about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/openai/lib/_validators.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/openai/lib/_validators.py')
-rw-r--r--.venv/lib/python3.12/site-packages/openai/lib/_validators.py809
1 files changed, 809 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/openai/lib/_validators.py b/.venv/lib/python3.12/site-packages/openai/lib/_validators.py
new file mode 100644
index 00000000..cf24cd22
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/openai/lib/_validators.py
@@ -0,0 +1,809 @@
+# pyright: basic
+from __future__ import annotations
+
+import os
+import sys
+from typing import Any, TypeVar, Callable, Optional, NamedTuple
+from typing_extensions import TypeAlias
+
+from .._extras import pandas as pd
+
+
+class Remediation(NamedTuple):
+    name: str
+    immediate_msg: Optional[str] = None
+    necessary_msg: Optional[str] = None
+    necessary_fn: Optional[Callable[[Any], Any]] = None
+    optional_msg: Optional[str] = None
+    optional_fn: Optional[Callable[[Any], Any]] = None
+    error_msg: Optional[str] = None
+
+
+OptionalDataFrameT = TypeVar("OptionalDataFrameT", bound="Optional[pd.DataFrame]")
+
+
+def num_examples_validator(df: pd.DataFrame) -> Remediation:
+    """
+    This validator will only print out the number of examples and recommend to the user to increase the number of examples if less than 100.
+    """
+    MIN_EXAMPLES = 100
+    optional_suggestion = (
+        ""
+        if len(df) >= MIN_EXAMPLES
+        else ". In general, we recommend having at least a few hundred examples. We've found that performance tends to linearly increase for every doubling of the number of examples"
+    )
+    immediate_msg = f"\n- Your file contains {len(df)} prompt-completion pairs{optional_suggestion}"
+    return Remediation(name="num_examples", immediate_msg=immediate_msg)
+
+
+def necessary_column_validator(df: pd.DataFrame, necessary_column: str) -> Remediation:
+    """
+    This validator will ensure that the necessary column is present in the dataframe.
+    """
+
+    def lower_case_column(df: pd.DataFrame, column: Any) -> pd.DataFrame:
+        cols = [c for c in df.columns if str(c).lower() == column]
+        df.rename(columns={cols[0]: column.lower()}, inplace=True)
+        return df
+
+    immediate_msg = None
+    necessary_fn = None
+    necessary_msg = None
+    error_msg = None
+
+    if necessary_column not in df.columns:
+        if necessary_column in [str(c).lower() for c in df.columns]:
+
+            def lower_case_column_creator(df: pd.DataFrame) -> pd.DataFrame:
+                return lower_case_column(df, necessary_column)
+
+            necessary_fn = lower_case_column_creator
+            immediate_msg = f"\n- The `{necessary_column}` column/key should be lowercase"
+            necessary_msg = f"Lower case column name to `{necessary_column}`"
+        else:
+            error_msg = f"`{necessary_column}` column/key is missing. Please make sure you name your columns/keys appropriately, then retry"
+
+    return Remediation(
+        name="necessary_column",
+        immediate_msg=immediate_msg,
+        necessary_msg=necessary_msg,
+        necessary_fn=necessary_fn,
+        error_msg=error_msg,
+    )
+
+
+def additional_column_validator(df: pd.DataFrame, fields: list[str] = ["prompt", "completion"]) -> Remediation:
+    """
+    This validator will remove additional columns from the dataframe.
+    """
+    additional_columns = []
+    necessary_msg = None
+    immediate_msg = None
+    necessary_fn = None  # type: ignore
+
+    if len(df.columns) > 2:
+        additional_columns = [c for c in df.columns if c not in fields]
+        warn_message = ""
+        for ac in additional_columns:
+            dups = [c for c in additional_columns if ac in c]
+            if len(dups) > 0:
+                warn_message += f"\n  WARNING: Some of the additional columns/keys contain `{ac}` in their name. These will be ignored, and the column/key `{ac}` will be used instead. This could also result from a duplicate column/key in the provided file."
+        immediate_msg = f"\n- The input file should contain exactly two columns/keys per row. Additional columns/keys present are: {additional_columns}{warn_message}"
+        necessary_msg = f"Remove additional columns/keys: {additional_columns}"
+
+        def necessary_fn(x: Any) -> Any:
+            return x[fields]
+
+    return Remediation(
+        name="additional_column",
+        immediate_msg=immediate_msg,
+        necessary_msg=necessary_msg,
+        necessary_fn=necessary_fn,
+    )
+
+
+def non_empty_field_validator(df: pd.DataFrame, field: str = "completion") -> Remediation:
+    """
+    This validator will ensure that no completion is empty.
