diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/openai/lib/_validators.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/openai/lib/_validators.py | 809 |
1 files changed, 809 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/openai/lib/_validators.py b/.venv/lib/python3.12/site-packages/openai/lib/_validators.py new file mode 100644 index 00000000..cf24cd22 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/lib/_validators.py @@ -0,0 +1,809 @@ +# pyright: basic +from __future__ import annotations + +import os +import sys +from typing import Any, TypeVar, Callable, Optional, NamedTuple +from typing_extensions import TypeAlias + +from .._extras import pandas as pd + + +class Remediation(NamedTuple): + name: str + immediate_msg: Optional[str] = None + necessary_msg: Optional[str] = None + necessary_fn: Optional[Callable[[Any], Any]] = None + optional_msg: Optional[str] = None + optional_fn: Optional[Callable[[Any], Any]] = None + error_msg: Optional[str] = None + + +OptionalDataFrameT = TypeVar("OptionalDataFrameT", bound="Optional[pd.DataFrame]") + + +def num_examples_validator(df: pd.DataFrame) -> Remediation: + """ + This validator will only print out the number of examples and recommend to the user to increase the number of examples if less than 100. + """ + MIN_EXAMPLES = 100 + optional_suggestion = ( + "" + if len(df) >= MIN_EXAMPLES + else ". In general, we recommend having at least a few hundred examples. We've found that performance tends to linearly increase for every doubling of the number of examples" + ) + immediate_msg = f"\n- Your file contains {len(df)} prompt-completion pairs{optional_suggestion}" + return Remediation(name="num_examples", immediate_msg=immediate_msg) + + +def necessary_column_validator(df: pd.DataFrame, necessary_column: str) -> Remediation: + """ + This validator will ensure that the necessary column is present in the dataframe. + """ + + def lower_case_column(df: pd.DataFrame, column: Any) -> pd.DataFrame: + cols = [c for c in df.columns if str(c).lower() == column] + df.rename(columns={cols[0]: column.lower()}, inplace=True) + return df + + immediate_msg = None + necessary_fn = None + necessary_msg = None + error_msg = None + + if necessary_column not in df.columns: + if necessary_column in [str(c).lower() for c in df.columns]: + + def lower_case_column_creator(df: pd.DataFrame) -> pd.DataFrame: + return lower_case_column(df, necessary_column) + + necessary_fn = lower_case_column_creator + immediate_msg = f"\n- The `{necessary_column}` column/key should be lowercase" + necessary_msg = f"Lower case column name to `{necessary_column}`" + else: + error_msg = f"`{necessary_column}` column/key is missing. Please make sure you name your columns/keys appropriately, then retry" + + return Remediation( + name="necessary_column", + immediate_msg=immediate_msg, + necessary_msg=necessary_msg, + necessary_fn=necessary_fn, + error_msg=error_msg, + ) + + +def additional_column_validator(df: pd.DataFrame, fields: list[str] = ["prompt", "completion"]) -> Remediation: + """ + This validator will remove additional columns from the dataframe. + """ + additional_columns = [] + necessary_msg = None + immediate_msg = None + necessary_fn = None # type: ignore + + if len(df.columns) > 2: + additional_columns = [c for c in df.columns if c not in fields] + warn_message = "" + for ac in additional_columns: + dups = [c for c in additional_columns if ac in c] + if len(dups) > 0: + warn_message += f"\n WARNING: Some of the additional columns/keys contain `{ac}` in their name. These will be ignored, and the column/key `{ac}` will be used instead. This could also result from a duplicate column/key in the provided file." + immediate_msg = f"\n- The input file should contain exactly two columns/keys per row. Additional columns/keys present are: {additional_columns}{warn_message}" + necessary_msg = f"Remove additional columns/keys: {additional_columns}" + + def necessary_fn(x: Any) -> Any: + return x[fields] + + return