diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/openai/resources/vector_stores/file_batches.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/openai/resources/vector_stores/file_batches.py | 801 |
1 files changed, 801 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/openai/resources/vector_stores/file_batches.py b/.venv/lib/python3.12/site-packages/openai/resources/vector_stores/file_batches.py new file mode 100644 index 00000000..9b4b64d3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/resources/vector_stores/file_batches.py @@ -0,0 +1,801 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import asyncio +from typing import Dict, List, Iterable, Optional +from typing_extensions import Union, Literal +from concurrent.futures import Future, ThreadPoolExecutor, as_completed + +import httpx +import sniffio + +from ... import _legacy_response +from ...types import FileChunkingStrategyParam +from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes +from ..._utils import ( + is_given, + maybe_transform, + async_maybe_transform, +) +from ..._compat import cached_property +from ..._resource import SyncAPIResource, AsyncAPIResource +from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ...pagination import SyncCursorPage, AsyncCursorPage +from ..._base_client import AsyncPaginator, make_request_options +from ...types.file_object import FileObject +from ...types.vector_stores import file_batch_create_params, file_batch_list_files_params +from ...types.file_chunking_strategy_param import FileChunkingStrategyParam +from ...types.vector_stores.vector_store_file import VectorStoreFile +from ...types.vector_stores.vector_store_file_batch import VectorStoreFileBatch + +__all__ = ["FileBatches", "AsyncFileBatches"] + + +class FileBatches(SyncAPIResource): + @cached_property + def with_raw_response(self) -> FileBatchesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return FileBatchesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> FileBatchesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return FileBatchesWithStreamingResponse(self) + + def create( + self, + vector_store_id: str, + *, + file_ids: List[str], + attributes: Optional[Dict[str, Union[str, float, bool]]] | NotGiven = NOT_GIVEN, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """ + Create a vector store file batch. + + Args: + file_ids: A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that + the vector store should use. Useful for tools like `file_search` that can access + files. + + attributes: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. Keys are strings with a maximum + length of 64 characters. Values are strings with a maximum length of 512 + characters, booleans, or numbers. + + chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto` + strategy. Only applicable if `file_ids` is non-empty. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + f"/vector_stores/{vector_store_id}/file_batches", + body=maybe_transform( + { + "file_ids": file_ids, + "attributes": attributes, + "chunking_strategy": chunking_strategy, + }, + file_batch_create_params.FileBatchCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFileBatch, + ) + + def retrieve( + self, + batch_id: str, + *, + vector_store_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """ + Retrieves a vector store file batch. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not batch_id: + raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get( + f"/vector_stores/{vector_store_id}/file_batches/{batch_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFileBatch, + ) + + def cancel( + self, + batch_id: str, + *, + vector_store_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """Cancel a vector store file batch. + + This attempts to cancel the processing of + files in this batch as soon as possible. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not batch_id: + raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._post( + f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFileBatch, + ) + + def create_and_poll( + self, + vector_store_id: str, + *, + file_ids: List[str], + poll_interval_ms: int | NotGiven = NOT_GIVEN, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """Create a vector store batch and poll until all files have been processed.""" + batch = self.create( + vector_store_id=vector_store_id, + file_ids=file_ids, + chunking_strategy=chunking_strategy, + ) + # TODO: don't poll unless necessary?? + return self.poll( + batch.id, + vector_store_id=vector_store_id, + poll_interval_ms=poll_interval_ms, + ) + + def list_files( + self, + batch_id: str, + *, + vector_store_id: str, + after: str | NotGiven = NOT_GIVEN, + before: str | NotGiven = NOT_GIVEN, + filter: Literal["in_progress", "completed", "failed", "cancelled"] | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncCursorPage[VectorStoreFile]: + """ + Returns a list of vector store files in a batch. + + Args: + after: A cursor for use in pagination. `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + before: A cursor for use in pagination. `before` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + starting with obj_foo, your subsequent call can include before=obj_foo in order + to fetch the previous page of the list. + + filter: Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not batch_id: + raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/files", + page=SyncCursorPage[VectorStoreFile], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "before": before, + "filter": filter, + "limit": limit, + "order": order, + }, + file_batch_list_files_params.FileBatchListFilesParams, + ), + ), + model=VectorStoreFile, + ) + + def poll( + self, + batch_id: str, + *, + vector_store_id: str, + poll_interval_ms: int | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """Wait for the given file batch to be processed. + + Note: this will return even if one of the files failed to process, you need to + check batch.file_counts.failed_count to handle this case. + """ + headers: dict[str, str] = {"X-Stainless-Poll-Helper": "true"} + if