about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/numpy/ma/tests
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/numpy/ma/tests
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/ma/tests')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/tests/__init__.py0
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/tests/test_core.py5687
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/tests/test_deprecations.py84
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/tests/test_extras.py1870
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/tests/test_mrecords.py493
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/tests/test_old_ma.py874
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/tests/test_regression.py97
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py460
8 files changed, 9565 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/__init__.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__init__.py
new file mode 100644
index 00000000..e69de29b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__init__.py
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_core.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_core.py
new file mode 100644
index 00000000..08ddc46c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_core.py
@@ -0,0 +1,5687 @@
+# pylint: disable-msg=W0400,W0511,W0611,W0612,W0614,R0201,E1102
+"""Tests suite for MaskedArray & subclassing.
+
+:author: Pierre Gerard-Marchant
+:contact: pierregm_at_uga_dot_edu
+"""
+__author__ = "Pierre GF Gerard-Marchant"
+
+import sys
+import warnings
+import copy
+import operator
+import itertools
+import textwrap
+import pytest
+
+from functools import reduce
+
+
+import numpy as np
+import numpy.ma.core
+import numpy.core.fromnumeric as fromnumeric
+import numpy.core.umath as umath
+from numpy.testing import (
+    assert_raises, assert_warns, suppress_warnings, IS_WASM
+    )
+from numpy.testing._private.utils import requires_memory
+from numpy import ndarray
+from numpy.compat import asbytes
+from numpy.ma.testutils import (
+    assert_, assert_array_equal, assert_equal, assert_almost_equal,
+    assert_equal_records, fail_if_equal, assert_not_equal,
+    assert_mask_equal
+    )
+from numpy.ma.core import (
+    MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all,
+    allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2,
+    arcsin, arctan, argsort, array, asarray, choose, concatenate,
+    conjugate, cos, cosh, count, default_fill_value, diag, divide, doc_note,
+    empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid,
+    flatten_structured_array, fromflex, getmask, getmaskarray, greater,
+    greater_equal, identity, inner, isMaskedArray, less, less_equal, log,
+    log10, make_mask, make_mask_descr, mask_or, masked, masked_array,
+    masked_equal, masked_greater, masked_greater_equal, masked_inside,
+    masked_less, masked_less_equal, masked_not_equal, masked_outside,
+    masked_print_option, masked_values, masked_where, max, maximum,
+    maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply,
+    mvoid, nomask, not_equal, ones, ones_like, outer, power, product, put,
+    putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort,
+    sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros, zeros_like,
+    )
+from numpy.compat import pickle
+
+pi = np.pi
+
+
+suppress_copy_mask_on_assignment = suppress_warnings()
+suppress_copy_mask_on_assignment.filter(
+    numpy.ma.core.MaskedArrayFutureWarning,
+    "setting an item on a masked array which has a shared mask will not copy")
+
+
+# For parametrized numeric testing
+num_dts = [np.dtype(dt_) for dt_ in '?bhilqBHILQefdgFD']
+num_ids = [dt_.char for dt_ in num_dts]
+
+
+class TestMaskedArray:
+    # Base test class for MaskedArrays.
+
+    def setup_method(self):
+        # Base data definition.
+        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
+        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
+        a10 = 10.
+        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
+        xm = masked_array(x, mask=m1)
+        ym = masked_array(y, mask=m2)
+        z = np.array([-.5, 0., .5, .8])
+        zm = masked_array(z, mask=[0, 1, 0, 0])
+        xf = np.where(m1, 1e+20, x)
+        xm.set_fill_value(1e+20)
+        self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
+
+    def test_basicattributes(self):
+        # Tests some basic array attributes.
+        a = array([1, 3, 2])
+        b = array([1, 3, 2], mask=[1, 0, 1])
+        assert_equal(a.ndim, 1)
+        assert_equal(b.ndim, 1)
+        assert_equal(a.size, 3)
+        assert_equal(b.size, 3)
+        assert_equal(a.shape, (3,))
+        assert_equal(b.shape, (3,))
+
+    def test_basic0d(self):
+        # Checks masking a scalar
+        x = masked_array(0)
+        assert_equal(str(x), '0')
+        x = masked_array(0, mask=True)
+        assert_equal(str(x), str(masked_print_option))
+        x = masked_array(0, mask=False)
+        assert_equal(str(x), '0')
+        x = array(0, mask=1)
+        assert_(x.filled().dtype is x._data.dtype)
+
+    def test_basic1d(self):
+        # Test of basic array creation and properties in 1 dimension.
+        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+        assert_(not isMaskedArray(x))
+        assert_(isMaskedArray(xm))
+        assert_((xm - ym).filled(0).any())
+        fail_if_equal(xm.mask.astype(int), ym.mask.astype(int))
+        s = x.shape
+        assert_equal(np.shape(xm), s)
+        assert_equal(xm.shape, s)
+        assert_equal(xm.dtype, x.dtype)
+        assert_equal(zm.dtype, z.dtype)
+        assert_equal(xm.size, reduce(lambda x, y:x * y, s))
+        assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1))
+        assert_array_equal(xm, xf)
+        assert_array_equal(filled(xm, 1.e20), xf)
+        assert_array_equal(x, xm)
+
+    def test_basic2d(self):
+        # Test of basic array creation and properties in 2 dimensions.
+        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+        for s in [(4, 3), (6, 2)]:
+            x.shape = s
+            y.shape = s
+            xm.shape = s
+            ym.shape = s
+            xf.shape = s
+
+            assert_(not isMaskedArray(x))
+            assert_(isMaskedArray(xm))
+            assert_equal(shape(xm), s)
+            assert_equal(xm.shape, s)
+            assert_equal(xm.size, reduce(lambda x, y:x * y, s))
+            assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1))
+            assert_equal(xm, xf)
+            assert_equal(filled(xm, 1.e20), xf)
+            assert_equal(x, xm)
+
+    def test_concatenate_basic(self):
+        # Tests concatenations.
+        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+        # basic concatenation
+        assert_equal(np.concatenate((x, y)), concatenate((xm, ym)))
+        assert_equal(np.concatenate((x, y)), concatenate((x, y)))
+        assert_equal(np.concatenate((x, y)), concatenate((xm, y)))
+        assert_equal(np.concatenate((x, y, x)), concatenate((x, ym, x)))
+
+    def test_concatenate_alongaxis(self):
+        # Tests concatenations.
+        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+        # Concatenation along an axis
+        s = (3, 4)
+        x.shape = y.shape = xm.shape = ym.shape = s
+        assert_equal(xm.mask, np.reshape(m1, s))
+        assert_equal(ym.mask, np.reshape(m2, s))
+        xmym = concatenate((xm, ym), 1)
+        assert_equal(np.concatenate((x, y), 1), xmym)
+        assert_equal(np.concatenate((xm.mask, ym.mask), 1), xmym._mask)
+
+        x = zeros(2)
+        y = array(ones(2), mask=[False, True])
+        z = concatenate((x, y))
+        assert_array_equal(z, [0, 0, 1, 1])
+        assert_array_equal(z.mask, [False, False, False, True])
+        z = concatenate((y, x))
+        assert_array_equal(z, [1, 1, 0, 0])
+        assert_array_equal(z.mask, [False, True, False, False])
+
+    def test_concatenate_flexible(self):
+        # Tests the concatenation on flexible arrays.
+        data = masked_array(list(zip(np.random.rand(10),
+                                     np.arange(10))),
+                            dtype=[('a', float), ('b', int)])
+
+        test = concatenate([data[:5], data[5:]])
+        assert_equal_records(test, data)
+
+    def test_creation_ndmin(self):
+        # Check the use of ndmin
+        x = array([1, 2, 3], mask=[1, 0, 0], ndmin=2)
+        assert_equal(x.shape, (1, 3))
+        assert_equal(x._data, [[1, 2, 3]])
+        assert_equal(x._mask, [[1, 0, 0]])
+
+    def test_creation_ndmin_from_maskedarray(self):
+        # Make sure we're not losing the original mask w/ ndmin
+        x = array([1, 2, 3])
+        x[-1] = masked
+        xx = array(x, ndmin=2, dtype=float)
+        assert_equal(x.shape, x._mask.shape)
+        assert_equal(xx.shape, xx._mask.shape)
+
+    def test_creation_maskcreation(self):
+        # Tests how masks are initialized at the creation of Maskedarrays.
+        data = arange(24, dtype=float)
+        data[[3, 6, 15]] = masked
+        dma_1 = MaskedArray(data)
+        assert_equal(dma_1.mask, data.mask)
+        dma_2 = MaskedArray(dma_1)
+        assert_equal(dma_2.mask, dma_1.mask)
+        dma_3 = MaskedArray(dma_1, mask=[1, 0, 0, 0] * 6)
+        fail_if_equal(dma_3.mask, dma_1.mask)
+
+        x = array([1, 2, 3], mask=True)
+        assert_equal(x._mask, [True, True, True])
+        x = array([1, 2, 3], mask=False)
+        assert_equal(x._mask, [False, False, False])
+        y = array([1, 2, 3], mask=x._mask, copy=False)
+        assert_(np.may_share_memory(x.mask, y.mask))
+        y = array([1, 2, 3], mask=x._mask, copy=True)
+        assert_(not np.may_share_memory(x.mask, y.mask))
+        x = array([1, 2, 3], mask=None)
+        assert_equal(x._mask, [False, False, False])
+
+    def test_masked_singleton_array_creation_warns(self):
+        # The first works, but should not (ideally), there may be no way
+        # to solve this, however, as long as `np.ma.masked` is an ndarray.
+        np.array(np.ma.masked)
+        with pytest.warns(UserWarning):
+            # Tries to create a float array, using `float(np.ma.masked)`.
+            # We may want to define this is invalid behaviour in the future!
+            # (requiring np.ma.masked to be a known NumPy scalar probably
+            # with a DType.)
+            np.array([3., np.ma.masked])
+
+    def test_creation_with_list_of_maskedarrays(self):
+        # Tests creating a masked array from a list of masked arrays.
+        x = array(np.arange(5), mask=[1, 0, 0, 0, 0])
+        data = array((x, x[::-1]))
+        assert_equal(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]])
+        assert_equal(data._mask, [[1, 0, 0, 0, 0], [0, 0, 0, 0, 1]])
+
+        x.mask = nomask
+        data = array((x, x[::-1]))
+        assert_equal(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]])
+        assert_(data.mask is nomask)
+
+    def test_creation_with_list_of_maskedarrays_no_bool_cast(self):
+        # Tests the regression in gh-18551
+        masked_str = np.ma.masked_array(['a', 'b'], mask=[True, False])
+        normal_int = np.arange(2)
+        res = np.ma.asarray([masked_str, normal_int], dtype="U21")
+        assert_array_equal(res.mask, [[True, False], [False, False]])
+
+        # The above only failed due a long chain of oddity, try also with
+        # an object array that cannot be converted to bool always:
+        class NotBool():
+            def __bool__(self):
+                raise ValueError("not a bool!")
+        masked_obj = np.ma.masked_array([NotBool(), 'b'], mask=[True, False])
+        # Check that the NotBool actually fails like we would expect:
+        with pytest.raises(ValueError, match="not a bool!"):
+            np.asarray([masked_obj], dtype=bool)
+
+        res = np.ma.asarray([masked_obj, normal_int])
+        assert_array_equal(res.mask, [[True, False], [False, False]])
+
+    def test_creation_from_ndarray_with_padding(self):
+        x = np.array([('A', 0)], dtype={'names':['f0','f1'],
+                                        'formats':['S4','i8'],
+                                        'offsets':[0,8]})
+        array(x)  # used to fail due to 'V' padding field in x.dtype.descr
+
+    def test_unknown_keyword_parameter(self):
+        with pytest.raises(TypeError, match="unexpected keyword argument"):
+            MaskedArray([1, 2, 3], maks=[0, 1, 0])  # `mask` is misspelled.
+
+    def test_asarray(self):
+        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+        xm.fill_value = -9999
+        xm._hardmask = True
+        xmm = asarray(xm)
+        assert_equal(xmm._data, xm._data)
+        assert_equal(xmm._mask, xm._mask)
+        assert_equal(xmm.fill_value, xm.fill_value)
+        assert_equal(xmm._hardmask, xm._hardmask)
+
+    def test_asarray_default_order(self):
+        # See Issue #6646
+        m = np.eye(3).T
+        assert_(not m.flags.c_contiguous)
+
+        new_m = asarray(m)
+        assert_(new_m.flags.c_contiguous)
+
+    def test_asarray_enforce_order(self):
+        # See Issue #6646
+        m = np.eye(3).T
+        assert_(not m.flags.c_contiguous)
+
+        new_m = asarray(m, order='C')
+        assert_(new_m.flags.c_contiguous)
+
+    def test_fix_invalid(self):
+        # Checks fix_invalid.
+        with np.errstate(invalid='ignore'):
+            data = masked_array([np.nan, 0., 1.], mask=[0, 0, 1])
+            data_fixed = fix_invalid(data)
+            assert_equal(data_fixed._data, [data.fill_value, 0., 1.])
+            assert_equal(data_fixed._mask, [1., 0., 1.])
+
+    def test_maskedelement(self):
+        # Test of masked element
+        x = arange(6)
+        x[1] = masked
+        assert_(str(masked) == '--')
+        assert_(x[1] is masked)
+        assert_equal(filled(x[1], 0), 0)
+
+    def test_set_element_as_object(self):
+        # Tests setting elements with object
+        a = empty(1, dtype=object)
+        x = (1, 2, 3, 4, 5)
+        a[0] = x
+        assert_equal(a[0], x)
+        assert_(a[0] is x)
+
+        import datetime
+        dt = datetime.datetime.now()
+        a[0] = dt
+        assert_(a[0] is dt)
+
+    def test_indexing(self):
+        # Tests conversions and indexing
+        x1 = np.array([1, 2, 4, 3])
+        x2 = array(x1, mask=[1, 0, 0, 0])
+        x3 = array(x1, mask=[0, 1, 0, 1])
+        x4 = array(x1)
+        # test conversion to strings
+        str(x2)  # raises?
+        repr(x2)  # raises?
+        assert_equal(np.sort(x1), sort(x2, endwith=False))
+        # tests of indexing
+        assert_(type(x2[1]) is type(x1[1]))
+        assert_(x1[1] == x2[1])
+        assert_(x2[0] is masked)
+        assert_equal(x1[2], x2[2])
+        assert_equal(x1[2:5], x2[2:5])
+        assert_equal(x1[:], x2[:])
+        assert_equal(x1[1:], x3[1:])
+        x1[2] = 9
+        x2[2] = 9
+        assert_equal(x1, x2)
+        x1[1:3] = 99
+        x2[1:3] = 99
+        assert_equal(x1, x2)
+        x2[1] = masked
+        assert_equal(x1, x2)
+        x2[1:3] = masked
+        assert_equal(x1, x2)
+        x2[:] = x1
+        x2[1] = masked
+        assert_(allequal(getmask(x2), array([0, 1, 0, 0])))
+        x3[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0])
+        assert_(allequal(getmask(x3), array([0, 1, 1, 0])))
+        x4[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0])
+        assert_(allequal(getmask(x4), array([0, 1, 1, 0])))
+        assert_(allequal(x4, array([1, 2, 3, 4])))
+        x1 = np.arange(5) * 1.0
+        x2 = masked_values(x1, 3.0)
+        assert_equal(x1, x2)
+        assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask))
+        assert_equal(3.0, x2.fill_value)
+        x1 = array([1, 'hello', 2, 3], object)
+        x2 = np.array([1, 'hello', 2, 3], object)
+        s1 = x1[1]
+        s2 = x2[1]
+        assert_equal(type(s2), str)
+        assert_equal(type(s1), str)
+        assert_equal(s1, s2)
+        assert_(x1[1:1].shape == (0,))
+
+    def test_setitem_no_warning(self):
+        # Setitem shouldn't warn, because the assignment might be masked
+        # and warning for a masked assignment is weird (see gh-23000)
+        # (When the value is masked, otherwise a warning would be acceptable
+        # but is not given currently.)
+        x = np.ma.arange(60).reshape((6, 10))
+        index = (slice(1, 5, 2), [7, 5])
+        value = np.ma.masked_all((2, 2))
+        value._data[...] = np.inf  # not a valid integer...
+        x[index] = value
+        # The masked scalar is special cased, but test anyway (it's NaN):
+        x[...] = np.ma.masked
+        # Finally, a large value that cannot be cast to the float32 `x`
+        x = np.ma.arange(3., dtype=np.float32)
+        value = np.ma.array([2e234, 1, 1], mask=[True, False, False])
+        x[...] = value
+        x[[0, 1, 2]] = value
+
+    @suppress_copy_mask_on_assignment
+    def test_copy(self):
+        # Tests of some subtle points of copying and sizing.
