about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/chat
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/llms/base_llm/chat
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/base_llm/chat')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/base_llm/chat/transformation.py372
1 files changed, 372 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/chat/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/chat/transformation.py
new file mode 100644
index 00000000..1b5a6bc5
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/base_llm/chat/transformation.py
@@ -0,0 +1,372 @@
+"""
+Common base config for all LLM providers
+"""
+
+import types
+from abc import ABC, abstractmethod
+from typing import (
+    TYPE_CHECKING,
+    Any,
+    AsyncIterator,
+    Iterator,
+    List,
+    Optional,
+    Type,
+    Union,
+)
+
+import httpx
+from pydantic import BaseModel
+
+from litellm.constants import RESPONSE_FORMAT_TOOL_NAME
+from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
+from litellm.types.llms.openai import (
+    AllMessageValues,
+    ChatCompletionToolChoiceFunctionParam,
+    ChatCompletionToolChoiceObjectParam,
+    ChatCompletionToolParam,
+    ChatCompletionToolParamFunctionChunk,
+)
+from litellm.types.utils import ModelResponse
+from litellm.utils import CustomStreamWrapper
+
+from ..base_utils import (
+    map_developer_role_to_system_role,
+    type_to_response_format_param,
+)
+
+if TYPE_CHECKING:
+    from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
+
+    LiteLLMLoggingObj = _LiteLLMLoggingObj
+else:
+    LiteLLMLoggingObj = Any
+
+
+class BaseLLMException(Exception):
+    def __init__(
+        self,
+        status_code: int,
+        message: str,
+        headers: Optional[Union[dict, httpx.Headers]] = None,
+        request: Optional[httpx.Request] = None,
+        response: Optional[httpx.Response] = None,
+        body: Optional[dict] = None,
+    ):
+        self.status_code = status_code
+        self.message: str = message
+        self.headers = headers
+        if request:
+            self.request = request
+        else:
+            self.request = httpx.Request(
+                method="POST", url="https://docs.litellm.ai/docs"
+            )
+        if response:
+            self.response = response
+        else:
+            self.response = httpx.Response(
+                status_code=status_code, request=self.request
+            )
+        self.body = body
+        super().__init__(
+            self.message
+        )  # Call the base class constructor with the parameters it needs
+
+
+class BaseConfig(ABC):
+    def __init__(self):
+        pass
+
+    @classmethod
+    def get_config(cls):
+        return {
+            k: v
+            for k, v in cls.__dict__.items()
+            if not k.startswith("__")
+            and not k.startswith("_abc")
+            and not isinstance(
+                v,
+                (
+                    types.FunctionType,
+                    types.BuiltinFunctionType,
+                    classmethod,
+                    staticmethod,
+                ),
+            )
+            and v is not None
+        }
+
+    def get_json_schema_from_pydantic_object(
+        self, response_format: Optional[Union[Type[BaseModel], dict]]
+    ) -> Optional[dict]:
+        return type_to_response_format_param(response_format=response_format)
+
+    def should_fake_stream(
+        self,
+        model: Optional[str],
+        stream: Optional[bool],
+        custom_llm_provider: Optional[str] = None,
+    ) -> bool:
+        """
+        Returns True if the model/provider should fake stream
+        """
+        return False
+
+    def _add_tools_to_optional_params(self, optional_params: dict, tools: List) -> dict:
+        """
+        Helper util to add tools to optional_params.
+        """
+        if "tools" not in optional_params:
+            optional_params["tools"] = tools
+        else:
+            optional_params["tools"] = [
+                *optional_params["tools"],
+                *tools,
+            ]
+        return optional_params
+
+    def translate_developer_role_to_system_role(
+        self,
+        messages: List[AllMessageValues],
+    ) -> List[AllMessageValues]:
+        """
+        Translate `developer` role to `system` role for non-OpenAI providers.
+
+        Overriden by OpenAI/Azure
+        """
+        return map_developer_role_to_system_role(messages=messages)
+
+    def should_retry_llm_api_inside_llm_translation_on_http_error(
+        self, e: httpx.HTTPStatusError, litellm_params: dict
+    ) -> bool:
+        """
+        Returns True if the model/provider should retry the LLM API on UnprocessableEntityError
+
+        Overriden by azure ai - where different models support different parameters
+        """
+        return False
+
+    def transform_request_on_unprocessable_entity_error(
+        self, e: httpx.HTTPStatusError, request_data: dict
+    ) -> dict:
+        """
+        Transform the request data on UnprocessableEntityError
+        """
+        return request_data
+
+    @property
+    def max_retry_on_unprocessable_entity_error(self) -> int:
+        """
+        Returns the max retry count for UnprocessableEntityError
+
+        Used if `should_retry_llm_api_inside_llm_translation_on_http_error` is True
+        """
+        return 0
+
+    @abstractmethod
+    def get_supported_openai_params(self, model: str) -> list:
+        pass
+
+    def _add_response_format_to_tools(
+        self,
+        optional_params: dict,
+        value: dict,
+        is_response_format_supported: bool,
+        enforce_tool_choice: bool = True,
+    ) -> dict:
+        """
+        Follow similar approach to anthropic - translate to a single tool call.
