aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/openai/lib/_validators.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/openai/lib/_validators.py')
-rw-r--r--.venv/lib/python3.12/site-packages/openai/lib/_validators.py809
1 files changed, 809 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/openai/lib/_validators.py b/.venv/lib/python3.12/site-packages/openai/lib/_validators.py
new file mode 100644
index 00000000..cf24cd22
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/openai/lib/_validators.py
@@ -0,0 +1,809 @@
+# pyright: basic
+from __future__ import annotations
+
+import os
+import sys
+from typing import Any, TypeVar, Callable, Optional, NamedTuple
+from typing_extensions import TypeAlias
+
+from .._extras import pandas as pd
+
+
+class Remediation(NamedTuple):
+ name: str
+ immediate_msg: Optional[str] = None
+ necessary_msg: Optional[str] = None
+ necessary_fn: Optional[Callable[[Any], Any]] = None
+ optional_msg: Optional[str] = None
+ optional_fn: Optional[Callable[[Any], Any]] = None
+ error_msg: Optional[str] = None
+
+
+OptionalDataFrameT = TypeVar("OptionalDataFrameT", bound="Optional[pd.DataFrame]")
+
+
+def num_examples_validator(df: pd.DataFrame) -> Remediation:
+ """
+ This validator will only print out the number of examples and recommend to the user to increase the number of examples if less than 100.
+ """
+ MIN_EXAMPLES = 100
+ optional_suggestion = (
+ ""
+ if len(df) >= MIN_EXAMPLES
+ else ". In general, we recommend having at least a few hundred examples. We've found that performance tends to linearly increase for every doubling of the number of examples"
+ )
+ immediate_msg = f"\n- Your file contains {len(df)} prompt-completion pairs{optional_suggestion}"
+ return Remediation(name="num_examples", immediate_msg=immediate_msg)
+
+
+def necessary_column_validator(df: pd.DataFrame, necessary_column: str) -> Remediation:
+ """
+ This validator will ensure that the necessary column is present in the dataframe.
+ """
+
+ def lower_case_column(df: pd.DataFrame, column: Any) -> pd.DataFrame:
+ cols = [c for c in df.columns if str(c).lower() == column]
+ df.rename(columns={cols[0]: column.lower()}, inplace=True)
+ return df
+
+ immediate_msg = None
+ necessary_fn = None
+ necessary_msg = None
+ error_msg = None
+
+ if necessary_column not in df.columns:
+ if necessary_column in [str(c).lower() for c in df.columns]:
+
+ def lower_case_column_creator(df: pd.DataFrame) -> pd.DataFrame:
+ return lower_case_column(df, necessary_column)
+
+ necessary_fn = lower_case_column_creator
+ immediate_msg = f"\n- The `{necessary_column}` column/key should be lowercase"
+ necessary_msg = f"Lower case column name to `{necessary_column}`"
+ else:
+ error_msg = f"`{necessary_column}` column/key is missing. Please make sure you name your columns/keys appropriately, then retry"
+
+ return Remediation(
+ name="necessary_column",
+ immediate_msg=immediate_msg,
+ necessary_msg=necessary_msg,
+ necessary_fn=necessary_fn,
+ error_msg=error_msg,
+ )
+
+
+def additional_column_validator(df: pd.DataFrame, fields: list[str] = ["prompt", "completion"]) -> Remediation:
+ """
+ This validator will remove additional columns from the dataframe.
+ """
+ additional_columns = []
+ necessary_msg = None
+ immediate_msg = None
+ necessary_fn = None # type: ignore
+
+ if len(df.columns) > 2:
+ additional_columns = [c for c in df.columns if c not in fields]
+ warn_message = ""
+ for ac in additional_columns:
+ dups = [c for c in additional_columns if ac in c]
+ if len(dups) > 0:
+ warn_message += f"\n WARNING: Some of the additional columns/keys contain `{ac}` in their name. These will be ignored, and the column/key `{ac}` will be used instead. This could also result from a duplicate column/key in the provided file."
+ immediate_msg = f"\n- The input file should contain exactly two columns/keys per row. Additional columns/keys present are: {additional_columns}{warn_message}"
+ necessary_msg = f"Remove additional columns/keys: {additional_columns}"
+
+ def necessary_fn(x: Any) -> Any:
+ return x[fields]
+
+ return Remediation(
+ name="additional_column",
+ immediate_msg=immediate_msg,
+ necessary_msg=necessary_msg,
+ necessary_fn=necessary_fn,
+ )
+
+
+def non_empty_field_validator(df: pd.DataFrame, field: str = "completion") -> Remediation:
+ """
+ This validator will ensure that no completion is empty.