+        n = [0, 0, 1, 0, 0]
+        m = make_mask(n)
+        m2 = make_mask(m)
+        assert_(m is m2)
+        m3 = make_mask(m, copy=True)
+        assert_(m is not m3)
+
+        x1 = np.arange(5)
+        y1 = array(x1, mask=m)
+        assert_equal(y1._data.__array_interface__, x1.__array_interface__)
+        assert_(allequal(x1, y1.data))
+        assert_equal(y1._mask.__array_interface__, m.__array_interface__)
+
+        y1a = array(y1)
+        # Default for masked array is not to copy; see gh-10318.
+        assert_(y1a._data.__array_interface__ ==
+                        y1._data.__array_interface__)
+        assert_(y1a._mask.__array_interface__ ==
+                        y1._mask.__array_interface__)
+
+        y2 = array(x1, mask=m3)
+        assert_(y2._data.__array_interface__ == x1.__array_interface__)
+        assert_(y2._mask.__array_interface__ == m3.__array_interface__)
+        assert_(y2[2] is masked)
+        y2[2] = 9
+        assert_(y2[2] is not masked)
+        assert_(y2._mask.__array_interface__ == m3.__array_interface__)
+        assert_(allequal(y2.mask, 0))
+
+        y2a = array(x1, mask=m, copy=1)
+        assert_(y2a._data.__array_interface__ != x1.__array_interface__)
+        #assert_( y2a._mask is not m)
+        assert_(y2a._mask.__array_interface__ != m.__array_interface__)
+        assert_(y2a[2] is masked)
+        y2a[2] = 9
+        assert_(y2a[2] is not masked)
+        #assert_( y2a._mask is not m)
+        assert_(y2a._mask.__array_interface__ != m.__array_interface__)
+        assert_(allequal(y2a.mask, 0))
+
+        y3 = array(x1 * 1.0, mask=m)
+        assert_(filled(y3).dtype is (x1 * 1.0).dtype)
+
+        x4 = arange(4)
+        x4[2] = masked
+        y4 = resize(x4, (8,))
+        assert_equal(concatenate([x4, x4]), y4)
+        assert_equal(getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0])
+        y5 = repeat(x4, (2, 2, 2, 2), axis=0)
+        assert_equal(y5, [0, 0, 1, 1, 2, 2, 3, 3])
+        y6 = repeat(x4, 2, axis=0)
+        assert_equal(y5, y6)
+        y7 = x4.repeat((2, 2, 2, 2), axis=0)
+        assert_equal(y5, y7)
+        y8 = x4.repeat(2, 0)
+        assert_equal(y5, y8)
+
+        y9 = x4.copy()
+        assert_equal(y9._data, x4._data)
+        assert_equal(y9._mask, x4._mask)
+
+        x = masked_array([1, 2, 3], mask=[0, 1, 0])
+        # Copy is False by default
+        y = masked_array(x)
+        assert_equal(y._data.ctypes.data, x._data.ctypes.data)
+        assert_equal(y._mask.ctypes.data, x._mask.ctypes.data)
+        y = masked_array(x, copy=True)
+        assert_not_equal(y._data.ctypes.data, x._data.ctypes.data)
+        assert_not_equal(y._mask.ctypes.data, x._mask.ctypes.data)
+
+    def test_copy_0d(self):
+        # gh-9430
+        x = np.ma.array(43, mask=True)
+        xc = x.copy()
+        assert_equal(xc.mask, True)
+
+    def test_copy_on_python_builtins(self):
+        # Tests copy works on python builtins (issue#8019)
+        assert_(isMaskedArray(np.ma.copy([1,2,3])))
+        assert_(isMaskedArray(np.ma.copy((1,2,3))))
+
+    def test_copy_immutable(self):
+        # Tests that the copy method is immutable, GitHub issue #5247
+        a = np.ma.array([1, 2, 3])
+        b = np.ma.array([4, 5, 6])
+        a_copy_method = a.copy
+        b.copy
+        assert_equal(a_copy_method(), [1, 2, 3])
+
+    def test_deepcopy(self):
+        from copy import deepcopy
+        a = array([0, 1, 2], mask=[False, True, False])
+        copied = deepcopy(a)
+        assert_equal(copied.mask, a.mask)
+        assert_not_equal(id(a._mask), id(copied._mask))
+
+        copied[1] = 1
+        assert_equal(copied.mask, [0, 0, 0])
+        assert_equal(a.mask, [0, 1, 0])
+
+        copied = deepcopy(a)
+        assert_equal(copied.mask, a.mask)
+        copied.mask[1] = False
+        assert_equal(copied.mask, [0, 0, 0])
+        assert_equal(a.mask, [0, 1, 0])
+
+    def test_format(self):
+        a = array([0, 1, 2], mask=[False, True, False])
+        assert_equal(format(a), "[0 -- 2]")
+        assert_equal(format(masked), "--")
+        assert_equal(format(masked, ""), "--")
+
+        # Postponed from PR #15410, perhaps address in the future.
+        # assert_equal(format(masked, " >5"), "   --")
+        # assert_equal(format(masked, " <5"), "--   ")
+
+        # Expect a FutureWarning for using format_spec with MaskedElement
+        with assert_warns(FutureWarning):
+            with_format_string = format(masked, " >5")
+        assert_equal(with_format_string, "--")
+
+    def test_str_repr(self):
+        a = array([0, 1, 2], mask=[False, True, False])
+        assert_equal(str(a), '[0 -- 2]')
+        assert_equal(
+            repr(a),
+            textwrap.dedent('''\
+            masked_array(data=[0, --, 2],
+                         mask=[False,  True, False],
+                   fill_value=999999)''')
+        )
+
+        # arrays with a continuation
+        a = np.ma.arange(2000)
+        a[1:50] = np.ma.masked
+        assert_equal(
+            repr(a),
+            textwrap.dedent('''\
+            masked_array(data=[0, --, --, ..., 1997, 1998, 1999],
+                         mask=[False,  True,  True, ..., False, False, False],
+                   fill_value=999999)''')
+        )
+
+        # line-wrapped 1d arrays are correctly aligned
+        a = np.ma.arange(20)
+        assert_equal(
+            repr(a),
+            textwrap.dedent('''\
+            masked_array(data=[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13,
+                               14, 15, 16, 17, 18, 19],
+                         mask=False,
+                   fill_value=999999)''')
+        )
+
+        # 2d arrays cause wrapping
+        a = array([[1, 2, 3], [4, 5, 6]], dtype=np.int8)
+        a[1,1] = np.ma.masked
+        assert_equal(
+            repr(a),
+            textwrap.dedent('''\
+            masked_array(
+              data=[[1, 2, 3],
+                    [4, --, 6]],
+              mask=[[False, False, False],
+                    [False,  True, False]],
+              fill_value=999999,
+              dtype=int8)''')
+        )
+
+        # but not it they're a row vector
+        assert_equal(
+            repr(a[:1]),
+            textwrap.dedent('''\
+            masked_array(data=[[1, 2, 3]],
+                         mask=[[False, False, False]],
+                   fill_value=999999,
+                        dtype=int8)''')
+        )
+
+        # dtype=int is implied, so not shown
+        assert_equal(
+            repr(a.astype(int)),
+            textwrap.dedent('''\
+            masked_array(
+              data=[[1, 2, 3],
+                    [4, --, 6]],
+              mask=[[False, False, False],
+                    [False,  True, False]],
+              fill_value=999999)''')
+        )
+
+    def test_str_repr_legacy(self):
+        oldopts = np.get_printoptions()
+        np.set_printoptions(legacy='1.13')
+        try:
+            a = array([0, 1, 2], mask=[False, True, False])
+            assert_equal(str(a), '[0 -- 2]')
+            assert_equal(repr(a), 'masked_array(data = [0 -- 2],\n'
+                                  '             mask = [False  True False],\n'
+                                  '       fill_value = 999999)\n')
+
+            a = np.ma.arange(2000)
+            a[1:50] = np.ma.masked
+            assert_equal(
+                repr(a),
+                'masked_array(data = [0 -- -- ..., 1997 1998 1999],\n'
+                '             mask = [False  True  True ..., False False False],\n'
+                '       fill_value = 999999)\n'
+            )
+        finally:
+            np.set_printoptions(**oldopts)
+
+    def test_0d_unicode(self):
+        u = 'caf\xe9'
+        utype = type(u)
+
+        arr_nomask = np.ma.array(u)
+        arr_masked = np.ma.array(u, mask=True)
+
+        assert_equal(utype(arr_nomask), u)
+        assert_equal(utype(arr_masked), '--')
+
+    def test_pickling(self):
+        # Tests pickling
+        for dtype in (int, float, str, object):
+            a = arange(10).astype(dtype)
+            a.fill_value = 999
+
+            masks = ([0, 0, 0, 1, 0, 1, 0, 1, 0, 1],  # partially masked
+                     True,                            # Fully masked
+                     False)                           # Fully unmasked
+
+            for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+                for mask in masks:
+                    a.mask = mask
+                    a_pickled = pickle.loads(pickle.dumps(a, protocol=proto))
+                    assert_equal(a_pickled._mask, a._mask)
+                    assert_equal(a_pickled._data, a._data)
+                    if dtype in (object, int):
+                        assert_equal(a_pickled.fill_value, 999)
+                    else:
+                        assert_equal(a_pickled.fill_value, dtype(999))
+                    assert_array_equal(a_pickled.mask, mask)
+
+    def test_pickling_subbaseclass(self):
+        # Test pickling w/ a subclass of ndarray
+        x = np.array([(1.0, 2), (3.0, 4)],
+                     dtype=[('x', float), ('y', int)]).view(np.recarray)
+        a = masked_array(x, mask=[(True, False), (False, True)])
+        for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+            a_pickled = pickle.loads(pickle.dumps(a, protocol=proto))
+            assert_equal(a_pickled._mask, a._mask)
+            assert_equal(a_pickled, a)
+            assert_(isinstance(a_pickled._data, np.recarray))
+
+    def test_pickling_maskedconstant(self):
+        # Test pickling MaskedConstant
+        mc = np.ma.masked
+        for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+            mc_pickled = pickle.loads(pickle.dumps(mc, protocol=proto))
+            assert_equal(mc_pickled._baseclass, mc._baseclass)
+            assert_equal(mc_pickled._mask, mc._mask)
+            assert_equal(mc_pickled._data, mc._data)
+
+    def test_pickling_wstructured(self):
+        # Tests pickling w/ structured array
+        a = array([(1, 1.), (2, 2.)], mask=[(0, 0), (0, 1)],
+                  dtype=[('a', int), ('b', float)])
+        for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+            a_pickled = pickle.loads(pickle.dumps(a, protocol=proto))
+            assert_equal(a_pickled._mask, a._mask)
+            assert_equal(a_pickled, a)
+
+    def test_pickling_keepalignment(self):
+        # Tests pickling w/ F_CONTIGUOUS arrays
+        a = arange(10)
+        a.shape = (-1, 2)
+        b = a.T
+        for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+            test = pickle.loads(pickle.dumps(b, protocol=proto))
+            assert_equal(test, b)
+
+    def test_single_element_subscript(self):
+        # Tests single element subscripts of Maskedarrays.
+        a = array([1, 3, 2])
+        b = array([1, 3, 2], mask=[1, 0, 1])
+        assert_equal(a[0].shape, ())
+        assert_equal(b[0].shape, ())
+        assert_equal(b[1].shape, ())
+
+    def test_topython(self):
+        # Tests some communication issues with Python.
+        assert_equal(1, int(array(1)))
+        assert_equal(1.0, float(array(1)))
+        assert_equal(1, int(array([[[1]]])))
+        assert_equal(1.0, float(array([[1]])))
+        assert_raises(TypeError, float, array([1, 1]))
+
+        with suppress_warnings() as sup:
+            sup.filter(UserWarning, 'Warning: converting a masked element')
+            assert_(np.isnan(float(array([1], mask=[1]))))
+
+            a = array([1, 2, 3], mask=[1, 0, 0])
+            assert_raises(TypeError, lambda: float(a))
+            assert_equal(float(a[-1]), 3.)
+            assert_(np.isnan(float(a[0])))
+        assert_raises(TypeError, int, a)
+        assert_equal(int(a[-1]), 3)
+        assert_raises(MAError, lambda:int(a[0]))
+
+    def test_oddfeatures_1(self):
+        # Test of other odd features
+        x = arange(20)
+        x = x.reshape(4, 5)
+        x.flat[5] = 12
+        assert_(x[1, 0] == 12)
+        z = x + 10j * x
+        assert_equal(z.real, x)
+        assert_equal(z.imag, 10 * x)
+        assert_equal((z * conjugate(z)).real, 101 * x * x)
+        z.imag[...] = 0.0
+
+        x = arange(10)
+        x[3] = masked
+        assert_(str(x[3]) == str(masked))
+        c = x >= 8
+        assert_(count(where(c, masked, masked)) == 0)
+        assert_(shape(where(c, masked, masked)) == c.shape)
+
+        z = masked_where(c, x)
+        assert_(z.dtype is x.dtype)
+        assert_(z[3] is masked)
+        assert_(z[4] is not masked)
+        assert_(z[7] is not masked)
+        assert_(z[8] is masked)
+        assert_(z[9] is masked)
+        assert_equal(x, z)
+
+    def test_oddfeatures_2(self):
+        # Tests some more features.
+        x = array([1., 2., 3., 4., 5.])
+        c = array([1, 1, 1, 0, 0])
+        x[2] = masked
+        z = where(c, x, -x)
+        assert_equal(z, [1., 2., 0., -4., -5])
+        c[0] = masked
+        z = where(c, x, -x)
+        assert_equal(z, [1., 2., 0., -4., -5])
+        assert_(z[0] is masked)
+        assert_(z[1] is not masked)
+        assert_(z[2] is masked)
+
+    @suppress_copy_mask_on_assignment
+    def test_oddfeatures_3(self):
+        # Tests some generic features
+        atest = array([10], mask=True)
+        btest = array([20])
+        idx = atest.mask
+        atest[idx] = btest[idx]
+        assert_equal(atest, [20])
+
+    def test_filled_with_object_dtype(self):
+        a = np.ma.masked_all(1, dtype='O')
+        assert_equal(a.filled('x')[0], 'x')
+
+    def test_filled_with_flexible_dtype(self):
+        # Test filled w/ flexible dtype
+        flexi = array([(1, 1, 1)],
+                      dtype=[('i', int), ('s', '|S8'), ('f', float)])
+        flexi[0] = masked
+        assert_equal(flexi.filled(),
+                     np.array([(default_fill_value(0),
+                                default_fill_value('0'),
+                                default_fill_value(0.),)], dtype=flexi.dtype))
+        flexi[0] = masked
+        assert_equal(flexi.filled(1),
+                     np.array([(1, '1', 1.)], dtype=flexi.dtype))
+
+    def test_filled_with_mvoid(self):
+        # Test filled w/ mvoid
+        ndtype = [('a', int), ('b', float)]
+        a = mvoid((1, 2.), mask=[(0, 1)], dtype=ndtype)
+        # Filled using default
+        test = a.filled()
+        assert_equal(tuple(test), (1, default_fill_value(1.)))
+        # Explicit fill_value
+        test = a.filled((-1, -1))
+        assert_equal(tuple(test), (1, -1))
+        # Using predefined filling values
+        a.fill_value = (-999, -999)
+        assert_equal(tuple(a.filled()), (1, -999))
+
+    def test_filled_with_nested_dtype(self):
+        # Test filled w/ nested dtype
+        ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])]
+        a = array([(1, (1, 1)), (2, (2, 2))],
+                  mask=[(0, (1, 0)), (0, (0, 1))], dtype=ndtype)
+        test = a.filled(0)
+        control = np.array([(1, (0, 1)), (2, (2, 0))], dtype=ndtype)
+        assert_equal(test, control)
+
+        test = a['B'].filled(0)
+        control = np.array([(0, 1), (2, 0)], dtype=a['B'].dtype)
+        assert_equal(test, control)
+
+        # test if mask gets set correctly (see #6760)
+        Z = numpy.ma.zeros(2, numpy.dtype([("A", "(2,2)i1,(2,2)i1", (2,2))]))
+        assert_equal(Z.data.dtype, numpy.dtype([('A', [('f0', 'i1', (2, 2)),
+                                          ('f1', 'i1', (2, 2))], (2, 2))]))
+        assert_equal(Z.mask.dtype, numpy.dtype([('A', [('f0', '?', (2, 2)),
+                                          ('f1', '?', (2, 2))], (2, 2))]))
+
+    def test_filled_with_f_order(self):
+        # Test filled w/ F-contiguous array
+        a = array(np.array([(0, 1, 2), (4, 5, 6)], order='F'),
+                  mask=np.array([(0, 0, 1), (1, 0, 0)], order='F'),
+                  order='F')  # this is currently ignored
+        assert_(a.flags['F_CONTIGUOUS'])
+        assert_(a.filled(0).flags['F_CONTIGUOUS'])
+
+    def test_optinfo_propagation(self):
+        # Checks that _optinfo dictionary isn't back-propagated
+        x = array([1, 2, 3, ], dtype=float)
+        x._optinfo['info'] = '???'
