aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/base_llm
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/base_llm')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/base_llm/anthropic_messages/transformation.py35
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/base_llm/audio_transcription/transformation.py73
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/base_llm/base_model_iterator.py137
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/base_llm/base_utils.py142
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/base_llm/chat/transformation.py372
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/base_llm/completion/transformation.py74
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/base_llm/embedding/transformation.py88
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/base_llm/image_variations/transformation.py132
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/base_llm/rerank/transformation.py128
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/base_llm/responses/transformation.py141
10 files changed, 1322 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/anthropic_messages/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/anthropic_messages/transformation.py
new file mode 100644
index 00000000..7619ffbb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/anthropic_messages/transformation.py
@@ -0,0 +1,35 @@
+from abc import ABC, abstractmethod
+from typing import TYPE_CHECKING, Any, Optional
+
+if TYPE_CHECKING:
+ from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
+
+ LiteLLMLoggingObj = _LiteLLMLoggingObj
+else:
+ LiteLLMLoggingObj = Any
+
+
+class BaseAnthropicMessagesConfig(ABC):
+ @abstractmethod
+ def validate_environment(
+ self,
+ headers: dict,
+ model: str,
+ api_key: Optional[str] = None,
+ ) -> dict:
+ pass
+
+ @abstractmethod
+ def get_complete_url(self, api_base: Optional[str], model: str) -> str:
+ """
+ OPTIONAL
+
+ Get the complete url for the request
+
+ Some providers need `model` in `api_base`
+ """
+ return api_base or ""
+
+ @abstractmethod
+ def get_supported_anthropic_messages_params(self, model: str) -> list:
+ pass
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/audio_transcription/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/audio_transcription/transformation.py
new file mode 100644
index 00000000..e550c574
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/audio_transcription/transformation.py
@@ -0,0 +1,73 @@
+from abc import ABC, abstractmethod
+from typing import TYPE_CHECKING, Any, List, Optional
+
+import httpx
+
+from litellm.llms.base_llm.chat.transformation import BaseConfig
+from litellm.types.llms.openai import (
+ AllMessageValues,
+ OpenAIAudioTranscriptionOptionalParams,
+)
+from litellm.types.utils import ModelResponse
+
+if TYPE_CHECKING:
+ from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
+
+ LiteLLMLoggingObj = _LiteLLMLoggingObj
+else:
+ LiteLLMLoggingObj = Any
+
+
+class BaseAudioTranscriptionConfig(BaseConfig, ABC):
+ @abstractmethod
+ def get_supported_openai_params(
+ self, model: str
+ ) -> List[OpenAIAudioTranscriptionOptionalParams]:
+ pass
+
+ def get_complete_url(
+ self,
+ api_base: Optional[str],
+ model: str,
+ optional_params: dict,
+ litellm_params: dict,
+ stream: Optional[bool] = None,
+ ) -> str:
+ """
+ OPTIONAL
+
+ Get the complete url for the request
+
+ Some providers need `model` in `api_base`
+ """
+ return api_base or ""
+
+ def transform_request(
+ self,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ headers: dict,
+ ) -> dict:
+ raise NotImplementedError(
+ "AudioTranscriptionConfig does not need a request transformation for audio transcription models"
+ )
+
+ def transform_response(
+ self,
+ model: str,
+ raw_response: httpx.Response,
+ model_response: ModelResponse,
+ logging_obj: LiteLLMLoggingObj,
+ request_data: dict,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ encoding: Any,
+ api_key: Optional[str] = None,
+ json_mode: Optional[bool] = None,
+ ) -> ModelResponse:
+ raise NotImplementedError(
+ "AudioTranscriptionConfig does not need a response transformation for audio transcription models"
+ )
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/base_model_iterator.py b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/base_model_iterator.py
new file mode 100644
index 00000000..67b1466c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/base_model_iterator.py
@@ -0,0 +1,137 @@
+import json
+from abc import abstractmethod
+from typing import Optional, Union
+
