" + + part: Part + """The content part that is done.""" + + response_id: str + """The ID of the response.""" + + type: Literal["response.content_part.done"] + """The event type, must be `response.content_part.done`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_create_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_create_event.py new file mode 100644 index 00000000..d6c5fda9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_create_event.py @@ -0,0 +1,121 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Union, Optional +from typing_extensions import Literal + +from ...._models import BaseModel +from ...shared.metadata import Metadata +from .conversation_item_with_reference import ConversationItemWithReference + +__all__ = ["ResponseCreateEvent", "Response", "ResponseTool"] + + +class ResponseTool(BaseModel): + description: Optional[str] = None + """ + The description of the function, including guidance on when and how to call it, + and guidance about what to tell the user when calling (if anything). + """ + + name: Optional[str] = None + """The name of the function.""" + + parameters: Optional[object] = None + """Parameters of the function in JSON Schema.""" + + type: Optional[Literal["function"]] = None + """The type of the tool, i.e. `function`.""" + + +class Response(BaseModel): + conversation: Union[str, Literal["auto", "none"], None] = None + """Controls which conversation the response is added to. + + Currently supports `auto` and `none`, with `auto` as the default value. The + `auto` value means that the contents of the response will be added to the + default conversation. Set this to `none` to create an out-of-band response which + will not add items to default conversation. + """ + + input: Optional[List[ConversationItemWithReference]] = None + """Input items to include in the prompt for the model. + + Using this field creates a new context for this Response instead of using the + default conversation. An empty array `[]` will clear the context for this + Response. Note that this can include references to items from the default + conversation. + """ + + instructions: Optional[str] = None + """The default system instructions (i.e. + + system message) prepended to model calls. This field allows the client to guide + the model on desired responses. The model can be instructed on response content + and format, (e.g. "be extremely succinct", "act friendly", "here are examples of + good responses") and on audio behavior (e.g. "talk quickly", "inject emotion + into your voice", "laugh frequently"). The instructions are not guaranteed to be + followed by the model, but they provide guidance to the model on the desired + behavior. + + Note that the server sets default instructions which will be used if this field + is not set and are visible in the `session.created` event at the start of the + session. + """ + + max_response_output_tokens: Union[int, Literal["inf"], None] = None + """ + Maximum number of output tokens for a single assistant response, inclusive of + tool calls. Provide an integer between 1 and 4096 to limit output tokens, or + `inf` for the maximum available tokens for a given model. Defaults to `inf`. + """ + + metadata: Optional[Metadata] = None + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + modalities: Optional[List[Literal["text", "audio"]]] = None + """The set of modalities the model can respond with. + + To disable audio, set this to ["text"]. + """ + + output_audio_format: Optional[Literal["pcm16", "g711_ulaw", "g711_alaw"]] = None + """The format of output audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`.""" + + temperature: Optional[float] = None + """Sampling temperature for the model, limited to [0.6, 1.2]. Defaults to 0.8.""" + + tool_choice: Optional[str] = None + """How the model chooses tools. + + Options are `auto`, `none`, `required`, or specify a function, like + `{"type": "function", "function": {"name": "my_function"}}`. + """ + + tools: Optional[List[ResponseTool]] = None + """Tools (functions) available to the model.""" + + voice: Optional[Literal["alloy", "ash", "ballad", "coral", "echo", "sage", "shimmer", "verse"]] = None + """The voice the model uses to respond. + + Voice cannot be changed during the session once the model has responded with + audio at least once. Current voice options are `alloy`, `ash`, `ballad`, + `coral`, `echo` `sage`, `shimmer` and `verse`. + """ + + +class ResponseCreateEvent(BaseModel): + type: Literal["response.create"] + """The event type, must be `response.create`.""" + + event_id: Optional[str] = None + """Optional client-generated ID used to identify this event.""" + + response: Optional[Response] = None + """Create a new Realtime response with these parameters""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_create_event_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_create_event_param.py new file mode 100644 index 00000000..c02fe1b3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_create_event_param.py @@ -0,0 +1,122 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union, Iterable, Optional +from typing_extensions import Literal, Required, TypedDict + +from ...shared_params.metadata import Metadata +from .conversation_item_with_reference_param import ConversationItemWithReferenceParam + +__all__ = ["ResponseCreateEventParam", "Response", "ResponseTool"] + + +class ResponseTool(TypedDict, total=False): + description: str + """ + The description of the function, including guidance on when and how to call it, + and guidance about what to tell the user when calling (if anything). + """ + + name: str + """The name of the function.""" + + parameters: object + """Parameters of the function in JSON Schema.""" + + type: Literal["function"] + """The type of the tool, i.e. `function`.""" + + +class Response(TypedDict, total=False): + conversation: Union[str, Literal["auto", "none"]] + """Controls which conversation the response is added to. + + Currently supports `auto` and `none`, with `auto` as the default value. The + `auto` value means that the contents of the response will be added to the + default conversation. Set this to `none` to create an out-of-band response which + will not add items to default conversation. + """ + + input: Iterable[ConversationItemWithReferenceParam] + """Input items to include in the prompt for the model. + + Using this field creates a new context for this Response instead of using the + default conversation. An empty array `[]` will clear the context for this + Response. Note that this can include references to items from the default + conversation. + """ + + instructions: str + """The default system instructions (i.e. + + system message) prepended to model calls. This field allows the client to guide + the model on desired responses. The model can be instructed on response content + and format, (e.g. "be extremely succinct", "act friendly", "here are examples of + good responses") and on audio behavior (e.g. "talk quickly", "inject emotion + into your voice", "laugh frequently"). The instructions are not guaranteed to be + followed by the model, but they provide guidance to the model on the desired + behavior. + + Note that the server sets default instructions which will be used if this field + is not set and are visible in the `session.created` event at the start of the + session. + """ + + max_response_output_tokens: Union[int, Literal["inf"]] + """ + Maximum number of output tokens for a single assistant response, inclusive of + tool calls. Provide an integer between 1 and 4096 to limit output tokens, or + `inf` for the maximum available tokens for a given model. Defaults to `inf`. + """ + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + modalities: List[Literal["text", "audio"]] + """The set of modalities the model can respond with. + + To disable audio, set this to ["text"]. + """ + + output_audio_format: Literal["pcm16", "g711_ulaw", "g711_alaw"] + """The format of output audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`.""" + + temperature: float + """Sampling temperature for the model, limited to [0.6, 1.2]. Defaults to 0.8.""" + + tool_choice: str + """How the model chooses tools. + + Options are `auto`, `none`, `required`, or specify a function, like + `{"type": "function", "function": {"name": "my_function"}}`. + """ + + tools: Iterable[ResponseTool] + """Tools (functions) available to the model.""" + + voice: Literal["alloy", "ash", "ballad", "coral", "echo", "sage", "shimmer", "verse"] + """The voice the model uses to respond. + + Voice cannot be changed during the session once the model has responded with + audio at least once. Current voice options are `alloy`, `ash`, `ballad`, + `coral`, `echo` `sage`, `shimmer` and `verse`. + """ + + +class ResponseCreateEventParam(TypedDict, total=False): + type: Required[Literal["response.create"]] + """The event type, must be `response.create`.""" + + event_id: str + """Optional client-generated ID used to identify this event.""" + + response: Response + """Create a new Realtime response with these parameters""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_created_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_created_event.py new file mode 100644 index 00000000..a4990cf0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_created_event.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel +from .realtime_response import RealtimeResponse + +__all__ = ["ResponseCreatedEvent"] + + +class ResponseCreatedEvent(BaseModel): + event_id: str + """The unique ID of the server event.""" + + response: RealtimeResponse + """The response resource.""" + + type: Literal["response.created"] + """The event type, must be `response.created`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_done_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_done_event.py new file mode 100644 index 00000000..9e655184 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_done_event.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel +from .realtime_response import RealtimeResponse + +__all__ = ["ResponseDoneEvent"] + + +class ResponseDoneEvent(BaseModel): + event_id: str + """The unique ID of the server event.""" + + response: RealtimeResponse + """The response resource.""" + + type: Literal["response.done"] + """The event type, must be `response.done`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_function_call_arguments_delta_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_function_call_arguments_delta_event.py new file mode 100644 index 00000000..cdbb64e6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_function_call_arguments_delta_event.py @@ -0,0 +1,30 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ResponseFunctionCallArgumentsDeltaEvent"] + + +class ResponseFunctionCallArgumentsDeltaEvent(BaseModel): + call_id: str + """The ID of the function call.""" + + delta: str + """The arguments delta as a JSON string.""" + + event_id: str + """The unique ID of the server event.""" + + item_id: str + """The ID of the function call item.""" + + output_index: int + """The index of the output item in the response.""" + + response_id: str + """The ID of the response.""" + + type: Literal["response.function_call_arguments.delta"] + """The event type, must be `response.function_call_arguments.delta`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_function_call_arguments_done_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_function_call_arguments_done_event.py new file mode 100644 index 00000000..0a5db533 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_function_call_arguments_done_event.py @@ -0,0 +1,30 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ResponseFunctionCallArgumentsDoneEvent"] + + +class ResponseFunctionCallArgumentsDoneEvent(BaseModel): + arguments: str + """The final arguments as a JSON string.""" + + call_id: str + """The ID of the function call.""" + + event_id: str + """The unique ID of the server event.""" + + item_id: str + """The ID of the function call item.""" + + output_index: int + """The index of the output item in the response.""" + + response_id: str + """The ID of the response.""" + + type: Literal["response.function_call_arguments.done"] + """The event type, must be `response.function_call_arguments.done`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_output_item_added_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_output_item_added_event.py new file mode 100644 index 00000000..c89bfdc3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_output_item_added_event.py @@ -0,0 +1,25 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel +from .conversation_item import ConversationItem + +__all__ = ["ResponseOutputItemAddedEvent"] + + +class ResponseOutputItemAddedEvent(BaseModel): + event_id: str + """The unique ID of the server event.""" + + item: ConversationItem + """The item to add to the conversation.""" + + output_index: int + """The index of the output item in the Response.""" + + response_id: str + """The ID of the Response to which the item belongs.""" + + type: Literal["response.output_item.added"] + """The event type, must be `response.output_item.added`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_output_item_done_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_output_item_done_event.py new file mode 100644 index 00000000..b5910e22 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_output_item_done_event.py @@ -0,0 +1,25 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel +from .conversation_item import ConversationItem + +__all__ = ["ResponseOutputItemDoneEvent"] + + +class ResponseOutputItemDoneEvent(BaseModel): + event_id: str + """The unique ID of the server event.""" + + item: ConversationItem + """The item to add to the conversation.""" + + output_index: int + """The index of the output item in the Response.""" + + response_id: str + """The ID of the Response to which the item belongs.""" + + type: Literal["response.output_item.done"] + """The event type, must be `response.output_item.done`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_text_delta_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_text_delta_event.py new file mode 100644 index 00000000..c463b3c3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_text_delta_event.py @@ -0,0 +1,30 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ResponseTextDeltaEvent"] + + +class ResponseTextDeltaEvent(BaseModel): + content_index: int + """The index of the content part in the item's content array.""" + + delta: str + """The text delta.""" + + event_id: str + """The unique ID of the server event.""" + + item_id: str + """The ID of the item.""" + + output_index: int + """The index of the output item in the response.""" + + response_id: str + """The ID of the response.""" + + type: Literal["response.text.delta"] + """The event type, must be `response.text.delta`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_text_done_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_text_done_event.py new file mode 100644 index 00000000..020ff41d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/response_text_done_event.py @@ -0,0 +1,30 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ResponseTextDoneEvent"] + + +class ResponseTextDoneEvent(BaseModel): + content_index: int + """The index of the content part in the item's content array.""" + + event_id: str + """The unique ID of the server event.""" + + item_id: str + """The ID of the item.""" + + output_index: int + """The index of the output item in the response.""" + + response_id: str + """The ID of the response.""" + + text: str + """The final text content.""" + + type: Literal["response.text.done"] + """The event type, must be `response.text.done`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session.py new file mode 100644 index 00000000..3ed53ff5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session.py @@ -0,0 +1,227 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Union, Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["Session", "InputAudioNoiseReduction", "InputAudioTranscription", "Tool", "TurnDetection"] + + +class InputAudioNoiseReduction(BaseModel): + type: Optional[Literal["near_field", "far_field"]] = None + """Type of noise reduction. + + `near_field` is for close-talking microphones such as headphones, `far_field` is + for far-field microphones such as laptop or conference room microphones. + """ + + +class InputAudioTranscription(BaseModel): + language: Optional[str] = None + """The language of the input audio. + + Supplying the input language in + [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) (e.g. `en`) + format will improve accuracy and latency. + """ + + model: Optional[str] = None + """ + The model to use for transcription, current options are `gpt-4o-transcribe`, + `gpt-4o-mini-transcribe`, and `whisper-1`. + """ + + prompt: Optional[str] = None + """ + An optional text to guide the model's style or continue a previous audio + segment. For `whisper-1`, the + [prompt is a list of keywords](https://platform.openai.com/docs/guides/speech-to-text#prompting). + For `gpt-4o-transcribe` models, the prompt is a free text string, for example + "expect words related to technology". + """ + + +class Tool(BaseModel): + description: Optional[str] = None + """ + The description of the function, including guidance on when and how to call it, + and guidance about what to tell the user when calling (if anything). + """ + + name: Optional[str] = None + """The name of the function.""" + + parameters: Optional[object] = None + """Parameters of the function in JSON Schema.""" + + type: Optional[Literal["function"]] = None + """The type of the tool, i.e. `function`.""" + + +class TurnDetection(BaseModel): + create_response: Optional[bool] = None + """ + Whether or not to automatically generate a response when a VAD stop event + occurs. + """ + + eagerness: Optional[Literal["low", "medium", "high", "auto"]] = None + """Used only for `semantic_vad` mode. + + The eagerness of the model to respond. `low` will wait longer for the user to + continue speaking, `high` will respond more quickly. `auto` is the default and + is equivalent to `medium`. + """ + + interrupt_response: Optional[bool] = None + """ + Whether or not to automatically interrupt any ongoing response with output to + the default conversation (i.e. `conversation` of `auto`) when a VAD start event + occurs. + """ + + prefix_padding_ms: Optional[int] = None + """Used only for `server_vad` mode. + + Amount of audio to include before the VAD detected speech (in milliseconds). + Defaults to 300ms. + """ + + silence_duration_ms: Optional[int] = None + """Used only for `server_vad` mode. + + Duration of silence to detect speech stop (in milliseconds). Defaults to 500ms. + With shorter values the model will respond more quickly, but may jump in on + short pauses from the user. + """ + + threshold: Optional[float] = None + """Used only for `server_vad` mode. + + Activation threshold for VAD (0.0 to 1.0), this defaults to 0.5. A higher + threshold will require louder audio to activate the model, and thus might + perform better in noisy environments. + """ + + type: Optional[Literal["server_vad", "semantic_vad"]] = None + """Type of turn detection.""" + + +class Session(BaseModel): + id: Optional[str] = None + """Unique identifier for the session that looks like `sess_1234567890abcdef`.""" + + input_audio_format: Optional[Literal["pcm16", "g711_ulaw", "g711_alaw"]] = None + """The format of input audio. + + Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For `pcm16`, input audio must + be 16-bit PCM at a 24kHz sample rate, single channel (mono), and little-endian + byte order. + """ + + input_audio_noise_reduction: Optional[InputAudioNoiseReduction] = None + """Configuration for input audio noise reduction. + + This can be set to `null` to turn off. Noise reduction filters audio added to + the input audio buffer before it is sent to VAD and the model. Filtering the + audio can improve VAD and turn detection accuracy (reducing false positives) and + model performance by improving perception of the input audio. + """ + + input_audio_transcription: Optional[InputAudioTranscription] = None + """ + Configuration for input audio transcription, defaults to off and can be set to + `null` to turn off once on. Input audio transcription is not native to the + model, since the model consumes audio directly. Transcription runs + asynchronously through + [the /audio/transcriptions endpoint](https://platform.openai.com/docs/api-reference/audio/createTranscription) + and should be treated as guidance of input audio content rather than precisely + what the model heard. The client can optionally set the language and prompt for + transcription, these offer additional guidance to the transcription service. + """ + + instructions: Optional[str] = None + """The default system instructions (i.e. + + system message) prepended to model calls. This field allows the client to guide + the model on desired responses. The model can be instructed on response content + and format, (e.g. "be extremely succinct", "act friendly", "here are examples of + good responses") and on audio behavior (e.g. "talk quickly", "inject emotion + into your voice", "laugh frequently"). The instructions are not guaranteed to be + followed by the model, but they provide guidance to the model on the desired + behavior. + + Note that the server sets default instructions which will be used if this field + is not set and are visible in the `session.created` event at the start of the + session. + """ + + max_response_output_tokens: Union[int, Literal["inf"], None] = None + """ + Maximum number of output tokens for a single assistant response, inclusive of + tool calls. Provide an integer between 1 and 4096 to limit output tokens, or + `inf` for the maximum available tokens for a given model. Defaults to `inf`. + """ + + modalities: Optional[List[Literal["text", "audio"]]] = None + """The set of modalities the model can respond with. + + To disable audio, set this to ["text"]. + """ + + model: Optional[ + Literal[ + "gpt-4o-realtime-preview", + "gpt-4o-realtime-preview-2024-10-01", + "gpt-4o-realtime-preview-2024-12-17", + "gpt-4o-mini-realtime-preview", + "gpt-4o-mini-realtime-preview-2024-12-17", + ] + ] = None + """The Realtime model used for this session.""" + + output_audio_format: Optional[Literal["pcm16", "g711_ulaw", "g711_alaw"]] = None + """The format of output audio. + + Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For `pcm16`, output audio is + sampled at a rate of 24kHz. + """ + + temperature: Optional[float] = None + """Sampling temperature for the model, limited to [0.6, 1.2]. + + For audio models a temperature of 0.8 is highly recommended for best + performance. + """ + + tool_choice: Optional[str] = None + """How the model chooses tools. + + Options are `auto`, `none`, `required`, or specify a function. + """ + + tools: Optional[List[Tool]] = None + """Tools (functions) available to the model.""" + + turn_detection: Optional[TurnDetection] = None + """Configuration for turn detection, ether Server VAD or Semantic VAD. + + This can be set to `null` to turn off, in which case the client must manually + trigger model response. Server VAD means that the model will detect the start + and end of speech based on audio volume and respond at the end of user speech. + Semantic VAD is more advanced and uses a turn detection model (in conjuction + with VAD) to semantically estimate whether the user has finished speaking, then + dynamically sets a timeout based on this probability. For example, if user audio + trails off with "uhhm", the model will score a low probability of turn end and + wait longer for the user to continue speaking. This can be useful for more + natural conversations, but may have a higher latency. + """ + + voice: Optional[Literal["alloy", "ash", "ballad", "coral", "echo", "sage", "shimmer", "verse"]] = None + """The voice the model uses to respond. + + Voice cannot be changed during the session once the model has responded with + audio at least once. Current voice options are `alloy`, `ash`, `ballad`, + `coral`, `echo` `sage`, `shimmer` and `verse`. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session_create_params.py new file mode 100644 index 00000000..fe4a1c86 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session_create_params.py @@ -0,0 +1,222 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union, Iterable +from typing_extensions import Literal, TypedDict + +__all__ = ["SessionCreateParams", "InputAudioNoiseReduction", "InputAudioTranscription", "Tool", "TurnDetection"] + + +class SessionCreateParams(TypedDict, total=False): + input_audio_format: Literal["pcm16", "g711_ulaw", "g711_alaw"] + """The format of input audio. + + Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For `pcm16`, input audio must + be 16-bit PCM at a 24kHz sample rate, single channel (mono), and little-endian + byte order. + """ + + input_audio_noise_reduction: InputAudioNoiseReduction + """Configuration for input audio noise reduction. + + This can be set to `null` to turn off. Noise reduction filters audio added to + the input audio buffer before it is sent to VAD and the model. Filtering the + audio can improve VAD and turn detection accuracy (reducing false positives) and + model performance by improving perception of the input audio. + """ + + input_audio_transcription: InputAudioTranscription + """ + Configuration for input audio transcription, defaults to off and can be set to + `null` to turn off once on. Input audio transcription is not native to the + model, since the model consumes audio directly. Transcription runs + asynchronously through + [the /audio/transcriptions endpoint](https://platform.openai.com/docs/api-reference/audio/createTranscription) + and should be treated as guidance of input audio content rather than precisely + what the model heard. The client can optionally set the language and prompt for + transcription, these offer additional guidance to the transcription service. + """ + + instructions: str + """The default system instructions (i.e. + + system message) prepended to model calls. This field allows the client to guide + the model on desired responses. The model can be instructed on response content + and format, (e.g. "be extremely succinct", "act friendly", "here are examples of + good responses") and on audio behavior (e.g. "talk quickly", "inject emotion + into your voice", "laugh frequently"). The instructions are not guaranteed to be + followed by the model, but they provide guidance to the model on the desired + behavior. + + Note that the server sets default instructions which will be used if this field + is not set and are visible in the `session.created` event at the start of the + session. + """ + + max_response_output_tokens: Union[int, Literal["inf"]] + """ + Maximum number of output tokens for a single assistant response, inclusive of + tool calls. Provide an integer between 1 and 4096 to limit output tokens, or + `inf` for the maximum available tokens for a given model. Defaults to `inf`. + """ + + modalities: List[Literal["text", "audio"]] + """The set of modalities the model can respond with. + + To disable audio, set this to ["text"]. + """ + + model: Literal[ + "gpt-4o-realtime-preview", + "gpt-4o-realtime-preview-2024-10-01", + "gpt-4o-realtime-preview-2024-12-17", + "gpt-4o-mini-realtime-preview", + "gpt-4o-mini-realtime-preview-2024-12-17", + ] + """The Realtime model used for this session.""" + + output_audio_format: Literal["pcm16", "g711_ulaw", "g711_alaw"] + """The format of output audio. + + Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For `pcm16`, output audio is + sampled at a rate of 24kHz. + """ + + temperature: float + """Sampling temperature for the model, limited to [0.6, 1.2]. + + For audio models a temperature of 0.8 is highly recommended for best + performance. + """ + + tool_choice: str + """How the model chooses tools. + + Options are `auto`, `none`, `required`, or specify a function. + """ + + tools: Iterable[Tool] + """Tools (functions) available to the model.""" + + turn_detection: TurnDetection + """Configuration for turn detection, ether Server VAD or Semantic VAD. + + This can be set to `null` to turn off, in which case the client must manually + trigger model response. Server VAD means that the model will detect the start + and end of speech based on audio volume and respond at the end of user speech. + Semantic VAD is more advanced and uses a turn detection model (in conjuction + with VAD) to semantically estimate whether the user has finished speaking, then + dynamically sets a timeout based on this probability. For example, if user audio + trails off with "uhhm", the model will score a low probability of turn end and + wait longer for the user to continue speaking. This can be useful for more + natural conversations, but may have a higher latency. + """ + + voice: Literal["alloy", "ash", "ballad", "coral", "echo", "sage", "shimmer", "verse"] + """The voice the model uses to respond. + + Voice cannot be changed during the session once the model has responded with + audio at least once. Current voice options are `alloy`, `ash`, `ballad`, + `coral`, `echo` `sage`, `shimmer` and `verse`. + """ + + +class InputAudioNoiseReduction(TypedDict, total=False): + type: Literal["near_field", "far_field"] + """Type of noise reduction. + + `near_field` is for close-talking microphones such as headphones, `far_field` is + for far-field microphones such as laptop or conference room microphones. + """ + + +class InputAudioTranscription(TypedDict, total=False): + language: str + """The language of the input audio. + + Supplying the input language in + [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) (e.g. `en`) + format will improve accuracy and latency. + """ + + model: str + """ + The model to use for transcription, current options are `gpt-4o-transcribe`, + `gpt-4o-mini-transcribe`, and `whisper-1`. + """ + + prompt: str + """ + An optional text to guide the model's style or continue a previous audio + segment. For `whisper-1`, the + [prompt is a list of keywords](https://platform.openai.com/docs/guides/speech-to-text#prompting). + For `gpt-4o-transcribe` models, the prompt is a free text string, for example + "expect words related to technology". + """ + + +class Tool(TypedDict, total=False): + description: str + """ + The description of the function, including guidance on when and how to call it, + and guidance about what to tell the user when calling (if anything). + """ + + name: str + """The name of the function.""" + + parameters: object + """Parameters of the function in JSON Schema.""" + + type: Literal["function"] + """The type of the tool, i.e. `function`.""" + + +class TurnDetection(TypedDict, total=False): + create_response: bool + """ + Whether or not to automatically generate a response when a VAD stop event + occurs. + """ + + eagerness: Literal["low", "medium", "high", "auto"] + """Used only for `semantic_vad` mode. + + The eagerness of the model to respond. `low` will wait longer for the user to + continue speaking, `high` will respond more quickly. `auto` is the default and + is equivalent to `medium`. + """ + + interrupt_response: bool + """ + Whether or not to automatically interrupt any ongoing response with output to + the default conversation (i.e. `conversation` of `auto`) when a VAD start event + occurs. + """ + + prefix_padding_ms: int + """Used only for `server_vad` mode. + + Amount of audio to include before the VAD detected speech (in milliseconds). + Defaults to 300ms. + """ + + silence_duration_ms: int + """Used only for `server_vad` mode. + + Duration of silence to detect speech stop (in milliseconds). Defaults to 500ms. + With shorter values the model will respond more quickly, but may jump in on + short pauses from the user. + """ + + threshold: float + """Used only for `server_vad` mode. + + Activation threshold for VAD (0.0 to 1.0), this defaults to 0.5. A higher + threshold will require louder audio to activate the model, and thus might + perform better in noisy environments. + """ + + type: Literal["server_vad", "semantic_vad"] + """Type of turn detection.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session_create_response.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session_create_response.py new file mode 100644 index 00000000..c26e62be --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session_create_response.py @@ -0,0 +1,150 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Union, Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["SessionCreateResponse", "ClientSecret", "InputAudioTranscription", "Tool", "TurnDetection"] + + +class ClientSecret(BaseModel): + expires_at: int + """Timestamp for when the token expires. + + Currently, all tokens expire after one minute. + """ + + value: str + """ + Ephemeral key usable in client environments to authenticate connections to the + Realtime API. Use this in client-side environments rather than a standard API + token, which should only be used server-side. + """ + + +class InputAudioTranscription(BaseModel): + model: Optional[str] = None + """ + The model to use for transcription, `whisper-1` is the only currently supported + model. + """ + + +class Tool(BaseModel): + description: Optional[str] = None + """ + The description of the function, including guidance on when and how to call it, + and guidance about what to tell the user when calling (if anything). + """ + + name: Optional[str] = None + """The name of the function.""" + + parameters: Optional[object] = None + """Parameters of the function in JSON Schema.""" + + type: Optional[Literal["function"]] = None + """The type of the tool, i.e. `function`.""" + + +class TurnDetection(BaseModel): + prefix_padding_ms: Optional[int] = None + """Amount of audio to include before the VAD detected speech (in milliseconds). + + Defaults to 300ms. + """ + + silence_duration_ms: Optional[int] = None + """Duration of silence to detect speech stop (in milliseconds). + + Defaults to 500ms. With shorter values the model will respond more quickly, but + may jump in on short pauses from the user. + """ + + threshold: Optional[float] = None + """Activation threshold for VAD (0.0 to 1.0), this defaults to 0.5. + + A higher threshold will require louder audio to activate the model, and thus + might perform better in noisy environments. + """ + + type: Optional[str] = None + """Type of turn detection, only `server_vad` is currently supported.""" + + +class SessionCreateResponse(BaseModel): + client_secret: ClientSecret + """Ephemeral key returned by the API.""" + + input_audio_format: Optional[str] = None + """The format of input audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`.""" + + input_audio_transcription: Optional[InputAudioTranscription] = None + """ + Configuration for input audio transcription, defaults to off and can be set to + `null` to turn off once on. Input audio transcription is not native to the + model, since the model consumes audio directly. Transcription runs + asynchronously through Whisper and should be treated as rough guidance rather + than the representation understood by the model. + """ + + instructions: Optional[str] = None + """The default system instructions (i.e. + + system message) prepended to model calls. This field allows the client to guide + the model on desired responses. The model can be instructed on response content + and format, (e.g. "be extremely succinct", "act friendly", "here are examples of + good responses") and on audio behavior (e.g. "talk quickly", "inject emotion + into your voice", "laugh frequently"). The instructions are not guaranteed to be + followed by the model, but they provide guidance to the model on the desired + behavior. + + Note that the server sets default instructions which will be used if this field + is not set and are visible in the `session.created` event at the start of the + session. + """ + + max_response_output_tokens: Union[int, Literal["inf"], None] = None + """ + Maximum number of output tokens for a single assistant response, inclusive of + tool calls. Provide an integer between 1 and 4096 to limit output tokens, or + `inf` for the maximum available tokens for a given model. Defaults to `inf`. + """ + + modalities: Optional[List[Literal["text", "audio"]]] = None + """The set of modalities the model can respond with. + + To disable audio, set this to ["text"]. + """ + + output_audio_format: Optional[str] = None + """The format of output audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`.""" + + temperature: Optional[float] = None + """Sampling temperature for the model, limited to [0.6, 1.2]. Defaults to 0.8.""" + + tool_choice: Optional[str] = None + """How the model chooses tools. + + Options are `auto`, `none`, `required`, or specify a function. + """ + + tools: Optional[List[Tool]] = None + """Tools (functions) available to the model.""" + + turn_detection: Optional[TurnDetection] = None + """Configuration for turn detection. + + Can be set to `null` to turn off. Server VAD means that the model will detect + the start and end of speech based on audio volume and respond at the end of user + speech. + """ + + voice: Optional[Literal["alloy", "ash", "ballad", "coral", "echo", "sage", "shimmer", "verse"]] = None + """The voice the model uses to respond. + + Voice cannot be changed during the session once the model has responded with + audio at least once. Current voice options are `alloy`, `ash`, `ballad`, + `coral`, `echo` `sage`, `shimmer` and `verse`. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session_created_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session_created_event.py new file mode 100644 index 00000000..baf6af38 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session_created_event.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from .session import Session +from ...._models import BaseModel + +__all__ = ["SessionCreatedEvent"] + + +class SessionCreatedEvent(BaseModel): + event_id: str + """The unique ID of the server event.""" + + session: Session + """Realtime session object configuration.""" + + type: Literal["session.created"] + """The event type, must be `session.created`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session_update_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session_update_event.py new file mode 100644 index 00000000..00180f59 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session_update_event.py @@ -0,0 +1,242 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Union, Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = [ + "SessionUpdateEvent", + "Session", + "SessionInputAudioNoiseReduction", + "SessionInputAudioTranscription", + "SessionTool", + "SessionTurnDetection", +] + + +class SessionInputAudioNoiseReduction(BaseModel): + type: Optional[Literal["near_field", "far_field"]] = None + """Type of noise reduction. + + `near_field` is for close-talking microphones such as headphones, `far_field` is + for far-field microphones such as laptop or conference room microphones. + """ + + +class SessionInputAudioTranscription(BaseModel): + language: Optional[str] = None + """The language of the input audio. + + Supplying the input language in + [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) (e.g. `en`) + format will improve accuracy and latency. + """ + + model: Optional[str] = None + """ + The model to use for transcription, current options are `gpt-4o-transcribe`, + `gpt-4o-mini-transcribe`, and `whisper-1`. + """ + + prompt: Optional[str] = None + """ + An optional text to guide the model's style or continue a previous audio + segment. For `whisper-1`, the + [prompt is a list of keywords](https://platform.openai.com/docs/guides/speech-to-text#prompting). + For `gpt-4o-transcribe` models, the prompt is a free text string, for example + "expect words related to technology". + """ + + +class SessionTool(BaseModel): + description: Optional[str] = None + """ + The description of the function, including guidance on when and how to call it, + and guidance about what to tell the user when calling (if anything). + """ + + name: Optional[str] = None + """The name of the function.""" + + parameters: Optional[object] = None + """Parameters of the function in JSON Schema.""" + + type: Optional[Literal["function"]] = None + """The type of the tool, i.e. `function`.""" + + +class SessionTurnDetection(BaseModel): + create_response: Optional[bool] = None + """ + Whether or not to automatically generate a response when a VAD stop event + occurs. + """ + + eagerness: Optional[Literal["low", "medium", "high", "auto"]] = None + """Used only for `semantic_vad` mode. + + The eagerness of the model to respond. `low` will wait longer for the user to + continue speaking, `high` will respond more quickly. `auto` is the default and + is equivalent to `medium`. + """ + + interrupt_response: Optional[bool] = None + """ + Whether or not to automatically interrupt any ongoing response with output to + the default conversation (i.e. `conversation` of `auto`) when a VAD start event + occurs. + """ + + prefix_padding_ms: Optional[int] = None + """Used only for `server_vad` mode. + + Amount of audio to include before the VAD detected speech (in milliseconds). + Defaults to 300ms. + """ + + silence_duration_ms: Optional[int] = None + """Used only for `server_vad` mode. + + Duration of silence to detect speech stop (in milliseconds). Defaults to 500ms. + With shorter values the model will respond more quickly, but may jump in on + short pauses from the user. + """ + + threshold: Optional[float] = None + """Used only for `server_vad` mode. + + Activation threshold for VAD (0.0 to 1.0), this defaults to 0.5. A higher + threshold will require louder audio to activate the model, and thus might + perform better in noisy environments. + """ + + type: Optional[Literal["server_vad", "semantic_vad"]] = None + """Type of turn detection.""" + + +class Session(BaseModel): + input_audio_format: Optional[Literal["pcm16", "g711_ulaw", "g711_alaw"]] = None + """The format of input audio. + + Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For `pcm16`, input audio must + be 16-bit PCM at a 24kHz sample rate, single channel (mono), and little-endian + byte order. + """ + + input_audio_noise_reduction: Optional[SessionInputAudioNoiseReduction] = None + """Configuration for input audio noise reduction. + + This can be set to `null` to turn off. Noise reduction filters audio added to + the input audio buffer before it is sent to VAD and the model. Filtering the + audio can improve VAD and turn detection accuracy (reducing false positives) and + model performance by improving perception of the input audio. + """ + + input_audio_transcription: Optional[SessionInputAudioTranscription] = None + """ + Configuration for input audio transcription, defaults to off and can be set to + `null` to turn off once on. Input audio transcription is not native to the + model, since the model consumes audio directly. Transcription runs + asynchronously through + [the /audio/transcriptions endpoint](https://platform.openai.com/docs/api-reference/audio/createTranscription) + and should be treated as guidance of input audio content rather than precisely + what the model heard. The client can optionally set the language and prompt for + transcription, these offer additional guidance to the transcription service. + """ + + instructions: Optional[str] = None + """The default system instructions (i.e. + + system message) prepended to model calls. This field allows the client to guide + the model on desired responses. The model can be instructed on response content + and format, (e.g. "be extremely succinct", "act friendly", "here are examples of + good responses") and on audio behavior (e.g. "talk quickly", "inject emotion + into your voice", "laugh frequently"). The instructions are not guaranteed to be + followed by the model, but they provide guidance to the model on the desired + behavior. + + Note that the server sets default instructions which will be used if this field + is not set and are visible in the `session.created` event at the start of the + session. + """ + + max_response_output_tokens: Union[int, Literal["inf"], None] = None + """ + Maximum number of output tokens for a single assistant response, inclusive of + tool calls. Provide an integer between 1 and 4096 to limit output tokens, or + `inf` for the maximum available tokens for a given model. Defaults to `inf`. + """ + + modalities: Optional[List[Literal["text", "audio"]]] = None + """The set of modalities the model can respond with. + + To disable audio, set this to ["text"]. + """ + + model: Optional[ + Literal[ + "gpt-4o-realtime-preview", + "gpt-4o-realtime-preview-2024-10-01", + "gpt-4o-realtime-preview-2024-12-17", + "gpt-4o-mini-realtime-preview", + "gpt-4o-mini-realtime-preview-2024-12-17", + ] + ] = None + """The Realtime model used for this session.""" + + output_audio_format: Optional[Literal["pcm16", "g711_ulaw", "g711_alaw"]] = None + """The format of output audio. + + Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For `pcm16`, output audio is + sampled at a rate of 24kHz. + """ + + temperature: Optional[float] = None + """Sampling temperature for the model, limited to [0.6, 1.2]. + + For audio models a temperature of 0.8 is highly recommended for best + performance. + """ + + tool_choice: Optional[str] = None + """How the model chooses tools. + + Options are `auto`, `none`, `required`, or specify a function. + """ + + tools: Optional[List[SessionTool]] = None + """Tools (functions) available to the model.""" + + turn_detection: Optional[SessionTurnDetection] = None + """Configuration for turn detection, ether Server VAD or Semantic VAD. + + This can be set to `null` to turn off, in which case the client must manually + trigger model response. Server VAD means that the model will detect the start + and end of speech based on audio volume and respond at the end of user speech. + Semantic VAD is more advanced and uses a turn detection model (in conjuction + with VAD) to semantically estimate whether the user has finished speaking, then + dynamically sets a timeout based on this probability. For example, if user audio + trails off with "uhhm", the model will score a low probability of turn end and + wait longer for the user to continue speaking. This can be useful for more + natural conversations, but may have a higher latency. + """ + + voice: Optional[Literal["alloy", "ash", "ballad", "coral", "echo", "sage", "shimmer", "verse"]] = None + """The voice the model uses to respond. + + Voice cannot be changed during the session once the model has responded with + audio at least once. Current voice options are `alloy`, `ash`, `ballad`, + `coral`, `echo` `sage`, `shimmer` and `verse`. + """ + + +class SessionUpdateEvent(BaseModel): + session: Session + """Realtime session object configuration.""" + + type: Literal["session.update"] + """The event type, must be `session.update`.""" + + event_id: Optional[str] = None + """Optional client-generated ID used to identify this event.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session_update_event_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session_update_event_param.py new file mode 100644 index 00000000..b8bce8fb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session_update_event_param.py @@ -0,0 +1,240 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union, Iterable +from typing_extensions import Literal, Required, TypedDict + +__all__ = [ + "SessionUpdateEventParam", + "Session", + "SessionInputAudioNoiseReduction", + "SessionInputAudioTranscription", + "SessionTool", + "SessionTurnDetection", +] + + +class SessionInputAudioNoiseReduction(TypedDict, total=False): + type: Literal["near_field", "far_field"] + """Type of noise reduction. + + `near_field` is for close-talking microphones such as headphones, `far_field` is + for far-field microphones such as laptop or conference room microphones. + """ + + +class SessionInputAudioTranscription(TypedDict, total=False): + language: str + """The language of the input audio. + + Supplying the input language in + [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) (e.g. `en`) + format will improve accuracy and latency. + """ + + model: str + """ + The model to use for transcription, current options are `gpt-4o-transcribe`, + `gpt-4o-mini-transcribe`, and `whisper-1`. + """ + + prompt: str + """ + An optional text to guide the model's style or continue a previous audio + segment. For `whisper-1`, the + [prompt is a list of keywords](https://platform.openai.com/docs/guides/speech-to-text#prompting). + For `gpt-4o-transcribe` models, the prompt is a free text string, for example + "expect words related to technology". + """ + + +class SessionTool(TypedDict, total=False): + description: str + """ + The description of the function, including guidance on when and how to call it, + and guidance about what to tell the user when calling (if anything). + """ + + name: str + """The name of the function.""" + + parameters: object + """Parameters of the function in JSON Schema.""" + + type: Literal["function"] + """The type of the tool, i.e. `function`.""" + + +class SessionTurnDetection(TypedDict, total=False): + create_response: bool + """ + Whether or not to automatically generate a response when a VAD stop event + occurs. + """ + + eagerness: Literal["low", "medium", "high", "auto"] + """Used only for `semantic_vad` mode. + + The eagerness of the model to respond. `low` will wait longer for the user to + continue speaking, `high` will respond more quickly. `auto` is the default and + is equivalent to `medium`. + """ + + interrupt_response: bool + """ + Whether or not to automatically interrupt any ongoing response with output to + the default conversation (i.e. `conversation` of `auto`) when a VAD start event + occurs. + """ + + prefix_padding_ms: int + """Used only for `server_vad` mode. + + Amount of audio to include before the VAD detected speech (in milliseconds). + Defaults to 300ms. + """ + + silence_duration_ms: int + """Used only for `server_vad` mode. + + Duration of silence to detect speech stop (in milliseconds). Defaults to 500ms. + With shorter values the model will respond more quickly, but may jump in on + short pauses from the user. + """ + + threshold: float + """Used only for `server_vad` mode. + + Activation threshold for VAD (0.0 to 1.0), this defaults to 0.5. A higher + threshold will require louder audio to activate the model, and thus might + perform better in noisy environments. + """ + + type: Literal["server_vad", "semantic_vad"] + """Type of turn detection.""" + + +class Session(TypedDict, total=False): + input_audio_format: Literal["pcm16", "g711_ulaw", "g711_alaw"] + """The format of input audio. + + Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For `pcm16`, input audio must + be 16-bit PCM at a 24kHz sample rate, single channel (mono), and little-endian + byte order. + """ + + input_audio_noise_reduction: SessionInputAudioNoiseReduction + """Configuration for input audio noise reduction. + + This can be set to `null` to turn off. Noise reduction filters audio added to + the input audio buffer before it is sent to VAD and the model. Filtering the + audio can improve VAD and turn detection accuracy (reducing false positives) and + model performance by improving perception of the input audio. + """ + + input_audio_transcription: SessionInputAudioTranscription + """ + Configuration for input audio transcription, defaults to off and can be set to + `null` to turn off once on. Input audio transcription is not native to the + model, since the model consumes audio directly. Transcription runs + asynchronously through + [the /audio/transcriptions endpoint](https://platform.openai.com/docs/api-reference/audio/createTranscription) + and should be treated as guidance of input audio content rather than precisely + what the model heard. The client can optionally set the language and prompt for + transcription, these offer additional guidance to the transcription service. + """ + + instructions: str + """The default system instructions (i.e. + + system message) prepended to model calls. This field allows the client to guide + the model on desired responses. The model can be instructed on response content + and format, (e.g. "be extremely succinct", "act friendly", "here are examples of + good responses") and on audio behavior (e.g. "talk quickly", "inject emotion + into your voice", "laugh frequently"). The instructions are not guaranteed to be + followed by the model, but they provide guidance to the model on the desired + behavior. + + Note that the server sets default instructions which will be used if this field + is not set and are visible in the `session.created` event at the start of the + session. + """ + + max_response_output_tokens: Union[int, Literal["inf"]] + """ + Maximum number of output tokens for a single assistant response, inclusive of + tool calls. Provide an integer between 1 and 4096 to limit output tokens, or + `inf` for the maximum available tokens for a given model. Defaults to `inf`. + """ + + modalities: List[Literal["text", "audio"]] + """The set of modalities the model can respond with. + + To disable audio, set this to ["text"]. + """ + + model: Literal[ + "gpt-4o-realtime-preview", + "gpt-4o-realtime-preview-2024-10-01", + "gpt-4o-realtime-preview-2024-12-17", + "gpt-4o-mini-realtime-preview", + "gpt-4o-mini-realtime-preview-2024-12-17", + ] + """The Realtime model used for this session.""" + + output_audio_format: Literal["pcm16", "g711_ulaw", "g711_alaw"] + """The format of output audio. + + Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For `pcm16`, output audio is + sampled at a rate of 24kHz. + """ + + temperature: float + """Sampling temperature for the model, limited to [0.6, 1.2]. + + For audio models a temperature of 0.8 is highly recommended for best + performance. + """ + + tool_choice: str + """How the model chooses tools. + + Options are `auto`, `none`, `required`, or specify a function. + """ + + tools: Iterable[SessionTool] + """Tools (functions) available to the model.""" + + turn_detection: SessionTurnDetection + """Configuration for turn detection, ether Server VAD or Semantic VAD. + + This can be set to `null` to turn off, in which case the client must manually + trigger model response. Server VAD means that the model will detect the start + and end of speech based on audio volume and respond at the end of user speech. + Semantic VAD is more advanced and uses a turn detection model (in conjuction + with VAD) to semantically estimate whether the user has finished speaking, then + dynamically sets a timeout based on this probability. For example, if user audio + trails off with "uhhm", the model will score a low probability of turn end and + wait longer for the user to continue speaking. This can be useful for more + natural conversations, but may have a higher latency. + """ + + voice: Literal["alloy", "ash", "ballad", "coral", "echo", "sage", "shimmer", "verse"] + """The voice the model uses to respond. + + Voice cannot be changed during the session once the model has responded with + audio at least once. Current voice options are `alloy`, `ash`, `ballad`, + `coral`, `echo` `sage`, `shimmer` and `verse`. + """ + + +class SessionUpdateEventParam(TypedDict, total=False): + session: Required[Session] + """Realtime session object configuration.""" + + type: Required[Literal["session.update"]] + """The event type, must be `session.update`.""" + + event_id: str + """Optional client-generated ID used to identify this event.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session_updated_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session_updated_event.py new file mode 100644 index 00000000..b9b6488e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/session_updated_event.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from .session import Session +from ...._models import BaseModel + +__all__ = ["SessionUpdatedEvent"] + + +class SessionUpdatedEvent(BaseModel): + event_id: str + """The unique ID of the server event.""" + + session: Session + """Realtime session object configuration.""" + + type: Literal["session.updated"] + """The event type, must be `session.updated`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/transcription_session.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/transcription_session.py new file mode 100644 index 00000000..7c7abf37 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/transcription_session.py @@ -0,0 +1,100 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["TranscriptionSession", "ClientSecret", "InputAudioTranscription", "TurnDetection"] + + +class ClientSecret(BaseModel): + expires_at: int + """Timestamp for when the token expires. + + Currently, all tokens expire after one minute. + """ + + value: str + """ + Ephemeral key usable in client environments to authenticate connections to the + Realtime API. Use this in client-side environments rather than a standard API + token, which should only be used server-side. + """ + + +class InputAudioTranscription(BaseModel): + language: Optional[str] = None + """The language of the input audio. + + Supplying the input language in + [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) (e.g. `en`) + format will improve accuracy and latency. + """ + + model: Optional[Literal["gpt-4o-transcribe", "gpt-4o-mini-transcribe", "whisper-1"]] = None + """The model to use for transcription. + + Can be `gpt-4o-transcribe`, `gpt-4o-mini-transcribe`, or `whisper-1`. + """ + + prompt: Optional[str] = None + """An optional text to guide the model's style or continue a previous audio + segment. + + The [prompt](https://platform.openai.com/docs/guides/speech-to-text#prompting) + should match the audio language. + """ + + +class TurnDetection(BaseModel): + prefix_padding_ms: Optional[int] = None + """Amount of audio to include before the VAD detected speech (in milliseconds). + + Defaults to 300ms. + """ + + silence_duration_ms: Optional[int] = None + """Duration of silence to detect speech stop (in milliseconds). + + Defaults to 500ms. With shorter values the model will respond more quickly, but + may jump in on short pauses from the user. + """ + + threshold: Optional[float] = None + """Activation threshold for VAD (0.0 to 1.0), this defaults to 0.5. + + A higher threshold will require louder audio to activate the model, and thus + might perform better in noisy environments. + """ + + type: Optional[str] = None + """Type of turn detection, only `server_vad` is currently supported.""" + + +class TranscriptionSession(BaseModel): + client_secret: ClientSecret + """Ephemeral key returned by the API. + + Only present when the session is created on the server via REST API. + """ + + input_audio_format: Optional[str] = None + """The format of input audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`.""" + + input_audio_transcription: Optional[InputAudioTranscription] = None + """Configuration of the transcription model.""" + + modalities: Optional[List[Literal["text", "audio"]]] = None + """The set of modalities the model can respond with. + + To disable audio, set this to ["text"]. + """ + + turn_detection: Optional[TurnDetection] = None + """Configuration for turn detection. + + Can be set to `null` to turn off. Server VAD means that the model will detect + the start and end of speech based on audio volume and respond at the end of user + speech. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/transcription_session_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/transcription_session_create_params.py new file mode 100644 index 00000000..4066dc4c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/transcription_session_create_params.py @@ -0,0 +1,143 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List +from typing_extensions import Literal, TypedDict + +__all__ = ["TranscriptionSessionCreateParams", "InputAudioNoiseReduction", "InputAudioTranscription", "TurnDetection"] + + +class TranscriptionSessionCreateParams(TypedDict, total=False): + include: List[str] + """The set of items to include in the transcription. Current available items are: + + - `item.input_audio_transcription.logprobs` + """ + + input_audio_format: Literal["pcm16", "g711_ulaw", "g711_alaw"] + """The format of input audio. + + Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For `pcm16`, input audio must + be 16-bit PCM at a 24kHz sample rate, single channel (mono), and little-endian + byte order. + """ + + input_audio_noise_reduction: InputAudioNoiseReduction + """Configuration for input audio noise reduction. + + This can be set to `null` to turn off. Noise reduction filters audio added to + the input audio buffer before it is sent to VAD and the model. Filtering the + audio can improve VAD and turn detection accuracy (reducing false positives) and + model performance by improving perception of the input audio. + """ + + input_audio_transcription: InputAudioTranscription + """Configuration for input audio transcription. + + The client can optionally set the language and prompt for transcription, these + offer additional guidance to the transcription service. + """ + + modalities: List[Literal["text", "audio"]] + """The set of modalities the model can respond with. + + To disable audio, set this to ["text"]. + """ + + turn_detection: TurnDetection + """Configuration for turn detection, ether Server VAD or Semantic VAD. + + This can be set to `null` to turn off, in which case the client must manually + trigger model response. Server VAD means that the model will detect the start + and end of speech based on audio volume and respond at the end of user speech. + Semantic VAD is more advanced and uses a turn detection model (in conjuction + with VAD) to semantically estimate whether the user has finished speaking, then + dynamically sets a timeout based on this probability. For example, if user audio + trails off with "uhhm", the model will score a low probability of turn end and + wait longer for the user to continue speaking. This can be useful for more + natural conversations, but may have a higher latency. + """ + + +class InputAudioNoiseReduction(TypedDict, total=False): + type: Literal["near_field", "far_field"] + """Type of noise reduction. + + `near_field` is for close-talking microphones such as headphones, `far_field` is + for far-field microphones such as laptop or conference room microphones. + """ + + +class InputAudioTranscription(TypedDict, total=False): + language: str + """The language of the input audio. + + Supplying the input language in + [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) (e.g. `en`) + format will improve accuracy and latency. + """ + + model: Literal["gpt-4o-transcribe", "gpt-4o-mini-transcribe", "whisper-1"] + """ + The model to use for transcription, current options are `gpt-4o-transcribe`, + `gpt-4o-mini-transcribe`, and `whisper-1`. + """ + + prompt: str + """ + An optional text to guide the model's style or continue a previous audio + segment. For `whisper-1`, the + [prompt is a list of keywords](https://platform.openai.com/docs/guides/speech-to-text#prompting). + For `gpt-4o-transcribe` models, the prompt is a free text string, for example + "expect words related to technology". + """ + + +class TurnDetection(TypedDict, total=False): + create_response: bool + """ + Whether or not to automatically generate a response when a VAD stop event + occurs. + """ + + eagerness: Literal["low", "medium", "high", "auto"] + """Used only for `semantic_vad` mode. + + The eagerness of the model to respond. `low` will wait longer for the user to + continue speaking, `high` will respond more quickly. `auto` is the default and + is equivalent to `medium`. + """ + + interrupt_response: bool + """ + Whether or not to automatically interrupt any ongoing response with output to + the default conversation (i.e. `conversation` of `auto`) when a VAD start event + occurs. + """ + + prefix_padding_ms: int + """Used only for `server_vad` mode. + + Amount of audio to include before the VAD detected speech (in milliseconds). + Defaults to 300ms. + """ + + silence_duration_ms: int + """Used only for `server_vad` mode. + + Duration of silence to detect speech stop (in milliseconds). Defaults to 500ms. + With shorter values the model will respond more quickly, but may jump in on + short pauses from the user. + """ + + threshold: float + """Used only for `server_vad` mode. + + Activation threshold for VAD (0.0 to 1.0), this defaults to 0.5. A higher + threshold will require louder audio to activate the model, and thus might + perform better in noisy environments. + """ + + type: Literal["server_vad", "semantic_vad"] + """Type of turn detection.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/transcription_session_update.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/transcription_session_update.py new file mode 100644 index 00000000..043ac02e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/transcription_session_update.py @@ -0,0 +1,160 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = [ + "TranscriptionSessionUpdate", + "Session", + "SessionInputAudioNoiseReduction", + "SessionInputAudioTranscription", + "SessionTurnDetection", +] + + +class SessionInputAudioNoiseReduction(BaseModel): + type: Optional[Literal["near_field", "far_field"]] = None + """Type of noise reduction. + + `near_field` is for close-talking microphones such as headphones, `far_field` is + for far-field microphones such as laptop or conference room microphones. + """ + + +class SessionInputAudioTranscription(BaseModel): + language: Optional[str] = None + """The language of the input audio. + + Supplying the input language in + [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) (e.g. `en`) + format will improve accuracy and latency. + """ + + model: Optional[Literal["gpt-4o-transcribe", "gpt-4o-mini-transcribe", "whisper-1"]] = None + """ + The model to use for transcription, current options are `gpt-4o-transcribe`, + `gpt-4o-mini-transcribe`, and `whisper-1`. + """ + + prompt: Optional[str] = None + """ + An optional text to guide the model's style or continue a previous audio + segment. For `whisper-1`, the + [prompt is a list of keywords](https://platform.openai.com/docs/guides/speech-to-text#prompting). + For `gpt-4o-transcribe` models, the prompt is a free text string, for example + "expect words related to technology". + """ + + +class SessionTurnDetection(BaseModel): + create_response: Optional[bool] = None + """ + Whether or not to automatically generate a response when a VAD stop event + occurs. + """ + + eagerness: Optional[Literal["low", "medium", "high", "auto"]] = None + """Used only for `semantic_vad` mode. + + The eagerness of the model to respond. `low` will wait longer for the user to + continue speaking, `high` will respond more quickly. `auto` is the default and + is equivalent to `medium`. + """ + + interrupt_response: Optional[bool] = None + """ + Whether or not to automatically interrupt any ongoing response with output to + the default conversation (i.e. `conversation` of `auto`) when a VAD start event + occurs. + """ + + prefix_padding_ms: Optional[int] = None + """Used only for `server_vad` mode. + + Amount of audio to include before the VAD detected speech (in milliseconds). + Defaults to 300ms. + """ + + silence_duration_ms: Optional[int] = None + """Used only for `server_vad` mode. + + Duration of silence to detect speech stop (in milliseconds). Defaults to 500ms. + With shorter values the model will respond more quickly, but may jump in on + short pauses from the user. + """ + + threshold: Optional[float] = None + """Used only for `server_vad` mode. + + Activation threshold for VAD (0.0 to 1.0), this defaults to 0.5. A higher + threshold will require louder audio to activate the model, and thus might + perform better in noisy environments. + """ + + type: Optional[Literal["server_vad", "semantic_vad"]] = None + """Type of turn detection.""" + + +class Session(BaseModel): + include: Optional[List[str]] = None + """The set of items to include in the transcription. Current available items are: + + - `item.input_audio_transcription.logprobs` + """ + + input_audio_format: Optional[Literal["pcm16", "g711_ulaw", "g711_alaw"]] = None + """The format of input audio. + + Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For `pcm16`, input audio must + be 16-bit PCM at a 24kHz sample rate, single channel (mono), and little-endian + byte order. + """ + + input_audio_noise_reduction: Optional[SessionInputAudioNoiseReduction] = None + """Configuration for input audio noise reduction. + + This can be set to `null` to turn off. Noise reduction filters audio added to + the input audio buffer before it is sent to VAD and the model. Filtering the + audio can improve VAD and turn detection accuracy (reducing false positives) and + model performance by improving perception of the input audio. + """ + + input_audio_transcription: Optional[SessionInputAudioTranscription] = None + """Configuration for input audio transcription. + + The client can optionally set the language and prompt for transcription, these + offer additional guidance to the transcription service. + """ + + modalities: Optional[List[Literal["text", "audio"]]] = None + """The set of modalities the model can respond with. + + To disable audio, set this to ["text"]. + """ + + turn_detection: Optional[SessionTurnDetection] = None + """Configuration for turn detection, ether Server VAD or Semantic VAD. + + This can be set to `null` to turn off, in which case the client must manually + trigger model response. Server VAD means that the model will detect the start + and end of speech based on audio volume and respond at the end of user speech. + Semantic VAD is more advanced and uses a turn detection model (in conjuction + with VAD) to semantically estimate whether the user has finished speaking, then + dynamically sets a timeout based on this probability. For example, if user audio + trails off with "uhhm", the model will score a low probability of turn end and + wait longer for the user to continue speaking. This can be useful for more + natural conversations, but may have a higher latency. + """ + + +class TranscriptionSessionUpdate(BaseModel): + session: Session + """Realtime transcription session object configuration.""" + + type: Literal["transcription_session.update"] + """The event type, must be `transcription_session.update`.""" + + event_id: Optional[str] = None + """Optional client-generated ID used to identify this event.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/transcription_session_update_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/transcription_session_update_param.py new file mode 100644 index 00000000..997a36d7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/transcription_session_update_param.py @@ -0,0 +1,160 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List +from typing_extensions import Literal, Required, TypedDict + +__all__ = [ + "TranscriptionSessionUpdateParam", + "Session", + "SessionInputAudioNoiseReduction", + "SessionInputAudioTranscription", + "SessionTurnDetection", +] + + +class SessionInputAudioNoiseReduction(TypedDict, total=False): + type: Literal["near_field", "far_field"] + """Type of noise reduction. + + `near_field` is for close-talking microphones such as headphones, `far_field` is + for far-field microphones such as laptop or conference room microphones. + """ + + +class SessionInputAudioTranscription(TypedDict, total=False): + language: str + """The language of the input audio. + + Supplying the input language in + [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) (e.g. `en`) + format will improve accuracy and latency. + """ + + model: Literal["gpt-4o-transcribe", "gpt-4o-mini-transcribe", "whisper-1"] + """ + The model to use for transcription, current options are `gpt-4o-transcribe`, + `gpt-4o-mini-transcribe`, and `whisper-1`. + """ + + prompt: str + """ + An optional text to guide the model's style or continue a previous audio + segment. For `whisper-1`, the + [prompt is a list of keywords](https://platform.openai.com/docs/guides/speech-to-text#prompting). + For `gpt-4o-transcribe` models, the prompt is a free text string, for example + "expect words related to technology". + """ + + +class SessionTurnDetection(TypedDict, total=False): + create_response: bool + """ + Whether or not to automatically generate a response when a VAD stop event + occurs. + """ + + eagerness: Literal["low", "medium", "high", "auto"] + """Used only for `semantic_vad` mode. + + The eagerness of the model to respond. `low` will wait longer for the user to + continue speaking, `high` will respond more quickly. `auto` is the default and + is equivalent to `medium`. + """ + + interrupt_response: bool + """ + Whether or not to automatically interrupt any ongoing response with output to + the default conversation (i.e. `conversation` of `auto`) when a VAD start event + occurs. + """ + + prefix_padding_ms: int + """Used only for `server_vad` mode. + + Amount of audio to include before the VAD detected speech (in milliseconds). + Defaults to 300ms. + """ + + silence_duration_ms: int + """Used only for `server_vad` mode. + + Duration of silence to detect speech stop (in milliseconds). Defaults to 500ms. + With shorter values the model will respond more quickly, but may jump in on + short pauses from the user. + """ + + threshold: float + """Used only for `server_vad` mode. + + Activation threshold for VAD (0.0 to 1.0), this defaults to 0.5. A higher + threshold will require louder audio to activate the model, and thus might + perform better in noisy environments. + """ + + type: Literal["server_vad", "semantic_vad"] + """Type of turn detection.""" + + +class Session(TypedDict, total=False): + include: List[str] + """The set of items to include in the transcription. Current available items are: + + - `item.input_audio_transcription.logprobs` + """ + + input_audio_format: Literal["pcm16", "g711_ulaw", "g711_alaw"] + """The format of input audio. + + Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For `pcm16`, input audio must + be 16-bit PCM at a 24kHz sample rate, single channel (mono), and little-endian + byte order. + """ + + input_audio_noise_reduction: SessionInputAudioNoiseReduction + """Configuration for input audio noise reduction. + + This can be set to `null` to turn off. Noise reduction filters audio added to + the input audio buffer before it is sent to VAD and the model. Filtering the + audio can improve VAD and turn detection accuracy (reducing false positives) and + model performance by improving perception of the input audio. + """ + + input_audio_transcription: SessionInputAudioTranscription + """Configuration for input audio transcription. + + The client can optionally set the language and prompt for transcription, these + offer additional guidance to the transcription service. + """ + + modalities: List[Literal["text", "audio"]] + """The set of modalities the model can respond with. + + To disable audio, set this to ["text"]. + """ + + turn_detection: SessionTurnDetection + """Configuration for turn detection, ether Server VAD or Semantic VAD. + + This can be set to `null` to turn off, in which case the client must manually + trigger model response. Server VAD means that the model will detect the start + and end of speech based on audio volume and respond at the end of user speech. + Semantic VAD is more advanced and uses a turn detection model (in conjuction + with VAD) to semantically estimate whether the user has finished speaking, then + dynamically sets a timeout based on this probability. For example, if user audio + trails off with "uhhm", the model will score a low probability of turn end and + wait longer for the user to continue speaking. This can be useful for more + natural conversations, but may have a higher latency. + """ + + +class TranscriptionSessionUpdateParam(TypedDict, total=False): + session: Required[Session] + """Realtime transcription session object configuration.""" + + type: Required[Literal["transcription_session.update"]] + """The event type, must be `transcription_session.update`.""" + + event_id: str + """Optional client-generated ID used to identify this event.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/transcription_session_updated_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/transcription_session_updated_event.py new file mode 100644 index 00000000..ffc100bc --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/realtime/transcription_session_updated_event.py @@ -0,0 +1,24 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel +from .transcription_session import TranscriptionSession + +__all__ = ["TranscriptionSessionUpdatedEvent"] + + +class TranscriptionSessionUpdatedEvent(BaseModel): + event_id: str + """The unique ID of the server event.""" + + session: TranscriptionSession + """A new Realtime transcription session configuration. + + When a session is created on the server via REST API, the session object also + contains an ephemeral key. Default TTL for keys is one minute. This property is + not present when a session is updated via the WebSocket API. + """ + + type: Literal["transcription_session.updated"] + """The event type, must be `transcription_session.updated`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/thread.py b/.venv/lib/python3.12/site-packages/openai/types/beta/thread.py new file mode 100644 index 00000000..789f66e4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/thread.py @@ -0,0 +1,63 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ..._models import BaseModel +from ..shared.metadata import Metadata + +__all__ = ["Thread", "ToolResources", "ToolResourcesCodeInterpreter", "ToolResourcesFileSearch"] + + +class ToolResourcesCodeInterpreter(BaseModel): + file_ids: Optional[List[str]] = None + """ + A list of [file](https://platform.openai.com/docs/api-reference/files) IDs made + available to the `code_interpreter` tool. There can be a maximum of 20 files + associated with the tool. + """ + + +class ToolResourcesFileSearch(BaseModel): + vector_store_ids: Optional[List[str]] = None + """ + The + [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) + attached to this thread. There can be a maximum of 1 vector store attached to + the thread. + """ + + +class ToolResources(BaseModel): + code_interpreter: Optional[ToolResourcesCodeInterpreter] = None + + file_search: Optional[ToolResourcesFileSearch] = None + + +class Thread(BaseModel): + id: str + """The identifier, which can be referenced in API endpoints.""" + + created_at: int + """The Unix timestamp (in seconds) for when the thread was created.""" + + metadata: Optional[Metadata] = None + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + object: Literal["thread"] + """The object type, which is always `thread`.""" + + tool_resources: Optional[ToolResources] = None + """ + A set of resources that are made available to the assistant's tools in this + thread. The resources are specific to the type of tool. For example, the + `code_interpreter` tool requires a list of file IDs, while the `file_search` + tool requires a list of vector store IDs. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/thread_create_and_run_params.py b/.venv/lib/python3.12/site-packages/openai/types/beta/thread_create_and_run_params.py new file mode 100644 index 00000000..065c390f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/thread_create_and_run_params.py @@ -0,0 +1,401 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union, Iterable, Optional +from typing_extensions import Literal, Required, TypeAlias, TypedDict + +from ..shared.chat_model import ChatModel +from .function_tool_param import FunctionToolParam +from .file_search_tool_param import FileSearchToolParam +from ..shared_params.metadata import Metadata +from .code_interpreter_tool_param import CodeInterpreterToolParam +from .assistant_tool_choice_option_param import AssistantToolChoiceOptionParam +from .threads.message_content_part_param import MessageContentPartParam +from .assistant_response_format_option_param import AssistantResponseFormatOptionParam + +__all__ = [ + "ThreadCreateAndRunParamsBase", + "Thread", + "ThreadMessage", + "ThreadMessageAttachment", + "ThreadMessageAttachmentTool", + "ThreadMessageAttachmentToolFileSearch", + "ThreadToolResources", + "ThreadToolResourcesCodeInterpreter", + "ThreadToolResourcesFileSearch", + "ThreadToolResourcesFileSearchVectorStore", + "ThreadToolResourcesFileSearchVectorStoreChunkingStrategy", + "ThreadToolResourcesFileSearchVectorStoreChunkingStrategyAuto", + "ThreadToolResourcesFileSearchVectorStoreChunkingStrategyStatic", + "ThreadToolResourcesFileSearchVectorStoreChunkingStrategyStaticStatic", + "ToolResources", + "ToolResourcesCodeInterpreter", + "ToolResourcesFileSearch", + "Tool", + "TruncationStrategy", + "ThreadCreateAndRunParamsNonStreaming", + "ThreadCreateAndRunParamsStreaming", +] + + +class ThreadCreateAndRunParamsBase(TypedDict, total=False): + assistant_id: Required[str] + """ + The ID of the + [assistant](https://platform.openai.com/docs/api-reference/assistants) to use to + execute this run. + """ + + instructions: Optional[str] + """Override the default system message of the assistant. + + This is useful for modifying the behavior on a per-run basis. + """ + + max_completion_tokens: Optional[int] + """ + The maximum number of completion tokens that may be used over the course of the + run. The run will make a best effort to use only the number of completion tokens + specified, across multiple turns of the run. If the run exceeds the number of + completion tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + """ + + max_prompt_tokens: Optional[int] + """The maximum number of prompt tokens that may be used over the course of the run. + + The run will make a best effort to use only the number of prompt tokens + specified, across multiple turns of the run. If the run exceeds the number of + prompt tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + """ + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + model: Union[str, ChatModel, None] + """ + The ID of the [Model](https://platform.openai.com/docs/api-reference/models) to + be used to execute this run. If a value is provided here, it will override the + model associated with the assistant. If not, the model associated with the + assistant will be used. + """ + + parallel_tool_calls: bool + """ + Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + """ + + response_format: Optional[AssistantResponseFormatOptionParam] + """Specifies the format that the model must output. + + Compatible with [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + """ + + temperature: Optional[float] + """What sampling temperature to use, between 0 and 2. + + Higher values like 0.8 will make the output more random, while lower values like + 0.2 will make it more focused and deterministic. + """ + + thread: Thread + """Options to create a new thread. + + If no thread is provided when running a request, an empty thread will be + created. + """ + + tool_choice: Optional[AssistantToolChoiceOptionParam] + """ + Controls which (if any) tool is called by the model. `none` means the model will + not call any tools and instead generates a message. `auto` is the default value + and means the model can pick between generating a message or calling one or more + tools. `required` means the model must call one or more tools before responding + to the user. Specifying a particular tool like `{"type": "file_search"}` or + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + """ + + tool_resources: Optional[ToolResources] + """A set of resources that are used by the assistant's tools. + + The resources are specific to the type of tool. For example, the + `code_interpreter` tool requires a list of file IDs, while the `file_search` + tool requires a list of vector store IDs. + """ + + tools: Optional[Iterable[Tool]] + """Override the tools the assistant can use for this run. + + This is useful for modifying the behavior on a per-run basis. + """ + + top_p: Optional[float] + """ + An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + """ + + truncation_strategy: Optional[TruncationStrategy] + """Controls for how a thread will be truncated prior to the run. + + Use this to control the intial context window of the run. + """ + + +class ThreadMessageAttachmentToolFileSearch(TypedDict, total=False): + type: Required[Literal["file_search"]] + """The type of tool being defined: `file_search`""" + + +ThreadMessageAttachmentTool: TypeAlias = Union[CodeInterpreterToolParam, ThreadMessageAttachmentToolFileSearch] + + +class ThreadMessageAttachment(TypedDict, total=False): + file_id: str + """The ID of the file to attach to the message.""" + + tools: Iterable[ThreadMessageAttachmentTool] + """The tools to add this file to.""" + + +class ThreadMessage(TypedDict, total=False): + content: Required[Union[str, Iterable[MessageContentPartParam]]] + """The text contents of the message.""" + + role: Required[Literal["user", "assistant"]] + """The role of the entity that is creating the message. Allowed values include: + + - `user`: Indicates the message is sent by an actual user and should be used in + most cases to represent user-generated messages. + - `assistant`: Indicates the message is generated by the assistant. Use this + value to insert messages from the assistant into the conversation. + """ + + attachments: Optional[Iterable[ThreadMessageAttachment]] + """A list of files attached to the message, and the tools they should be added to.""" + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + +class ThreadToolResourcesCodeInterpreter(TypedDict, total=False): + file_ids: List[str] + """ + A list of [file](https://platform.openai.com/docs/api-reference/files) IDs made + available to the `code_interpreter` tool. There can be a maximum of 20 files + associated with the tool. + """ + + +class ThreadToolResourcesFileSearchVectorStoreChunkingStrategyAuto(TypedDict, total=False): + type: Required[Literal["auto"]] + """Always `auto`.""" + + +class ThreadToolResourcesFileSearchVectorStoreChunkingStrategyStaticStatic(TypedDict, total=False): + chunk_overlap_tokens: Required[int] + """The number of tokens that overlap between chunks. The default value is `400`. + + Note that the overlap must not exceed half of `max_chunk_size_tokens`. + """ + + max_chunk_size_tokens: Required[int] + """The maximum number of tokens in each chunk. + + The default value is `800`. The minimum value is `100` and the maximum value is + `4096`. + """ + + +class ThreadToolResourcesFileSearchVectorStoreChunkingStrategyStatic(TypedDict, total=False): + static: Required[ThreadToolResourcesFileSearchVectorStoreChunkingStrategyStaticStatic] + + type: Required[Literal["static"]] + """Always `static`.""" + + +ThreadToolResourcesFileSearchVectorStoreChunkingStrategy: TypeAlias = Union[ + ThreadToolResourcesFileSearchVectorStoreChunkingStrategyAuto, + ThreadToolResourcesFileSearchVectorStoreChunkingStrategyStatic, +] + + +class ThreadToolResourcesFileSearchVectorStore(TypedDict, total=False): + chunking_strategy: ThreadToolResourcesFileSearchVectorStoreChunkingStrategy + """The chunking strategy used to chunk the file(s). + + If not set, will use the `auto` strategy. + """ + + file_ids: List[str] + """ + A list of [file](https://platform.openai.com/docs/api-reference/files) IDs to + add to the vector store. There can be a maximum of 10000 files in a vector + store. + """ + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + +class ThreadToolResourcesFileSearch(TypedDict, total=False): + vector_store_ids: List[str] + """ + The + [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) + attached to this thread. There can be a maximum of 1 vector store attached to + the thread. + """ + + vector_stores: Iterable[ThreadToolResourcesFileSearchVectorStore] + """ + A helper to create a + [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) + with file_ids and attach it to this thread. There can be a maximum of 1 vector + store attached to the thread. + """ + + +class ThreadToolResources(TypedDict, total=False): + code_interpreter: ThreadToolResourcesCodeInterpreter + + file_search: ThreadToolResourcesFileSearch + + +class Thread(TypedDict, total=False): + messages: Iterable[ThreadMessage] + """ + A list of [messages](https://platform.openai.com/docs/api-reference/messages) to + start the thread with. + """ + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + tool_resources: Optional[ThreadToolResources] + """ + A set of resources that are made available to the assistant's tools in this + thread. The resources are specific to the type of tool. For example, the + `code_interpreter` tool requires a list of file IDs, while the `file_search` + tool requires a list of vector store IDs. + """ + + +class ToolResourcesCodeInterpreter(TypedDict, total=False): + file_ids: List[str] + """ + A list of [file](https://platform.openai.com/docs/api-reference/files) IDs made + available to the `code_interpreter` tool. There can be a maximum of 20 files + associated with the tool. + """ + + +class ToolResourcesFileSearch(TypedDict, total=False): + vector_store_ids: List[str] + """ + The ID of the + [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) + attached to this assistant. There can be a maximum of 1 vector store attached to + the assistant. + """ + + +class ToolResources(TypedDict, total=False): + code_interpreter: ToolResourcesCodeInterpreter + + file_search: ToolResourcesFileSearch + + +Tool: TypeAlias = Union[CodeInterpreterToolParam, FileSearchToolParam, FunctionToolParam] + + +class TruncationStrategy(TypedDict, total=False): + type: Required[Literal["auto", "last_messages"]] + """The truncation strategy to use for the thread. + + The default is `auto`. If set to `last_messages`, the thread will be truncated + to the n most recent messages in the thread. When set to `auto`, messages in the + middle of the thread will be dropped to fit the context length of the model, + `max_prompt_tokens`. + """ + + last_messages: Optional[int] + """ + The number of most recent messages from the thread when constructing the context + for the run. + """ + + +class ThreadCreateAndRunParamsNonStreaming(ThreadCreateAndRunParamsBase, total=False): + stream: Optional[Literal[False]] + """ + If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + """ + + +class ThreadCreateAndRunParamsStreaming(ThreadCreateAndRunParamsBase): + stream: Required[Literal[True]] + """ + If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + """ + + +ThreadCreateAndRunParams = Union[ThreadCreateAndRunParamsNonStreaming, ThreadCreateAndRunParamsStreaming] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/thread_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/beta/thread_create_params.py new file mode 100644 index 00000000..ec1ccf19 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/thread_create_params.py @@ -0,0 +1,185 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union, Iterable, Optional +from typing_extensions import Literal, Required, TypeAlias, TypedDict + +from ..shared_params.metadata import Metadata +from .code_interpreter_tool_param import CodeInterpreterToolParam +from .threads.message_content_part_param import MessageContentPartParam + +__all__ = [ + "ThreadCreateParams", + "Message", + "MessageAttachment", + "MessageAttachmentTool", + "MessageAttachmentToolFileSearch", + "ToolResources", + "ToolResourcesCodeInterpreter", + "ToolResourcesFileSearch", + "ToolResourcesFileSearchVectorStore", + "ToolResourcesFileSearchVectorStoreChunkingStrategy", + "ToolResourcesFileSearchVectorStoreChunkingStrategyAuto", + "ToolResourcesFileSearchVectorStoreChunkingStrategyStatic", + "ToolResourcesFileSearchVectorStoreChunkingStrategyStaticStatic", +] + + +class ThreadCreateParams(TypedDict, total=False): + messages: Iterable[Message] + """ + A list of [messages](https://platform.openai.com/docs/api-reference/messages) to + start the thread with. + """ + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + tool_resources: Optional[ToolResources] + """ + A set of resources that are made available to the assistant's tools in this + thread. The resources are specific to the type of tool. For example, the + `code_interpreter` tool requires a list of file IDs, while the `file_search` + tool requires a list of vector store IDs. + """ + + +class MessageAttachmentToolFileSearch(TypedDict, total=False): + type: Required[Literal["file_search"]] + """The type of tool being defined: `file_search`""" + + +MessageAttachmentTool: TypeAlias = Union[CodeInterpreterToolParam, MessageAttachmentToolFileSearch] + + +class MessageAttachment(TypedDict, total=False): + file_id: str + """The ID of the file to attach to the message.""" + + tools: Iterable[MessageAttachmentTool] + """The tools to add this file to.""" + + +class Message(TypedDict, total=False): + content: Required[Union[str, Iterable[MessageContentPartParam]]] + """The text contents of the message.""" + + role: Required[Literal["user", "assistant"]] + """The role of the entity that is creating the message. Allowed values include: + + - `user`: Indicates the message is sent by an actual user and should be used in + most cases to represent user-generated messages. + - `assistant`: Indicates the message is generated by the assistant. Use this + value to insert messages from the assistant into the conversation. + """ + + attachments: Optional[Iterable[MessageAttachment]] + """A list of files attached to the message, and the tools they should be added to.""" + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + +class ToolResourcesCodeInterpreter(TypedDict, total=False): + file_ids: List[str] + """ + A list of [file](https://platform.openai.com/docs/api-reference/files) IDs made + available to the `code_interpreter` tool. There can be a maximum of 20 files + associated with the tool. + """ + + +class ToolResourcesFileSearchVectorStoreChunkingStrategyAuto(TypedDict, total=False): + type: Required[Literal["auto"]] + """Always `auto`.""" + + +class ToolResourcesFileSearchVectorStoreChunkingStrategyStaticStatic(TypedDict, total=False): + chunk_overlap_tokens: Required[int] + """The number of tokens that overlap between chunks. The default value is `400`. + + Note that the overlap must not exceed half of `max_chunk_size_tokens`. + """ + + max_chunk_size_tokens: Required[int] + """The maximum number of tokens in each chunk. + + The default value is `800`. The minimum value is `100` and the maximum value is + `4096`. + """ + + +class ToolResourcesFileSearchVectorStoreChunkingStrategyStatic(TypedDict, total=False): + static: Required[ToolResourcesFileSearchVectorStoreChunkingStrategyStaticStatic] + + type: Required[Literal["static"]] + """Always `static`.""" + + +ToolResourcesFileSearchVectorStoreChunkingStrategy: TypeAlias = Union[ + ToolResourcesFileSearchVectorStoreChunkingStrategyAuto, ToolResourcesFileSearchVectorStoreChunkingStrategyStatic +] + + +class ToolResourcesFileSearchVectorStore(TypedDict, total=False): + chunking_strategy: ToolResourcesFileSearchVectorStoreChunkingStrategy + """The chunking strategy used to chunk the file(s). + + If not set, will use the `auto` strategy. + """ + + file_ids: List[str] + """ + A list of [file](https://platform.openai.com/docs/api-reference/files) IDs to + add to the vector store. There can be a maximum of 10000 files in a vector + store. + """ + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + +class ToolResourcesFileSearch(TypedDict, total=False): + vector_store_ids: List[str] + """ + The + [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) + attached to this thread. There can be a maximum of 1 vector store attached to + the thread. + """ + + vector_stores: Iterable[ToolResourcesFileSearchVectorStore] + """ + A helper to create a + [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) + with file_ids and attach it to this thread. There can be a maximum of 1 vector + store attached to the thread. + """ + + +class ToolResources(TypedDict, total=False): + code_interpreter: ToolResourcesCodeInterpreter + + file_search: ToolResourcesFileSearch diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/thread_deleted.py b/.venv/lib/python3.12/site-packages/openai/types/beta/thread_deleted.py new file mode 100644 index 00000000..d3856263 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/thread_deleted.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ThreadDeleted"] + + +class ThreadDeleted(BaseModel): + id: str + + deleted: bool + + object: Literal["thread.deleted"] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/thread_update_params.py b/.venv/lib/python3.12/site-packages/openai/types/beta/thread_update_params.py new file mode 100644 index 00000000..b47ea8f3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/thread_update_params.py @@ -0,0 +1,55 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Optional +from typing_extensions import TypedDict + +from ..shared_params.metadata import Metadata + +__all__ = ["ThreadUpdateParams", "ToolResources", "ToolResourcesCodeInterpreter", "ToolResourcesFileSearch"] + + +class ThreadUpdateParams(TypedDict, total=False): + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + tool_resources: Optional[ToolResources] + """ + A set of resources that are made available to the assistant's tools in this + thread. The resources are specific to the type of tool. For example, the + `code_interpreter` tool requires a list of file IDs, while the `file_search` + tool requires a list of vector store IDs. + """ + + +class ToolResourcesCodeInterpreter(TypedDict, total=False): + file_ids: List[str] + """ + A list of [file](https://platform.openai.com/docs/api-reference/files) IDs made + available to the `code_interpreter` tool. There can be a maximum of 20 files + associated with the tool. + """ + + +class ToolResourcesFileSearch(TypedDict, total=False): + vector_store_ids: List[str] + """ + The + [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) + attached to this thread. There can be a maximum of 1 vector store attached to + the thread. + """ + + +class ToolResources(TypedDict, total=False): + code_interpreter: ToolResourcesCodeInterpreter + + file_search: ToolResourcesFileSearch diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/__init__.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/__init__.py new file mode 100644 index 00000000..70853177 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/__init__.py @@ -0,0 +1,46 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from .run import Run as Run +from .text import Text as Text +from .message import Message as Message +from .image_url import ImageURL as ImageURL +from .annotation import Annotation as Annotation +from .image_file import ImageFile as ImageFile +from .run_status import RunStatus as RunStatus +from .text_delta import TextDelta as TextDelta +from .message_delta import MessageDelta as MessageDelta +from .image_url_delta import ImageURLDelta as ImageURLDelta +from .image_url_param import ImageURLParam as ImageURLParam +from .message_content import MessageContent as MessageContent +from .message_deleted import MessageDeleted as MessageDeleted +from .run_list_params import RunListParams as RunListParams +from .annotation_delta import AnnotationDelta as AnnotationDelta +from .image_file_delta import ImageFileDelta as ImageFileDelta +from .image_file_param import ImageFileParam as ImageFileParam +from .text_delta_block import TextDeltaBlock as TextDeltaBlock +from .run_create_params import RunCreateParams as RunCreateParams +from .run_update_params import RunUpdateParams as RunUpdateParams +from .text_content_block import TextContentBlock as TextContentBlock +from .message_delta_event import MessageDeltaEvent as MessageDeltaEvent +from .message_list_params import MessageListParams as MessageListParams +from .refusal_delta_block import RefusalDeltaBlock as RefusalDeltaBlock +from .file_path_annotation import FilePathAnnotation as FilePathAnnotation +from .image_url_delta_block import ImageURLDeltaBlock as ImageURLDeltaBlock +from .message_content_delta import MessageContentDelta as MessageContentDelta +from .message_create_params import MessageCreateParams as MessageCreateParams +from .message_update_params import MessageUpdateParams as MessageUpdateParams +from .refusal_content_block import RefusalContentBlock as RefusalContentBlock +from .image_file_delta_block import ImageFileDeltaBlock as ImageFileDeltaBlock +from .image_url_content_block import ImageURLContentBlock as ImageURLContentBlock +from .file_citation_annotation import FileCitationAnnotation as FileCitationAnnotation +from .image_file_content_block import ImageFileContentBlock as ImageFileContentBlock +from .text_content_block_param import TextContentBlockParam as TextContentBlockParam +from .file_path_delta_annotation import FilePathDeltaAnnotation as FilePathDeltaAnnotation +from .message_content_part_param import MessageContentPartParam as MessageContentPartParam +from .image_url_content_block_param import ImageURLContentBlockParam as ImageURLContentBlockParam +from .file_citation_delta_annotation import FileCitationDeltaAnnotation as FileCitationDeltaAnnotation +from .image_file_content_block_param import ImageFileContentBlockParam as ImageFileContentBlockParam +from .run_submit_tool_outputs_params import RunSubmitToolOutputsParams as RunSubmitToolOutputsParams +from .required_action_function_tool_call import RequiredActionFunctionToolCall as RequiredActionFunctionToolCall diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/annotation.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/annotation.py new file mode 100644 index 00000000..13c10abf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/annotation.py @@ -0,0 +1,12 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Annotated, TypeAlias + +from ...._utils import PropertyInfo +from .file_path_annotation import FilePathAnnotation +from .file_citation_annotation import FileCitationAnnotation + +__all__ = ["Annotation"] + +Annotation: TypeAlias = Annotated[Union[FileCitationAnnotation, FilePathAnnotation], PropertyInfo(discriminator="type")] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/annotation_delta.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/annotation_delta.py new file mode 100644 index 00000000..c7c6c898 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/annotation_delta.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Annotated, TypeAlias + +from ...._utils import PropertyInfo +from .file_path_delta_annotation import FilePathDeltaAnnotation +from .file_citation_delta_annotation import FileCitationDeltaAnnotation + +__all__ = ["AnnotationDelta"] + +AnnotationDelta: TypeAlias = Annotated[ + Union[FileCitationDeltaAnnotation, FilePathDeltaAnnotation], PropertyInfo(discriminator="type") +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/file_citation_annotation.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/file_citation_annotation.py new file mode 100644 index 00000000..c3085aed --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/file_citation_annotation.py @@ -0,0 +1,26 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["FileCitationAnnotation", "FileCitation"] + + +class FileCitation(BaseModel): + file_id: str + """The ID of the specific File the citation is from.""" + + +class FileCitationAnnotation(BaseModel): + end_index: int + + file_citation: FileCitation + + start_index: int + + text: str + """The text in the message content that needs to be replaced.""" + + type: Literal["file_citation"] + """Always `file_citation`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/file_citation_delta_annotation.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/file_citation_delta_annotation.py new file mode 100644 index 00000000..b40c0d12 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/file_citation_delta_annotation.py @@ -0,0 +1,33 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["FileCitationDeltaAnnotation", "FileCitation"] + + +class FileCitation(BaseModel): + file_id: Optional[str] = None + """The ID of the specific File the citation is from.""" + + quote: Optional[str] = None + """The specific quote in the file.""" + + +class FileCitationDeltaAnnotation(BaseModel): + index: int + """The index of the annotation in the text content part.""" + + type: Literal["file_citation"] + """Always `file_citation`.""" + + end_index: Optional[int] = None + + file_citation: Optional[FileCitation] = None + + start_index: Optional[int] = None + + text: Optional[str] = None + """The text in the message content that needs to be replaced.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/file_path_annotation.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/file_path_annotation.py new file mode 100644 index 00000000..9812737e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/file_path_annotation.py @@ -0,0 +1,26 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["FilePathAnnotation", "FilePath"] + + +class FilePath(BaseModel): + file_id: str + """The ID of the file that was generated.""" + + +class FilePathAnnotation(BaseModel): + end_index: int + + file_path: FilePath + + start_index: int + + text: str + """The text in the message content that needs to be replaced.""" + + type: Literal["file_path"] + """Always `file_path`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/file_path_delta_annotation.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/file_path_delta_annotation.py new file mode 100644 index 00000000..0cbb445e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/file_path_delta_annotation.py @@ -0,0 +1,30 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["FilePathDeltaAnnotation", "FilePath"] + + +class FilePath(BaseModel): + file_id: Optional[str] = None + """The ID of the file that was generated.""" + + +class FilePathDeltaAnnotation(BaseModel): + index: int + """The index of the annotation in the text content part.""" + + type: Literal["file_path"] + """Always `file_path`.""" + + end_index: Optional[int] = None + + file_path: Optional[FilePath] = None + + start_index: Optional[int] = None + + text: Optional[str] = None + """The text in the message content that needs to be replaced.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_file.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_file.py new file mode 100644 index 00000000..6000d975 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_file.py @@ -0,0 +1,23 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ImageFile"] + + +class ImageFile(BaseModel): + file_id: str + """ + The [File](https://platform.openai.com/docs/api-reference/files) ID of the image + in the message content. Set `purpose="vision"` when uploading the File if you + need to later display the file content. + """ + + detail: Optional[Literal["auto", "low", "high"]] = None + """Specifies the detail level of the image if specified by the user. + + `low` uses fewer tokens, you can opt in to high resolution using `high`. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_file_content_block.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_file_content_block.py new file mode 100644 index 00000000..a9099990 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_file_content_block.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel +from .image_file import ImageFile + +__all__ = ["ImageFileContentBlock"] + + +class ImageFileContentBlock(BaseModel): + image_file: ImageFile + + type: Literal["image_file"] + """Always `image_file`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_file_content_block_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_file_content_block_param.py new file mode 100644 index 00000000..48d94bee --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_file_content_block_param.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +from .image_file_param import ImageFileParam + +__all__ = ["ImageFileContentBlockParam"] + + +class ImageFileContentBlockParam(TypedDict, total=False): + image_file: Required[ImageFileParam] + + type: Required[Literal["image_file"]] + """Always `image_file`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_file_delta.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_file_delta.py new file mode 100644 index 00000000..4581184c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_file_delta.py @@ -0,0 +1,23 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ImageFileDelta"] + + +class ImageFileDelta(BaseModel): + detail: Optional[Literal["auto", "low", "high"]] = None + """Specifies the detail level of the image if specified by the user. + + `low` uses fewer tokens, you can opt in to high resolution using `high`. + """ + + file_id: Optional[str] = None + """ + The [File](https://platform.openai.com/docs/api-reference/files) ID of the image + in the message content. Set `purpose="vision"` when uploading the File if you + need to later display the file content. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_file_delta_block.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_file_delta_block.py new file mode 100644 index 00000000..0a5a2e8a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_file_delta_block.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel +from .image_file_delta import ImageFileDelta + +__all__ = ["ImageFileDeltaBlock"] + + +class ImageFileDeltaBlock(BaseModel): + index: int + """The index of the content part in the message.""" + + type: Literal["image_file"] + """Always `image_file`.""" + + image_file: Optional[ImageFileDelta] = None diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_file_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_file_param.py new file mode 100644 index 00000000..e4a85358 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_file_param.py @@ -0,0 +1,22 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ImageFileParam"] + + +class ImageFileParam(TypedDict, total=False): + file_id: Required[str] + """ + The [File](https://platform.openai.com/docs/api-reference/files) ID of the image + in the message content. Set `purpose="vision"` when uploading the File if you + need to later display the file content. + """ + + detail: Literal["auto", "low", "high"] + """Specifies the detail level of the image if specified by the user. + + `low` uses fewer tokens, you can opt in to high resolution using `high`. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_url.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_url.py new file mode 100644 index 00000000..d1fac147 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_url.py @@ -0,0 +1,23 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ImageURL"] + + +class ImageURL(BaseModel): + url: str + """ + The external URL of the image, must be a supported image types: jpeg, jpg, png, + gif, webp. + """ + + detail: Optional[Literal["auto", "low", "high"]] = None + """Specifies the detail level of the image. + + `low` uses fewer tokens, you can opt in to high resolution using `high`. Default + value is `auto` + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_url_content_block.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_url_content_block.py new file mode 100644 index 00000000..40a16c1d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_url_content_block.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from .image_url import ImageURL +from ...._models import BaseModel + +__all__ = ["ImageURLContentBlock"] + + +class ImageURLContentBlock(BaseModel): + image_url: ImageURL + + type: Literal["image_url"] + """The type of the content part.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_url_content_block_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_url_content_block_param.py new file mode 100644 index 00000000..585b926c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_url_content_block_param.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +from .image_url_param import ImageURLParam + +__all__ = ["ImageURLContentBlockParam"] + + +class ImageURLContentBlockParam(TypedDict, total=False): + image_url: Required[ImageURLParam] + + type: Required[Literal["image_url"]] + """The type of the content part.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_url_delta.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_url_delta.py new file mode 100644 index 00000000..e4026719 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_url_delta.py @@ -0,0 +1,22 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["ImageURLDelta"] + + +class ImageURLDelta(BaseModel): + detail: Optional[Literal["auto", "low", "high"]] = None + """Specifies the detail level of the image. + + `low` uses fewer tokens, you can opt in to high resolution using `high`. + """ + + url: Optional[str] = None + """ + The URL of the image, must be a supported image types: jpeg, jpg, png, gif, + webp. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_url_delta_block.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_url_delta_block.py new file mode 100644 index 00000000..5252da12 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_url_delta_block.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel +from .image_url_delta import ImageURLDelta + +__all__ = ["ImageURLDeltaBlock"] + + +class ImageURLDeltaBlock(BaseModel): + index: int + """The index of the content part in the message.""" + + type: Literal["image_url"] + """Always `image_url`.""" + + image_url: Optional[ImageURLDelta] = None diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_url_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_url_param.py new file mode 100644 index 00000000..6b7e427e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/image_url_param.py @@ -0,0 +1,22 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ImageURLParam"] + + +class ImageURLParam(TypedDict, total=False): + url: Required[str] + """ + The external URL of the image, must be a supported image types: jpeg, jpg, png, + gif, webp. + """ + + detail: Literal["auto", "low", "high"] + """Specifies the detail level of the image. + + `low` uses fewer tokens, you can opt in to high resolution using `high`. Default + value is `auto` + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message.py new file mode 100644 index 00000000..4a05a128 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message.py @@ -0,0 +1,103 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Union, Optional +from typing_extensions import Literal, TypeAlias + +from ...._models import BaseModel +from .message_content import MessageContent +from ...shared.metadata import Metadata +from ..code_interpreter_tool import CodeInterpreterTool + +__all__ = [ + "Message", + "Attachment", + "AttachmentTool", + "AttachmentToolAssistantToolsFileSearchTypeOnly", + "IncompleteDetails", +] + + +class AttachmentToolAssistantToolsFileSearchTypeOnly(BaseModel): + type: Literal["file_search"] + """The type of tool being defined: `file_search`""" + + +AttachmentTool: TypeAlias = Union[CodeInterpreterTool, AttachmentToolAssistantToolsFileSearchTypeOnly] + + +class Attachment(BaseModel): + file_id: Optional[str] = None + """The ID of the file to attach to the message.""" + + tools: Optional[List[AttachmentTool]] = None + """The tools to add this file to.""" + + +class IncompleteDetails(BaseModel): + reason: Literal["content_filter", "max_tokens", "run_cancelled", "run_expired", "run_failed"] + """The reason the message is incomplete.""" + + +class Message(BaseModel): + id: str + """The identifier, which can be referenced in API endpoints.""" + + assistant_id: Optional[str] = None + """ + If applicable, the ID of the + [assistant](https://platform.openai.com/docs/api-reference/assistants) that + authored this message. + """ + + attachments: Optional[List[Attachment]] = None + """A list of files attached to the message, and the tools they were added to.""" + + completed_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the message was completed.""" + + content: List[MessageContent] + """The content of the message in array of text and/or images.""" + + created_at: int + """The Unix timestamp (in seconds) for when the message was created.""" + + incomplete_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the message was marked as incomplete.""" + + incomplete_details: Optional[IncompleteDetails] = None + """On an incomplete message, details about why the message is incomplete.""" + + metadata: Optional[Metadata] = None + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + object: Literal["thread.message"] + """The object type, which is always `thread.message`.""" + + role: Literal["user", "assistant"] + """The entity that produced the message. One of `user` or `assistant`.""" + + run_id: Optional[str] = None + """ + The ID of the [run](https://platform.openai.com/docs/api-reference/runs) + associated with the creation of this message. Value is `null` when messages are + created manually using the create message or create thread endpoints. + """ + + status: Literal["in_progress", "incomplete", "completed"] + """ + The status of the message, which can be either `in_progress`, `incomplete`, or + `completed`. + """ + + thread_id: str + """ + The [thread](https://platform.openai.com/docs/api-reference/threads) ID that + this message belongs to. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_content.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_content.py new file mode 100644 index 00000000..9523c1e1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_content.py @@ -0,0 +1,18 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Annotated, TypeAlias + +from ...._utils import PropertyInfo +from .text_content_block import TextContentBlock +from .refusal_content_block import RefusalContentBlock +from .image_url_content_block import ImageURLContentBlock +from .image_file_content_block import ImageFileContentBlock + +__all__ = ["MessageContent"] + + +MessageContent: TypeAlias = Annotated[ + Union[ImageFileContentBlock, ImageURLContentBlock, TextContentBlock, RefusalContentBlock], + PropertyInfo(discriminator="type"), +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_content_delta.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_content_delta.py new file mode 100644 index 00000000..b6e7dfa4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_content_delta.py @@ -0,0 +1,17 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Annotated, TypeAlias + +from ...._utils import PropertyInfo +from .text_delta_block import TextDeltaBlock +from .refusal_delta_block import RefusalDeltaBlock +from .image_url_delta_block import ImageURLDeltaBlock +from .image_file_delta_block import ImageFileDeltaBlock + +__all__ = ["MessageContentDelta"] + +MessageContentDelta: TypeAlias = Annotated[ + Union[ImageFileDeltaBlock, TextDeltaBlock, RefusalDeltaBlock, ImageURLDeltaBlock], + PropertyInfo(discriminator="type"), +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_content_part_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_content_part_param.py new file mode 100644 index 00000000..dc09a01c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_content_part_param.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import TypeAlias + +from .text_content_block_param import TextContentBlockParam +from .image_url_content_block_param import ImageURLContentBlockParam +from .image_file_content_block_param import ImageFileContentBlockParam + +__all__ = ["MessageContentPartParam"] + +MessageContentPartParam: TypeAlias = Union[ImageFileContentBlockParam, ImageURLContentBlockParam, TextContentBlockParam] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_create_params.py new file mode 100644 index 00000000..b5238682 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_create_params.py @@ -0,0 +1,55 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Iterable, Optional +from typing_extensions import Literal, Required, TypeAlias, TypedDict + +from ...shared_params.metadata import Metadata +from .message_content_part_param import MessageContentPartParam +from ..code_interpreter_tool_param import CodeInterpreterToolParam + +__all__ = ["MessageCreateParams", "Attachment", "AttachmentTool", "AttachmentToolFileSearch"] + + +class MessageCreateParams(TypedDict, total=False): + content: Required[Union[str, Iterable[MessageContentPartParam]]] + """The text contents of the message.""" + + role: Required[Literal["user", "assistant"]] + """The role of the entity that is creating the message. Allowed values include: + + - `user`: Indicates the message is sent by an actual user and should be used in + most cases to represent user-generated messages. + - `assistant`: Indicates the message is generated by the assistant. Use this + value to insert messages from the assistant into the conversation. + """ + + attachments: Optional[Iterable[Attachment]] + """A list of files attached to the message, and the tools they should be added to.""" + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + +class AttachmentToolFileSearch(TypedDict, total=False): + type: Required[Literal["file_search"]] + """The type of tool being defined: `file_search`""" + + +AttachmentTool: TypeAlias = Union[CodeInterpreterToolParam, AttachmentToolFileSearch] + + +class Attachment(TypedDict, total=False): + file_id: str + """The ID of the file to attach to the message.""" + + tools: Iterable[AttachmentTool] + """The tools to add this file to.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_deleted.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_deleted.py new file mode 100644 index 00000000..48210777 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_deleted.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["MessageDeleted"] + + +class MessageDeleted(BaseModel): + id: str + + deleted: bool + + object: Literal["thread.message.deleted"] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_delta.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_delta.py new file mode 100644 index 00000000..ecd0dfe3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_delta.py @@ -0,0 +1,17 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ...._models import BaseModel +from .message_content_delta import MessageContentDelta + +__all__ = ["MessageDelta"] + + +class MessageDelta(BaseModel): + content: Optional[List[MessageContentDelta]] = None + """The content of the message in array of text and/or images.""" + + role: Optional[Literal["user", "assistant"]] = None + """The entity that produced the message. One of `user` or `assistant`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_delta_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_delta_event.py new file mode 100644 index 00000000..3811cef6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_delta_event.