+    """
+    necessary_msg = None
+    necessary_fn = None  # type: ignore
+    immediate_msg = None
+
+    if df[field].apply(lambda x: x == "").any() or df[field].isnull().any():
+        empty_rows = (df[field] == "") | (df[field].isnull())
+        empty_indexes = df.reset_index().index[empty_rows].tolist()
+        immediate_msg = f"\n- `{field}` column/key should not contain empty strings. These are rows: {empty_indexes}"
+
+        def necessary_fn(x: Any) -> Any:
+            return x[x[field] != ""].dropna(subset=[field])
+
+        necessary_msg = f"Remove {len(empty_indexes)} rows with empty {field}s"
+
+    return Remediation(
+        name=f"empty_{field}",
+        immediate_msg=immediate_msg,
+        necessary_msg=necessary_msg,
+        necessary_fn=necessary_fn,
+    )
+
+
+def duplicated_rows_validator(df: pd.DataFrame, fields: list[str] = ["prompt", "completion"]) -> Remediation:
+    """
+    This validator will suggest to the user to remove duplicate rows if they exist.
+    """
+    duplicated_rows = df.duplicated(subset=fields)
+    duplicated_indexes = df.reset_index().index[duplicated_rows].tolist()
+    immediate_msg = None
+    optional_msg = None
+    optional_fn = None  # type: ignore
+
+    if len(duplicated_indexes) > 0:
+        immediate_msg = f"\n- There are {len(duplicated_indexes)} duplicated {'-'.join(fields)} sets. These are rows: {duplicated_indexes}"
+        optional_msg = f"Remove {len(duplicated_indexes)} duplicate rows"
+
+        def optional_fn(x: Any) -> Any:
+            return x.drop_duplicates(subset=fields)
+
+    return Remediation(
+        name="duplicated_rows",
+        immediate_msg=immediate_msg,
+        optional_msg=optional_msg,
+        optional_fn=optional_fn,
+    )
+
+
+def long_examples_validator(df: pd.DataFrame) -> Remediation:
+    """
+    This validator will suggest to the user to remove examples that are too long.
+    """
+    immediate_msg = None
+    optional_msg = None
+    optional_fn = None  # type: ignore
+
+    ft_type = infer_task_type(df)
+    if ft_type != "open-ended generation":
+
+        def get_long_indexes(d: pd.DataFrame) -> Any:
+            long_examples = d.apply(lambda x: len(x.prompt) + len(x.completion) > 10000, axis=1)
+            return d.reset_index().index[long_examples].tolist()
+
+        long_indexes = get_long_indexes(df)
+
+        if len(long_indexes) > 0:
+            immediate_msg = f"\n- There are {len(long_indexes)} examples that are very long. These are rows: {long_indexes}\nFor conditional generation, and for classification the examples shouldn't be longer than 2048 tokens."
+            optional_msg = f"Remove {len(long_indexes)} long examples"
+
+            def optional_fn(x: Any) -> Any:
+                long_indexes_to_drop = get_long_indexes(x)
+                if long_indexes != long_indexes_to_drop:
+                    sys.stdout.write(
+                        f"The indices of the long examples has changed as a result of a previously applied recommendation.\nThe {len(long_indexes_to_drop)} long examples to be dropped are now at the following indices: {long_indexes_to_drop}\n"
+                    )
+                return x.drop(long_indexes_to_drop)
+
+    return Remediation(
+        name="long_examples",
+        immediate_msg=immediate_msg,
+        optional_msg=optional_msg,
+        optional_fn=optional_fn,
+    )
+
+
+def common_prompt_suffix_validator(df: pd.DataFrame) -> Remediation:
+    """
+    This validator will suggest to add a common suffix to the prompt if one doesn't already exist in case of classification or conditional generation.