Remediation( + name="additional_column", + immediate_msg=immediate_msg, + necessary_msg=necessary_msg, + necessary_fn=necessary_fn, + ) + + +def non_empty_field_validator(df: pd.DataFrame, field: str = "completion") -> Remediation: + """ + This validator will ensure that no completion is empty. + """ + necessary_msg = None + necessary_fn = None # type: ignore + immediate_msg = None + + if df[field].apply(lambda x: x == "").any() or df[field].isnull().any(): + empty_rows = (df[field] == "") | (df[field].isnull()) + empty_indexes = df.reset_index().index[empty_rows].tolist() + immediate_msg = f"\n- `{field}` column/key should not contain empty strings. These are rows: {empty_indexes}" + + def necessary_fn(x: Any) -> Any: + return x[x[field] != ""].dropna(subset=[field]) + + necessary_msg = f"Remove {len(empty_indexes)} rows with empty {field}s" + + return Remediation( + name=f"empty_{field}", + immediate_msg=immediate_msg, + necessary_msg=necessary_msg, + necessary_fn=necessary_fn, + ) + + +def duplicated_rows_validator(df: pd.DataFrame, fields: list[str] = ["prompt", "completion"]) -> Remediation: + """ + This validator will suggest to the user to remove duplicate rows if they exist. + """ + duplicated_rows = df.duplicated(subset=fields) + duplicated_indexes = df.reset_index().index[duplicated_rows].tolist() + immediate_msg = None + optional_msg = None + optional_fn = None # type: ignore + + if len(duplicated_indexes) > 0: + immediate_msg = f"\n- There are {len(duplicated_indexes)} duplicated {'-'.join(fields)} sets. These are rows: {duplicated_indexes}" + optional_msg = f"Remove {len(duplicated_indexes)} duplicate rows" + + def optional_fn(x: Any) -> Any: + return x.drop_duplicates(subset=fields) + + return Remediation( + name="duplicated_rows", + immediate_msg=immediate_msg, + optional_msg=optional_msg, + optional_fn=optional_fn, + ) + + +def long_examples_validator(df: pd.DataFrame) -> Remediation: + """ + This validator will suggest to the user to remove examples that are too long. + """ + immediate_msg = None + optional_msg = None + optional_fn = None # type: ignore + + ft_type = infer_task_type(df) + if ft_type != "open-ended generation": + + def get_long_indexes(d: pd.DataFrame) -> Any: + long_examples = d.apply(lambda x: len(x.prompt) + len(x.completion) > 10000, axis=1) + return d.reset_index().index[long_examples].tolist() + + long_indexes = get_long_indexes(df) + + if len(long_indexes) > 0: + immediate_msg = f"\n- There are {len(long_indexes)} examples that are very long. These are rows: {long_indexes}\nFor conditional generation, and for classification the examples shouldn't be longer than 2048 tokens." + optional_msg = f"Remove {len(long_indexes)} long examples" + + def optional_fn(x: Any) -> Any: + long_indexes_to_drop = get_long_indexes(x) + if long_indexes != long_indexes_to_drop: + sys.stdout.write( + f"The indices of the long examples has changed as a result of a previously applied recommendation.\nThe {len(long_indexes_to_drop)} long examples to be dropped are now at the following indices: {long_indexes_to_drop}\n" + ) + return x.drop(long_indexes_to_drop) + + return Remediation( + name="long_examples", + immediate_msg=immediate_msg, + optional_msg=optional_msg, + optional_fn=optional_fn, + ) + + +def common_prompt_suffix_validator(df: pd.DataFrame) -> Remediation: + """ + This validator will suggest to add a common suffix to the prompt if one doesn't already exist in case of classification or conditional generation. + """ + error_msg = None + immediate_msg = None + optional_msg = None + optional_fn = None # type: ignore + + # Find a suffix which is not contained within the prompt otherwise + suggested_suffix = "\n\n### =>\n\n" + suffix_options = [ + " ->", + "\n\n###\n\n", + "\n\n===\n\n", + "\n\n---\n\n", + "\n\n===>\n\n", + "\n\n--->\n\n", + ] + for suffix_option in suffix_options: + if suffix_option == " ->": + if df.prompt.str.contains("\n").any(): + continue + if