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel +from .message_delta import MessageDelta + +__all__ = ["MessageDeltaEvent"] + + +class MessageDeltaEvent(BaseModel): + id: str + """The identifier of the message, which can be referenced in API endpoints.""" + + delta: MessageDelta + """The delta containing the fields that have changed on the Message.""" + + object: Literal["thread.message.delta"] + """The object type, which is always `thread.message.delta`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_list_params.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_list_params.py new file mode 100644 index 00000000..a7c22a66 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_list_params.py @@ -0,0 +1,42 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, TypedDict + +__all__ = ["MessageListParams"] + + +class MessageListParams(TypedDict, total=False): + after: str + """A cursor for use in pagination. + + `after` is an object ID that defines your place in the list. For instance, if + you make a list request and receive 100 objects, ending with obj_foo, your + subsequent call can include after=obj_foo in order to fetch the next page of the + list. + """ + + before: str + """A cursor for use in pagination. + + `before` is an object ID that defines your place in the list. For instance, if + you make a list request and receive 100 objects, starting with obj_foo, your + subsequent call can include before=obj_foo in order to fetch the previous page + of the list. + """ + + limit: int + """A limit on the number of objects to be returned. + + Limit can range between 1 and 100, and the default is 20. + """ + + order: Literal["asc", "desc"] + """Sort order by the `created_at` timestamp of the objects. + + `asc` for ascending order and `desc` for descending order. + """ + + run_id: str + """Filter messages by the run ID that generated them.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_update_params.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_update_params.py new file mode 100644 index 00000000..bb078281 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/message_update_params.py @@ -0,0 +1,24 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Optional +from typing_extensions import Required, TypedDict + +from ...shared_params.metadata import Metadata + +__all__ = ["MessageUpdateParams"] + + +class MessageUpdateParams(TypedDict, total=False): + thread_id: Required[str] + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/refusal_content_block.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/refusal_content_block.py new file mode 100644 index 00000000..d54f9485 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/refusal_content_block.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["RefusalContentBlock"] + + +class RefusalContentBlock(BaseModel): + refusal: str + + type: Literal["refusal"] + """Always `refusal`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/refusal_delta_block.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/refusal_delta_block.py new file mode 100644 index 00000000..dbd8e626 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/refusal_delta_block.py @@ -0,0 +1,18 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["RefusalDeltaBlock"] + + +class RefusalDeltaBlock(BaseModel): + index: int + """The index of the refusal part in the message.""" + + type: Literal["refusal"] + """Always `refusal`.""" + + refusal: Optional[str] = None diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/required_action_function_tool_call.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/required_action_function_tool_call.py new file mode 100644 index 00000000..a24dfd06 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/required_action_function_tool_call.py @@ -0,0 +1,34 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["RequiredActionFunctionToolCall", "Function"] + + +class Function(BaseModel): + arguments: str + """The arguments that the model expects you to pass to the function.""" + + name: str + """The name of the function.""" + + +class RequiredActionFunctionToolCall(BaseModel): + id: str + """The ID of the tool call. + + This ID must be referenced when you submit the tool outputs in using the + [Submit tool outputs to run](https://platform.openai.com/docs/api-reference/runs/submitToolOutputs) + endpoint. + """ + + function: Function + """The function definition.""" + + type: Literal["function"] + """The type of tool call the output is required for. + + For now, this is always `function`. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/run.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/run.py new file mode 100644 index 00000000..da9418d6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/run.py @@ -0,0 +1,245 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ...._models import BaseModel +from .run_status import RunStatus +from ..assistant_tool import AssistantTool +from ...shared.metadata import Metadata +from ..assistant_tool_choice_option import AssistantToolChoiceOption +from ..assistant_response_format_option import AssistantResponseFormatOption +from .required_action_function_tool_call import RequiredActionFunctionToolCall + +__all__ = [ + "Run", + "IncompleteDetails", + "LastError", + "RequiredAction", + "RequiredActionSubmitToolOutputs", + "TruncationStrategy", + "Usage", +] + + +class IncompleteDetails(BaseModel): + reason: Optional[Literal["max_completion_tokens", "max_prompt_tokens"]] = None + """The reason why the run is incomplete. + + This will point to which specific token limit was reached over the course of the + run. + """ + + +class LastError(BaseModel): + code: Literal["server_error", "rate_limit_exceeded", "invalid_prompt"] + """One of `server_error`, `rate_limit_exceeded`, or `invalid_prompt`.""" + + message: str + """A human-readable description of the error.""" + + +class RequiredActionSubmitToolOutputs(BaseModel): + tool_calls: List[RequiredActionFunctionToolCall] + """A list of the relevant tool calls.""" + + +class RequiredAction(BaseModel): + submit_tool_outputs: RequiredActionSubmitToolOutputs + """Details on the tool outputs needed for this run to continue.""" + + type: Literal["submit_tool_outputs"] + """For now, this is always `submit_tool_outputs`.""" + + +class TruncationStrategy(BaseModel): + type: Literal["auto", "last_messages"] + """The truncation strategy to use for the thread. + + The default is `auto`. If set to `last_messages`, the thread will be truncated + to the n most recent messages in the thread. When set to `auto`, messages in the + middle of the thread will be dropped to fit the context length of the model, + `max_prompt_tokens`. + """ + + last_messages: Optional[int] = None + """ + The number of most recent messages from the thread when constructing the context + for the run. + """ + + +class Usage(BaseModel): + completion_tokens: int + """Number of completion tokens used over the course of the run.""" + + prompt_tokens: int + """Number of prompt tokens used over the course of the run.""" + + total_tokens: int + """Total number of tokens used (prompt + completion).""" + + +class Run(BaseModel): + id: str + """The identifier, which can be referenced in API endpoints.""" + + assistant_id: str + """ + The ID of the + [assistant](https://platform.openai.com/docs/api-reference/assistants) used for + execution of this run. + """ + + cancelled_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the run was cancelled.""" + + completed_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the run was completed.""" + + created_at: int + """The Unix timestamp (in seconds) for when the run was created.""" + + expires_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the run will expire.""" + + failed_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the run failed.""" + + incomplete_details: Optional[IncompleteDetails] = None + """Details on why the run is incomplete. + + Will be `null` if the run is not incomplete. + """ + + instructions: str + """ + The instructions that the + [assistant](https://platform.openai.com/docs/api-reference/assistants) used for + this run. + """ + + last_error: Optional[LastError] = None + """The last error associated with this run. Will be `null` if there are no errors.""" + + max_completion_tokens: Optional[int] = None + """ + The maximum number of completion tokens specified to have been used over the + course of the run. + """ + + max_prompt_tokens: Optional[int] = None + """ + The maximum number of prompt tokens specified to have been used over the course + of the run. + """ + + metadata: Optional[Metadata] = None + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + model: str + """ + The model that the + [assistant](https://platform.openai.com/docs/api-reference/assistants) used for + this run. + """ + + object: Literal["thread.run"] + """The object type, which is always `thread.run`.""" + + parallel_tool_calls: bool + """ + Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + """ + + required_action: Optional[RequiredAction] = None + """Details on the action required to continue the run. + + Will be `null` if no action is required. + """ + + response_format: Optional[AssistantResponseFormatOption] = None + """Specifies the format that the model must output. + + Compatible with [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + """ + + started_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the run was started.""" + + status: RunStatus + """ + The status of the run, which can be either `queued`, `in_progress`, + `requires_action`, `cancelling`, `cancelled`, `failed`, `completed`, + `incomplete`, or `expired`. + """ + + thread_id: str + """ + The ID of the [thread](https://platform.openai.com/docs/api-reference/threads) + that was executed on as a part of this run. + """ + + tool_choice: Optional[AssistantToolChoiceOption] = None + """ + Controls which (if any) tool is called by the model. `none` means the model will + not call any tools and instead generates a message. `auto` is the default value + and means the model can pick between generating a message or calling one or more + tools. `required` means the model must call one or more tools before responding + to the user. Specifying a particular tool like `{"type": "file_search"}` or + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + """ + + tools: List[AssistantTool] + """ + The list of tools that the + [assistant](https://platform.openai.com/docs/api-reference/assistants) used for + this run. + """ + + truncation_strategy: Optional[TruncationStrategy] = None + """Controls for how a thread will be truncated prior to the run. + + Use this to control the intial context window of the run. + """ + + usage: Optional[Usage] = None + """Usage statistics related to the run. + + This value will be `null` if the run is not in a terminal state (i.e. + `in_progress`, `queued`, etc.). + """ + + temperature: Optional[float] = None + """The sampling temperature used for this run. If not set, defaults to 1.""" + + top_p: Optional[float] = None + """The nucleus sampling value used for this run. If not set, defaults to 1.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/run_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/run_create_params.py new file mode 100644 index 00000000..fc702278 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/run_create_params.py @@ -0,0 +1,261 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union, Iterable, Optional +from typing_extensions import Literal, Required, TypeAlias, TypedDict + +from ...shared.chat_model import ChatModel +from ..assistant_tool_param import AssistantToolParam +from .runs.run_step_include import RunStepInclude +from ...shared_params.metadata import Metadata +from ...shared.reasoning_effort import ReasoningEffort +from .message_content_part_param import MessageContentPartParam +from ..code_interpreter_tool_param import CodeInterpreterToolParam +from ..assistant_tool_choice_option_param import AssistantToolChoiceOptionParam +from ..assistant_response_format_option_param import AssistantResponseFormatOptionParam + +__all__ = [ + "RunCreateParamsBase", + "AdditionalMessage", + "AdditionalMessageAttachment", + "AdditionalMessageAttachmentTool", + "AdditionalMessageAttachmentToolFileSearch", + "TruncationStrategy", + "RunCreateParamsNonStreaming", + "RunCreateParamsStreaming", +] + + +class RunCreateParamsBase(TypedDict, total=False): + assistant_id: Required[str] + """ + The ID of the + [assistant](https://platform.openai.com/docs/api-reference/assistants) to use to + execute this run. + """ + + include: List[RunStepInclude] + """A list of additional fields to include in the response. + + Currently the only supported value is + `step_details.tool_calls[*].file_search.results[*].content` to fetch the file + search result content. + + See the + [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) + for more information. + """ + + additional_instructions: Optional[str] + """Appends additional instructions at the end of the instructions for the run. + + This is useful for modifying the behavior on a per-run basis without overriding + other instructions. + """ + + additional_messages: Optional[Iterable[AdditionalMessage]] + """Adds additional messages to the thread before creating the run.""" + + instructions: Optional[str] + """ + Overrides the + [instructions](https://platform.openai.com/docs/api-reference/assistants/createAssistant) + of the assistant. This is useful for modifying the behavior on a per-run basis. + """ + + max_completion_tokens: Optional[int] + """ + The maximum number of completion tokens that may be used over the course of the + run. The run will make a best effort to use only the number of completion tokens + specified, across multiple turns of the run. If the run exceeds the number of + completion tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + """ + + max_prompt_tokens: Optional[int] + """The maximum number of prompt tokens that may be used over the course of the run. + + The run will make a best effort to use only the number of prompt tokens + specified, across multiple turns of the run. If the run exceeds the number of + prompt tokens specified, the run will end with status `incomplete`. See + `incomplete_details` for more info. + """ + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + model: Union[str, ChatModel, None] + """ + The ID of the [Model](https://platform.openai.com/docs/api-reference/models) to + be used to execute this run. If a value is provided here, it will override the + model associated with the assistant. If not, the model associated with the + assistant will be used. + """ + + parallel_tool_calls: bool + """ + Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + """ + + reasoning_effort: Optional[ReasoningEffort] + """**o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + """ + + response_format: Optional[AssistantResponseFormatOptionParam] + """Specifies the format that the model must output. + + Compatible with [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), + [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), + and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the + message the model generates is valid JSON. + + **Important:** when using JSON mode, you **must** also instruct the model to + produce JSON yourself via a system or user message. Without this, the model may + generate an unending stream of whitespace until the generation reaches the token + limit, resulting in a long-running and seemingly "stuck" request. Also note that + the message content may be partially cut off if `finish_reason="length"`, which + indicates the generation exceeded `max_tokens` or the conversation exceeded the + max context length. + """ + + temperature: Optional[float] + """What sampling temperature to use, between 0 and 2. + + Higher values like 0.8 will make the output more random, while lower values like + 0.2 will make it more focused and deterministic. + """ + + tool_choice: Optional[AssistantToolChoiceOptionParam] + """ + Controls which (if any) tool is called by the model. `none` means the model will + not call any tools and instead generates a message. `auto` is the default value + and means the model can pick between generating a message or calling one or more + tools. `required` means the model must call one or more tools before responding + to the user. Specifying a particular tool like `{"type": "file_search"}` or + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + """ + + tools: Optional[Iterable[AssistantToolParam]] + """Override the tools the assistant can use for this run. + + This is useful for modifying the behavior on a per-run basis. + """ + + top_p: Optional[float] + """ + An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or temperature but not both. + """ + + truncation_strategy: Optional[TruncationStrategy] + """Controls for how a thread will be truncated prior to the run. + + Use this to control the intial context window of the run. + """ + + +class AdditionalMessageAttachmentToolFileSearch(TypedDict, total=False): + type: Required[Literal["file_search"]] + """The type of tool being defined: `file_search`""" + + +AdditionalMessageAttachmentTool: TypeAlias = Union[CodeInterpreterToolParam, AdditionalMessageAttachmentToolFileSearch] + + +class AdditionalMessageAttachment(TypedDict, total=False): + file_id: str + """The ID of the file to attach to the message.""" + + tools: Iterable[AdditionalMessageAttachmentTool] + """The tools to add this file to.""" + + +class AdditionalMessage(TypedDict, total=False): + content: Required[Union[str, Iterable[MessageContentPartParam]]] + """The text contents of the message.""" + + role: Required[Literal["user", "assistant"]] + """The role of the entity that is creating the message. Allowed values include: + + - `user`: Indicates the message is sent by an actual user and should be used in + most cases to represent user-generated messages. + - `assistant`: Indicates the message is generated by the assistant. Use this + value to insert messages from the assistant into the conversation. + """ + + attachments: Optional[Iterable[AdditionalMessageAttachment]] + """A list of files attached to the message, and the tools they should be added to.""" + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + +class TruncationStrategy(TypedDict, total=False): + type: Required[Literal["auto", "last_messages"]] + """The truncation strategy to use for the thread. + + The default is `auto`. If set to `last_messages`, the thread will be truncated + to the n most recent messages in the thread. When set to `auto`, messages in the + middle of the thread will be dropped to fit the context length of the model, + `max_prompt_tokens`. + """ + + last_messages: Optional[int] + """ + The number of most recent messages from the thread when constructing the context + for the run. + """ + + +class RunCreateParamsNonStreaming(RunCreateParamsBase, total=False): + stream: Optional[Literal[False]] + """ + If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + """ + + +class RunCreateParamsStreaming(RunCreateParamsBase): + stream: Required[Literal[True]] + """ + If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + """ + + +RunCreateParams = Union[RunCreateParamsNonStreaming, RunCreateParamsStreaming] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/run_list_params.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/run_list_params.py new file mode 100644 index 00000000..fbea54f6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/run_list_params.py @@ -0,0 +1,39 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, TypedDict + +__all__ = ["RunListParams"] + + +class RunListParams(TypedDict, total=False): + after: str + """A cursor for use in pagination. + + `after` is an object ID that defines your place in the list. For instance, if + you make a list request and receive 100 objects, ending with obj_foo, your + subsequent call can include after=obj_foo in order to fetch the next page of the + list. + """ + + before: str + """A cursor for use in pagination. + + `before` is an object ID that defines your place in the list. For instance, if + you make a list request and receive 100 objects, starting with obj_foo, your + subsequent call can include before=obj_foo in order to fetch the previous page + of the list. + """ + + limit: int + """A limit on the number of objects to be returned. + + Limit can range between 1 and 100, and the default is 20. + """ + + order: Literal["asc", "desc"] + """Sort order by the `created_at` timestamp of the objects. + + `asc` for ascending order and `desc` for descending order. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/run_status.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/run_status.py new file mode 100644 index 00000000..47c7cbd0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/run_status.py @@ -0,0 +1,17 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal, TypeAlias + +__all__ = ["RunStatus"] + +RunStatus: TypeAlias = Literal[ + "queued", + "in_progress", + "requires_action", + "cancelling", + "cancelled", + "failed", + "completed", + "incomplete", + "expired", +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/run_submit_tool_outputs_params.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/run_submit_tool_outputs_params.py new file mode 100644 index 00000000..14772860 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/run_submit_tool_outputs_params.py @@ -0,0 +1,52 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Iterable, Optional +from typing_extensions import Literal, Required, TypedDict + +__all__ = [ + "RunSubmitToolOutputsParamsBase", + "ToolOutput", + "RunSubmitToolOutputsParamsNonStreaming", + "RunSubmitToolOutputsParamsStreaming", +] + + +class RunSubmitToolOutputsParamsBase(TypedDict, total=False): + thread_id: Required[str] + + tool_outputs: Required[Iterable[ToolOutput]] + """A list of tools for which the outputs are being submitted.""" + + +class ToolOutput(TypedDict, total=False): + output: str + """The output of the tool call to be submitted to continue the run.""" + + tool_call_id: str + """ + The ID of the tool call in the `required_action` object within the run object + the output is being submitted for. + """ + + +class RunSubmitToolOutputsParamsNonStreaming(RunSubmitToolOutputsParamsBase, total=False): + stream: Optional[Literal[False]] + """ + If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + """ + + +class RunSubmitToolOutputsParamsStreaming(RunSubmitToolOutputsParamsBase): + stream: Required[Literal[True]] + """ + If `true`, returns a stream of events that happen during the Run as server-sent + events, terminating when the Run enters a terminal state with a `data: [DONE]` + message. + """ + + +RunSubmitToolOutputsParams = Union[RunSubmitToolOutputsParamsNonStreaming, RunSubmitToolOutputsParamsStreaming] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/run_update_params.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/run_update_params.py new file mode 100644 index 00000000..fbcbd3fb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/run_update_params.py @@ -0,0 +1,24 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Optional +from typing_extensions import Required, TypedDict + +from ...shared_params.metadata import Metadata + +__all__ = ["RunUpdateParams"] + + +class RunUpdateParams(TypedDict, total=False): + thread_id: Required[str] + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/__init__.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/__init__.py new file mode 100644 index 00000000..467d5d79 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/__init__.py @@ -0,0 +1,24 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from .run_step import RunStep as RunStep +from .tool_call import ToolCall as ToolCall +from .run_step_delta import RunStepDelta as RunStepDelta +from .tool_call_delta import ToolCallDelta as ToolCallDelta +from .run_step_include import RunStepInclude as RunStepInclude +from .step_list_params import StepListParams as StepListParams +from .function_tool_call import FunctionToolCall as FunctionToolCall +from .run_step_delta_event import RunStepDeltaEvent as RunStepDeltaEvent +from .step_retrieve_params import StepRetrieveParams as StepRetrieveParams +from .code_interpreter_logs import CodeInterpreterLogs as CodeInterpreterLogs +from .file_search_tool_call import FileSearchToolCall as FileSearchToolCall +from .tool_call_delta_object import ToolCallDeltaObject as ToolCallDeltaObject +from .tool_calls_step_details import ToolCallsStepDetails as ToolCallsStepDetails +from .function_tool_call_delta import FunctionToolCallDelta as FunctionToolCallDelta +from .code_interpreter_tool_call import CodeInterpreterToolCall as CodeInterpreterToolCall +from .file_search_tool_call_delta import FileSearchToolCallDelta as FileSearchToolCallDelta +from .run_step_delta_message_delta import RunStepDeltaMessageDelta as RunStepDeltaMessageDelta +from .code_interpreter_output_image import CodeInterpreterOutputImage as CodeInterpreterOutputImage +from .message_creation_step_details import MessageCreationStepDetails as MessageCreationStepDetails +from .code_interpreter_tool_call_delta import CodeInterpreterToolCallDelta as CodeInterpreterToolCallDelta diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/code_interpreter_logs.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/code_interpreter_logs.py new file mode 100644 index 00000000..0bf8c1da --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/code_interpreter_logs.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ....._models import BaseModel + +__all__ = ["CodeInterpreterLogs"] + + +class CodeInterpreterLogs(BaseModel): + index: int + """The index of the output in the outputs array.""" + + type: Literal["logs"] + """Always `logs`.""" + + logs: Optional[str] = None + """The text output from the Code Interpreter tool call.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/code_interpreter_output_image.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/code_interpreter_output_image.py new file mode 100644 index 00000000..2257f37e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/code_interpreter_output_image.py @@ -0,0 +1,26 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ....._models import BaseModel + +__all__ = ["CodeInterpreterOutputImage", "Image"] + + +class Image(BaseModel): + file_id: Optional[str] = None + """ + The [file](https://platform.openai.com/docs/api-reference/files) ID of the + image. + """ + + +class CodeInterpreterOutputImage(BaseModel): + index: int + """The index of the output in the outputs array.""" + + type: Literal["image"] + """Always `image`.""" + + image: Optional[Image] = None diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/code_interpreter_tool_call.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/code_interpreter_tool_call.py new file mode 100644 index 00000000..e7df4e19 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/code_interpreter_tool_call.py @@ -0,0 +1,70 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Union +from typing_extensions import Literal, Annotated, TypeAlias + +from ....._utils import PropertyInfo +from ....._models import BaseModel + +__all__ = [ + "CodeInterpreterToolCall", + "CodeInterpreter", + "CodeInterpreterOutput", + "CodeInterpreterOutputLogs", + "CodeInterpreterOutputImage", + "CodeInterpreterOutputImageImage", +] + + +class CodeInterpreterOutputLogs(BaseModel): + logs: str + """The text output from the Code Interpreter tool call.""" + + type: Literal["logs"] + """Always `logs`.""" + + +class CodeInterpreterOutputImageImage(BaseModel): + file_id: str + """ + The [file](https://platform.openai.com/docs/api-reference/files) ID of the + image. + """ + + +class CodeInterpreterOutputImage(BaseModel): + image: CodeInterpreterOutputImageImage + + type: Literal["image"] + """Always `image`.""" + + +CodeInterpreterOutput: TypeAlias = Annotated[ + Union[CodeInterpreterOutputLogs, CodeInterpreterOutputImage], PropertyInfo(discriminator="type") +] + + +class CodeInterpreter(BaseModel): + input: str + """The input to the Code Interpreter tool call.""" + + outputs: List[CodeInterpreterOutput] + """The outputs from the Code Interpreter tool call. + + Code Interpreter can output one or more items, including text (`logs`) or images + (`image`). Each of these are represented by a different object type. + """ + + +class CodeInterpreterToolCall(BaseModel): + id: str + """The ID of the tool call.""" + + code_interpreter: CodeInterpreter + """The Code Interpreter tool call definition.""" + + type: Literal["code_interpreter"] + """The type of tool call. + + This is always going to be `code_interpreter` for this type of tool call. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/code_interpreter_tool_call_delta.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/code_interpreter_tool_call_delta.py new file mode 100644 index 00000000..9d7a1563 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/code_interpreter_tool_call_delta.py @@ -0,0 +1,44 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Union, Optional +from typing_extensions import Literal, Annotated, TypeAlias + +from ....._utils import PropertyInfo +from ....._models import BaseModel +from .code_interpreter_logs import CodeInterpreterLogs +from .code_interpreter_output_image import CodeInterpreterOutputImage + +__all__ = ["CodeInterpreterToolCallDelta", "CodeInterpreter", "CodeInterpreterOutput"] + +CodeInterpreterOutput: TypeAlias = Annotated[ + Union[CodeInterpreterLogs, CodeInterpreterOutputImage], PropertyInfo(discriminator="type") +] + + +class CodeInterpreter(BaseModel): + input: Optional[str] = None + """The input to the Code Interpreter tool call.""" + + outputs: Optional[List[CodeInterpreterOutput]] = None + """The outputs from the Code Interpreter tool call. + + Code Interpreter can output one or more items, including text (`logs`) or images + (`image`). Each of these are represented by a different object type. + """ + + +class CodeInterpreterToolCallDelta(BaseModel): + index: int + """The index of the tool call in the tool calls array.""" + + type: Literal["code_interpreter"] + """The type of tool call. + + This is always going to be `code_interpreter` for this type of tool call. + """ + + id: Optional[str] = None + """The ID of the tool call.""" + + code_interpreter: Optional[CodeInterpreter] = None + """The Code Interpreter tool call definition.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/file_search_tool_call.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/file_search_tool_call.py new file mode 100644 index 00000000..a2068daa --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/file_search_tool_call.py @@ -0,0 +1,78 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ....._models import BaseModel + +__all__ = [ + "FileSearchToolCall", + "FileSearch", + "FileSearchRankingOptions", + "FileSearchResult", + "FileSearchResultContent", +] + + +class FileSearchRankingOptions(BaseModel): + ranker: Literal["auto", "default_2024_08_21"] + """The ranker to use for the file search. + + If not specified will use the `auto` ranker. + """ + + score_threshold: float + """The score threshold for the file search. + + All values must be a floating point number between 0 and 1. + """ + + +class FileSearchResultContent(BaseModel): + text: Optional[str] = None + """The text content of the file.""" + + type: Optional[Literal["text"]] = None + """The type of the content.""" + + +class FileSearchResult(BaseModel): + file_id: str + """The ID of the file that result was found in.""" + + file_name: str + """The name of the file that result was found in.""" + + score: float + """The score of the result. + + All values must be a floating point number between 0 and 1. + """ + + content: Optional[List[FileSearchResultContent]] = None + """The content of the result that was found. + + The content is only included if requested via the include query parameter. + """ + + +class FileSearch(BaseModel): + ranking_options: Optional[FileSearchRankingOptions] = None + """The ranking options for the file search.""" + + results: Optional[List[FileSearchResult]] = None + """The results of the file search.""" + + +class FileSearchToolCall(BaseModel): + id: str + """The ID of the tool call object.""" + + file_search: FileSearch + """For now, this is always going to be an empty object.""" + + type: Literal["file_search"] + """The type of tool call. + + This is always going to be `file_search` for this type of tool call. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/file_search_tool_call_delta.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/file_search_tool_call_delta.py new file mode 100644 index 00000000..df5ac217 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/file_search_tool_call_delta.py @@ -0,0 +1,25 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ....._models import BaseModel + +__all__ = ["FileSearchToolCallDelta"] + + +class FileSearchToolCallDelta(BaseModel): + file_search: object + """For now, this is always going to be an empty object.""" + + index: int + """The index of the tool call in the tool calls array.""" + + type: Literal["file_search"] + """The type of tool call. + + This is always going to be `file_search` for this type of tool call. + """ + + id: Optional[str] = None + """The ID of the tool call object.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/function_tool_call.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/function_tool_call.py new file mode 100644 index 00000000..b1d354f8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/function_tool_call.py @@ -0,0 +1,38 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ....._models import BaseModel + +__all__ = ["FunctionToolCall", "Function"] + + +class Function(BaseModel): + arguments: str + """The arguments passed to the function.""" + + name: str + """The name of the function.""" + + output: Optional[str] = None + """The output of the function. + + This will be `null` if the outputs have not been + [submitted](https://platform.openai.com/docs/api-reference/runs/submitToolOutputs) + yet. + """ + + +class FunctionToolCall(BaseModel): + id: str + """The ID of the tool call object.""" + + function: Function + """The definition of the function that was called.""" + + type: Literal["function"] + """The type of tool call. + + This is always going to be `function` for this type of tool call. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/function_tool_call_delta.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/function_tool_call_delta.py new file mode 100644 index 00000000..faaf026f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/function_tool_call_delta.py @@ -0,0 +1,41 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ....._models import BaseModel + +__all__ = ["FunctionToolCallDelta", "Function"] + + +class Function(BaseModel): + arguments: Optional[str] = None + """The arguments passed to the function.""" + + name: Optional[str] = None + """The name of the function.""" + + output: Optional[str] = None + """The output of the function. + + This will be `null` if the outputs have not been + [submitted](https://platform.openai.com/docs/api-reference/runs/submitToolOutputs) + yet. + """ + + +class FunctionToolCallDelta(BaseModel): + index: int + """The index of the tool call in the tool calls array.""" + + type: Literal["function"] + """The type of tool call. + + This is always going to be `function` for this type of tool call. + """ + + id: Optional[str] = None + """The ID of the tool call object.""" + + function: Optional[Function] = None + """The definition of the function that was called.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/message_creation_step_details.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/message_creation_step_details.py new file mode 100644 index 00000000..73439079 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/message_creation_step_details.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ....._models import BaseModel + +__all__ = ["MessageCreationStepDetails", "MessageCreation"] + + +class MessageCreation(BaseModel): + message_id: str + """The ID of the message that was created by this run step.""" + + +class MessageCreationStepDetails(BaseModel): + message_creation: MessageCreation + + type: Literal["message_creation"] + """Always `message_creation`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/run_step.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/run_step.py new file mode 100644 index 00000000..b5f380c7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/run_step.py @@ -0,0 +1,115 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union, Optional +from typing_extensions import Literal, Annotated, TypeAlias + +from ....._utils import PropertyInfo +from ....._models import BaseModel +from ....shared.metadata import Metadata +from .tool_calls_step_details import ToolCallsStepDetails +from .message_creation_step_details import MessageCreationStepDetails + +__all__ = ["RunStep", "LastError", "StepDetails", "Usage"] + + +class LastError(BaseModel): + code: Literal["server_error", "rate_limit_exceeded"] + """One of `server_error` or `rate_limit_exceeded`.""" + + message: str + """A human-readable description of the error.""" + + +StepDetails: TypeAlias = Annotated[ + Union[MessageCreationStepDetails, ToolCallsStepDetails], PropertyInfo(discriminator="type") +] + + +class Usage(BaseModel): + completion_tokens: int + """Number of completion tokens used over the course of the run step.""" + + prompt_tokens: int + """Number of prompt tokens used over the course of the run step.""" + + total_tokens: int + """Total number of tokens used (prompt + completion).""" + + +class RunStep(BaseModel): + id: str + """The identifier of the run step, which can be referenced in API endpoints.""" + + assistant_id: str + """ + The ID of the + [assistant](https://platform.openai.com/docs/api-reference/assistants) + associated with the run step. + """ + + cancelled_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the run step was cancelled.""" + + completed_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the run step completed.""" + + created_at: int + """The Unix timestamp (in seconds) for when the run step was created.""" + + expired_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the run step expired. + + A step is considered expired if the parent run is expired. + """ + + failed_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the run step failed.""" + + last_error: Optional[LastError] = None + """The last error associated with this run step. + + Will be `null` if there are no errors. + """ + + metadata: Optional[Metadata] = None + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + object: Literal["thread.run.step"] + """The object type, which is always `thread.run.step`.""" + + run_id: str + """ + The ID of the [run](https://platform.openai.com/docs/api-reference/runs) that + this run step is a part of. + """ + + status: Literal["in_progress", "cancelled", "failed", "completed", "expired"] + """ + The status of the run step, which can be either `in_progress`, `cancelled`, + `failed`, `completed`, or `expired`. + """ + + step_details: StepDetails + """The details of the run step.""" + + thread_id: str + """ + The ID of the [thread](https://platform.openai.com/docs/api-reference/threads) + that was run. + """ + + type: Literal["message_creation", "tool_calls"] + """The type of run step, which can be either `message_creation` or `tool_calls`.""" + + usage: Optional[Usage] = None + """Usage statistics related to the run step. + + This value will be `null` while the run step's status is `in_progress`. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/run_step_delta.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/run_step_delta.py new file mode 100644 index 00000000..1139088f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/run_step_delta.py @@ -0,0 +1,20 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union, Optional +from typing_extensions import Annotated, TypeAlias + +from ....._utils import PropertyInfo +from ....._models import BaseModel +from .tool_call_delta_object import ToolCallDeltaObject +from .run_step_delta_message_delta import RunStepDeltaMessageDelta + +__all__ = ["RunStepDelta", "StepDetails"] + +StepDetails: TypeAlias = Annotated[ + Union[RunStepDeltaMessageDelta, ToolCallDeltaObject], PropertyInfo(discriminator="type") +] + + +class RunStepDelta(BaseModel): + step_details: Optional[StepDetails] = None + """The details of the run step.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/run_step_delta_event.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/run_step_delta_event.py new file mode 100644 index 00000000..7f3f92aa --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/run_step_delta_event.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ....._models import BaseModel +from .run_step_delta import RunStepDelta + +__all__ = ["RunStepDeltaEvent"] + + +class RunStepDeltaEvent(BaseModel): + id: str + """The identifier of the run step, which can be referenced in API endpoints.""" + + delta: RunStepDelta + """The delta containing the fields that have changed on the run step.""" + + object: Literal["thread.run.step.delta"] + """The object type, which is always `thread.run.step.delta`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/run_step_delta_message_delta.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/run_step_delta_message_delta.py new file mode 100644 index 00000000..f58ed3d9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/run_step_delta_message_delta.py @@ -0,0 +1,20 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ....._models import BaseModel + +__all__ = ["RunStepDeltaMessageDelta", "MessageCreation"] + + +class MessageCreation(BaseModel): + message_id: Optional[str] = None + """The ID of the message that was created by this run step.""" + + +class RunStepDeltaMessageDelta(BaseModel): + type: Literal["message_creation"] + """Always `message_creation`.""" + + message_creation: Optional[MessageCreation] = None diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/run_step_include.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/run_step_include.py new file mode 100644 index 00000000..8e76c1b7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/run_step_include.py @@ -0,0 +1,7 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal, TypeAlias + +__all__ = ["RunStepInclude"] + +RunStepInclude: TypeAlias = Literal["step_details.tool_calls[*].file_search.results[*].content"] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/step_list_params.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/step_list_params.py new file mode 100644 index 00000000..a6be771d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/step_list_params.py @@ -0,0 +1,56 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List +from typing_extensions import Literal, Required, TypedDict + +from .run_step_include import RunStepInclude + +__all__ = ["StepListParams"] + + +class StepListParams(TypedDict, total=False): + thread_id: Required[str] + + after: str + """A cursor for use in pagination. + + `after` is an object ID that defines your place in the list. For instance, if + you make a list request and receive 100 objects, ending with obj_foo, your + subsequent call can include after=obj_foo in order to fetch the next page of the + list. + """ + + before: str + """A cursor for use in pagination. + + `before` is an object ID that defines your place in the list. For instance, if + you make a list request and receive 100 objects, starting with obj_foo, your + subsequent call can include before=obj_foo in order to fetch the previous page + of the list. + """ + + include: List[RunStepInclude] + """A list of additional fields to include in the response. + + Currently the only supported value is + `step_details.tool_calls[*].file_search.results[*].content` to fetch the file + search result content. + + See the + [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) + for more information. + """ + + limit: int + """A limit on the number of objects to be returned. + + Limit can range between 1 and 100, and the default is 20. + """ + + order: Literal["asc", "desc"] + """Sort order by the `created_at` timestamp of the objects. + + `asc` for ascending order and `desc` for descending order. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/step_retrieve_params.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/step_retrieve_params.py new file mode 100644 index 00000000..ecbb72ed --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/step_retrieve_params.py @@ -0,0 +1,28 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List +from typing_extensions import Required, TypedDict + +from .run_step_include import RunStepInclude + +__all__ = ["StepRetrieveParams"] + + +class StepRetrieveParams(TypedDict, total=False): + thread_id: Required[str] + + run_id: Required[str] + + include: List[RunStepInclude] + """A list of additional fields to include in the response. + + Currently the only supported value is + `step_details.tool_calls[*].file_search.results[*].content` to fetch the file + search result content. + + See the + [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) + for more information. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/tool_call.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/tool_call.py new file mode 100644 index 00000000..565e3109 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/tool_call.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Annotated, TypeAlias + +from ....._utils import PropertyInfo +from .function_tool_call import FunctionToolCall +from .file_search_tool_call import FileSearchToolCall +from .code_interpreter_tool_call import CodeInterpreterToolCall + +__all__ = ["ToolCall"] + +ToolCall: TypeAlias = Annotated[ + Union[CodeInterpreterToolCall, FileSearchToolCall, FunctionToolCall], PropertyInfo(discriminator="type") +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/tool_call_delta.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/tool_call_delta.py new file mode 100644 index 00000000..f0b8070c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/tool_call_delta.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Annotated, TypeAlias + +from ....._utils import PropertyInfo +from .function_tool_call_delta import FunctionToolCallDelta +from .file_search_tool_call_delta import FileSearchToolCallDelta +from .code_interpreter_tool_call_delta import CodeInterpreterToolCallDelta + +__all__ = ["ToolCallDelta"] + +ToolCallDelta: TypeAlias = Annotated[ + Union[CodeInterpreterToolCallDelta, FileSearchToolCallDelta, FunctionToolCallDelta], + PropertyInfo(discriminator="type"), +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/tool_call_delta_object.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/tool_call_delta_object.py new file mode 100644 index 00000000..189dce77 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/tool_call_delta_object.py @@ -0,0 +1,21 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ....._models import BaseModel +from .tool_call_delta import ToolCallDelta + +__all__ = ["ToolCallDeltaObject"] + + +class ToolCallDeltaObject(BaseModel): + type: Literal["tool_calls"] + """Always `tool_calls`.""" + + tool_calls: Optional[List[ToolCallDelta]] = None + """An array of tool calls the run step was involved in. + + These can be associated with one of three types of tools: `code_interpreter`, + `file_search`, or `function`. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/tool_calls_step_details.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/tool_calls_step_details.py new file mode 100644 index 00000000..a084d387 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/runs/tool_calls_step_details.py @@ -0,0 +1,21 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List +from typing_extensions import Literal + +from .tool_call import ToolCall +from ....._models import BaseModel + +__all__ = ["ToolCallsStepDetails"] + + +class ToolCallsStepDetails(BaseModel): + tool_calls: List[ToolCall] + """An array of tool calls the run step was involved in. + + These can be associated with one of three types of tools: `code_interpreter`, + `file_search`, or `function`. + """ + + type: Literal["tool_calls"] + """Always `tool_calls`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/text.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/text.py new file mode 100644 index 00000000..853bec29 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/text.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List + +from ...._models import BaseModel +from .annotation import Annotation + +__all__ = ["Text"] + + +class Text(BaseModel): + annotations: List[Annotation] + + value: str + """The data that makes up the text.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/text_content_block.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/text_content_block.py new file mode 100644 index 00000000..3706d6b9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/text_content_block.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from .text import Text +from ...._models import BaseModel + +__all__ = ["TextContentBlock"] + + +class TextContentBlock(BaseModel): + text: Text + + type: Literal["text"] + """Always `text`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/text_content_block_param.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/text_content_block_param.py new file mode 100644 index 00000000..6313de32 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/text_content_block_param.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["TextContentBlockParam"] + + +class TextContentBlockParam(TypedDict, total=False): + text: Required[str] + """Text content to be sent to the model""" + + type: Required[Literal["text"]] + """Always `text`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/text_delta.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/text_delta.py new file mode 100644 index 00000000..09cd3570 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/text_delta.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional + +from ...._models import BaseModel +from .annotation_delta import AnnotationDelta + +__all__ = ["TextDelta"] + + +class TextDelta(BaseModel): + annotations: Optional[List[AnnotationDelta]] = None + + value: Optional[str] = None + """The data that makes up the text.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/beta/threads/text_delta_block.py b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/text_delta_block.py new file mode 100644 index 00000000..586116e0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/beta/threads/text_delta_block.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel +from .text_delta import TextDelta + +__all__ = ["TextDeltaBlock"] + + +class TextDeltaBlock(BaseModel): + index: int + """The index of the content part in the message.""" + + type: Literal["text"] + """Always `text`.""" + + text: Optional[TextDelta] = None diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/__init__.py b/.venv/lib/python3.12/site-packages/openai/types/chat/__init__.py new file mode 100644 index 00000000..b4f43b29 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/__init__.py @@ -0,0 +1,71 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from .chat_completion import ChatCompletion as ChatCompletion +from .chat_completion_role import ChatCompletionRole as ChatCompletionRole +from .chat_completion_audio import ChatCompletionAudio as ChatCompletionAudio +from .chat_completion_chunk import ChatCompletionChunk as ChatCompletionChunk +from .completion_list_params import CompletionListParams as CompletionListParams +from .parsed_chat_completion import ( + ParsedChoice as ParsedChoice, + ParsedChatCompletion as ParsedChatCompletion, + ParsedChatCompletionMessage as ParsedChatCompletionMessage, +) +from .chat_completion_deleted import ChatCompletionDeleted as ChatCompletionDeleted +from .chat_completion_message import ChatCompletionMessage as ChatCompletionMessage +from .chat_completion_modality import ChatCompletionModality as ChatCompletionModality +from .completion_create_params import CompletionCreateParams as CompletionCreateParams +from .completion_update_params import CompletionUpdateParams as CompletionUpdateParams +from .parsed_function_tool_call import ( + ParsedFunction as ParsedFunction, + ParsedFunctionToolCall as ParsedFunctionToolCall, +) +from .chat_completion_tool_param import ChatCompletionToolParam as ChatCompletionToolParam +from .chat_completion_audio_param import ChatCompletionAudioParam as ChatCompletionAudioParam +from .chat_completion_message_param import ChatCompletionMessageParam as ChatCompletionMessageParam +from .chat_completion_store_message import ChatCompletionStoreMessage as ChatCompletionStoreMessage +from .chat_completion_token_logprob import ChatCompletionTokenLogprob as ChatCompletionTokenLogprob +from .chat_completion_reasoning_effort import ChatCompletionReasoningEffort as ChatCompletionReasoningEffort +from .chat_completion_message_tool_call import ChatCompletionMessageToolCall as ChatCompletionMessageToolCall +from .chat_completion_content_part_param import ChatCompletionContentPartParam as ChatCompletionContentPartParam +from .chat_completion_tool_message_param import ChatCompletionToolMessageParam as ChatCompletionToolMessageParam +from .chat_completion_user_message_param import ChatCompletionUserMessageParam as ChatCompletionUserMessageParam +from .chat_completion_stream_options_param import ChatCompletionStreamOptionsParam as ChatCompletionStreamOptionsParam +from .chat_completion_system_message_param import ChatCompletionSystemMessageParam as ChatCompletionSystemMessageParam +from .chat_completion_function_message_param import ( + ChatCompletionFunctionMessageParam as ChatCompletionFunctionMessageParam, +) +from .chat_completion_assistant_message_param import ( + ChatCompletionAssistantMessageParam as ChatCompletionAssistantMessageParam, +) +from .chat_completion_content_part_text_param import ( + ChatCompletionContentPartTextParam as ChatCompletionContentPartTextParam, +) +from .chat_completion_developer_message_param import ( + ChatCompletionDeveloperMessageParam as ChatCompletionDeveloperMessageParam, +) +from .chat_completion_message_tool_call_param import ( + ChatCompletionMessageToolCallParam as ChatCompletionMessageToolCallParam, +) +from .chat_completion_named_tool_choice_param import ( + ChatCompletionNamedToolChoiceParam as ChatCompletionNamedToolChoiceParam, +) +from .chat_completion_content_part_image_param import ( + ChatCompletionContentPartImageParam as ChatCompletionContentPartImageParam, +) +from .chat_completion_prediction_content_param import ( + ChatCompletionPredictionContentParam as ChatCompletionPredictionContentParam, +) +from .chat_completion_tool_choice_option_param import ( + ChatCompletionToolChoiceOptionParam as ChatCompletionToolChoiceOptionParam, +) +from .chat_completion_content_part_refusal_param import ( + ChatCompletionContentPartRefusalParam as ChatCompletionContentPartRefusalParam, +) +from .chat_completion_function_call_option_param import ( + ChatCompletionFunctionCallOptionParam as ChatCompletionFunctionCallOptionParam, +) +from .chat_completion_content_part_input_audio_param import ( + ChatCompletionContentPartInputAudioParam as ChatCompletionContentPartInputAudioParam, +) diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion.py new file mode 100644 index 00000000..cb812a27 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion.py @@ -0,0 +1,73 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ..._models import BaseModel +from ..completion_usage import CompletionUsage +from .chat_completion_message import ChatCompletionMessage +from .chat_completion_token_logprob import ChatCompletionTokenLogprob + +__all__ = ["ChatCompletion", "Choice", "ChoiceLogprobs"] + + +class ChoiceLogprobs(BaseModel): + content: Optional[List[ChatCompletionTokenLogprob]] = None + """A list of message content tokens with log probability information.""" + + refusal: Optional[List[ChatCompletionTokenLogprob]] = None + """A list of message refusal tokens with log probability information.""" + + +class Choice(BaseModel): + finish_reason: Literal["stop", "length", "tool_calls", "content_filter", "function_call"] + """The reason the model stopped generating tokens. + + This will be `stop` if the model hit a natural stop point or a provided stop + sequence, `length` if the maximum number of tokens specified in the request was + reached, `content_filter` if content was omitted due to a flag from our content + filters, `tool_calls` if the model called a tool, or `function_call` + (deprecated) if the model called a function. + """ + + index: int + """The index of the choice in the list of choices.""" + + logprobs: Optional[ChoiceLogprobs] = None + """Log probability information for the choice.""" + + message: ChatCompletionMessage + """A chat completion message generated by the model.""" + + +class ChatCompletion(BaseModel): + id: str + """A unique identifier for the chat completion.""" + + choices: List[Choice] + """A list of chat completion choices. + + Can be more than one if `n` is greater than 1. + """ + + created: int + """The Unix timestamp (in seconds) of when the chat completion was created.""" + + model: str + """The model used for the chat completion.""" + + object: Literal["chat.completion"] + """The object type, which is always `chat.completion`.""" + + service_tier: Optional[Literal["scale", "default"]] = None + """The service tier used for processing the request.""" + + system_fingerprint: Optional[str] = None + """This fingerprint represents the backend configuration that the model runs with. + + Can be used in conjunction with the `seed` request parameter to understand when + backend changes have been made that might impact determinism. + """ + + usage: Optional[CompletionUsage] = None + """Usage statistics for the completion request.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_assistant_message_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_assistant_message_param.py new file mode 100644 index 00000000..35e3a3d7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_assistant_message_param.py @@ -0,0 +1,70 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Iterable, Optional +from typing_extensions import Literal, Required, TypeAlias, TypedDict + +from .chat_completion_content_part_text_param import ChatCompletionContentPartTextParam +from .chat_completion_message_tool_call_param import ChatCompletionMessageToolCallParam +from .chat_completion_content_part_refusal_param import ChatCompletionContentPartRefusalParam + +__all__ = ["ChatCompletionAssistantMessageParam", "Audio", "ContentArrayOfContentPart", "FunctionCall"] + + +class Audio(TypedDict, total=False): + id: Required[str] + """Unique identifier for a previous audio response from the model.""" + + +ContentArrayOfContentPart: TypeAlias = Union[ChatCompletionContentPartTextParam, ChatCompletionContentPartRefusalParam] + + +class FunctionCall(TypedDict, total=False): + arguments: Required[str] + """ + The arguments to call the function with, as generated by the model in JSON + format. Note that the model does not always generate valid JSON, and may + hallucinate parameters not defined by your function schema. Validate the + arguments in your code before calling your function. + """ + + name: Required[str] + """The name of the function to call.""" + + +class ChatCompletionAssistantMessageParam(TypedDict, total=False): + role: Required[Literal["assistant"]] + """The role of the messages author, in this case `assistant`.""" + + audio: Optional[Audio] + """Data about a previous audio response from the model. + + [Learn more](https://platform.openai.com/docs/guides/audio). + """ + + content: Union[str, Iterable[ContentArrayOfContentPart], None] + """The contents of the assistant message. + + Required unless `tool_calls` or `function_call` is specified. + """ + + function_call: Optional[FunctionCall] + """Deprecated and replaced by `tool_calls`. + + The name and arguments of a function that should be called, as generated by the + model. + """ + + name: str + """An optional name for the participant. + + Provides the model information to differentiate between participants of the same + role. + """ + + refusal: Optional[str] + """The refusal message by the assistant.""" + + tool_calls: Iterable[ChatCompletionMessageToolCallParam] + """The tool calls generated by the model, such as function calls.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_audio.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_audio.py new file mode 100644 index 00000000..dd15508e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_audio.py @@ -0,0 +1,26 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + + +from ..._models import BaseModel + +__all__ = ["ChatCompletionAudio"] + + +class ChatCompletionAudio(BaseModel): + id: str + """Unique identifier for this audio response.""" + + data: str + """ + Base64 encoded audio bytes generated by the model, in the format specified in + the request. + """ + + expires_at: int + """ + The Unix timestamp (in seconds) for when this audio response will no longer be + accessible on the server for use in multi-turn conversations. + """ + + transcript: str + """Transcript of the audio generated by the model.