+    """
+    error_msg = None
+    immediate_msg = None
+    optional_msg = None
+    optional_fn = None  # type: ignore
+
+    # Find a suffix which is not contained within the prompt otherwise
+    suggested_suffix = "\n\n### =>\n\n"
+    suffix_options = [
+        " ->",
+        "\n\n###\n\n",
+        "\n\n===\n\n",
+        "\n\n---\n\n",
+        "\n\n===>\n\n",
+        "\n\n--->\n\n",
+    ]
+    for suffix_option in suffix_options:
+        if suffix_option == " ->":
+            if df.prompt.str.contains("\n").any():
+                continue
+        if df.prompt.str.contains(suffix_option, regex=False).any():
+            continue
+        suggested_suffix = suffix_option
+        break
+    display_suggested_suffix = suggested_suffix.replace("\n", "\\n")
+
+    ft_type = infer_task_type(df)
+    if ft_type == "open-ended generation":
+        return Remediation(name="common_suffix")
+
+    def add_suffix(x: Any, suffix: Any) -> Any:
+        x["prompt"] += suffix
+        return x
+
+    common_suffix = get_common_xfix(df.prompt, xfix="suffix")
+    if (df.prompt == common_suffix).all():
+        error_msg = f"All prompts are identical: `{common_suffix}`\nConsider leaving the prompts blank if you want to do open-ended generation, otherwise ensure prompts are different"
+        return Remediation(name="common_suffix", error_msg=error_msg)
+
+    if common_suffix != "":
+        common_suffix_new_line_handled = common_suffix.replace("\n", "\\n")
+        immediate_msg = f"\n- All prompts end with suffix `{common_suffix_new_line_handled}`"
+        if len(common_suffix) > 10:
+            immediate_msg += f". This suffix seems very long. Consider replacing with a shorter suffix, such as `{display_suggested_suffix}`"
+        if df.prompt.str[: -len(common_suffix)].str.contains(common_suffix, regex=False).any():
+            immediate_msg += f"\n  WARNING: Some of your prompts contain the suffix `{common_suffix}` more than once. We strongly suggest that you review your prompts and add a unique suffix"
+
+    else:
+        immediate_msg = "\n- Your data does not contain a common separator at the end of your prompts. Having a separator string appended to the end of the prompt makes it clearer to the fine-tuned model where the completion should begin. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples. If you intend to do open-ended generation, then you should leave the prompts empty"
+
+    if common_suffix == "":
+        optional_msg = f"Add a suffix separator `{display_suggested_suffix}` to all prompts"
+
+        def optional_fn(x: Any) -> Any:
+            return add_suffix(x, suggested_suffix)
+
+    return Remediation(
+        name="common_completion_suffix",
+        immediate_msg=immediate_msg,
+        optional_msg=optional_msg,
+        optional_fn=optional_fn,
+        error_msg=error_msg,
+    )
+
+
+def common_prompt_prefix_validator(df: pd.DataFrame) -> Remediation:
+    """
+    This validator will suggest to remove a common prefix from the prompt if a long one exist.
+    """
+    MAX_PREFIX_LEN = 12
+
+    immediate_msg = None
+    optional_msg = None
+    optional_fn = None  # type: ignore
+
+    common_prefix = get_common_xfix(df.prompt, xfix="prefix")
+    if common_prefix == "":
+        return Remediation(name="common_prefix")
+
+    def remove_common_prefix(x: Any, prefix: Any) -> Any:
+        x["prompt"] = x["prompt"].str[len(prefix) :]
+        return x
+
+    if (df.prompt == common_prefix).all():
+        # already handled by common_suffix_validator
+        return Remediation(name="common_prefix")
+
+    if common_prefix != "":
+        immediate_msg = f"\n- All prompts start with prefix `{common_prefix}`"
+        if MAX_PREFIX_LEN < len(common_prefix):
+            immediate_msg += ". Fine-tuning doesn't require the instruction specifying the task, or a few-shot example scenario. Most of the time you should only add the input data into the prompt, and the desired output into the completion"
+            optional_msg = f"Remove prefix `{common_prefix}` from all prompts"
+
+            def optional_fn(x: Any) -> Any:
+                return remove_common_prefix(x, common_prefix)
+
+    return Remediation(
+        name="common_prompt_prefix",
+        immediate_msg=immediate_msg,
+        optional_msg=optional_msg,
+        optional_fn=optional_fn,
+    )
+
+
+def common_completion_prefix_validator(df: pd.DataFrame) -> Remediation:
+    """
+    This validator will suggest to remove a common prefix from the completion if a long one exist.