+from litellm.types.utils import GenericStreamingChunk, ModelResponseStream
+
+
+class BaseModelResponseIterator:
+ def __init__(
+ self, streaming_response, sync_stream: bool, json_mode: Optional[bool] = False
+ ):
+ self.streaming_response = streaming_response
+ self.response_iterator = self.streaming_response
+ self.json_mode = json_mode
+
+ def chunk_parser(
+ self, chunk: dict
+ ) -> Union[GenericStreamingChunk, ModelResponseStream]:
+ return GenericStreamingChunk(
+ text="",
+ is_finished=False,
+ finish_reason="",
+ usage=None,
+ index=0,
+ tool_use=None,
+ )
+
+ # Sync iterator
+ def __iter__(self):
+ return self
+
+ def _handle_string_chunk(
+ self, str_line: str
+ ) -> Union[GenericStreamingChunk, ModelResponseStream]:
+ # chunk is a str at this point
+ if "[DONE]" in str_line:
+ return GenericStreamingChunk(
+ text="",
+ is_finished=True,
+ finish_reason="stop",
+ usage=None,
+ index=0,
+ tool_use=None,
+ )
+ elif str_line.startswith("data:"):
+ data_json = json.loads(str_line[5:])
+ return self.chunk_parser(chunk=data_json)
+ else:
+ return GenericStreamingChunk(
+ text="",
+ is_finished=False,
+ finish_reason="",
+ usage=None,
+ index=0,
+ tool_use=None,
+ )
+
+ def __next__(self):
+ try:
+ chunk = self.response_iterator.__next__()
+ except StopIteration:
+ raise StopIteration
+ except ValueError as e:
+ raise RuntimeError(f"Error receiving chunk from stream: {e}")
+
+ try:
+ str_line = chunk
+ if isinstance(chunk, bytes): # Handle binary data
+ str_line = chunk.decode("utf-8") # Convert bytes to string
+ index = str_line.find("data:")
+ if index != -1:
+ str_line = str_line[index:]
+ # chunk is a str at this point
+ return self._handle_string_chunk(str_line=str_line)
+ except StopIteration:
+ raise StopIteration
+ except ValueError as e:
+ raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
+
+ # Async iterator
+ def __aiter__(self):
+ self.async_response_iterator = self.streaming_response.__aiter__()
+ return self
+
+ async def __anext__(self):
+ try:
+ chunk = await self.async_response_iterator.__anext__()
+ except StopAsyncIteration:
+ raise StopAsyncIteration
+ except ValueError as e:
+ raise RuntimeError(f"Error receiving chunk from stream: {e}")
+
+ try:
+ str_line = chunk
+ if isinstance(chunk, bytes): # Handle binary data
+ str_line = chunk.decode("utf-8") # Convert bytes to string
+ index = str_line.find("data:")
+ if index != -1:
+ str_line = str_line[index:]
+
+ # chunk is a str at this point
+ return self._handle_string_chunk(str_line=str_line)
+ except StopAsyncIteration:
+ raise StopAsyncIteration
+ except ValueError as e:
+ raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
+
+
+class FakeStreamResponseIterator:
+ def __init__(self, model_response, json_mode: Optional[bool] = False):
+ self.model_response = model_response
+ self.json_mode = json_mode
+ self.is_done = False
+
+ # Sync iterator
+ def __iter__(self):
+ return self
+
+ @abstractmethod
+ def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
+ pass
+
+ def __next__(self):
+ if self.is_done:
+ raise StopIteration
+ self.is_done = True
+ return self.chunk_parser(self.model_response)
+
+ # Async iterator
+ def __aiter__(self):
+ return self
+
+ async def __anext__(self):
+ if self.is_done:
+ raise StopAsyncIteration
+ self.is_done = True
+ return self.chunk_parser(self.model_response)
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/base_utils.py b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/base_utils.py
new file mode 100644
index 00000000..919cdbfd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/base_utils.py
@@ -0,0 +1,142 @@
+"""
+Utility functions for base LLM classes.
+"""
+
+import copy
+from abc import ABC, abstractmethod
+from typing import List, Optional, Type, Union
+
+from openai.lib import _parsing, _pydantic
+from pydantic import BaseModel
+
+from litellm._logging import verbose_logger
+from litellm.types.llms.openai import AllMessageValues
+from litellm.types.utils import ProviderSpecificModelInfo
+
+
+class BaseLLMModelInfo(ABC):
+ def get_provider_info(
+ self,
+ model: str,
+ ) -> Optional[ProviderSpecificModelInfo]:
+ return None
+
+ @abstractmethod
+ def get_models(self) -> List[str]:
+ pass
+
+ @staticmethod
+ @abstractmethod
+ def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
+ pass
+
+ @staticmethod
+ @abstractmethod
+ def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
+ pass
+
+ @staticmethod
+ @abstractmethod
+ def get_base_model(model: str) -> Optional[str]:
+ """
+ Returns the base model name from the given model name.