+        y = x.copy()
+        assert_equal(y._optinfo['info'], '???')
+        y._optinfo['info'] = '!!!'
+        assert_equal(x._optinfo['info'], '???')
+
+    def test_optinfo_forward_propagation(self):
+        a = array([1,2,2,4])
+        a._optinfo["key"] = "value"
+        assert_equal(a._optinfo["key"], (a == 2)._optinfo["key"])
+        assert_equal(a._optinfo["key"], (a != 2)._optinfo["key"])
+        assert_equal(a._optinfo["key"], (a > 2)._optinfo["key"])
+        assert_equal(a._optinfo["key"], (a >= 2)._optinfo["key"])
+        assert_equal(a._optinfo["key"], (a <= 2)._optinfo["key"])
+        assert_equal(a._optinfo["key"], (a + 2)._optinfo["key"])
+        assert_equal(a._optinfo["key"], (a - 2)._optinfo["key"])
+        assert_equal(a._optinfo["key"], (a * 2)._optinfo["key"])
+        assert_equal(a._optinfo["key"], (a / 2)._optinfo["key"])
+        assert_equal(a._optinfo["key"], a[:2]._optinfo["key"])
+        assert_equal(a._optinfo["key"], a[[0,0,2]]._optinfo["key"])
+        assert_equal(a._optinfo["key"], np.exp(a)._optinfo["key"])
+        assert_equal(a._optinfo["key"], np.abs(a)._optinfo["key"])
+        assert_equal(a._optinfo["key"], array(a, copy=True)._optinfo["key"])
+        assert_equal(a._optinfo["key"], np.zeros_like(a)._optinfo["key"])
+
+    def test_fancy_printoptions(self):
+        # Test printing a masked array w/ fancy dtype.
+        fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])])
+        test = array([(1, (2, 3.0)), (4, (5, 6.0))],
+                     mask=[(1, (0, 1)), (0, (1, 0))],
+                     dtype=fancydtype)
+        control = "[(--, (2, --)) (4, (--, 6.0))]"
+        assert_equal(str(test), control)
+
+        # Test 0-d array with multi-dimensional dtype
+        t_2d0 = masked_array(data = (0, [[0.0, 0.0, 0.0],
+                                        [0.0, 0.0, 0.0]],
+                                    0.0),
+                             mask = (False, [[True, False, True],
+                                             [False, False, True]],
+                                     False),
+                             dtype = "int, (2,3)float, float")
+        control = "(0, [[--, 0.0, --], [0.0, 0.0, --]], 0.0)"
+        assert_equal(str(t_2d0), control)
+
+    def test_flatten_structured_array(self):
+        # Test flatten_structured_array on arrays
+        # On ndarray
+        ndtype = [('a', int), ('b', float)]
+        a = np.array([(1, 1), (2, 2)], dtype=ndtype)
+        test = flatten_structured_array(a)
+        control = np.array([[1., 1.], [2., 2.]], dtype=float)
+        assert_equal(test, control)
+        assert_equal(test.dtype, control.dtype)
+        # On masked_array
+        a = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype)
+        test = flatten_structured_array(a)
+        control = array([[1., 1.], [2., 2.]],
+                        mask=[[0, 1], [1, 0]], dtype=float)
+        assert_equal(test, control)
+        assert_equal(test.dtype, control.dtype)
+        assert_equal(test.mask, control.mask)
+        # On masked array with nested structure
+        ndtype = [('a', int), ('b', [('ba', int), ('bb', float)])]
+        a = array([(1, (1, 1.1)), (2, (2, 2.2))],
+                  mask=[(0, (1, 0)), (1, (0, 1))], dtype=ndtype)
+        test = flatten_structured_array(a)
+        control = array([[1., 1., 1.1], [2., 2., 2.2]],
+                        mask=[[0, 1, 0], [1, 0, 1]], dtype=float)
+        assert_equal(test, control)
+        assert_equal(test.dtype, control.dtype)
+        assert_equal(test.mask, control.mask)
+        # Keeping the initial shape
+        ndtype = [('a', int), ('b', float)]
+        a = np.array([[(1, 1), ], [(2, 2), ]], dtype=ndtype)
+        test = flatten_structured_array(a)
+        control = np.array([[[1., 1.], ], [[2., 2.], ]], dtype=float)
+        assert_equal(test, control)
+        assert_equal(test.dtype, control.dtype)
+
+    def test_void0d(self):
+        # Test creating a mvoid object
+        ndtype = [('a', int), ('b', int)]
+        a = np.array([(1, 2,)], dtype=ndtype)[0]
+        f = mvoid(a)
+        assert_(isinstance(f, mvoid))
+
+        a = masked_array([(1, 2)], mask=[(1, 0)], dtype=ndtype)[0]
+        assert_(isinstance(a, mvoid))
+
+        a = masked_array([(1, 2), (1, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype)
+        f = mvoid(a._data[0], a._mask[0])
+        assert_(isinstance(f, mvoid))
+
+    def test_mvoid_getitem(self):
+        # Test mvoid.__getitem__
+        ndtype = [('a', int), ('b', int)]
+        a = masked_array([(1, 2,), (3, 4)], mask=[(0, 0), (1, 0)],
+                         dtype=ndtype)
+        # w/o mask
+        f = a[0]
+        assert_(isinstance(f, mvoid))
+        assert_equal((f[0], f['a']), (1, 1))
+        assert_equal(f['b'], 2)
+        # w/ mask
+        f = a[1]
+        assert_(isinstance(f, mvoid))
+        assert_(f[0] is masked)
+        assert_(f['a'] is masked)
+        assert_equal(f[1], 4)
+
+        # exotic dtype
+        A = masked_array(data=[([0,1],)],
+                         mask=[([True, False],)],
+                         dtype=[("A", ">i2", (2,))])
+        assert_equal(A[0]["A"], A["A"][0])
+        assert_equal(A[0]["A"], masked_array(data=[0, 1],
+                         mask=[True, False], dtype=">i2"))
+
+    def test_mvoid_iter(self):
+        # Test iteration on __getitem__
+        ndtype = [('a', int), ('b', int)]
+        a = masked_array([(1, 2,), (3, 4)], mask=[(0, 0), (1, 0)],
+                         dtype=ndtype)
+        # w/o mask
+        assert_equal(list(a[0]), [1, 2])
+        # w/ mask
+        assert_equal(list(a[1]), [masked, 4])
+
+    def test_mvoid_print(self):
+        # Test printing a mvoid
+        mx = array([(1, 1), (2, 2)], dtype=[('a', int), ('b', int)])
+        assert_equal(str(mx[0]), "(1, 1)")
+        mx['b'][0] = masked
+        ini_display = masked_print_option._display
+        masked_print_option.set_display("-X-")
+        try:
+            assert_equal(str(mx[0]), "(1, -X-)")
+            assert_equal(repr(mx[0]), "(1, -X-)")
+        finally:
+            masked_print_option.set_display(ini_display)
+
+        # also check if there are object datatypes (see gh-7493)
+        mx = array([(1,), (2,)], dtype=[('a', 'O')])
+        assert_equal(str(mx[0]), "(1,)")
+
+    def test_mvoid_multidim_print(self):
+
+        # regression test for gh-6019
+        t_ma = masked_array(data = [([1, 2, 3],)],
+                            mask = [([False, True, False],)],
+                            fill_value = ([999999, 999999, 999999],),
+                            dtype = [('a', '<i4', (3,))])
+        assert_(str(t_ma[0]) == "([1, --, 3],)")
+        assert_(repr(t_ma[0]) == "([1, --, 3],)")
+
+        # additional tests with structured arrays
+
+        t_2d = masked_array(data = [([[1, 2], [3,4]],)],
+                            mask = [([[False, True], [True, False]],)],
+                            dtype = [('a', '<i4', (2,2))])
+        assert_(str(t_2d[0]) == "([[1, --], [--, 4]],)")
+        assert_(repr(t_2d[0]) == "([[1, --], [--, 4]],)")
+
+        t_0d = masked_array(data = [(1,2)],
+                            mask = [(True,False)],
+                            dtype = [('a', '<i4'), ('b', '<i4')])
+        assert_(str(t_0d[0]) == "(--, 2)")
+        assert_(repr(t_0d[0]) == "(--, 2)")
+
+        t_2d = masked_array(data = [([[1, 2], [3,4]], 1)],
+                            mask = [([[False, True], [True, False]], False)],
+                            dtype = [('a', '<i4', (2,2)), ('b', float)])
+        assert_(str(t_2d[0]) == "([[1, --], [--, 4]], 1.0)")
+        assert_(repr(t_2d[0]) == "([[1, --], [--, 4]], 1.0)")
+
+        t_ne = masked_array(data=[(1, (1, 1))],
+                            mask=[(True, (True, False))],
+                            dtype = [('a', '<i4'), ('b', 'i4,i4')])
+        assert_(str(t_ne[0]) == "(--, (--, 1))")
+        assert_(repr(t_ne[0]) == "(--, (--, 1))")
+
+    def test_object_with_array(self):
+        mx1 = masked_array([1.], mask=[True])
+        mx2 = masked_array([1., 2.])
+        mx = masked_array([mx1, mx2], mask=[False, True], dtype=object)
+        assert_(mx[0] is mx1)
+        assert_(mx[1] is not mx2)
+        assert_(np.all(mx[1].data == mx2.data))
+        assert_(np.all(mx[1].mask))
+        # check that we return a view.
+        mx[1].data[0] = 0.
+        assert_(mx2[0] == 0.)
+
+
+class TestMaskedArrayArithmetic:
+    # Base test class for MaskedArrays.
+
+    def setup_method(self):
+        # Base data definition.
+        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
+        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
+        a10 = 10.
+        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
+        xm = masked_array(x, mask=m1)
+        ym = masked_array(y, mask=m2)
+        z = np.array([-.5, 0., .5, .8])
+        zm = masked_array(z, mask=[0, 1, 0, 0])
+        xf = np.where(m1, 1e+20, x)
+        xm.set_fill_value(1e+20)
+        self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
+        self.err_status = np.geterr()
+        np.seterr(divide='ignore', invalid='ignore')
+
+    def teardown_method(self):
+        np.seterr(**self.err_status)
+
+    def test_basic_arithmetic(self):
+        # Test of basic arithmetic.
+        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+        a2d = array([[1, 2], [0, 4]])
+        a2dm = masked_array(a2d, [[0, 0], [1, 0]])
+        assert_equal(a2d * a2d, a2d * a2dm)
+        assert_equal(a2d + a2d, a2d + a2dm)
+        assert_equal(a2d - a2d, a2d - a2dm)
+        for s in [(12,), (4, 3), (2, 6)]:
+            x = x.reshape(s)
+            y = y.reshape(s)
+            xm = xm.reshape(s)
+            ym = ym.reshape(s)
+            xf = xf.reshape(s)
+            assert_equal(-x, -xm)
+            assert_equal(x + y, xm + ym)
+            assert_equal(x - y, xm - ym)
+            assert_equal(x * y, xm * ym)
+            assert_equal(x / y, xm / ym)
+            assert_equal(a10 + y, a10 + ym)
+            assert_equal(a10 - y, a10 - ym)
+            assert_equal(a10 * y, a10 * ym)
+            assert_equal(a10 / y, a10 / ym)
+            assert_equal(x + a10, xm + a10)
+            assert_equal(x - a10, xm - a10)
+            assert_equal(x * a10, xm * a10)
+            assert_equal(x / a10, xm / a10)
+            assert_equal(x ** 2, xm ** 2)
+            assert_equal(abs(x) ** 2.5, abs(xm) ** 2.5)
+            assert_equal(x ** y, xm ** ym)
+            assert_equal(np.add(x, y), add(xm, ym))
+            assert_equal(np.subtract(x, y), subtract(xm, ym))
+            assert_equal(np.multiply(x, y), multiply(xm, ym))
+            assert_equal(np.divide(x, y), divide(xm, ym))
+
+    def test_divide_on_different_shapes(self):
+        x = arange(6, dtype=float)
+        x.shape = (2, 3)
+        y = arange(3, dtype=float)
+
+        z = x / y
+        assert_equal(z, [[-1., 1., 1.], [-1., 4., 2.5]])
+        assert_equal(z.mask, [[1, 0, 0], [1, 0, 0]])
+
+        z = x / y[None,:]
+        assert_equal(z, [[-1., 1., 1.], [-1., 4., 2.5]])
+        assert_equal(z.mask, [[1, 0, 0], [1, 0, 0]])
+
+        y = arange(2, dtype=float)
+        z = x / y[:, None]
+        assert_equal(z, [[-1., -1., -1.], [3., 4., 5.]])
+        assert_equal(z.mask, [[1, 1, 1], [0, 0, 0]])
+
+    def test_mixed_arithmetic(self):
+        # Tests mixed arithmetic.
+        na = np.array([1])
+        ma = array([1])
+        assert_(isinstance(na + ma, MaskedArray))
+        assert_(isinstance(ma + na, MaskedArray))
+
+    def test_limits_arithmetic(self):
+        tiny = np.finfo(float).tiny
+        a = array([tiny, 1. / tiny, 0.])
+        assert_equal(getmaskarray(a / 2), [0, 0, 0])
+        assert_equal(getmaskarray(2 / a), [1, 0, 1])
+
+    def test_masked_singleton_arithmetic(self):
+        # Tests some scalar arithmetic on MaskedArrays.
+        # Masked singleton should remain masked no matter what
+        xm = array(0, mask=1)
+        assert_((1 / array(0)).mask)
+        assert_((1 + xm).mask)
+        assert_((-xm).mask)
+        assert_(maximum(xm, xm).mask)
+        assert_(minimum(xm, xm).mask)
+
+    def test_masked_singleton_equality(self):
+        # Tests (in)equality on masked singleton
+        a = array([1, 2, 3], mask=[1, 1, 0])
+        assert_((a[0] == 0) is masked)
+        assert_((a[0] != 0) is masked)
+        assert_equal((a[-1] == 0), False)
+        assert_equal((a[-1] != 0), True)
+
+    def test_arithmetic_with_masked_singleton(self):
+        # Checks that there's no collapsing to masked
+        x = masked_array([1, 2])
+        y = x * masked
+        assert_equal(y.shape, x.shape)
+        assert_equal(y._mask, [True, True])
+        y = x[0] * masked
+        assert_(y is masked)
+        y = x + masked
+        assert_equal(y.shape, x.shape)
+        assert_equal(y._mask, [True, True])
+
+    def test_arithmetic_with_masked_singleton_on_1d_singleton(self):
+        # Check that we're not losing the shape of a singleton
+        x = masked_array([1, ])
+        y = x + masked
+        assert_equal(y.shape, x.shape)
+        assert_equal(y.mask, [True, ])
+
+    def test_scalar_arithmetic(self):
+        x = array(0, mask=0)
+        assert_equal(x.filled().ctypes.data, x.ctypes.data)
+        # Make sure we don't lose the shape in some circumstances
+        xm = array((0, 0)) / 0.
+        assert_equal(xm.shape, (2,))
+        assert_equal(xm.mask, [1, 1])
+
+    def test_basic_ufuncs(self):
+        # Test various functions such as sin, cos.
+        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+        assert_equal(np.cos(x), cos(xm))
+        assert_equal(np.cosh(x), cosh(xm))
+        assert_equal(np.sin(x), sin(xm))
+        assert_equal(np.sinh(x), sinh(xm))
+        assert_equal(np.tan(x), tan(xm))
+        assert_equal(np.tanh(x), tanh(xm))
+        assert_equal(np.sqrt(abs(x)), sqrt(xm))
+        assert_equal(np.log(abs(x)), log(xm))
+        assert_equal(np.log10(abs(x)), log10(xm))
+        assert_equal(np.exp(x), exp(xm))
+        assert_equal(np.arcsin(z), arcsin(zm))
+        assert_equal(np.arccos(z), arccos(zm))
+        assert_equal(np.arctan(z), arctan(zm))
+        assert_equal(np.arctan2(x, y), arctan2(xm, ym))
+        assert_equal(np.absolute(x), absolute(xm))
+        assert_equal(np.angle(x + 1j*y), angle(xm + 1j*ym))
+        assert_equal(np.angle(x + 1j*y, deg=True), angle(xm + 1j*ym, deg=True))
+        assert_equal(np.equal(x, y), equal(xm, ym))
+        assert_equal(np.not_equal(x, y), not_equal(xm, ym))
+        assert_equal(np.less(x, y), less(xm, ym))
+        assert_equal(np.greater(x, y), greater(xm, ym))
+        assert_equal(np.less_equal(x, y), less_equal(xm, ym))
+        assert_equal(np.greater_equal(x, y), greater_equal(xm, ym))
+        assert_equal(np.conjugate(x), conjugate(xm))
+
+    def test_count_func(self):
+        # Tests count
+        assert_equal(1, count(1))
+        assert_equal(0, array(1, mask=[1]))
+
+        ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
+        res = count(ott)
+        assert_(res.dtype.type is np.intp)
+        assert_equal(3, res)
+
+        ott = ott.reshape((2, 2))
+        res = count(ott)
+        assert_(res.dtype.type is np.intp)
+        assert_equal(3, res)
+        res = count(ott, 0)
+        assert_(isinstance(res, ndarray))
+        assert_equal([1, 2], res)
+        assert_(getmask(res) is nomask)
+
+        ott = array([0., 1., 2., 3.])