+    """
+    MAX_PREFIX_LEN = 5
+
+    common_prefix = get_common_xfix(df.completion, xfix="prefix")
+    ws_prefix = len(common_prefix) > 0 and common_prefix[0] == " "
+    if len(common_prefix) < MAX_PREFIX_LEN:
+        return Remediation(name="common_prefix")
+
+    def remove_common_prefix(x: Any, prefix: Any, ws_prefix: Any) -> Any:
+        x["completion"] = x["completion"].str[len(prefix) :]
+        if ws_prefix:
+            # keep the single whitespace as prefix
+            x["completion"] = f" {x['completion']}"
+        return x
+
+    if (df.completion == common_prefix).all():
+        # already handled by common_suffix_validator
+        return Remediation(name="common_prefix")
+
+    immediate_msg = f"\n- All completions start with prefix `{common_prefix}`. Most of the time you should only add the output data into the completion, without any prefix"
+    optional_msg = f"Remove prefix `{common_prefix}` from all completions"
+
+    def optional_fn(x: Any) -> Any:
+        return remove_common_prefix(x, common_prefix, ws_prefix)
+
+    return Remediation(
+        name="common_completion_prefix",
+        immediate_msg=immediate_msg,
+        optional_msg=optional_msg,
+        optional_fn=optional_fn,
+    )
+
+
+def common_completion_suffix_validator(df: pd.DataFrame) -> Remediation:
+    """
+    This validator will suggest to add a common suffix to the completion if one doesn't already exist in case of classification or conditional generation.
+    """
+    error_msg = None
+    immediate_msg = None
+    optional_msg = None
+    optional_fn = None  # type: ignore
+
+    ft_type = infer_task_type(df)
+    if ft_type == "open-ended generation" or ft_type == "classification":
+        return Remediation(name="common_suffix")
+
+    common_suffix = get_common_xfix(df.completion, xfix="suffix")
+    if (df.completion == common_suffix).all():
+        error_msg = f"All completions are identical: `{common_suffix}`\nEnsure completions are different, otherwise the model will just repeat `{common_suffix}`"
+        return Remediation(name="common_suffix", error_msg=error_msg)
+
+    # Find a suffix which is not contained within the completion otherwise
+    suggested_suffix = " [END]"
+    suffix_options = [
+        "\n",
+        ".",
+        " END",
+        "***",
+        "+++",
+        "&&&",
+        "$$$",
+        "@@@",
+        "%%%",
+    ]
+    for suffix_option in suffix_options:
+        if df.completion.str.contains(suffix_option, regex=False).any():
+            continue
+        suggested_suffix = suffix_option
+        break
+    display_suggested_suffix = suggested_suffix.replace("\n", "\\n")
+
+    def add_suffix(x: Any, suffix: Any) -> Any:
+        x["completion"] += suffix
+        return x
+
+    if common_suffix != "":
+        common_suffix_new_line_handled = common_suffix.replace("\n", "\\n")
+        immediate_msg = f"\n- All completions end with suffix `{common_suffix_new_line_handled}`"
+        if len(common_suffix) > 10:
+            immediate_msg += f". This suffix seems very long. Consider replacing with a shorter suffix, such as `{display_suggested_suffix}`"
+        if df.completion.str[: -len(common_suffix)].str.contains(common_suffix, regex=False).any():
+            immediate_msg += f"\n  WARNING: Some of your completions contain the suffix `{common_suffix}` more than once. We suggest that you review your completions and add a unique ending"
+
+    else:
+        immediate_msg = "\n- Your data does not contain a common ending at the end of your completions. Having a common ending string appended to the end of the completion makes it clearer to the fine-tuned model where the completion should end. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples."
+
+    if common_suffix == "":
+        optional_msg = f"Add a suffix ending `{display_suggested_suffix}` to all completions"
+
+        def optional_fn(x: Any) -> Any:
+            return add_suffix(x, suggested_suffix)
+
+    return Remediation(
+        name="common_completion_suffix",
+        immediate_msg=immediate_msg,
+        optional_msg=optional_msg,
+        optional_fn=optional_fn,
+        error_msg=error_msg,
+    )
+
+
+def completions_space_start_validator(df: pd.DataFrame) -> Remediation:
+    """
+    This validator will suggest to add a space at the start of the completion if it doesn't already exist. This helps with tokenization.