+
+ Some providers like bedrock - can receive model=`invoke/anthropic.claude-3-opus-20240229-v1:0` or `converse/anthropic.claude-3-opus-20240229-v1:0`
+ This function will return `anthropic.claude-3-opus-20240229-v1:0`
+ """
+ pass
+
+
+def _dict_to_response_format_helper(
+ response_format: dict, ref_template: Optional[str] = None
+) -> dict:
+ if ref_template is not None and response_format.get("type") == "json_schema":
+ # Deep copy to avoid modifying original
+ modified_format = copy.deepcopy(response_format)
+ schema = modified_format["json_schema"]["schema"]
+
+ # Update all $ref values in the schema
+ def update_refs(schema):
+ stack = [(schema, [])]
+ visited = set()
+
+ while stack:
+ obj, path = stack.pop()
+ obj_id = id(obj)
+
+ if obj_id in visited:
+ continue
+ visited.add(obj_id)
+
+ if isinstance(obj, dict):
+ if "$ref" in obj:
+ ref_path = obj["$ref"]
+ model_name = ref_path.split("/")[-1]
+ obj["$ref"] = ref_template.format(model=model_name)
+
+ for k, v in obj.items():
+ if isinstance(v, (dict, list)):
+ stack.append((v, path + [k]))
+
+ elif isinstance(obj, list):
+ for i, item in enumerate(obj):
+ if isinstance(item, (dict, list)):
+ stack.append((item, path + [i]))
+
+ update_refs(schema)
+ return modified_format
+ return response_format
+
+
+def type_to_response_format_param(
+ response_format: Optional[Union[Type[BaseModel], dict]],
+ ref_template: Optional[str] = None,
+) -> Optional[dict]:
+ """
+ Re-implementation of openai's 'type_to_response_format_param' function
+
+ Used for converting pydantic object to api schema.
+ """
+ if response_format is None:
+ return None
+
+ if isinstance(response_format, dict):
+ return _dict_to_response_format_helper(response_format, ref_template)
+
+ # type checkers don't narrow the negation of a `TypeGuard` as it isn't
+ # a safe default behaviour but we know that at this point the `response_format`
+ # can only be a `type`
+ if not _parsing._completions.is_basemodel_type(response_format):
+ raise TypeError(f"Unsupported response_format type - {response_format}")
+
+ if ref_template is not None:
+ schema = response_format.model_json_schema(ref_template=ref_template)
+ else:
+ schema = _pydantic.to_strict_json_schema(response_format)
+
+ return {
+ "type": "json_schema",
+ "json_schema": {
+ "schema": schema,
+ "name": response_format.__name__,
+ "strict": True,
+ },
+ }
+
+
+def map_developer_role_to_system_role(
+ messages: List[AllMessageValues],
+) -> List[AllMessageValues]:
+ """
+ Translate `developer` role to `system` role for non-OpenAI providers.
+ """
+ new_messages: List[AllMessageValues] = []
+ for m in messages:
+ if m["role"] == "developer":
+ verbose_logger.debug(
+ "Translating developer role to system role for non-OpenAI providers."
+ ) # ensure user knows what's happening with their input.
+ new_messages.append({"role": "system", "content": m["content"]})
+ else:
+ new_messages.append(m)
+ return new_messages
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/chat/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/chat/transformation.py
new file mode 100644
index 00000000..1b5a6bc5
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/chat/transformation.py
@@ -0,0 +1,372 @@
+"""
+Common base config for all LLM providers
+"""
+
+import types
+from abc import ABC, abstractmethod
+from typing import (
+ TYPE_CHECKING,
+ Any,
+ AsyncIterator,
+ Iterator,
+ List,
+ Optional,
+ Type,
+ Union,
+)
+
+import httpx
+from pydantic import BaseModel
+
+from litellm.constants import RESPONSE_FORMAT_TOOL_NAME
+from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
+from litellm.types.llms.openai import (
+ AllMessageValues,
+ ChatCompletionToolChoiceFunctionParam,
+ ChatCompletionToolChoiceObjectParam,
+ ChatCompletionToolParam,
+ ChatCompletionToolParamFunctionChunk,
+)
+from litellm.types.utils import ModelResponse
+from litellm.utils import CustomStreamWrapper
+
+from ..base_utils import (
+ map_developer_role_to_system_role,
+ type_to_response_format_param,
+)
+
+if TYPE_CHECKING:
+ from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
+
+ LiteLLMLoggingObj = _LiteLLMLoggingObj
+else:
+ LiteLLMLoggingObj = Any
+
+
+class BaseLLMException(Exception):
+ def __init__(
+ self,
+ status_code: int,
+ message: str,
+ headers: Optional[Union[dict, httpx.Headers]] = None,
+ request: Optional[httpx.Request] = None,
+ response: Optional[httpx.Response] = None,
+ body: Optional[dict] = None,
+ ):
+ self.status_code = status_code
+ self.message: str = message
+ self.headers = headers
+ if request:
+ self.request = request
+ else:
+ self.request = httpx.Request(
+ method="POST", url="https://docs.litellm.ai/docs"
+ )
+ if response:
+ self.response = response
+ else:
+ self.response = httpx.Response(
+ status_code=status_code, request=self.request
+ )
+ self.body = body
+ super().__init__(
+ self.message
+ ) # Call the base class constructor with the parameters it needs
+
+
+class BaseConfig(ABC):
+ def __init__(self):
+ pass
+
+ @classmethod
+ def get_config(cls):
+ return {
+ k: v
+ for k, v in cls.__dict__.items()
+ if not k.startswith("__")
+ and not k.startswith("_abc")
+ and not isinstance(
+ v,
+ (
+ types.FunctionType,
+ types.BuiltinFunctionType,
+ classmethod,
+ staticmethod,
+ ),
+ )
+ and v is not None
+ }
+
+ def get_json_schema_from_pydantic_object(
+ self, response_format: Optional[Union[Type[BaseModel], dict]]
+ ) -> Optional[dict]:
+ return type_to_response_format_param(response_format=response_format)
+
+ def should_fake_stream(
+ self,
+ model: Optional[str],
+ stream: Optional[bool],
+ custom_llm_provider: Optional[str] = None,
+ ) -> bool:
+ """
+ Returns True if the model/provider should fake stream
+ """
+ return False
+
+ def _add_tools_to_optional_params(self, optional_params: dict, tools: List) -> dict:
+ """
+ Helper util to add tools to optional_params.