+        res = count(ott, 0)
+        assert_(isinstance(res, ndarray))
+        assert_(res.dtype.type is np.intp)
+        assert_raises(np.AxisError, ott.count, axis=1)
+
+    def test_count_on_python_builtins(self):
+        # Tests count works on python builtins (issue#8019)
+        assert_equal(3, count([1,2,3]))
+        assert_equal(2, count((1,2)))
+
+    def test_minmax_func(self):
+        # Tests minimum and maximum.
+        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+        # max doesn't work if shaped
+        xr = np.ravel(x)
+        xmr = ravel(xm)
+        # following are true because of careful selection of data
+        assert_equal(max(xr), maximum.reduce(xmr))
+        assert_equal(min(xr), minimum.reduce(xmr))
+
+        assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
+        assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
+        x = arange(5)
+        y = arange(5) - 2
+        x[3] = masked
+        y[0] = masked
+        assert_equal(minimum(x, y), where(less(x, y), x, y))
+        assert_equal(maximum(x, y), where(greater(x, y), x, y))
+        assert_(minimum.reduce(x) == 0)
+        assert_(maximum.reduce(x) == 4)
+
+        x = arange(4).reshape(2, 2)
+        x[-1, -1] = masked
+        assert_equal(maximum.reduce(x, axis=None), 2)
+
+    def test_minimummaximum_func(self):
+        a = np.ones((2, 2))
+        aminimum = minimum(a, a)
+        assert_(isinstance(aminimum, MaskedArray))
+        assert_equal(aminimum, np.minimum(a, a))
+
+        aminimum = minimum.outer(a, a)
+        assert_(isinstance(aminimum, MaskedArray))
+        assert_equal(aminimum, np.minimum.outer(a, a))
+
+        amaximum = maximum(a, a)
+        assert_(isinstance(amaximum, MaskedArray))
+        assert_equal(amaximum, np.maximum(a, a))
+
+        amaximum = maximum.outer(a, a)
+        assert_(isinstance(amaximum, MaskedArray))
+        assert_equal(amaximum, np.maximum.outer(a, a))
+
+    def test_minmax_reduce(self):
+        # Test np.min/maximum.reduce on array w/ full False mask
+        a = array([1, 2, 3], mask=[False, False, False])
+        b = np.maximum.reduce(a)
+        assert_equal(b, 3)
+
+    def test_minmax_funcs_with_output(self):
+        # Tests the min/max functions with explicit outputs
+        mask = np.random.rand(12).round()
+        xm = array(np.random.uniform(0, 10, 12), mask=mask)
+        xm.shape = (3, 4)
+        for funcname in ('min', 'max'):
+            # Initialize
+            npfunc = getattr(np, funcname)
+            mafunc = getattr(numpy.ma.core, funcname)
+            # Use the np version
+            nout = np.empty((4,), dtype=int)
+            try:
+                result = npfunc(xm, axis=0, out=nout)
+            except MaskError:
+                pass
+            nout = np.empty((4,), dtype=float)
+            result = npfunc(xm, axis=0, out=nout)
+            assert_(result is nout)
+            # Use the ma version
+            nout.fill(-999)
+            result = mafunc(xm, axis=0, out=nout)
+            assert_(result is nout)
+
+    def test_minmax_methods(self):
+        # Additional tests on max/min
+        (_, _, _, _, _, xm, _, _, _, _) = self.d
+        xm.shape = (xm.size,)
+        assert_equal(xm.max(), 10)
+        assert_(xm[0].max() is masked)
+        assert_(xm[0].max(0) is masked)
+        assert_(xm[0].max(-1) is masked)
+        assert_equal(xm.min(), -10.)
+        assert_(xm[0].min() is masked)
+        assert_(xm[0].min(0) is masked)
+        assert_(xm[0].min(-1) is masked)
+        assert_equal(xm.ptp(), 20.)
+        assert_(xm[0].ptp() is masked)
+        assert_(xm[0].ptp(0) is masked)
+        assert_(xm[0].ptp(-1) is masked)
+
+        x = array([1, 2, 3], mask=True)
+        assert_(x.min() is masked)
+        assert_(x.max() is masked)
+        assert_(x.ptp() is masked)
+
+    def test_minmax_dtypes(self):
+        # Additional tests on max/min for non-standard float and complex dtypes
+        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
+        a10 = 10.
+        an10 = -10.0
+        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+        xm = masked_array(x, mask=m1)
+        xm.set_fill_value(1e+20)
+        float_dtypes = [np.float16, np.float32, np.float64, np.longdouble,
+                        np.complex64, np.complex128, np.clongdouble]
+        for float_dtype in float_dtypes:
+            assert_equal(masked_array(x, mask=m1, dtype=float_dtype).max(),
+                         float_dtype(a10))
+            assert_equal(masked_array(x, mask=m1, dtype=float_dtype).min(),
+                         float_dtype(an10))
+
+        assert_equal(xm.min(), an10)
+        assert_equal(xm.max(), a10)
+
+        # Non-complex type only test
+        for float_dtype in float_dtypes[:4]:
+            assert_equal(masked_array(x, mask=m1, dtype=float_dtype).max(),
+                         float_dtype(a10))
+            assert_equal(masked_array(x, mask=m1, dtype=float_dtype).min(),
+                         float_dtype(an10))
+
+        # Complex types only test
+        for float_dtype in float_dtypes[-3:]:
+            ym = masked_array([1e20+1j, 1e20-2j, 1e20-1j], mask=[0, 1, 0],
+                          dtype=float_dtype)
+            assert_equal(ym.min(), float_dtype(1e20-1j))
+            assert_equal(ym.max(), float_dtype(1e20+1j))
+
+            zm = masked_array([np.inf+2j, np.inf+3j, -np.inf-1j], mask=[0, 1, 0],
+                              dtype=float_dtype)
+            assert_equal(zm.min(), float_dtype(-np.inf-1j))
+            assert_equal(zm.max(), float_dtype(np.inf+2j))
+
+            cmax = np.inf - 1j * np.finfo(np.float64).max
+            assert masked_array([-cmax, 0], mask=[0, 1]).max() == -cmax
+            assert masked_array([cmax, 0], mask=[0, 1]).min() == cmax
+
+    def test_addsumprod(self):
+        # Tests add, sum, product.
+        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+        assert_equal(np.add.reduce(x), add.reduce(x))
+        assert_equal(np.add.accumulate(x), add.accumulate(x))
+        assert_equal(4, sum(array(4), axis=0))
+        assert_equal(4, sum(array(4), axis=0))
+        assert_equal(np.sum(x, axis=0), sum(x, axis=0))
+        assert_equal(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0))
+        assert_equal(np.sum(x, 0), sum(x, 0))
+        assert_equal(np.prod(x, axis=0), product(x, axis=0))
+        assert_equal(np.prod(x, 0), product(x, 0))
+        assert_equal(np.prod(filled(xm, 1), axis=0), product(xm, axis=0))
+        s = (3, 4)
+        x.shape = y.shape = xm.shape = ym.shape = s
+        if len(s) > 1:
+            assert_equal(np.concatenate((x, y), 1), concatenate((xm, ym), 1))
+            assert_equal(np.add.reduce(x, 1), add.reduce(x, 1))
+            assert_equal(np.sum(x, 1), sum(x, 1))
+            assert_equal(np.prod(x, 1), product(x, 1))
+
+    def test_binops_d2D(self):
+        # Test binary operations on 2D data
+        a = array([[1.], [2.], [3.]], mask=[[False], [True], [True]])
+        b = array([[2., 3.], [4., 5.], [6., 7.]])
+
+        test = a * b
+        control = array([[2., 3.], [2., 2.], [3., 3.]],
+                        mask=[[0, 0], [1, 1], [1, 1]])
+        assert_equal(test, control)
+        assert_equal(test.data, control.data)
+        assert_equal(test.mask, control.mask)
+
+        test = b * a
+        control = array([[2., 3.], [4., 5.], [6., 7.]],
+                        mask=[[0, 0], [1, 1], [1, 1]])
+        assert_equal(test, control)
+        assert_equal(test.data, control.data)
+        assert_equal(test.mask, control.mask)
+
+        a = array([[1.], [2.], [3.]])
+        b = array([[2., 3.], [4., 5.], [6., 7.]],
+                  mask=[[0, 0], [0, 0], [0, 1]])
+        test = a * b
+        control = array([[2, 3], [8, 10], [18, 3]],
+                        mask=[[0, 0], [0, 0], [0, 1]])
+        assert_equal(test, control)
+        assert_equal(test.data, control.data)
+        assert_equal(test.mask, control.mask)
+
+        test = b * a
+        control = array([[2, 3], [8, 10], [18, 7]],
+                        mask=[[0, 0], [0, 0], [0, 1]])
+        assert_equal(test, control)
+        assert_equal(test.data, control.data)
+        assert_equal(test.mask, control.mask)
+
+    def test_domained_binops_d2D(self):
+        # Test domained binary operations on 2D data
+        a = array([[1.], [2.], [3.]], mask=[[False], [True], [True]])
+        b = array([[2., 3.], [4., 5.], [6., 7.]])
+
+        test = a / b
+        control = array([[1. / 2., 1. / 3.], [2., 2.], [3., 3.]],
+                        mask=[[0, 0], [1, 1], [1, 1]])
+        assert_equal(test, control)
+        assert_equal(test.data, control.data)
+        assert_equal(test.mask, control.mask)
+
+        test = b / a
+        control = array([[2. / 1., 3. / 1.], [4., 5.], [6., 7.]],
+                        mask=[[0, 0], [1, 1], [1, 1]])
+        assert_equal(test, control)
+        assert_equal(test.data, control.data)
+        assert_equal(test.mask, control.mask)
+
+        a = array([[1.], [2.], [3.]])
+        b = array([[2., 3.], [4., 5.], [6., 7.]],
+                  mask=[[0, 0], [0, 0], [0, 1]])
+        test = a / b
+        control = array([[1. / 2, 1. / 3], [2. / 4, 2. / 5], [3. / 6, 3]],
+                        mask=[[0, 0], [0, 0], [0, 1]])
+        assert_equal(test, control)
+        assert_equal(test.data, control.data)
+        assert_equal(test.mask, control.mask)
+
+        test = b / a
+        control = array([[2 / 1., 3 / 1.], [4 / 2., 5 / 2.], [6 / 3., 7]],
+                        mask=[[0, 0], [0, 0], [0, 1]])
+        assert_equal(test, control)
+        assert_equal(test.data, control.data)
+        assert_equal(test.mask, control.mask)
+
+    def test_noshrinking(self):
+        # Check that we don't shrink a mask when not wanted
+        # Binary operations
+        a = masked_array([1., 2., 3.], mask=[False, False, False],
+                         shrink=False)
+        b = a + 1
+        assert_equal(b.mask, [0, 0, 0])
+        # In place binary operation
+        a += 1
+        assert_equal(a.mask, [0, 0, 0])
+        # Domained binary operation
+        b = a / 1.
+        assert_equal(b.mask, [0, 0, 0])
+        # In place binary operation
+        a /= 1.
+        assert_equal(a.mask, [0, 0, 0])
+
+    def test_ufunc_nomask(self):
+        # check the case ufuncs should set the mask to false
+        m = np.ma.array([1])
+        # check we don't get array([False], dtype=bool)
+        assert_equal(np.true_divide(m, 5).mask.shape, ())
+
+    def test_noshink_on_creation(self):
+        # Check that the mask is not shrunk on array creation when not wanted
+        a = np.ma.masked_values([1., 2.5, 3.1], 1.5, shrink=False)
+        assert_equal(a.mask, [0, 0, 0])
+
+    def test_mod(self):
+        # Tests mod
+        (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+        assert_equal(mod(x, y), mod(xm, ym))
+        test = mod(ym, xm)
+        assert_equal(test, np.mod(ym, xm))
+        assert_equal(test.mask, mask_or(xm.mask, ym.mask))
+        test = mod(xm, ym)
+        assert_equal(test, np.mod(xm, ym))
+        assert_equal(test.mask, mask_or(mask_or(xm.mask, ym.mask), (ym == 0)))
+
+    def test_TakeTransposeInnerOuter(self):
+        # Test of take, transpose, inner, outer products
+        x = arange(24)
+        y = np.arange(24)
+        x[5:6] = masked
+        x = x.reshape(2, 3, 4)
+        y = y.reshape(2, 3, 4)
+        assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))
+        assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))
+        assert_equal(np.inner(filled(x, 0), filled(y, 0)),
+                     inner(x, y))
+        assert_equal(np.outer(filled(x, 0), filled(y, 0)),
+                     outer(x, y))
+        y = array(['abc', 1, 'def', 2, 3], object)
+        y[2] = masked
+        t = take(y, [0, 3, 4])
+        assert_(t[0] == 'abc')
+        assert_(t[1] == 2)
+        assert_(t[2] == 3)
+
+    def test_imag_real(self):
+        # Check complex
+        xx = array([1 + 10j, 20 + 2j], mask=[1, 0])
+        assert_equal(xx.imag, [10, 2])
+        assert_equal(xx.imag.filled(), [1e+20, 2])
+        assert_equal(xx.imag.dtype, xx._data.imag.dtype)
+        assert_equal(xx.real, [1, 20])
+        assert_equal(xx.real.filled(), [1e+20, 20])
+        assert_equal(xx.real.dtype, xx._data.real.dtype)
+
+    def test_methods_with_output(self):
+        xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4)
+        xm[:, 0] = xm[0] = xm[-1, -1] = masked
+
+        funclist = ('sum', 'prod', 'var', 'std', 'max', 'min', 'ptp', 'mean',)
+
+        for funcname in funclist:
+            npfunc = getattr(np, funcname)
+            xmmeth = getattr(xm, funcname)
+            # A ndarray as explicit input
+            output = np.empty(4, dtype=float)
+            output.fill(-9999)
+            result = npfunc(xm, axis=0, out=output)
+            # ... the result should be the given output
+            assert_(result is output)
+            assert_equal(result, xmmeth(axis=0, out=output))
+
+            output = empty(4, dtype=int)
+            result = xmmeth(axis=0, out=output)
+            assert_(result is output)
+            assert_(output[0] is masked)
+
+    def test_eq_on_structured(self):
+        # Test the equality of structured arrays
+        ndtype = [('A', int), ('B', int)]
+        a = array([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype)
+
+        test = (a == a)
+        assert_equal(test.data, [True, True])
+        assert_equal(test.mask, [False, False])
+        assert_(test.fill_value == True)
+
+        test = (a == a[0])
+        assert_equal(test.data, [True, False])
+        assert_equal(test.mask, [False, False])
+        assert_(test.fill_value == True)
+
+        b = array([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype)
+        test = (a == b)
+        assert_equal(test.data, [False, True])
+        assert_equal(test.mask, [True, False])
+        assert_(test.fill_value == True)
+
+        test = (a[0] == b)
+        assert_equal(test.data, [False, False])
+        assert_equal(test.mask, [True, False])
+        assert_(test.fill_value == True)
+
+        b = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype)
+        test = (a == b)
+        assert_equal(test.data, [True, True])
+        assert_equal(test.mask, [False, False])
+        assert_(test.fill_value == True)
+
+        # complicated dtype, 2-dimensional array.
+        ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])]
+        a = array([[(1, (1, 1)), (2, (2, 2))],
+                   [(3, (3, 3)), (4, (4, 4))]],
+                  mask=[[(0, (1, 0)), (0, (0, 1))],
+                        [(1, (0, 0)), (1, (1, 1))]], dtype=ndtype)
+        test = (a[0, 0] == a)
+        assert_equal(test.data, [[True, False], [False, False]])
+        assert_equal(test.mask, [[False, False], [False, True]])
+        assert_(test.fill_value == True)
+
+    def test_ne_on_structured(self):
+        # Test the equality of structured arrays
+        ndtype = [('A', int), ('B', int)]
+        a = array([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype)
+
+        test = (a != a)
+        assert_equal(test.data, [False, False])
+        assert_equal(test.mask, [False, False])
+        assert_(test.fill_value == True)
+
+        test = (a != a[0])
+        assert_equal(test.data, [False, True])
+        assert_equal(test.mask, [False, False])
+        assert_(test.fill_value == True)
+
+        b = array([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype)
+        test = (a != b)
+        assert_equal(test.data, [True, False])
+        assert_equal(test.mask, [True, False])
+        assert_(test.fill_value == True)
+
+        test = (a[0] != b)
+        assert_equal(test.data, [True, True])
+        assert_equal(test.mask, [True, False])
+        assert_(test.fill_value == True)
+
+        b = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype)
+        test = (a != b)
+        assert_equal(test.data, [False, False])
+        assert_equal(test.mask, [False, False])
+        assert_(test.fill_value == True)
+
+        # complicated dtype, 2-dimensional array.
