aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/chat
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/base_llm/chat')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/base_llm/chat/transformation.py372
1 files changed, 372 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/chat/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/chat/transformation.py
new file mode 100644
index 00000000..1b5a6bc5
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/chat/transformation.py
@@ -0,0 +1,372 @@
+"""
+Common base config for all LLM providers
+"""
+
+import types
+from abc import ABC, abstractmethod
+from typing import (
+ TYPE_CHECKING,
+ Any,
+ AsyncIterator,
+ Iterator,
+ List,
+ Optional,
+ Type,
+ Union,
+)
+
+import httpx
+from pydantic import BaseModel
+
+from litellm.constants import RESPONSE_FORMAT_TOOL_NAME
+from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
+from litellm.types.llms.openai import (
+ AllMessageValues,
+ ChatCompletionToolChoiceFunctionParam,
+ ChatCompletionToolChoiceObjectParam,
+ ChatCompletionToolParam,
+ ChatCompletionToolParamFunctionChunk,
+)
+from litellm.types.utils import ModelResponse
+from litellm.utils import CustomStreamWrapper
+
+from ..base_utils import (
+ map_developer_role_to_system_role,
+ type_to_response_format_param,
+)
+
+if TYPE_CHECKING:
+ from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
+
+ LiteLLMLoggingObj = _LiteLLMLoggingObj
+else:
+ LiteLLMLoggingObj = Any
+
+
+class BaseLLMException(Exception):
+ def __init__(
+ self,
+ status_code: int,
+ message: str,
+ headers: Optional[Union[dict, httpx.Headers]] = None,
+ request: Optional[httpx.Request] = None,
+ response: Optional[httpx.Response] = None,
+ body: Optional[dict] = None,
+ ):
+ self.status_code = status_code
+ self.message: str = message
+ self.headers = headers
+ if request:
+ self.request = request
+ else:
+ self.request = httpx.Request(
+ method="POST", url="https://docs.litellm.ai/docs"
+ )
+ if response:
+ self.response = response
+ else:
+ self.response = httpx.Response(
+ status_code=status_code, request=self.request
+ )
+ self.body = body
+ super().__init__(
+ self.message
+ ) # Call the base class constructor with the parameters it needs
+
+
+class BaseConfig(ABC):
+ def __init__(self):
+ pass
+
+ @classmethod
+ def get_config(cls):
+ return {
+ k: v
+ for k, v in cls.__dict__.items()
+ if not k.startswith("__")
+ and not k.startswith("_abc")
+ and not isinstance(
+ v,
+ (
+ types.FunctionType,
+ types.BuiltinFunctionType,
+ classmethod,
+ staticmethod,
+ ),
+ )
+ and v is not None
+ }
+
+ def get_json_schema_from_pydantic_object(
+ self, response_format: Optional[Union[Type[BaseModel], dict]]
+ ) -> Optional[dict]:
+ return type_to_response_format_param(response_format=response_format)
+
+ def should_fake_stream(
+ self,
+ model: Optional[str],
+ stream: Optional[bool],
+ custom_llm_provider: Optional[str] = None,
+ ) -> bool:
+ """
+ Returns True if the model/provider should fake stream
+ """
+ return False
+
+ def _add_tools_to_optional_params(self, optional_params: dict, tools: List) -> dict:
+ """
+ Helper util to add tools to optional_params.
+ """
+ if "tools" not in optional_params:
+ optional_params["tools"] = tools
+ else:
+ optional_params["tools"] = [
+ *optional_params["tools"],
+ *tools,
+ ]
+ return optional_params
+
+ def translate_developer_role_to_system_role(
+ self,
+ messages: List[AllMessageValues],
+ ) -> List[AllMessageValues]:
+ """
+ Translate `developer` role to `system` role for non-OpenAI providers.
+
+ Overriden by OpenAI/Azure
+ """
+ return map_developer_role_to_system_role(messages=messages)
+
+ def should_retry_llm_api_inside_llm_translation_on_http_error(
+ self, e: httpx.HTTPStatusError, litellm_params: dict
+ ) -> bool:
+ """
+ Returns True if the model/provider should retry the LLM API on UnprocessableEntityError
+
+ Overriden by azure ai - where different models support different parameters
+ """
+ return False
+
+ def transform_request_on_unprocessable_entity_error(
+ self, e: httpx.HTTPStatusError, request_data: dict
+ ) -> dict:
+ """
+ Transform the request data on UnprocessableEntityError
+ """
+ return request_data
+
+ @property
+ def max_retry_on_unprocessable_entity_error(self) -> int:
+ """
+ Returns the max retry count for UnprocessableEntityError
+
+ Used if `should_retry_llm_api_inside_llm_translation_on_http_error` is True
+ """
+ return 0
+
+ @abstractmethod
+ def get_supported_openai_params(self, model: str) -> list:
+ pass
+
+ def _add_response_format_to_tools(
+ self,
+ optional_params: dict,
+ value: dict,
+ is_response_format_supported: bool,
+ enforce_tool_choice: bool = True,
+ ) -> dict:
+ """
+ Follow similar approach to anthropic - translate to a single tool call.