+ """
+ if "tools" not in optional_params:
+ optional_params["tools"] = tools
+ else:
+ optional_params["tools"] = [
+ *optional_params["tools"],
+ *tools,
+ ]
+ return optional_params
+
+ def translate_developer_role_to_system_role(
+ self,
+ messages: List[AllMessageValues],
+ ) -> List[AllMessageValues]:
+ """
+ Translate `developer` role to `system` role for non-OpenAI providers.
+
+ Overriden by OpenAI/Azure
+ """
+ return map_developer_role_to_system_role(messages=messages)
+
+ def should_retry_llm_api_inside_llm_translation_on_http_error(
+ self, e: httpx.HTTPStatusError, litellm_params: dict
+ ) -> bool:
+ """
+ Returns True if the model/provider should retry the LLM API on UnprocessableEntityError
+
+ Overriden by azure ai - where different models support different parameters
+ """
+ return False
+
+ def transform_request_on_unprocessable_entity_error(
+ self, e: httpx.HTTPStatusError, request_data: dict
+ ) -> dict:
+ """
+ Transform the request data on UnprocessableEntityError
+ """
+ return request_data
+
+ @property
+ def max_retry_on_unprocessable_entity_error(self) -> int:
+ """
+ Returns the max retry count for UnprocessableEntityError
+
+ Used if `should_retry_llm_api_inside_llm_translation_on_http_error` is True
+ """
+ return 0
+
+ @abstractmethod
+ def get_supported_openai_params(self, model: str) -> list:
+ pass
+
+ def _add_response_format_to_tools(
+ self,
+ optional_params: dict,
+ value: dict,
+ is_response_format_supported: bool,
+ enforce_tool_choice: bool = True,
+ ) -> dict:
+ """
+ Follow similar approach to anthropic - translate to a single tool call.
+
+ When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
+ - You usually want to provide a single tool
+ - You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
+ - Remember that the model will pass the input to the tool, so the name of the tool and description should be from the model’s perspective.
+
+ Add response format to tools
+
+ This is used to translate response_format to a tool call, for models/APIs that don't support response_format directly.
+ """
+ json_schema: Optional[dict] = None
+ if "response_schema" in value:
+ json_schema = value["response_schema"]
+ elif "json_schema" in value:
+ json_schema = value["json_schema"]["schema"]
+
+ if json_schema and not is_response_format_supported:
+
+ _tool_choice = ChatCompletionToolChoiceObjectParam(
+ type="function",
+ function=ChatCompletionToolChoiceFunctionParam(
+ name=RESPONSE_FORMAT_TOOL_NAME
+ ),
+ )
+
+ _tool = ChatCompletionToolParam(
+ type="function",
+ function=ChatCompletionToolParamFunctionChunk(
+ name=RESPONSE_FORMAT_TOOL_NAME, parameters=json_schema
+ ),
+ )
+
+ optional_params.setdefault("tools", [])
+ optional_params["tools"].append(_tool)
+ if enforce_tool_choice:
+ optional_params["tool_choice"] = _tool_choice
+
+ optional_params["json_mode"] = True
+ elif is_response_format_supported:
+ optional_params["response_format"] = value
+ return optional_params
+
+ @abstractmethod
+ def map_openai_params(
+ self,
+ non_default_params: dict,
+ optional_params: dict,
+ model: str,
+ drop_params: bool,
+ ) -> dict:
+ pass
+
+ @abstractmethod
+ def validate_environment(
+ self,
+ headers: dict,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ api_key: Optional[str] = None,
+ api_base: Optional[str] = None,
+ ) -> dict:
+ pass
+
+ def sign_request(
+ self,
+ headers: dict,
+ optional_params: dict,
+ request_data: dict,
+ api_base: str,
+ model: Optional[str] = None,
+ stream: Optional[bool] = None,
+ fake_stream: Optional[bool] = None,
+ ) -> dict:
+ """
+ Some providers like Bedrock require signing the request. The sign request funtion needs access to `request_data` and `complete_url`
+ Args:
+ headers: dict
+ optional_params: dict
+ request_data: dict - the request body being sent in http request
+ api_base: str - the complete url being sent in http request
+ Returns:
+ dict - the signed headers
+
+ Update the headers with the signed headers in this function. The return values will be sent as headers in the http request.