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_audio_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_audio_param.py new file mode 100644 index 00000000..63214178 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_audio_param.py @@ -0,0 +1,22 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ChatCompletionAudioParam"] + + +class ChatCompletionAudioParam(TypedDict, total=False): + format: Required[Literal["wav", "mp3", "flac", "opus", "pcm16"]] + """Specifies the output audio format. + + Must be one of `wav`, `mp3`, `flac`, `opus`, or `pcm16`. + """ + + voice: Required[Literal["alloy", "ash", "ballad", "coral", "echo", "sage", "shimmer", "verse"]] + """The voice the model uses to respond. + + Supported voices are `alloy`, `ash`, `ballad`, `coral`, `echo`, `sage`, and + `shimmer`. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_chunk.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_chunk.py new file mode 100644 index 00000000..31b9cb54 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_chunk.py @@ -0,0 +1,150 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ..._models import BaseModel +from ..completion_usage import CompletionUsage +from .chat_completion_token_logprob import ChatCompletionTokenLogprob + +__all__ = [ + "ChatCompletionChunk", + "Choice", + "ChoiceDelta", + "ChoiceDeltaFunctionCall", + "ChoiceDeltaToolCall", + "ChoiceDeltaToolCallFunction", + "ChoiceLogprobs", +] + + +class ChoiceDeltaFunctionCall(BaseModel): + arguments: Optional[str] = None + """ + The arguments to call the function with, as generated by the model in JSON + format. Note that the model does not always generate valid JSON, and may + hallucinate parameters not defined by your function schema. Validate the + arguments in your code before calling your function. + """ + + name: Optional[str] = None + """The name of the function to call.""" + + +class ChoiceDeltaToolCallFunction(BaseModel): + arguments: Optional[str] = None + """ + The arguments to call the function with, as generated by the model in JSON + format. Note that the model does not always generate valid JSON, and may + hallucinate parameters not defined by your function schema. Validate the + arguments in your code before calling your function. + """ + + name: Optional[str] = None + """The name of the function to call.""" + + +class ChoiceDeltaToolCall(BaseModel): + index: int + + id: Optional[str] = None + """The ID of the tool call.""" + + function: Optional[ChoiceDeltaToolCallFunction] = None + + type: Optional[Literal["function"]] = None + """The type of the tool. Currently, only `function` is supported.""" + + +class ChoiceDelta(BaseModel): + content: Optional[str] = None + """The contents of the chunk message.""" + + function_call: Optional[ChoiceDeltaFunctionCall] = None + """Deprecated and replaced by `tool_calls`. + + The name and arguments of a function that should be called, as generated by the + model. + """ + + refusal: Optional[str] = None + """The refusal message generated by the model.""" + + role: Optional[Literal["developer", "system", "user", "assistant", "tool"]] = None + """The role of the author of this message.""" + + tool_calls: Optional[List[ChoiceDeltaToolCall]] = None + + +class ChoiceLogprobs(BaseModel): + content: Optional[List[ChatCompletionTokenLogprob]] = None + """A list of message content tokens with log probability information.""" + + refusal: Optional[List[ChatCompletionTokenLogprob]] = None + """A list of message refusal tokens with log probability information.""" + + +class Choice(BaseModel): + delta: ChoiceDelta + """A chat completion delta generated by streamed model responses.""" + + finish_reason: Optional[Literal["stop", "length", "tool_calls", "content_filter", "function_call"]] = None + """The reason the model stopped generating tokens. + + This will be `stop` if the model hit a natural stop point or a provided stop + sequence, `length` if the maximum number of tokens specified in the request was + reached, `content_filter` if content was omitted due to a flag from our content + filters, `tool_calls` if the model called a tool, or `function_call` + (deprecated) if the model called a function. + """ + + index: int + """The index of the choice in the list of choices.""" + + logprobs: Optional[ChoiceLogprobs] = None + """Log probability information for the choice.""" + + +class ChatCompletionChunk(BaseModel): + id: str + """A unique identifier for the chat completion. Each chunk has the same ID.""" + + choices: List[Choice] + """A list of chat completion choices. + + Can contain more than one elements if `n` is greater than 1. Can also be empty + for the last chunk if you set `stream_options: {"include_usage": true}`. + """ + + created: int + """The Unix timestamp (in seconds) of when the chat completion was created. + + Each chunk has the same timestamp. + """ + + model: str + """The model to generate the completion.""" + + object: Literal["chat.completion.chunk"] + """The object type, which is always `chat.completion.chunk`.""" + + service_tier: Optional[Literal["scale", "default"]] = None + """The service tier used for processing the request.""" + + system_fingerprint: Optional[str] = None + """ + This fingerprint represents the backend configuration that the model runs with. + Can be used in conjunction with the `seed` request parameter to understand when + backend changes have been made that might impact determinism. + """ + + usage: Optional[CompletionUsage] = None + """ + An optional field that will only be present when you set + `stream_options: {"include_usage": true}` in your request. When present, it + contains a null value **except for the last chunk** which contains the token + usage statistics for the entire request. + + **NOTE:** If the stream is interrupted or cancelled, you may not receive the + final usage chunk which contains the total token usage for the request. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_content_part_image_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_content_part_image_param.py new file mode 100644 index 00000000..9d407324 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_content_part_image_param.py @@ -0,0 +1,26 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ChatCompletionContentPartImageParam", "ImageURL"] + + +class ImageURL(TypedDict, total=False): + url: Required[str] + """Either a URL of the image or the base64 encoded image data.""" + + detail: Literal["auto", "low", "high"] + """Specifies the detail level of the image. + + Learn more in the + [Vision guide](https://platform.openai.com/docs/guides/vision#low-or-high-fidelity-image-understanding). + """ + + +class ChatCompletionContentPartImageParam(TypedDict, total=False): + image_url: Required[ImageURL] + + type: Required[Literal["image_url"]] + """The type of the content part.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_content_part_input_audio_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_content_part_input_audio_param.py new file mode 100644 index 00000000..0b1b1a80 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_content_part_input_audio_param.py @@ -0,0 +1,22 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ChatCompletionContentPartInputAudioParam", "InputAudio"] + + +class InputAudio(TypedDict, total=False): + data: Required[str] + """Base64 encoded audio data.""" + + format: Required[Literal["wav", "mp3"]] + """The format of the encoded audio data. Currently supports "wav" and "mp3".""" + + +class ChatCompletionContentPartInputAudioParam(TypedDict, total=False): + input_audio: Required[InputAudio] + + type: Required[Literal["input_audio"]] + """The type of the content part. Always `input_audio`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_content_part_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_content_part_param.py new file mode 100644 index 00000000..cbedc853 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_content_part_param.py @@ -0,0 +1,41 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import Literal, Required, TypeAlias, TypedDict + +from .chat_completion_content_part_text_param import ChatCompletionContentPartTextParam +from .chat_completion_content_part_image_param import ChatCompletionContentPartImageParam +from .chat_completion_content_part_input_audio_param import ChatCompletionContentPartInputAudioParam + +__all__ = ["ChatCompletionContentPartParam", "File", "FileFile"] + + +class FileFile(TypedDict, total=False): + file_data: str + """ + The base64 encoded file data, used when passing the file to the model as a + string. + """ + + file_id: str + """The ID of an uploaded file to use as input.""" + + filename: str + """The name of the file, used when passing the file to the model as a string.""" + + +class File(TypedDict, total=False): + file: Required[FileFile] + + type: Required[Literal["file"]] + """The type of the content part. Always `file`.""" + + +ChatCompletionContentPartParam: TypeAlias = Union[ + ChatCompletionContentPartTextParam, + ChatCompletionContentPartImageParam, + ChatCompletionContentPartInputAudioParam, + File, +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_content_part_refusal_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_content_part_refusal_param.py new file mode 100644 index 00000000..c18c7db7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_content_part_refusal_param.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ChatCompletionContentPartRefusalParam"] + + +class ChatCompletionContentPartRefusalParam(TypedDict, total=False): + refusal: Required[str] + """The refusal message generated by the model.""" + + type: Required[Literal["refusal"]] + """The type of the content part.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_content_part_text_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_content_part_text_param.py new file mode 100644 index 00000000..a2707444 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_content_part_text_param.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ChatCompletionContentPartTextParam"] + + +class ChatCompletionContentPartTextParam(TypedDict, total=False): + text: Required[str] + """The text content.""" + + type: Required[Literal["text"]] + """The type of the content part.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_deleted.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_deleted.py new file mode 100644 index 00000000..0a541cb2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_deleted.py @@ -0,0 +1,18 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ChatCompletionDeleted"] + + +class ChatCompletionDeleted(BaseModel): + id: str + """The ID of the chat completion that was deleted.""" + + deleted: bool + """Whether the chat completion was deleted.""" + + object: Literal["chat.completion.deleted"] + """The type of object being deleted.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_developer_message_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_developer_message_param.py new file mode 100644 index 00000000..01e4fdb6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_developer_message_param.py @@ -0,0 +1,25 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Iterable +from typing_extensions import Literal, Required, TypedDict + +from .chat_completion_content_part_text_param import ChatCompletionContentPartTextParam + +__all__ = ["ChatCompletionDeveloperMessageParam"] + + +class ChatCompletionDeveloperMessageParam(TypedDict, total=False): + content: Required[Union[str, Iterable[ChatCompletionContentPartTextParam]]] + """The contents of the developer message.""" + + role: Required[Literal["developer"]] + """The role of the messages author, in this case `developer`.""" + + name: str + """An optional name for the participant. + + Provides the model information to differentiate between participants of the same + role. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_function_call_option_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_function_call_option_param.py new file mode 100644 index 00000000..2bc014af --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_function_call_option_param.py @@ -0,0 +1,12 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Required, TypedDict + +__all__ = ["ChatCompletionFunctionCallOptionParam"] + + +class ChatCompletionFunctionCallOptionParam(TypedDict, total=False): + name: Required[str] + """The name of the function to call.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_function_message_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_function_message_param.py new file mode 100644 index 00000000..5af12bf9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_function_message_param.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Optional +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ChatCompletionFunctionMessageParam"] + + +class ChatCompletionFunctionMessageParam(TypedDict, total=False): + content: Required[Optional[str]] + """The contents of the function message.""" + + name: Required[str] + """The name of the function to call.""" + + role: Required[Literal["function"]] + """The role of the messages author, in this case `function`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_message.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_message.py new file mode 100644 index 00000000..c659ac3d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_message.py @@ -0,0 +1,79 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ..._models import BaseModel +from .chat_completion_audio import ChatCompletionAudio +from .chat_completion_message_tool_call import ChatCompletionMessageToolCall + +__all__ = ["ChatCompletionMessage", "Annotation", "AnnotationURLCitation", "FunctionCall"] + + +class AnnotationURLCitation(BaseModel): + end_index: int + """The index of the last character of the URL citation in the message.""" + + start_index: int + """The index of the first character of the URL citation in the message.""" + + title: str + """The title of the web resource.""" + + url: str + """The URL of the web resource.""" + + +class Annotation(BaseModel): + type: Literal["url_citation"] + """The type of the URL citation. Always `url_citation`.""" + + url_citation: AnnotationURLCitation + """A URL citation when using web search.""" + + +class FunctionCall(BaseModel): + arguments: str + """ + The arguments to call the function with, as generated by the model in JSON + format. Note that the model does not always generate valid JSON, and may + hallucinate parameters not defined by your function schema. Validate the + arguments in your code before calling your function. + """ + + name: str + """The name of the function to call.""" + + +class ChatCompletionMessage(BaseModel): + content: Optional[str] = None + """The contents of the message.""" + + refusal: Optional[str] = None + """The refusal message generated by the model.""" + + role: Literal["assistant"] + """The role of the author of this message.""" + + annotations: Optional[List[Annotation]] = None + """ + Annotations for the message, when applicable, as when using the + [web search tool](https://platform.openai.com/docs/guides/tools-web-search?api-mode=chat). + """ + + audio: Optional[ChatCompletionAudio] = None + """ + If the audio output modality is requested, this object contains data about the + audio response from the model. + [Learn more](https://platform.openai.com/docs/guides/audio). + """ + + function_call: Optional[FunctionCall] = None + """Deprecated and replaced by `tool_calls`. + + The name and arguments of a function that should be called, as generated by the + model. + """ + + tool_calls: Optional[List[ChatCompletionMessageToolCall]] = None + """The tool calls generated by the model, such as function calls.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_message_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_message_param.py new file mode 100644 index 00000000..942da243 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_message_param.py @@ -0,0 +1,24 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import TypeAlias + +from .chat_completion_tool_message_param import ChatCompletionToolMessageParam +from .chat_completion_user_message_param import ChatCompletionUserMessageParam +from .chat_completion_system_message_param import ChatCompletionSystemMessageParam +from .chat_completion_function_message_param import ChatCompletionFunctionMessageParam +from .chat_completion_assistant_message_param import ChatCompletionAssistantMessageParam +from .chat_completion_developer_message_param import ChatCompletionDeveloperMessageParam + +__all__ = ["ChatCompletionMessageParam"] + +ChatCompletionMessageParam: TypeAlias = Union[ + ChatCompletionDeveloperMessageParam, + ChatCompletionSystemMessageParam, + ChatCompletionUserMessageParam, + ChatCompletionAssistantMessageParam, + ChatCompletionToolMessageParam, + ChatCompletionFunctionMessageParam, +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_message_tool_call.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_message_tool_call.py new file mode 100644 index 00000000..4fec6670 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_message_tool_call.py @@ -0,0 +1,31 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ChatCompletionMessageToolCall", "Function"] + + +class Function(BaseModel): + arguments: str + """ + The arguments to call the function with, as generated by the model in JSON + format. Note that the model does not always generate valid JSON, and may + hallucinate parameters not defined by your function schema. Validate the + arguments in your code before calling your function. + """ + + name: str + """The name of the function to call.""" + + +class ChatCompletionMessageToolCall(BaseModel): + id: str + """The ID of the tool call.""" + + function: Function + """The function that the model called.""" + + type: Literal["function"] + """The type of the tool. Currently, only `function` is supported.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_message_tool_call_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_message_tool_call_param.py new file mode 100644 index 00000000..f616c363 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_message_tool_call_param.py @@ -0,0 +1,31 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ChatCompletionMessageToolCallParam", "Function"] + + +class Function(TypedDict, total=False): + arguments: Required[str] + """ + The arguments to call the function with, as generated by the model in JSON + format. Note that the model does not always generate valid JSON, and may + hallucinate parameters not defined by your function schema. Validate the + arguments in your code before calling your function. + """ + + name: Required[str] + """The name of the function to call.""" + + +class ChatCompletionMessageToolCallParam(TypedDict, total=False): + id: Required[str] + """The ID of the tool call.""" + + function: Required[Function] + """The function that the model called.""" + + type: Required[Literal["function"]] + """The type of the tool. Currently, only `function` is supported.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_modality.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_modality.py new file mode 100644 index 00000000..8e3c1459 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_modality.py @@ -0,0 +1,7 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal, TypeAlias + +__all__ = ["ChatCompletionModality"] + +ChatCompletionModality: TypeAlias = Literal["text", "audio"] diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_named_tool_choice_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_named_tool_choice_param.py new file mode 100644 index 00000000..369f8b42 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_named_tool_choice_param.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ChatCompletionNamedToolChoiceParam", "Function"] + + +class Function(TypedDict, total=False): + name: Required[str] + """The name of the function to call.""" + + +class ChatCompletionNamedToolChoiceParam(TypedDict, total=False): + function: Required[Function] + + type: Required[Literal["function"]] + """The type of the tool. Currently, only `function` is supported.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_prediction_content_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_prediction_content_param.py new file mode 100644 index 00000000..c44e6e36 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_prediction_content_param.py @@ -0,0 +1,25 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Iterable +from typing_extensions import Literal, Required, TypedDict + +from .chat_completion_content_part_text_param import ChatCompletionContentPartTextParam + +__all__ = ["ChatCompletionPredictionContentParam"] + + +class ChatCompletionPredictionContentParam(TypedDict, total=False): + content: Required[Union[str, Iterable[ChatCompletionContentPartTextParam]]] + """ + The content that should be matched when generating a model response. If + generated tokens would match this content, the entire model response can be + returned much more quickly. + """ + + type: Required[Literal["content"]] + """The type of the predicted content you want to provide. + + This type is currently always `content`. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_reasoning_effort.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_reasoning_effort.py new file mode 100644 index 00000000..e4785c90 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_reasoning_effort.py @@ -0,0 +1,8 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + + +from ..shared.reasoning_effort import ReasoningEffort + +__all__ = ["ChatCompletionReasoningEffort"] + +ChatCompletionReasoningEffort = ReasoningEffort diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_role.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_role.py new file mode 100644 index 00000000..3ec5e9ad --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_role.py @@ -0,0 +1,7 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal, TypeAlias + +__all__ = ["ChatCompletionRole"] + +ChatCompletionRole: TypeAlias = Literal["developer", "system", "user", "assistant", "tool", "function"] diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_store_message.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_store_message.py new file mode 100644 index 00000000..95adc08a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_store_message.py @@ -0,0 +1,11 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + + +from .chat_completion_message import ChatCompletionMessage + +__all__ = ["ChatCompletionStoreMessage"] + + +class ChatCompletionStoreMessage(ChatCompletionMessage): + id: str + """The identifier of the chat message.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_stream_options_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_stream_options_param.py new file mode 100644 index 00000000..471e0eba --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_stream_options_param.py @@ -0,0 +1,20 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import TypedDict + +__all__ = ["ChatCompletionStreamOptionsParam"] + + +class ChatCompletionStreamOptionsParam(TypedDict, total=False): + include_usage: bool + """If set, an additional chunk will be streamed before the `data: [DONE]` message. + + The `usage` field on this chunk shows the token usage statistics for the entire + request, and the `choices` field will always be an empty array. + + All other chunks will also include a `usage` field, but with a null value. + **NOTE:** If the stream is interrupted, you may not receive the final usage + chunk which contains the total token usage for the request. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_system_message_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_system_message_param.py new file mode 100644 index 00000000..172ccea0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_system_message_param.py @@ -0,0 +1,25 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Iterable +from typing_extensions import Literal, Required, TypedDict + +from .chat_completion_content_part_text_param import ChatCompletionContentPartTextParam + +__all__ = ["ChatCompletionSystemMessageParam"] + + +class ChatCompletionSystemMessageParam(TypedDict, total=False): + content: Required[Union[str, Iterable[ChatCompletionContentPartTextParam]]] + """The contents of the system message.""" + + role: Required[Literal["system"]] + """The role of the messages author, in this case `system`.""" + + name: str + """An optional name for the participant. + + Provides the model information to differentiate between participants of the same + role. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_token_logprob.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_token_logprob.py new file mode 100644 index 00000000..c69e2589 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_token_logprob.py @@ -0,0 +1,57 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional + +from ..._models import BaseModel + +__all__ = ["ChatCompletionTokenLogprob", "TopLogprob"] + + +class TopLogprob(BaseModel): + token: str + """The token.""" + + bytes: Optional[List[int]] = None + """A list of integers representing the UTF-8 bytes representation of the token. + + Useful in instances where characters are represented by multiple tokens and + their byte representations must be combined to generate the correct text + representation. Can be `null` if there is no bytes representation for the token. + """ + + logprob: float + """The log probability of this token, if it is within the top 20 most likely + tokens. + + Otherwise, the value `-9999.0` is used to signify that the token is very + unlikely. + """ + + +class ChatCompletionTokenLogprob(BaseModel): + token: str + """The token.""" + + bytes: Optional[List[int]] = None + """A list of integers representing the UTF-8 bytes representation of the token. + + Useful in instances where characters are represented by multiple tokens and + their byte representations must be combined to generate the correct text + representation. Can be `null` if there is no bytes representation for the token. + """ + + logprob: float + """The log probability of this token, if it is within the top 20 most likely + tokens. + + Otherwise, the value `-9999.0` is used to signify that the token is very + unlikely. + """ + + top_logprobs: List[TopLogprob] + """List of the most likely tokens and their log probability, at this token + position. + + In rare cases, there may be fewer than the number of requested `top_logprobs` + returned. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_tool_choice_option_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_tool_choice_option_param.py new file mode 100644 index 00000000..7dedf041 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_tool_choice_option_param.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import Literal, TypeAlias + +from .chat_completion_named_tool_choice_param import ChatCompletionNamedToolChoiceParam + +__all__ = ["ChatCompletionToolChoiceOptionParam"] + +ChatCompletionToolChoiceOptionParam: TypeAlias = Union[ + Literal["none", "auto", "required"], ChatCompletionNamedToolChoiceParam +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_tool_message_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_tool_message_param.py new file mode 100644 index 00000000..eb5e270e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_tool_message_param.py @@ -0,0 +1,21 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Iterable +from typing_extensions import Literal, Required, TypedDict + +from .chat_completion_content_part_text_param import ChatCompletionContentPartTextParam + +__all__ = ["ChatCompletionToolMessageParam"] + + +class ChatCompletionToolMessageParam(TypedDict, total=False): + content: Required[Union[str, Iterable[ChatCompletionContentPartTextParam]]] + """The contents of the tool message.""" + + role: Required[Literal["tool"]] + """The role of the messages author, in this case `tool`.""" + + tool_call_id: Required[str] + """Tool call that this message is responding to.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_tool_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_tool_param.py new file mode 100644 index 00000000..6c2b1a36 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_tool_param.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +from ..shared_params.function_definition import FunctionDefinition + +__all__ = ["ChatCompletionToolParam"] + + +class ChatCompletionToolParam(TypedDict, total=False): + function: Required[FunctionDefinition] + + type: Required[Literal["function"]] + """The type of the tool. Currently, only `function` is supported.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_user_message_param.py b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_user_message_param.py new file mode 100644 index 00000000..5c15322a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/chat_completion_user_message_param.py @@ -0,0 +1,25 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Iterable +from typing_extensions import Literal, Required, TypedDict + +from .chat_completion_content_part_param import ChatCompletionContentPartParam + +__all__ = ["ChatCompletionUserMessageParam"] + + +class ChatCompletionUserMessageParam(TypedDict, total=False): + content: Required[Union[str, Iterable[ChatCompletionContentPartParam]]] + """The contents of the user message.""" + + role: Required[Literal["user"]] + """The role of the messages author, in this case `user`.""" + + name: str + """An optional name for the participant. + + Provides the model information to differentiate between participants of the same + role. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/completion_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/chat/completion_create_params.py new file mode 100644 index 00000000..05103fba --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/completion_create_params.py @@ -0,0 +1,404 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Dict, List, Union, Iterable, Optional +from typing_extensions import Literal, Required, TypeAlias, TypedDict + +from ..shared.chat_model import ChatModel +from ..shared_params.metadata import Metadata +from ..shared.reasoning_effort import ReasoningEffort +from .chat_completion_tool_param import ChatCompletionToolParam +from .chat_completion_audio_param import ChatCompletionAudioParam +from .chat_completion_message_param import ChatCompletionMessageParam +from ..shared_params.function_parameters import FunctionParameters +from ..shared_params.response_format_text import ResponseFormatText +from .chat_completion_stream_options_param import ChatCompletionStreamOptionsParam +from .chat_completion_prediction_content_param import ChatCompletionPredictionContentParam +from .chat_completion_tool_choice_option_param import ChatCompletionToolChoiceOptionParam +from ..shared_params.response_format_json_object import ResponseFormatJSONObject +from ..shared_params.response_format_json_schema import ResponseFormatJSONSchema +from .chat_completion_function_call_option_param import ChatCompletionFunctionCallOptionParam + +__all__ = [ + "CompletionCreateParamsBase", + "FunctionCall", + "Function", + "ResponseFormat", + "WebSearchOptions", + "WebSearchOptionsUserLocation", + "WebSearchOptionsUserLocationApproximate", + "CompletionCreateParamsNonStreaming", + "CompletionCreateParamsStreaming", +] + + +class CompletionCreateParamsBase(TypedDict, total=False): + messages: Required[Iterable[ChatCompletionMessageParam]] + """A list of messages comprising the conversation so far. + + Depending on the [model](https://platform.openai.com/docs/models) you use, + different message types (modalities) are supported, like + [text](https://platform.openai.com/docs/guides/text-generation), + [images](https://platform.openai.com/docs/guides/vision), and + [audio](https://platform.openai.com/docs/guides/audio). + """ + + model: Required[Union[str, ChatModel]] + """Model ID used to generate the response, like `gpt-4o` or `o1`. + + OpenAI offers a wide range of models with different capabilities, performance + characteristics, and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + """ + + audio: Optional[ChatCompletionAudioParam] + """Parameters for audio output. + + Required when audio output is requested with `modalities: ["audio"]`. + [Learn more](https://platform.openai.com/docs/guides/audio). + """ + + frequency_penalty: Optional[float] + """Number between -2.0 and 2.0. + + Positive values penalize new tokens based on their existing frequency in the + text so far, decreasing the model's likelihood to repeat the same line verbatim. + """ + + function_call: FunctionCall + """Deprecated in favor of `tool_choice`. + + Controls which (if any) function is called by the model. + + `none` means the model will not call a function and instead generates a message. + + `auto` means the model can pick between generating a message or calling a + function. + + Specifying a particular function via `{"name": "my_function"}` forces the model + to call that function. + + `none` is the default when no functions are present. `auto` is the default if + functions are present. + """ + + functions: Iterable[Function] + """Deprecated in favor of `tools`. + + A list of functions the model may generate JSON inputs for. + """ + + logit_bias: Optional[Dict[str, int]] + """Modify the likelihood of specified tokens appearing in the completion. + + Accepts a JSON object that maps tokens (specified by their token ID in the + tokenizer) to an associated bias value from -100 to 100. Mathematically, the + bias is added to the logits generated by the model prior to sampling. The exact + effect will vary per model, but values between -1 and 1 should decrease or + increase likelihood of selection; values like -100 or 100 should result in a ban + or exclusive selection of the relevant token. + """ + + logprobs: Optional[bool] + """Whether to return log probabilities of the output tokens or not. + + If true, returns the log probabilities of each output token returned in the + `content` of `message`. + """ + + max_completion_tokens: Optional[int] + """ + An upper bound for the number of tokens that can be generated for a completion, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + """ + + max_tokens: Optional[int] + """ + The maximum number of [tokens](/tokenizer) that can be generated in the chat + completion. This value can be used to control + [costs](https://openai.com/api/pricing/) for text generated via API. + + This value is now deprecated in favor of `max_completion_tokens`, and is not + compatible with + [o1 series models](https://platform.openai.com/docs/guides/reasoning). + """ + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + modalities: Optional[List[Literal["text", "audio"]]] + """ + Output types that you would like the model to generate. Most models are capable + of generating text, which is the default: + + `["text"]` + + The `gpt-4o-audio-preview` model can also be used to + [generate audio](https://platform.openai.com/docs/guides/audio). To request that + this model generate both text and audio responses, you can use: + + `["text", "audio"]` + """ + + n: Optional[int] + """How many chat completion choices to generate for each input message. + + Note that you will be charged based on the number of generated tokens across all + of the choices. Keep `n` as `1` to minimize costs. + """ + + parallel_tool_calls: bool + """ + Whether to enable + [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) + during tool use. + """ + + prediction: Optional[ChatCompletionPredictionContentParam] + """ + Static predicted output content, such as the content of a text file that is + being regenerated. + """ + + presence_penalty: Optional[float] + """Number between -2.0 and 2.0. + + Positive values penalize new tokens based on whether they appear in the text so + far, increasing the model's likelihood to talk about new topics. + """ + + reasoning_effort: Optional[ReasoningEffort] + """**o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + """ + + response_format: ResponseFormat + """An object specifying the format that the model must output. + + Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured + Outputs which ensures the model will match your supplied JSON schema. Learn more + in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + Setting to `{ "type": "json_object" }` enables the older JSON mode, which + ensures the message the model generates is valid JSON. Using `json_schema` is + preferred for models that support it. + """ + + seed: Optional[int] + """ + This feature is in Beta. If specified, our system will make a best effort to + sample deterministically, such that repeated requests with the same `seed` and + parameters should return the same result. Determinism is not guaranteed, and you + should refer to the `system_fingerprint` response parameter to monitor changes + in the backend. + """ + + service_tier: Optional[Literal["auto", "default"]] + """Specifies the latency tier to use for processing the request. + + This parameter is relevant for customers subscribed to the scale tier service: + + - If set to 'auto', and the Project is Scale tier enabled, the system will + utilize scale tier credits until they are exhausted. + - If set to 'auto', and the Project is not Scale tier enabled, the request will + be processed using the default service tier with a lower uptime SLA and no + latency guarentee. + - If set to 'default', the request will be processed using the default service + tier with a lower uptime SLA and no latency guarentee. + - When not set, the default behavior is 'auto'. + + When this parameter is set, the response body will include the `service_tier` + utilized. + """ + + stop: Union[Optional[str], List[str], None] + """Up to 4 sequences where the API will stop generating further tokens. + + The returned text will not contain the stop sequence. + """ + + store: Optional[bool] + """ + Whether or not to store the output of this chat completion request for use in + our [model distillation](https://platform.openai.com/docs/guides/distillation) + or [evals](https://platform.openai.com/docs/guides/evals) products. + """ + + stream_options: Optional[ChatCompletionStreamOptionsParam] + """Options for streaming response. Only set this when you set `stream: true`.""" + + temperature: Optional[float] + """What sampling temperature to use, between 0 and 2. + + Higher values like 0.8 will make the output more random, while lower values like + 0.2 will make it more focused and deterministic. We generally recommend altering + this or `top_p` but not both. + """ + + tool_choice: ChatCompletionToolChoiceOptionParam + """ + Controls which (if any) tool is called by the model. `none` means the model will + not call any tool and instead generates a message. `auto` means the model can + pick between generating a message or calling one or more tools. `required` means + the model must call one or more tools. Specifying a particular tool via + `{"type": "function", "function": {"name": "my_function"}}` forces the model to + call that tool. + + `none` is the default when no tools are present. `auto` is the default if tools + are present. + """ + + tools: Iterable[ChatCompletionToolParam] + """A list of tools the model may call. + + Currently, only functions are supported as a tool. Use this to provide a list of + functions the model may generate JSON inputs for. A max of 128 functions are + supported. + """ + + top_logprobs: Optional[int] + """ + An integer between 0 and 20 specifying the number of most likely tokens to + return at each token position, each with an associated log probability. + `logprobs` must be set to `true` if this parameter is used. + """ + + top_p: Optional[float] + """ + An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + """ + + user: str + """ + A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + """ + + web_search_options: WebSearchOptions + """ + This tool searches the web for relevant results to use in a response. Learn more + about the + [web search tool](https://platform.openai.com/docs/guides/tools-web-search?api-mode=chat). + """ + + +FunctionCall: TypeAlias = Union[Literal["none", "auto"], ChatCompletionFunctionCallOptionParam] + + +class Function(TypedDict, total=False): + name: Required[str] + """The name of the function to be called. + + Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length + of 64. + """ + + description: str + """ + A description of what the function does, used by the model to choose when and + how to call the function. + """ + + parameters: FunctionParameters + """The parameters the functions accepts, described as a JSON Schema object. + + See the [guide](https://platform.openai.com/docs/guides/function-calling) for + examples, and the + [JSON Schema reference](https://json-schema.org/understanding-json-schema/) for + documentation about the format. + + Omitting `parameters` defines a function with an empty parameter list. + """ + + +ResponseFormat: TypeAlias = Union[ResponseFormatText, ResponseFormatJSONSchema, ResponseFormatJSONObject] + + +class WebSearchOptionsUserLocationApproximate(TypedDict, total=False): + city: str + """Free text input for the city of the user, e.g. `San Francisco`.""" + + country: str + """ + The two-letter [ISO country code](https://en.wikipedia.org/wiki/ISO_3166-1) of + the user, e.g. `US`. + """ + + region: str + """Free text input for the region of the user, e.g. `California`.""" + + timezone: str + """ + The [IANA timezone](https://timeapi.io/documentation/iana-timezones) of the + user, e.g. `America/Los_Angeles`. + """ + + +class WebSearchOptionsUserLocation(TypedDict, total=False): + approximate: Required[WebSearchOptionsUserLocationApproximate] + """Approximate location parameters for the search.""" + + type: Required[Literal["approximate"]] + """The type of location approximation. Always `approximate`.""" + + +class WebSearchOptions(TypedDict, total=False): + search_context_size: Literal["low", "medium", "high"] + """ + High level guidance for the amount of context window space to use for the + search. One of `low`, `medium`, or `high`. `medium` is the default. + """ + + user_location: Optional[WebSearchOptionsUserLocation] + """Approximate location parameters for the search.""" + + +class CompletionCreateParamsNonStreaming(CompletionCreateParamsBase, total=False): + stream: Optional[Literal[False]] + """ + If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/chat/streaming) + for more information, along with the + [streaming responses](https://platform.openai.com/docs/guides/streaming-responses) + guide for more information on how to handle the streaming events. + """ + + +class CompletionCreateParamsStreaming(CompletionCreateParamsBase): + stream: Required[Literal[True]] + """ + If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/chat/streaming) + for more information, along with the + [streaming responses](https://platform.openai.com/docs/guides/streaming-responses) + guide for more information on how to handle the streaming events. + """ + + +CompletionCreateParams = Union[CompletionCreateParamsNonStreaming, CompletionCreateParamsStreaming] diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/completion_list_params.py b/.venv/lib/python3.12/site-packages/openai/types/chat/completion_list_params.py new file mode 100644 index 00000000..d93da834 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/completion_list_params.py @@ -0,0 +1,33 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Optional +from typing_extensions import Literal, TypedDict + +from ..shared_params.metadata import Metadata + +__all__ = ["CompletionListParams"] + + +class CompletionListParams(TypedDict, total=False): + after: str + """Identifier for the last chat completion from the previous pagination request.""" + + limit: int + """Number of Chat Completions to retrieve.""" + + metadata: Optional[Metadata] + """A list of metadata keys to filter the Chat Completions by. Example: + + `metadata[key1]=value1&metadata[key2]=value2` + """ + + model: str + """The model used to generate the Chat Completions.""" + + order: Literal["asc", "desc"] + """Sort order for Chat Completions by timestamp. + + Use `asc` for ascending order or `desc` for descending order. Defaults to `asc`. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/completion_update_params.py b/.venv/lib/python3.12/site-packages/openai/types/chat/completion_update_params.py new file mode 100644 index 00000000..fc71733f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/completion_update_params.py @@ -0,0 +1,22 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Optional +from typing_extensions import Required, TypedDict + +from ..shared_params.metadata import Metadata + +__all__ = ["CompletionUpdateParams"] + + +class CompletionUpdateParams(TypedDict, total=False): + metadata: Required[Optional[Metadata]] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/completions/__init__.py b/.venv/lib/python3.12/site-packages/openai/types/chat/completions/__init__.py new file mode 100644 index 00000000..b8e62d6a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/completions/__init__.py @@ -0,0 +1,5 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from .message_list_params import MessageListParams as MessageListParams diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/completions/message_list_params.py b/.venv/lib/python3.12/site-packages/openai/types/chat/completions/message_list_params.py new file mode 100644 index 00000000..4e694e83 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/completions/message_list_params.py @@ -0,0 +1,21 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, TypedDict + +__all__ = ["MessageListParams"] + + +class MessageListParams(TypedDict, total=False): + after: str + """Identifier for the last message from the previous pagination request.""" + + limit: int + """Number of messages to retrieve.""" + + order: Literal["asc", "desc"] + """Sort order for messages by timestamp. + + Use `asc` for ascending order or `desc` for descending order. Defaults to `asc`. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/parsed_chat_completion.py b/.venv/lib/python3.12/site-packages/openai/types/chat/parsed_chat_completion.py new file mode 100644 index 00000000..4b11dac5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/parsed_chat_completion.py @@ -0,0 +1,40 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Generic, TypeVar, Optional + +from ..._models import GenericModel +from .chat_completion import Choice, ChatCompletion +from .chat_completion_message import ChatCompletionMessage +from .parsed_function_tool_call import ParsedFunctionToolCall + +__all__ = ["ParsedChatCompletion", "ParsedChoice"] + + +ContentType = TypeVar("ContentType") + + +# we need to disable this check because we're overriding properties +# with subclasses of their types which is technically unsound as +# properties can be mutated. +# pyright: reportIncompatibleVariableOverride=false + + +class ParsedChatCompletionMessage(ChatCompletionMessage, GenericModel, Generic[ContentType]): + parsed: Optional[ContentType] = None + """The auto-parsed message contents""" + + tool_calls: Optional[List[ParsedFunctionToolCall]] = None # type: ignore[assignment] + """The tool calls generated by the model, such as function calls.""" + + +class ParsedChoice(Choice, GenericModel, Generic[ContentType]): + message: ParsedChatCompletionMessage[ContentType] + """A chat completion message generated by the model.""" + + +class ParsedChatCompletion(ChatCompletion, GenericModel, Generic[ContentType]): + choices: List[ParsedChoice[ContentType]] # type: ignore[assignment] + """A list of chat completion choices. + + Can be more than one if `n` is greater than 1. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat/parsed_function_tool_call.py b/.venv/lib/python3.12/site-packages/openai/types/chat/parsed_function_tool_call.py new file mode 100644 index 00000000..3e90789f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat/parsed_function_tool_call.py @@ -0,0 +1,29 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional + +from .chat_completion_message_tool_call import Function, ChatCompletionMessageToolCall + +__all__ = ["ParsedFunctionToolCall", "ParsedFunction"] + +# we need to disable this check because we're overriding properties +# with subclasses of their types which is technically unsound as +# properties can be mutated. +# pyright: reportIncompatibleVariableOverride=false + + +class ParsedFunction(Function): + parsed_arguments: Optional[object] = None + """ + The arguments to call the function with. + + If you used `openai.pydantic_function_tool()` then this will be an + instance of the given `BaseModel`. + + Otherwise, this will be the parsed JSON arguments. + """ + + +class ParsedFunctionToolCall(ChatCompletionMessageToolCall): + function: ParsedFunction + """The function that the model called.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/chat_model.py b/.venv/lib/python3.12/site-packages/openai/types/chat_model.py new file mode 100644 index 00000000..9304d195 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/chat_model.py @@ -0,0 +1,8 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + + +from .shared import chat_model + +__all__ = ["ChatModel"] + +ChatModel = chat_model.ChatModel diff --git a/.venv/lib/python3.12/site-packages/openai/types/completion.py b/.venv/lib/python3.12/site-packages/openai/types/completion.py new file mode 100644 index 00000000..d3b3102a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/completion.py @@ -0,0 +1,37 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from .._models import BaseModel +from .completion_usage import CompletionUsage +from .completion_choice import CompletionChoice + +__all__ = ["Completion"] + + +class Completion(BaseModel): + id: str + """A unique identifier for the completion.""" + + choices: List[CompletionChoice] + """The list of completion choices the model generated for the input prompt.""" + + created: int + """The Unix timestamp (in seconds) of when the completion was created.""" + + model: str + """The model used for completion.""" + + object: Literal["text_completion"] + """The object type, which is always "text_completion" """ + + system_fingerprint: Optional[str] = None + """This fingerprint represents the backend configuration that the model runs with. + + Can be used in conjunction with the `seed` request parameter to understand when + backend changes have been made that might impact determinism. + """ + + usage: Optional[CompletionUsage] = None + """Usage statistics for the completion request.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/completion_choice.py b/.venv/lib/python3.12/site-packages/openai/types/completion_choice.py new file mode 100644 index 00000000..d948ebc9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/completion_choice.py @@ -0,0 +1,35 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Dict, List, Optional +from typing_extensions import Literal + +from .._models import BaseModel + +__all__ = ["CompletionChoice", "Logprobs"] + + +class Logprobs(BaseModel): + text_offset: Optional[List[int]] = None + + token_logprobs: Optional[List[float]] = None + + tokens: Optional[List[str]] = None + + top_logprobs: Optional[List[Dict[str, float]]] = None + + +class CompletionChoice(BaseModel): + finish_reason: Literal["stop", "length", "content_filter"] + """The reason the model stopped generating tokens. + + This will be `stop` if the model hit a natural stop point or a provided stop + sequence, `length` if the maximum number of tokens specified in the request was + reached, or `content_filter` if content was omitted due to a flag from our + content filters. + """ + + index: int + + logprobs: Optional[Logprobs] = None + + text: str diff --git a/.venv/lib/python3.12/site-packages/openai/types/completion_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/completion_create_params.py new file mode 100644 index 00000000..fdb1680d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/completion_create_params.py @@ -0,0 +1,187 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Dict, List, Union, Iterable, Optional +from typing_extensions import Literal, Required, TypedDict + +from .chat.chat_completion_stream_options_param import ChatCompletionStreamOptionsParam + +__all__ = ["CompletionCreateParamsBase", "CompletionCreateParamsNonStreaming", "CompletionCreateParamsStreaming"] + + +class CompletionCreateParamsBase(TypedDict, total=False): + model: Required[Union[str, Literal["gpt-3.5-turbo-instruct", "davinci-002", "babbage-002"]]] + """ID of the model to use. + + You can use the + [List models](https://platform.openai.com/docs/api-reference/models/list) API to + see all of your available models, or see our + [Model overview](https://platform.openai.com/docs/models) for descriptions of + them. + """ + + prompt: Required[Union[str, List[str], Iterable[int], Iterable[Iterable[int]], None]] + """ + The prompt(s) to generate completions for, encoded as a string, array of + strings, array of tokens, or array of token arrays. + + Note that <|endoftext|> is the document separator that the model sees during + training, so if a prompt is not specified the model will generate as if from the + beginning of a new document. + """ + + best_of: Optional[int] + """ + Generates `best_of` completions server-side and returns the "best" (the one with + the highest log probability per token). Results cannot be streamed. + + When used with `n`, `best_of` controls the number of candidate completions and + `n` specifies how many to return – `best_of` must be greater than `n`. + + **Note:** Because this parameter generates many completions, it can quickly + consume your token quota. Use carefully and ensure that you have reasonable + settings for `max_tokens` and `stop`. + """ + + echo: Optional[bool] + """Echo back the prompt in addition to the completion""" + + frequency_penalty: Optional[float] + """Number between -2.0 and 2.0. + + Positive values penalize new tokens based on their existing frequency in the + text so far, decreasing the model's likelihood to repeat the same line verbatim. + + [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation) + """ + + logit_bias: Optional[Dict[str, int]] + """Modify the likelihood of specified tokens appearing in the completion. + + Accepts a JSON object that maps tokens (specified by their token ID in the GPT + tokenizer) to an associated bias value from -100 to 100. You can use this + [tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs. + Mathematically, the bias is added to the logits generated by the model prior to + sampling. The exact effect will vary per model, but values between -1 and 1 + should decrease or increase likelihood of selection; values like -100 or 100 + should result in a ban or exclusive selection of the relevant token. + + As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token + from being generated. + """ + + logprobs: Optional[int] + """ + Include the log probabilities on the `logprobs` most likely output tokens, as + well the chosen tokens. For example, if `logprobs` is 5, the API will return a + list of the 5 most likely tokens. The API will always return the `logprob` of + the sampled token, so there may be up to `logprobs+1` elements in the response. + + The maximum value for `logprobs` is 5. + """ + + max_tokens: Optional[int] + """ + The maximum number of [tokens](/tokenizer) that can be generated in the + completion. + + The token count of your prompt plus `max_tokens` cannot exceed the model's + context length. + [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) + for counting tokens. + """ + + n: Optional[int] + """How many completions to generate for each prompt. + + **Note:** Because this parameter generates many completions, it can quickly + consume your token quota. Use carefully and ensure that you have reasonable + settings for `max_tokens` and `stop`. + """ + + presence_penalty: Optional[float] + """Number between -2.0 and 2.0. + + Positive values penalize new tokens based on whether they appear in the text so + far, increasing the model's likelihood to talk about new topics. + + [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation) + """ + + seed: Optional[int] + """ + If specified, our system will make a best effort to sample deterministically, + such that repeated requests with the same `seed` and parameters should return + the same result. + + Determinism is not guaranteed, and you should refer to the `system_fingerprint` + response parameter to monitor changes in the backend. + """ + + stop: Union[Optional[str], List[str], None] + """Up to 4 sequences where the API will stop generating further tokens. + + The returned text will not contain the stop sequence. + """ + + stream_options: Optional[ChatCompletionStreamOptionsParam] + """Options for streaming response. Only set this when you set `stream: true`.""" + + suffix: Optional[str] + """The suffix that comes after a completion of inserted text. + + This parameter is only supported for `gpt-3.5-turbo-instruct`. + """ + + temperature: Optional[float] + """What sampling temperature to use, between 0 and 2. + + Higher values like 0.8 will make the output more random, while lower values like + 0.2 will make it more focused and deterministic. + + We generally recommend altering this or `top_p` but not both. + """ + + top_p: Optional[float] + """ + An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + """ + + user: str + """ + A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + """ + + +class CompletionCreateParamsNonStreaming(CompletionCreateParamsBase, total=False): + stream: Optional[Literal[False]] + """Whether to stream back partial progress. + + If set, tokens will be sent as data-only + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format) + as they become available, with the stream terminated by a `data: [DONE]` + message. + [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions). + """ + + +class CompletionCreateParamsStreaming(CompletionCreateParamsBase): + stream: Required[Literal[True]] + """Whether to stream back partial progress. + + If set, tokens will be sent as data-only + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format) + as they become available, with the stream terminated by a `data: [DONE]` + message. + [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions). + """ + + +CompletionCreateParams = Union[CompletionCreateParamsNonStreaming, CompletionCreateParamsStreaming] diff --git a/.venv/lib/python3.12/site-packages/openai/types/completion_usage.py b/.venv/lib/python3.12/site-packages/openai/types/completion_usage.py new file mode 100644 index 00000000..d8c4e84c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/completion_usage.py @@ -0,0 +1,54 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional + +from .._models import BaseModel + +__all__ = ["CompletionUsage", "CompletionTokensDetails", "PromptTokensDetails"] + + +class CompletionTokensDetails(BaseModel): + accepted_prediction_tokens: Optional[int] = None + """ + When using Predicted Outputs, the number of tokens in the prediction that + appeared in the completion. + """ + + audio_tokens: Optional[int] = None + """Audio input tokens generated by the model.""" + + reasoning_tokens: Optional[int] = None + """Tokens generated by the model for reasoning.""" + + rejected_prediction_tokens: Optional[int] = None + """ + When using Predicted Outputs, the number of tokens in the prediction that did + not appear in the completion. However, like reasoning tokens, these tokens are + still counted in the total completion tokens for purposes of billing, output, + and context window limits. + """ + + +class PromptTokensDetails(BaseModel): + audio_tokens: Optional[int] = None + """Audio input tokens present in the prompt.""" + + cached_tokens: Optional[int] = None + """Cached tokens present in the prompt.""" + + +class CompletionUsage(BaseModel): + completion_tokens: int + """Number of tokens in the generated completion.""" + + prompt_tokens: int + """Number of tokens in the prompt.""" + + total_tokens: int + """Total number of tokens used in the request (prompt + completion).""" + + completion_tokens_details: Optional[CompletionTokensDetails] = None + """Breakdown of tokens used in a completion.""" + + prompt_tokens_details: Optional[PromptTokensDetails] = None + """Breakdown of tokens used in the prompt.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/create_embedding_response.py b/.venv/lib/python3.12/site-packages/openai/types/create_embedding_response.py new file mode 100644 index 00000000..eff247a1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/create_embedding_response.py @@ -0,0 +1,31 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List +from typing_extensions import Literal + +from .._models import BaseModel +from .embedding import Embedding + +__all__ = ["CreateEmbeddingResponse", "Usage"] + + +class Usage(BaseModel): + prompt_tokens: int + """The number of tokens used by the prompt.""" + + total_tokens: int + """The total number of tokens used by the request.""" + + +class CreateEmbeddingResponse(BaseModel): + data: List[Embedding] + """The list of embeddings generated by the model.""" + + model: str + """The name of the model used to generate the embedding.""" + + object: Literal["list"] + """The object type, which is always "list".""" + + usage: Usage + """The usage information for the request.