is_given(poll_interval_ms): + headers["X-Stainless-Custom-Poll-Interval"] = str(poll_interval_ms) + + while True: + response = self.with_raw_response.retrieve( + batch_id, + vector_store_id=vector_store_id, + extra_headers=headers, + ) + + batch = response.parse() + if batch.file_counts.in_progress > 0: + if not is_given(poll_interval_ms): + from_header = response.headers.get("openai-poll-after-ms") + if from_header is not None: + poll_interval_ms = int(from_header) + else: + poll_interval_ms = 1000 + + self._sleep(poll_interval_ms / 1000) + continue + + return batch + + def upload_and_poll( + self, + vector_store_id: str, + *, + files: Iterable[FileTypes], + max_concurrency: int = 5, + file_ids: List[str] = [], + poll_interval_ms: int | NotGiven = NOT_GIVEN, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """Uploads the given files concurrently and then creates a vector store file batch. + + If you've already uploaded certain files that you want to include in this batch + then you can pass their IDs through the `file_ids` argument. + + By default, if any file upload fails then an exception will be eagerly raised. + + The number of concurrency uploads is configurable using the `max_concurrency` + parameter. + + Note: this method only supports `asyncio` or `trio` as the backing async + runtime. + """ + results: list[FileObject] = [] + + with ThreadPoolExecutor(max_workers=max_concurrency) as executor: + futures: list[Future[FileObject]] = [ + executor.submit( + self._client.files.create, + file=file, + purpose="assistants", + ) + for file in files + ] + + for future in as_completed(futures): + exc = future.exception() + if exc: + raise exc + + results.append(future.result()) + + batch = self.create_and_poll( + vector_store_id=vector_store_id, + file_ids=[*file_ids, *(f.id for f in results)], + poll_interval_ms=poll_interval_ms, + chunking_strategy=chunking_strategy, + ) + return batch + + +class AsyncFileBatches(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncFileBatchesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers + """ + return AsyncFileBatchesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncFileBatchesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/openai/openai-python#with_streaming_response + """ + return AsyncFileBatchesWithStreamingResponse(self) + + async def create( + self, + vector_store_id: str, + *, + file_ids: List[str], + attributes: Optional[Dict[str, Union[str, float, bool]]] | NotGiven = NOT_GIVEN, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """ + Create a vector store file batch. + + Args: + file_ids: A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that + the vector store should use. Useful for tools like `file_search` that can access + files. + + attributes: Set of 16 key-value pairs that can be attached to an object. This can be useful + for storing additional information about the object in a structured format, and + querying for objects via API or the dashboard. Keys are strings with a maximum + length of 64 characters. Values are strings with a maximum length of 512 + characters, booleans, or numbers. + + chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto` + strategy. Only applicable if `file_ids` is non-empty. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + f"/vector_stores/{vector_store_id}/file_batches", + body=await async_maybe_transform( + { + "file_ids": file_ids, + "attributes": attributes, + "chunking_strategy": chunking_strategy, + }, + file_batch_create_params.FileBatchCreateParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFileBatch, + ) + + async def retrieve( + self, + batch_id: str, + *, + vector_store_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """ + Retrieves a vector store file batch. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not batch_id: + raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._get( + f"/vector_stores/{vector_store_id}/file_batches/{batch_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFileBatch, + ) + + async def cancel( + self, + batch_id: str, + *, + vector_store_id: str, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """Cancel a vector store file batch. + + This attempts to cancel the processing of + files in this batch as soon as possible. + + Args: + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not batch_id: + raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return await self._post( + f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=VectorStoreFileBatch, + ) + + async def create_and_poll( + self, + vector_store_id: str, + *, + file_ids: List[str], + poll_interval_ms: int | NotGiven = NOT_GIVEN, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """Create a vector store batch and poll until all files have been processed.""" + batch = await self.create( + vector_store_id=vector_store_id, + file_ids=file_ids, + chunking_strategy=chunking_strategy, + ) + # TODO: don't poll unless necessary?? + return await self.poll( + batch.id, + vector_store_id=vector_store_id, + poll_interval_ms=poll_interval_ms, + ) + + def list_files( + self, + batch_id: str, + *, + vector_store_id: str, + after: str | NotGiven = NOT_GIVEN, + before: str | NotGiven = NOT_GIVEN, + filter: Literal["in_progress", "completed", "failed", "cancelled"] | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[VectorStoreFile, AsyncCursorPage[VectorStoreFile]]: + """ + Returns a list of vector store files in a batch. + + Args: + after: A cursor for use in pagination. `after` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + ending with obj_foo, your subsequent call can include after=obj_foo in order to + fetch the next page of the list. + + before: A cursor for use in pagination. `before` is an object ID that defines your place + in the list. For instance, if you make a list request and receive 100 objects, + starting with obj_foo, your subsequent call can include before=obj_foo in order + to fetch the previous page of the list. + + filter: Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`. + + limit: A limit on the number of objects to be returned. Limit can range between 1 and + 100, and the default is 20. + + order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not vector_store_id: + raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}") + if not batch_id: + raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}") + extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} + return self._get_api_list( + f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/files", + page=AsyncCursorPage[VectorStoreFile], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after": after, + "before": before, + "filter": filter, + "limit": limit, + "order": order, + }, + file_batch_list_files_params.FileBatchListFilesParams, + ), + ), + model=VectorStoreFile, + ) + + async def poll( + self, + batch_id: str, + *, + vector_store_id: str, + poll_interval_ms: int | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """Wait for the given file batch to be processed. + + Note: this will return even if one of the files failed to process, you need to + check batch.file_counts.failed_count to handle this case. + """ + headers: dict[str, str] = {"X-Stainless-Poll-Helper": "true"} + if is_given(poll_interval_ms): + headers["X-Stainless-Custom-Poll-Interval"] = str(poll_interval_ms) + + while True: + response = await self.with_raw_response.retrieve( + batch_id, + vector_store_id=vector_store_id, + extra_headers=headers, + ) + + batch = response.parse() + if batch.file_counts.in_progress > 0: + if not is_given(poll_interval_ms): + from_header = response.headers.get("openai-poll-after-ms") + if from_header is not None: + poll_interval_ms = int(from_header) + else: + poll_interval_ms = 1000 + + await self._sleep(poll_interval_ms / 1000) + continue + + return batch + + async def upload_and_poll( + self, + vector_store_id: str, + *, + files: Iterable[FileTypes], + max_concurrency: int = 5, + file_ids: List[str] = [], + poll_interval_ms: int | NotGiven = NOT_GIVEN, + chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN, + ) -> VectorStoreFileBatch: + """Uploads the given files concurrently and then creates a vector store file batch. + + If you've already uploaded certain files that you want to include in this batch + then you can pass their IDs through the `file_ids` argument. + + By default, if any file upload fails then an exception will be eagerly raised. + + The number of concurrency uploads is configurable using the `max_concurrency` + parameter. + + Note: this method only supports `asyncio` or `trio` as the backing async + runtime. + """ + uploaded_files: list[FileObject] = [] + + async_library = sniffio.current_async_library() + + if async_library == "asyncio": + + async def asyncio_upload_file(semaphore: asyncio.Semaphore, file: FileTypes) -> None: + async with semaphore: + file_obj = await self._client.files.create( + file=file, + purpose="assistants", + ) + uploaded_files.append(file_obj) + + semaphore = asyncio.Semaphore(max_concurrency) + + tasks = [asyncio_upload_file(semaphore, file) for file in files] + + await asyncio.gather(*tasks) + elif async_library == "trio": + # We only import if the library is being used. + # We support Python 3.7 so are using an older version of trio that does not have type information + import trio # type: ignore # pyright: ignore[reportMissingTypeStubs] + + async def trio_upload_file(limiter: trio.CapacityLimiter, file: FileTypes) -> None: + async with limiter: + file_obj = await self._client.files.create( + file=file, + purpose="assistants", + ) + uploaded_files.append(file_obj) + + limiter = trio.CapacityLimiter(max_concurrency) + + async with trio.open_nursery() as nursery: + for file in files: + nursery.start_soon(trio_upload_file, limiter, file) # pyright: ignore [reportUnknownMemberType] + else: + raise RuntimeError( + f"Async runtime {async_library} is not supported yet. Only asyncio or trio is supported", + ) + + batch = await self.create_and_poll( + vector_store_id=vector_store_id, + file_ids=[*file_ids, *(f.id for f in uploaded_files)], + poll_interval_ms=poll_interval_ms, + chunking_strategy=chunking_strategy, + ) + return batch + + +class FileBatchesWithRawResponse: + def __init__(self, file_batches: FileBatches) -> None: + self._file_batches = file_batches + + self.create = _legacy_response.to_raw_response_wrapper( + file_batches.create, + ) + self.retrieve = _legacy_response.to_raw_response_wrapper( + file_batches.retrieve, + ) + self.cancel = _legacy_response.to_raw_response_wrapper( + file_batches.cancel, + ) + self.list_files = _legacy_response.to_raw_response_wrapper( + file_batches.list_files, + ) + + +class AsyncFileBatchesWithRawResponse: + def __init__(self, file_batches: AsyncFileBatches) -> None: + self._file_batches = file_batches + + self.create = _legacy_response.async_to_raw_response_wrapper( + file_batches.create, + ) + self.retrieve = _legacy_response.async_to_raw_response_wrapper( + file_batches.retrieve, + ) + self.cancel = _legacy_response.async_to_raw_response_wrapper( + file_batches.cancel, + ) + self.list_files = _legacy_response.async_to_raw_response_wrapper( + file_batches.list_files, + ) + + +class FileBatchesWithStreamingResponse: + def __init__(self, file_batches: FileBatches) -> None: + self._file_batches = file_batches + + self.create = to_streamed_response_wrapper( + file_batches.create, + ) + self.retrieve = to_streamed_response_wrapper( + file_batches.retrieve, + ) + self.cancel = to_streamed_response_wrapper( + file_batches.cancel, + ) + self.list_files = to_streamed_response_wrapper( + file_batches.list_files, + ) + + +class AsyncFileBatchesWithStreamingResponse: + def __init__(self, file_batches: AsyncFileBatches) -> None: + self._file_batches = file_batches + + self.create = async_to_streamed_response_wrapper( + file_batches.create, + ) + self.retrieve = async_to_streamed_response_wrapper( + file_batches.retrieve, + ) + self.cancel = async_to_streamed_response_wrapper( + file_batches.cancel, + ) + self.list_files = async_to_streamed_response_wrapper( + file_batches.list_files, + ) |