+ """
+ necessary_msg = None
+ necessary_fn = None # type: ignore
+ immediate_msg = None
+
+ if df[field].apply(lambda x: x == "").any() or df[field].isnull().any():
+ empty_rows = (df[field] == "") | (df[field].isnull())
+ empty_indexes = df.reset_index().index[empty_rows].tolist()
+ immediate_msg = f"\n- `{field}` column/key should not contain empty strings. These are rows: {empty_indexes}"
+
+ def necessary_fn(x: Any) -> Any:
+ return x[x[field] != ""].dropna(subset=[field])
+
+ necessary_msg = f"Remove {len(empty_indexes)} rows with empty {field}s"
+
+ return Remediation(
+ name=f"empty_{field}",
+ immediate_msg=immediate_msg,
+ necessary_msg=necessary_msg,
+ necessary_fn=necessary_fn,
+ )
+
+
+def duplicated_rows_validator(df: pd.DataFrame, fields: list[str] = ["prompt", "completion"]) -> Remediation:
+ """
+ This validator will suggest to the user to remove duplicate rows if they exist.
+ """
+ duplicated_rows = df.duplicated(subset=fields)
+ duplicated_indexes = df.reset_index().index[duplicated_rows].tolist()
+ immediate_msg = None
+ optional_msg = None
+ optional_fn = None # type: ignore
+
+ if len(duplicated_indexes) > 0:
+ immediate_msg = f"\n- There are {len(duplicated_indexes)} duplicated {'-'.join(fields)} sets. These are rows: {duplicated_indexes}"
+ optional_msg = f"Remove {len(duplicated_indexes)} duplicate rows"
+
+ def optional_fn(x: Any) -> Any:
+ return x.drop_duplicates(subset=fields)
+
+ return Remediation(
+ name="duplicated_rows",
+ immediate_msg=immediate_msg,
+ optional_msg=optional_msg,
+ optional_fn=optional_fn,
+ )
+
+
+def long_examples_validator(df: pd.DataFrame) -> Remediation:
+ """
+ This validator will suggest to the user to remove examples that are too long.
+ """
+ immediate_msg = None
+ optional_msg = None
+ optional_fn = None # type: ignore
+
+ ft_type = infer_task_type(df)
+ if ft_type != "open-ended generation":
+
+ def get_long_indexes(d: pd.DataFrame) -> Any:
+ long_examples = d.apply(lambda x: len(x.prompt) + len(x.completion) > 10000, axis=1)
+ return d.reset_index().index[long_examples].tolist()
+
+ long_indexes = get_long_indexes(df)
+
+ if len(long_indexes) > 0:
+ immediate_msg = f"\n- There are {len(long_indexes)} examples that are very long. These are rows: {long_indexes}\nFor conditional generation, and for classification the examples shouldn't be longer than 2048 tokens."
+ optional_msg = f"Remove {len(long_indexes)} long examples"
+
+ def optional_fn(x: Any) -> Any:
+ long_indexes_to_drop = get_long_indexes(x)
+ if long_indexes != long_indexes_to_drop:
+ sys.stdout.write(
+ f"The indices of the long examples has changed as a result of a previously applied recommendation.\nThe {len(long_indexes_to_drop)} long examples to be dropped are now at the following indices: {long_indexes_to_drop}\n"
+ )
+ return x.drop(long_indexes_to_drop)
+
+ return Remediation(
+ name="long_examples",
+ immediate_msg=immediate_msg,
+ optional_msg=optional_msg,
+ optional_fn=optional_fn,
+ )
+
+
+def common_prompt_suffix_validator(df: pd.DataFrame) -> Remediation:
+ """
+ This validator will suggest to add a common suffix to the prompt if one doesn't already exist in case of classification or conditional generation.