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/embedding.py b/.venv/lib/python3.12/site-packages/openai/types/embedding.py new file mode 100644 index 00000000..769b1d16 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/embedding.py @@ -0,0 +1,23 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List +from typing_extensions import Literal + +from .._models import BaseModel + +__all__ = ["Embedding"] + + +class Embedding(BaseModel): + embedding: List[float] + """The embedding vector, which is a list of floats. + + The length of vector depends on the model as listed in the + [embedding guide](https://platform.openai.com/docs/guides/embeddings). + """ + + index: int + """The index of the embedding in the list of embeddings.""" + + object: Literal["embedding"] + """The object type, which is always "embedding".""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/embedding_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/embedding_create_params.py new file mode 100644 index 00000000..a9056644 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/embedding_create_params.py @@ -0,0 +1,53 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union, Iterable +from typing_extensions import Literal, Required, TypedDict + +from .embedding_model import EmbeddingModel + +__all__ = ["EmbeddingCreateParams"] + + +class EmbeddingCreateParams(TypedDict, total=False): + input: Required[Union[str, List[str], Iterable[int], Iterable[Iterable[int]]]] + """Input text to embed, encoded as a string or array of tokens. + + To embed multiple inputs in a single request, pass an array of strings or array + of token arrays. The input must not exceed the max input tokens for the model + (8192 tokens for `text-embedding-ada-002`), cannot be an empty string, and any + array must be 2048 dimensions or less. + [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) + for counting tokens. Some models may also impose a limit on total number of + tokens summed across inputs. + """ + + model: Required[Union[str, EmbeddingModel]] + """ID of the model to use. + + You can use the + [List models](https://platform.openai.com/docs/api-reference/models/list) API to + see all of your available models, or see our + [Model overview](https://platform.openai.com/docs/models) for descriptions of + them. + """ + + dimensions: int + """The number of dimensions the resulting output embeddings should have. + + Only supported in `text-embedding-3` and later models. + """ + + encoding_format: Literal["float", "base64"] + """The format to return the embeddings in. + + Can be either `float` or [`base64`](https://pypi.org/project/pybase64/). + """ + + user: str + """ + A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/embedding_model.py b/.venv/lib/python3.12/site-packages/openai/types/embedding_model.py new file mode 100644 index 00000000..075ff976 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/embedding_model.py @@ -0,0 +1,7 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal, TypeAlias + +__all__ = ["EmbeddingModel"] + +EmbeddingModel: TypeAlias = Literal["text-embedding-ada-002", "text-embedding-3-small", "text-embedding-3-large"] diff --git a/.venv/lib/python3.12/site-packages/openai/types/file_chunking_strategy.py b/.venv/lib/python3.12/site-packages/openai/types/file_chunking_strategy.py new file mode 100644 index 00000000..ee96bd78 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/file_chunking_strategy.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Annotated, TypeAlias + +from .._utils import PropertyInfo +from .other_file_chunking_strategy_object import OtherFileChunkingStrategyObject +from .static_file_chunking_strategy_object import StaticFileChunkingStrategyObject + +__all__ = ["FileChunkingStrategy"] + +FileChunkingStrategy: TypeAlias = Annotated[ + Union[StaticFileChunkingStrategyObject, OtherFileChunkingStrategyObject], PropertyInfo(discriminator="type") +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/file_chunking_strategy_param.py b/.venv/lib/python3.12/site-packages/openai/types/file_chunking_strategy_param.py new file mode 100644 index 00000000..25d94286 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/file_chunking_strategy_param.py @@ -0,0 +1,13 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import TypeAlias + +from .auto_file_chunking_strategy_param import AutoFileChunkingStrategyParam +from .static_file_chunking_strategy_object_param import StaticFileChunkingStrategyObjectParam + +__all__ = ["FileChunkingStrategyParam"] + +FileChunkingStrategyParam: TypeAlias = Union[AutoFileChunkingStrategyParam, StaticFileChunkingStrategyObjectParam] diff --git a/.venv/lib/python3.12/site-packages/openai/types/file_content.py b/.venv/lib/python3.12/site-packages/openai/types/file_content.py new file mode 100644 index 00000000..d89eee62 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/file_content.py @@ -0,0 +1,7 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import TypeAlias + +__all__ = ["FileContent"] + +FileContent: TypeAlias = str diff --git a/.venv/lib/python3.12/site-packages/openai/types/file_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/file_create_params.py new file mode 100644 index 00000000..728dfd35 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/file_create_params.py @@ -0,0 +1,24 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Required, TypedDict + +from .._types import FileTypes +from .file_purpose import FilePurpose + +__all__ = ["FileCreateParams"] + + +class FileCreateParams(TypedDict, total=False): + file: Required[FileTypes] + """The File object (not file name) to be uploaded.""" + + purpose: Required[FilePurpose] + """The intended purpose of the uploaded file. + + One of: - `assistants`: Used in the Assistants API - `batch`: Used in the Batch + API - `fine-tune`: Used for fine-tuning - `vision`: Images used for vision + fine-tuning - `user_data`: Flexible file type for any purpose - `evals`: Used + for eval data sets + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/file_deleted.py b/.venv/lib/python3.12/site-packages/openai/types/file_deleted.py new file mode 100644 index 00000000..f25fa87a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/file_deleted.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from .._models import BaseModel + +__all__ = ["FileDeleted"] + + +class FileDeleted(BaseModel): + id: str + + deleted: bool + + object: Literal["file"] diff --git a/.venv/lib/python3.12/site-packages/openai/types/file_list_params.py b/.venv/lib/python3.12/site-packages/openai/types/file_list_params.py new file mode 100644 index 00000000..058d874c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/file_list_params.py @@ -0,0 +1,33 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, TypedDict + +__all__ = ["FileListParams"] + + +class FileListParams(TypedDict, total=False): + after: str + """A cursor for use in pagination. + + `after` is an object ID that defines your place in the list. For instance, if + you make a list request and receive 100 objects, ending with obj_foo, your + subsequent call can include after=obj_foo in order to fetch the next page of the + list. + """ + + limit: int + """A limit on the number of objects to be returned. + + Limit can range between 1 and 10,000, and the default is 10,000. + """ + + order: Literal["asc", "desc"] + """Sort order by the `created_at` timestamp of the objects. + + `asc` for ascending order and `desc` for descending order. + """ + + purpose: str + """Only return files with the given purpose.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/file_object.py b/.venv/lib/python3.12/site-packages/openai/types/file_object.py new file mode 100644 index 00000000..1d65e698 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/file_object.py @@ -0,0 +1,51 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from .._models import BaseModel + +__all__ = ["FileObject"] + + +class FileObject(BaseModel): + id: str + """The file identifier, which can be referenced in the API endpoints.""" + + bytes: int + """The size of the file, in bytes.""" + + created_at: int + """The Unix timestamp (in seconds) for when the file was created.""" + + filename: str + """The name of the file.""" + + object: Literal["file"] + """The object type, which is always `file`.""" + + purpose: Literal[ + "assistants", "assistants_output", "batch", "batch_output", "fine-tune", "fine-tune-results", "vision" + ] + """The intended purpose of the file. + + Supported values are `assistants`, `assistants_output`, `batch`, `batch_output`, + `fine-tune`, `fine-tune-results` and `vision`. + """ + + status: Literal["uploaded", "processed", "error"] + """Deprecated. + + The current status of the file, which can be either `uploaded`, `processed`, or + `error`. + """ + + expires_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the file will expire.""" + + status_details: Optional[str] = None + """Deprecated. + + For details on why a fine-tuning training file failed validation, see the + `error` field on `fine_tuning.job`. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/file_purpose.py b/.venv/lib/python3.12/site-packages/openai/types/file_purpose.py new file mode 100644 index 00000000..b2c2d5f9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/file_purpose.py @@ -0,0 +1,7 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal, TypeAlias + +__all__ = ["FilePurpose"] + +FilePurpose: TypeAlias = Literal["assistants", "batch", "fine-tune", "vision", "user_data", "evals"] diff --git a/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/__init__.py b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/__init__.py new file mode 100644 index 00000000..92b81329 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/__init__.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from .fine_tuning_job import FineTuningJob as FineTuningJob +from .job_list_params import JobListParams as JobListParams +from .job_create_params import JobCreateParams as JobCreateParams +from .fine_tuning_job_event import FineTuningJobEvent as FineTuningJobEvent +from .job_list_events_params import JobListEventsParams as JobListEventsParams +from .fine_tuning_job_integration import FineTuningJobIntegration as FineTuningJobIntegration +from .fine_tuning_job_wandb_integration import FineTuningJobWandbIntegration as FineTuningJobWandbIntegration +from .fine_tuning_job_wandb_integration_object import ( + FineTuningJobWandbIntegrationObject as FineTuningJobWandbIntegrationObject, +) diff --git a/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/fine_tuning_job.py b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/fine_tuning_job.py new file mode 100644 index 00000000..c7fff2b7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/fine_tuning_job.py @@ -0,0 +1,223 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Union, Optional +from typing_extensions import Literal + +from ..._models import BaseModel +from ..shared.metadata import Metadata +from .fine_tuning_job_wandb_integration_object import FineTuningJobWandbIntegrationObject + +__all__ = [ + "FineTuningJob", + "Error", + "Hyperparameters", + "Method", + "MethodDpo", + "MethodDpoHyperparameters", + "MethodSupervised", + "MethodSupervisedHyperparameters", +] + + +class Error(BaseModel): + code: str + """A machine-readable error code.""" + + message: str + """A human-readable error message.""" + + param: Optional[str] = None + """The parameter that was invalid, usually `training_file` or `validation_file`. + + This field will be null if the failure was not parameter-specific. + """ + + +class Hyperparameters(BaseModel): + batch_size: Union[Literal["auto"], int, None] = None + """Number of examples in each batch. + + A larger batch size means that model parameters are updated less frequently, but + with lower variance. + """ + + learning_rate_multiplier: Union[Literal["auto"], float, None] = None + """Scaling factor for the learning rate. + + A smaller learning rate may be useful to avoid overfitting. + """ + + n_epochs: Union[Literal["auto"], int, None] = None + """The number of epochs to train the model for. + + An epoch refers to one full cycle through the training dataset. + """ + + +class MethodDpoHyperparameters(BaseModel): + batch_size: Union[Literal["auto"], int, None] = None + """Number of examples in each batch. + + A larger batch size means that model parameters are updated less frequently, but + with lower variance. + """ + + beta: Union[Literal["auto"], float, None] = None + """The beta value for the DPO method. + + A higher beta value will increase the weight of the penalty between the policy + and reference model. + """ + + learning_rate_multiplier: Union[Literal["auto"], float, None] = None + """Scaling factor for the learning rate. + + A smaller learning rate may be useful to avoid overfitting. + """ + + n_epochs: Union[Literal["auto"], int, None] = None + """The number of epochs to train the model for. + + An epoch refers to one full cycle through the training dataset. + """ + + +class MethodDpo(BaseModel): + hyperparameters: Optional[MethodDpoHyperparameters] = None + """The hyperparameters used for the fine-tuning job.""" + + +class MethodSupervisedHyperparameters(BaseModel): + batch_size: Union[Literal["auto"], int, None] = None + """Number of examples in each batch. + + A larger batch size means that model parameters are updated less frequently, but + with lower variance. + """ + + learning_rate_multiplier: Union[Literal["auto"], float, None] = None + """Scaling factor for the learning rate. + + A smaller learning rate may be useful to avoid overfitting. + """ + + n_epochs: Union[Literal["auto"], int, None] = None + """The number of epochs to train the model for. + + An epoch refers to one full cycle through the training dataset. + """ + + +class MethodSupervised(BaseModel): + hyperparameters: Optional[MethodSupervisedHyperparameters] = None + """The hyperparameters used for the fine-tuning job.""" + + +class Method(BaseModel): + dpo: Optional[MethodDpo] = None + """Configuration for the DPO fine-tuning method.""" + + supervised: Optional[MethodSupervised] = None + """Configuration for the supervised fine-tuning method.""" + + type: Optional[Literal["supervised", "dpo"]] = None + """The type of method. Is either `supervised` or `dpo`.""" + + +class FineTuningJob(BaseModel): + id: str + """The object identifier, which can be referenced in the API endpoints.""" + + created_at: int + """The Unix timestamp (in seconds) for when the fine-tuning job was created.""" + + error: Optional[Error] = None + """ + For fine-tuning jobs that have `failed`, this will contain more information on + the cause of the failure. + """ + + fine_tuned_model: Optional[str] = None + """The name of the fine-tuned model that is being created. + + The value will be null if the fine-tuning job is still running. + """ + + finished_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the fine-tuning job was finished. + + The value will be null if the fine-tuning job is still running. + """ + + hyperparameters: Hyperparameters + """The hyperparameters used for the fine-tuning job. + + This value will only be returned when running `supervised` jobs. + """ + + model: str + """The base model that is being fine-tuned.""" + + object: Literal["fine_tuning.job"] + """The object type, which is always "fine_tuning.job".""" + + organization_id: str + """The organization that owns the fine-tuning job.""" + + result_files: List[str] + """The compiled results file ID(s) for the fine-tuning job. + + You can retrieve the results with the + [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents). + """ + + seed: int + """The seed used for the fine-tuning job.""" + + status: Literal["validating_files", "queued", "running", "succeeded", "failed", "cancelled"] + """ + The current status of the fine-tuning job, which can be either + `validating_files`, `queued`, `running`, `succeeded`, `failed`, or `cancelled`. + """ + + trained_tokens: Optional[int] = None + """The total number of billable tokens processed by this fine-tuning job. + + The value will be null if the fine-tuning job is still running. + """ + + training_file: str + """The file ID used for training. + + You can retrieve the training data with the + [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents). + """ + + validation_file: Optional[str] = None + """The file ID used for validation. + + You can retrieve the validation results with the + [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents). + """ + + estimated_finish: Optional[int] = None + """ + The Unix timestamp (in seconds) for when the fine-tuning job is estimated to + finish. The value will be null if the fine-tuning job is not running. + """ + + integrations: Optional[List[FineTuningJobWandbIntegrationObject]] = None + """A list of integrations to enable for this fine-tuning job.""" + + metadata: Optional[Metadata] = None + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + method: Optional[Method] = None + """The method used for fine-tuning.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/fine_tuning_job_event.py b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/fine_tuning_job_event.py new file mode 100644 index 00000000..1d728bd7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/fine_tuning_job_event.py @@ -0,0 +1,32 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +import builtins +from typing import Optional +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["FineTuningJobEvent"] + + +class FineTuningJobEvent(BaseModel): + id: str + """The object identifier.""" + + created_at: int + """The Unix timestamp (in seconds) for when the fine-tuning job was created.""" + + level: Literal["info", "warn", "error"] + """The log level of the event.""" + + message: str + """The message of the event.""" + + object: Literal["fine_tuning.job.event"] + """The object type, which is always "fine_tuning.job.event".""" + + data: Optional[builtins.object] = None + """The data associated with the event.""" + + type: Optional[Literal["message", "metrics"]] = None + """The type of event.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/fine_tuning_job_integration.py b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/fine_tuning_job_integration.py new file mode 100644 index 00000000..9a66aa4f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/fine_tuning_job_integration.py @@ -0,0 +1,6 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + + +from .fine_tuning_job_wandb_integration_object import FineTuningJobWandbIntegrationObject + +FineTuningJobIntegration = FineTuningJobWandbIntegrationObject diff --git a/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/fine_tuning_job_wandb_integration.py b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/fine_tuning_job_wandb_integration.py new file mode 100644 index 00000000..4ac282eb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/fine_tuning_job_wandb_integration.py @@ -0,0 +1,33 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional + +from ..._models import BaseModel + +__all__ = ["FineTuningJobWandbIntegration"] + + +class FineTuningJobWandbIntegration(BaseModel): + project: str + """The name of the project that the new run will be created under.""" + + entity: Optional[str] = None + """The entity to use for the run. + + This allows you to set the team or username of the WandB user that you would + like associated with the run. If not set, the default entity for the registered + WandB API key is used. + """ + + name: Optional[str] = None + """A display name to set for the run. + + If not set, we will use the Job ID as the name. + """ + + tags: Optional[List[str]] = None + """A list of tags to be attached to the newly created run. + + These tags are passed through directly to WandB. Some default tags are generated + by OpenAI: "openai/finetune", "openai/{base-model}", "openai/{ftjob-abcdef}". + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/fine_tuning_job_wandb_integration_object.py b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/fine_tuning_job_wandb_integration_object.py new file mode 100644 index 00000000..5b94354d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/fine_tuning_job_wandb_integration_object.py @@ -0,0 +1,21 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel +from .fine_tuning_job_wandb_integration import FineTuningJobWandbIntegration + +__all__ = ["FineTuningJobWandbIntegrationObject"] + + +class FineTuningJobWandbIntegrationObject(BaseModel): + type: Literal["wandb"] + """The type of the integration being enabled for the fine-tuning job""" + + wandb: FineTuningJobWandbIntegration + """The settings for your integration with Weights and Biases. + + This payload specifies the project that metrics will be sent to. Optionally, you + can set an explicit display name for your run, add tags to your run, and set a + default entity (team, username, etc) to be associated with your run. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/job_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/job_create_params.py new file mode 100644 index 00000000..f4cf980b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/job_create_params.py @@ -0,0 +1,236 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union, Iterable, Optional +from typing_extensions import Literal, Required, TypedDict + +from ..shared_params.metadata import Metadata + +__all__ = [ + "JobCreateParams", + "Hyperparameters", + "Integration", + "IntegrationWandb", + "Method", + "MethodDpo", + "MethodDpoHyperparameters", + "MethodSupervised", + "MethodSupervisedHyperparameters", +] + + +class JobCreateParams(TypedDict, total=False): + model: Required[Union[str, Literal["babbage-002", "davinci-002", "gpt-3.5-turbo", "gpt-4o-mini"]]] + """The name of the model to fine-tune. + + You can select one of the + [supported models](https://platform.openai.com/docs/guides/fine-tuning#which-models-can-be-fine-tuned). + """ + + training_file: Required[str] + """The ID of an uploaded file that contains training data. + + See [upload file](https://platform.openai.com/docs/api-reference/files/create) + for how to upload a file. + + Your dataset must be formatted as a JSONL file. Additionally, you must upload + your file with the purpose `fine-tune`. + + The contents of the file should differ depending on if the model uses the + [chat](https://platform.openai.com/docs/api-reference/fine-tuning/chat-input), + [completions](https://platform.openai.com/docs/api-reference/fine-tuning/completions-input) + format, or if the fine-tuning method uses the + [preference](https://platform.openai.com/docs/api-reference/fine-tuning/preference-input) + format. + + See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning) + for more details. + """ + + hyperparameters: Hyperparameters + """ + The hyperparameters used for the fine-tuning job. This value is now deprecated + in favor of `method`, and should be passed in under the `method` parameter. + """ + + integrations: Optional[Iterable[Integration]] + """A list of integrations to enable for your fine-tuning job.""" + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + method: Method + """The method used for fine-tuning.""" + + seed: Optional[int] + """The seed controls the reproducibility of the job. + + Passing in the same seed and job parameters should produce the same results, but + may differ in rare cases. If a seed is not specified, one will be generated for + you. + """ + + suffix: Optional[str] + """ + A string of up to 64 characters that will be added to your fine-tuned model + name. + + For example, a `suffix` of "custom-model-name" would produce a model name like + `ft:gpt-4o-mini:openai:custom-model-name:7p4lURel`. + """ + + validation_file: Optional[str] + """The ID of an uploaded file that contains validation data. + + If you provide this file, the data is used to generate validation metrics + periodically during fine-tuning. These metrics can be viewed in the fine-tuning + results file. The same data should not be present in both train and validation + files. + + Your dataset must be formatted as a JSONL file. You must upload your file with + the purpose `fine-tune`. + + See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning) + for more details. + """ + + +class Hyperparameters(TypedDict, total=False): + batch_size: Union[Literal["auto"], int] + """Number of examples in each batch. + + A larger batch size means that model parameters are updated less frequently, but + with lower variance. + """ + + learning_rate_multiplier: Union[Literal["auto"], float] + """Scaling factor for the learning rate. + + A smaller learning rate may be useful to avoid overfitting. + """ + + n_epochs: Union[Literal["auto"], int] + """The number of epochs to train the model for. + + An epoch refers to one full cycle through the training dataset. + """ + + +class IntegrationWandb(TypedDict, total=False): + project: Required[str] + """The name of the project that the new run will be created under.""" + + entity: Optional[str] + """The entity to use for the run. + + This allows you to set the team or username of the WandB user that you would + like associated with the run. If not set, the default entity for the registered + WandB API key is used. + """ + + name: Optional[str] + """A display name to set for the run. + + If not set, we will use the Job ID as the name. + """ + + tags: List[str] + """A list of tags to be attached to the newly created run. + + These tags are passed through directly to WandB. Some default tags are generated + by OpenAI: "openai/finetune", "openai/{base-model}", "openai/{ftjob-abcdef}". + """ + + +class Integration(TypedDict, total=False): + type: Required[Literal["wandb"]] + """The type of integration to enable. + + Currently, only "wandb" (Weights and Biases) is supported. + """ + + wandb: Required[IntegrationWandb] + """The settings for your integration with Weights and Biases. + + This payload specifies the project that metrics will be sent to. Optionally, you + can set an explicit display name for your run, add tags to your run, and set a + default entity (team, username, etc) to be associated with your run. + """ + + +class MethodDpoHyperparameters(TypedDict, total=False): + batch_size: Union[Literal["auto"], int] + """Number of examples in each batch. + + A larger batch size means that model parameters are updated less frequently, but + with lower variance. + """ + + beta: Union[Literal["auto"], float] + """The beta value for the DPO method. + + A higher beta value will increase the weight of the penalty between the policy + and reference model. + """ + + learning_rate_multiplier: Union[Literal["auto"], float] + """Scaling factor for the learning rate. + + A smaller learning rate may be useful to avoid overfitting. + """ + + n_epochs: Union[Literal["auto"], int] + """The number of epochs to train the model for. + + An epoch refers to one full cycle through the training dataset. + """ + + +class MethodDpo(TypedDict, total=False): + hyperparameters: MethodDpoHyperparameters + """The hyperparameters used for the fine-tuning job.""" + + +class MethodSupervisedHyperparameters(TypedDict, total=False): + batch_size: Union[Literal["auto"], int] + """Number of examples in each batch. + + A larger batch size means that model parameters are updated less frequently, but + with lower variance. + """ + + learning_rate_multiplier: Union[Literal["auto"], float] + """Scaling factor for the learning rate. + + A smaller learning rate may be useful to avoid overfitting. + """ + + n_epochs: Union[Literal["auto"], int] + """The number of epochs to train the model for. + + An epoch refers to one full cycle through the training dataset. + """ + + +class MethodSupervised(TypedDict, total=False): + hyperparameters: MethodSupervisedHyperparameters + """The hyperparameters used for the fine-tuning job.""" + + +class Method(TypedDict, total=False): + dpo: MethodDpo + """Configuration for the DPO fine-tuning method.""" + + supervised: MethodSupervised + """Configuration for the supervised fine-tuning method.""" + + type: Literal["supervised", "dpo"] + """The type of method. Is either `supervised` or `dpo`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/job_list_events_params.py b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/job_list_events_params.py new file mode 100644 index 00000000..e1c9a64d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/job_list_events_params.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import TypedDict + +__all__ = ["JobListEventsParams"] + + +class JobListEventsParams(TypedDict, total=False): + after: str + """Identifier for the last event from the previous pagination request.""" + + limit: int + """Number of events to retrieve.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/job_list_params.py b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/job_list_params.py new file mode 100644 index 00000000..b79f3ce8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/job_list_params.py @@ -0,0 +1,23 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Dict, Optional +from typing_extensions import TypedDict + +__all__ = ["JobListParams"] + + +class JobListParams(TypedDict, total=False): + after: str + """Identifier for the last job from the previous pagination request.""" + + limit: int + """Number of fine-tuning jobs to retrieve.""" + + metadata: Optional[Dict[str, str]] + """Optional metadata filter. + + To filter, use the syntax `metadata[k]=v`. Alternatively, set `metadata=null` to + indicate no metadata. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/jobs/__init__.py b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/jobs/__init__.py new file mode 100644 index 00000000..6c93da1b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/jobs/__init__.py @@ -0,0 +1,6 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from .checkpoint_list_params import CheckpointListParams as CheckpointListParams +from .fine_tuning_job_checkpoint import FineTuningJobCheckpoint as FineTuningJobCheckpoint diff --git a/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/jobs/checkpoint_list_params.py b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/jobs/checkpoint_list_params.py new file mode 100644 index 00000000..adceb3b2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/jobs/checkpoint_list_params.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import TypedDict + +__all__ = ["CheckpointListParams"] + + +class CheckpointListParams(TypedDict, total=False): + after: str + """Identifier for the last checkpoint ID from the previous pagination request.""" + + limit: int + """Number of checkpoints to retrieve.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/jobs/fine_tuning_job_checkpoint.py b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/jobs/fine_tuning_job_checkpoint.py new file mode 100644 index 00000000..bd07317a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/fine_tuning/jobs/fine_tuning_job_checkpoint.py @@ -0,0 +1,47 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ...._models import BaseModel + +__all__ = ["FineTuningJobCheckpoint", "Metrics"] + + +class Metrics(BaseModel): + full_valid_loss: Optional[float] = None + + full_valid_mean_token_accuracy: Optional[float] = None + + step: Optional[float] = None + + train_loss: Optional[float] = None + + train_mean_token_accuracy: Optional[float] = None + + valid_loss: Optional[float] = None + + valid_mean_token_accuracy: Optional[float] = None + + +class FineTuningJobCheckpoint(BaseModel): + id: str + """The checkpoint identifier, which can be referenced in the API endpoints.""" + + created_at: int + """The Unix timestamp (in seconds) for when the checkpoint was created.""" + + fine_tuned_model_checkpoint: str + """The name of the fine-tuned checkpoint model that is created.""" + + fine_tuning_job_id: str + """The name of the fine-tuning job that this checkpoint was created from.""" + + metrics: Metrics + """Metrics at the step number during the fine-tuning job.""" + + object: Literal["fine_tuning.job.checkpoint"] + """The object type, which is always "fine_tuning.job.checkpoint".""" + + step_number: int + """The step number that the checkpoint was created at.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/image.py b/.venv/lib/python3.12/site-packages/openai/types/image.py new file mode 100644 index 00000000..f48aa2c7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/image.py @@ -0,0 +1,24 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional + +from .._models import BaseModel + +__all__ = ["Image"] + + +class Image(BaseModel): + b64_json: Optional[str] = None + """ + The base64-encoded JSON of the generated image, if `response_format` is + `b64_json`. + """ + + revised_prompt: Optional[str] = None + """ + The prompt that was used to generate the image, if there was any revision to the + prompt. + """ + + url: Optional[str] = None + """The URL of the generated image, if `response_format` is `url` (default).""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/image_create_variation_params.py b/.venv/lib/python3.12/site-packages/openai/types/image_create_variation_params.py new file mode 100644 index 00000000..d20f6729 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/image_create_variation_params.py @@ -0,0 +1,51 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Optional +from typing_extensions import Literal, Required, TypedDict + +from .._types import FileTypes +from .image_model import ImageModel + +__all__ = ["ImageCreateVariationParams"] + + +class ImageCreateVariationParams(TypedDict, total=False): + image: Required[FileTypes] + """The image to use as the basis for the variation(s). + + Must be a valid PNG file, less than 4MB, and square. + """ + + model: Union[str, ImageModel, None] + """The model to use for image generation. + + Only `dall-e-2` is supported at this time. + """ + + n: Optional[int] + """The number of images to generate. + + Must be between 1 and 10. For `dall-e-3`, only `n=1` is supported. + """ + + response_format: Optional[Literal["url", "b64_json"]] + """The format in which the generated images are returned. + + Must be one of `url` or `b64_json`. URLs are only valid for 60 minutes after the + image has been generated. + """ + + size: Optional[Literal["256x256", "512x512", "1024x1024"]] + """The size of the generated images. + + Must be one of `256x256`, `512x512`, or `1024x1024`. + """ + + user: str + """ + A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/image_edit_params.py b/.venv/lib/python3.12/site-packages/openai/types/image_edit_params.py new file mode 100644 index 00000000..1cb10611 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/image_edit_params.py @@ -0,0 +1,62 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Optional +from typing_extensions import Literal, Required, TypedDict + +from .._types import FileTypes +from .image_model import ImageModel + +__all__ = ["ImageEditParams"] + + +class ImageEditParams(TypedDict, total=False): + image: Required[FileTypes] + """The image to edit. + + Must be a valid PNG file, less than 4MB, and square. If mask is not provided, + image must have transparency, which will be used as the mask. + """ + + prompt: Required[str] + """A text description of the desired image(s). + + The maximum length is 1000 characters. + """ + + mask: FileTypes + """An additional image whose fully transparent areas (e.g. + + where alpha is zero) indicate where `image` should be edited. Must be a valid + PNG file, less than 4MB, and have the same dimensions as `image`. + """ + + model: Union[str, ImageModel, None] + """The model to use for image generation. + + Only `dall-e-2` is supported at this time. + """ + + n: Optional[int] + """The number of images to generate. Must be between 1 and 10.""" + + response_format: Optional[Literal["url", "b64_json"]] + """The format in which the generated images are returned. + + Must be one of `url` or `b64_json`. URLs are only valid for 60 minutes after the + image has been generated. + """ + + size: Optional[Literal["256x256", "512x512", "1024x1024"]] + """The size of the generated images. + + Must be one of `256x256`, `512x512`, or `1024x1024`. + """ + + user: str + """ + A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/image_generate_params.py b/.venv/lib/python3.12/site-packages/openai/types/image_generate_params.py new file mode 100644 index 00000000..c88c45f5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/image_generate_params.py @@ -0,0 +1,65 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Optional +from typing_extensions import Literal, Required, TypedDict + +from .image_model import ImageModel + +__all__ = ["ImageGenerateParams"] + + +class ImageGenerateParams(TypedDict, total=False): + prompt: Required[str] + """A text description of the desired image(s). + + The maximum length is 1000 characters for `dall-e-2` and 4000 characters for + `dall-e-3`. + """ + + model: Union[str, ImageModel, None] + """The model to use for image generation.""" + + n: Optional[int] + """The number of images to generate. + + Must be between 1 and 10. For `dall-e-3`, only `n=1` is supported. + """ + + quality: Literal["standard", "hd"] + """The quality of the image that will be generated. + + `hd` creates images with finer details and greater consistency across the image. + This param is only supported for `dall-e-3`. + """ + + response_format: Optional[Literal["url", "b64_json"]] + """The format in which the generated images are returned. + + Must be one of `url` or `b64_json`. URLs are only valid for 60 minutes after the + image has been generated. + """ + + size: Optional[Literal["256x256", "512x512", "1024x1024", "1792x1024", "1024x1792"]] + """The size of the generated images. + + Must be one of `256x256`, `512x512`, or `1024x1024` for `dall-e-2`. Must be one + of `1024x1024`, `1792x1024`, or `1024x1792` for `dall-e-3` models. + """ + + style: Optional[Literal["vivid", "natural"]] + """The style of the generated images. + + Must be one of `vivid` or `natural`. Vivid causes the model to lean towards + generating hyper-real and dramatic images. Natural causes the model to produce + more natural, less hyper-real looking images. This param is only supported for + `dall-e-3`. + """ + + user: str + """ + A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/image_model.py b/.venv/lib/python3.12/site-packages/openai/types/image_model.py new file mode 100644 index 00000000..1672369b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/image_model.py @@ -0,0 +1,7 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal, TypeAlias + +__all__ = ["ImageModel"] + +ImageModel: TypeAlias = Literal["dall-e-2", "dall-e-3"] diff --git a/.venv/lib/python3.12/site-packages/openai/types/images_response.py b/.venv/lib/python3.12/site-packages/openai/types/images_response.py new file mode 100644 index 00000000..7cee8131 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/images_response.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List + +from .image import Image +from .._models import BaseModel + +__all__ = ["ImagesResponse"] + + +class ImagesResponse(BaseModel): + created: int + + data: List[Image] diff --git a/.venv/lib/python3.12/site-packages/openai/types/model.py b/.venv/lib/python3.12/site-packages/openai/types/model.py new file mode 100644 index 00000000..2631ee8d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/model.py @@ -0,0 +1,21 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from .._models import BaseModel + +__all__ = ["Model"] + + +class Model(BaseModel): + id: str + """The model identifier, which can be referenced in the API endpoints.""" + + created: int + """The Unix timestamp (in seconds) when the model was created.""" + + object: Literal["model"] + """The object type, which is always "model".""" + + owned_by: str + """The organization that owns the model.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/model_deleted.py b/.venv/lib/python3.12/site-packages/openai/types/model_deleted.py new file mode 100644 index 00000000..7f81e1b3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/model_deleted.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + + +from .._models import BaseModel + +__all__ = ["ModelDeleted"] + + +class ModelDeleted(BaseModel): + id: str + + deleted: bool + + object: str diff --git a/.venv/lib/python3.12/site-packages/openai/types/moderation.py b/.venv/lib/python3.12/site-packages/openai/types/moderation.py new file mode 100644 index 00000000..608f5622 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/moderation.py @@ -0,0 +1,186 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from pydantic import Field as FieldInfo + +from .._models import BaseModel + +__all__ = ["Moderation", "Categories", "CategoryAppliedInputTypes", "CategoryScores"] + + +class Categories(BaseModel): + harassment: bool + """ + Content that expresses, incites, or promotes harassing language towards any + target. + """ + + harassment_threatening: bool = FieldInfo(alias="harassment/threatening") + """ + Harassment content that also includes violence or serious harm towards any + target. + """ + + hate: bool + """ + Content that expresses, incites, or promotes hate based on race, gender, + ethnicity, religion, nationality, sexual orientation, disability status, or + caste. Hateful content aimed at non-protected groups (e.g., chess players) is + harassment. + """ + + hate_threatening: bool = FieldInfo(alias="hate/threatening") + """ + Hateful content that also includes violence or serious harm towards the targeted + group based on race, gender, ethnicity, religion, nationality, sexual + orientation, disability status, or caste. + """ + + illicit: Optional[bool] = None + """ + Content that includes instructions or advice that facilitate the planning or + execution of wrongdoing, or that gives advice or instruction on how to commit + illicit acts. For example, "how to shoplift" would fit this category. + """ + + illicit_violent: Optional[bool] = FieldInfo(alias="illicit/violent", default=None) + """ + Content that includes instructions or advice that facilitate the planning or + execution of wrongdoing that also includes violence, or that gives advice or + instruction on the procurement of any weapon. + """ + + self_harm: bool = FieldInfo(alias="self-harm") + """ + Content that promotes, encourages, or depicts acts of self-harm, such as + suicide, cutting, and eating disorders. + """ + + self_harm_instructions: bool = FieldInfo(alias="self-harm/instructions") + """ + Content that encourages performing acts of self-harm, such as suicide, cutting, + and eating disorders, or that gives instructions or advice on how to commit such + acts. + """ + + self_harm_intent: bool = FieldInfo(alias="self-harm/intent") + """ + Content where the speaker expresses that they are engaging or intend to engage + in acts of self-harm, such as suicide, cutting, and eating disorders. + """ + + sexual: bool + """ + Content meant to arouse sexual excitement, such as the description of sexual + activity, or that promotes sexual services (excluding sex education and + wellness). + """ + + sexual_minors: bool = FieldInfo(alias="sexual/minors") + """Sexual content that includes an individual who is under 18 years old.""" + + violence: bool + """Content that depicts death, violence, or physical injury.""" + + violence_graphic: bool = FieldInfo(alias="violence/graphic") + """Content that depicts death, violence, or physical injury in graphic detail.""" + + +class CategoryAppliedInputTypes(BaseModel): + harassment: List[Literal["text"]] + """The applied input type(s) for the category 'harassment'.""" + + harassment_threatening: List[Literal["text"]] = FieldInfo(alias="harassment/threatening") + """The applied input type(s) for the category 'harassment/threatening'.""" + + hate: List[Literal["text"]] + """The applied input type(s) for the category 'hate'.""" + + hate_threatening: List[Literal["text"]] = FieldInfo(alias="hate/threatening") + """The applied input type(s) for the category 'hate/threatening'.""" + + illicit: List[Literal["text"]] + """The applied input type(s) for the category 'illicit'.""" + + illicit_violent: List[Literal["text"]] = FieldInfo(alias="illicit/violent") + """The applied input type(s) for the category 'illicit/violent'.""" + + self_harm: List[Literal["text", "image"]] = FieldInfo(alias="self-harm") + """The applied input type(s) for the category 'self-harm'.""" + + self_harm_instructions: List[Literal["text", "image"]] = FieldInfo(alias="self-harm/instructions") + """The applied input type(s) for the category 'self-harm/instructions'.""" + + self_harm_intent: List[Literal["text", "image"]] = FieldInfo(alias="self-harm/intent") + """The applied input type(s) for the category 'self-harm/intent'.""" + + sexual: List[Literal["text", "image"]] + """The applied input type(s) for the category 'sexual'.""" + + sexual_minors: List[Literal["text"]] = FieldInfo(alias="sexual/minors") + """The applied input type(s) for the category 'sexual/minors'.""" + + violence: List[Literal["text", "image"]] + """The applied input type(s) for the category 'violence'.""" + + violence_graphic: List[Literal["text", "image"]] = FieldInfo(alias="violence/graphic") + """The applied input type(s) for the category 'violence/graphic'.""" + + +class CategoryScores(BaseModel): + harassment: float + """The score for the category 'harassment'.""" + + harassment_threatening: float = FieldInfo(alias="harassment/threatening") + """The score for the category 'harassment/threatening'.""" + + hate: float + """The score for the category 'hate'.""" + + hate_threatening: float = FieldInfo(alias="hate/threatening") + """The score for the category 'hate/threatening'.""" + + illicit: float + """The score for the category 'illicit'.""" + + illicit_violent: float = FieldInfo(alias="illicit/violent") + """The score for the category 'illicit/violent'.""" + + self_harm: float = FieldInfo(alias="self-harm") + """The score for the category 'self-harm'.""" + + self_harm_instructions: float = FieldInfo(alias="self-harm/instructions") + """The score for the category 'self-harm/instructions'.""" + + self_harm_intent: float = FieldInfo(alias="self-harm/intent") + """The score for the category 'self-harm/intent'.""" + + sexual: float + """The score for the category 'sexual'.""" + + sexual_minors: float = FieldInfo(alias="sexual/minors") + """The score for the category 'sexual/minors'.""" + + violence: float + """The score for the category 'violence'.""" + + violence_graphic: float = FieldInfo(alias="violence/graphic") + """The score for the category 'violence/graphic'.""" + + +class Moderation(BaseModel): + categories: Categories + """A list of the categories, and whether they are flagged or not.""" + + category_applied_input_types: CategoryAppliedInputTypes + """ + A list of the categories along with the input type(s) that the score applies to. + """ + + category_scores: CategoryScores + """A list of the categories along with their scores as predicted by model.""" + + flagged: bool + """Whether any of the below categories are flagged.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/moderation_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/moderation_create_params.py new file mode 100644 index 00000000..3ea2f3cd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/moderation_create_params.py @@ -0,0 +1,29 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union, Iterable +from typing_extensions import Required, TypedDict + +from .moderation_model import ModerationModel +from .moderation_multi_modal_input_param import ModerationMultiModalInputParam + +__all__ = ["ModerationCreateParams"] + + +class ModerationCreateParams(TypedDict, total=False): + input: Required[Union[str, List[str], Iterable[ModerationMultiModalInputParam]]] + """Input (or inputs) to classify. + + Can be a single string, an array of strings, or an array of multi-modal input + objects similar to other models. + """ + + model: Union[str, ModerationModel] + """The content moderation model you would like to use. + + Learn more in + [the moderation guide](https://platform.openai.com/docs/guides/moderation), and + learn about available models + [here](https://platform.openai.com/docs/models#moderation). + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/moderation_create_response.py b/.venv/lib/python3.12/site-packages/openai/types/moderation_create_response.py new file mode 100644 index 00000000..79684f8a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/moderation_create_response.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List + +from .._models import BaseModel +from .moderation import Moderation + +__all__ = ["ModerationCreateResponse"] + + +class ModerationCreateResponse(BaseModel): + id: str + """The unique identifier for the moderation request.""" + + model: str + """The model used to generate the moderation results.""" + + results: List[Moderation] + """A list of moderation objects.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/moderation_image_url_input_param.py b/.venv/lib/python3.12/site-packages/openai/types/moderation_image_url_input_param.py new file mode 100644 index 00000000..9a69a6a2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/moderation_image_url_input_param.py @@ -0,0 +1,20 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ModerationImageURLInputParam", "ImageURL"] + + +class ImageURL(TypedDict, total=False): + url: Required[str] + """Either a URL of the image or the base64 encoded image data.""" + + +class ModerationImageURLInputParam(TypedDict, total=False): + image_url: Required[ImageURL] + """Contains either an image URL or a data URL for a base64 encoded image.""" + + type: Required[Literal["image_url"]] + """Always `image_url`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/moderation_model.py b/.venv/lib/python3.12/site-packages/openai/types/moderation_model.py new file mode 100644 index 00000000..64954c45 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/moderation_model.py @@ -0,0 +1,9 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal, TypeAlias + +__all__ = ["ModerationModel"] + +ModerationModel: TypeAlias = Literal[ + "omni-moderation-latest", "omni-moderation-2024-09-26", "text-moderation-latest", "text-moderation-stable" +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/moderation_multi_modal_input_param.py b/.venv/lib/python3.12/site-packages/openai/types/moderation_multi_modal_input_param.py new file mode 100644 index 00000000..4314e7b0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/moderation_multi_modal_input_param.py @@ -0,0 +1,13 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import TypeAlias + +from .moderation_text_input_param import ModerationTextInputParam +from .moderation_image_url_input_param import ModerationImageURLInputParam + +__all__ = ["ModerationMultiModalInputParam"] + +ModerationMultiModalInputParam: TypeAlias = Union[ModerationImageURLInputParam, ModerationTextInputParam] diff --git a/.venv/lib/python3.12/site-packages/openai/types/moderation_text_input_param.py b/.venv/lib/python3.12/site-packages/openai/types/moderation_text_input_param.py new file mode 100644 index 00000000..e5da5333 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/moderation_text_input_param.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ModerationTextInputParam"] + + +class ModerationTextInputParam(TypedDict, total=False): + text: Required[str] + """A string of text to classify.""" + + type: Required[Literal["text"]] + """Always `text`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/other_file_chunking_strategy_object.py b/.venv/lib/python3.12/site-packages/openai/types/other_file_chunking_strategy_object.py new file mode 100644 index 00000000..e4cd61a8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/other_file_chunking_strategy_object.py @@ -0,0 +1,12 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from .._models import BaseModel + +__all__ = ["OtherFileChunkingStrategyObject"] + + +class OtherFileChunkingStrategyObject(BaseModel): + type: Literal["other"] + """Always `other`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/__init__.py b/.venv/lib/python3.12/site-packages/openai/types/responses/__init__.py new file mode 100644 index 00000000..4f07a3d0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/__init__.py @@ -0,0 +1,155 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from .tool import Tool as Tool +from .response import Response as Response +from .tool_param import ToolParam as ToolParam +from .computer_tool import ComputerTool as ComputerTool +from .function_tool import FunctionTool as FunctionTool +from .response_item import ResponseItem as ResponseItem +from .response_error import ResponseError as ResponseError +from .response_usage import ResponseUsage as ResponseUsage +from .parsed_response import ( + ParsedContent as ParsedContent, + ParsedResponse as ParsedResponse, + ParsedResponseOutputItem as ParsedResponseOutputItem, + ParsedResponseOutputText as ParsedResponseOutputText, + ParsedResponseOutputMessage as ParsedResponseOutputMessage, + ParsedResponseFunctionToolCall as ParsedResponseFunctionToolCall, +) +from .response_status import ResponseStatus as ResponseStatus +from .web_search_tool import WebSearchTool as WebSearchTool +from .file_search_tool import FileSearchTool as FileSearchTool +from .tool_choice_types import ToolChoiceTypes as ToolChoiceTypes +from .response_item_list import ResponseItemList as ResponseItemList +from .computer_tool_param import ComputerToolParam as ComputerToolParam +from .function_tool_param import FunctionToolParam as FunctionToolParam +from .response_includable import ResponseIncludable as ResponseIncludable +from .response_input_file import ResponseInputFile as ResponseInputFile +from .response_input_text import ResponseInputText as ResponseInputText +from .tool_choice_options import ToolChoiceOptions as ToolChoiceOptions +from .response_error_event import ResponseErrorEvent as ResponseErrorEvent +from .response_input_image import ResponseInputImage as ResponseInputImage +from .response_input_param import ResponseInputParam as ResponseInputParam +from .response_output_item import ResponseOutputItem as ResponseOutputItem +from .response_output_text import ResponseOutputText as ResponseOutputText +from .response_text_config import ResponseTextConfig as ResponseTextConfig +from .tool_choice_function import ToolChoiceFunction as ToolChoiceFunction +from .response_failed_event import ResponseFailedEvent as ResponseFailedEvent +from .response_stream_event import ResponseStreamEvent as ResponseStreamEvent +from .web_search_tool_param import WebSearchToolParam as WebSearchToolParam +from .file_search_tool_param import FileSearchToolParam as FileSearchToolParam +from .input_item_list_params import InputItemListParams as InputItemListParams +from .response_create_params import ResponseCreateParams as ResponseCreateParams +from .response_created_event import ResponseCreatedEvent as ResponseCreatedEvent +from .response_input_content import ResponseInputContent as ResponseInputContent +from .response_output_message import ResponseOutputMessage as ResponseOutputMessage +from .response_output_refusal import ResponseOutputRefusal as ResponseOutputRefusal +from .response_reasoning_item import ResponseReasoningItem as ResponseReasoningItem +from .tool_choice_types_param import ToolChoiceTypesParam as ToolChoiceTypesParam +from .easy_input_message_param import EasyInputMessageParam as EasyInputMessageParam +from .response_completed_event import ResponseCompletedEvent as ResponseCompletedEvent +from .response_retrieve_params import ResponseRetrieveParams as ResponseRetrieveParams +from .response_text_done_event import ResponseTextDoneEvent as ResponseTextDoneEvent +from .response_audio_done_event import ResponseAudioDoneEvent as ResponseAudioDoneEvent +from .response_incomplete_event import ResponseIncompleteEvent as ResponseIncompleteEvent +from .response_input_file_param import ResponseInputFileParam as ResponseInputFileParam +from .response_input_item_param import ResponseInputItemParam as ResponseInputItemParam +from .response_input_text_param import ResponseInputTextParam as ResponseInputTextParam +from .response_text_delta_event import ResponseTextDeltaEvent as ResponseTextDeltaEvent +from .response_audio_delta_event import ResponseAudioDeltaEvent as ResponseAudioDeltaEvent +from .response_in_progress_event import ResponseInProgressEvent as ResponseInProgressEvent +from .response_input_image_param import ResponseInputImageParam as ResponseInputImageParam +from .response_output_text_param import ResponseOutputTextParam as ResponseOutputTextParam +from .response_text_config_param import ResponseTextConfigParam as ResponseTextConfigParam +from .tool_choice_function_param import ToolChoiceFunctionParam as ToolChoiceFunctionParam +from .response_computer_tool_call import ResponseComputerToolCall as ResponseComputerToolCall +from .response_format_text_config import ResponseFormatTextConfig as ResponseFormatTextConfig +from .response_function_tool_call import ResponseFunctionToolCall as ResponseFunctionToolCall +from .response_input_message_item import ResponseInputMessageItem as ResponseInputMessageItem +from .response_refusal_done_event import ResponseRefusalDoneEvent as ResponseRefusalDoneEvent +from .response_function_web_search import ResponseFunctionWebSearch as ResponseFunctionWebSearch +from .response_input_content_param import ResponseInputContentParam as ResponseInputContentParam +from .response_refusal_delta_event import ResponseRefusalDeltaEvent as ResponseRefusalDeltaEvent +from .response_output_message_param import ResponseOutputMessageParam as ResponseOutputMessageParam +from .response_output_refusal_param import ResponseOutputRefusalParam as ResponseOutputRefusalParam +from .response_reasoning_item_param import ResponseReasoningItemParam as ResponseReasoningItemParam +from .response_file_search_tool_call import ResponseFileSearchToolCall as ResponseFileSearchToolCall +from .response_output_item_done_event import ResponseOutputItemDoneEvent as ResponseOutputItemDoneEvent +from .response_content_part_done_event import ResponseContentPartDoneEvent as ResponseContentPartDoneEvent +from .response_function_tool_call_item import ResponseFunctionToolCallItem as ResponseFunctionToolCallItem +from .response_output_item_added_event import ResponseOutputItemAddedEvent as ResponseOutputItemAddedEvent +from .response_computer_tool_call_param import ResponseComputerToolCallParam as ResponseComputerToolCallParam +from .response_content_part_added_event import ResponseContentPartAddedEvent as ResponseContentPartAddedEvent +from .response_format_text_config_param import ResponseFormatTextConfigParam as ResponseFormatTextConfigParam +from .response_function_tool_call_param import ResponseFunctionToolCallParam as ResponseFunctionToolCallParam +from .response_function_web_search_param import ResponseFunctionWebSearchParam as ResponseFunctionWebSearchParam +from .response_code_interpreter_tool_call import ResponseCodeInterpreterToolCall as ResponseCodeInterpreterToolCall +from .response_input_message_content_list import ResponseInputMessageContentList as ResponseInputMessageContentList +from .response_audio_transcript_done_event import ResponseAudioTranscriptDoneEvent as ResponseAudioTranscriptDoneEvent +from .response_file_search_tool_call_param import ResponseFileSearchToolCallParam as ResponseFileSearchToolCallParam +from .response_text_annotation_delta_event import ResponseTextAnnotationDeltaEvent as ResponseTextAnnotationDeltaEvent +from .response_audio_transcript_delta_event import ( + ResponseAudioTranscriptDeltaEvent as ResponseAudioTranscriptDeltaEvent, +) +from .response_computer_tool_call_output_item import ( + ResponseComputerToolCallOutputItem as ResponseComputerToolCallOutputItem, +) +from .response_format_text_json_schema_config import ( + ResponseFormatTextJSONSchemaConfig as ResponseFormatTextJSONSchemaConfig, +) +from .response_function_tool_call_output_item import ( + ResponseFunctionToolCallOutputItem as ResponseFunctionToolCallOutputItem, +) +from .response_web_search_call_completed_event import ( + ResponseWebSearchCallCompletedEvent as ResponseWebSearchCallCompletedEvent, +) +from .response_web_search_call_searching_event import ( + ResponseWebSearchCallSearchingEvent as ResponseWebSearchCallSearchingEvent, +) +from .response_file_search_call_completed_event import ( + ResponseFileSearchCallCompletedEvent as ResponseFileSearchCallCompletedEvent, +) +from .response_file_search_call_searching_event import ( + ResponseFileSearchCallSearchingEvent as ResponseFileSearchCallSearchingEvent, +) +from .response_input_message_content_list_param import ( + ResponseInputMessageContentListParam as ResponseInputMessageContentListParam, +) +from .response_web_search_call_in_progress_event import ( + ResponseWebSearchCallInProgressEvent as ResponseWebSearchCallInProgressEvent, +) +from .response_file_search_call_in_progress_event import ( + ResponseFileSearchCallInProgressEvent as ResponseFileSearchCallInProgressEvent, +) +from .response_function_call_arguments_done_event import ( + ResponseFunctionCallArgumentsDoneEvent as ResponseFunctionCallArgumentsDoneEvent, +) +from .response_function_call_arguments_delta_event import ( + ResponseFunctionCallArgumentsDeltaEvent as ResponseFunctionCallArgumentsDeltaEvent, +) +from .response_computer_tool_call_output_screenshot import ( + ResponseComputerToolCallOutputScreenshot as ResponseComputerToolCallOutputScreenshot, +) +from .response_format_text_json_schema_config_param import ( + ResponseFormatTextJSONSchemaConfigParam as ResponseFormatTextJSONSchemaConfigParam, +) +from .response_code_interpreter_call_code_done_event import ( + ResponseCodeInterpreterCallCodeDoneEvent as ResponseCodeInterpreterCallCodeDoneEvent, +) +from .response_code_interpreter_call_completed_event import ( + ResponseCodeInterpreterCallCompletedEvent as ResponseCodeInterpreterCallCompletedEvent, +) +from .response_code_interpreter_call_code_delta_event import ( + ResponseCodeInterpreterCallCodeDeltaEvent as ResponseCodeInterpreterCallCodeDeltaEvent, +) +from .response_code_interpreter_call_in_progress_event import ( + ResponseCodeInterpreterCallInProgressEvent as ResponseCodeInterpreterCallInProgressEvent, +) +from .response_code_interpreter_call_interpreting_event import ( + ResponseCodeInterpreterCallInterpretingEvent as ResponseCodeInterpreterCallInterpretingEvent, +) +from .response_computer_tool_call_output_screenshot_param import ( + ResponseComputerToolCallOutputScreenshotParam as ResponseComputerToolCallOutputScreenshotParam, +) diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/computer_tool.py b/.venv/lib/python3.12/site-packages/openai/types/responses/computer_tool.py new file mode 100644 index 00000000..dffb7af7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/computer_tool.py @@ -0,0 +1,21 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ComputerTool"] + + +class ComputerTool(BaseModel): + display_height: float + """The height of the computer display.""" + + display_width: float + """The width of the computer display.""" + + environment: Literal["mac", "windows", "ubuntu", "browser"] + """The type of computer environment to control.""" + + type: Literal["computer_use_preview"] + """The type of the computer use tool. Always `computer_use_preview`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/computer_tool_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/computer_tool_param.py new file mode 100644 index 00000000..6b1072ff --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/computer_tool_param.py @@ -0,0 +1,21 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ComputerToolParam"] + + +class ComputerToolParam(TypedDict, total=False): + display_height: Required[float] + """The height of the computer display.""" + + display_width: Required[float] + """The width of the computer display.""" + + environment: Required[Literal["mac", "windows", "ubuntu", "browser"]] + """The type of computer environment to control.""" + + type: Required[Literal["computer_use_preview"]] + """The type of the computer use tool. Always `computer_use_preview`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/easy_input_message_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/easy_input_message_param.py new file mode 100644 index 00000000..ef2f1c5f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/easy_input_message_param.py @@ -0,0 +1,27 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import Literal, Required, TypedDict + +from .response_input_message_content_list_param import ResponseInputMessageContentListParam + +__all__ = ["EasyInputMessageParam"] + + +class EasyInputMessageParam(TypedDict, total=False): + content: Required[Union[str, ResponseInputMessageContentListParam]] + """ + Text, image, or audio input to the model, used to generate a response. Can also + contain previous assistant responses. + """ + + role: Required[Literal["user", "assistant", "system", "developer"]] + """The role of the message input. + + One of `user`, `assistant`, `system`, or `developer`. + """ + + type: Literal["message"] + """The type of the message input. Always `message`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/file_search_tool.py b/.venv/lib/python3.12/site-packages/openai/types/responses/file_search_tool.py new file mode 100644 index 00000000..683fc533 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/file_search_tool.py @@ -0,0 +1,44 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Union, Optional +from typing_extensions import Literal, TypeAlias + +from ..._models import BaseModel +from ..shared.compound_filter import CompoundFilter +from ..shared.comparison_filter import ComparisonFilter + +__all__ = ["FileSearchTool", "Filters", "RankingOptions"] + +Filters: TypeAlias = Union[ComparisonFilter, CompoundFilter] + + +class RankingOptions(BaseModel): + ranker: Optional[Literal["auto", "default-2024-11-15"]] = None + """The ranker to use for the file search.""" + + score_threshold: Optional[float] = None + """ + The score threshold for the file search, a number between 0 and 1. Numbers + closer to 1 will attempt to return only the most relevant results, but may + return fewer results. + """ + + +class FileSearchTool(BaseModel): + type: Literal["file_search"] + """The type of the file search tool. Always `file_search`.""" + + vector_store_ids: List[str] + """The IDs of the vector stores to search.""" + + filters: Optional[Filters] = None + """A filter to apply based on file attributes.""" + + max_num_results: Optional[int] = None + """The maximum number of results to return. + + This number should be between 1 and 50 inclusive. + """ + + ranking_options: Optional[RankingOptions] = None + """Ranking options for search.