+    """
+
+    def add_space_start(x: Any) -> Any:
+        x["completion"] = x["completion"].apply(lambda s: ("" if s.startswith(" ") else " ") + s)
+        return x
+
+    optional_msg = None
+    optional_fn = None
+    immediate_msg = None
+
+    if df.completion.str[:1].nunique() != 1 or df.completion.values[0][0] != " ":
+        immediate_msg = "\n- The completion should start with a whitespace character (` `). This tends to produce better results due to the tokenization we use. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more details"
+        optional_msg = "Add a whitespace character to the beginning of the completion"
+        optional_fn = add_space_start
+    return Remediation(
+        name="completion_space_start",
+        immediate_msg=immediate_msg,
+        optional_msg=optional_msg,
+        optional_fn=optional_fn,
+    )
+
+
+def lower_case_validator(df: pd.DataFrame, column: Any) -> Remediation | None:
+    """
+    This validator will suggest to lowercase the column values, if more than a third of letters are uppercase.
+    """
+
+    def lower_case(x: Any) -> Any:
+        x[column] = x[column].str.lower()
+        return x
+
+    count_upper = df[column].apply(lambda x: sum(1 for c in x if c.isalpha() and c.isupper())).sum()
+    count_lower = df[column].apply(lambda x: sum(1 for c in x if c.isalpha() and c.islower())).sum()
+
+    if count_upper * 2 > count_lower:
+        return Remediation(
+            name="lower_case",
+            immediate_msg=f"\n- More than a third of your `{column}` column/key is uppercase. Uppercase {column}s tends to perform worse than a mixture of case encountered in normal language. We recommend to lower case the data if that makes sense in your domain. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more details",
+            optional_msg=f"Lowercase all your data in column/key `{column}`",
+            optional_fn=lower_case,
+        )
+    return None
+
+
+def read_any_format(
+    fname: str, fields: list[str] = ["prompt", "completion"]
+) -> tuple[pd.DataFrame | None, Remediation]:
+    """
+    This function will read a file saved in .csv, .json, .txt, .xlsx or .tsv format using pandas.
+     - for .xlsx it will read the first sheet
+     - for .txt it will assume completions and split on newline
+    """
+    remediation = None
+    necessary_msg = None
+    immediate_msg = None
+    error_msg = None
+    df = None
+
+    if os.path.isfile(fname):
+        try:
+            if fname.lower().endswith(".csv") or fname.lower().endswith(".tsv"):
+                file_extension_str, separator = ("CSV", ",") if fname.lower().endswith(".csv") else ("TSV", "\t")
+                immediate_msg = (
+                    f"\n- Based on your file extension, your file is formatted as a {file_extension_str} file"
+                )
+                necessary_msg = f"Your format `{file_extension_str}` will be converted to `JSONL`"
+                df = pd.read_csv(fname, sep=separator, dtype=str).fillna("")
+            elif fname.lower().endswith(".xlsx"):
+                immediate_msg = "\n- Based on your file extension, your file is formatted as an Excel file"
+                necessary_msg = "Your format `XLSX` will be converted to `JSONL`"
+                xls = pd.ExcelFile(fname)
+                sheets = xls.sheet_names
+                if len(sheets) > 1:
+                    immediate_msg += "\n- Your Excel file contains more than one sheet. Please either save as csv or ensure all data is present in the first sheet. WARNING: Reading only the first sheet..."
+                df = pd.read_excel(fname, dtype=str).fillna("")
+            elif fname.lower().endswith(".txt"):
+                immediate_msg = "\n- Based on your file extension, you provided a text file"
+                necessary_msg = "Your format `TXT` will be converted to `JSONL`"
+                with open(fname, "r") as f:
+                    content = f.read()
+                    df = pd.DataFrame(
+                        [["", line] for line in content.split("\n")],
+                        columns=fields,
+                        dtype=str,
+                    ).fillna("")
+            elif fname.lower().endswith(".jsonl"):
+                df = pd.read_json(fname, lines=True, dtype=str).fillna("")  # type: ignore
+                if len(df) == 1:  # type: ignore
+                    # this is NOT what we expect for a .jsonl file
+                    immediate_msg = "\n- Your JSONL file appears to be in a JSON format. Your file will be converted to JSONL format"
+                    necessary_msg = "Your format `JSON` will be converted to `JSONL`"
+                    df = pd.read_json(fname, dtype=str).fillna("")  # type: ignore
+                else:
+                    pass  # this is what we expect for a .jsonl file
+            elif fname.lower().endswith(".json"):
+                try:
+                    # to handle case where .json file is actually a .jsonl file
+                    df = pd.read_json(fname, lines=True, dtype=str).fillna("")  # type: ignore
+                    if len(df) == 1:  # type: ignore
+                        # this code path corresponds to a .json file that has one line
+                        df = pd.read_json(fname, dtype=str).fillna("")  # type: ignore
+                    else:
+                        # this is NOT what we expect for a .json file
+                        immediate_msg = "\n- Your JSON file appears to be in a JSONL format. Your file will be converted to JSONL format"
+                        necessary_msg = "Your format `JSON` will be converted to `JSONL`"
+                except ValueError:
+                    # this code path corresponds to a .json file that has multiple lines (i.e. it is indented)
+                    df = pd.read_json(fname, dtype=str).fillna("")  # type: ignore
+            else:
+                error_msg = (
+                    "Your file must have one of the following extensions: .CSV, .TSV, .XLSX, .TXT, .JSON or .JSONL"
+                )
+                if "." in fname:
+                    error_msg += f" Your file `{fname}` ends with the extension `.{fname.split('.')[-1]}` which is not supported."