+ """
+ error_msg = None
+ immediate_msg = None
+ optional_msg = None
+ optional_fn = None # type: ignore
+
+ # Find a suffix which is not contained within the prompt otherwise
+ suggested_suffix = "\n\n### =>\n\n"
+ suffix_options = [
+ " ->",
+ "\n\n###\n\n",
+ "\n\n===\n\n",
+ "\n\n---\n\n",
+ "\n\n===>\n\n",
+ "\n\n--->\n\n",
+ ]
+ for suffix_option in suffix_options:
+ if suffix_option == " ->":
+ if df.prompt.str.contains("\n").any():
+ continue
+ if df.prompt.str.contains(suffix_option, regex=False).any():
+ continue
+ suggested_suffix = suffix_option
+ break
+ display_suggested_suffix = suggested_suffix.replace("\n", "\\n")
+
+ ft_type = infer_task_type(df)
+ if ft_type == "open-ended generation":
+ return Remediation(name="common_suffix")
+
+ def add_suffix(x: Any, suffix: Any) -> Any:
+ x["prompt"] += suffix
+ return x
+
+ common_suffix = get_common_xfix(df.prompt, xfix="suffix")
+ if (df.prompt == common_suffix).all():
+ error_msg = f"All prompts are identical: `{common_suffix}`\nConsider leaving the prompts blank if you want to do open-ended generation, otherwise ensure prompts are different"
+ return Remediation(name="common_suffix", error_msg=error_msg)
+
+ if common_suffix != "":
+ common_suffix_new_line_handled = common_suffix.replace("\n", "\\n")
+ immediate_msg = f"\n- All prompts end with suffix `{common_suffix_new_line_handled}`"
+ if len(common_suffix) > 10:
+ immediate_msg += f". This suffix seems very long. Consider replacing with a shorter suffix, such as `{display_suggested_suffix}`"
+ if df.prompt.str[: -len(common_suffix)].str.contains(common_suffix, regex=False).any():
+ immediate_msg += f"\n WARNING: Some of your prompts contain the suffix `{common_suffix}` more than once. We strongly suggest that you review your prompts and add a unique suffix"
+
+ else:
+ immediate_msg = "\n- Your data does not contain a common separator at the end of your prompts. Having a separator string appended to the end of the prompt makes it clearer to the fine-tuned model where the completion should begin. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples. If you intend to do open-ended generation, then you should leave the prompts empty"
+
+ if common_suffix == "":
+ optional_msg = f"Add a suffix separator `{display_suggested_suffix}` to all prompts"
+
+ def optional_fn(x: Any) -> Any:
+ return add_suffix(x, suggested_suffix)
+
+ return Remediation(
+ name="common_completion_suffix",
+ immediate_msg=immediate_msg,
+ optional_msg=optional_msg,
+ optional_fn=optional_fn,
+ error_msg=error_msg,
+ )
+
+
+def common_prompt_prefix_validator(df: pd.DataFrame) -> Remediation:
+ """
+ This validator will suggest to remove a common prefix from the prompt if a long one exist.
+ """
+ MAX_PREFIX_LEN = 12
+
+ immediate_msg = None
+ optional_msg = None
+ optional_fn = None # type: ignore
+
+ common_prefix = get_common_xfix(df.prompt, xfix="prefix")
+ if common_prefix == "":
+ return Remediation(name="common_prefix")
+
+ def remove_common_prefix(x: Any, prefix: Any) -> Any:
+ x["prompt"] = x["prompt"].str[len(prefix) :]
+ return x
+
+ if (df.prompt == common_prefix).all():
+ # already handled by common_suffix_validator
+ return Remediation(name="common_prefix")
+
+ if common_prefix != "":
+ immediate_msg = f"\n- All prompts start with prefix `{common_prefix}`"
+ if MAX_PREFIX_LEN < len(common_prefix):
+ immediate_msg += ". Fine-tuning doesn't require the instruction specifying the task, or a few-shot example scenario. Most of the time you should only add the input data into the prompt, and the desired output into the completion"
+ optional_msg = f"Remove prefix `{common_prefix}` from all prompts"
+
+ def optional_fn(x: Any) -> Any:
+ return remove_common_prefix(x, common_prefix)
+
+ return Remediation(
+ name="common_prompt_prefix",
+ immediate_msg=immediate_msg,
+ optional_msg=optional_msg,
+ optional_fn=optional_fn,
+ )
+
+
+def common_completion_prefix_validator(df: pd.DataFrame) -> Remediation:
+ """
+ This validator will suggest to remove a common prefix from the completion if a long one exist.