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/file_search_tool_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/file_search_tool_param.py new file mode 100644 index 00000000..2d6af853 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/file_search_tool_param.py @@ -0,0 +1,45 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union +from typing_extensions import Literal, Required, TypeAlias, TypedDict + +from ..shared_params.compound_filter import CompoundFilter +from ..shared_params.comparison_filter import ComparisonFilter + +__all__ = ["FileSearchToolParam", "Filters", "RankingOptions"] + +Filters: TypeAlias = Union[ComparisonFilter, CompoundFilter] + + +class RankingOptions(TypedDict, total=False): + ranker: Literal["auto", "default-2024-11-15"] + """The ranker to use for the file search.""" + + score_threshold: float + """ + The score threshold for the file search, a number between 0 and 1. Numbers + closer to 1 will attempt to return only the most relevant results, but may + return fewer results. + """ + + +class FileSearchToolParam(TypedDict, total=False): + type: Required[Literal["file_search"]] + """The type of the file search tool. Always `file_search`.""" + + vector_store_ids: Required[List[str]] + """The IDs of the vector stores to search.""" + + filters: Filters + """A filter to apply based on file attributes.""" + + max_num_results: int + """The maximum number of results to return. + + This number should be between 1 and 50 inclusive. + """ + + ranking_options: RankingOptions + """Ranking options for search.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/function_tool.py b/.venv/lib/python3.12/site-packages/openai/types/responses/function_tool.py new file mode 100644 index 00000000..236a2c7c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/function_tool.py @@ -0,0 +1,28 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Dict, Optional +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["FunctionTool"] + + +class FunctionTool(BaseModel): + name: str + """The name of the function to call.""" + + parameters: Dict[str, object] + """A JSON schema object describing the parameters of the function.""" + + strict: bool + """Whether to enforce strict parameter validation. Default `true`.""" + + type: Literal["function"] + """The type of the function tool. Always `function`.""" + + description: Optional[str] = None + """A description of the function. + + Used by the model to determine whether or not to call the function. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/function_tool_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/function_tool_param.py new file mode 100644 index 00000000..774a22e3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/function_tool_param.py @@ -0,0 +1,28 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Dict, Optional +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["FunctionToolParam"] + + +class FunctionToolParam(TypedDict, total=False): + name: Required[str] + """The name of the function to call.""" + + parameters: Required[Dict[str, object]] + """A JSON schema object describing the parameters of the function.""" + + strict: Required[bool] + """Whether to enforce strict parameter validation. Default `true`.""" + + type: Required[Literal["function"]] + """The type of the function tool. Always `function`.""" + + description: Optional[str] + """A description of the function. + + Used by the model to determine whether or not to call the function. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/input_item_list_params.py b/.venv/lib/python3.12/site-packages/openai/types/responses/input_item_list_params.py new file mode 100644 index 00000000..e0b71f1a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/input_item_list_params.py @@ -0,0 +1,28 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, TypedDict + +__all__ = ["InputItemListParams"] + + +class InputItemListParams(TypedDict, total=False): + after: str + """An item ID to list items after, used in pagination.""" + + before: str + """An item ID to list items before, used in pagination.""" + + limit: int + """A limit on the number of objects to be returned. + + Limit can range between 1 and 100, and the default is 20. + """ + + order: Literal["asc", "desc"] + """The order to return the input items in. Default is `asc`. + + - `asc`: Return the input items in ascending order. + - `desc`: Return the input items in descending order. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/parsed_response.py b/.venv/lib/python3.12/site-packages/openai/types/responses/parsed_response.py new file mode 100644 index 00000000..1263dfd6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/parsed_response.py @@ -0,0 +1,77 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import TYPE_CHECKING, List, Union, Generic, TypeVar, Optional +from typing_extensions import Annotated, TypeAlias + +from ..._utils import PropertyInfo +from .response import Response +from ..._models import GenericModel +from ..._utils._transform import PropertyInfo +from .response_output_text import ResponseOutputText +from .response_output_message import ResponseOutputMessage +from .response_output_refusal import ResponseOutputRefusal +from .response_reasoning_item import ResponseReasoningItem +from .response_computer_tool_call import ResponseComputerToolCall +from .response_function_tool_call import ResponseFunctionToolCall +from .response_function_web_search import ResponseFunctionWebSearch +from .response_file_search_tool_call import ResponseFileSearchToolCall + +__all__ = ["ParsedResponse", "ParsedResponseOutputMessage", "ParsedResponseOutputText"] + +ContentType = TypeVar("ContentType") + +# we need to disable this check because we're overriding properties +# with subclasses of their types which is technically unsound as +# properties can be mutated. +# pyright: reportIncompatibleVariableOverride=false + + +class ParsedResponseOutputText(ResponseOutputText, GenericModel, Generic[ContentType]): + parsed: Optional[ContentType] = None + + +ParsedContent: TypeAlias = Annotated[ + Union[ParsedResponseOutputText[ContentType], ResponseOutputRefusal], + PropertyInfo(discriminator="type"), +] + + +class ParsedResponseOutputMessage(ResponseOutputMessage, GenericModel, Generic[ContentType]): + if TYPE_CHECKING: + content: List[ParsedContent[ContentType]] # type: ignore[assignment] + else: + content: List[ParsedContent] + + +class ParsedResponseFunctionToolCall(ResponseFunctionToolCall): + parsed_arguments: object = None + + +ParsedResponseOutputItem: TypeAlias = Annotated[ + Union[ + ParsedResponseOutputMessage[ContentType], + ParsedResponseFunctionToolCall, + ResponseFileSearchToolCall, + ResponseFunctionWebSearch, + ResponseComputerToolCall, + ResponseReasoningItem, + ], + PropertyInfo(discriminator="type"), +] + + +class ParsedResponse(Response, GenericModel, Generic[ContentType]): + if TYPE_CHECKING: + output: List[ParsedResponseOutputItem[ContentType]] # type: ignore[assignment] + else: + output: List[ParsedResponseOutputItem] + + @property + def output_parsed(self) -> Optional[ContentType]: + for output in self.output: + if output.type == "message": + for content in output.content: + if content.type == "output_text" and content.parsed: + return content.parsed + + return None diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response.py new file mode 100644 index 00000000..1bedf808 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response.py @@ -0,0 +1,204 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Union, Optional +from typing_extensions import Literal, TypeAlias + +from .tool import Tool +from ..._models import BaseModel +from .response_error import ResponseError +from .response_usage import ResponseUsage +from .response_status import ResponseStatus +from ..shared.metadata import Metadata +from ..shared.reasoning import Reasoning +from .tool_choice_types import ToolChoiceTypes +from .tool_choice_options import ToolChoiceOptions +from .response_output_item import ResponseOutputItem +from .response_text_config import ResponseTextConfig +from .tool_choice_function import ToolChoiceFunction +from ..shared.responses_model import ResponsesModel + +__all__ = ["Response", "IncompleteDetails", "ToolChoice"] + + +class IncompleteDetails(BaseModel): + reason: Optional[Literal["max_output_tokens", "content_filter"]] = None + """The reason why the response is incomplete.""" + + +ToolChoice: TypeAlias = Union[ToolChoiceOptions, ToolChoiceTypes, ToolChoiceFunction] + + +class Response(BaseModel): + id: str + """Unique identifier for this Response.""" + + created_at: float + """Unix timestamp (in seconds) of when this Response was created.""" + + error: Optional[ResponseError] = None + """An error object returned when the model fails to generate a Response.""" + + incomplete_details: Optional[IncompleteDetails] = None + """Details about why the response is incomplete.""" + + instructions: Optional[str] = None + """ + Inserts a system (or developer) message as the first item in the model's + context. + + When using along with `previous_response_id`, the instructions from a previous + response will be not be carried over to the next response. This makes it simple + to swap out system (or developer) messages in new responses. + """ + + metadata: Optional[Metadata] = None + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + model: ResponsesModel + """Model ID used to generate the response, like `gpt-4o` or `o1`. + + OpenAI offers a wide range of models with different capabilities, performance + characteristics, and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + """ + + object: Literal["response"] + """The object type of this resource - always set to `response`.""" + + output: List[ResponseOutputItem] + """An array of content items generated by the model. + + - The length and order of items in the `output` array is dependent on the + model's response. + - Rather than accessing the first item in the `output` array and assuming it's + an `assistant` message with the content generated by the model, you might + consider using the `output_text` property where supported in SDKs. + """ + + parallel_tool_calls: bool + """Whether to allow the model to run tool calls in parallel.""" + + temperature: Optional[float] = None + """What sampling temperature to use, between 0 and 2. + + Higher values like 0.8 will make the output more random, while lower values like + 0.2 will make it more focused and deterministic. We generally recommend altering + this or `top_p` but not both. + """ + + tool_choice: ToolChoice + """ + How the model should select which tool (or tools) to use when generating a + response. See the `tools` parameter to see how to specify which tools the model + can call. + """ + + tools: List[Tool] + """An array of tools the model may call while generating a response. + + You can specify which tool to use by setting the `tool_choice` parameter. + + The two categories of tools you can provide the model are: + + - **Built-in tools**: Tools that are provided by OpenAI that extend the model's + capabilities, like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search). + Learn more about + [built-in tools](https://platform.openai.com/docs/guides/tools). + - **Function calls (custom tools)**: Functions that are defined by you, enabling + the model to call your own code. Learn more about + [function calling](https://platform.openai.com/docs/guides/function-calling). + """ + + top_p: Optional[float] = None + """ + An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + """ + + max_output_tokens: Optional[int] = None + """ + An upper bound for the number of tokens that can be generated for a response, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + """ + + previous_response_id: Optional[str] = None + """The unique ID of the previous response to the model. + + Use this to create multi-turn conversations. Learn more about + [conversation state](https://platform.openai.com/docs/guides/conversation-state). + """ + + reasoning: Optional[Reasoning] = None + """**o-series models only** + + Configuration options for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). + """ + + status: Optional[ResponseStatus] = None + """The status of the response generation. + + One of `completed`, `failed`, `in_progress`, or `incomplete`. + """ + + text: Optional[ResponseTextConfig] = None + """Configuration options for a text response from the model. + + Can be plain text or structured JSON data. Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs) + """ + + truncation: Optional[Literal["auto", "disabled"]] = None + """The truncation strategy to use for the model response. + + - `auto`: If the context of this response and previous ones exceeds the model's + context window size, the model will truncate the response to fit the context + window by dropping input items in the middle of the conversation. + - `disabled` (default): If a model response will exceed the context window size + for a model, the request will fail with a 400 error. + """ + + usage: Optional[ResponseUsage] = None + """ + Represents token usage details including input tokens, output tokens, a + breakdown of output tokens, and the total tokens used. + """ + + user: Optional[str] = None + """ + A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + """ + + @property + def output_text(self) -> str: + """Convenience property that aggregates all `output_text` items from the `output` + list. + + If no `output_text` content blocks exist, then an empty string is returned. + """ + texts: List[str] = [] + for output in self.output: + if output.type == "message": + for content in output.content: + if content.type == "output_text": + texts.append(content.text) + + return "".join(texts) diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_audio_delta_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_audio_delta_event.py new file mode 100644 index 00000000..f3d77fac --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_audio_delta_event.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseAudioDeltaEvent"] + + +class ResponseAudioDeltaEvent(BaseModel): + delta: str + """A chunk of Base64 encoded response audio bytes.""" + + type: Literal["response.audio.delta"] + """The type of the event. Always `response.audio.delta`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_audio_done_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_audio_done_event.py new file mode 100644 index 00000000..5654f8e3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_audio_done_event.py @@ -0,0 +1,12 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseAudioDoneEvent"] + + +class ResponseAudioDoneEvent(BaseModel): + type: Literal["response.audio.done"] + """The type of the event. Always `response.audio.done`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_audio_transcript_delta_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_audio_transcript_delta_event.py new file mode 100644 index 00000000..69b6660f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_audio_transcript_delta_event.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseAudioTranscriptDeltaEvent"] + + +class ResponseAudioTranscriptDeltaEvent(BaseModel): + delta: str + """The partial transcript of the audio response.""" + + type: Literal["response.audio.transcript.delta"] + """The type of the event. Always `response.audio.transcript.delta`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_audio_transcript_done_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_audio_transcript_done_event.py new file mode 100644 index 00000000..1a20319f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_audio_transcript_done_event.py @@ -0,0 +1,12 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseAudioTranscriptDoneEvent"] + + +class ResponseAudioTranscriptDoneEvent(BaseModel): + type: Literal["response.audio.transcript.done"] + """The type of the event. Always `response.audio.transcript.done`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_code_interpreter_call_code_delta_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_code_interpreter_call_code_delta_event.py new file mode 100644 index 00000000..7527238d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_code_interpreter_call_code_delta_event.py @@ -0,0 +1,18 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseCodeInterpreterCallCodeDeltaEvent"] + + +class ResponseCodeInterpreterCallCodeDeltaEvent(BaseModel): + delta: str + """The partial code snippet added by the code interpreter.""" + + output_index: int + """The index of the output item that the code interpreter call is in progress.""" + + type: Literal["response.code_interpreter_call.code.delta"] + """The type of the event. Always `response.code_interpreter_call.code.delta`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_code_interpreter_call_code_done_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_code_interpreter_call_code_done_event.py new file mode 100644 index 00000000..f84d4cf3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_code_interpreter_call_code_done_event.py @@ -0,0 +1,18 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseCodeInterpreterCallCodeDoneEvent"] + + +class ResponseCodeInterpreterCallCodeDoneEvent(BaseModel): + code: str + """The final code snippet output by the code interpreter.""" + + output_index: int + """The index of the output item that the code interpreter call is in progress.""" + + type: Literal["response.code_interpreter_call.code.done"] + """The type of the event. Always `response.code_interpreter_call.code.done`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_code_interpreter_call_completed_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_code_interpreter_call_completed_event.py new file mode 100644 index 00000000..b0cb73fb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_code_interpreter_call_completed_event.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel +from .response_code_interpreter_tool_call import ResponseCodeInterpreterToolCall + +__all__ = ["ResponseCodeInterpreterCallCompletedEvent"] + + +class ResponseCodeInterpreterCallCompletedEvent(BaseModel): + code_interpreter_call: ResponseCodeInterpreterToolCall + """A tool call to run code.""" + + output_index: int + """The index of the output item that the code interpreter call is in progress.""" + + type: Literal["response.code_interpreter_call.completed"] + """The type of the event. Always `response.code_interpreter_call.completed`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_code_interpreter_call_in_progress_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_code_interpreter_call_in_progress_event.py new file mode 100644 index 00000000..64b739f3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_code_interpreter_call_in_progress_event.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel +from .response_code_interpreter_tool_call import ResponseCodeInterpreterToolCall + +__all__ = ["ResponseCodeInterpreterCallInProgressEvent"] + + +class ResponseCodeInterpreterCallInProgressEvent(BaseModel): + code_interpreter_call: ResponseCodeInterpreterToolCall + """A tool call to run code.""" + + output_index: int + """The index of the output item that the code interpreter call is in progress.""" + + type: Literal["response.code_interpreter_call.in_progress"] + """The type of the event. Always `response.code_interpreter_call.in_progress`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_code_interpreter_call_interpreting_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_code_interpreter_call_interpreting_event.py new file mode 100644 index 00000000..3100eac1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_code_interpreter_call_interpreting_event.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel +from .response_code_interpreter_tool_call import ResponseCodeInterpreterToolCall + +__all__ = ["ResponseCodeInterpreterCallInterpretingEvent"] + + +class ResponseCodeInterpreterCallInterpretingEvent(BaseModel): + code_interpreter_call: ResponseCodeInterpreterToolCall + """A tool call to run code.""" + + output_index: int + """The index of the output item that the code interpreter call is in progress.""" + + type: Literal["response.code_interpreter_call.interpreting"] + """The type of the event. Always `response.code_interpreter_call.interpreting`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_code_interpreter_tool_call.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_code_interpreter_tool_call.py new file mode 100644 index 00000000..d5a50570 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_code_interpreter_tool_call.py @@ -0,0 +1,52 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Union +from typing_extensions import Literal, Annotated, TypeAlias + +from ..._utils import PropertyInfo +from ..._models import BaseModel + +__all__ = ["ResponseCodeInterpreterToolCall", "Result", "ResultLogs", "ResultFiles", "ResultFilesFile"] + + +class ResultLogs(BaseModel): + logs: str + """The logs of the code interpreter tool call.""" + + type: Literal["logs"] + """The type of the code interpreter text output. Always `logs`.""" + + +class ResultFilesFile(BaseModel): + file_id: str + """The ID of the file.""" + + mime_type: str + """The MIME type of the file.""" + + +class ResultFiles(BaseModel): + files: List[ResultFilesFile] + + type: Literal["files"] + """The type of the code interpreter file output. Always `files`.""" + + +Result: TypeAlias = Annotated[Union[ResultLogs, ResultFiles], PropertyInfo(discriminator="type")] + + +class ResponseCodeInterpreterToolCall(BaseModel): + id: str + """The unique ID of the code interpreter tool call.""" + + code: str + """The code to run.""" + + results: List[Result] + """The results of the code interpreter tool call.""" + + status: Literal["in_progress", "interpreting", "completed"] + """The status of the code interpreter tool call.""" + + type: Literal["code_interpreter_call"] + """The type of the code interpreter tool call. Always `code_interpreter_call`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_completed_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_completed_event.py new file mode 100644 index 00000000..a944f248 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_completed_event.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from .response import Response +from ..._models import BaseModel + +__all__ = ["ResponseCompletedEvent"] + + +class ResponseCompletedEvent(BaseModel): + response: Response + """Properties of the completed response.""" + + type: Literal["response.completed"] + """The type of the event. Always `response.completed`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_computer_tool_call.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_computer_tool_call.py new file mode 100644 index 00000000..99483756 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_computer_tool_call.py @@ -0,0 +1,212 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Union +from typing_extensions import Literal, Annotated, TypeAlias + +from ..._utils import PropertyInfo +from ..._models import BaseModel + +__all__ = [ + "ResponseComputerToolCall", + "Action", + "ActionClick", + "ActionDoubleClick", + "ActionDrag", + "ActionDragPath", + "ActionKeypress", + "ActionMove", + "ActionScreenshot", + "ActionScroll", + "ActionType", + "ActionWait", + "PendingSafetyCheck", +] + + +class ActionClick(BaseModel): + button: Literal["left", "right", "wheel", "back", "forward"] + """Indicates which mouse button was pressed during the click. + + One of `left`, `right`, `wheel`, `back`, or `forward`. + """ + + type: Literal["click"] + """Specifies the event type. + + For a click action, this property is always set to `click`. + """ + + x: int + """The x-coordinate where the click occurred.""" + + y: int + """The y-coordinate where the click occurred.""" + + +class ActionDoubleClick(BaseModel): + type: Literal["double_click"] + """Specifies the event type. + + For a double click action, this property is always set to `double_click`. + """ + + x: int + """The x-coordinate where the double click occurred.""" + + y: int + """The y-coordinate where the double click occurred.""" + + +class ActionDragPath(BaseModel): + x: int + """The x-coordinate.""" + + y: int + """The y-coordinate.""" + + +class ActionDrag(BaseModel): + path: List[ActionDragPath] + """An array of coordinates representing the path of the drag action. + + Coordinates will appear as an array of objects, eg + + ``` + [ + { x: 100, y: 200 }, + { x: 200, y: 300 } + ] + ``` + """ + + type: Literal["drag"] + """Specifies the event type. + + For a drag action, this property is always set to `drag`. + """ + + +class ActionKeypress(BaseModel): + keys: List[str] + """The combination of keys the model is requesting to be pressed. + + This is an array of strings, each representing a key. + """ + + type: Literal["keypress"] + """Specifies the event type. + + For a keypress action, this property is always set to `keypress`. + """ + + +class ActionMove(BaseModel): + type: Literal["move"] + """Specifies the event type. + + For a move action, this property is always set to `move`. + """ + + x: int + """The x-coordinate to move to.""" + + y: int + """The y-coordinate to move to.""" + + +class ActionScreenshot(BaseModel): + type: Literal["screenshot"] + """Specifies the event type. + + For a screenshot action, this property is always set to `screenshot`. + """ + + +class ActionScroll(BaseModel): + scroll_x: int + """The horizontal scroll distance.""" + + scroll_y: int + """The vertical scroll distance.""" + + type: Literal["scroll"] + """Specifies the event type. + + For a scroll action, this property is always set to `scroll`. + """ + + x: int + """The x-coordinate where the scroll occurred.""" + + y: int + """The y-coordinate where the scroll occurred.""" + + +class ActionType(BaseModel): + text: str + """The text to type.""" + + type: Literal["type"] + """Specifies the event type. + + For a type action, this property is always set to `type`. + """ + + +class ActionWait(BaseModel): + type: Literal["wait"] + """Specifies the event type. + + For a wait action, this property is always set to `wait`. + """ + + +Action: TypeAlias = Annotated[ + Union[ + ActionClick, + ActionDoubleClick, + ActionDrag, + ActionKeypress, + ActionMove, + ActionScreenshot, + ActionScroll, + ActionType, + ActionWait, + ], + PropertyInfo(discriminator="type"), +] + + +class PendingSafetyCheck(BaseModel): + id: str + """The ID of the pending safety check.""" + + code: str + """The type of the pending safety check.""" + + message: str + """Details about the pending safety check.""" + + +class ResponseComputerToolCall(BaseModel): + id: str + """The unique ID of the computer call.""" + + action: Action + """A click action.""" + + call_id: str + """An identifier used when responding to the tool call with output.""" + + pending_safety_checks: List[PendingSafetyCheck] + """The pending safety checks for the computer call.""" + + status: Literal["in_progress", "completed", "incomplete"] + """The status of the item. + + One of `in_progress`, `completed`, or `incomplete`. Populated when items are + returned via API. + """ + + type: Literal["computer_call"] + """The type of the computer call. Always `computer_call`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_computer_tool_call_output_item.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_computer_tool_call_output_item.py new file mode 100644 index 00000000..a2dd68f5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_computer_tool_call_output_item.py @@ -0,0 +1,47 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ..._models import BaseModel +from .response_computer_tool_call_output_screenshot import ResponseComputerToolCallOutputScreenshot + +__all__ = ["ResponseComputerToolCallOutputItem", "AcknowledgedSafetyCheck"] + + +class AcknowledgedSafetyCheck(BaseModel): + id: str + """The ID of the pending safety check.""" + + code: str + """The type of the pending safety check.""" + + message: str + """Details about the pending safety check.""" + + +class ResponseComputerToolCallOutputItem(BaseModel): + id: str + """The unique ID of the computer call tool output.""" + + call_id: str + """The ID of the computer tool call that produced the output.""" + + output: ResponseComputerToolCallOutputScreenshot + """A computer screenshot image used with the computer use tool.""" + + type: Literal["computer_call_output"] + """The type of the computer tool call output. Always `computer_call_output`.""" + + acknowledged_safety_checks: Optional[List[AcknowledgedSafetyCheck]] = None + """ + The safety checks reported by the API that have been acknowledged by the + developer. + """ + + status: Optional[Literal["in_progress", "completed", "incomplete"]] = None + """The status of the message input. + + One of `in_progress`, `completed`, or `incomplete`. Populated when input items + are returned via API. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_computer_tool_call_output_screenshot.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_computer_tool_call_output_screenshot.py new file mode 100644 index 00000000..a500da85 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_computer_tool_call_output_screenshot.py @@ -0,0 +1,22 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseComputerToolCallOutputScreenshot"] + + +class ResponseComputerToolCallOutputScreenshot(BaseModel): + type: Literal["computer_screenshot"] + """Specifies the event type. + + For a computer screenshot, this property is always set to `computer_screenshot`. + """ + + file_id: Optional[str] = None + """The identifier of an uploaded file that contains the screenshot.""" + + image_url: Optional[str] = None + """The URL of the screenshot image.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_computer_tool_call_output_screenshot_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_computer_tool_call_output_screenshot_param.py new file mode 100644 index 00000000..efc2028a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_computer_tool_call_output_screenshot_param.py @@ -0,0 +1,21 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ResponseComputerToolCallOutputScreenshotParam"] + + +class ResponseComputerToolCallOutputScreenshotParam(TypedDict, total=False): + type: Required[Literal["computer_screenshot"]] + """Specifies the event type. + + For a computer screenshot, this property is always set to `computer_screenshot`. + """ + + file_id: str + """The identifier of an uploaded file that contains the screenshot.""" + + image_url: str + """The URL of the screenshot image.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_computer_tool_call_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_computer_tool_call_param.py new file mode 100644 index 00000000..d4ef56ab --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_computer_tool_call_param.py @@ -0,0 +1,208 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union, Iterable +from typing_extensions import Literal, Required, TypeAlias, TypedDict + +__all__ = [ + "ResponseComputerToolCallParam", + "Action", + "ActionClick", + "ActionDoubleClick", + "ActionDrag", + "ActionDragPath", + "ActionKeypress", + "ActionMove", + "ActionScreenshot", + "ActionScroll", + "ActionType", + "ActionWait", + "PendingSafetyCheck", +] + + +class ActionClick(TypedDict, total=False): + button: Required[Literal["left", "right", "wheel", "back", "forward"]] + """Indicates which mouse button was pressed during the click. + + One of `left`, `right`, `wheel`, `back`, or `forward`. + """ + + type: Required[Literal["click"]] + """Specifies the event type. + + For a click action, this property is always set to `click`. + """ + + x: Required[int] + """The x-coordinate where the click occurred.""" + + y: Required[int] + """The y-coordinate where the click occurred.""" + + +class ActionDoubleClick(TypedDict, total=False): + type: Required[Literal["double_click"]] + """Specifies the event type. + + For a double click action, this property is always set to `double_click`. + """ + + x: Required[int] + """The x-coordinate where the double click occurred.""" + + y: Required[int] + """The y-coordinate where the double click occurred.""" + + +class ActionDragPath(TypedDict, total=False): + x: Required[int] + """The x-coordinate.""" + + y: Required[int] + """The y-coordinate.""" + + +class ActionDrag(TypedDict, total=False): + path: Required[Iterable[ActionDragPath]] + """An array of coordinates representing the path of the drag action. + + Coordinates will appear as an array of objects, eg + + ``` + [ + { x: 100, y: 200 }, + { x: 200, y: 300 } + ] + ``` + """ + + type: Required[Literal["drag"]] + """Specifies the event type. + + For a drag action, this property is always set to `drag`. + """ + + +class ActionKeypress(TypedDict, total=False): + keys: Required[List[str]] + """The combination of keys the model is requesting to be pressed. + + This is an array of strings, each representing a key. + """ + + type: Required[Literal["keypress"]] + """Specifies the event type. + + For a keypress action, this property is always set to `keypress`. + """ + + +class ActionMove(TypedDict, total=False): + type: Required[Literal["move"]] + """Specifies the event type. + + For a move action, this property is always set to `move`. + """ + + x: Required[int] + """The x-coordinate to move to.""" + + y: Required[int] + """The y-coordinate to move to.""" + + +class ActionScreenshot(TypedDict, total=False): + type: Required[Literal["screenshot"]] + """Specifies the event type. + + For a screenshot action, this property is always set to `screenshot`. + """ + + +class ActionScroll(TypedDict, total=False): + scroll_x: Required[int] + """The horizontal scroll distance.""" + + scroll_y: Required[int] + """The vertical scroll distance.""" + + type: Required[Literal["scroll"]] + """Specifies the event type. + + For a scroll action, this property is always set to `scroll`. + """ + + x: Required[int] + """The x-coordinate where the scroll occurred.""" + + y: Required[int] + """The y-coordinate where the scroll occurred.""" + + +class ActionType(TypedDict, total=False): + text: Required[str] + """The text to type.""" + + type: Required[Literal["type"]] + """Specifies the event type. + + For a type action, this property is always set to `type`. + """ + + +class ActionWait(TypedDict, total=False): + type: Required[Literal["wait"]] + """Specifies the event type. + + For a wait action, this property is always set to `wait`. + """ + + +Action: TypeAlias = Union[ + ActionClick, + ActionDoubleClick, + ActionDrag, + ActionKeypress, + ActionMove, + ActionScreenshot, + ActionScroll, + ActionType, + ActionWait, +] + + +class PendingSafetyCheck(TypedDict, total=False): + id: Required[str] + """The ID of the pending safety check.""" + + code: Required[str] + """The type of the pending safety check.""" + + message: Required[str] + """Details about the pending safety check.""" + + +class ResponseComputerToolCallParam(TypedDict, total=False): + id: Required[str] + """The unique ID of the computer call.""" + + action: Required[Action] + """A click action.""" + + call_id: Required[str] + """An identifier used when responding to the tool call with output.""" + + pending_safety_checks: Required[Iterable[PendingSafetyCheck]] + """The pending safety checks for the computer call.""" + + status: Required[Literal["in_progress", "completed", "incomplete"]] + """The status of the item. + + One of `in_progress`, `completed`, or `incomplete`. Populated when items are + returned via API. + """ + + type: Required[Literal["computer_call"]] + """The type of the computer call. Always `computer_call`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_content_part_added_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_content_part_added_event.py new file mode 100644 index 00000000..93f5ec4b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_content_part_added_event.py @@ -0,0 +1,30 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Literal, Annotated, TypeAlias + +from ..._utils import PropertyInfo +from ..._models import BaseModel +from .response_output_text import ResponseOutputText +from .response_output_refusal import ResponseOutputRefusal + +__all__ = ["ResponseContentPartAddedEvent", "Part"] + +Part: TypeAlias = Annotated[Union[ResponseOutputText, ResponseOutputRefusal], PropertyInfo(discriminator="type")] + + +class ResponseContentPartAddedEvent(BaseModel): + content_index: int + """The index of the content part that was added.""" + + item_id: str + """The ID of the output item that the content part was added to.""" + + output_index: int + """The index of the output item that the content part was added to.""" + + part: Part + """The content part that was added.""" + + type: Literal["response.content_part.added"] + """The type of the event. Always `response.content_part.added`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_content_part_done_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_content_part_done_event.py new file mode 100644 index 00000000..4ec07398 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_content_part_done_event.py @@ -0,0 +1,30 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Literal, Annotated, TypeAlias + +from ..._utils import PropertyInfo +from ..._models import BaseModel +from .response_output_text import ResponseOutputText +from .response_output_refusal import ResponseOutputRefusal + +__all__ = ["ResponseContentPartDoneEvent", "Part"] + +Part: TypeAlias = Annotated[Union[ResponseOutputText, ResponseOutputRefusal], PropertyInfo(discriminator="type")] + + +class ResponseContentPartDoneEvent(BaseModel): + content_index: int + """The index of the content part that is done.""" + + item_id: str + """The ID of the output item that the content part was added to.""" + + output_index: int + """The index of the output item that the content part was added to.""" + + part: Part + """The content part that is done.""" + + type: Literal["response.content_part.done"] + """The type of the event. Always `response.content_part.done`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_create_params.py new file mode 100644 index 00000000..651050c5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_create_params.py @@ -0,0 +1,204 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union, Iterable, Optional +from typing_extensions import Literal, Required, TypeAlias, TypedDict + +from .tool_param import ToolParam +from .response_includable import ResponseIncludable +from .tool_choice_options import ToolChoiceOptions +from .response_input_param import ResponseInputParam +from ..shared_params.metadata import Metadata +from .tool_choice_types_param import ToolChoiceTypesParam +from ..shared_params.reasoning import Reasoning +from .response_text_config_param import ResponseTextConfigParam +from .tool_choice_function_param import ToolChoiceFunctionParam +from ..shared_params.responses_model import ResponsesModel + +__all__ = [ + "ResponseCreateParamsBase", + "ToolChoice", + "ResponseCreateParamsNonStreaming", + "ResponseCreateParamsStreaming", +] + + +class ResponseCreateParamsBase(TypedDict, total=False): + input: Required[Union[str, ResponseInputParam]] + """Text, image, or file inputs to the model, used to generate a response. + + Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Image inputs](https://platform.openai.com/docs/guides/images) + - [File inputs](https://platform.openai.com/docs/guides/pdf-files) + - [Conversation state](https://platform.openai.com/docs/guides/conversation-state) + - [Function calling](https://platform.openai.com/docs/guides/function-calling) + """ + + model: Required[ResponsesModel] + """Model ID used to generate the response, like `gpt-4o` or `o1`. + + OpenAI offers a wide range of models with different capabilities, performance + characteristics, and price points. Refer to the + [model guide](https://platform.openai.com/docs/models) to browse and compare + available models. + """ + + include: Optional[List[ResponseIncludable]] + """Specify additional output data to include in the model response. + + Currently supported values are: + + - `file_search_call.results`: Include the search results of the file search tool + call. + - `message.input_image.image_url`: Include image urls from the input message. + - `computer_call_output.output.image_url`: Include image urls from the computer + call output. + """ + + instructions: Optional[str] + """ + Inserts a system (or developer) message as the first item in the model's + context. + + When using along with `previous_response_id`, the instructions from a previous + response will be not be carried over to the next response. This makes it simple + to swap out system (or developer) messages in new responses. + """ + + max_output_tokens: Optional[int] + """ + An upper bound for the number of tokens that can be generated for a response, + including visible output tokens and + [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). + """ + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + parallel_tool_calls: Optional[bool] + """Whether to allow the model to run tool calls in parallel.""" + + previous_response_id: Optional[str] + """The unique ID of the previous response to the model. + + Use this to create multi-turn conversations. Learn more about + [conversation state](https://platform.openai.com/docs/guides/conversation-state). + """ + + reasoning: Optional[Reasoning] + """**o-series models only** + + Configuration options for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). + """ + + store: Optional[bool] + """Whether to store the generated model response for later retrieval via API.""" + + temperature: Optional[float] + """What sampling temperature to use, between 0 and 2. + + Higher values like 0.8 will make the output more random, while lower values like + 0.2 will make it more focused and deterministic. We generally recommend altering + this or `top_p` but not both. + """ + + text: ResponseTextConfigParam + """Configuration options for a text response from the model. + + Can be plain text or structured JSON data. Learn more: + + - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) + - [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs) + """ + + tool_choice: ToolChoice + """ + How the model should select which tool (or tools) to use when generating a + response. See the `tools` parameter to see how to specify which tools the model + can call. + """ + + tools: Iterable[ToolParam] + """An array of tools the model may call while generating a response. + + You can specify which tool to use by setting the `tool_choice` parameter. + + The two categories of tools you can provide the model are: + + - **Built-in tools**: Tools that are provided by OpenAI that extend the model's + capabilities, like + [web search](https://platform.openai.com/docs/guides/tools-web-search) or + [file search](https://platform.openai.com/docs/guides/tools-file-search). + Learn more about + [built-in tools](https://platform.openai.com/docs/guides/tools). + - **Function calls (custom tools)**: Functions that are defined by you, enabling + the model to call your own code. Learn more about + [function calling](https://platform.openai.com/docs/guides/function-calling). + """ + + top_p: Optional[float] + """ + An alternative to sampling with temperature, called nucleus sampling, where the + model considers the results of the tokens with top_p probability mass. So 0.1 + means only the tokens comprising the top 10% probability mass are considered. + + We generally recommend altering this or `temperature` but not both. + """ + + truncation: Optional[Literal["auto", "disabled"]] + """The truncation strategy to use for the model response. + + - `auto`: If the context of this response and previous ones exceeds the model's + context window size, the model will truncate the response to fit the context + window by dropping input items in the middle of the conversation. + - `disabled` (default): If a model response will exceed the context window size + for a model, the request will fail with a 400 error. + """ + + user: str + """ + A unique identifier representing your end-user, which can help OpenAI to monitor + and detect abuse. + [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). + """ + + +ToolChoice: TypeAlias = Union[ToolChoiceOptions, ToolChoiceTypesParam, ToolChoiceFunctionParam] + + +class ResponseCreateParamsNonStreaming(ResponseCreateParamsBase, total=False): + stream: Optional[Literal[False]] + """ + If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/responses-streaming) + for more information. + """ + + +class ResponseCreateParamsStreaming(ResponseCreateParamsBase): + stream: Required[Literal[True]] + """ + If set to true, the model response data will be streamed to the client as it is + generated using + [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). + See the + [Streaming section below](https://platform.openai.com/docs/api-reference/responses-streaming) + for more information. + """ + + +ResponseCreateParams = Union[ResponseCreateParamsNonStreaming, ResponseCreateParamsStreaming] diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_created_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_created_event.py new file mode 100644 index 00000000..7a524cec --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_created_event.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from .response import Response +from ..._models import BaseModel + +__all__ = ["ResponseCreatedEvent"] + + +class ResponseCreatedEvent(BaseModel): + response: Response + """The response that was created.""" + + type: Literal["response.created"] + """The type of the event. Always `response.created`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_error.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_error.py new file mode 100644 index 00000000..90f1fcf5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_error.py @@ -0,0 +1,34 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseError"] + + +class ResponseError(BaseModel): + code: Literal[ + "server_error", + "rate_limit_exceeded", + "invalid_prompt", + "vector_store_timeout", + "invalid_image", + "invalid_image_format", + "invalid_base64_image", + "invalid_image_url", + "image_too_large", + "image_too_small", + "image_parse_error", + "image_content_policy_violation", + "invalid_image_mode", + "image_file_too_large", + "unsupported_image_media_type", + "empty_image_file", + "failed_to_download_image", + "image_file_not_found", + ] + """The error code for the response.""" + + message: str + """A human-readable description of the error.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_error_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_error_event.py new file mode 100644 index 00000000..1b7e605d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_error_event.py @@ -0,0 +1,22 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseErrorEvent"] + + +class ResponseErrorEvent(BaseModel): + code: Optional[str] = None + """The error code.""" + + message: str + """The error message.""" + + param: Optional[str] = None + """The error parameter.""" + + type: Literal["error"] + """The type of the event. Always `error`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_failed_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_failed_event.py new file mode 100644 index 00000000..3e8f75d8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_failed_event.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from .response import Response +from ..._models import BaseModel + +__all__ = ["ResponseFailedEvent"] + + +class ResponseFailedEvent(BaseModel): + response: Response + """The response that failed.""" + + type: Literal["response.failed"] + """The type of the event. Always `response.failed`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_file_search_call_completed_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_file_search_call_completed_event.py new file mode 100644 index 00000000..4b860833 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_file_search_call_completed_event.py @@ -0,0 +1,18 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseFileSearchCallCompletedEvent"] + + +class ResponseFileSearchCallCompletedEvent(BaseModel): + item_id: str + """The ID of the output item that the file search call is initiated.""" + + output_index: int + """The index of the output item that the file search call is initiated.""" + + type: Literal["response.file_search_call.completed"] + """The type of the event. Always `response.file_search_call.completed`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_file_search_call_in_progress_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_file_search_call_in_progress_event.py new file mode 100644 index 00000000..eb42e3da --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_file_search_call_in_progress_event.py @@ -0,0 +1,18 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseFileSearchCallInProgressEvent"] + + +class ResponseFileSearchCallInProgressEvent(BaseModel): + item_id: str + """The ID of the output item that the file search call is initiated.""" + + output_index: int + """The index of the output item that the file search call is initiated.""" + + type: Literal["response.file_search_call.in_progress"] + """The type of the event. Always `response.file_search_call.in_progress`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_file_search_call_searching_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_file_search_call_searching_event.py new file mode 100644 index 00000000..3cd8905d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_file_search_call_searching_event.py @@ -0,0 +1,18 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseFileSearchCallSearchingEvent"] + + +class ResponseFileSearchCallSearchingEvent(BaseModel): + item_id: str + """The ID of the output item that the file search call is initiated.""" + + output_index: int + """The index of the output item that the file search call is searching.""" + + type: Literal["response.file_search_call.searching"] + """The type of the event. Always `response.file_search_call.searching`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_file_search_tool_call.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_file_search_tool_call.py new file mode 100644 index 00000000..ef1c6a56 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_file_search_tool_call.py @@ -0,0 +1,51 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Dict, List, Union, Optional +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseFileSearchToolCall", "Result"] + + +class Result(BaseModel): + attributes: Optional[Dict[str, Union[str, float, bool]]] = None + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. Keys are + strings with a maximum length of 64 characters. Values are strings with a + maximum length of 512 characters, booleans, or numbers. + """ + + file_id: Optional[str] = None + """The unique ID of the file.""" + + filename: Optional[str] = None + """The name of the file.""" + + score: Optional[float] = None + """The relevance score of the file - a value between 0 and 1.""" + + text: Optional[str] = None + """The text that was retrieved from the file.""" + + +class ResponseFileSearchToolCall(BaseModel): + id: str + """The unique ID of the file search tool call.""" + + queries: List[str] + """The queries used to search for files.""" + + status: Literal["in_progress", "searching", "completed", "incomplete", "failed"] + """The status of the file search tool call. + + One of `in_progress`, `searching`, `incomplete` or `failed`, + """ + + type: Literal["file_search_call"] + """The type of the file search tool call. Always `file_search_call`.""" + + results: Optional[List[Result]] = None + """The results of the file search tool call.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_file_search_tool_call_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_file_search_tool_call_param.py new file mode 100644 index 00000000..9a4177cf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_file_search_tool_call_param.py @@ -0,0 +1,51 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Dict, List, Union, Iterable, Optional +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ResponseFileSearchToolCallParam", "Result"] + + +class Result(TypedDict, total=False): + attributes: Optional[Dict[str, Union[str, float, bool]]] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. Keys are + strings with a maximum length of 64 characters. Values are strings with a + maximum length of 512 characters, booleans, or numbers. + """ + + file_id: str + """The unique ID of the file.""" + + filename: str + """The name of the file.""" + + score: float + """The relevance score of the file - a value between 0 and 1.""" + + text: str + """The text that was retrieved from the file.""" + + +class ResponseFileSearchToolCallParam(TypedDict, total=False): + id: Required[str] + """The unique ID of the file search tool call.""" + + queries: Required[List[str]] + """The queries used to search for files.""" + + status: Required[Literal["in_progress", "searching", "completed", "incomplete", "failed"]] + """The status of the file search tool call. + + One of `in_progress`, `searching`, `incomplete` or `failed`, + """ + + type: Required[Literal["file_search_call"]] + """The type of the file search tool call. Always `file_search_call`.""" + + results: Optional[Iterable[Result]] + """The results of the file search tool call.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_format_text_config.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_format_text_config.py new file mode 100644 index 00000000..a4896bf9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_format_text_config.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Annotated, TypeAlias + +from ..._utils import PropertyInfo +from ..shared.response_format_text import ResponseFormatText +from ..shared.response_format_json_object import ResponseFormatJSONObject +from .response_format_text_json_schema_config import ResponseFormatTextJSONSchemaConfig + +__all__ = ["ResponseFormatTextConfig"] + +ResponseFormatTextConfig: TypeAlias = Annotated[ + Union[ResponseFormatText, ResponseFormatTextJSONSchemaConfig, ResponseFormatJSONObject], + PropertyInfo(discriminator="type"), +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_format_text_config_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_format_text_config_param.py new file mode 100644 index 00000000..fcaf8f3f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_format_text_config_param.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import TypeAlias + +from ..shared_params.response_format_text import ResponseFormatText +from ..shared_params.response_format_json_object import ResponseFormatJSONObject +from .response_format_text_json_schema_config_param import ResponseFormatTextJSONSchemaConfigParam + +__all__ = ["ResponseFormatTextConfigParam"] + +ResponseFormatTextConfigParam: TypeAlias = Union[ + ResponseFormatText, ResponseFormatTextJSONSchemaConfigParam, ResponseFormatJSONObject +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_format_text_json_schema_config.