+        ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])]
+        a = array([[(1, (1, 1)), (2, (2, 2))],
+                   [(3, (3, 3)), (4, (4, 4))]],
+                  mask=[[(0, (1, 0)), (0, (0, 1))],
+                        [(1, (0, 0)), (1, (1, 1))]], dtype=ndtype)
+        test = (a[0, 0] != a)
+        assert_equal(test.data, [[False, True], [True, True]])
+        assert_equal(test.mask, [[False, False], [False, True]])
+        assert_(test.fill_value == True)
+
+    def test_eq_ne_structured_with_non_masked(self):
+        a = array([(1, 1), (2, 2), (3, 4)],
+                  mask=[(0, 1), (0, 0), (1, 1)], dtype='i4,i4')
+        eq = a == a.data
+        ne = a.data != a
+        # Test the obvious.
+        assert_(np.all(eq))
+        assert_(not np.any(ne))
+        # Expect the mask set only for items with all fields masked.
+        expected_mask = a.mask == np.ones((), a.mask.dtype)
+        assert_array_equal(eq.mask, expected_mask)
+        assert_array_equal(ne.mask, expected_mask)
+        # The masked element will indicated not equal, because the
+        # masks did not match.
+        assert_equal(eq.data, [True, True, False])
+        assert_array_equal(eq.data, ~ne.data)
+
+    def test_eq_ne_structured_extra(self):
+        # ensure simple examples are symmetric and make sense.
+        # from https://github.com/numpy/numpy/pull/8590#discussion_r101126465
+        dt = np.dtype('i4,i4')
+        for m1 in (mvoid((1, 2), mask=(0, 0), dtype=dt),
+                   mvoid((1, 2), mask=(0, 1), dtype=dt),
+                   mvoid((1, 2), mask=(1, 0), dtype=dt),
+                   mvoid((1, 2), mask=(1, 1), dtype=dt)):
+            ma1 = m1.view(MaskedArray)
+            r1 = ma1.view('2i4')
+            for m2 in (np.array((1, 1), dtype=dt),
+                       mvoid((1, 1), dtype=dt),
+                       mvoid((1, 0), mask=(0, 1), dtype=dt),
+                       mvoid((3, 2), mask=(0, 1), dtype=dt)):
+                ma2 = m2.view(MaskedArray)
+                r2 = ma2.view('2i4')
+                eq_expected = (r1 == r2).all()
+                assert_equal(m1 == m2, eq_expected)
+                assert_equal(m2 == m1, eq_expected)
+                assert_equal(ma1 == m2, eq_expected)
+                assert_equal(m1 == ma2, eq_expected)
+                assert_equal(ma1 == ma2, eq_expected)
+                # Also check it is the same if we do it element by element.
+                el_by_el = [m1[name] == m2[name] for name in dt.names]
+                assert_equal(array(el_by_el, dtype=bool).all(), eq_expected)
+                ne_expected = (r1 != r2).any()
+                assert_equal(m1 != m2, ne_expected)
+                assert_equal(m2 != m1, ne_expected)
+                assert_equal(ma1 != m2, ne_expected)
+                assert_equal(m1 != ma2, ne_expected)
+                assert_equal(ma1 != ma2, ne_expected)
+                el_by_el = [m1[name] != m2[name] for name in dt.names]
+                assert_equal(array(el_by_el, dtype=bool).any(), ne_expected)
+
+    @pytest.mark.parametrize('dt', ['S', 'U'])
+    @pytest.mark.parametrize('fill', [None, 'A'])
+    def test_eq_for_strings(self, dt, fill):
+        # Test the equality of structured arrays
+        a = array(['a', 'b'], dtype=dt, mask=[0, 1], fill_value=fill)
+
+        test = (a == a)
+        assert_equal(test.data, [True, True])
+        assert_equal(test.mask, [False, True])
+        assert_(test.fill_value == True)
+
+        test = (a == a[0])
+        assert_equal(test.data, [True, False])
+        assert_equal(test.mask, [False, True])
+        assert_(test.fill_value == True)
+
+        b = array(['a', 'b'], dtype=dt, mask=[1, 0], fill_value=fill)
+        test = (a == b)
+        assert_equal(test.data, [False, False])
+        assert_equal(test.mask, [True, True])
+        assert_(test.fill_value == True)
+
+        test = (a[0] == b)
+        assert_equal(test.data, [False, False])
+        assert_equal(test.mask, [True, False])
+        assert_(test.fill_value == True)
+
+        test = (b == a[0])
+        assert_equal(test.data, [False, False])
+        assert_equal(test.mask, [True, False])
+        assert_(test.fill_value == True)
+
+    @pytest.mark.parametrize('dt', ['S', 'U'])
+    @pytest.mark.parametrize('fill', [None, 'A'])
+    def test_ne_for_strings(self, dt, fill):
+        # Test the equality of structured arrays
+        a = array(['a', 'b'], dtype=dt, mask=[0, 1], fill_value=fill)
+
+        test = (a != a)
+        assert_equal(test.data, [False, False])
+        assert_equal(test.mask, [False, True])
+        assert_(test.fill_value == True)
+
+        test = (a != a[0])
+        assert_equal(test.data, [False, True])
+        assert_equal(test.mask, [False, True])
+        assert_(test.fill_value == True)
+
+        b = array(['a', 'b'], dtype=dt, mask=[1, 0], fill_value=fill)
+        test = (a != b)
+        assert_equal(test.data, [True, True])
+        assert_equal(test.mask, [True, True])
+        assert_(test.fill_value == True)
+
+        test = (a[0] != b)
+        assert_equal(test.data, [True, True])
+        assert_equal(test.mask, [True, False])
+        assert_(test.fill_value == True)
+
+        test = (b != a[0])
+        assert_equal(test.data, [True, True])
+        assert_equal(test.mask, [True, False])
+        assert_(test.fill_value == True)
+
+    @pytest.mark.parametrize('dt1', num_dts, ids=num_ids)
+    @pytest.mark.parametrize('dt2', num_dts, ids=num_ids)
+    @pytest.mark.parametrize('fill', [None, 1])
+    def test_eq_for_numeric(self, dt1, dt2, fill):
+        # Test the equality of structured arrays
+        a = array([0, 1], dtype=dt1, mask=[0, 1], fill_value=fill)
+
+        test = (a == a)
+        assert_equal(test.data, [True, True])
+        assert_equal(test.mask, [False, True])
+        assert_(test.fill_value == True)
+
+        test = (a == a[0])
+        assert_equal(test.data, [True, False])
+        assert_equal(test.mask, [False, True])
+        assert_(test.fill_value == True)
+
+        b = array([0, 1], dtype=dt2, mask=[1, 0], fill_value=fill)
+        test = (a == b)
+        assert_equal(test.data, [False, False])
+        assert_equal(test.mask, [True, True])
+        assert_(test.fill_value == True)
+
+        test = (a[0] == b)
+        assert_equal(test.data, [False, False])
+        assert_equal(test.mask, [True, False])
+        assert_(test.fill_value == True)
+
+        test = (b == a[0])
+        assert_equal(test.data, [False, False])
+        assert_equal(test.mask, [True, False])
+        assert_(test.fill_value == True)
+
+    @pytest.mark.parametrize("op", [operator.eq, operator.lt])
+    def test_eq_broadcast_with_unmasked(self, op):
+        a = array([0, 1], mask=[0, 1])
+        b = np.arange(10).reshape(5, 2)
+        result = op(a, b)
+        assert_(result.mask.shape == b.shape)
+        assert_equal(result.mask, np.zeros(b.shape, bool) | a.mask)
+
+    @pytest.mark.parametrize("op", [operator.eq, operator.gt])
+    def test_comp_no_mask_not_broadcast(self, op):
+        # Regression test for failing doctest in MaskedArray.nonzero
+        # after gh-24556.
+        a = array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
+        result = op(a, 3)
+        assert_(not result.mask.shape)
+        assert_(result.mask is nomask)
+
+    @pytest.mark.parametrize('dt1', num_dts, ids=num_ids)
+    @pytest.mark.parametrize('dt2', num_dts, ids=num_ids)
+    @pytest.mark.parametrize('fill', [None, 1])
+    def test_ne_for_numeric(self, dt1, dt2, fill):
+        # Test the equality of structured arrays
+        a = array([0, 1], dtype=dt1, mask=[0, 1], fill_value=fill)
+
+        test = (a != a)
+        assert_equal(test.data, [False, False])
+        assert_equal(test.mask, [False, True])
+        assert_(test.fill_value == True)
+
+        test = (a != a[0])
+        assert_equal(test.data, [False, True])
+        assert_equal(test.mask, [False, True])
+        assert_(test.fill_value == True)
+
+        b = array([0, 1], dtype=dt2, mask=[1, 0], fill_value=fill)
+        test = (a != b)
+        assert_equal(test.data, [True, True])
+        assert_equal(test.mask, [True, True])
+        assert_(test.fill_value == True)
+
+        test = (a[0] != b)
+        assert_equal(test.data, [True, True])
+        assert_equal(test.mask, [True, False])
+        assert_(test.fill_value == True)
+
+        test = (b != a[0])
+        assert_equal(test.data, [True, True])
+        assert_equal(test.mask, [True, False])
+        assert_(test.fill_value == True)
+
+    @pytest.mark.parametrize('dt1', num_dts, ids=num_ids)
+    @pytest.mark.parametrize('dt2', num_dts, ids=num_ids)
+    @pytest.mark.parametrize('fill', [None, 1])
+    @pytest.mark.parametrize('op',
+            [operator.le, operator.lt, operator.ge, operator.gt])
+    def test_comparisons_for_numeric(self, op, dt1, dt2, fill):
+        # Test the equality of structured arrays
+        a = array([0, 1], dtype=dt1, mask=[0, 1], fill_value=fill)
+
+        test = op(a, a)
+        assert_equal(test.data, op(a._data, a._data))
+        assert_equal(test.mask, [False, True])
+        assert_(test.fill_value == True)
+
+        test = op(a, a[0])
+        assert_equal(test.data, op(a._data, a._data[0]))
+        assert_equal(test.mask, [False, True])
+        assert_(test.fill_value == True)
+
+        b = array([0, 1], dtype=dt2, mask=[1, 0], fill_value=fill)
+        test = op(a, b)
+        assert_equal(test.data, op(a._data, b._data))
+        assert_equal(test.mask, [True, True])
+        assert_(test.fill_value == True)
+
+        test = op(a[0], b)
+        assert_equal(test.data, op(a._data[0], b._data))
+        assert_equal(test.mask, [True, False])
+        assert_(test.fill_value == True)
+
+        test = op(b, a[0])
+        assert_equal(test.data, op(b._data, a._data[0]))
+        assert_equal(test.mask, [True, False])
+        assert_(test.fill_value == True)
+
+    @pytest.mark.parametrize('op',
+            [operator.le, operator.lt, operator.ge, operator.gt])
+    @pytest.mark.parametrize('fill', [None, "N/A"])
+    def test_comparisons_strings(self, op, fill):
+        # See gh-21770, mask propagation is broken for strings (and some other
+        # cases) so we explicitly test strings here.
+        # In principle only == and != may need special handling...
+        ma1 = masked_array(["a", "b", "cde"], mask=[0, 1, 0], fill_value=fill)
+        ma2 = masked_array(["cde", "b", "a"], mask=[0, 1, 0], fill_value=fill)
+        assert_equal(op(ma1, ma2)._data, op(ma1._data, ma2._data))
+
+    def test_eq_with_None(self):
+        # Really, comparisons with None should not be done, but check them
+        # anyway. Note that pep8 will flag these tests.
+        # Deprecation is in place for arrays, and when it happens this
+        # test will fail (and have to be changed accordingly).
+
+        # With partial mask
+        with suppress_warnings() as sup:
+            sup.filter(FutureWarning, "Comparison to `None`")
+            a = array([None, 1], mask=[0, 1])
+            assert_equal(a == None, array([True, False], mask=[0, 1]))
+            assert_equal(a.data == None, [True, False])
+            assert_equal(a != None, array([False, True], mask=[0, 1]))
+            # With nomask
+            a = array([None, 1], mask=False)
+            assert_equal(a == None, [True, False])
+            assert_equal(a != None, [False, True])
+            # With complete mask
+            a = array([None, 2], mask=True)
+            assert_equal(a == None, array([False, True], mask=True))
+            assert_equal(a != None, array([True, False], mask=True))
+            # Fully masked, even comparison to None should return "masked"
+            a = masked
+            assert_equal(a == None, masked)
+
+    def test_eq_with_scalar(self):
+        a = array(1)
+        assert_equal(a == 1, True)
+        assert_equal(a == 0, False)
+        assert_equal(a != 1, False)
+        assert_equal(a != 0, True)
+        b = array(1, mask=True)
+        assert_equal(b == 0, masked)
+        assert_equal(b == 1, masked)
+        assert_equal(b != 0, masked)
+        assert_equal(b != 1, masked)
+
+    def test_eq_different_dimensions(self):
+        m1 = array([1, 1], mask=[0, 1])
+        # test comparison with both masked and regular arrays.
+        for m2 in (array([[0, 1], [1, 2]]),
+                   np.array([[0, 1], [1, 2]])):
+            test = (m1 == m2)
+            assert_equal(test.data, [[False, False],
+                                     [True, False]])
+            assert_equal(test.mask, [[False, True],
+                                     [False, True]])
+
+    def test_numpyarithmetic(self):
+        # Check that the mask is not back-propagated when using numpy functions
+        a = masked_array([-1, 0, 1, 2, 3], mask=[0, 0, 0, 0, 1])
+        control = masked_array([np.nan, np.nan, 0, np.log(2), -1],
+                               mask=[1, 1, 0, 0, 1])
+
+        test = log(a)
+        assert_equal(test, control)
+        assert_equal(test.mask, control.mask)
+        assert_equal(a.mask, [0, 0, 0, 0, 1])
+
+        test = np.log(a)
+        assert_equal(test, control)
+        assert_equal(test.mask, control.mask)
+        assert_equal(a.mask, [0, 0, 0, 0, 1])
+
+
+class TestMaskedArrayAttributes:
+
+    def test_keepmask(self):
+        # Tests the keep mask flag
+        x = masked_array([1, 2, 3], mask=[1, 0, 0])
+        mx = masked_array(x)
+        assert_equal(mx.mask, x.mask)
+        mx = masked_array(x, mask=[0, 1, 0], keep_mask=False)
+        assert_equal(mx.mask, [0, 1, 0])
+        mx = masked_array(x, mask=[0, 1, 0], keep_mask=True)
+        assert_equal(mx.mask, [1, 1, 0])
+        # We default to true
+        mx = masked_array(x, mask=[0, 1, 0])
+        assert_equal(mx.mask, [1, 1, 0])
+
+    def test_hardmask(self):
+        # Test hard_mask
+        d = arange(5)
+        n = [0, 0, 0, 1, 1]
+        m = make_mask(n)
+        xh = array(d, mask=m, hard_mask=True)
+        # We need to copy, to avoid updating d in xh !