df.prompt.str.contains(suffix_option, regex=False).any(): + continue + suggested_suffix = suffix_option + break + display_suggested_suffix = suggested_suffix.replace("\n", "\\n") + + ft_type = infer_task_type(df) + if ft_type == "open-ended generation": + return Remediation(name="common_suffix") + + def add_suffix(x: Any, suffix: Any) -> Any: + x["prompt"] += suffix + return x + + common_suffix = get_common_xfix(df.prompt, xfix="suffix") + if (df.prompt == common_suffix).all(): + error_msg = f"All prompts are identical: `{common_suffix}`\nConsider leaving the prompts blank if you want to do open-ended generation, otherwise ensure prompts are different" + return Remediation(name="common_suffix", error_msg=error_msg) + + if common_suffix != "": + common_suffix_new_line_handled = common_suffix.replace("\n", "\\n") + immediate_msg = f"\n- All prompts end with suffix `{common_suffix_new_line_handled}`" + if len(common_suffix) > 10: + immediate_msg += f". This suffix seems very long. Consider replacing with a shorter suffix, such as `{display_suggested_suffix}`" + if df.prompt.str[: -len(common_suffix)].str.contains(common_suffix, regex=False).any(): + immediate_msg += f"\n WARNING: Some of your prompts contain the suffix `{common_suffix}` more than once. We strongly suggest that you review your prompts and add a unique suffix" + + else: + immediate_msg = "\n- Your data does not contain a common separator at the end of your prompts. Having a separator string appended to the end of the prompt makes it clearer to the fine-tuned model where the completion should begin. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples. If you intend to do open-ended generation, then you should leave the prompts empty" + + if common_suffix == "": + optional_msg = f"Add a suffix separator `{display_suggested_suffix}` to all prompts" + + def optional_fn(x: Any) -> Any: + return add_suffix(x, suggested_suffix) + + return Remediation( + name="common_completion_suffix", + immediate_msg=immediate_msg, + optional_msg=optional_msg, + optional_fn=optional_fn, + error_msg=error_msg, + ) + + +def common_prompt_prefix_validator(df: pd.DataFrame) -> Remediation: + """ + This validator will suggest to remove a common prefix from the prompt if a long one exist. + """ + MAX_PREFIX_LEN = 12 + + immediate_msg = None + optional_msg = None + optional_fn = None # type: ignore + + common_prefix = get_common_xfix(df.prompt, xfix="prefix") + if common_prefix == "": + return Remediation(name="common_prefix") + + def remove_common_prefix(x: Any, prefix: Any) -> Any: + x["prompt"] = x["prompt"].str[len(prefix) :] + return x + + if (df.prompt == common_prefix).all(): + # already handled by common_suffix_validator + return Remediation(name="common_prefix") + + if common_prefix != "": + immediate_msg = f"\n- All prompts start with prefix `{common_prefix}`" + if MAX_PREFIX_LEN < len(common_prefix): + immediate_msg += ". Fine-tuning doesn't require the instruction specifying the task, or a few-shot example scenario. Most of the time you should only add the input data into the prompt, and the desired output into the completion" + optional_msg = f"Remove prefix `{common_prefix}` from all prompts" + + def optional_fn(x: Any) -> Any: + return remove_common_prefix(x, common_prefix) + + return Remediation( + name="common_prompt_prefix", + immediate_msg=immediate_msg, + optional_msg=optional_msg, + optional_fn=optional_fn, + ) + + +def common_completion_prefix_validator(df: pd.DataFrame) -> Remediation: + """ + This validator will suggest to remove a common prefix from the completion if a long one exist. + """ + MAX_PREFIX_LEN = 5 + + common_prefix = get_common_xfix(df.completion, xfix="prefix") + ws_prefix = len(common_prefix) > 0 and common_prefix[0] == " " + if len(common_prefix) < MAX_PREFIX_LEN: + return Remediation(name="common_prefix") + + def remove_common_prefix(x: Any, prefix: Any, ws_prefix: Any) -> Any: + x["completion"] = x["completion"].str[len(prefix) :] + if ws_prefix: + # keep the single whitespace