+ """
+ MAX_PREFIX_LEN = 5
+
+ common_prefix = get_common_xfix(df.completion, xfix="prefix")
+ ws_prefix = len(common_prefix) > 0 and common_prefix[0] == " "
+ if len(common_prefix) < MAX_PREFIX_LEN:
+ return Remediation(name="common_prefix")
+
+ def remove_common_prefix(x: Any, prefix: Any, ws_prefix: Any) -> Any:
+ x["completion"] = x["completion"].str[len(prefix) :]
+ if ws_prefix:
+ # keep the single whitespace as prefix
+ x["completion"] = f" {x['completion']}"
+ return x
+
+ if (df.completion == common_prefix).all():
+ # already handled by common_suffix_validator
+ return Remediation(name="common_prefix")
+
+ immediate_msg = f"\n- All completions start with prefix `{common_prefix}`. Most of the time you should only add the output data into the completion, without any prefix"
+ optional_msg = f"Remove prefix `{common_prefix}` from all completions"
+
+ def optional_fn(x: Any) -> Any:
+ return remove_common_prefix(x, common_prefix, ws_prefix)
+
+ return Remediation(
+ name="common_completion_prefix",
+ immediate_msg=immediate_msg,
+ optional_msg=optional_msg,
+ optional_fn=optional_fn,
+ )
+
+
+def common_completion_suffix_validator(df: pd.DataFrame) -> Remediation:
+ """
+ This validator will suggest to add a common suffix to the completion if one doesn't already exist in case of classification or conditional generation.
+ """
+ error_msg = None
+ immediate_msg = None
+ optional_msg = None
+ optional_fn = None # type: ignore
+
+ ft_type = infer_task_type(df)
+ if ft_type == "open-ended generation" or ft_type == "classification":
+ return Remediation(name="common_suffix")
+
+ common_suffix = get_common_xfix(df.completion, xfix="suffix")
+ if (df.completion == common_suffix).all():
+ error_msg = f"All completions are identical: `{common_suffix}`\nEnsure completions are different, otherwise the model will just repeat `{common_suffix}`"
+ return Remediation(name="common_suffix", error_msg=error_msg)
+
+ # Find a suffix which is not contained within the completion otherwise
+ suggested_suffix = " [END]"
+ suffix_options = [
+ "\n",
+ ".",
+ " END",
+ "***",
+ "+++",
+ "&&&",
+ "$$$",
+ "@@@",
+ "%%%",
+ ]
+ for suffix_option in suffix_options:
+ if df.completion.str.contains(suffix_option, regex=False).any():
+ continue
+ suggested_suffix = suffix_option
+ break
+ display_suggested_suffix = suggested_suffix.replace("\n", "\\n")
+
+ def add_suffix(x: Any, suffix: Any) -> Any:
+ x["completion"] += suffix
+ return x
+
+ if common_suffix != "":
+ common_suffix_new_line_handled = common_suffix.replace("\n", "\\n")
+ immediate_msg = f"\n- All completions end with suffix `{common_suffix_new_line_handled}`"
+ if len(common_suffix) > 10:
+ immediate_msg += f". This suffix seems very long. Consider replacing with a shorter suffix, such as `{display_suggested_suffix}`"
+ if df.completion.str[: -len(common_suffix)].str.contains(common_suffix, regex=False).any():
+ immediate_msg += f"\n WARNING: Some of your completions contain the suffix `{common_suffix}` more than once. We suggest that you review your completions and add a unique ending"
+
+ else:
+ immediate_msg = "\n- Your data does not contain a common ending at the end of your completions. Having a common ending string appended to the end of the completion makes it clearer to the fine-tuned model where the completion should end. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples."
+
+ if common_suffix == "":
+ optional_msg = f"Add a suffix ending `{display_suggested_suffix}` to all completions"
+
+ def optional_fn(x: Any) -> Any:
+ return add_suffix(x, suggested_suffix)
+
+ return Remediation(
+ name="common_completion_suffix",
+ immediate_msg=immediate_msg,
+ optional_msg=optional_msg,
+ optional_fn=optional_fn,
+ error_msg=error_msg,
+ )
+
+
+def completions_space_start_validator(df: pd.DataFrame) -> Remediation:
+ """
+ This validator will suggest to add a space at the start of the completion if it doesn't already exist. This helps with tokenization.