+ """
+ return headers
+
+ def get_complete_url(
+ self,
+ api_base: Optional[str],
+ model: str,
+ optional_params: dict,
+ litellm_params: dict,
+ stream: Optional[bool] = None,
+ ) -> str:
+ """
+ OPTIONAL
+
+ Get the complete url for the request
+
+ Some providers need `model` in `api_base`
+ """
+ if api_base is None:
+ raise ValueError("api_base is required")
+ return api_base
+
+ @abstractmethod
+ def transform_request(
+ self,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ headers: dict,
+ ) -> dict:
+ pass
+
+ @abstractmethod
+ def transform_response(
+ self,
+ model: str,
+ raw_response: httpx.Response,
+ model_response: ModelResponse,
+ logging_obj: LiteLLMLoggingObj,
+ request_data: dict,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ encoding: Any,
+ api_key: Optional[str] = None,
+ json_mode: Optional[bool] = None,
+ ) -> ModelResponse:
+ pass
+
+ @abstractmethod
+ def get_error_class(
+ self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
+ ) -> BaseLLMException:
+ pass
+
+ def get_model_response_iterator(
+ self,
+ streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
+ sync_stream: bool,
+ json_mode: Optional[bool] = False,
+ ) -> Any:
+ pass
+
+ def get_async_custom_stream_wrapper(
+ self,
+ model: str,
+ custom_llm_provider: str,
+ logging_obj: LiteLLMLoggingObj,
+ api_base: str,
+ headers: dict,
+ data: dict,
+ messages: list,
+ client: Optional[AsyncHTTPHandler] = None,
+ json_mode: Optional[bool] = None,
+ ) -> CustomStreamWrapper:
+ raise NotImplementedError
+
+ def get_sync_custom_stream_wrapper(
+ self,
+ model: str,
+ custom_llm_provider: str,
+ logging_obj: LiteLLMLoggingObj,
+ api_base: str,
+ headers: dict,
+ data: dict,
+ messages: list,
+ client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
+ json_mode: Optional[bool] = None,
+ ) -> CustomStreamWrapper:
+ raise NotImplementedError
+
+ @property
+ def custom_llm_provider(self) -> Optional[str]:
+ return None
+
+ @property
+ def has_custom_stream_wrapper(self) -> bool:
+ return False
+
+ @property
+ def supports_stream_param_in_request_body(self) -> bool:
+ """
+ Some providers like Bedrock invoke do not support the stream parameter in the request body.
+
+ By default, this is true for almost all providers.
+ """
+ return True
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/completion/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/completion/transformation.py
new file mode 100644
index 00000000..9432f02d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/completion/transformation.py
@@ -0,0 +1,74 @@
+from abc import ABC, abstractmethod
+from typing import TYPE_CHECKING, Any, List, Optional, Union
+
+import httpx
+
+from litellm.llms.base_llm.chat.transformation import BaseConfig
+from litellm.types.llms.openai import AllMessageValues, OpenAITextCompletionUserMessage
+from litellm.types.utils import ModelResponse
+
+if TYPE_CHECKING:
+ from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
+
+ LiteLLMLoggingObj = _LiteLLMLoggingObj
+else:
+ LiteLLMLoggingObj = Any
+
+
+class BaseTextCompletionConfig(BaseConfig, ABC):
+ @abstractmethod
+ def transform_text_completion_request(
+ self,
+ model: str,
+ messages: Union[List[AllMessageValues], List[OpenAITextCompletionUserMessage]],
+ optional_params: dict,
+ headers: dict,
+ ) -> dict:
+ return {}
+
+ def get_complete_url(
+ self,
+ api_base: Optional[str],
+ model: str,
+ optional_params: dict,
+ litellm_params: dict,
+ stream: Optional[bool] = None,
+ ) -> str:
+ """
+ OPTIONAL
+
+ Get the complete url for the request
+
+ Some providers need `model` in `api_base`
+ """
+ return api_base or ""
+
+ def transform_request(
+ self,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ headers: dict,
+ ) -> dict:
+ raise NotImplementedError(
+ "AudioTranscriptionConfig does not need a request transformation for audio transcription models"
+ )
+
+ def transform_response(
+ self,
+ model: str,
+ raw_response: httpx.Response,
+ model_response: ModelResponse,
+ logging_obj: LiteLLMLoggingObj,
+ request_data: dict,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ encoding: Any,
+ api_key: Optional[str] = None,
+ json_mode: Optional[bool] = None,