as prefix + x["completion"] = f" {x['completion']}" + return x + + if (df.completion == common_prefix).all(): + # already handled by common_suffix_validator + return Remediation(name="common_prefix") + + immediate_msg = f"\n- All completions start with prefix `{common_prefix}`. Most of the time you should only add the output data into the completion, without any prefix" + optional_msg = f"Remove prefix `{common_prefix}` from all completions" + + def optional_fn(x: Any) -> Any: + return remove_common_prefix(x, common_prefix, ws_prefix) + + return Remediation( + name="common_completion_prefix", + immediate_msg=immediate_msg, + optional_msg=optional_msg, + optional_fn=optional_fn, + ) + + +def common_completion_suffix_validator(df: pd.DataFrame) -> Remediation: + """ + This validator will suggest to add a common suffix to the completion if one doesn't already exist in case of classification or conditional generation. + """ + error_msg = None + immediate_msg = None + optional_msg = None + optional_fn = None # type: ignore + + ft_type = infer_task_type(df) + if ft_type == "open-ended generation" or ft_type == "classification": + return Remediation(name="common_suffix") + + common_suffix = get_common_xfix(df.completion, xfix="suffix") + if (df.completion == common_suffix).all(): + error_msg = f"All completions are identical: `{common_suffix}`\nEnsure completions are different, otherwise the model will just repeat `{common_suffix}`" + return Remediation(name="common_suffix", error_msg=error_msg) + + # Find a suffix which is not contained within the completion otherwise + suggested_suffix = " [END]" + suffix_options = [ + "\n", + ".", + " END", + "***", + "+++", + "&&&", + "$$$", + "@@@", + "%%%", + ] + for suffix_option in suffix_options: + if df.completion.str.contains(suffix_option, regex=False).any(): + continue + suggested_suffix = suffix_option + break + display_suggested_suffix = suggested_suffix.replace("\n", "\\n") + + def add_suffix(x: Any, suffix: Any) -> Any: + x["completion"] += suffix + return x + + if common_suffix != "": + common_suffix_new_line_handled = common_suffix.replace("\n", "\\n") + immediate_msg = f"\n- All completions end with suffix `{common_suffix_new_line_handled}`" + if len(common_suffix) > 10: + immediate_msg += f". This suffix seems very long. Consider replacing with a shorter suffix, such as `{display_suggested_suffix}`" + if df.completion.str[: -len(common_suffix)].str.contains(common_suffix, regex=False).any(): + immediate_msg += f"\n WARNING: Some of your completions contain the suffix `{common_suffix}` more than once. We suggest that you review your completions and add a unique ending" + + else: + immediate_msg = "\n- Your data does not contain a common ending at the end of your completions. Having a common ending string appended to the end of the completion makes it clearer to the fine-tuned model where the completion should end. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples." + + if common_suffix == "": + optional_msg = f"Add a suffix ending `{display_suggested_suffix}` to all completions" + + def optional_fn(x: Any) -> Any: + return add_suffix(x, suggested_suffix) + + return Remediation( + name="common_completion_suffix", + immediate_msg=immediate_msg, + optional_msg=optional_msg, + optional_fn=optional_fn, + error_msg=error_msg, + ) + + +def completions_space_start_validator(df: pd.DataFrame) -> Remediation: + """ + This validator will suggest to add a space at the start of the completion if it doesn't already exist. This helps with tokenization. + """ + + def add_space_start(x: Any) -> Any: + x["completion"] = x["completion"].apply(lambda s: ("" if s.startswith(" ") else " ") + s) + return x + + optional_msg = None + optional_fn = None + immediate_msg = None + + if df.completion.str[:1].nunique() != 1 or df.completion.values[0][0] != " ": + immediate_msg = "\n- The completion should start with a whitespace character (` `). This tends to produce better results due to the tokenization we use. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more details" + optional_msg = "Add a whitespace character to the beginning of the completion" + optional_fn = add_space_start + return Remediation( + name="completion_space_start", + immediate_msg=immediate_msg, + optional_msg=optional_msg, + optional_fn=optional_fn, + ) + + +def lower_case_validator(df: pd.DataFrame, column: Any) -> Remediation | None: + """ + This validator will suggest to lowercase the column values, if more than a third of letters are uppercase. + """ + + def lower_case(x: Any) -> Any: + x[column] = x[column].str.lower() + return x + + count_upper = df[column].apply(lambda x: sum(1 for c in x if c.isalpha() and c.isupper())).sum() + count_lower = df[column].apply(lambda x: sum(1 for c in x if c.isalpha() and c.islower())).sum() + + if count_upper * 2 > count_lower: + return Remediation( + name="lower_case", + immediate_msg=f"\n- More than a third of your `{column}` column/key is uppercase. Uppercase {column}s tends to perform worse than a mixture of case encountered in normal language. We recommend to lower case the data if that makes sense in your domain. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more details", + optional_msg=f"Lowercase all your data in column/key `{column}`", + optional_fn=lower_case, + ) + return None + + +def read_any_format( + fname: str, fields: list[str] = ["prompt", "completion"] +) -> tuple[pd.DataFrame | None, Remediation]: + """ + This function will read a file saved in .csv, .json, .txt, .xlsx or .tsv format using pandas. + - for .xlsx it will read the first sheet + - for .txt it will assume completions and split on newline + """ + remediation = None + necessary_msg = None + immediate_msg = None + error_msg = None + df = None + + if os.path.isfile(fname): + try: + if fname.lower().endswith(".csv") or fname.lower().endswith(".tsv"): + file_extension_str, separator = ("CSV", ",") if fname.lower().endswith(".csv") else ("TSV", "\t") + immediate_msg = ( + f"\n- Based on your file extension, your file is formatted as a {file_extension_str} file" + ) + necessary_msg = f"Your format `{file_extension_str}` will be converted to `JSONL`" + df = pd.read_csv(fname, sep=separator, dtype=str).fillna("") + elif fname.lower().endswith(".xlsx"): + immediate_msg = "\n- Based on your file extension, your file is formatted as an Excel file" + necessary_msg = "Your format `XLSX` will be converted to `JSONL`" + xls = pd.ExcelFile(fname) + sheets = xls.sheet_names + if len(sheets) > 1: + immediate_msg += "\n- Your Excel file contains more than one sheet. Please either save as csv or ensure all data is present in the first sheet. WARNING: Reading only the first sheet..." + df = pd.read_excel(fname, dtype=str).fillna("") + elif fname.lower().endswith(".txt"): + immediate_msg = "\n- Based on your file extension, you provided a text file" + necessary_msg = "Your format `TXT` will be converted to `JSONL`" + with open(fname, "r") as f: + content = f.read() + df = pd.DataFrame( + [["", line] for line in content.split("\n")], + columns=fields, + dtype=str, + ).fillna("") + elif fname.lower().endswith(".jsonl"): + df = pd.read_json(fname, lines=True, dtype=str).fillna("") # type: ignore + if len(df) == 1: # type: ignore + # this is NOT what we expect for a .jsonl file + immediate_msg = "\n- Your JSONL file appears to be in a JSON format. Your file will be converted to JSONL format" + necessary_msg = "Your format `JSON` will be converted to `JSONL`" + df = pd.read_json(fname, dtype=str).fillna("") # type: ignore + else: + pass # this is what we expect for a .jsonl file + elif fname.lower().endswith(".json"): + try: + # to handle case where .json file is actually a .jsonl file + df = pd.read_json(fname, lines=True, dtype=str).fillna("") # type: ignore + if len(df) == 1: # type: ignore + # this code path corresponds to a .json file that has one line + df = pd.read_json(fname, dtype=str).fillna("") # type: ignore + else: + # this is NOT what we expect for a .json file + immediate_msg = "\n- Your JSON file appears to be in a JSONL format. Your file will be converted to JSONL format" + necessary_msg = "Your format `JSON` will be converted to `JSONL`" + except ValueError: + # this code path corresponds to a .json file that has multiple lines (i.e. it is indented) + df = pd.read_json(fname, dtype=str).fillna("") # type: ignore + else: + error_msg = ( + "Your file must have one of the following extensions: .CSV, .TSV, .XLSX, .TXT, .JSON or .JSONL" + ) + if "." in fname: + error_msg += f" Your file `{fname}` ends with the extension `.