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_format_text_json_schema_config.py new file mode 100644 index 00000000..3cf06637 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_format_text_json_schema_config.py @@ -0,0 +1,43 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Dict, Optional +from typing_extensions import Literal + +from pydantic import Field as FieldInfo + +from ..._models import BaseModel + +__all__ = ["ResponseFormatTextJSONSchemaConfig"] + + +class ResponseFormatTextJSONSchemaConfig(BaseModel): + schema_: Dict[str, object] = FieldInfo(alias="schema") + """ + The schema for the response format, described as a JSON Schema object. Learn how + to build JSON schemas [here](https://json-schema.org/). + """ + + type: Literal["json_schema"] + """The type of response format being defined. Always `json_schema`.""" + + description: Optional[str] = None + """ + A description of what the response format is for, used by the model to determine + how to respond in the format. + """ + + name: Optional[str] = None + """The name of the response format. + + Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length + of 64. + """ + + strict: Optional[bool] = None + """ + Whether to enable strict schema adherence when generating the output. If set to + true, the model will always follow the exact schema defined in the `schema` + field. Only a subset of JSON Schema is supported when `strict` is `true`. To + learn more, read the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_format_text_json_schema_config_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_format_text_json_schema_config_param.py new file mode 100644 index 00000000..211c5d1e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_format_text_json_schema_config_param.py @@ -0,0 +1,41 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Dict, Optional +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ResponseFormatTextJSONSchemaConfigParam"] + + +class ResponseFormatTextJSONSchemaConfigParam(TypedDict, total=False): + schema: Required[Dict[str, object]] + """ + The schema for the response format, described as a JSON Schema object. Learn how + to build JSON schemas [here](https://json-schema.org/). + """ + + type: Required[Literal["json_schema"]] + """The type of response format being defined. Always `json_schema`.""" + + description: str + """ + A description of what the response format is for, used by the model to determine + how to respond in the format. + """ + + name: str + """The name of the response format. + + Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length + of 64. + """ + + strict: Optional[bool] + """ + Whether to enable strict schema adherence when generating the output. If set to + true, the model will always follow the exact schema defined in the `schema` + field. Only a subset of JSON Schema is supported when `strict` is `true`. To + learn more, read the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_call_arguments_delta_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_call_arguments_delta_event.py new file mode 100644 index 00000000..0989b7ca --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_call_arguments_delta_event.py @@ -0,0 +1,23 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseFunctionCallArgumentsDeltaEvent"] + + +class ResponseFunctionCallArgumentsDeltaEvent(BaseModel): + delta: str + """The function-call arguments delta that is added.""" + + item_id: str + """The ID of the output item that the function-call arguments delta is added to.""" + + output_index: int + """ + The index of the output item that the function-call arguments delta is added to. + """ + + type: Literal["response.function_call_arguments.delta"] + """The type of the event. Always `response.function_call_arguments.delta`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_call_arguments_done_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_call_arguments_done_event.py new file mode 100644 index 00000000..1d805a57 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_call_arguments_done_event.py @@ -0,0 +1,20 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseFunctionCallArgumentsDoneEvent"] + + +class ResponseFunctionCallArgumentsDoneEvent(BaseModel): + arguments: str + """The function-call arguments.""" + + item_id: str + """The ID of the item.""" + + output_index: int + """The index of the output item.""" + + type: Literal["response.function_call_arguments.done"] diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_tool_call.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_tool_call.py new file mode 100644 index 00000000..2a848220 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_tool_call.py @@ -0,0 +1,32 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseFunctionToolCall"] + + +class ResponseFunctionToolCall(BaseModel): + arguments: str + """A JSON string of the arguments to pass to the function.""" + + call_id: str + """The unique ID of the function tool call generated by the model.""" + + name: str + """The name of the function to run.""" + + type: Literal["function_call"] + """The type of the function tool call. Always `function_call`.""" + + id: Optional[str] = None + """The unique ID of the function tool call.""" + + status: Optional[Literal["in_progress", "completed", "incomplete"]] = None + """The status of the item. + + One of `in_progress`, `completed`, or `incomplete`. Populated when items are + returned via API. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_tool_call_item.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_tool_call_item.py new file mode 100644 index 00000000..25984f94 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_tool_call_item.py @@ -0,0 +1,11 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + + +from .response_function_tool_call import ResponseFunctionToolCall + +__all__ = ["ResponseFunctionToolCallItem"] + + +class ResponseFunctionToolCallItem(ResponseFunctionToolCall): + id: str # type: ignore + """The unique ID of the function tool call.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_tool_call_output_item.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_tool_call_output_item.py new file mode 100644 index 00000000..4c8c41a6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_tool_call_output_item.py @@ -0,0 +1,29 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseFunctionToolCallOutputItem"] + + +class ResponseFunctionToolCallOutputItem(BaseModel): + id: str + """The unique ID of the function call tool output.""" + + call_id: str + """The unique ID of the function tool call generated by the model.""" + + output: str + """A JSON string of the output of the function tool call.""" + + type: Literal["function_call_output"] + """The type of the function tool call output. Always `function_call_output`.""" + + status: Optional[Literal["in_progress", "completed", "incomplete"]] = None + """The status of the item. + + One of `in_progress`, `completed`, or `incomplete`. Populated when items are + returned via API. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_tool_call_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_tool_call_param.py new file mode 100644 index 00000000..eaa263cf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_tool_call_param.py @@ -0,0 +1,31 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ResponseFunctionToolCallParam"] + + +class ResponseFunctionToolCallParam(TypedDict, total=False): + arguments: Required[str] + """A JSON string of the arguments to pass to the function.""" + + call_id: Required[str] + """The unique ID of the function tool call generated by the model.""" + + name: Required[str] + """The name of the function to run.""" + + type: Required[Literal["function_call"]] + """The type of the function tool call. Always `function_call`.""" + + id: str + """The unique ID of the function tool call.""" + + status: Literal["in_progress", "completed", "incomplete"] + """The status of the item. + + One of `in_progress`, `completed`, or `incomplete`. Populated when items are + returned via API. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_web_search.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_web_search.py new file mode 100644 index 00000000..44734b68 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_web_search.py @@ -0,0 +1,18 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseFunctionWebSearch"] + + +class ResponseFunctionWebSearch(BaseModel): + id: str + """The unique ID of the web search tool call.""" + + status: Literal["in_progress", "searching", "completed", "failed"] + """The status of the web search tool call.""" + + type: Literal["web_search_call"] + """The type of the web search tool call. Always `web_search_call`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_web_search_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_web_search_param.py new file mode 100644 index 00000000..d413e60b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_function_web_search_param.py @@ -0,0 +1,18 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ResponseFunctionWebSearchParam"] + + +class ResponseFunctionWebSearchParam(TypedDict, total=False): + id: Required[str] + """The unique ID of the web search tool call.""" + + status: Required[Literal["in_progress", "searching", "completed", "failed"]] + """The status of the web search tool call.""" + + type: Required[Literal["web_search_call"]] + """The type of the web search tool call. Always `web_search_call`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_in_progress_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_in_progress_event.py new file mode 100644 index 00000000..7d96cbb8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_in_progress_event.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from .response import Response +from ..._models import BaseModel + +__all__ = ["ResponseInProgressEvent"] + + +class ResponseInProgressEvent(BaseModel): + response: Response + """The response that is in progress.""" + + type: Literal["response.in_progress"] + """The type of the event. Always `response.in_progress`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_includable.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_includable.py new file mode 100644 index 00000000..83489fa7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_includable.py @@ -0,0 +1,9 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal, TypeAlias + +__all__ = ["ResponseIncludable"] + +ResponseIncludable: TypeAlias = Literal[ + "file_search_call.results", "message.input_image.image_url", "computer_call_output.output.image_url" +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_incomplete_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_incomplete_event.py new file mode 100644 index 00000000..742b789c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_incomplete_event.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from .response import Response +from ..._models import BaseModel + +__all__ = ["ResponseIncompleteEvent"] + + +class ResponseIncompleteEvent(BaseModel): + response: Response + """The response that was incomplete.""" + + type: Literal["response.incomplete"] + """The type of the event. Always `response.incomplete`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_content.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_content.py new file mode 100644 index 00000000..1726909a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_content.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Annotated, TypeAlias + +from ..._utils import PropertyInfo +from .response_input_file import ResponseInputFile +from .response_input_text import ResponseInputText +from .response_input_image import ResponseInputImage + +__all__ = ["ResponseInputContent"] + +ResponseInputContent: TypeAlias = Annotated[ + Union[ResponseInputText, ResponseInputImage, ResponseInputFile], PropertyInfo(discriminator="type") +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_content_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_content_param.py new file mode 100644 index 00000000..7791cdfd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_content_param.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import TypeAlias + +from .response_input_file_param import ResponseInputFileParam +from .response_input_text_param import ResponseInputTextParam +from .response_input_image_param import ResponseInputImageParam + +__all__ = ["ResponseInputContentParam"] + +ResponseInputContentParam: TypeAlias = Union[ResponseInputTextParam, ResponseInputImageParam, ResponseInputFileParam] diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_file.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_file.py new file mode 100644 index 00000000..00b35dc8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_file.py @@ -0,0 +1,22 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseInputFile"] + + +class ResponseInputFile(BaseModel): + type: Literal["input_file"] + """The type of the input item. Always `input_file`.""" + + file_data: Optional[str] = None + """The content of the file to be sent to the model.""" + + file_id: Optional[str] = None + """The ID of the file to be sent to the model.""" + + filename: Optional[str] = None + """The name of the file to be sent to the model.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_file_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_file_param.py new file mode 100644 index 00000000..dc06a4ea --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_file_param.py @@ -0,0 +1,21 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ResponseInputFileParam"] + + +class ResponseInputFileParam(TypedDict, total=False): + type: Required[Literal["input_file"]] + """The type of the input item. Always `input_file`.""" + + file_data: str + """The content of the file to be sent to the model.""" + + file_id: str + """The ID of the file to be sent to the model.""" + + filename: str + """The name of the file to be sent to the model.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_image.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_image.py new file mode 100644 index 00000000..d719f44e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_image.py @@ -0,0 +1,28 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseInputImage"] + + +class ResponseInputImage(BaseModel): + detail: Literal["high", "low", "auto"] + """The detail level of the image to be sent to the model. + + One of `high`, `low`, or `auto`. Defaults to `auto`. + """ + + type: Literal["input_image"] + """The type of the input item. Always `input_image`.""" + + file_id: Optional[str] = None + """The ID of the file to be sent to the model.""" + + image_url: Optional[str] = None + """The URL of the image to be sent to the model. + + A fully qualified URL or base64 encoded image in a data URL. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_image_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_image_param.py new file mode 100644 index 00000000..5dd4db2b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_image_param.py @@ -0,0 +1,28 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Optional +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ResponseInputImageParam"] + + +class ResponseInputImageParam(TypedDict, total=False): + detail: Required[Literal["high", "low", "auto"]] + """The detail level of the image to be sent to the model. + + One of `high`, `low`, or `auto`. Defaults to `auto`. + """ + + type: Required[Literal["input_image"]] + """The type of the input item. Always `input_image`.""" + + file_id: Optional[str] + """The ID of the file to be sent to the model.""" + + image_url: Optional[str] + """The URL of the image to be sent to the model. + + A fully qualified URL or base64 encoded image in a data URL. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_item_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_item_param.py new file mode 100644 index 00000000..2505f7c0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_item_param.py @@ -0,0 +1,131 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Iterable +from typing_extensions import Literal, Required, TypeAlias, TypedDict + +from .easy_input_message_param import EasyInputMessageParam +from .response_output_message_param import ResponseOutputMessageParam +from .response_reasoning_item_param import ResponseReasoningItemParam +from .response_computer_tool_call_param import ResponseComputerToolCallParam +from .response_function_tool_call_param import ResponseFunctionToolCallParam +from .response_function_web_search_param import ResponseFunctionWebSearchParam +from .response_file_search_tool_call_param import ResponseFileSearchToolCallParam +from .response_input_message_content_list_param import ResponseInputMessageContentListParam +from .response_computer_tool_call_output_screenshot_param import ResponseComputerToolCallOutputScreenshotParam + +__all__ = [ + "ResponseInputItemParam", + "Message", + "ComputerCallOutput", + "ComputerCallOutputAcknowledgedSafetyCheck", + "FunctionCallOutput", + "ItemReference", +] + + +class Message(TypedDict, total=False): + content: Required[ResponseInputMessageContentListParam] + """ + A list of one or many input items to the model, containing different content + types. + """ + + role: Required[Literal["user", "system", "developer"]] + """The role of the message input. One of `user`, `system`, or `developer`.""" + + status: Literal["in_progress", "completed", "incomplete"] + """The status of item. + + One of `in_progress`, `completed`, or `incomplete`. Populated when items are + returned via API. + """ + + type: Literal["message"] + """The type of the message input. Always set to `message`.""" + + +class ComputerCallOutputAcknowledgedSafetyCheck(TypedDict, total=False): + id: Required[str] + """The ID of the pending safety check.""" + + code: Required[str] + """The type of the pending safety check.""" + + message: Required[str] + """Details about the pending safety check.""" + + +class ComputerCallOutput(TypedDict, total=False): + call_id: Required[str] + """The ID of the computer tool call that produced the output.""" + + output: Required[ResponseComputerToolCallOutputScreenshotParam] + """A computer screenshot image used with the computer use tool.""" + + type: Required[Literal["computer_call_output"]] + """The type of the computer tool call output. Always `computer_call_output`.""" + + id: str + """The ID of the computer tool call output.""" + + acknowledged_safety_checks: Iterable[ComputerCallOutputAcknowledgedSafetyCheck] + """ + The safety checks reported by the API that have been acknowledged by the + developer. + """ + + status: Literal["in_progress", "completed", "incomplete"] + """The status of the message input. + + One of `in_progress`, `completed`, or `incomplete`. Populated when input items + are returned via API. + """ + + +class FunctionCallOutput(TypedDict, total=False): + call_id: Required[str] + """The unique ID of the function tool call generated by the model.""" + + output: Required[str] + """A JSON string of the output of the function tool call.""" + + type: Required[Literal["function_call_output"]] + """The type of the function tool call output. Always `function_call_output`.""" + + id: str + """The unique ID of the function tool call output. + + Populated when this item is returned via API. + """ + + status: Literal["in_progress", "completed", "incomplete"] + """The status of the item. + + One of `in_progress`, `completed`, or `incomplete`. Populated when items are + returned via API. + """ + + +class ItemReference(TypedDict, total=False): + id: Required[str] + """The ID of the item to reference.""" + + type: Required[Literal["item_reference"]] + """The type of item to reference. Always `item_reference`.""" + + +ResponseInputItemParam: TypeAlias = Union[ + EasyInputMessageParam, + Message, + ResponseOutputMessageParam, + ResponseFileSearchToolCallParam, + ResponseComputerToolCallParam, + ComputerCallOutput, + ResponseFunctionWebSearchParam, + ResponseFunctionToolCallParam, + FunctionCallOutput, + ResponseReasoningItemParam, + ItemReference, +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_message_content_list.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_message_content_list.py new file mode 100644 index 00000000..99b7c10f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_message_content_list.py @@ -0,0 +1,10 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List +from typing_extensions import TypeAlias + +from .response_input_content import ResponseInputContent + +__all__ = ["ResponseInputMessageContentList"] + +ResponseInputMessageContentList: TypeAlias = List[ResponseInputContent] diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_message_content_list_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_message_content_list_param.py new file mode 100644 index 00000000..080613df --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_message_content_list_param.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union +from typing_extensions import TypeAlias + +from .response_input_file_param import ResponseInputFileParam +from .response_input_text_param import ResponseInputTextParam +from .response_input_image_param import ResponseInputImageParam + +__all__ = ["ResponseInputMessageContentListParam", "ResponseInputContentParam"] + +ResponseInputContentParam: TypeAlias = Union[ResponseInputTextParam, ResponseInputImageParam, ResponseInputFileParam] + +ResponseInputMessageContentListParam: TypeAlias = List[ResponseInputContentParam] diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_message_item.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_message_item.py new file mode 100644 index 00000000..6a788e7f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_message_item.py @@ -0,0 +1,33 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ..._models import BaseModel +from .response_input_message_content_list import ResponseInputMessageContentList + +__all__ = ["ResponseInputMessageItem"] + + +class ResponseInputMessageItem(BaseModel): + id: str + """The unique ID of the message input.""" + + content: ResponseInputMessageContentList + """ + A list of one or many input items to the model, containing different content + types. + """ + + role: Literal["user", "system", "developer"] + """The role of the message input. One of `user`, `system`, or `developer`.""" + + status: Optional[Literal["in_progress", "completed", "incomplete"]] = None + """The status of item. + + One of `in_progress`, `completed`, or `incomplete`. Populated when items are + returned via API. + """ + + type: Optional[Literal["message"]] = None + """The type of the message input. Always set to `message`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_param.py new file mode 100644 index 00000000..84a80eb7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_param.py @@ -0,0 +1,134 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union, Iterable +from typing_extensions import Literal, Required, TypeAlias, TypedDict + +from .easy_input_message_param import EasyInputMessageParam +from .response_output_message_param import ResponseOutputMessageParam +from .response_reasoning_item_param import ResponseReasoningItemParam +from .response_computer_tool_call_param import ResponseComputerToolCallParam +from .response_function_tool_call_param import ResponseFunctionToolCallParam +from .response_function_web_search_param import ResponseFunctionWebSearchParam +from .response_file_search_tool_call_param import ResponseFileSearchToolCallParam +from .response_input_message_content_list_param import ResponseInputMessageContentListParam +from .response_computer_tool_call_output_screenshot_param import ResponseComputerToolCallOutputScreenshotParam + +__all__ = [ + "ResponseInputParam", + "ResponseInputItemParam", + "Message", + "ComputerCallOutput", + "ComputerCallOutputAcknowledgedSafetyCheck", + "FunctionCallOutput", + "ItemReference", +] + + +class Message(TypedDict, total=False): + content: Required[ResponseInputMessageContentListParam] + """ + A list of one or many input items to the model, containing different content + types. + """ + + role: Required[Literal["user", "system", "developer"]] + """The role of the message input. One of `user`, `system`, or `developer`.""" + + status: Literal["in_progress", "completed", "incomplete"] + """The status of item. + + One of `in_progress`, `completed`, or `incomplete`. Populated when items are + returned via API. + """ + + type: Literal["message"] + """The type of the message input. Always set to `message`.""" + + +class ComputerCallOutputAcknowledgedSafetyCheck(TypedDict, total=False): + id: Required[str] + """The ID of the pending safety check.""" + + code: Required[str] + """The type of the pending safety check.""" + + message: Required[str] + """Details about the pending safety check.""" + + +class ComputerCallOutput(TypedDict, total=False): + call_id: Required[str] + """The ID of the computer tool call that produced the output.""" + + output: Required[ResponseComputerToolCallOutputScreenshotParam] + """A computer screenshot image used with the computer use tool.""" + + type: Required[Literal["computer_call_output"]] + """The type of the computer tool call output. Always `computer_call_output`.""" + + id: str + """The ID of the computer tool call output.""" + + acknowledged_safety_checks: Iterable[ComputerCallOutputAcknowledgedSafetyCheck] + """ + The safety checks reported by the API that have been acknowledged by the + developer. + """ + + status: Literal["in_progress", "completed", "incomplete"] + """The status of the message input. + + One of `in_progress`, `completed`, or `incomplete`. Populated when input items + are returned via API. + """ + + +class FunctionCallOutput(TypedDict, total=False): + call_id: Required[str] + """The unique ID of the function tool call generated by the model.""" + + output: Required[str] + """A JSON string of the output of the function tool call.""" + + type: Required[Literal["function_call_output"]] + """The type of the function tool call output. Always `function_call_output`.""" + + id: str + """The unique ID of the function tool call output. + + Populated when this item is returned via API. + """ + + status: Literal["in_progress", "completed", "incomplete"] + """The status of the item. + + One of `in_progress`, `completed`, or `incomplete`. Populated when items are + returned via API. + """ + + +class ItemReference(TypedDict, total=False): + id: Required[str] + """The ID of the item to reference.""" + + type: Required[Literal["item_reference"]] + """The type of item to reference. Always `item_reference`.""" + + +ResponseInputItemParam: TypeAlias = Union[ + EasyInputMessageParam, + Message, + ResponseOutputMessageParam, + ResponseFileSearchToolCallParam, + ResponseComputerToolCallParam, + ComputerCallOutput, + ResponseFunctionWebSearchParam, + ResponseFunctionToolCallParam, + FunctionCallOutput, + ResponseReasoningItemParam, + ItemReference, +] + +ResponseInputParam: TypeAlias = List[ResponseInputItemParam] diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_text.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_text.py new file mode 100644 index 00000000..ba8d1ea1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_text.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseInputText"] + + +class ResponseInputText(BaseModel): + text: str + """The text input to the model.""" + + type: Literal["input_text"] + """The type of the input item. Always `input_text`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_text_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_text_param.py new file mode 100644 index 00000000..f2ba8340 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_input_text_param.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ResponseInputTextParam"] + + +class ResponseInputTextParam(TypedDict, total=False): + text: Required[str] + """The text input to the model.""" + + type: Required[Literal["input_text"]] + """The type of the input item. Always `input_text`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_item.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_item.py new file mode 100644 index 00000000..dc8d67d0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_item.py @@ -0,0 +1,30 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Annotated, TypeAlias + +from ..._utils import PropertyInfo +from .response_output_message import ResponseOutputMessage +from .response_computer_tool_call import ResponseComputerToolCall +from .response_input_message_item import ResponseInputMessageItem +from .response_function_web_search import ResponseFunctionWebSearch +from .response_file_search_tool_call import ResponseFileSearchToolCall +from .response_function_tool_call_item import ResponseFunctionToolCallItem +from .response_computer_tool_call_output_item import ResponseComputerToolCallOutputItem +from .response_function_tool_call_output_item import ResponseFunctionToolCallOutputItem + +__all__ = ["ResponseItem"] + +ResponseItem: TypeAlias = Annotated[ + Union[ + ResponseInputMessageItem, + ResponseOutputMessage, + ResponseFileSearchToolCall, + ResponseComputerToolCall, + ResponseComputerToolCallOutputItem, + ResponseFunctionWebSearch, + ResponseFunctionToolCallItem, + ResponseFunctionToolCallOutputItem, + ], + PropertyInfo(discriminator="type"), +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_item_list.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_item_list.py new file mode 100644 index 00000000..b43eacdb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_item_list.py @@ -0,0 +1,26 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List +from typing_extensions import Literal + +from ..._models import BaseModel +from .response_item import ResponseItem + +__all__ = ["ResponseItemList"] + + +class ResponseItemList(BaseModel): + data: List[ResponseItem] + """A list of items used to generate this response.""" + + first_id: str + """The ID of the first item in the list.""" + + has_more: bool + """Whether there are more items available.""" + + last_id: str + """The ID of the last item in the list.""" + + object: Literal["list"] + """The type of object returned, must be `list`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_item.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_item.py new file mode 100644 index 00000000..f1e96931 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_item.py @@ -0,0 +1,26 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Annotated, TypeAlias + +from ..._utils import PropertyInfo +from .response_output_message import ResponseOutputMessage +from .response_reasoning_item import ResponseReasoningItem +from .response_computer_tool_call import ResponseComputerToolCall +from .response_function_tool_call import ResponseFunctionToolCall +from .response_function_web_search import ResponseFunctionWebSearch +from .response_file_search_tool_call import ResponseFileSearchToolCall + +__all__ = ["ResponseOutputItem"] + +ResponseOutputItem: TypeAlias = Annotated[ + Union[ + ResponseOutputMessage, + ResponseFileSearchToolCall, + ResponseFunctionToolCall, + ResponseFunctionWebSearch, + ResponseComputerToolCall, + ResponseReasoningItem, + ], + PropertyInfo(discriminator="type"), +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_item_added_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_item_added_event.py new file mode 100644 index 00000000..7344fb9a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_item_added_event.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel +from .response_output_item import ResponseOutputItem + +__all__ = ["ResponseOutputItemAddedEvent"] + + +class ResponseOutputItemAddedEvent(BaseModel): + item: ResponseOutputItem + """The output item that was added.""" + + output_index: int + """The index of the output item that was added.""" + + type: Literal["response.output_item.added"] + """The type of the event. Always `response.output_item.added`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_item_done_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_item_done_event.py new file mode 100644 index 00000000..a0a871a0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_item_done_event.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel +from .response_output_item import ResponseOutputItem + +__all__ = ["ResponseOutputItemDoneEvent"] + + +class ResponseOutputItemDoneEvent(BaseModel): + item: ResponseOutputItem + """The output item that was marked done.""" + + output_index: int + """The index of the output item that was marked done.""" + + type: Literal["response.output_item.done"] + """The type of the event. Always `response.output_item.done`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_message.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_message.py new file mode 100644 index 00000000..3864aa21 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_message.py @@ -0,0 +1,34 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Union +from typing_extensions import Literal, Annotated, TypeAlias + +from ..._utils import PropertyInfo +from ..._models import BaseModel +from .response_output_text import ResponseOutputText +from .response_output_refusal import ResponseOutputRefusal + +__all__ = ["ResponseOutputMessage", "Content"] + +Content: TypeAlias = Annotated[Union[ResponseOutputText, ResponseOutputRefusal], PropertyInfo(discriminator="type")] + + +class ResponseOutputMessage(BaseModel): + id: str + """The unique ID of the output message.""" + + content: List[Content] + """The content of the output message.""" + + role: Literal["assistant"] + """The role of the output message. Always `assistant`.""" + + status: Literal["in_progress", "completed", "incomplete"] + """The status of the message input. + + One of `in_progress`, `completed`, or `incomplete`. Populated when input items + are returned via API. + """ + + type: Literal["message"] + """The type of the output message. Always `message`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_message_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_message_param.py new file mode 100644 index 00000000..46cbbd20 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_message_param.py @@ -0,0 +1,34 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Iterable +from typing_extensions import Literal, Required, TypeAlias, TypedDict + +from .response_output_text_param import ResponseOutputTextParam +from .response_output_refusal_param import ResponseOutputRefusalParam + +__all__ = ["ResponseOutputMessageParam", "Content"] + +Content: TypeAlias = Union[ResponseOutputTextParam, ResponseOutputRefusalParam] + + +class ResponseOutputMessageParam(TypedDict, total=False): + id: Required[str] + """The unique ID of the output message.""" + + content: Required[Iterable[Content]] + """The content of the output message.""" + + role: Required[Literal["assistant"]] + """The role of the output message. Always `assistant`.""" + + status: Required[Literal["in_progress", "completed", "incomplete"]] + """The status of the message input. + + One of `in_progress`, `completed`, or `incomplete`. Populated when input items + are returned via API. + """ + + type: Required[Literal["message"]] + """The type of the output message. Always `message`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_refusal.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_refusal.py new file mode 100644 index 00000000..eba58107 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_refusal.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseOutputRefusal"] + + +class ResponseOutputRefusal(BaseModel): + refusal: str + """The refusal explanationfrom the model.""" + + type: Literal["refusal"] + """The type of the refusal. Always `refusal`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_refusal_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_refusal_param.py new file mode 100644 index 00000000..53140a60 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_refusal_param.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ResponseOutputRefusalParam"] + + +class ResponseOutputRefusalParam(TypedDict, total=False): + refusal: Required[str] + """The refusal explanationfrom the model.""" + + type: Required[Literal["refusal"]] + """The type of the refusal. Always `refusal`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_text.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_text.py new file mode 100644 index 00000000..fa653cd1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_text.py @@ -0,0 +1,64 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Union +from typing_extensions import Literal, Annotated, TypeAlias + +from ..._utils import PropertyInfo +from ..._models import BaseModel + +__all__ = ["ResponseOutputText", "Annotation", "AnnotationFileCitation", "AnnotationURLCitation", "AnnotationFilePath"] + + +class AnnotationFileCitation(BaseModel): + file_id: str + """The ID of the file.""" + + index: int + """The index of the file in the list of files.""" + + type: Literal["file_citation"] + """The type of the file citation. Always `file_citation`.""" + + +class AnnotationURLCitation(BaseModel): + end_index: int + """The index of the last character of the URL citation in the message.""" + + start_index: int + """The index of the first character of the URL citation in the message.""" + + title: str + """The title of the web resource.""" + + type: Literal["url_citation"] + """The type of the URL citation. Always `url_citation`.""" + + url: str + """The URL of the web resource.""" + + +class AnnotationFilePath(BaseModel): + file_id: str + """The ID of the file.""" + + index: int + """The index of the file in the list of files.""" + + type: Literal["file_path"] + """The type of the file path. Always `file_path`.""" + + +Annotation: TypeAlias = Annotated[ + Union[AnnotationFileCitation, AnnotationURLCitation, AnnotationFilePath], PropertyInfo(discriminator="type") +] + + +class ResponseOutputText(BaseModel): + annotations: List[Annotation] + """The annotations of the text output.""" + + text: str + """The text output from the model.""" + + type: Literal["output_text"] + """The type of the output text. Always `output_text`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_text_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_text_param.py new file mode 100644 index 00000000..1f096728 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_output_text_param.py @@ -0,0 +1,67 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Iterable +from typing_extensions import Literal, Required, TypeAlias, TypedDict + +__all__ = [ + "ResponseOutputTextParam", + "Annotation", + "AnnotationFileCitation", + "AnnotationURLCitation", + "AnnotationFilePath", +] + + +class AnnotationFileCitation(TypedDict, total=False): + file_id: Required[str] + """The ID of the file.""" + + index: Required[int] + """The index of the file in the list of files.""" + + type: Required[Literal["file_citation"]] + """The type of the file citation. Always `file_citation`.""" + + +class AnnotationURLCitation(TypedDict, total=False): + end_index: Required[int] + """The index of the last character of the URL citation in the message.""" + + start_index: Required[int] + """The index of the first character of the URL citation in the message.""" + + title: Required[str] + """The title of the web resource.""" + + type: Required[Literal["url_citation"]] + """The type of the URL citation. Always `url_citation`.""" + + url: Required[str] + """The URL of the web resource.""" + + +class AnnotationFilePath(TypedDict, total=False): + file_id: Required[str] + """The ID of the file.""" + + index: Required[int] + """The index of the file in the list of files.""" + + type: Required[Literal["file_path"]] + """The type of the file path. Always `file_path`.""" + + +Annotation: TypeAlias = Union[AnnotationFileCitation, AnnotationURLCitation, AnnotationFilePath] + + +class ResponseOutputTextParam(TypedDict, total=False): + annotations: Required[Iterable[Annotation]] + """The annotations of the text output.""" + + text: Required[str] + """The text output from the model.""" + + type: Required[Literal["output_text"]] + """The type of the output text. Always `output_text`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_reasoning_item.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_reasoning_item.py new file mode 100644 index 00000000..57e5fbfe --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_reasoning_item.py @@ -0,0 +1,36 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Optional +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseReasoningItem", "Summary"] + + +class Summary(BaseModel): + text: str + """ + A short summary of the reasoning used by the model when generating the response. + """ + + type: Literal["summary_text"] + """The type of the object. Always `summary_text`.""" + + +class ResponseReasoningItem(BaseModel): + id: str + """The unique identifier of the reasoning content.""" + + summary: List[Summary] + """Reasoning text contents.""" + + type: Literal["reasoning"] + """The type of the object. Always `reasoning`.""" + + status: Optional[Literal["in_progress", "completed", "incomplete"]] = None + """The status of the item. + + One of `in_progress`, `completed`, or `incomplete`. Populated when items are + returned via API. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_reasoning_item_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_reasoning_item_param.py new file mode 100644 index 00000000..adb49d64 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_reasoning_item_param.py @@ -0,0 +1,36 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Iterable +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ResponseReasoningItemParam", "Summary"] + + +class Summary(TypedDict, total=False): + text: Required[str] + """ + A short summary of the reasoning used by the model when generating the response. + """ + + type: Required[Literal["summary_text"]] + """The type of the object. Always `summary_text`.""" + + +class ResponseReasoningItemParam(TypedDict, total=False): + id: Required[str] + """The unique identifier of the reasoning content.""" + + summary: Required[Iterable[Summary]] + """Reasoning text contents.""" + + type: Required[Literal["reasoning"]] + """The type of the object. Always `reasoning`.""" + + status: Literal["in_progress", "completed", "incomplete"] + """The status of the item. + + One of `in_progress`, `completed`, or `incomplete`. Populated when items are + returned via API. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_refusal_delta_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_refusal_delta_event.py new file mode 100644 index 00000000..04dcdf1c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_refusal_delta_event.py @@ -0,0 +1,24 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseRefusalDeltaEvent"] + + +class ResponseRefusalDeltaEvent(BaseModel): + content_index: int + """The index of the content part that the refusal text is added to.""" + + delta: str + """The refusal text that is added.""" + + item_id: str + """The ID of the output item that the refusal text is added to.""" + + output_index: int + """The index of the output item that the refusal text is added to.""" + + type: Literal["response.refusal.delta"] + """The type of the event. Always `response.refusal.delta`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_refusal_done_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_refusal_done_event.py new file mode 100644 index 00000000..a9b6f4b0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_refusal_done_event.py @@ -0,0 +1,24 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseRefusalDoneEvent"] + + +class ResponseRefusalDoneEvent(BaseModel): + content_index: int + """The index of the content part that the refusal text is finalized.""" + + item_id: str + """The ID of the output item that the refusal text is finalized.""" + + output_index: int + """The index of the output item that the refusal text is finalized.""" + + refusal: str + """The refusal text that is finalized.""" + + type: Literal["response.refusal.done"] + """The type of the event. Always `response.refusal.done`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_retrieve_params.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_retrieve_params.py new file mode 100644 index 00000000..137bf4dc --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_retrieve_params.py @@ -0,0 +1,18 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List +from typing_extensions import TypedDict + +from .response_includable import ResponseIncludable + +__all__ = ["ResponseRetrieveParams"] + + +class ResponseRetrieveParams(TypedDict, total=False): + include: List[ResponseIncludable] + """Additional fields to include in the response. + + See the `include` parameter for Response creation above for more information. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_status.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_status.py new file mode 100644 index 00000000..934d17cd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_status.py @@ -0,0 +1,7 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal, TypeAlias + +__all__ = ["ResponseStatus"] + +ResponseStatus: TypeAlias = Literal["completed", "failed", "in_progress", "incomplete"] diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_stream_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_stream_event.py new file mode 100644 index 00000000..446863b1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_stream_event.py @@ -0,0 +1,78 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Annotated, TypeAlias + +from ..._utils import PropertyInfo +from .response_error_event import ResponseErrorEvent +from .response_failed_event import ResponseFailedEvent +from .response_created_event import ResponseCreatedEvent +from .response_completed_event import ResponseCompletedEvent +from .response_text_done_event import ResponseTextDoneEvent +from .response_audio_done_event import ResponseAudioDoneEvent +from .response_incomplete_event import ResponseIncompleteEvent +from .response_text_delta_event import ResponseTextDeltaEvent +from .response_audio_delta_event import ResponseAudioDeltaEvent +from .response_in_progress_event import ResponseInProgressEvent +from .response_refusal_done_event import ResponseRefusalDoneEvent +from .response_refusal_delta_event import ResponseRefusalDeltaEvent +from .response_output_item_done_event import ResponseOutputItemDoneEvent +from .response_content_part_done_event import ResponseContentPartDoneEvent +from .response_output_item_added_event import ResponseOutputItemAddedEvent +from .response_content_part_added_event import ResponseContentPartAddedEvent +from .response_audio_transcript_done_event import ResponseAudioTranscriptDoneEvent +from .response_text_annotation_delta_event import ResponseTextAnnotationDeltaEvent +from .response_audio_transcript_delta_event import ResponseAudioTranscriptDeltaEvent +from .response_web_search_call_completed_event import ResponseWebSearchCallCompletedEvent +from .response_web_search_call_searching_event import ResponseWebSearchCallSearchingEvent +from .response_file_search_call_completed_event import ResponseFileSearchCallCompletedEvent +from .response_file_search_call_searching_event import ResponseFileSearchCallSearchingEvent +from .response_web_search_call_in_progress_event import ResponseWebSearchCallInProgressEvent +from .response_file_search_call_in_progress_event import ResponseFileSearchCallInProgressEvent +from .response_function_call_arguments_done_event import ResponseFunctionCallArgumentsDoneEvent +from .response_function_call_arguments_delta_event import ResponseFunctionCallArgumentsDeltaEvent +from .response_code_interpreter_call_code_done_event import ResponseCodeInterpreterCallCodeDoneEvent +from .response_code_interpreter_call_completed_event import ResponseCodeInterpreterCallCompletedEvent +from .response_code_interpreter_call_code_delta_event import ResponseCodeInterpreterCallCodeDeltaEvent +from .response_code_interpreter_call_in_progress_event import ResponseCodeInterpreterCallInProgressEvent +from .response_code_interpreter_call_interpreting_event import ResponseCodeInterpreterCallInterpretingEvent + +__all__ = ["ResponseStreamEvent"] + +ResponseStreamEvent: TypeAlias = Annotated[ + Union[ + ResponseAudioDeltaEvent, + ResponseAudioDoneEvent, + ResponseAudioTranscriptDeltaEvent, + ResponseAudioTranscriptDoneEvent, + ResponseCodeInterpreterCallCodeDeltaEvent, + ResponseCodeInterpreterCallCodeDoneEvent, + ResponseCodeInterpreterCallCompletedEvent, + ResponseCodeInterpreterCallInProgressEvent, + ResponseCodeInterpreterCallInterpretingEvent, + ResponseCompletedEvent, + ResponseContentPartAddedEvent, + ResponseContentPartDoneEvent, + ResponseCreatedEvent, + ResponseErrorEvent, + ResponseFileSearchCallCompletedEvent, + ResponseFileSearchCallInProgressEvent, + ResponseFileSearchCallSearchingEvent, + ResponseFunctionCallArgumentsDeltaEvent, + ResponseFunctionCallArgumentsDoneEvent, + ResponseInProgressEvent, + ResponseFailedEvent, + ResponseIncompleteEvent, + ResponseOutputItemAddedEvent, + ResponseOutputItemDoneEvent, + ResponseRefusalDeltaEvent, + ResponseRefusalDoneEvent, + ResponseTextAnnotationDeltaEvent, + ResponseTextDeltaEvent, + ResponseTextDoneEvent, + ResponseWebSearchCallCompletedEvent, + ResponseWebSearchCallInProgressEvent, + ResponseWebSearchCallSearchingEvent, + ], + PropertyInfo(discriminator="type"), +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_text_annotation_delta_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_text_annotation_delta_event.py new file mode 100644 index 00000000..4f258228 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_text_annotation_delta_event.py @@ -0,0 +1,79 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Literal, Annotated, TypeAlias + +from ..._utils import PropertyInfo +from ..._models import BaseModel + +__all__ = [ + "ResponseTextAnnotationDeltaEvent", + "Annotation", + "AnnotationFileCitation", + "AnnotationURLCitation", + "AnnotationFilePath", +] + + +class AnnotationFileCitation(BaseModel): + file_id: str + """The ID of the file.""" + + index: int + """The index of the file in the list of files.""" + + type: Literal["file_citation"] + """The type of the file citation. Always `file_citation`.""" + + +class AnnotationURLCitation(BaseModel): + end_index: int + """The index of the last character of the URL citation in the message.""" + + start_index: int + """The index of the first character of the URL citation in the message.""" + + title: str + """The title of the web resource.""" + + type: Literal["url_citation"] + """The type of the URL citation. Always `url_citation`.""" + + url: str + """The URL of the web resource.""" + + +class AnnotationFilePath(BaseModel): + file_id: str + """The ID of the file.""" + + index: int + """The index of the file in the list of files.""" + + type: Literal["file_path"] + """The type of the file path. Always `file_path`.""" + + +Annotation: TypeAlias = Annotated[ + Union[AnnotationFileCitation, AnnotationURLCitation, AnnotationFilePath], PropertyInfo(discriminator="type") +] + + +class ResponseTextAnnotationDeltaEvent(BaseModel): + annotation: Annotation + """A citation to a file.""" + + annotation_index: int + """The index of the annotation that was added.""" + + content_index: int + """The index of the content part that the text annotation was added to.""" + + item_id: str + """The ID of the output item that the text annotation was added to.""" + + output_index: int + """The index of the output item that the text annotation was added to.""" + + type: Literal["response.output_text.annotation.added"] + """The type of the event. Always `response.output_text.annotation.added`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_text_config.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_text_config.py new file mode 100644 index 00000000..a1894a91 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_text_config.py @@ -0,0 +1,26 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional + +from ..._models import BaseModel +from .response_format_text_config import ResponseFormatTextConfig + +__all__ = ["ResponseTextConfig"] + + +class ResponseTextConfig(BaseModel): + format: Optional[ResponseFormatTextConfig] = None + """An object specifying the format that the model must output. + + Configuring `{ "type": "json_schema" }` enables Structured Outputs, which + ensures the model will match your supplied JSON schema. Learn more in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + The default format is `{ "type": "text" }` with no additional options. + + **Not recommended for gpt-4o and newer models:** + + Setting to `{ "type": "json_object" }` enables the older JSON mode, which + ensures the message the model generates is valid JSON. Using `json_schema` is + preferred for models that support it. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_text_config_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_text_config_param.py new file mode 100644 index 00000000..aec064bf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_text_config_param.py @@ -0,0 +1,27 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import TypedDict + +from .response_format_text_config_param import ResponseFormatTextConfigParam + +__all__ = ["ResponseTextConfigParam"] + + +class ResponseTextConfigParam(TypedDict, total=False): + format: ResponseFormatTextConfigParam + """An object specifying the format that the model must output. + + Configuring `{ "type": "json_schema" }` enables Structured Outputs, which + ensures the model will match your supplied JSON schema. Learn more in the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + + The default format is `{ "type": "text" }` with no additional options. + + **Not recommended for gpt-4o and newer models:** + + Setting to `{ "type": "json_object" }` enables the older JSON mode, which + ensures the message the model generates is valid JSON. Using `json_schema` is + preferred for models that support it. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_text_delta_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_text_delta_event.py new file mode 100644 index 00000000..751a5e2a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_text_delta_event.py @@ -0,0 +1,24 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseTextDeltaEvent"] + + +class ResponseTextDeltaEvent(BaseModel): + content_index: int + """The index of the content part that the text delta was added to.""" + + delta: str + """The text delta that was added.""" + + item_id: str + """The ID of the output item that the text delta was added to.""" + + output_index: int + """The index of the output item that the text delta was added to.""" + + type: Literal["response.output_text.delta"] + """The type of the event. Always `response.output_text.delta`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_text_done_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_text_done_event.py new file mode 100644 index 00000000..9b5c5e02 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_text_done_event.py @@ -0,0 +1,24 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseTextDoneEvent"] + + +class ResponseTextDoneEvent(BaseModel): + content_index: int + """The index of the content part that the text content is finalized.""" + + item_id: str + """The ID of the output item that the text content is finalized.""" + + output_index: int + """The index of the output item that the text content is finalized.""" + + text: str + """The text content that is finalized.""" + + type: Literal["response.output_text.done"] + """The type of the event. Always `response.output_text.done`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_usage.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_usage.py new file mode 100644 index 00000000..9ad36bd3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_usage.py @@ -0,0 +1,36 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + + +from ..._models import BaseModel + +__all__ = ["ResponseUsage", "InputTokensDetails", "OutputTokensDetails"] + + +class InputTokensDetails(BaseModel): + cached_tokens: int + """The number of tokens that were retrieved from the cache. + + [More on prompt caching](https://platform.openai.com/docs/guides/prompt-caching). + """ + + +class OutputTokensDetails(BaseModel): + reasoning_tokens: int + """The number of reasoning tokens.""" + + +class ResponseUsage(BaseModel): + input_tokens: int + """The number of input tokens.""" + + input_tokens_details: InputTokensDetails + """A detailed breakdown of the input tokens.""" + + output_tokens: int + """The number of output tokens.""" + + output_tokens_details: OutputTokensDetails + """A detailed breakdown of the output tokens.""" + + total_tokens: int + """The total number of tokens used.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_web_search_call_completed_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_web_search_call_completed_event.py new file mode 100644 index 00000000..76f26766 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_web_search_call_completed_event.py @@ -0,0 +1,18 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseWebSearchCallCompletedEvent"] + + +class ResponseWebSearchCallCompletedEvent(BaseModel): + item_id: str + """Unique ID for the output item associated with the web search call.""" + + output_index: int + """The index of the output item that the web search call is associated with.""" + + type: Literal["response.web_search_call.completed"] + """The type of the event. Always `response.web_search_call.completed`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_web_search_call_in_progress_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_web_search_call_in_progress_event.py new file mode 100644 index 00000000..681ce6d9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_web_search_call_in_progress_event.py @@ -0,0 +1,18 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseWebSearchCallInProgressEvent"] + + +class ResponseWebSearchCallInProgressEvent(BaseModel): + item_id: str + """Unique ID for the output item associated with the web search call.""" + + output_index: int + """The index of the output item that the web search call is associated with.""" + + type: Literal["response.web_search_call.in_progress"] + """The type of the event. Always `response.web_search_call.in_progress`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/response_web_search_call_searching_event.py b/.venv/lib/python3.12/site-packages/openai/types/responses/response_web_search_call_searching_event.py new file mode 100644 index 00000000..c885d989 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/response_web_search_call_searching_event.py @@ -0,0 +1,18 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseWebSearchCallSearchingEvent"] + + +class ResponseWebSearchCallSearchingEvent(BaseModel): + item_id: str + """Unique ID for the output item associated with the web search call.""" + + output_index: int + """The index of the output item that the web search call is associated with.""" + + type: Literal["response.web_search_call.searching"] + """The type of the event. Always `response.web_search_call.searching`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/tool.py b/.venv/lib/python3.12/site-packages/openai/types/responses/tool.py new file mode 100644 index 00000000..de5d5524 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/tool.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Annotated, TypeAlias + +from ..._utils import PropertyInfo +from .computer_tool import ComputerTool +from .function_tool import FunctionTool +from .web_search_tool import WebSearchTool +from .file_search_tool import FileSearchTool + +__all__ = ["Tool"] + +Tool: TypeAlias = Annotated[ + Union[FileSearchTool, FunctionTool, ComputerTool, WebSearchTool], PropertyInfo(discriminator="type") +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/tool_choice_function.py b/.venv/lib/python3.12/site-packages/openai/types/responses/tool_choice_function.py new file mode 100644 index 00000000..8d2a4f28 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/tool_choice_function.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ToolChoiceFunction"] + + +class ToolChoiceFunction(BaseModel): + name: str + """The name of the function to call.""" + + type: Literal["function"] + """For function calling, the type is always `function`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/tool_choice_function_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/tool_choice_function_param.py new file mode 100644 index 00000000..910537fd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/tool_choice_function_param.