+ """
+
+ def add_space_start(x: Any) -> Any:
+ x["completion"] = x["completion"].apply(lambda s: ("" if s.startswith(" ") else " ") + s)
+ return x
+
+ optional_msg = None
+ optional_fn = None
+ immediate_msg = None
+
+ if df.completion.str[:1].nunique() != 1 or df.completion.values[0][0] != " ":
+ immediate_msg = "\n- The completion should start with a whitespace character (` `). This tends to produce better results due to the tokenization we use. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more details"
+ optional_msg = "Add a whitespace character to the beginning of the completion"
+ optional_fn = add_space_start
+ return Remediation(
+ name="completion_space_start",
+ immediate_msg=immediate_msg,
+ optional_msg=optional_msg,
+ optional_fn=optional_fn,
+ )
+
+
+def lower_case_validator(df: pd.DataFrame, column: Any) -> Remediation | None:
+ """
+ This validator will suggest to lowercase the column values, if more than a third of letters are uppercase.
+ """
+
+ def lower_case(x: Any) -> Any:
+ x[column] = x[column].str.lower()
+ return x
+
+ count_upper = df[column].apply(lambda x: sum(1 for c in x if c.isalpha() and c.isupper())).sum()
+ count_lower = df[column].apply(lambda x: sum(1 for c in x if c.isalpha() and c.islower())).sum()
+
+ if count_upper * 2 > count_lower:
+ return Remediation(
+ name="lower_case",
+ immediate_msg=f"\n- More than a third of your `{column}` column/key is uppercase. Uppercase {column}s tends to perform worse than a mixture of case encountered in normal language. We recommend to lower case the data if that makes sense in your domain. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more details",
+ optional_msg=f"Lowercase all your data in column/key `{column}`",
+ optional_fn=lower_case,
+ )
+ return None
+
+
+def read_any_format(
+ fname: str, fields: list[str] = ["prompt", "completion"]
+) -> tuple[pd.DataFrame | None, Remediation]:
+ """
+ This function will read a file saved in .csv, .json, .txt, .xlsx or .tsv format using pandas.
+ - for .xlsx it will read the first sheet
+ - for .txt it will assume completions and split on newline
+ """
+ remediation = None
+ necessary_msg = None
+ immediate_msg = None
+ error_msg = None
+ df = None
+
+ if os.path.isfile(fname):
+ try:
+ if fname.lower().endswith(".csv") or fname.lower().endswith(".tsv"):
+ file_extension_str, separator = ("CSV", ",") if fname.lower().endswith(".csv") else ("TSV", "\t")
+ immediate_msg = (
+ f"\n- Based on your file extension, your file is formatted as a {file_extension_str} file"
+ )
+ necessary_msg = f"Your format `{file_extension_str}` will be converted to `JSONL`"
+ df = pd.read_csv(fname, sep=separator, dtype=str).fillna("")
+ elif fname.lower().endswith(".xlsx"):
+ immediate_msg = "\n- Based on your file extension, your file is formatted as an Excel file"
+ necessary_msg = "Your format `XLSX` will be converted to `JSONL`"
+ xls = pd.ExcelFile(fname)
+ sheets = xls.sheet_names
+ if len(sheets) > 1:
+ immediate_msg += "\n- Your Excel file contains more than one sheet. Please either save as csv or ensure all data is present in the first sheet. WARNING: Reading only the first sheet..."
+ df = pd.read_excel(fname, dtype=str).fillna("")
+ elif fname.lower().endswith(".txt"):
+ immediate_msg = "\n- Based on your file extension, you provided a text file"
+ necessary_msg = "Your format `TXT` will be converted to `JSONL`"
+ with open(fname, "r") as f:
+ content = f.read()
+ df = pd.DataFrame(
+ [["", line] for line in content.split("\n")],
+ columns=fields,
+ dtype=str,
+ ).fillna("")
+ elif fname.lower().endswith(".jsonl"):
+ df = pd.read_json(fname, lines=True, dtype=str).fillna("") # type: ignore
+ if len(df) == 1: # type: ignore
+ # this is NOT what we expect for a .jsonl file
+ immediate_msg = "\n- Your JSONL file appears to be in a JSON format. Your file will be converted to JSONL format"
+ necessary_msg = "Your format `JSON` will be converted to `JSONL`"
+ df = pd.read_json(fname, dtype=str).fillna("") # type: ignore
+ else:
+ pass # this is what we expect for a .jsonl file
+ elif fname.lower().endswith(".json"):
+ try:
+ # to handle case where .json file is actually a .jsonl file
+ df = pd.read_json(fname, lines=True, dtype=str).fillna("") # type: ignore
+ if len(df) == 1: # type: ignore
+ # this code path corresponds to a .json file that has one line
+ df = pd.read_json(fname, dtype=str).fillna("") # type: ignore
+ else:
+ # this is NOT what we expect for a .json file
+ immediate_msg = "\n- Your JSON file appears to be in a JSONL format. Your file will be converted to JSONL format"
+ necessary_msg = "Your format `JSON` will be converted to `JSONL`"
+ except ValueError:
+ # this code path corresponds to a .json file that has multiple lines (i.e. it is indented)
+ df = pd.read_json(fname, dtype=str).fillna("") # type: ignore
+ else:
+ error_msg = (
+ "Your file must have one of the following extensions: .CSV, .TSV, .XLSX, .TXT, .JSON or .JSONL"
+ )
+ if "." in fname:
+ error_msg += f" Your file `{fname}` ends with the extension `.{fname.split('.')[-1]}` which is not supported."