{fname.split('.')[-1]}` which is not supported." + else: + error_msg += f" Your file `{fname}` is missing a file extension." + + except (ValueError, TypeError): + file_extension_str = fname.split(".")[-1].upper() + error_msg = f"Your file `{fname}` does not appear to be in valid {file_extension_str} format. Please ensure your file is formatted as a valid {file_extension_str} file." + + else: + error_msg = f"File {fname} does not exist." + + remediation = Remediation( + name="read_any_format", + necessary_msg=necessary_msg, + immediate_msg=immediate_msg, + error_msg=error_msg, + ) + return df, remediation + + +def format_inferrer_validator(df: pd.DataFrame) -> Remediation: + """ + This validator will infer the likely fine-tuning format of the data, and display it to the user if it is classification. + It will also suggest to use ada and explain train/validation split benefits. + """ + ft_type = infer_task_type(df) + immediate_msg = None + if ft_type == "classification": + immediate_msg = f"\n- Based on your data it seems like you're trying to fine-tune a model for {ft_type}\n- For classification, we recommend you try one of the faster and cheaper models, such as `ada`\n- For classification, you can estimate the expected model performance by keeping a held out dataset, which is not used for training" + return Remediation(name="num_examples", immediate_msg=immediate_msg) + + +def apply_necessary_remediation(df: OptionalDataFrameT, remediation: Remediation) -> OptionalDataFrameT: + """ + This function will apply a necessary remediation to a dataframe, or print an error message if one exists. + """ + if remediation.error_msg is not None: + sys.stderr.write(f"\n\nERROR in {remediation.name} validator: {remediation.error_msg}\n\nAborting...") + sys.exit(1) + if remediation.immediate_msg is not None: + sys.stdout.write(remediation.immediate_msg) + if remediation.necessary_fn is not None: + df = remediation.necessary_fn(df) + return df + + +def accept_suggestion(input_text: str, auto_accept: bool) -> bool: + sys.stdout.write(input_text) + if auto_accept: + sys.stdout.write("Y\n") + return True + return input().lower() != "n" + + +def apply_optional_remediation( + df: pd.DataFrame, remediation: Remediation, auto_accept: bool +) -> tuple[pd.DataFrame, bool]: + """ + This function will apply an optional remediation to a dataframe, based on the user input. + """ + optional_applied = False + input_text = f"- [Recommended] {remediation.optional_msg} [Y/n]: " + if remediation.optional_msg is not None: + if accept_suggestion(input_text, auto_accept): + assert remediation.optional_fn is not None + df = remediation.optional_fn(df) + optional_applied = True + if remediation.necessary_msg is not None: + sys.stdout.write(f"- [Necessary] {remediation.necessary_msg}\n") + return df, optional_applied + + +def estimate_fine_tuning_time(df: pd.DataFrame) -> None: + """ + Estimate the time it'll take to fine-tune the dataset + """ + ft_format = infer_task_type(df) + expected_time = 1.0 + if ft_format == "classification": + num_examples = len(df) + expected_time = num_examples * 1.44 + else: + size = df.memory_usage(index=True).sum() + expected_time = size * 0.0515 + + def format_time(time: float) -> str: + if time < 60: + return f"{round(time, 2)} seconds" + elif time < 3600: + return f"{round(time / 60, 2)} minutes" + elif time < 86400: + return f"{round(time / 3600, 2)} hours" + else: + return f"{round(time / 86400, 2)} days" + + time_string = format_time(expected_time + 140) + sys.stdout.write( + f"Once your model starts training, it'll approximately take {time_string} to train a `curie` model, and less for `ada` and `babbage`. Queue will approximately take half an hour per job ahead of you.