+        xs = array(d, mask=m, hard_mask=False, copy=True)
+        xh[[1, 4]] = [10, 40]
+        xs[[1, 4]] = [10, 40]
+        assert_equal(xh._data, [0, 10, 2, 3, 4])
+        assert_equal(xs._data, [0, 10, 2, 3, 40])
+        assert_equal(xs.mask, [0, 0, 0, 1, 0])
+        assert_(xh._hardmask)
+        assert_(not xs._hardmask)
+        xh[1:4] = [10, 20, 30]
+        xs[1:4] = [10, 20, 30]
+        assert_equal(xh._data, [0, 10, 20, 3, 4])
+        assert_equal(xs._data, [0, 10, 20, 30, 40])
+        assert_equal(xs.mask, nomask)
+        xh[0] = masked
+        xs[0] = masked
+        assert_equal(xh.mask, [1, 0, 0, 1, 1])
+        assert_equal(xs.mask, [1, 0, 0, 0, 0])
+        xh[:] = 1
+        xs[:] = 1
+        assert_equal(xh._data, [0, 1, 1, 3, 4])
+        assert_equal(xs._data, [1, 1, 1, 1, 1])
+        assert_equal(xh.mask, [1, 0, 0, 1, 1])
+        assert_equal(xs.mask, nomask)
+        # Switch to soft mask
+        xh.soften_mask()
+        xh[:] = arange(5)
+        assert_equal(xh._data, [0, 1, 2, 3, 4])
+        assert_equal(xh.mask, nomask)
+        # Switch back to hard mask
+        xh.harden_mask()
+        xh[xh < 3] = masked
+        assert_equal(xh._data, [0, 1, 2, 3, 4])
+        assert_equal(xh._mask, [1, 1, 1, 0, 0])
+        xh[filled(xh > 1, False)] = 5
+        assert_equal(xh._data, [0, 1, 2, 5, 5])
+        assert_equal(xh._mask, [1, 1, 1, 0, 0])
+
+        xh = array([[1, 2], [3, 4]], mask=[[1, 0], [0, 0]], hard_mask=True)
+        xh[0] = 0
+        assert_equal(xh._data, [[1, 0], [3, 4]])
+        assert_equal(xh._mask, [[1, 0], [0, 0]])
+        xh[-1, -1] = 5
+        assert_equal(xh._data, [[1, 0], [3, 5]])
+        assert_equal(xh._mask, [[1, 0], [0, 0]])
+        xh[filled(xh < 5, False)] = 2
+        assert_equal(xh._data, [[1, 2], [2, 5]])
+        assert_equal(xh._mask, [[1, 0], [0, 0]])
+
+    def test_hardmask_again(self):
+        # Another test of hardmask
+        d = arange(5)
+        n = [0, 0, 0, 1, 1]
+        m = make_mask(n)
+        xh = array(d, mask=m, hard_mask=True)
+        xh[4:5] = 999
+        xh[0:1] = 999
+        assert_equal(xh._data, [999, 1, 2, 3, 4])
+
+    def test_hardmask_oncemore_yay(self):
+        # OK, yet another test of hardmask
+        # Make sure that harden_mask/soften_mask//unshare_mask returns self
+        a = array([1, 2, 3], mask=[1, 0, 0])
+        b = a.harden_mask()
+        assert_equal(a, b)
+        b[0] = 0
+        assert_equal(a, b)
+        assert_equal(b, array([1, 2, 3], mask=[1, 0, 0]))
+        a = b.soften_mask()
+        a[0] = 0
+        assert_equal(a, b)
+        assert_equal(b, array([0, 2, 3], mask=[0, 0, 0]))
+
+    def test_smallmask(self):
+        # Checks the behaviour of _smallmask
+        a = arange(10)
+        a[1] = masked
+        a[1] = 1
+        assert_equal(a._mask, nomask)
+        a = arange(10)
+        a._smallmask = False
+        a[1] = masked
+        a[1] = 1
+        assert_equal(a._mask, zeros(10))
+
+    def test_shrink_mask(self):
+        # Tests .shrink_mask()
+        a = array([1, 2, 3], mask=[0, 0, 0])
+        b = a.shrink_mask()
+        assert_equal(a, b)
+        assert_equal(a.mask, nomask)
+
+        # Mask cannot be shrunk on structured types, so is a no-op
+        a = np.ma.array([(1, 2.0)], [('a', int), ('b', float)])
+        b = a.copy()
+        a.shrink_mask()
+        assert_equal(a.mask, b.mask)
+
+    def test_flat(self):
+        # Test that flat can return all types of items [#4585, #4615]
+        # test 2-D record array
+        # ... on structured array w/ masked records
+        x = array([[(1, 1.1, 'one'), (2, 2.2, 'two'), (3, 3.3, 'thr')],
+                   [(4, 4.4, 'fou'), (5, 5.5, 'fiv'), (6, 6.6, 'six')]],
+                  dtype=[('a', int), ('b', float), ('c', '|S8')])
+        x['a'][0, 1] = masked
+        x['b'][1, 0] = masked
+        x['c'][0, 2] = masked
+        x[-1, -1] = masked
+        xflat = x.flat
+        assert_equal(xflat[0], x[0, 0])
+        assert_equal(xflat[1], x[0, 1])
+        assert_equal(xflat[2], x[0, 2])
+        assert_equal(xflat[:3], x[0])
+        assert_equal(xflat[3], x[1, 0])
+        assert_equal(xflat[4], x[1, 1])
+        assert_equal(xflat[5], x[1, 2])
+        assert_equal(xflat[3:], x[1])
+        assert_equal(xflat[-1], x[-1, -1])
+        i = 0
+        j = 0
+        for xf in xflat:
+            assert_equal(xf, x[j, i])
+            i += 1
+            if i >= x.shape[-1]:
+                i = 0
+                j += 1
+
+    def test_assign_dtype(self):
+        # check that the mask's dtype is updated when dtype is changed
+        a = np.zeros(4, dtype='f4,i4')
+
+        m = np.ma.array(a)
+        m.dtype = np.dtype('f4')
+        repr(m)  # raises?
+        assert_equal(m.dtype, np.dtype('f4'))
+
+        # check that dtype changes that change shape of mask too much
+        # are not allowed
+        def assign():
+            m = np.ma.array(a)
+            m.dtype = np.dtype('f8')
+        assert_raises(ValueError, assign)
+
+        b = a.view(dtype='f4', type=np.ma.MaskedArray)  # raises?
+        assert_equal(b.dtype, np.dtype('f4'))
+
+        # check that nomask is preserved
+        a = np.zeros(4, dtype='f4')
+        m = np.ma.array(a)
+        m.dtype = np.dtype('f4,i4')
+        assert_equal(m.dtype, np.dtype('f4,i4'))
+        assert_equal(m._mask, np.ma.nomask)
+
+
+class TestFillingValues:
+
+    def test_check_on_scalar(self):
+        # Test _check_fill_value set to valid and invalid values
+        _check_fill_value = np.ma.core._check_fill_value
+
+        fval = _check_fill_value(0, int)
+        assert_equal(fval, 0)
+        fval = _check_fill_value(None, int)
+        assert_equal(fval, default_fill_value(0))
+
+        fval = _check_fill_value(0, "|S3")
+        assert_equal(fval, b"0")
+        fval = _check_fill_value(None, "|S3")
+        assert_equal(fval, default_fill_value(b"camelot!"))
+        assert_raises(TypeError, _check_fill_value, 1e+20, int)
+        assert_raises(TypeError, _check_fill_value, 'stuff', int)
+
+    def test_check_on_fields(self):
+        # Tests _check_fill_value with records
+        _check_fill_value = np.ma.core._check_fill_value
+        ndtype = [('a', int), ('b', float), ('c', "|S3")]
+        # A check on a list should return a single record
+        fval = _check_fill_value([-999, -12345678.9, "???"], ndtype)
+        assert_(isinstance(fval, ndarray))
+        assert_equal(fval.item(), [-999, -12345678.9, b"???"])
+        # A check on None should output the defaults
+        fval = _check_fill_value(None, ndtype)
+        assert_(isinstance(fval, ndarray))
+        assert_equal(fval.item(), [default_fill_value(0),
+                                   default_fill_value(0.),
+                                   asbytes(default_fill_value("0"))])
+        #.....Using a structured type as fill_value should work
+        fill_val = np.array((-999, -12345678.9, "???"), dtype=ndtype)
+        fval = _check_fill_value(fill_val, ndtype)
+        assert_(isinstance(fval, ndarray))
+        assert_equal(fval.item(), [-999, -12345678.9, b"???"])
+
+        #.....Using a flexible type w/ a different type shouldn't matter
+        # BEHAVIOR in 1.5 and earlier, and 1.13 and later: match structured
+        # types by position
+        fill_val = np.array((-999, -12345678.9, "???"),
+                            dtype=[("A", int), ("B", float), ("C", "|S3")])
+        fval = _check_fill_value(fill_val, ndtype)
+        assert_(isinstance(fval, ndarray))
+        assert_equal(fval.item(), [-999, -12345678.9, b"???"])
+
+        #.....Using an object-array shouldn't matter either
+        fill_val = np.ndarray(shape=(1,), dtype=object)
+        fill_val[0] = (-999, -12345678.9, b"???")
+        fval = _check_fill_value(fill_val, object)
+        assert_(isinstance(fval, ndarray))
+        assert_equal(fval.item(), [-999, -12345678.9, b"???"])
+        # NOTE: This test was never run properly as "fill_value" rather than
+        # "fill_val" was assigned.  Written properly, it fails.
+        #fill_val = np.array((-999, -12345678.9, "???"))
+        #fval = _check_fill_value(fill_val, ndtype)
+        #assert_(isinstance(fval, ndarray))
+        #assert_equal(fval.item(), [-999, -12345678.9, b"???"])
+        #.....One-field-only flexible type should work as well
+        ndtype = [("a", int)]
+        fval = _check_fill_value(-999999999, ndtype)
+        assert_(isinstance(fval, ndarray))
+        assert_equal(fval.item(), (-999999999,))
+
+    def test_fillvalue_conversion(self):
+        # Tests the behavior of fill_value during conversion
+        # We had a tailored comment to make sure special attributes are
+        # properly dealt with
+        a = array([b'3', b'4', b'5'])
+        a._optinfo.update({'comment':"updated!"})
+
+        b = array(a, dtype=int)
+        assert_equal(b._data, [3, 4, 5])
+        assert_equal(b.fill_value, default_fill_value(0))
+
+        b = array(a, dtype=float)
+        assert_equal(b._data, [3, 4, 5])
+        assert_equal(b.fill_value, default_fill_value(0.))
+
+        b = a.astype(int)
+        assert_equal(b._data, [3, 4, 5])
+        assert_equal(b.fill_value, default_fill_value(0))
+        assert_equal(b._optinfo['comment'], "updated!")
+
+        b = a.astype([('a', '|S3')])
+        assert_equal(b['a']._data, a._data)
+        assert_equal(b['a'].fill_value, a.fill_value)
+
+    def test_default_fill_value(self):
+        # check all calling conventions
+        f1 = default_fill_value(1.)
+        f2 = default_fill_value(np.array(1.))
+        f3 = default_fill_value(np.array(1.).dtype)
+        assert_equal(f1, f2)
+        assert_equal(f1, f3)
+
+    def test_default_fill_value_structured(self):
+        fields = array([(1, 1, 1)],
+                      dtype=[('i', int), ('s', '|S8'), ('f', float)])
+
+        f1 = default_fill_value(fields)
+        f2 = default_fill_value(fields.dtype)
+        expected = np.array((default_fill_value(0),
+                             default_fill_value('0'),
+                             default_fill_value(0.)), dtype=fields.dtype)
+        assert_equal(f1, expected)
+        assert_equal(f2, expected)
+
+    def test_default_fill_value_void(self):
+        dt = np.dtype([('v', 'V7')])
+        f = default_fill_value(dt)
+        assert_equal(f['v'], np.array(default_fill_value(dt['v']), dt['v']))
+
+    def test_fillvalue(self):
+        # Yet more fun with the fill_value
+        data = masked_array([1, 2, 3], fill_value=-999)
+        series = data[[0, 2, 1]]
+        assert_equal(series._fill_value, data._fill_value)
+
+        mtype = [('f', float), ('s', '|S3')]
+        x = array([(1, 'a'), (2, 'b'), (pi, 'pi')], dtype=mtype)
+        x.fill_value = 999
+        assert_equal(x.fill_value.item(), [999., b'999'])
+        assert_equal(x['f'].fill_value, 999)
+        assert_equal(x['s'].fill_value, b'999')
+
+        x.fill_value = (9, '???')
+        assert_equal(x.fill_value.item(), (9, b'???'))
+        assert_equal(x['f'].fill_value, 9)
+        assert_equal(x['s'].fill_value, b'???')
+
+        x = array([1, 2, 3.1])
+        x.fill_value = 999
+        assert_equal(np.asarray(x.fill_value).dtype, float)
+        assert_equal(x.fill_value, 999.)
+        assert_equal(x._fill_value, np.array(999.))
+
+    def test_subarray_fillvalue(self):
+        # gh-10483   test multi-field index fill value
+        fields = array([(1, 1, 1)],
+                      dtype=[('i', int), ('s', '|S8'), ('f', float)])
+        with suppress_warnings() as sup:
+            sup.filter(FutureWarning, "Numpy has detected")
+            subfields = fields[['i', 'f']]
+            assert_equal(tuple(subfields.fill_value), (999999, 1.e+20))
+            # test comparison does not raise:
+            subfields[1:] == subfields[:-1]
+
+    def test_fillvalue_exotic_dtype(self):
+        # Tests yet more exotic flexible dtypes
+        _check_fill_value = np.ma.core._check_fill_value
+        ndtype = [('i', int), ('s', '|S8'), ('f', float)]
+        control = np.array((default_fill_value(0),
+                            default_fill_value('0'),
+                            default_fill_value(0.),),
+                           dtype=ndtype)
+        assert_equal(_check_fill_value(None, ndtype), control)
+        # The shape shouldn't matter
+        ndtype = [('f0', float, (2, 2))]
+        control = np.array((default_fill_value(0.),),
+                           dtype=[('f0', float)]).astype(ndtype)
+        assert_equal(_check_fill_value(None, ndtype), control)
+        control = np.array((0,), dtype=[('f0', float)]).astype(ndtype)
+        assert_equal(_check_fill_value(0, ndtype), control)
+
+        ndtype = np.dtype("int, (2,3)float, float")
+        control = np.array((default_fill_value(0),
+                            default_fill_value(0.),
+                            default_fill_value(0.),),
+                           dtype="int, float, float").astype(ndtype)
+        test = _check_fill_value(None, ndtype)
+        assert_equal(test, control)
+        control = np.array((0, 0, 0), dtype="int, float, float").astype(ndtype)
+        assert_equal(_check_fill_value(0, ndtype), control)
+        # but when indexing, fill value should become scalar not tuple
+        # See issue #6723
+        M = masked_array(control)
+        assert_equal(M["f1"].fill_value.ndim, 0)
+
+    def test_fillvalue_datetime_timedelta(self):
+        # Test default fillvalue for datetime64 and timedelta64 types.
+        # See issue #4476, this would return '?' which would cause errors
+        # elsewhere
+
+        for timecode in ("as", "fs", "ps", "ns", "us", "ms", "s", "m",
+                         "h", "D", "W", "M", "Y"):
+            control = numpy.datetime64("NaT", timecode)
+            test = default_fill_value(numpy.dtype("<M8[" + timecode + "]"))
+            np.testing.assert_equal(test, control)
+
+            control = numpy.timedelta64("NaT", timecode)
+            test = default_fill_value(numpy.dtype("<m8[" + timecode + "]"))
+            np.testing.assert_equal(test, control)
+
+    def test_extremum_fill_value(self):
+        # Tests extremum fill values for flexible type.
+        a = array([(1, (2, 3)), (4, (5, 6))],
+                  dtype=[('A', int), ('B', [('BA', int), ('BB', int)])])
+        test = a.fill_value
+        assert_equal(test.dtype, a.dtype)
+        assert_equal(test['A'], default_fill_value(a['A']))
+        assert_equal(test['B']['BA'], default_fill_value(a['B']['BA']))
+        assert_equal(test['B']['BB'], default_fill_value(a['B']['BB']))
+
+        test = minimum_fill_value(a)
+        assert_equal(test.dtype, a.dtype)
+        assert_equal(test[0], minimum_fill_value(a['A']))
+        assert_equal(test[1][0], minimum_fill_value(a['B']['BA']))
+        assert_equal(test[1][1], minimum_fill_value(a['B']['BB']))
+        assert_equal(test[1], minimum_fill_value(a['B']))
+
+        test = maximum_fill_value(a)
+        assert_equal(test.dtype, a.dtype)
+        assert_equal(test[0], maximum_fill_value(a['A']))
+        assert_equal(test[1][0], maximum_fill_value(a['B']['BA']))
+        assert_equal(test[1][1], maximum_fill_value(a['B']['BB']))
+        assert_equal(test[1], maximum_fill_value(a['B']))
+
+    def test_extremum_fill_value_subdtype(self):
+        a = array(([2, 3, 4],), dtype=[('value', np.int8, 3)])
+
+        test = minimum_fill_value(a)
+        assert_equal(test.dtype, a.dtype)
+        assert_equal(test[0], np.full(3, minimum_fill_value(a['value'])))
+
+        test = maximum_fill_value(a)
+        assert_equal(test.dtype, a.dtype)
+        assert_equal(test[0], np.full(3, maximum_fill_value(a['value'])))
+
+    def test_fillvalue_individual_fields(self):
+        # Test setting fill_value on individual fields
+        ndtype = [('a', int), ('b', int)]
+        # Explicit fill_value
+        a = array(list(zip([1, 2, 3], [4, 5, 6])),
+                  fill_value=(-999, -999), dtype=ndtype)
+        aa = a['a']
+        aa.set_fill_value(10)
+        assert_equal(aa._fill_value, np.array(10))
+        assert_equal(tuple(a.fill_value), (10, -999))
+        a.fill_value['b'] = -10
+        assert_equal(tuple(a.fill_value), (10, -10))
+        # Implicit fill_value
+        t = array(list(zip([1, 2, 3], [4, 5, 6])), dtype=ndtype)
+        tt = t['a']
+        tt.set_fill_value(10)
+        assert_equal(tt._fill_value, np.array(10))
+        assert_equal(tuple(t.fill_value), (10, default_fill_value(0)))
+
+    def test_fillvalue_implicit_structured_array(self):
+        # Check that fill_value is always defined for structured arrays
+        ndtype = ('b', float)
+        adtype = ('a', float)
+        a = array([(1.,), (2.,)], mask=[(False,), (False,)],
+                  fill_value=(np.nan,), dtype=np.dtype([adtype]))
+        b = empty(a.shape, dtype=[adtype, ndtype])
+        b['a'] = a['a']
+        b['a'].set_fill_value(a['a'].fill_value)
+        f = b._fill_value[()]
+        assert_(np.isnan(f[0]))
+        assert_equal(f[-1], default_fill_value(1.))