+ else:
+ error_msg += f" Your file `{fname}` is missing a file extension."
+
+ except (ValueError, TypeError):
+ file_extension_str = fname.split(".")[-1].upper()
+ error_msg = f"Your file `{fname}` does not appear to be in valid {file_extension_str} format. Please ensure your file is formatted as a valid {file_extension_str} file."
+
+ else:
+ error_msg = f"File {fname} does not exist."
+
+ remediation = Remediation(
+ name="read_any_format",
+ necessary_msg=necessary_msg,
+ immediate_msg=immediate_msg,
+ error_msg=error_msg,
+ )
+ return df, remediation
+
+
+def format_inferrer_validator(df: pd.DataFrame) -> Remediation:
+ """
+ This validator will infer the likely fine-tuning format of the data, and display it to the user if it is classification.
+ It will also suggest to use ada and explain train/validation split benefits.
+ """
+ ft_type = infer_task_type(df)
+ immediate_msg = None
+ if ft_type == "classification":
+ immediate_msg = f"\n- Based on your data it seems like you're trying to fine-tune a model for {ft_type}\n- For classification, we recommend you try one of the faster and cheaper models, such as `ada`\n- For classification, you can estimate the expected model performance by keeping a held out dataset, which is not used for training"
+ return Remediation(name="num_examples", immediate_msg=immediate_msg)
+
+
+def apply_necessary_remediation(df: OptionalDataFrameT, remediation: Remediation) -> OptionalDataFrameT:
+ """
+ This function will apply a necessary remediation to a dataframe, or print an error message if one exists.
+ """
+ if remediation.error_msg is not None:
+ sys.stderr.write(f"\n\nERROR in {remediation.name} validator: {remediation.error_msg}\n\nAborting...")
+ sys.exit(1)
+ if remediation.immediate_msg is not None:
+ sys.stdout.write(remediation.immediate_msg)
+ if remediation.necessary_fn is not None:
+ df = remediation.necessary_fn(df)
+ return df
+
+
+def accept_suggestion(input_text: str, auto_accept: bool) -> bool:
+ sys.stdout.write(input_text)
+ if auto_accept:
+ sys.stdout.write("Y\n")
+ return True
+ return input().lower() != "n"
+
+
+def apply_optional_remediation(
+ df: pd.DataFrame, remediation: Remediation, auto_accept: bool
+) -> tuple[pd.DataFrame, bool]:
+ """
+ This function will apply an optional remediation to a dataframe, based on the user input.