\n" + ) + + +def get_outfnames(fname: str, split: bool) -> list[str]: + suffixes = ["_train", "_valid"] if split else [""] + i = 0 + while True: + index_suffix = f" ({i})" if i > 0 else "" + candidate_fnames = [f"{os.path.splitext(fname)[0]}_prepared{suffix}{index_suffix}.jsonl" for suffix in suffixes] + if not any(os.path.isfile(f) for f in candidate_fnames): + return candidate_fnames + i += 1 + + +def get_classification_hyperparams(df: pd.DataFrame) -> tuple[int, object]: + n_classes = df.completion.nunique() + pos_class = None + if n_classes == 2: + pos_class = df.completion.value_counts().index[0] + return n_classes, pos_class + + +def write_out_file(df: pd.DataFrame, fname: str, any_remediations: bool, auto_accept: bool) -> None: + """ + This function will write out a dataframe to a file, if the user would like to proceed, and also offer a fine-tuning command with the newly created file. + For classification it will optionally ask the user if they would like to split the data into train/valid files, and modify the suggested command to include the valid set. + """ + ft_format = infer_task_type(df) + common_prompt_suffix = get_common_xfix(df.prompt, xfix="suffix") + common_completion_suffix = get_common_xfix(df.completion, xfix="suffix") + + split = False + input_text = "- [Recommended] Would you like to split into training and validation set? [Y/n]: " + if ft_format == "classification": + if accept_suggestion(input_text, auto_accept): + split = True + + additional_params = "" + common_prompt_suffix_new_line_handled = common_prompt_suffix.replace("\n", "\\n") + common_completion_suffix_new_line_handled = common_completion_suffix.replace("\n", "\\n") + optional_ending_string = ( + f' Make sure to include `stop=["{common_completion_suffix_new_line_handled}"]` so that the generated texts ends at the expected place.' + if len(common_completion_suffix_new_line_handled) > 0 + else "" + ) + + input_text = "\n\nYour data will be written to a new JSONL file. Proceed [Y/n]: " + + if not any_remediations and not split: + sys.stdout.write( + f'\nYou can use your file for fine-tuning:\n> openai api fine_tunes.create -t "{fname}"{additional_params}\n\nAfter you’ve fine-tuned a model, remember that your prompt has to end with the indicator string `{common_prompt_suffix_new_line_handled}` for the model to start generating completions, rather than continuing with the prompt.{optional_ending_string}\n' + ) + estimate_fine_tuning_time(df) + + elif accept_suggestion(input_text, auto_accept): + fnames = get_outfnames(fname, split) + if split: + assert len(fnames) == 2 and "train" in fnames[0] and "valid" in fnames[1] + MAX_VALID_EXAMPLES = 1000 + n_train = max(len(df) - MAX_VALID_EXAMPLES, int(len(df) * 0.8)) + df_train = df.sample(n=n_train, random_state=42) + df_valid = df.drop(df_train.index) + df_train[["prompt", "completion"]].to_json( # type: ignore + fnames[0], lines=True, orient="records", force_ascii=False, indent=None + ) + df_valid[["prompt", "completion"]].to_json( + fnames[1], lines=True, orient="records", force_ascii=False, indent=None + ) + + n_classes, pos_class = get_classification_hyperparams(df) + additional_params += " --compute_classification_metrics" + if n_classes == 2: + additional_params += f' --classification_positive_class "{pos_class}"' + else: + additional_params += f" --classification_n_classes {n_classes}" + else: + assert len(fnames) == 1 + df[["prompt", "completion"]].to_json( + fnames[0], lines=True, orient="records", force_ascii=False, indent=None + ) + + # Add -v VALID_FILE if we split the file into train / valid + files_string = ("s" if split else "") + " to `" + ("` and `".join(fnames)) + valid_string = f' -v "{fnames[1]}"' if split else "" + separator_reminder = ( + "" + if len(common_prompt_suffix_new_line_handled) == 0 + else f"After you’ve fine-tuned a model, remember that your prompt has to end with the indicator string `{common_prompt_suffix_new_line_handled}` for the model to start generating completions, rather than continuing with the prompt." + ) + sys.stdout.write( + f'\nWrote modified file{files_string}`\nFeel free to take a look!