+
+    def test_fillvalue_as_arguments(self):
+        # Test adding a fill_value parameter to empty/ones/zeros
+        a = empty(3, fill_value=999.)
+        assert_equal(a.fill_value, 999.)
+
+        a = ones(3, fill_value=999., dtype=float)
+        assert_equal(a.fill_value, 999.)
+
+        a = zeros(3, fill_value=0., dtype=complex)
+        assert_equal(a.fill_value, 0.)
+
+        a = identity(3, fill_value=0., dtype=complex)
+        assert_equal(a.fill_value, 0.)
+
+    def test_shape_argument(self):
+        # Test that shape can be provides as an argument
+        # GH issue 6106
+        a = empty(shape=(3, ))
+        assert_equal(a.shape, (3, ))
+
+        a = ones(shape=(3, ), dtype=float)
+        assert_equal(a.shape, (3, ))
+
+        a = zeros(shape=(3, ), dtype=complex)
+        assert_equal(a.shape, (3, ))
+
+    def test_fillvalue_in_view(self):
+        # Test the behavior of fill_value in view
+
+        # Create initial masked array
+        x = array([1, 2, 3], fill_value=1, dtype=np.int64)
+
+        # Check that fill_value is preserved by default
+        y = x.view()
+        assert_(y.fill_value == 1)
+
+        # Check that fill_value is preserved if dtype is specified and the
+        # dtype is an ndarray sub-class and has a _fill_value attribute
+        y = x.view(MaskedArray)
+        assert_(y.fill_value == 1)
+
+        # Check that fill_value is preserved if type is specified and the
+        # dtype is an ndarray sub-class and has a _fill_value attribute (by
+        # default, the first argument is dtype, not type)
+        y = x.view(type=MaskedArray)
+        assert_(y.fill_value == 1)
+
+        # Check that code does not crash if passed an ndarray sub-class that
+        # does not have a _fill_value attribute
+        y = x.view(np.ndarray)
+        y = x.view(type=np.ndarray)
+
+        # Check that fill_value can be overridden with view
+        y = x.view(MaskedArray, fill_value=2)
+        assert_(y.fill_value == 2)
+
+        # Check that fill_value can be overridden with view (using type=)
+        y = x.view(type=MaskedArray, fill_value=2)
+        assert_(y.fill_value == 2)
+
+        # Check that fill_value gets reset if passed a dtype but not a
+        # fill_value. This is because even though in some cases one can safely
+        # cast the fill_value, e.g. if taking an int64 view of an int32 array,
+        # in other cases, this cannot be done (e.g. int32 view of an int64
+        # array with a large fill_value).
+        y = x.view(dtype=np.int32)
+        assert_(y.fill_value == 999999)
+
+    def test_fillvalue_bytes_or_str(self):
+        # Test whether fill values work as expected for structured dtypes
+        # containing bytes or str.  See issue #7259.
+        a = empty(shape=(3, ), dtype="(2)3S,(2)3U")
+        assert_equal(a["f0"].fill_value, default_fill_value(b"spam"))
+        assert_equal(a["f1"].fill_value, default_fill_value("eggs"))
+
+
+class TestUfuncs:
+    # Test class for the application of ufuncs on MaskedArrays.
+
+    def setup_method(self):
+        # Base data definition.
+        self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6),
+                  array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),)
+        self.err_status = np.geterr()
+        np.seterr(divide='ignore', invalid='ignore')
+
+    def teardown_method(self):
+        np.seterr(**self.err_status)
+
+    def test_testUfuncRegression(self):
+        # Tests new ufuncs on MaskedArrays.
+        for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
+                  'sin', 'cos', 'tan',
+                  'arcsin', 'arccos', 'arctan',
+                  'sinh', 'cosh', 'tanh',
+                  'arcsinh',
+                  'arccosh',
+                  'arctanh',
+                  'absolute', 'fabs', 'negative',
+                  'floor', 'ceil',
+                  'logical_not',
+                  'add', 'subtract', 'multiply',
+                  'divide', 'true_divide', 'floor_divide',
+                  'remainder', 'fmod', 'hypot', 'arctan2',
+                  'equal', 'not_equal', 'less_equal', 'greater_equal',
+                  'less', 'greater',
+                  'logical_and', 'logical_or', 'logical_xor',
+                  ]:
+            try:
+                uf = getattr(umath, f)
+            except AttributeError:
+                uf = getattr(fromnumeric, f)
+            mf = getattr(numpy.ma.core, f)
+            args = self.d[:uf.nin]
+            ur = uf(*args)
+            mr = mf(*args)
+            assert_equal(ur.filled(0), mr.filled(0), f)
+            assert_mask_equal(ur.mask, mr.mask, err_msg=f)
+
+    def test_reduce(self):
+        # Tests reduce on MaskedArrays.
+        a = self.d[0]
+        assert_(not alltrue(a, axis=0))
+        assert_(sometrue(a, axis=0))
+        assert_equal(sum(a[:3], axis=0), 0)
+        assert_equal(product(a, axis=0), 0)
+        assert_equal(add.reduce(a), pi)
+
+    def test_minmax(self):
+        # Tests extrema on MaskedArrays.
+        a = arange(1, 13).reshape(3, 4)
+        amask = masked_where(a < 5, a)
+        assert_equal(amask.max(), a.max())
+        assert_equal(amask.min(), 5)
+        assert_equal(amask.max(0), a.max(0))
+        assert_equal(amask.min(0), [5, 6, 7, 8])
+        assert_(amask.max(1)[0].mask)
+        assert_(amask.min(1)[0].mask)
+
+    def test_ndarray_mask(self):
+        # Check that the mask of the result is a ndarray (not a MaskedArray...)
+        a = masked_array([-1, 0, 1, 2, 3], mask=[0, 0, 0, 0, 1])
+        test = np.sqrt(a)
+        control = masked_array([-1, 0, 1, np.sqrt(2), -1],
+                               mask=[1, 0, 0, 0, 1])
+        assert_equal(test, control)
+        assert_equal(test.mask, control.mask)
+        assert_(not isinstance(test.mask, MaskedArray))
+
+    def test_treatment_of_NotImplemented(self):
+        # Check that NotImplemented is returned at appropriate places
+
+        a = masked_array([1., 2.], mask=[1, 0])
+        assert_raises(TypeError, operator.mul, a, "abc")
+        assert_raises(TypeError, operator.truediv, a, "abc")
+
+        class MyClass:
+            __array_priority__ = a.__array_priority__ + 1
+
+            def __mul__(self, other):
+                return "My mul"
+
+            def __rmul__(self, other):
+                return "My rmul"
+
+        me = MyClass()
+        assert_(me * a == "My mul")
+        assert_(a * me == "My rmul")
+
+        # and that __array_priority__ is respected
+        class MyClass2:
+            __array_priority__ = 100
+
+            def __mul__(self, other):
+                return "Me2mul"
+
+            def __rmul__(self, other):
+                return "Me2rmul"
+
+            def __rdiv__(self, other):
+                return "Me2rdiv"
+
+            __rtruediv__ = __rdiv__
+
+        me_too = MyClass2()
+        assert_(a.__mul__(me_too) is NotImplemented)
+        assert_(all(multiply.outer(a, me_too) == "Me2rmul"))
+        assert_(a.__truediv__(me_too) is NotImplemented)
+        assert_(me_too * a == "Me2mul")
+        assert_(a * me_too == "Me2rmul")
+        assert_(a / me_too == "Me2rdiv")
+
+    def test_no_masked_nan_warnings(self):
+        # check that a nan in masked position does not
+        # cause ufunc warnings
+
+        m = np.ma.array([0.5, np.nan], mask=[0,1])
+
+        with warnings.catch_warnings():
+            warnings.filterwarnings("error")
+
+            # test unary and binary ufuncs
+            exp(m)
+            add(m, 1)
+            m > 0
+
+            # test different unary domains
+            sqrt(m)
+            log(m)
+            tan(m)
+            arcsin(m)
+            arccos(m)
+            arccosh(m)
+
+            # test binary domains
+            divide(m, 2)
+
+            # also check that allclose uses ma ufuncs, to avoid warning
+            allclose(m, 0.5)
+
+class TestMaskedArrayInPlaceArithmetic:
+    # Test MaskedArray Arithmetic
+
+    def setup_method(self):
+        x = arange(10)
+        y = arange(10)
+        xm = arange(10)
+        xm[2] = masked
+        self.intdata = (x, y, xm)
+        self.floatdata = (x.astype(float), y.astype(float), xm.astype(float))
+        self.othertypes = np.typecodes['AllInteger'] + np.typecodes['AllFloat']
+        self.othertypes = [np.dtype(_).type for _ in self.othertypes]
+        self.uint8data = (
+            x.astype(np.uint8),
+            y.astype(np.uint8),
+            xm.astype(np.uint8)
+        )
+
+    def test_inplace_addition_scalar(self):
+        # Test of inplace additions
+        (x, y, xm) = self.intdata
+        xm[2] = masked
+        x += 1
+        assert_equal(x, y + 1)
+        xm += 1
+        assert_equal(xm, y + 1)
+
+        (x, _, xm) = self.floatdata
+        id1 = x.data.ctypes.data
+        x += 1.
+        assert_(id1 == x.data.ctypes.data)
+        assert_equal(x, y + 1.)
+
+    def test_inplace_addition_array(self):
+        # Test of inplace additions
+        (x, y, xm) = self.intdata
+        m = xm.mask
+        a = arange(10, dtype=np.int16)
+        a[-1] = masked
+        x += a
+        xm += a
+        assert_equal(x, y + a)
+        assert_equal(xm, y + a)
+        assert_equal(xm.mask, mask_or(m, a.mask))
+
+    def test_inplace_subtraction_scalar(self):
+        # Test of inplace subtractions
+        (x, y, xm) = self.intdata
+        x -= 1
+        assert_equal(x, y - 1)
+        xm -= 1
+        assert_equal(xm, y - 1)
+
+    def test_inplace_subtraction_array(self):
+        # Test of inplace subtractions
+        (x, y, xm) = self.floatdata
+        m = xm.mask
+        a = arange(10, dtype=float)
+        a[-1] = masked
+        x -= a
+        xm -= a
+        assert_equal(x, y - a)
+        assert_equal(xm, y - a)
+        assert_equal(xm.mask, mask_or(m, a.mask))
+
+    def test_inplace_multiplication_scalar(self):
+        # Test of inplace multiplication
+        (x, y, xm) = self.floatdata
+        x *= 2.0
+        assert_equal(x, y * 2)
+        xm *= 2.0
+        assert_equal(xm, y * 2)
+
+    def test_inplace_multiplication_array(self):
+        # Test of inplace multiplication
+        (x, y, xm) = self.floatdata
+        m = xm.mask
+        a = arange(10, dtype=float)
+        a[-1] = masked
+        x *= a
+        xm *= a
+        assert_equal(x, y * a)
+        assert_equal(xm, y * a)
+        assert_equal(xm.mask, mask_or(m, a.mask))
+
+    def test_inplace_division_scalar_int(self):
+        # Test of inplace division
+        (x, y, xm) = self.intdata
+        x = arange(10) * 2
+        xm = arange(10) * 2
+        xm[2] = masked
+        x //= 2
+        assert_equal(x, y)
+        xm //= 2
+        assert_equal(xm, y)
+
+    def test_inplace_division_scalar_float(self):
+        # Test of inplace division
+        (x, y, xm) = self.floatdata
+        x /= 2.0
+        assert_equal(x, y / 2.0)
+        xm /= arange(10)
+        assert_equal(xm, ones((10,)))
+
+    def test_inplace_division_array_float(self):
+        # Test of inplace division
+        (x, y, xm) = self.floatdata
+        m = xm.mask
+        a = arange(10, dtype=float)
+        a[-1] = masked
+        x /= a
+        xm /= a
+        assert_equal(x, y / a)
+        assert_equal(xm, y / a)
+        assert_equal(xm.mask, mask_or(mask_or(m, a.mask), (a == 0)))
+
+    def test_inplace_division_misc(self):
+
+        x = [1., 1., 1., -2., pi / 2., 4., 5., -10., 10., 1., 2., 3.]
+        y = [5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]
+        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
+        xm = masked_array(x, mask=m1)
+        ym = masked_array(y, mask=m2)
+
+        z = xm / ym
+        assert_equal(z._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1])
+        assert_equal(z._data,
+                     [1., 1., 1., -1., -pi / 2., 4., 5., 1., 1., 1., 2., 3.])
+
+        xm = xm.copy()
+        xm /= ym
+        assert_equal(xm._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1])
+        assert_equal(z._data,
+                     [1., 1., 1., -1., -pi / 2., 4., 5., 1., 1., 1., 2., 3.])
+
+    def test_datafriendly_add(self):
+        # Test keeping data w/ (inplace) addition
+        x = array([1, 2, 3], mask=[0, 0, 1])
+        # Test add w/ scalar
+        xx = x + 1
+        assert_equal(xx.data, [2, 3, 3])
+        assert_equal(xx.mask, [0, 0, 1])
+        # Test iadd w/ scalar
+        x += 1
+        assert_equal(x.data, [2, 3, 3])
+        assert_equal(x.mask, [0, 0, 1])
+        # Test add w/ array
+        x = array([1, 2, 3], mask=[0, 0, 1])
+        xx = x + array([1, 2, 3], mask=[1, 0, 0])
+        assert_equal(xx.data, [1, 4, 3])
+        assert_equal(xx.mask, [1, 0, 1])
+        # Test iadd w/ array
+        x = array([1, 2, 3], mask=[0, 0, 1])
+        x += array([1, 2, 3], mask=[1, 0, 0])
+        assert_equal(x.data, [1, 4, 3])
+        assert_equal(x.mask, [1, 0, 1])
+
+    def test_datafriendly_sub(self):
+        # Test keeping data w/ (inplace) subtraction
+        # Test sub w/ scalar
+        x = array([1, 2, 3], mask=[0, 0, 1])
+        xx = x - 1
+        assert_equal(xx.data, [0, 1, 3])
+        assert_equal(xx.mask, [0, 0, 1])
+        # Test isub w/ scalar
+        x = array([1, 2, 3], mask=[0, 0, 1])
+        x -= 1
+        assert_equal(x.data, [0, 1, 3])
+        assert_equal(x.mask, [0, 0, 1])
+        # Test sub w/ array
+        x = array([1, 2, 3], mask=[0, 0, 1])
+        xx = x - array([1, 2, 3], mask=[1, 0, 0])
+        assert_equal(xx.data, [1, 0, 3])
+        assert_equal(xx.mask, [1, 0, 1])
+        # Test isub w/ array
+        x = array([1, 2, 3], mask=[0, 0, 1])
+        x -= array([1, 2, 3], mask=[1, 0, 0])
+        assert_equal(x.data, [1, 0, 3])
+        assert_equal(x.mask, [1, 0, 1])
+
+    def test_datafriendly_mul(self):
+        # Test keeping data w/ (inplace) multiplication
+        # Test mul w/ scalar
+        x = array([1, 2, 3], mask=[0, 0, 1])
+        xx = x * 2
+        assert_equal(xx.data, [2, 4, 3])
+        assert_equal(xx.mask, [0, 0, 1])
+        # Test imul w/ scalar
+        x = array([1, 2, 3], mask=[0, 0, 1])
+        x *= 2
+        assert_equal(x.data, [2, 4, 3])
+        assert_equal(x.mask, [0, 0, 1])
+        # Test mul w/ array
+        x = array([1, 2, 3], mask=[0, 0, 1])
+        xx = x * array([10, 20, 30], mask=[1, 0, 0])
+        assert_equal(xx.data, [1, 40, 3])
+        assert_equal(xx.mask, [1, 0, 1])
+        # Test imul w/ array
+        x = array([1, 2, 3], mask=[0, 0, 1])
+        x *= array([10, 20, 30], mask=[1, 0, 0])
+        assert_equal(x.data, [1, 40, 3])
+        assert_equal(x.mask, [1, 0, 1])
+
+    def test_datafriendly_div(self):
+        # Test keeping data w/ (inplace) division
+        # Test div on scalar
+        x = array([1, 2, 3], mask=[0, 0, 1])
+        xx = x / 2.
+        assert_equal(xx.data, [1 / 2., 2 / 2., 3])
+        assert_equal(xx.mask, [0, 0, 1])
+        # Test idiv on scalar
+        x = array([1., 2., 3.], mask=[0, 0, 1])
+        x /= 2.
+        assert_equal(x.data, [1 / 2., 2 / 2., 3])
+        assert_equal(x.mask, [0, 0, 1])
+        # Test div on array
+        x = array([1., 2., 3.], mask=[0, 0, 1])
+        xx = x / array([10., 20., 30.], mask=[1, 0, 0])
+        assert_equal(xx.data, [1., 2. / 20., 3.])