+ ) -> ModelResponse:
+ raise NotImplementedError(
+ "AudioTranscriptionConfig does not need a response transformation for audio transcription models"
+ )
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/embedding/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/embedding/transformation.py
new file mode 100644
index 00000000..68c0a7c0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/embedding/transformation.py
@@ -0,0 +1,88 @@
+from abc import ABC, abstractmethod
+from typing import TYPE_CHECKING, Any, List, Optional
+
+import httpx
+
+from litellm.llms.base_llm.chat.transformation import BaseConfig
+from litellm.types.llms.openai import AllEmbeddingInputValues, AllMessageValues
+from litellm.types.utils import EmbeddingResponse, ModelResponse
+
+if TYPE_CHECKING:
+ from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
+
+ LiteLLMLoggingObj = _LiteLLMLoggingObj
+else:
+ LiteLLMLoggingObj = Any
+
+
+class BaseEmbeddingConfig(BaseConfig, ABC):
+ @abstractmethod
+ def transform_embedding_request(
+ self,
+ model: str,
+ input: AllEmbeddingInputValues,
+ optional_params: dict,
+ headers: dict,
+ ) -> dict:
+ return {}
+
+ @abstractmethod
+ def transform_embedding_response(
+ self,
+ model: str,
+ raw_response: httpx.Response,
+ model_response: EmbeddingResponse,
+ logging_obj: LiteLLMLoggingObj,
+ api_key: Optional[str],
+ request_data: dict,
+ optional_params: dict,
+ litellm_params: dict,
+ ) -> EmbeddingResponse:
+ return model_response
+
+ def get_complete_url(
+ self,
+ api_base: Optional[str],
+ model: str,
+ optional_params: dict,
+ litellm_params: dict,
+ stream: Optional[bool] = None,
+ ) -> str:
+ """
+ OPTIONAL
+
+ Get the complete url for the request
+
+ Some providers need `model` in `api_base`
+ """
+ return api_base or ""
+
+ def transform_request(
+ self,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ headers: dict,
+ ) -> dict:
+ raise NotImplementedError(
+ "EmbeddingConfig does not need a request transformation for chat models"
+ )
+
+ def transform_response(
+ self,
+ model: str,
+ raw_response: httpx.Response,
+ model_response: ModelResponse,
+ logging_obj: LiteLLMLoggingObj,
+ request_data: dict,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ encoding: Any,
+ api_key: Optional[str] = None,
+ json_mode: Optional[bool] = None,
+ ) -> ModelResponse:
+ raise NotImplementedError(
+ "EmbeddingConfig does not need a response transformation for chat models"
+ )
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/image_variations/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/image_variations/transformation.py
new file mode 100644
index 00000000..4d1cd6ee
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/image_variations/transformation.py
@@ -0,0 +1,132 @@
+from abc import ABC, abstractmethod
+from typing import TYPE_CHECKING, Any, List, Optional
+
+import httpx
+from aiohttp import ClientResponse
+
+from litellm.llms.base_llm.chat.transformation import BaseConfig
+from litellm.types.llms.openai import (
+ AllMessageValues,
+ OpenAIImageVariationOptionalParams,
+)
+from litellm.types.utils import (
+ FileTypes,
+ HttpHandlerRequestFields,
+ ImageResponse,
+ ModelResponse,
+)
+
+if TYPE_CHECKING:
+ from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
+
+ LiteLLMLoggingObj = _LiteLLMLoggingObj
+else:
+ LiteLLMLoggingObj = Any
+
+
+class BaseImageVariationConfig(BaseConfig, ABC):
+ @abstractmethod
+ def get_supported_openai_params(
+ self, model: str
+ ) -> List[OpenAIImageVariationOptionalParams]:
+ pass
+
+ def get_complete_url(
+ self,
+ api_base: Optional[str],
+ model: str,
+ optional_params: dict,
+ litellm_params: dict,
+ stream: Optional[bool] = None,
+ ) -> str:
+ """
+ OPTIONAL
+
+ Get the complete url for the request
+
+ Some providers need `model` in `api_base`
+ """
+ return api_base or ""
+
+ @abstractmethod
+ def transform_request_image_variation(
+ self,
+ model: Optional[str],
+ image: FileTypes,
+ optional_params: dict,
+ headers: dict,
+ ) -> HttpHandlerRequestFields:
+ pass
+
+ def validate_environment(
+ self,
+ headers: dict,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ api_key: Optional[str] = None,
+ api_base: Optional[str] = None,