\n\nNow use that file when fine-tuning:\n> openai api fine_tunes.create -t "{fnames[0]}"{valid_string}{additional_params}\n\n{separator_reminder}{optional_ending_string}\n' + ) + estimate_fine_tuning_time(df) + else: + sys.stdout.write("Aborting... did not write the file\n") + + +def infer_task_type(df: pd.DataFrame) -> str: + """ + Infer the likely fine-tuning task type from the data + """ + CLASSIFICATION_THRESHOLD = 3 # min_average instances of each class + if sum(df.prompt.str.len()) == 0: + return "open-ended generation" + + if len(df.completion.unique()) < len(df) / CLASSIFICATION_THRESHOLD: + return "classification" + + return "conditional generation" + + +def get_common_xfix(series: Any, xfix: str = "suffix") -> str: + """ + Finds the longest common suffix or prefix of all the values in a series + """ + common_xfix = "" + while True: + common_xfixes = ( + series.str[-(len(common_xfix) + 1) :] if xfix == "suffix" else series.str[: len(common_xfix) + 1] + ) # first few or last few characters + if common_xfixes.nunique() != 1: # we found the character at which we don't have a unique xfix anymore + break + elif common_xfix == common_xfixes.values[0]: # the entire first row is a prefix of every other row + break + else: # the first or last few characters are still common across all rows - let's try to add one more + common_xfix = common_xfixes.values[0] + return common_xfix + + +Validator: TypeAlias = "Callable[[pd.DataFrame], Remediation | None]" + + +def get_validators() -> list[Validator]: + return [ + num_examples_validator, + lambda x: necessary_column_validator(x, "prompt"), + lambda x: necessary_column_validator(x, "completion"), + additional_column_validator, + non_empty_field_validator, + format_inferrer_validator, + duplicated_rows_validator, + long_examples_validator, + lambda x: lower_case_validator(x, "prompt"), + lambda x: lower_case_validator(x, "completion"), + common_prompt_suffix_validator, + common_prompt_prefix_validator, + common_completion_prefix_validator, + common_completion_suffix_validator, + completions_space_start_validator, + ] + + +def apply_validators( + df: pd.DataFrame, + fname: str, + remediation: Remediation | None, + validators: list[Validator], + auto_accept: bool, + write_out_file_func: Callable[..., Any], +) -> None: + optional_remediations: list[Remediation] = [] + if remediation is not None: + optional_remediations.append(remediation) + for validator in validators: + remediation = validator(df) + if remediation is not None: + optional_remediations.append(remediation) + df = apply_necessary_remediation(df, remediation) + + any_optional_or_necessary_remediations = any( + [ + remediation + for remediation in optional_remediations + if remediation.optional_msg is not None or remediation.necessary_msg is not None + ] + ) + any_necessary_applied = any( + [remediation for remediation in optional_remediations if remediation.necessary_msg is not None] + ) + any_optional_applied = False + + if any_optional_or_necessary_remediations: + sys.stdout.write("\n\nBased on the analysis we will perform the following actions:\n") + for remediation in optional_remediations: + df, optional_applied = apply_optional_remediation(df, remediation, auto_accept) + any_optional_applied = any_optional_applied or optional_applied + else: + sys.stdout.write("\n\nNo remediations found.\n") + + any_optional_or_necessary_applied = any_optional_applied or any_necessary_applied + + write_out_file_func(df, fname, any_optional_or_necessary_applied, auto_accept) |