+ """
+ optional_applied = False
+ input_text = f"- [Recommended] {remediation.optional_msg} [Y/n]: "
+ if remediation.optional_msg is not None:
+ if accept_suggestion(input_text, auto_accept):
+ assert remediation.optional_fn is not None
+ df = remediation.optional_fn(df)
+ optional_applied = True
+ if remediation.necessary_msg is not None:
+ sys.stdout.write(f"- [Necessary] {remediation.necessary_msg}\n")
+ return df, optional_applied
+
+
+def estimate_fine_tuning_time(df: pd.DataFrame) -> None:
+ """
+ Estimate the time it'll take to fine-tune the dataset
+ """
+ ft_format = infer_task_type(df)
+ expected_time = 1.0
+ if ft_format == "classification":
+ num_examples = len(df)
+ expected_time = num_examples * 1.44
+ else:
+ size = df.memory_usage(index=True).sum()
+ expected_time = size * 0.0515
+
+ def format_time(time: float) -> str:
+ if time < 60:
+ return f"{round(time, 2)} seconds"
+ elif time < 3600:
+ return f"{round(time / 60, 2)} minutes"
+ elif time < 86400:
+ return f"{round(time / 3600, 2)} hours"
+ else:
+ return f"{round(time / 86400, 2)} days"
+
+ time_string = format_time(expected_time + 140)
+ sys.stdout.write(
+ f"Once your model starts training, it'll approximately take {time_string} to train a `curie` model, and less for `ada` and `babbage`. Queue will approximately take half an hour per job ahead of you.\n"
+ )
+
+
+def get_outfnames(fname: str, split: bool) -> list[str]:
+ suffixes = ["_train", "_valid"] if split else [""]
+ i = 0
+ while True:
+ index_suffix = f" ({i})" if i > 0 else ""
+ candidate_fnames = [f"{os.path.splitext(fname)[0]}_prepared{suffix}{index_suffix}.jsonl" for suffix in suffixes]
+ if not any(os.path.isfile(f) for f in candidate_fnames):
+ return candidate_fnames
+ i += 1
+
+
+def get_classification_hyperparams(df: pd.DataFrame) -> tuple[int, object]:
+ n_classes = df.completion.nunique()
+ pos_class = None
+ if n_classes == 2:
+ pos_class = df.completion.value_counts().index[0]
+ return n_classes, pos_class
+
+
+def write_out_file(df: pd.DataFrame, fname: str, any_remediations: bool, auto_accept: bool) -> None:
+ """
+ This function will write out a dataframe to a file, if the user would like to proceed, and also offer a fine-tuning command with the newly created file.
+ For classification it will optionally ask the user if they would like to split the data into train/valid files, and modify the suggested command to include the valid set.
+ """
+ ft_format = infer_task_type(df)
+ common_prompt_suffix = get_common_xfix(df.prompt, xfix="suffix")
+ common_completion_suffix = get_common_xfix(df.completion, xfix="suffix")
+
+ split = False
+ input_text = "- [Recommended] Would you like to split into training and validation set? [Y/n]: "
+ if ft_format == "classification":
+ if accept_suggestion(input_text, auto_accept):
+ split = True
+
+ additional_params = ""
+ common_prompt_suffix_new_line_handled = common_prompt_suffix.replace("\n", "\\n")
+ common_completion_suffix_new_line_handled = common_completion_suffix.replace("\n", "\\n")
+ optional_ending_string = (
+ f' Make sure to include `stop=["{common_completion_suffix_new_line_handled}"]` so that the generated texts ends at the expected place.'
+ if len(common_completion_suffix_new_line_handled) > 0
+ else ""
+ )
+
+ input_text = "\n\nYour data will be written to a new JSONL file. Proceed [Y/n]: "
+
+ if not any_remediations and not split:
+ sys.stdout.write(
+ f'\nYou can use your file for fine-tuning:\n> openai api fine_tunes.create -t "{fname}"{additional_params}\n\nAfter you’ve fine-tuned a model, remember that your prompt has to end with the indicator string `{common_prompt_suffix_new_line_handled}` for the model to start generating completions, rather than continuing with the prompt.{optional_ending_string}\n'
+ )
+ estimate_fine_tuning_time(df)
+
+ elif accept_suggestion(input_text, auto_accept):
+ fnames = get_outfnames(fname, split)
+ if split:
+ assert len(fnames) == 2 and "train" in fnames[0] and "valid" in fnames[1]
+ MAX_VALID_EXAMPLES = 1000
+ n_train = max(len(df) - MAX_VALID_EXAMPLES, int(len(df) * 0.8))
+ df_train = df.sample(n=n_train, random_state=42)
+ df_valid = df.drop(df_train.index)
+ df_train[["prompt", "completion"]].to_json( # type: ignore
+ fnames[0], lines=True, orient="records", force_ascii=False, indent=None
+ )
+ df_valid[["prompt", "completion"]].to_json(
+ fnames[1], lines=True, orient="records", force_ascii=False, indent=None
+ )
+
+ n_classes, pos_class = get_classification_hyperparams(df)
+ additional_params += " --compute_classification_metrics"
+ if n_classes == 2:
+ additional_params += f' --classification_positive_class "{pos_class}"'
+ else:
+ additional_params += f" --classification_n_classes {n_classes}"
+ else:
+ assert len(fnames) == 1
+ df[["prompt", "completion"]].to_json(
+ fnames[0], lines=True, orient="records", force_ascii=False, indent=None
+ )
+
+ # Add -v VALID_FILE if we split the file into train / valid
+ files_string = ("s" if split else "") + " to `" + ("` and `".join(fnames))
+ valid_string = f' -v "{fnames[1]}"' if split else ""
+ separator_reminder = (
+ ""
+ if len(common_prompt_suffix_new_line_handled) == 0
+ else f"After you’ve fine-tuned a model, remember that your prompt has to end with the indicator string `{common_prompt_suffix_new_line_handled}` for the model to start generating completions, rather than continuing with the prompt."