+ ) -> dict:
+ return {}
+
+ @abstractmethod
+ async def async_transform_response_image_variation(
+ self,
+ model: Optional[str],
+ raw_response: ClientResponse,
+ model_response: ImageResponse,
+ logging_obj: LiteLLMLoggingObj,
+ request_data: dict,
+ image: FileTypes,
+ optional_params: dict,
+ litellm_params: dict,
+ encoding: Any,
+ api_key: Optional[str] = None,
+ ) -> ImageResponse:
+ pass
+
+ @abstractmethod
+ def transform_response_image_variation(
+ self,
+ model: Optional[str],
+ raw_response: httpx.Response,
+ model_response: ImageResponse,
+ logging_obj: LiteLLMLoggingObj,
+ request_data: dict,
+ image: FileTypes,
+ optional_params: dict,
+ litellm_params: dict,
+ encoding: Any,
+ api_key: Optional[str] = None,
+ ) -> ImageResponse:
+ pass
+
+ def transform_request(
+ self,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ headers: dict,
+ ) -> dict:
+ raise NotImplementedError(
+ "ImageVariationConfig implementa 'transform_request_image_variation' for image variation models"
+ )
+
+ def transform_response(
+ self,
+ model: str,
+ raw_response: httpx.Response,
+ model_response: ModelResponse,
+ logging_obj: LiteLLMLoggingObj,
+ request_data: dict,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ encoding: Any,
+ api_key: Optional[str] = None,
+ json_mode: Optional[bool] = None,
+ ) -> ModelResponse:
+ raise NotImplementedError(
+ "ImageVariationConfig implements 'transform_response_image_variation' for image variation models"
+ )
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/rerank/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/rerank/transformation.py
new file mode 100644
index 00000000..8701fe57
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/rerank/transformation.py
@@ -0,0 +1,128 @@
+from abc import ABC, abstractmethod
+from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
+
+import httpx
+
+from litellm.types.rerank import OptionalRerankParams, RerankBilledUnits, RerankResponse
+from litellm.types.utils import ModelInfo
+
+from ..chat.transformation import BaseLLMException
+
+if TYPE_CHECKING:
+ from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
+
+ LiteLLMLoggingObj = _LiteLLMLoggingObj
+else:
+ LiteLLMLoggingObj = Any
+
+
+class BaseRerankConfig(ABC):
+ @abstractmethod
+ def validate_environment(
+ self,
+ headers: dict,
+ model: str,
+ api_key: Optional[str] = None,
+ ) -> dict:
+ pass
+
+ @abstractmethod
+ def transform_rerank_request(
+ self,
+ model: str,
+ optional_rerank_params: OptionalRerankParams,
+ headers: dict,
+ ) -> dict:
+ return {}
+
+ @abstractmethod
+ def transform_rerank_response(
+ self,
+ model: str,
+ raw_response: httpx.Response,
+ model_response: RerankResponse,
+ logging_obj: LiteLLMLoggingObj,
+ api_key: Optional[str] = None,
+ request_data: dict = {},
+ optional_params: dict = {},
+ litellm_params: dict = {},
+ ) -> RerankResponse:
+ return model_response
+
+ @abstractmethod
+ def get_complete_url(self, api_base: Optional[str], model: str) -> str:
+ """
+ OPTIONAL
+
+ Get the complete url for the request
+
+ Some providers need `model` in `api_base`
+ """
+ return api_base or ""
+
+ @abstractmethod
+ def get_supported_cohere_rerank_params(self, model: str) -> list:
+ pass
+
+ @abstractmethod
+ def map_cohere_rerank_params(
+ self,
+ non_default_params: dict,
+ model: str,
+ drop_params: bool,
+ query: str,
+ documents: List[Union[str, Dict[str, Any]]],
+ custom_llm_provider: Optional[str] = None,
+ top_n: Optional[int] = None,
+ rank_fields: Optional[List[str]] = None,
+ return_documents: Optional[bool] = True,
+ max_chunks_per_doc: Optional[int] = None,
+ max_tokens_per_doc: Optional[int] = None,
+ ) -> OptionalRerankParams:
+ pass
+
+ def get_error_class(
+ self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
+ ) -> BaseLLMException:
+ raise BaseLLMException(
+ status_code=status_code,
+ message=error_message,
+ headers=headers,
+ )
+
+ def calculate_rerank_cost(
+ self,
+ model: str,
+ custom_llm_provider: Optional[str] = None,
+ billed_units: Optional[RerankBilledUnits] = None,
+ model_info: Optional[ModelInfo] = None,
+ ) -> Tuple[float, float]:
+ """
+ Calculates the cost per query for a given rerank model.