+                else:
+                    error_msg += f" Your file `{fname}` is missing a file extension."
+
+        except (ValueError, TypeError):
+            file_extension_str = fname.split(".")[-1].upper()
+            error_msg = f"Your file `{fname}` does not appear to be in valid {file_extension_str} format. Please ensure your file is formatted as a valid {file_extension_str} file."
+
+    else:
+        error_msg = f"File {fname} does not exist."
+
+    remediation = Remediation(
+        name="read_any_format",
+        necessary_msg=necessary_msg,
+        immediate_msg=immediate_msg,
+        error_msg=error_msg,
+    )
+    return df, remediation
+
+
+def format_inferrer_validator(df: pd.DataFrame) -> Remediation:
+    """
+    This validator will infer the likely fine-tuning format of the data, and display it to the user if it is classification.
+    It will also suggest to use ada and explain train/validation split benefits.
+    """
+    ft_type = infer_task_type(df)
+    immediate_msg = None
+    if ft_type == "classification":
+        immediate_msg = f"\n- Based on your data it seems like you're trying to fine-tune a model for {ft_type}\n- For classification, we recommend you try one of the faster and cheaper models, such as `ada`\n- For classification, you can estimate the expected model performance by keeping a held out dataset, which is not used for training"
+    return Remediation(name="num_examples", immediate_msg=immediate_msg)
+
+
+def apply_necessary_remediation(df: OptionalDataFrameT, remediation: Remediation) -> OptionalDataFrameT:
+    """
+    This function will apply a necessary remediation to a dataframe, or print an error message if one exists.
+    """
+    if remediation.error_msg is not None:
+        sys.stderr.write(f"\n\nERROR in {remediation.name} validator: {remediation.error_msg}\n\nAborting...")
+        sys.exit(1)
+    if remediation.immediate_msg is not None:
+        sys.stdout.write(remediation.immediate_msg)
+    if remediation.necessary_fn is not None:
+        df = remediation.necessary_fn(df)
+    return df
+
+
+def accept_suggestion(input_text: str, auto_accept: bool) -> bool:
+    sys.stdout.write(input_text)
+    if auto_accept:
+        sys.stdout.write("Y\n")
+        return True
+    return input().lower() != "n"
+
+
+def apply_optional_remediation(
+    df: pd.DataFrame, remediation: Remediation, auto_accept: bool
+) -> tuple[pd.DataFrame, bool]:
+    """
+    This function will apply an optional remediation to a dataframe, based on the user input.