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ToolChoiceFunctionParam"] + + +class ToolChoiceFunctionParam(TypedDict, total=False): + name: Required[str] + """The name of the function to call.""" + + type: Required[Literal["function"]] + """For function calling, the type is always `function`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/tool_choice_options.py b/.venv/lib/python3.12/site-packages/openai/types/responses/tool_choice_options.py new file mode 100644 index 00000000..c200db54 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/tool_choice_options.py @@ -0,0 +1,7 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal, TypeAlias + +__all__ = ["ToolChoiceOptions"] + +ToolChoiceOptions: TypeAlias = Literal["none", "auto", "required"] diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/tool_choice_types.py b/.venv/lib/python3.12/site-packages/openai/types/responses/tool_choice_types.py new file mode 100644 index 00000000..4942808f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/tool_choice_types.py @@ -0,0 +1,22 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ToolChoiceTypes"] + + +class ToolChoiceTypes(BaseModel): + type: Literal["file_search", "web_search_preview", "computer_use_preview", "web_search_preview_2025_03_11"] + """The type of hosted tool the model should to use. + + Learn more about + [built-in tools](https://platform.openai.com/docs/guides/tools). + + Allowed values are: + + - `file_search` + - `web_search_preview` + - `computer_use_preview` + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/tool_choice_types_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/tool_choice_types_param.py new file mode 100644 index 00000000..b14f2a9e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/tool_choice_types_param.py @@ -0,0 +1,24 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ToolChoiceTypesParam"] + + +class ToolChoiceTypesParam(TypedDict, total=False): + type: Required[ + Literal["file_search", "web_search_preview", "computer_use_preview", "web_search_preview_2025_03_11"] + ] + """The type of hosted tool the model should to use. + + Learn more about + [built-in tools](https://platform.openai.com/docs/guides/tools). + + Allowed values are: + + - `file_search` + - `web_search_preview` + - `computer_use_preview` + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/tool_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/tool_param.py new file mode 100644 index 00000000..be1cf824 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/tool_param.py @@ -0,0 +1,18 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import TypeAlias + +from .computer_tool_param import ComputerToolParam +from .function_tool_param import FunctionToolParam +from .web_search_tool_param import WebSearchToolParam +from .file_search_tool_param import FileSearchToolParam +from ..chat.chat_completion_tool_param import ChatCompletionToolParam + +__all__ = ["ToolParam"] + +ToolParam: TypeAlias = Union[FileSearchToolParam, FunctionToolParam, ComputerToolParam, WebSearchToolParam] + +ParseableToolParam: TypeAlias = Union[ToolParam, ChatCompletionToolParam] diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/web_search_tool.py b/.venv/lib/python3.12/site-packages/openai/types/responses/web_search_tool.py new file mode 100644 index 00000000..bee270bf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/web_search_tool.py @@ -0,0 +1,48 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["WebSearchTool", "UserLocation"] + + +class UserLocation(BaseModel): + type: Literal["approximate"] + """The type of location approximation. Always `approximate`.""" + + city: Optional[str] = None + """Free text input for the city of the user, e.g. `San Francisco`.""" + + country: Optional[str] = None + """ + The two-letter [ISO country code](https://en.wikipedia.org/wiki/ISO_3166-1) of + the user, e.g. `US`. + """ + + region: Optional[str] = None + """Free text input for the region of the user, e.g. `California`.""" + + timezone: Optional[str] = None + """ + The [IANA timezone](https://timeapi.io/documentation/iana-timezones) of the + user, e.g. `America/Los_Angeles`. + """ + + +class WebSearchTool(BaseModel): + type: Literal["web_search_preview", "web_search_preview_2025_03_11"] + """The type of the web search tool. One of: + + - `web_search_preview` + - `web_search_preview_2025_03_11` + """ + + search_context_size: Optional[Literal["low", "medium", "high"]] = None + """ + High level guidance for the amount of context window space to use for the + search. One of `low`, `medium`, or `high`. `medium` is the default. + """ + + user_location: Optional[UserLocation] = None diff --git a/.venv/lib/python3.12/site-packages/openai/types/responses/web_search_tool_param.py b/.venv/lib/python3.12/site-packages/openai/types/responses/web_search_tool_param.py new file mode 100644 index 00000000..8ee36ffb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/responses/web_search_tool_param.py @@ -0,0 +1,48 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Optional +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["WebSearchToolParam", "UserLocation"] + + +class UserLocation(TypedDict, total=False): + type: Required[Literal["approximate"]] + """The type of location approximation. Always `approximate`.""" + + city: str + """Free text input for the city of the user, e.g. `San Francisco`.""" + + country: str + """ + The two-letter [ISO country code](https://en.wikipedia.org/wiki/ISO_3166-1) of + the user, e.g. `US`. + """ + + region: str + """Free text input for the region of the user, e.g. `California`.""" + + timezone: str + """ + The [IANA timezone](https://timeapi.io/documentation/iana-timezones) of the + user, e.g. `America/Los_Angeles`. + """ + + +class WebSearchToolParam(TypedDict, total=False): + type: Required[Literal["web_search_preview", "web_search_preview_2025_03_11"]] + """The type of the web search tool. One of: + + - `web_search_preview` + - `web_search_preview_2025_03_11` + """ + + search_context_size: Literal["low", "medium", "high"] + """ + High level guidance for the amount of context window space to use for the + search. One of `low`, `medium`, or `high`. `medium` is the default. + """ + + user_location: Optional[UserLocation] diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared/__init__.py b/.venv/lib/python3.12/site-packages/openai/types/shared/__init__.py new file mode 100644 index 00000000..6ad0ed5e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared/__init__.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from .metadata import Metadata as Metadata +from .reasoning import Reasoning as Reasoning +from .all_models import AllModels as AllModels +from .chat_model import ChatModel as ChatModel +from .error_object import ErrorObject as ErrorObject +from .compound_filter import CompoundFilter as CompoundFilter +from .responses_model import ResponsesModel as ResponsesModel +from .reasoning_effort import ReasoningEffort as ReasoningEffort +from .comparison_filter import ComparisonFilter as ComparisonFilter +from .function_definition import FunctionDefinition as FunctionDefinition +from .function_parameters import FunctionParameters as FunctionParameters +from .response_format_text import ResponseFormatText as ResponseFormatText +from .response_format_json_object import ResponseFormatJSONObject as ResponseFormatJSONObject +from .response_format_json_schema import ResponseFormatJSONSchema as ResponseFormatJSONSchema diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared/all_models.py b/.venv/lib/python3.12/site-packages/openai/types/shared/all_models.py new file mode 100644 index 00000000..db841077 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared/all_models.py @@ -0,0 +1,12 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Literal, TypeAlias + +from .chat_model import ChatModel + +__all__ = ["AllModels"] + +AllModels: TypeAlias = Union[ + str, ChatModel, Literal["o1-pro", "o1-pro-2025-03-19", "computer-use-preview", "computer-use-preview-2025-03-11"] +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared/chat_model.py b/.venv/lib/python3.12/site-packages/openai/types/shared/chat_model.py new file mode 100644 index 00000000..b1937572 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared/chat_model.py @@ -0,0 +1,51 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal, TypeAlias + +__all__ = ["ChatModel"] + +ChatModel: TypeAlias = Literal[ + "o3-mini", + "o3-mini-2025-01-31", + "o1", + "o1-2024-12-17", + "o1-preview", + "o1-preview-2024-09-12", + "o1-mini", + "o1-mini-2024-09-12", + "gpt-4o", + "gpt-4o-2024-11-20", + "gpt-4o-2024-08-06", + "gpt-4o-2024-05-13", + "gpt-4o-audio-preview", + "gpt-4o-audio-preview-2024-10-01", + "gpt-4o-audio-preview-2024-12-17", + "gpt-4o-mini-audio-preview", + "gpt-4o-mini-audio-preview-2024-12-17", + "gpt-4o-search-preview", + "gpt-4o-mini-search-preview", + "gpt-4o-search-preview-2025-03-11", + "gpt-4o-mini-search-preview-2025-03-11", + "chatgpt-4o-latest", + "gpt-4o-mini", + "gpt-4o-mini-2024-07-18", + "gpt-4-turbo", + "gpt-4-turbo-2024-04-09", + "gpt-4-0125-preview", + "gpt-4-turbo-preview", + "gpt-4-1106-preview", + "gpt-4-vision-preview", + "gpt-4", + "gpt-4-0314", + "gpt-4-0613", + "gpt-4-32k", + "gpt-4-32k-0314", + "gpt-4-32k-0613", + "gpt-3.5-turbo", + "gpt-3.5-turbo-16k", + "gpt-3.5-turbo-0301", + "gpt-3.5-turbo-0613", + "gpt-3.5-turbo-1106", + "gpt-3.5-turbo-0125", + "gpt-3.5-turbo-16k-0613", +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared/comparison_filter.py b/.venv/lib/python3.12/site-packages/openai/types/shared/comparison_filter.py new file mode 100644 index 00000000..2ec2651f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared/comparison_filter.py @@ -0,0 +1,30 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ComparisonFilter"] + + +class ComparisonFilter(BaseModel): + key: str + """The key to compare against the value.""" + + type: Literal["eq", "ne", "gt", "gte", "lt", "lte"] + """Specifies the comparison operator: `eq`, `ne`, `gt`, `gte`, `lt`, `lte`. + + - `eq`: equals + - `ne`: not equal + - `gt`: greater than + - `gte`: greater than or equal + - `lt`: less than + - `lte`: less than or equal + """ + + value: Union[str, float, bool] + """ + The value to compare against the attribute key; supports string, number, or + boolean types. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared/compound_filter.py b/.venv/lib/python3.12/site-packages/openai/types/shared/compound_filter.py new file mode 100644 index 00000000..3aefa436 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared/compound_filter.py @@ -0,0 +1,22 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import List, Union +from typing_extensions import Literal, TypeAlias + +from ..._models import BaseModel +from .comparison_filter import ComparisonFilter + +__all__ = ["CompoundFilter", "Filter"] + +Filter: TypeAlias = Union[ComparisonFilter, object] + + +class CompoundFilter(BaseModel): + filters: List[Filter] + """Array of filters to combine. + + Items can be `ComparisonFilter` or `CompoundFilter`. + """ + + type: Literal["and", "or"] + """Type of operation: `and` or `or`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared/error_object.py b/.venv/lib/python3.12/site-packages/openai/types/shared/error_object.py new file mode 100644 index 00000000..32d7045e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared/error_object.py @@ -0,0 +1,17 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional + +from ..._models import BaseModel + +__all__ = ["ErrorObject"] + + +class ErrorObject(BaseModel): + code: Optional[str] = None + + message: str + + param: Optional[str] = None + + type: str diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared/function_definition.py b/.venv/lib/python3.12/site-packages/openai/types/shared/function_definition.py new file mode 100644 index 00000000..06baa231 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared/function_definition.py @@ -0,0 +1,43 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional + +from ..._models import BaseModel +from .function_parameters import FunctionParameters + +__all__ = ["FunctionDefinition"] + + +class FunctionDefinition(BaseModel): + name: str + """The name of the function to be called. + + Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length + of 64. + """ + + description: Optional[str] = None + """ + A description of what the function does, used by the model to choose when and + how to call the function. + """ + + parameters: Optional[FunctionParameters] = None + """The parameters the functions accepts, described as a JSON Schema object. + + See the [guide](https://platform.openai.com/docs/guides/function-calling) for + examples, and the + [JSON Schema reference](https://json-schema.org/understanding-json-schema/) for + documentation about the format. + + Omitting `parameters` defines a function with an empty parameter list. + """ + + strict: Optional[bool] = None + """Whether to enable strict schema adherence when generating the function call. + + If set to true, the model will follow the exact schema defined in the + `parameters` field. Only a subset of JSON Schema is supported when `strict` is + `true`. Learn more about Structured Outputs in the + [function calling guide](docs/guides/function-calling). + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared/function_parameters.py b/.venv/lib/python3.12/site-packages/openai/types/shared/function_parameters.py new file mode 100644 index 00000000..a3d83e34 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared/function_parameters.py @@ -0,0 +1,8 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Dict +from typing_extensions import TypeAlias + +__all__ = ["FunctionParameters"] + +FunctionParameters: TypeAlias = Dict[str, object] diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared/metadata.py b/.venv/lib/python3.12/site-packages/openai/types/shared/metadata.py new file mode 100644 index 00000000..0da88c67 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared/metadata.py @@ -0,0 +1,8 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Dict +from typing_extensions import TypeAlias + +__all__ = ["Metadata"] + +Metadata: TypeAlias = Dict[str, str] diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared/reasoning.py b/.venv/lib/python3.12/site-packages/openai/types/shared/reasoning.py new file mode 100644 index 00000000..78a396d7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared/reasoning.py @@ -0,0 +1,28 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from ..._models import BaseModel +from .reasoning_effort import ReasoningEffort + +__all__ = ["Reasoning"] + + +class Reasoning(BaseModel): + effort: Optional[ReasoningEffort] = None + """**o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + """ + + generate_summary: Optional[Literal["concise", "detailed"]] = None + """**computer_use_preview only** + + A summary of the reasoning performed by the model. This can be useful for + debugging and understanding the model's reasoning process. One of `concise` or + `detailed`. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared/reasoning_effort.py b/.venv/lib/python3.12/site-packages/openai/types/shared/reasoning_effort.py new file mode 100644 index 00000000..ace21b67 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared/reasoning_effort.py @@ -0,0 +1,8 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal, TypeAlias + +__all__ = ["ReasoningEffort"] + +ReasoningEffort: TypeAlias = Optional[Literal["low", "medium", "high"]] diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared/response_format_json_object.py b/.venv/lib/python3.12/site-packages/openai/types/shared/response_format_json_object.py new file mode 100644 index 00000000..2aaa5dbd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared/response_format_json_object.py @@ -0,0 +1,12 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseFormatJSONObject"] + + +class ResponseFormatJSONObject(BaseModel): + type: Literal["json_object"] + """The type of response format being defined. Always `json_object`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared/response_format_json_schema.py b/.venv/lib/python3.12/site-packages/openai/types/shared/response_format_json_schema.py new file mode 100644 index 00000000..c7924446 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared/response_format_json_schema.py @@ -0,0 +1,48 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Dict, Optional +from typing_extensions import Literal + +from pydantic import Field as FieldInfo + +from ..._models import BaseModel + +__all__ = ["ResponseFormatJSONSchema", "JSONSchema"] + + +class JSONSchema(BaseModel): + name: str + """The name of the response format. + + Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length + of 64. + """ + + description: Optional[str] = None + """ + A description of what the response format is for, used by the model to determine + how to respond in the format. + """ + + schema_: Optional[Dict[str, object]] = FieldInfo(alias="schema", default=None) + """ + The schema for the response format, described as a JSON Schema object. Learn how + to build JSON schemas [here](https://json-schema.org/). + """ + + strict: Optional[bool] = None + """ + Whether to enable strict schema adherence when generating the output. If set to + true, the model will always follow the exact schema defined in the `schema` + field. Only a subset of JSON Schema is supported when `strict` is `true`. To + learn more, read the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + """ + + +class ResponseFormatJSONSchema(BaseModel): + json_schema: JSONSchema + """Structured Outputs configuration options, including a JSON Schema.""" + + type: Literal["json_schema"] + """The type of response format being defined. Always `json_schema`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared/response_format_text.py b/.venv/lib/python3.12/site-packages/openai/types/shared/response_format_text.py new file mode 100644 index 00000000..f0c8cfb7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared/response_format_text.py @@ -0,0 +1,12 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["ResponseFormatText"] + + +class ResponseFormatText(BaseModel): + type: Literal["text"] + """The type of response format being defined. Always `text`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared/responses_model.py b/.venv/lib/python3.12/site-packages/openai/types/shared/responses_model.py new file mode 100644 index 00000000..85f154fd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared/responses_model.py @@ -0,0 +1,12 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Literal, TypeAlias + +from .chat_model import ChatModel + +__all__ = ["ResponsesModel"] + +ResponsesModel: TypeAlias = Union[ + str, ChatModel, Literal["o1-pro", "o1-pro-2025-03-19", "computer-use-preview", "computer-use-preview-2025-03-11"] +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared_params/__init__.py b/.venv/lib/python3.12/site-packages/openai/types/shared_params/__init__.py new file mode 100644 index 00000000..88947108 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared_params/__init__.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from .metadata import Metadata as Metadata +from .reasoning import Reasoning as Reasoning +from .chat_model import ChatModel as ChatModel +from .compound_filter import CompoundFilter as CompoundFilter +from .responses_model import ResponsesModel as ResponsesModel +from .reasoning_effort import ReasoningEffort as ReasoningEffort +from .comparison_filter import ComparisonFilter as ComparisonFilter +from .function_definition import FunctionDefinition as FunctionDefinition +from .function_parameters import FunctionParameters as FunctionParameters +from .response_format_text import ResponseFormatText as ResponseFormatText +from .response_format_json_object import ResponseFormatJSONObject as ResponseFormatJSONObject +from .response_format_json_schema import ResponseFormatJSONSchema as ResponseFormatJSONSchema diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared_params/chat_model.py b/.venv/lib/python3.12/site-packages/openai/types/shared_params/chat_model.py new file mode 100644 index 00000000..ff81b07a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared_params/chat_model.py @@ -0,0 +1,53 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, TypeAlias + +__all__ = ["ChatModel"] + +ChatModel: TypeAlias = Literal[ + "o3-mini", + "o3-mini-2025-01-31", + "o1", + "o1-2024-12-17", + "o1-preview", + "o1-preview-2024-09-12", + "o1-mini", + "o1-mini-2024-09-12", + "gpt-4o", + "gpt-4o-2024-11-20", + "gpt-4o-2024-08-06", + "gpt-4o-2024-05-13", + "gpt-4o-audio-preview", + "gpt-4o-audio-preview-2024-10-01", + "gpt-4o-audio-preview-2024-12-17", + "gpt-4o-mini-audio-preview", + "gpt-4o-mini-audio-preview-2024-12-17", + "gpt-4o-search-preview", + "gpt-4o-mini-search-preview", + "gpt-4o-search-preview-2025-03-11", + "gpt-4o-mini-search-preview-2025-03-11", + "chatgpt-4o-latest", + "gpt-4o-mini", + "gpt-4o-mini-2024-07-18", + "gpt-4-turbo", + "gpt-4-turbo-2024-04-09", + "gpt-4-0125-preview", + "gpt-4-turbo-preview", + "gpt-4-1106-preview", + "gpt-4-vision-preview", + "gpt-4", + "gpt-4-0314", + "gpt-4-0613", + "gpt-4-32k", + "gpt-4-32k-0314", + "gpt-4-32k-0613", + "gpt-3.5-turbo", + "gpt-3.5-turbo-16k", + "gpt-3.5-turbo-0301", + "gpt-3.5-turbo-0613", + "gpt-3.5-turbo-1106", + "gpt-3.5-turbo-0125", + "gpt-3.5-turbo-16k-0613", +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared_params/comparison_filter.py b/.venv/lib/python3.12/site-packages/openai/types/shared_params/comparison_filter.py new file mode 100644 index 00000000..38edd315 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared_params/comparison_filter.py @@ -0,0 +1,30 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ComparisonFilter"] + + +class ComparisonFilter(TypedDict, total=False): + key: Required[str] + """The key to compare against the value.""" + + type: Required[Literal["eq", "ne", "gt", "gte", "lt", "lte"]] + """Specifies the comparison operator: `eq`, `ne`, `gt`, `gte`, `lt`, `lte`. + + - `eq`: equals + - `ne`: not equal + - `gt`: greater than + - `gte`: greater than or equal + - `lt`: less than + - `lte`: less than or equal + """ + + value: Required[Union[str, float, bool]] + """ + The value to compare against the attribute key; supports string, number, or + boolean types. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared_params/compound_filter.py b/.venv/lib/python3.12/site-packages/openai/types/shared_params/compound_filter.py new file mode 100644 index 00000000..d12e9b1b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared_params/compound_filter.py @@ -0,0 +1,23 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Iterable +from typing_extensions import Literal, Required, TypeAlias, TypedDict + +from .comparison_filter import ComparisonFilter + +__all__ = ["CompoundFilter", "Filter"] + +Filter: TypeAlias = Union[ComparisonFilter, object] + + +class CompoundFilter(TypedDict, total=False): + filters: Required[Iterable[Filter]] + """Array of filters to combine. + + Items can be `ComparisonFilter` or `CompoundFilter`. + """ + + type: Required[Literal["and", "or"]] + """Type of operation: `and` or `or`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared_params/function_definition.py b/.venv/lib/python3.12/site-packages/openai/types/shared_params/function_definition.py new file mode 100644 index 00000000..d45ec13f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared_params/function_definition.py @@ -0,0 +1,45 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Optional +from typing_extensions import Required, TypedDict + +from .function_parameters import FunctionParameters + +__all__ = ["FunctionDefinition"] + + +class FunctionDefinition(TypedDict, total=False): + name: Required[str] + """The name of the function to be called. + + Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length + of 64. + """ + + description: str + """ + A description of what the function does, used by the model to choose when and + how to call the function. + """ + + parameters: FunctionParameters + """The parameters the functions accepts, described as a JSON Schema object. + + See the [guide](https://platform.openai.com/docs/guides/function-calling) for + examples, and the + [JSON Schema reference](https://json-schema.org/understanding-json-schema/) for + documentation about the format. + + Omitting `parameters` defines a function with an empty parameter list. + """ + + strict: Optional[bool] + """Whether to enable strict schema adherence when generating the function call. + + If set to true, the model will follow the exact schema defined in the + `parameters` field. Only a subset of JSON Schema is supported when `strict` is + `true`. Learn more about Structured Outputs in the + [function calling guide](docs/guides/function-calling). + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared_params/function_parameters.py b/.venv/lib/python3.12/site-packages/openai/types/shared_params/function_parameters.py new file mode 100644 index 00000000..45fc742d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared_params/function_parameters.py @@ -0,0 +1,10 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Dict +from typing_extensions import TypeAlias + +__all__ = ["FunctionParameters"] + +FunctionParameters: TypeAlias = Dict[str, object] diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared_params/metadata.py b/.venv/lib/python3.12/site-packages/openai/types/shared_params/metadata.py new file mode 100644 index 00000000..821650b4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared_params/metadata.py @@ -0,0 +1,10 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Dict +from typing_extensions import TypeAlias + +__all__ = ["Metadata"] + +Metadata: TypeAlias = Dict[str, str] diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared_params/reasoning.py b/.venv/lib/python3.12/site-packages/openai/types/shared_params/reasoning.py new file mode 100644 index 00000000..2953b895 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared_params/reasoning.py @@ -0,0 +1,29 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Optional +from typing_extensions import Literal, TypedDict + +from ..shared.reasoning_effort import ReasoningEffort + +__all__ = ["Reasoning"] + + +class Reasoning(TypedDict, total=False): + effort: Optional[ReasoningEffort] + """**o-series models only** + + Constrains effort on reasoning for + [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently + supported values are `low`, `medium`, and `high`. Reducing reasoning effort can + result in faster responses and fewer tokens used on reasoning in a response. + """ + + generate_summary: Optional[Literal["concise", "detailed"]] + """**computer_use_preview only** + + A summary of the reasoning performed by the model. This can be useful for + debugging and understanding the model's reasoning process. One of `concise` or + `detailed`. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared_params/reasoning_effort.py b/.venv/lib/python3.12/site-packages/openai/types/shared_params/reasoning_effort.py new file mode 100644 index 00000000..6052c5ae --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared_params/reasoning_effort.py @@ -0,0 +1,10 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Optional +from typing_extensions import Literal, TypeAlias + +__all__ = ["ReasoningEffort"] + +ReasoningEffort: TypeAlias = Optional[Literal["low", "medium", "high"]] diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared_params/response_format_json_object.py b/.venv/lib/python3.12/site-packages/openai/types/shared_params/response_format_json_object.py new file mode 100644 index 00000000..d4d1deaa --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared_params/response_format_json_object.py @@ -0,0 +1,12 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ResponseFormatJSONObject"] + + +class ResponseFormatJSONObject(TypedDict, total=False): + type: Required[Literal["json_object"]] + """The type of response format being defined. Always `json_object`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared_params/response_format_json_schema.py b/.venv/lib/python3.12/site-packages/openai/types/shared_params/response_format_json_schema.py new file mode 100644 index 00000000..5b0a13ee --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared_params/response_format_json_schema.py @@ -0,0 +1,46 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Dict, Optional +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ResponseFormatJSONSchema", "JSONSchema"] + + +class JSONSchema(TypedDict, total=False): + name: Required[str] + """The name of the response format. + + Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length + of 64. + """ + + description: str + """ + A description of what the response format is for, used by the model to determine + how to respond in the format. + """ + + schema: Dict[str, object] + """ + The schema for the response format, described as a JSON Schema object. Learn how + to build JSON schemas [here](https://json-schema.org/). + """ + + strict: Optional[bool] + """ + Whether to enable strict schema adherence when generating the output. If set to + true, the model will always follow the exact schema defined in the `schema` + field. Only a subset of JSON Schema is supported when `strict` is `true`. To + learn more, read the + [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). + """ + + +class ResponseFormatJSONSchema(TypedDict, total=False): + json_schema: Required[JSONSchema] + """Structured Outputs configuration options, including a JSON Schema.""" + + type: Required[Literal["json_schema"]] + """The type of response format being defined. Always `json_schema`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared_params/response_format_text.py b/.venv/lib/python3.12/site-packages/openai/types/shared_params/response_format_text.py new file mode 100644 index 00000000..c3ef2b08 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared_params/response_format_text.py @@ -0,0 +1,12 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["ResponseFormatText"] + + +class ResponseFormatText(TypedDict, total=False): + type: Required[Literal["text"]] + """The type of response format being defined. Always `text`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/shared_params/responses_model.py b/.venv/lib/python3.12/site-packages/openai/types/shared_params/responses_model.py new file mode 100644 index 00000000..3bf0e137 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/shared_params/responses_model.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import Literal, TypeAlias + +from ..shared.chat_model import ChatModel + +__all__ = ["ResponsesModel"] + +ResponsesModel: TypeAlias = Union[ + str, ChatModel, Literal["o1-pro", "o1-pro-2025-03-19", "computer-use-preview", "computer-use-preview-2025-03-11"] +] diff --git a/.venv/lib/python3.12/site-packages/openai/types/static_file_chunking_strategy.py b/.venv/lib/python3.12/site-packages/openai/types/static_file_chunking_strategy.py new file mode 100644 index 00000000..2813bc66 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/static_file_chunking_strategy.py @@ -0,0 +1,21 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + + +from .._models import BaseModel + +__all__ = ["StaticFileChunkingStrategy"] + + +class StaticFileChunkingStrategy(BaseModel): + chunk_overlap_tokens: int + """The number of tokens that overlap between chunks. The default value is `400`. + + Note that the overlap must not exceed half of `max_chunk_size_tokens`. + """ + + max_chunk_size_tokens: int + """The maximum number of tokens in each chunk. + + The default value is `800`. The minimum value is `100` and the maximum value is + `4096`. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/static_file_chunking_strategy_object.py b/.venv/lib/python3.12/site-packages/openai/types/static_file_chunking_strategy_object.py new file mode 100644 index 00000000..2a95dce5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/static_file_chunking_strategy_object.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from .._models import BaseModel +from .static_file_chunking_strategy import StaticFileChunkingStrategy + +__all__ = ["StaticFileChunkingStrategyObject"] + + +class StaticFileChunkingStrategyObject(BaseModel): + static: StaticFileChunkingStrategy + + type: Literal["static"] + """Always `static`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/static_file_chunking_strategy_object_param.py b/.venv/lib/python3.12/site-packages/openai/types/static_file_chunking_strategy_object_param.py new file mode 100644 index 00000000..0cdf35c0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/static_file_chunking_strategy_object_param.py @@ -0,0 +1,16 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +from .static_file_chunking_strategy_param import StaticFileChunkingStrategyParam + +__all__ = ["StaticFileChunkingStrategyObjectParam"] + + +class StaticFileChunkingStrategyObjectParam(TypedDict, total=False): + static: Required[StaticFileChunkingStrategyParam] + + type: Required[Literal["static"]] + """Always `static`.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/static_file_chunking_strategy_param.py b/.venv/lib/python3.12/site-packages/openai/types/static_file_chunking_strategy_param.py new file mode 100644 index 00000000..f917ac56 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/static_file_chunking_strategy_param.py @@ -0,0 +1,22 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Required, TypedDict + +__all__ = ["StaticFileChunkingStrategyParam"] + + +class StaticFileChunkingStrategyParam(TypedDict, total=False): + chunk_overlap_tokens: Required[int] + """The number of tokens that overlap between chunks. The default value is `400`. + + Note that the overlap must not exceed half of `max_chunk_size_tokens`. + """ + + max_chunk_size_tokens: Required[int] + """The maximum number of tokens in each chunk. + + The default value is `800`. The minimum value is `100` and the maximum value is + `4096`. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/upload.py b/.venv/lib/python3.12/site-packages/openai/types/upload.py new file mode 100644 index 00000000..914b69a8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/upload.py @@ -0,0 +1,42 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from .._models import BaseModel +from .file_object import FileObject + +__all__ = ["Upload"] + + +class Upload(BaseModel): + id: str + """The Upload unique identifier, which can be referenced in API endpoints.""" + + bytes: int + """The intended number of bytes to be uploaded.""" + + created_at: int + """The Unix timestamp (in seconds) for when the Upload was created.""" + + expires_at: int + """The Unix timestamp (in seconds) for when the Upload will expire.""" + + filename: str + """The name of the file to be uploaded.""" + + object: Literal["upload"] + """The object type, which is always "upload".""" + + purpose: str + """The intended purpose of the file. + + [Please refer here](https://platform.openai.com/docs/api-reference/files/object#files/object-purpose) + for acceptable values. + """ + + status: Literal["pending", "completed", "cancelled", "expired"] + """The status of the Upload.""" + + file: Optional[FileObject] = None + """The `File` object represents a document that has been uploaded to OpenAI.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/upload_complete_params.py b/.venv/lib/python3.12/site-packages/openai/types/upload_complete_params.py new file mode 100644 index 00000000..cce568d5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/upload_complete_params.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List +from typing_extensions import Required, TypedDict + +__all__ = ["UploadCompleteParams"] + + +class UploadCompleteParams(TypedDict, total=False): + part_ids: Required[List[str]] + """The ordered list of Part IDs.""" + + md5: str + """ + The optional md5 checksum for the file contents to verify if the bytes uploaded + matches what you expect. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/upload_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/upload_create_params.py new file mode 100644 index 00000000..2ebabe6c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/upload_create_params.py @@ -0,0 +1,31 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Required, TypedDict + +from .file_purpose import FilePurpose + +__all__ = ["UploadCreateParams"] + + +class UploadCreateParams(TypedDict, total=False): + bytes: Required[int] + """The number of bytes in the file you are uploading.""" + + filename: Required[str] + """The name of the file to upload.""" + + mime_type: Required[str] + """The MIME type of the file. + + This must fall within the supported MIME types for your file purpose. See the + supported MIME types for assistants and vision. + """ + + purpose: Required[FilePurpose] + """The intended purpose of the uploaded file. + + See the + [documentation on File purposes](https://platform.openai.com/docs/api-reference/files/create#files-create-purpose). + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/uploads/__init__.py b/.venv/lib/python3.12/site-packages/openai/types/uploads/__init__.py new file mode 100644 index 00000000..41deb0ab --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/uploads/__init__.py @@ -0,0 +1,6 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from .upload_part import UploadPart as UploadPart +from .part_create_params import PartCreateParams as PartCreateParams diff --git a/.venv/lib/python3.12/site-packages/openai/types/uploads/part_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/uploads/part_create_params.py new file mode 100644 index 00000000..9851ca41 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/uploads/part_create_params.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Required, TypedDict + +from ..._types import FileTypes + +__all__ = ["PartCreateParams"] + + +class PartCreateParams(TypedDict, total=False): + data: Required[FileTypes] + """The chunk of bytes for this Part.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/uploads/upload_part.py b/.venv/lib/python3.12/site-packages/openai/types/uploads/upload_part.py new file mode 100644 index 00000000..e09621d8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/uploads/upload_part.py @@ -0,0 +1,21 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["UploadPart"] + + +class UploadPart(BaseModel): + id: str + """The upload Part unique identifier, which can be referenced in API endpoints.""" + + created_at: int + """The Unix timestamp (in seconds) for when the Part was created.""" + + object: Literal["upload.part"] + """The object type, which is always `upload.part`.""" + + upload_id: str + """The ID of the Upload object that this Part was added to.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/vector_store.py b/.venv/lib/python3.12/site-packages/openai/types/vector_store.py new file mode 100644 index 00000000..2473a442 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/vector_store.py @@ -0,0 +1,82 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from typing_extensions import Literal + +from .._models import BaseModel +from .shared.metadata import Metadata + +__all__ = ["VectorStore", "FileCounts", "ExpiresAfter"] + + +class FileCounts(BaseModel): + cancelled: int + """The number of files that were cancelled.""" + + completed: int + """The number of files that have been successfully processed.""" + + failed: int + """The number of files that have failed to process.""" + + in_progress: int + """The number of files that are currently being processed.""" + + total: int + """The total number of files.""" + + +class ExpiresAfter(BaseModel): + anchor: Literal["last_active_at"] + """Anchor timestamp after which the expiration policy applies. + + Supported anchors: `last_active_at`. + """ + + days: int + """The number of days after the anchor time that the vector store will expire.""" + + +class VectorStore(BaseModel): + id: str + """The identifier, which can be referenced in API endpoints.""" + + created_at: int + """The Unix timestamp (in seconds) for when the vector store was created.""" + + file_counts: FileCounts + + last_active_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the vector store was last active.""" + + metadata: Optional[Metadata] = None + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + name: str + """The name of the vector store.""" + + object: Literal["vector_store"] + """The object type, which is always `vector_store`.""" + + status: Literal["expired", "in_progress", "completed"] + """ + The status of the vector store, which can be either `expired`, `in_progress`, or + `completed`. A status of `completed` indicates that the vector store is ready + for use. + """ + + usage_bytes: int + """The total number of bytes used by the files in the vector store.""" + + expires_after: Optional[ExpiresAfter] = None + """The expiration policy for a vector store.""" + + expires_at: Optional[int] = None + """The Unix timestamp (in seconds) for when the vector store will expire.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/vector_store_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/vector_store_create_params.py new file mode 100644 index 00000000..365d0936 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/vector_store_create_params.py @@ -0,0 +1,54 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Optional +from typing_extensions import Literal, Required, TypedDict + +from .shared_params.metadata import Metadata +from .file_chunking_strategy_param import FileChunkingStrategyParam + +__all__ = ["VectorStoreCreateParams", "ExpiresAfter"] + + +class VectorStoreCreateParams(TypedDict, total=False): + chunking_strategy: FileChunkingStrategyParam + """The chunking strategy used to chunk the file(s). + + If not set, will use the `auto` strategy. Only applicable if `file_ids` is + non-empty. + """ + + expires_after: ExpiresAfter + """The expiration policy for a vector store.""" + + file_ids: List[str] + """ + A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that + the vector store should use. Useful for tools like `file_search` that can access + files. + """ + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + name: str + """The name of the vector store.""" + + +class ExpiresAfter(TypedDict, total=False): + anchor: Required[Literal["last_active_at"]] + """Anchor timestamp after which the expiration policy applies. + + Supported anchors: `last_active_at`. + """ + + days: Required[int] + """The number of days after the anchor time that the vector store will expire.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/vector_store_deleted.py b/.venv/lib/python3.12/site-packages/openai/types/vector_store_deleted.py new file mode 100644 index 00000000..dfac9ce8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/vector_store_deleted.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from .._models import BaseModel + +__all__ = ["VectorStoreDeleted"] + + +class VectorStoreDeleted(BaseModel): + id: str + + deleted: bool + + object: Literal["vector_store.deleted"] diff --git a/.venv/lib/python3.12/site-packages/openai/types/vector_store_list_params.py b/.venv/lib/python3.12/site-packages/openai/types/vector_store_list_params.py new file mode 100644 index 00000000..e26ff90a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/vector_store_list_params.py @@ -0,0 +1,39 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, TypedDict + +__all__ = ["VectorStoreListParams"] + + +class VectorStoreListParams(TypedDict, total=False): + after: str + """A cursor for use in pagination. + + `after` is an object ID that defines your place in the list. For instance, if + you make a list request and receive 100 objects, ending with obj_foo, your + subsequent call can include after=obj_foo in order to fetch the next page of the + list. + """ + + before: str + """A cursor for use in pagination. + + `before` is an object ID that defines your place in the list. For instance, if + you make a list request and receive 100 objects, starting with obj_foo, your + subsequent call can include before=obj_foo in order to fetch the previous page + of the list. + """ + + limit: int + """A limit on the number of objects to be returned. + + Limit can range between 1 and 100, and the default is 20. + """ + + order: Literal["asc", "desc"] + """Sort order by the `created_at` timestamp of the objects. + + `asc` for ascending order and `desc` for descending order. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/vector_store_search_params.py b/.venv/lib/python3.12/site-packages/openai/types/vector_store_search_params.py new file mode 100644 index 00000000..17573d0f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/vector_store_search_params.py @@ -0,0 +1,40 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import List, Union +from typing_extensions import Literal, Required, TypeAlias, TypedDict + +from .shared_params.compound_filter import CompoundFilter +from .shared_params.comparison_filter import ComparisonFilter + +__all__ = ["VectorStoreSearchParams", "Filters", "RankingOptions"] + + +class VectorStoreSearchParams(TypedDict, total=False): + query: Required[Union[str, List[str]]] + """A query string for a search""" + + filters: Filters + """A filter to apply based on file attributes.""" + + max_num_results: int + """The maximum number of results to return. + + This number should be between 1 and 50 inclusive. + """ + + ranking_options: RankingOptions + """Ranking options for search.""" + + rewrite_query: bool + """Whether to rewrite the natural language query for vector search.""" + + +Filters: TypeAlias = Union[ComparisonFilter, CompoundFilter] + + +class RankingOptions(TypedDict, total=False): + ranker: Literal["auto", "default-2024-11-15"] + + score_threshold: float diff --git a/.venv/lib/python3.12/site-packages/openai/types/vector_store_search_response.py b/.venv/lib/python3.12/site-packages/openai/types/vector_store_search_response.py new file mode 100644 index 00000000..d78b71bf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/vector_store_search_response.py @@ -0,0 +1,39 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Dict, List, Union, Optional +from typing_extensions import Literal + +from .._models import BaseModel + +__all__ = ["VectorStoreSearchResponse", "Content"] + + +class Content(BaseModel): + text: str + """The text content returned from search.""" + + type: Literal["text"] + """The type of content.""" + + +class VectorStoreSearchResponse(BaseModel): + attributes: Optional[Dict[str, Union[str, float, bool]]] = None + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. Keys are + strings with a maximum length of 64 characters. Values are strings with a + maximum length of 512 characters, booleans, or numbers. + """ + + content: List[Content] + """Content chunks from the file.""" + + file_id: str + """The ID of the vector store file.""" + + filename: str + """The name of the vector store file.""" + + score: float + """The similarity score for the result.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/vector_store_update_params.py b/.venv/lib/python3.12/site-packages/openai/types/vector_store_update_params.py new file mode 100644 index 00000000..4f6ac639 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/vector_store_update_params.py @@ -0,0 +1,39 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Optional +from typing_extensions import Literal, Required, TypedDict + +from .shared_params.metadata import Metadata + +__all__ = ["VectorStoreUpdateParams", "ExpiresAfter"] + + +class VectorStoreUpdateParams(TypedDict, total=False): + expires_after: Optional[ExpiresAfter] + """The expiration policy for a vector store.""" + + metadata: Optional[Metadata] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. + + Keys are strings with a maximum length of 64 characters. Values are strings with + a maximum length of 512 characters. + """ + + name: Optional[str] + """The name of the vector store.""" + + +class ExpiresAfter(TypedDict, total=False): + anchor: Required[Literal["last_active_at"]] + """Anchor timestamp after which the expiration policy applies. + + Supported anchors: `last_active_at`. + """ + + days: Required[int] + """The number of days after the anchor time that the vector store will expire.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/vector_stores/__init__.py b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/__init__.py new file mode 100644 index 00000000..96ce3014 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/__init__.py @@ -0,0 +1,13 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from .file_list_params import FileListParams as FileListParams +from .vector_store_file import VectorStoreFile as VectorStoreFile +from .file_create_params import FileCreateParams as FileCreateParams +from .file_update_params import FileUpdateParams as FileUpdateParams +from .file_content_response import FileContentResponse as FileContentResponse +from .vector_store_file_batch import VectorStoreFileBatch as VectorStoreFileBatch +from .file_batch_create_params import FileBatchCreateParams as FileBatchCreateParams +from .vector_store_file_deleted import VectorStoreFileDeleted as VectorStoreFileDeleted +from .file_batch_list_files_params import FileBatchListFilesParams as FileBatchListFilesParams diff --git a/.venv/lib/python3.12/site-packages/openai/types/vector_stores/file_batch_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/file_batch_create_params.py new file mode 100644 index 00000000..1a470f75 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/file_batch_create_params.py @@ -0,0 +1,35 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Dict, List, Union, Optional +from typing_extensions import Required, TypedDict + +from ..file_chunking_strategy_param import FileChunkingStrategyParam + +__all__ = ["FileBatchCreateParams"] + + +class FileBatchCreateParams(TypedDict, total=False): + file_ids: Required[List[str]] + """ + A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that + the vector store should use. Useful for tools like `file_search` that can access + files. + """ + + attributes: Optional[Dict[str, Union[str, float, bool]]] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. Keys are + strings with a maximum length of 64 characters. Values are strings with a + maximum length of 512 characters, booleans, or numbers. + """ + + chunking_strategy: FileChunkingStrategyParam + """The chunking strategy used to chunk the file(s). + + If not set, will use the `auto` strategy. Only applicable if `file_ids` is + non-empty. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/vector_stores/file_batch_list_files_params.py b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/file_batch_list_files_params.py new file mode 100644 index 00000000..2a0a6c6a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/file_batch_list_files_params.py @@ -0,0 +1,47 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, Required, TypedDict + +__all__ = ["FileBatchListFilesParams"] + + +class FileBatchListFilesParams(TypedDict, total=False): + vector_store_id: Required[str] + + after: str + """A cursor for use in pagination. + + `after` is an object ID that defines your place in the list. For instance, if + you make a list request and receive 100 objects, ending with obj_foo, your + subsequent call can include after=obj_foo in order to fetch the next page of the + list. + """ + + before: str + """A cursor for use in pagination. + + `before` is an object ID that defines your place in the list. For instance, if + you make a list request and receive 100 objects, starting with obj_foo, your + subsequent call can include before=obj_foo in order to fetch the previous page + of the list. + """ + + filter: Literal["in_progress", "completed", "failed", "cancelled"] + """Filter by file status. + + One of `in_progress`, `completed`, `failed`, `cancelled`. + """ + + limit: int + """A limit on the number of objects to be returned. + + Limit can range between 1 and 100, and the default is 20. + """ + + order: Literal["asc", "desc"] + """Sort order by the `created_at` timestamp of the objects. + + `asc` for ascending order and `desc` for descending order. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/vector_stores/file_content_response.py b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/file_content_response.py new file mode 100644 index 00000000..32db2f2c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/file_content_response.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional + +from ..._models import BaseModel + +__all__ = ["FileContentResponse"] + + +class FileContentResponse(BaseModel): + text: Optional[str] = None + """The text content""" + + type: Optional[str] = None + """The content type (currently only `"text"`)""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/vector_stores/file_create_params.py b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/file_create_params.py new file mode 100644 index 00000000..5b898925 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/file_create_params.py @@ -0,0 +1,35 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Dict, Union, Optional +from typing_extensions import Required, TypedDict + +from ..file_chunking_strategy_param import FileChunkingStrategyParam + +__all__ = ["FileCreateParams"] + + +class FileCreateParams(TypedDict, total=False): + file_id: Required[str] + """ + A [File](https://platform.openai.com/docs/api-reference/files) ID that the + vector store should use. Useful for tools like `file_search` that can access + files. + """ + + attributes: Optional[Dict[str, Union[str, float, bool]]] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. Keys are + strings with a maximum length of 64 characters. Values are strings with a + maximum length of 512 characters, booleans, or numbers. + """ + + chunking_strategy: FileChunkingStrategyParam + """The chunking strategy used to chunk the file(s). + + If not set, will use the `auto` strategy. Only applicable if `file_ids` is + non-empty. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/vector_stores/file_list_params.py b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/file_list_params.py new file mode 100644 index 00000000..867b5fb3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/file_list_params.py @@ -0,0 +1,45 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import Literal, TypedDict + +__all__ = ["FileListParams"] + + +class FileListParams(TypedDict, total=False): + after: str + """A cursor for use in pagination. + + `after` is an object ID that defines your place in the list. For instance, if + you make a list request and receive 100 objects, ending with obj_foo, your + subsequent call can include after=obj_foo in order to fetch the next page of the + list. + """ + + before: str + """A cursor for use in pagination. + + `before` is an object ID that defines your place in the list. For instance, if + you make a list request and receive 100 objects, starting with obj_foo, your + subsequent call can include before=obj_foo in order to fetch the previous page + of the list. + """ + + filter: Literal["in_progress", "completed", "failed", "cancelled"] + """Filter by file status. + + One of `in_progress`, `completed`, `failed`, `cancelled`. + """ + + limit: int + """A limit on the number of objects to be returned. + + Limit can range between 1 and 100, and the default is 20. + """ + + order: Literal["asc", "desc"] + """Sort order by the `created_at` timestamp of the objects. + + `asc` for ascending order and `desc` for descending order. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/vector_stores/file_update_params.py b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/file_update_params.py new file mode 100644 index 00000000..ebf540d0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/file_update_params.py @@ -0,0 +1,21 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Dict, Union, Optional +from typing_extensions import Required, TypedDict + +__all__ = ["FileUpdateParams"] + + +class FileUpdateParams(TypedDict, total=False): + vector_store_id: Required[str] + + attributes: Required[Optional[Dict[str, Union[str, float, bool]]]] + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. Keys are + strings with a maximum length of 64 characters. Values are strings with a + maximum length of 512 characters, booleans, or numbers. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/vector_stores/vector_store_file.py b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/vector_store_file.py new file mode 100644 index 00000000..b59a61df --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/vector_store_file.py @@ -0,0 +1,67 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Dict, Union, Optional +from typing_extensions import Literal + +from ..._models import BaseModel +from ..file_chunking_strategy import FileChunkingStrategy + +__all__ = ["VectorStoreFile", "LastError"] + + +class LastError(BaseModel): + code: Literal["server_error", "unsupported_file", "invalid_file"] + """One of `server_error` or `rate_limit_exceeded`.""" + + message: str + """A human-readable description of the error.""" + + +class VectorStoreFile(BaseModel): + id: str + """The identifier, which can be referenced in API endpoints.""" + + created_at: int + """The Unix timestamp (in seconds) for when the vector store file was created.""" + + last_error: Optional[LastError] = None + """The last error associated with this vector store file. + + Will be `null` if there are no errors. + """ + + object: Literal["vector_store.file"] + """The object type, which is always `vector_store.file`.""" + + status: Literal["in_progress", "completed", "cancelled", "failed"] + """ + The status of the vector store file, which can be either `in_progress`, + `completed`, `cancelled`, or `failed`. The status `completed` indicates that the + vector store file is ready for use. + """ + + usage_bytes: int + """The total vector store usage in bytes. + + Note that this may be different from the original file size. + """ + + vector_store_id: str + """ + The ID of the + [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) + that the [File](https://platform.openai.com/docs/api-reference/files) is + attached to. + """ + + attributes: Optional[Dict[str, Union[str, float, bool]]] = None + """Set of 16 key-value pairs that can be attached to an object. + + This can be useful for storing additional information about the object in a + structured format, and querying for objects via API or the dashboard. Keys are + strings with a maximum length of 64 characters. Values are strings with a + maximum length of 512 characters, booleans, or numbers. + """ + + chunking_strategy: Optional[FileChunkingStrategy] = None + """The strategy used to chunk the file.""" diff --git a/.venv/lib/python3.12/site-packages/openai/types/vector_stores/vector_store_file_batch.py b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/vector_store_file_batch.py new file mode 100644 index 00000000..57dbfbd8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/vector_store_file_batch.py @@ -0,0 +1,54 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["VectorStoreFileBatch", "FileCounts"] + + +class FileCounts(BaseModel): + cancelled: int + """The number of files that where cancelled.""" + + completed: int + """The number of files that have been processed.""" + + failed: int + """The number of files that have failed to process.""" + + in_progress: int + """The number of files that are currently being processed.""" + + total: int + """The total number of files.""" + + +class VectorStoreFileBatch(BaseModel): + id: str + """The identifier, which can be referenced in API endpoints.""" + + created_at: int + """ + The Unix timestamp (in seconds) for when the vector store files batch was + created. + """ + + file_counts: FileCounts + + object: Literal["vector_store.files_batch"] + """The object type, which is always `vector_store.file_batch`.""" + + status: Literal["in_progress", "completed", "cancelled", "failed"] + """ + The status of the vector store files batch, which can be either `in_progress`, + `completed`, `cancelled` or `failed`. + """ + + vector_store_id: str + """ + The ID of the + [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) + that the [File](https://platform.openai.com/docs/api-reference/files) is + attached to. + """ diff --git a/.venv/lib/python3.12/site-packages/openai/types/vector_stores/vector_store_file_deleted.py b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/vector_store_file_deleted.py new file mode 100644 index 00000000..5c856f26 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/vector_stores/vector_store_file_deleted.py @@ -0,0 +1,15 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["VectorStoreFileDeleted"] + + +class VectorStoreFileDeleted(BaseModel): + id: str + + deleted: bool + + object: Literal["vector_store.file.deleted"] diff --git a/.venv/lib/python3.12/site-packages/openai/types/websocket_connection_options.py b/.venv/lib/python3.12/site-packages/openai/types/websocket_connection_options.py new file mode 100644 index 00000000..40fd24ab --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/types/websocket_connection_options.py @@ -0,0 +1,36 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import TYPE_CHECKING +from typing_extensions import Sequence, TypedDict + +if TYPE_CHECKING: + from websockets import Subprotocol + from websockets.extensions import ClientExtensionFactory + + +class WebsocketConnectionOptions(TypedDict, total=False): + """Websocket connection options copied from `websockets`. + + For example: https://websockets.readthedocs.io/en/stable/reference/asyncio/client.html#websockets.asyncio.client.connect + """ + + extensions: Sequence[ClientExtensionFactory] | None + """List of supported extensions, in order in which they should be negotiated and run.""" + + subprotocols: Sequence[Subprotocol] | None + """List of supported subprotocols, in order of decreasing preference.""" + + compression: str | None + """The “permessage-deflate” extension is enabled by default. Set compression to None to disable it. See the [compression guide](https://websockets.readthedocs.io/en/stable/topics/compression.html) for details.""" + + # limits + max_size: int | None + """Maximum size of incoming messages in bytes. None disables the limit.""" + + max_queue: int | None | tuple[int | None, int | None] + """High-water mark of the buffer where frames are received. It defaults to 16 frames. The low-water mark defaults to max_queue // 4. You may pass a (high, low) tuple to set the high-water and low-water marks. If you want to disable flow control entirely, you may set it to None, although that’s a bad idea.""" + + write_limit: int | tuple[int, int | None] + """High-water mark of write buffer in bytes. It is passed to set_write_buffer_limits(). It defaults to 32 KiB. You may pass a (high, low) tuple to set the high-water and low-water marks.""" diff --git a/.venv/lib/python3.12/site-packages/openai/version.py b/.venv/lib/python3.12/site-packages/openai/version.py new file mode 100644 index 00000000..01a08ab5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/version.py @@ -0,0 +1,3 @@ +from ._version import __version__ + +VERSION: str = __version__ |