+ )
+ sys.stdout.write(
+ f'\nWrote modified file{files_string}`\nFeel free to take a look!\n\nNow use that file when fine-tuning:\n> openai api fine_tunes.create -t "{fnames[0]}"{valid_string}{additional_params}\n\n{separator_reminder}{optional_ending_string}\n'
+ )
+ estimate_fine_tuning_time(df)
+ else:
+ sys.stdout.write("Aborting... did not write the file\n")
+
+
+def infer_task_type(df: pd.DataFrame) -> str:
+ """
+ Infer the likely fine-tuning task type from the data
+ """
+ CLASSIFICATION_THRESHOLD = 3 # min_average instances of each class
+ if sum(df.prompt.str.len()) == 0:
+ return "open-ended generation"
+
+ if len(df.completion.unique()) < len(df) / CLASSIFICATION_THRESHOLD:
+ return "classification"
+
+ return "conditional generation"
+
+
+def get_common_xfix(series: Any, xfix: str = "suffix") -> str:
+ """
+ Finds the longest common suffix or prefix of all the values in a series
+ """
+ common_xfix = ""
+ while True:
+ common_xfixes = (
+ series.str[-(len(common_xfix) + 1) :] if xfix == "suffix" else series.str[: len(common_xfix) + 1]
+ ) # first few or last few characters
+ if common_xfixes.nunique() != 1: # we found the character at which we don't have a unique xfix anymore
+ break
+ elif common_xfix == common_xfixes.values[0]: # the entire first row is a prefix of every other row
+ break
+ else: # the first or last few characters are still common across all rows - let's try to add one more
+ common_xfix = common_xfixes.values[0]
+ return common_xfix
+
+
+Validator: TypeAlias = "Callable[[pd.DataFrame], Remediation | None]"
+
+
+def get_validators() -> list[Validator]:
+ return [
+ num_examples_validator,
+ lambda x: necessary_column_validator(x, "prompt"),
+ lambda x: necessary_column_validator(x, "completion"),
+ additional_column_validator,
+ non_empty_field_validator,
+ format_inferrer_validator,
+ duplicated_rows_validator,
+ long_examples_validator,
+ lambda x: lower_case_validator(x, "prompt"),
+ lambda x: lower_case_validator(x, "completion"),
+ common_prompt_suffix_validator,
+ common_prompt_prefix_validator,
+ common_completion_prefix_validator,
+ common_completion_suffix_validator,
+ completions_space_start_validator,
+ ]
+
+
+def apply_validators(
+ df: pd.DataFrame,
+ fname: str,
+ remediation: Remediation | None,
+ validators: list[Validator],
+ auto_accept: bool,
+ write_out_file_func: Callable[..., Any],
+) -> None:
+ optional_remediations: list[Remediation] = []
+ if remediation is not None:
+ optional_remediations.append(remediation)
+ for validator in validators:
+ remediation = validator(df)
+ if remediation is not None:
+ optional_remediations.append(remediation)
+ df = apply_necessary_remediation(df, remediation)
+
+ any_optional_or_necessary_remediations = any(
+ [
+ remediation
+ for remediation in optional_remediations
+ if remediation.optional_msg is not None or remediation.necessary_msg is not None
+ ]
+ )
+ any_necessary_applied = any(
+ [remediation for remediation in optional_remediations if remediation.necessary_msg is not None]
+ )
+ any_optional_applied = False
+
+ if any_optional_or_necessary_remediations:
+ sys.stdout.write("\n\nBased on the analysis we will perform the following actions:\n")
+ for remediation in optional_remediations:
+ df, optional_applied = apply_optional_remediation(df, remediation, auto_accept)
+ any_optional_applied = any_optional_applied or optional_applied
+ else:
+ sys.stdout.write("\n\nNo remediations found.\n")
+
+ any_optional_or_necessary_applied = any_optional_applied or any_necessary_applied
+
+ write_out_file_func(df, fname, any_optional_or_necessary_applied, auto_accept)