+
+        When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
+        - You usually want to provide a single tool
+        - You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
+        - Remember that the model will pass the input to the tool, so the name of the tool and description should be from the model’s perspective.
+
+        Add response format to tools
+
+        This is used to translate response_format to a tool call, for models/APIs that don't support response_format directly.
+        """
+        json_schema: Optional[dict] = None
+        if "response_schema" in value:
+            json_schema = value["response_schema"]
+        elif "json_schema" in value:
+            json_schema = value["json_schema"]["schema"]
+
+        if json_schema and not is_response_format_supported:
+
+            _tool_choice = ChatCompletionToolChoiceObjectParam(
+                type="function",
+                function=ChatCompletionToolChoiceFunctionParam(
+                    name=RESPONSE_FORMAT_TOOL_NAME
+                ),
+            )
+
+            _tool = ChatCompletionToolParam(
+                type="function",
+                function=ChatCompletionToolParamFunctionChunk(
+                    name=RESPONSE_FORMAT_TOOL_NAME, parameters=json_schema
+                ),
+            )
+
+            optional_params.setdefault("tools", [])
+            optional_params["tools"].append(_tool)
+            if enforce_tool_choice:
+                optional_params["tool_choice"] = _tool_choice
+
+            optional_params["json_mode"] = True
+        elif is_response_format_supported:
+            optional_params["response_format"] = value
+        return optional_params
+
+    @abstractmethod
+    def map_openai_params(
+        self,
+        non_default_params: dict,
+        optional_params: dict,
+        model: str,
+        drop_params: bool,
+    ) -> dict:
+        pass
+
+    @abstractmethod
+    def validate_environment(
+        self,
+        headers: dict,
+        model: str,
+        messages: List[AllMessageValues],
+        optional_params: dict,
+        api_key: Optional[str] = None,
+        api_base: Optional[str] = None,
+    ) -> dict:
+        pass
+
+    def sign_request(
+        self,
+        headers: dict,
+        optional_params: dict,
+        request_data: dict,
+        api_base: str,
+        model: Optional[str] = None,
+        stream: Optional[bool] = None,
+        fake_stream: Optional[bool] = None,
+    ) -> dict:
+        """
+        Some providers like Bedrock require signing the request. The sign request funtion needs access to `request_data` and `complete_url`
+        Args:
+            headers: dict
+            optional_params: dict
+            request_data: dict - the request body being sent in http request
+            api_base: str - the complete url being sent in http request
+        Returns:
+            dict - the signed headers
+
+        Update the headers with the signed headers in this function. The return values will be sent as headers in the http request.
+        """
+        return headers
+
+    def get_complete_url(
+        self,
+        api_base: Optional[str],
+        model: str,
+        optional_params: dict,
+        litellm_params: dict,
+        stream: Optional[bool] = None,
+    ) -> str:
+        """
+        OPTIONAL
+
+        Get the complete url for the request
+
+        Some providers need `model` in `api_base`
+        """
+        if api_base is None:
+            raise ValueError("api_base is required")
+        return api_base
+
+    @abstractmethod
+    def transform_request(
+        self,
+        model: str,
+        messages: List[AllMessageValues],
+        optional_params: dict,
+        litellm_params: dict,
+        headers: dict,
+    ) -> dict:
+        pass
+
+    @abstractmethod
+    def transform_response(
+        self,
+        model: str,
+        raw_response: httpx.Response,
+        model_response: ModelResponse,
+        logging_obj: LiteLLMLoggingObj,
+        request_data: dict,
+        messages: List[AllMessageValues],
+        optional_params: dict,
+        litellm_params: dict,
+        encoding: Any,
+        api_key: Optional[str] = None,
+        json_mode: Optional[bool] = None,
+    ) -> ModelResponse:
+        pass
+
+    @abstractmethod
+    def get_error_class(
+        self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
+    ) -> BaseLLMException:
+        pass
+
+    def get_model_response_iterator(
+        self,
+        streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
+        sync_stream: bool,
+        json_mode: Optional[bool] = False,
+    ) -> Any:
+        pass
+
+    def get_async_custom_stream_wrapper(
+        self,
+        model: str,
+        custom_llm_provider: str,
+        logging_obj: LiteLLMLoggingObj,
+        api_base: str,
+        headers: dict,
+        data: dict,
+        messages: list,
+        client: Optional[AsyncHTTPHandler] = None,
+        json_mode: Optional[bool] = None,
+    ) -> CustomStreamWrapper:
+        raise NotImplementedError
+
+    def get_sync_custom_stream_wrapper(
+        self,
+        model: str,
+        custom_llm_provider: str,
+        logging_obj: LiteLLMLoggingObj,
+        api_base: str,
+        headers: dict,
+        data: dict,
+        messages: list,
+        client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
+        json_mode: Optional[bool] = None,
+    ) -> CustomStreamWrapper:
+        raise NotImplementedError
+
+    @property
+    def custom_llm_provider(self) -> Optional[str]:
+        return None
+
+    @property
+    def has_custom_stream_wrapper(self) -> bool:
+        return False
+
+    @property
+    def supports_stream_param_in_request_body(self) -> bool:
+        """
+        Some providers like Bedrock invoke do not support the stream parameter in the request body.
+
+        By default, this is true for almost all providers.
+        """
+        return True