+    """
+    optional_applied = False
+    input_text = f"- [Recommended] {remediation.optional_msg} [Y/n]: "
+    if remediation.optional_msg is not None:
+        if accept_suggestion(input_text, auto_accept):
+            assert remediation.optional_fn is not None
+            df = remediation.optional_fn(df)
+            optional_applied = True
+    if remediation.necessary_msg is not None:
+        sys.stdout.write(f"- [Necessary] {remediation.necessary_msg}\n")
+    return df, optional_applied
+
+
+def estimate_fine_tuning_time(df: pd.DataFrame) -> None:
+    """
+    Estimate the time it'll take to fine-tune the dataset
+    """
+    ft_format = infer_task_type(df)
+    expected_time = 1.0
+    if ft_format == "classification":
+        num_examples = len(df)
+        expected_time = num_examples * 1.44
+    else:
+        size = df.memory_usage(index=True).sum()
+        expected_time = size * 0.0515
+
+    def format_time(time: float) -> str:
+        if time < 60:
+            return f"{round(time, 2)} seconds"
+        elif time < 3600:
+            return f"{round(time / 60, 2)} minutes"
+        elif time < 86400:
+            return f"{round(time / 3600, 2)} hours"
+        else:
+            return f"{round(time / 86400, 2)} days"
+
+    time_string = format_time(expected_time + 140)
+    sys.stdout.write(
+        f"Once your model starts training, it'll approximately take {time_string} to train a `curie` model, and less for `ada` and `babbage`. Queue will approximately take half an hour per job ahead of you.\n"
+    )
+
+
+def get_outfnames(fname: str, split: bool) -> list[str]:
+    suffixes = ["_train", "_valid"] if split else [""]
+    i = 0
+    while True:
+        index_suffix = f" ({i})" if i > 0 else ""
+        candidate_fnames = [f"{os.path.splitext(fname)[0]}_prepared{suffix}{index_suffix}.jsonl" for suffix in suffixes]
+        if not any(os.path.isfile(f) for f in candidate_fnames):
+            return candidate_fnames
+        i += 1
+
+
+def get_classification_hyperparams(df: pd.DataFrame) -> tuple[int, object]:
+    n_classes = df.completion.nunique()
+    pos_class = None
+    if n_classes == 2:
+        pos_class = df.completion.value_counts().index[0]
+    return n_classes, pos_class
+
+
+def write_out_file(df: pd.DataFrame, fname: str, any_remediations: bool, auto_accept: bool) -> None:
+    """
+    This function will write out a dataframe to a file, if the user would like to proceed, and also offer a fine-tuning command with the newly created file.
+    For classification it will optionally ask the user if they would like to split the data into train/valid files, and modify the suggested command to include the valid set.
+    """
+    ft_format = infer_task_type(df)
+    common_prompt_suffix = get_common_xfix(df.prompt, xfix="suffix")
+    common_completion_suffix = get_common_xfix(df.completion, xfix="suffix")
+
+    split = False
+    input_text = "- [Recommended] Would you like to split into training and validation set? [Y/n]: "
+    if ft_format == "classification":
+        if accept_suggestion(input_text, auto_accept):
+            split = True
+
+    additional_params = ""
+    common_prompt_suffix_new_line_handled = common_prompt_suffix.replace("\n", "\\n")
+    common_completion_suffix_new_line_handled = common_completion_suffix.replace("\n", "\\n")
+    optional_ending_string = (
+        f' Make sure to include `stop=["{common_completion_suffix_new_line_handled}"]` so that the generated texts ends at the expected place.'
+        if len(common_completion_suffix_new_line_handled) > 0
+        else ""
+    )
+
+    input_text = "\n\nYour data will be written to a new JSONL file. Proceed [Y/n]: "
+
+    if not any_remediations and not split:
+        sys.stdout.write(
+            f'\nYou can use your file for fine-tuning:\n> openai api fine_tunes.create -t "{fname}"{additional_params}\n\nAfter you’ve fine-tuned a model, remember that your prompt has to end with the indicator string `{common_prompt_suffix_new_line_handled}` for the model to start generating completions, rather than continuing with the prompt.{optional_ending_string}\n'
+        )
+        estimate_fine_tuning_time(df)
+
+    elif accept_suggestion(input_text, auto_accept):
+        fnames = get_outfnames(fname, split)
+        if split:
+            assert len(fnames) == 2 and "train" in fnames[0] and "valid" in fnames[1]
+            MAX_VALID_EXAMPLES = 1000
+            n_train = max(len(df) - MAX_VALID_EXAMPLES, int(len(df) * 0.8))
+            df_train = df.sample(n=n_train, random_state=42)
+            df_valid = df.drop(df_train.index)
+            df_train[["prompt", "completion"]].to_json(  # type: ignore
+                fnames[0], lines=True, orient="records", force_ascii=False, indent=None
+            )
+            df_valid[["prompt", "completion"]].to_json(
+                fnames[1], lines=True, orient="records", force_ascii=False, indent=None
+            )
+
+            n_classes, pos_class = get_classification_hyperparams(df)
+            additional_params += " --compute_classification_metrics"
+            if n_classes == 2:
+                additional_params += f' --classification_positive_class "{pos_class}"'
+            else:
+                additional_params += f" --classification_n_classes {n_classes}"
+        else:
+            assert len(fnames) == 1
+            df[["prompt", "completion"]].to_json(
+                fnames[0], lines=True, orient="records", force_ascii=False, indent=None
+            )
+
+        # Add -v VALID_FILE if we split the file into train / valid
+        files_string = ("s" if split else "") + " to `" + ("` and `".join(fnames))
+        valid_string = f' -v "{fnames[1]}"' if split else ""
+        separator_reminder = (
+            ""
+            if len(common_prompt_suffix_new_line_handled) == 0
+            else f"After you’ve fine-tuned a model, remember that your prompt has to end with the indicator string `{common_prompt_suffix_new_line_handled}` for the model to start generating completions, rather than continuing with the prompt."