+
+ When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
+ - You usually want to provide a single tool
+ - You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
+ - Remember that the model will pass the input to the tool, so the name of the tool and description should be from the model’s perspective.
+
+ Add response format to tools
+
+ This is used to translate response_format to a tool call, for models/APIs that don't support response_format directly.
+ """
+ json_schema: Optional[dict] = None
+ if "response_schema" in value:
+ json_schema = value["response_schema"]
+ elif "json_schema" in value:
+ json_schema = value["json_schema"]["schema"]
+
+ if json_schema and not is_response_format_supported:
+
+ _tool_choice = ChatCompletionToolChoiceObjectParam(
+ type="function",
+ function=ChatCompletionToolChoiceFunctionParam(
+ name=RESPONSE_FORMAT_TOOL_NAME
+ ),
+ )
+
+ _tool = ChatCompletionToolParam(
+ type="function",
+ function=ChatCompletionToolParamFunctionChunk(
+ name=RESPONSE_FORMAT_TOOL_NAME, parameters=json_schema
+ ),
+ )
+
+ optional_params.setdefault("tools", [])
+ optional_params["tools"].append(_tool)
+ if enforce_tool_choice:
+ optional_params["tool_choice"] = _tool_choice
+
+ optional_params["json_mode"] = True
+ elif is_response_format_supported:
+ optional_params["response_format"] = value
+ return optional_params
+
+ @abstractmethod
+ def map_openai_params(
+ self,
+ non_default_params: dict,
+ optional_params: dict,
+ model: str,
+ drop_params: bool,
+ ) -> dict:
+ pass
+
+ @abstractmethod
+ def validate_environment(
+ self,
+ headers: dict,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ api_key: Optional[str] = None,
+ api_base: Optional[str] = None,
+ ) -> dict:
+ pass
+
+ def sign_request(
+ self,
+ headers: dict,
+ optional_params: dict,
+ request_data: dict,
+ api_base: str,
+ model: Optional[str] = None,
+ stream: Optional[bool] = None,
+ fake_stream: Optional[bool] = None,
+ ) -> dict:
+ """
+ Some providers like Bedrock require signing the request. The sign request funtion needs access to `request_data` and `complete_url`
+ Args:
+ headers: dict
+ optional_params: dict
+ request_data: dict - the request body being sent in http request
+ api_base: str - the complete url being sent in http request
+ Returns:
+ dict - the signed headers
+
+ Update the headers with the signed headers in this function. The return values will be sent as headers in the http request.
+ """
+ return headers
+
+ def get_complete_url(
+ self,
+ api_base: Optional[str],
+ model: str,
+ optional_params: dict,
+ litellm_params: dict,
+ stream: Optional[bool] = None,
+ ) -> str:
+ """
+ OPTIONAL
+
+ Get the complete url for the request
+
+ Some providers need `model` in `api_base`
+ """
+ if api_base is None:
+ raise ValueError("api_base is required")
+ return api_base
+
+ @abstractmethod
+ def transform_request(
+ self,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ headers: dict,
+ ) -> dict:
+ pass
+
+ @abstractmethod
+ def transform_response(
+ self,
+ model: str,
+ raw_response: httpx.Response,
+ model_response: ModelResponse,
+ logging_obj: LiteLLMLoggingObj,
+ request_data: dict,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ encoding: Any,
+ api_key: Optional[str] = None,
+ json_mode: Optional[bool] = None,
+ ) -> ModelResponse:
+ pass
+
+ @abstractmethod
+ def get_error_class(
+ self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
+ ) -> BaseLLMException:
+ pass
+
+ def get_model_response_iterator(
+ self,
+ streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
+ sync_stream: bool,
+ json_mode: Optional[bool] = False,
+ ) -> Any:
+ pass
+
+ def get_async_custom_stream_wrapper(
+ self,
+ model: str,
+ custom_llm_provider: str,
+ logging_obj: LiteLLMLoggingObj,
+ api_base: str,
+ headers: dict,
+ data: dict,
+ messages: list,
+ client: Optional[AsyncHTTPHandler] = None,
+ json_mode: Optional[bool] = None,
+ ) -> CustomStreamWrapper:
+ raise NotImplementedError
+
+ def get_sync_custom_stream_wrapper(
+ self,
+ model: str,
+ custom_llm_provider: str,
+ logging_obj: LiteLLMLoggingObj,
+ api_base: str,
+ headers: dict,
+ data: dict,
+ messages: list,
+ client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
+ json_mode: Optional[bool] = None,
+ ) -> CustomStreamWrapper:
+ raise NotImplementedError
+
+ @property
+ def custom_llm_provider(self) -> Optional[str]:
+ return None
+
+ @property
+ def has_custom_stream_wrapper(self) -> bool:
+ return False
+
+ @property
+ def supports_stream_param_in_request_body(self) -> bool:
+ """
+ Some providers like Bedrock invoke do not support the stream parameter in the request body.
+
+ By default, this is true for almost all providers.
+ """
+ return True