+
+ Input:
+ - model: str, the model name without provider prefix
+ - custom_llm_provider: str, the provider used for the model. If provided, used to check if the litellm model info is for that provider.
+ - num_queries: int, the number of queries to calculate the cost for
+ - model_info: ModelInfo, the model info for the given model
+
+ Returns:
+ Tuple[float, float] - prompt_cost_in_usd, completion_cost_in_usd
+ """
+
+ if (
+ model_info is None
+ or "input_cost_per_query" not in model_info
+ or model_info["input_cost_per_query"] is None
+ or billed_units is None
+ ):
+ return 0.0, 0.0
+
+ search_units = billed_units.get("search_units")
+
+ if search_units is None:
+ return 0.0, 0.0
+
+ prompt_cost = model_info["input_cost_per_query"] * search_units
+
+ return prompt_cost, 0.0
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/responses/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/responses/transformation.py
new file mode 100644
index 00000000..29555c55
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/responses/transformation.py
@@ -0,0 +1,141 @@
+import types
+from abc import ABC, abstractmethod
+from typing import TYPE_CHECKING, Any, Dict, Optional, Union
+
+import httpx
+
+from litellm.types.llms.openai import (
+ ResponseInputParam,
+ ResponsesAPIOptionalRequestParams,
+ ResponsesAPIResponse,
+ ResponsesAPIStreamingResponse,
+)
+from litellm.types.router import GenericLiteLLMParams
+
+if TYPE_CHECKING:
+ from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
+
+ from ..chat.transformation import BaseLLMException as _BaseLLMException
+
+ LiteLLMLoggingObj = _LiteLLMLoggingObj
+ BaseLLMException = _BaseLLMException
+else:
+ LiteLLMLoggingObj = Any
+ BaseLLMException = Any
+
+
+class BaseResponsesAPIConfig(ABC):
+ def __init__(self):
+ pass
+
+ @classmethod
+ def get_config(cls):
+ return {
+ k: v
+ for k, v in cls.__dict__.items()
+ if not k.startswith("__")
+ and not k.startswith("_abc")
+ and not isinstance(
+ v,
+ (
+ types.FunctionType,
+ types.BuiltinFunctionType,
+ classmethod,
+ staticmethod,
+ ),
+ )
+ and v is not None
+ }
+
+ @abstractmethod
+ def get_supported_openai_params(self, model: str) -> list:
+ pass
+
+ @abstractmethod
+ def map_openai_params(
+ self,
+ response_api_optional_params: ResponsesAPIOptionalRequestParams,
+ model: str,
+ drop_params: bool,
+ ) -> Dict:
+
+ pass
+
+ @abstractmethod
+ def validate_environment(
+ self,
+ headers: dict,
+ model: str,
+ api_key: Optional[str] = None,
+ ) -> dict:
+ return {}
+
+ @abstractmethod
+ def get_complete_url(
+ self,
+ api_base: Optional[str],
+ model: str,
+ stream: Optional[bool] = None,
+ ) -> str:
+ """
+ OPTIONAL
+
+ Get the complete url for the request
+
+ Some providers need `model` in `api_base`
+ """
+ if api_base is None:
+ raise ValueError("api_base is required")
+ return api_base
+
+ @abstractmethod
+ def transform_responses_api_request(
+ self,
+ model: str,
+ input: Union[str, ResponseInputParam],
+ response_api_optional_request_params: Dict,
+ litellm_params: GenericLiteLLMParams,
+ headers: dict,
+ ) -> Dict:
+ pass
+
+ @abstractmethod
+ def transform_response_api_response(
+ self,
+ model: str,
+ raw_response: httpx.Response,
+ logging_obj: LiteLLMLoggingObj,
+ ) -> ResponsesAPIResponse:
+ pass
+
+ @abstractmethod
+ def transform_streaming_response(
+ self,
+ model: str,
+ parsed_chunk: dict,
+ logging_obj: LiteLLMLoggingObj,
+ ) -> ResponsesAPIStreamingResponse:
+ """
+ Transform a parsed streaming response chunk into a ResponsesAPIStreamingResponse
+ """
+ pass
+
+ def get_error_class(
+ self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
+ ) -> BaseLLMException:
+ from ..chat.transformation import BaseLLMException
+
+ raise BaseLLMException(
+ status_code=status_code,
+ message=error_message,
+ headers=headers,
+ )
+
+ def should_fake_stream(
+ self,
+ model: Optional[str],
+ stream: Optional[bool],
+ custom_llm_provider: Optional[str] = None,
+ ) -> bool:
+ """Returns True if litellm should fake a stream for the given model and stream value"""
+ return False