+        )
+        sys.stdout.write(
+            f'\nWrote modified file{files_string}`\nFeel free to take a look!\n\nNow use that file when fine-tuning:\n> openai api fine_tunes.create -t "{fnames[0]}"{valid_string}{additional_params}\n\n{separator_reminder}{optional_ending_string}\n'
+        )
+        estimate_fine_tuning_time(df)
+    else:
+        sys.stdout.write("Aborting... did not write the file\n")
+
+
+def infer_task_type(df: pd.DataFrame) -> str:
+    """
+    Infer the likely fine-tuning task type from the data
+    """
+    CLASSIFICATION_THRESHOLD = 3  # min_average instances of each class
+    if sum(df.prompt.str.len()) == 0:
+        return "open-ended generation"
+
+    if len(df.completion.unique()) < len(df) / CLASSIFICATION_THRESHOLD:
+        return "classification"
+
+    return "conditional generation"
+
+
+def get_common_xfix(series: Any, xfix: str = "suffix") -> str:
+    """
+    Finds the longest common suffix or prefix of all the values in a series
+    """
+    common_xfix = ""
+    while True:
+        common_xfixes = (
+            series.str[-(len(common_xfix) + 1) :] if xfix == "suffix" else series.str[: len(common_xfix) + 1]
+        )  # first few or last few characters
+        if common_xfixes.nunique() != 1:  # we found the character at which we don't have a unique xfix anymore
+            break
+        elif common_xfix == common_xfixes.values[0]:  # the entire first row is a prefix of every other row
+            break
+        else:  # the first or last few characters are still common across all rows - let's try to add one more
+            common_xfix = common_xfixes.values[0]
+    return common_xfix
+
+
+Validator: TypeAlias = "Callable[[pd.DataFrame], Remediation | None]"
+
+
+def get_validators() -> list[Validator]:
+    return [
+        num_examples_validator,
+        lambda x: necessary_column_validator(x, "prompt"),
+        lambda x: necessary_column_validator(x, "completion"),
+        additional_column_validator,
+        non_empty_field_validator,
+        format_inferrer_validator,
+        duplicated_rows_validator,
+        long_examples_validator,
+        lambda x: lower_case_validator(x, "prompt"),
+        lambda x: lower_case_validator(x, "completion"),
+        common_prompt_suffix_validator,
+        common_prompt_prefix_validator,
+        common_completion_prefix_validator,
+        common_completion_suffix_validator,
+        completions_space_start_validator,
+    ]
+
+
+def apply_validators(
+    df: pd.DataFrame,
+    fname: str,
+    remediation: Remediation | None,
+    validators: list[Validator],
+    auto_accept: bool,
+    write_out_file_func: Callable[..., Any],
+) -> None:
+    optional_remediations: list[Remediation] = []
+    if remediation is not None:
+        optional_remediations.append(remediation)
+    for validator in validators:
+        remediation = validator(df)
+        if remediation is not None:
+            optional_remediations.append(remediation)
+            df = apply_necessary_remediation(df, remediation)
+
+    any_optional_or_necessary_remediations = any(
+        [
+            remediation
+            for remediation in optional_remediations
+            if remediation.optional_msg is not None or remediation.necessary_msg is not None
+        ]
+    )
+    any_necessary_applied = any(
+        [remediation for remediation in optional_remediations if remediation.necessary_msg is not None]
+    )
+    any_optional_applied = False
+
+    if any_optional_or_necessary_remediations:
+        sys.stdout.write("\n\nBased on the analysis we will perform the following actions:\n")
+        for remediation in optional_remediations:
+            df, optional_applied = apply_optional_remediation(df, remediation, auto_accept)
+            any_optional_applied = any_optional_applied or optional_applied
+    else:
+        sys.stdout.write("\n\nNo remediations found.\n")
+
+    any_optional_or_necessary_applied = any_optional_applied or any_necessary_applied
+
+    write_out_file_func(df, fname, any_optional_or_necessary_applied, auto_accept)