+        assert_equal(xx.mask, [1, 0, 1])
+        # Test idiv on array
+        x = array([1., 2., 3.], mask=[0, 0, 1])
+        x /= array([10., 20., 30.], mask=[1, 0, 0])
+        assert_equal(x.data, [1., 2 / 20., 3.])
+        assert_equal(x.mask, [1, 0, 1])
+
+    def test_datafriendly_pow(self):
+        # Test keeping data w/ (inplace) power
+        # Test pow on scalar
+        x = array([1., 2., 3.], mask=[0, 0, 1])
+        xx = x ** 2.5
+        assert_equal(xx.data, [1., 2. ** 2.5, 3.])
+        assert_equal(xx.mask, [0, 0, 1])
+        # Test ipow on scalar
+        x **= 2.5
+        assert_equal(x.data, [1., 2. ** 2.5, 3])
+        assert_equal(x.mask, [0, 0, 1])
+
+    def test_datafriendly_add_arrays(self):
+        a = array([[1, 1], [3, 3]])
+        b = array([1, 1], mask=[0, 0])
+        a += b
+        assert_equal(a, [[2, 2], [4, 4]])
+        if a.mask is not nomask:
+            assert_equal(a.mask, [[0, 0], [0, 0]])
+
+        a = array([[1, 1], [3, 3]])
+        b = array([1, 1], mask=[0, 1])
+        a += b
+        assert_equal(a, [[2, 2], [4, 4]])
+        assert_equal(a.mask, [[0, 1], [0, 1]])
+
+    def test_datafriendly_sub_arrays(self):
+        a = array([[1, 1], [3, 3]])
+        b = array([1, 1], mask=[0, 0])
+        a -= b
+        assert_equal(a, [[0, 0], [2, 2]])
+        if a.mask is not nomask:
+            assert_equal(a.mask, [[0, 0], [0, 0]])
+
+        a = array([[1, 1], [3, 3]])
+        b = array([1, 1], mask=[0, 1])
+        a -= b
+        assert_equal(a, [[0, 0], [2, 2]])
+        assert_equal(a.mask, [[0, 1], [0, 1]])
+
+    def test_datafriendly_mul_arrays(self):
+        a = array([[1, 1], [3, 3]])
+        b = array([1, 1], mask=[0, 0])
+        a *= b
+        assert_equal(a, [[1, 1], [3, 3]])
+        if a.mask is not nomask:
+            assert_equal(a.mask, [[0, 0], [0, 0]])
+
+        a = array([[1, 1], [3, 3]])
+        b = array([1, 1], mask=[0, 1])
+        a *= b
+        assert_equal(a, [[1, 1], [3, 3]])
+        assert_equal(a.mask, [[0, 1], [0, 1]])
+
+    def test_inplace_addition_scalar_type(self):
+        # Test of inplace additions
+        for t in self.othertypes:
+            with warnings.catch_warnings():
+                warnings.filterwarnings("error")
+                (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+                xm[2] = masked
+                x += t(1)
+                assert_equal(x, y + t(1))
+                xm += t(1)
+                assert_equal(xm, y + t(1))
+
+    def test_inplace_addition_array_type(self):
+        # Test of inplace additions
+        for t in self.othertypes:
+            with warnings.catch_warnings():
+                warnings.filterwarnings("error")
+                (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+                m = xm.mask
+                a = arange(10, dtype=t)
+                a[-1] = masked
+                x += a
+                xm += a
+                assert_equal(x, y + a)
+                assert_equal(xm, y + a)
+                assert_equal(xm.mask, mask_or(m, a.mask))
+
+    def test_inplace_subtraction_scalar_type(self):
+        # Test of inplace subtractions
+        for t in self.othertypes:
+            with warnings.catch_warnings():
+                warnings.filterwarnings("error")
+                (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+                x -= t(1)
+                assert_equal(x, y - t(1))
+                xm -= t(1)
+                assert_equal(xm, y - t(1))
+
+    def test_inplace_subtraction_array_type(self):
+        # Test of inplace subtractions
+        for t in self.othertypes:
+            with warnings.catch_warnings():
+                warnings.filterwarnings("error")
+                (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+                m = xm.mask
+                a = arange(10, dtype=t)
+                a[-1] = masked
+                x -= a
+                xm -= a
+                assert_equal(x, y - a)
+                assert_equal(xm, y - a)
+                assert_equal(xm.mask, mask_or(m, a.mask))
+
+    def test_inplace_multiplication_scalar_type(self):
+        # Test of inplace multiplication
+        for t in self.othertypes:
+            with warnings.catch_warnings():
+                warnings.filterwarnings("error")
+                (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+                x *= t(2)
+                assert_equal(x, y * t(2))
+                xm *= t(2)
+                assert_equal(xm, y * t(2))
+
+    def test_inplace_multiplication_array_type(self):
+        # Test of inplace multiplication
+        for t in self.othertypes:
+            with warnings.catch_warnings():
+                warnings.filterwarnings("error")
+                (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+                m = xm.mask
+                a = arange(10, dtype=t)
+                a[-1] = masked
+                x *= a
+                xm *= a
+                assert_equal(x, y * a)
+                assert_equal(xm, y * a)
+                assert_equal(xm.mask, mask_or(m, a.mask))
+
+    def test_inplace_floor_division_scalar_type(self):
+        # Test of inplace division
+        # Check for TypeError in case of unsupported types
+        unsupported = {np.dtype(t).type for t in np.typecodes["Complex"]}
+        for t in self.othertypes:
+            with warnings.catch_warnings():
+                warnings.filterwarnings("error")
+                (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+                x = arange(10, dtype=t) * t(2)
+                xm = arange(10, dtype=t) * t(2)
+                xm[2] = masked
+                try:
+                    x //= t(2)
+                    xm //= t(2)
+                    assert_equal(x, y)
+                    assert_equal(xm, y)
+                except TypeError:
+                    msg = f"Supported type {t} throwing TypeError"
+                    assert t in unsupported, msg
+
+    def test_inplace_floor_division_array_type(self):
+        # Test of inplace division
+        # Check for TypeError in case of unsupported types
+        unsupported = {np.dtype(t).type for t in np.typecodes["Complex"]}
+        for t in self.othertypes:
+            with warnings.catch_warnings():
+                warnings.filterwarnings("error")
+                (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+                m = xm.mask
+                a = arange(10, dtype=t)
+                a[-1] = masked
+                try:
+                    x //= a
+                    xm //= a
+                    assert_equal(x, y // a)
+                    assert_equal(xm, y // a)
+                    assert_equal(
+                        xm.mask,
+                        mask_or(mask_or(m, a.mask), (a == t(0)))
+                    )
+                except TypeError:
+                    msg = f"Supported type {t} throwing TypeError"
+                    assert t in unsupported, msg
+
+    def test_inplace_division_scalar_type(self):
+        # Test of inplace division
+        for t in self.othertypes:
+            with suppress_warnings() as sup:
+                sup.record(UserWarning)
+
+                (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+                x = arange(10, dtype=t) * t(2)
+                xm = arange(10, dtype=t) * t(2)
+                xm[2] = masked
+
+                # May get a DeprecationWarning or a TypeError.
+                #
+                # This is a consequence of the fact that this is true divide
+                # and will require casting to float for calculation and
+                # casting back to the original type. This will only be raised
+                # with integers. Whether it is an error or warning is only
+                # dependent on how stringent the casting rules are.
+                #
+                # Will handle the same way.
+                try:
+                    x /= t(2)
+                    assert_equal(x, y)
+                except (DeprecationWarning, TypeError) as e:
+                    warnings.warn(str(e), stacklevel=1)
+                try:
+                    xm /= t(2)
+                    assert_equal(xm, y)
+                except (DeprecationWarning, TypeError) as e:
+                    warnings.warn(str(e), stacklevel=1)
+
+                if issubclass(t, np.integer):
+                    assert_equal(len(sup.log), 2, f'Failed on type={t}.')
+                else:
+                    assert_equal(len(sup.log), 0, f'Failed on type={t}.')
+
+    def test_inplace_division_array_type(self):
+        # Test of inplace division
+        for t in self.othertypes:
+            with suppress_warnings() as sup:
+                sup.record(UserWarning)
+                (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+                m = xm.mask
+                a = arange(10, dtype=t)
+                a[-1] = masked
+
+                # May get a DeprecationWarning or a TypeError.
+                #
+                # This is a consequence of the fact that this is true divide
+                # and will require casting to float for calculation and
+                # casting back to the original type. This will only be raised
+                # with integers. Whether it is an error or warning is only
+                # dependent on how stringent the casting rules are.
+                #
+                # Will handle the same way.
+                try:
+                    x /= a
+                    assert_equal(x, y / a)
+                except (DeprecationWarning, TypeError) as e:
+                    warnings.warn(str(e), stacklevel=1)
+                try:
+                    xm /= a
+                    assert_equal(xm, y / a)
+                    assert_equal(
+                        xm.mask,
+                        mask_or(mask_or(m, a.mask), (a == t(0)))
+                    )
+                except (DeprecationWarning, TypeError) as e:
+                    warnings.warn(str(e), stacklevel=1)
+
+                if issubclass(t, np.integer):
+                    assert_equal(len(sup.log), 2, f'Failed on type={t}.')
+                else:
+                    assert_equal(len(sup.log), 0, f'Failed on type={t}.')
+
+    def test_inplace_pow_type(self):
+        # Test keeping data w/ (inplace) power
+        for t in self.othertypes:
+            with warnings.catch_warnings():
+                warnings.filterwarnings("error")
+                # Test pow on scalar
+                x = array([1, 2, 3], mask=[0, 0, 1], dtype=t)
+                xx = x ** t(2)
+                xx_r = array([1, 2 ** 2, 3], mask=[0, 0, 1], dtype=t)
+                assert_equal(xx.data, xx_r.data)
+                assert_equal(xx.mask, xx_r.mask)
+                # Test ipow on scalar
+                x **= t(2)
+                assert_equal(x.data, xx_r.data)
+                assert_equal(x.mask, xx_r.mask)
+
+
+class TestMaskedArrayMethods:
+    # Test class for miscellaneous MaskedArrays methods.
+    def setup_method(self):
+        # Base data definition.
+        x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
+                      8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
+                      3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
+                      6.04, 9.63, 7.712, 3.382, 4.489, 6.479,
+                      7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
+                      7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
+        X = x.reshape(6, 6)
+        XX = x.reshape(3, 2, 2, 3)
+
+        m = np.array([0, 1, 0, 1, 0, 0,
+                     1, 0, 1, 1, 0, 1,
+                     0, 0, 0, 1, 0, 1,
+                     0, 0, 0, 1, 1, 1,
+                     1, 0, 0, 1, 0, 0,
+                     0, 0, 1, 0, 1, 0])
+        mx = array(data=x, mask=m)
+        mX = array(data=X, mask=m.reshape(X.shape))
+        mXX = array(data=XX, mask=m.reshape(XX.shape))
+
+        m2 = np.array([1, 1, 0, 1, 0, 0,
+                      1, 1, 1, 1, 0, 1,
+                      0, 0, 1, 1, 0, 1,
+                      0, 0, 0, 1, 1, 1,
+                      1, 0, 0, 1, 1, 0,
+                      0, 0, 1, 0, 1, 1])
+        m2x = array(data=x, mask=m2)
+        m2X = array(data=X, mask=m2.reshape(X.shape))
+        m2XX = array(data=XX, mask=m2.reshape(XX.shape))
+        self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX)
+
+    def test_generic_methods(self):
+        # Tests some MaskedArray methods.
+        a = array([1, 3, 2])
+        assert_equal(a.any(), a._data.any())
+        assert_equal(a.all(), a._data.all())
+        assert_equal(a.argmax(), a._data.argmax())
+        assert_equal(a.argmin(), a._data.argmin())
+        assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4))
+        assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1]))
+        assert_equal(a.conj(), a._data.conj())
+        assert_equal(a.conjugate(), a._data.conjugate())
+
+        m = array([[1, 2], [3, 4]])
+        assert_equal(m.diagonal(), m._data.diagonal())
+        assert_equal(a.sum(), a._data.sum())
+        assert_equal(a.take([1, 2]), a._data.take([1, 2]))
+        assert_equal(m.transpose(), m._data.transpose())
+
+    def test_allclose(self):
+        # Tests allclose on arrays
+        a = np.random.rand(10)
+        b = a + np.random.rand(10) * 1e-8
+        assert_(allclose(a, b))
+        # Test allclose w/ infs
+        a[0] = np.inf
+        assert_(not allclose(a, b))
+        b[0] = np.inf
+        assert_(allclose(a, b))
+        # Test allclose w/ masked
+        a = masked_array(a)
+        a[-1] = masked
+        assert_(allclose(a, b, masked_equal=True))
+        assert_(not allclose(a, b, masked_equal=False))
+        # Test comparison w/ scalar
+        a *= 1e-8
+        a[0] = 0
+        assert_(allclose(a, 0, masked_equal=True))
+
+        # Test that the function works for MIN_INT integer typed arrays
+        a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
+        assert_(allclose(a, a))
+
+    def test_allclose_timedelta(self):
+        # Allclose currently works for timedelta64 as long as `atol` is
+        # an integer or also a timedelta64
+        a = np.array([[1, 2, 3, 4]], dtype="m8[ns]")
+        assert allclose(a, a, atol=0)
+        assert allclose(a, a, atol=np.timedelta64(1, "ns"))
+
+    def test_allany(self):
+        # Checks the any/all methods/functions.
+        x = np.array([[0.13, 0.26, 0.90],
+                      [0.28, 0.33, 0.63],
+                      [0.31, 0.87, 0.70]])
+        m = np.array([[True, False, False],
+                      [False, False, False],
+                      [True, True, False]], dtype=np.bool_)
+        mx = masked_array(x, mask=m)
+        mxbig = (mx > 0.5)
+        mxsmall = (mx < 0.5)
+
+        assert_(not mxbig.all())
+        assert_(mxbig.any())
+        assert_equal(mxbig.all(0), [False, False, True])
+        assert_equal(mxbig.all(1), [False, False, True])
+        assert_equal(mxbig.any(0), [False, False, True])
+        assert_equal(mxbig.any(1), [True, True, True])
+
+        assert_(not mxsmall.all())
+        assert_(mxsmall.any())
+        assert_equal(mxsmall.all(0), [True, True, False])
+        assert_equal(mxsmall.all(1), [False, False, False])
+        assert_equal(mxsmall.any(0), [True, True, False])
+        assert_equal(mxsmall.any(1), [True, True, False])
+
+    def test_allany_oddities(self):
+        # Some fun with all and any
+        store = empty((), dtype=bool)
+        full = array([1, 2, 3], mask=True)
+
+        assert_(full.all() is masked)
+        full.all(out=store)
+        assert_(store)
+        assert_(store._mask, True)
+        assert_(store is not masked)
+
+        store = empty((), dtype=bool)
+        assert_(full.any() is masked)
+        full.any(out=store)
+        assert_(not store)
+        assert_(store._mask, True)
+        assert_(store is not masked)
+
+    def test_argmax_argmin(self):
+        # Tests argmin & argmax on MaskedArrays.
+        (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
+
+        assert_equal(mx.argmin(), 35)
+        assert_equal(mX.argmin(), 35)
+        assert_equal(m2x.argmin(), 4)
+        assert_equal(m2X.argmin(), 4)
+        assert_equal(mx.argmax(), 28)
+        assert_equal(mX.argmax(), 28)
+        assert_equal(m2x.argmax(), 31)
+        assert_equal(m2X.argmax(), 31)
+
+        assert_equal(mX.argmin(0), [2, 2, 2, 5, 0, 5])
+        assert_equal(m2X.argmin(0), [2, 2, 4, 5, 0, 4])
+        assert_equal(mX.argmax(0), [0, 5, 0, 5, 4, 0])
+        assert_equal(m2X.argmax(0), [5, 5, 0, 5, 1, 0])
+
+        assert_equal(mX.argmin(1), [4, 1, 0, 0, 5, 5, ])
+        assert_equal(m2X.argmin(1), [4, 4, 0, 0, 5, 3])
+        assert_equal(mX.argmax(1), [2, 4, 1, 1, 4, 1])
+        assert_equal(m2X.argmax(1), [2, 4, 1, 1, 1, 1])
+
+    def test_clip(self):
+        # Tests clip on MaskedArrays.
+        x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
+                      8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
+                      3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
+                      6.04, 9.63, 7.712, 3.382, 4.489, 6.479,
+                      7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
+                      7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
+        m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1,
+                      0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1,
+                      1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0])
+        mx = array(x, mask=m)
+        clipped = mx.clip(2, 8)
+        assert_equal(clipped.mask, mx.mask)
+        assert_equal(clipped._data, x.clip(2, 8))
+        assert_equal(clipped._data, mx._data.clip(2, 8))
+
+    def test_clip_out(self):
+        # gh-14140
+        a = np.arange(10)
+        m = np.ma.MaskedArray(a, mask=[0, 1] * 5)
+        m.clip(0, 5, out=m)
+        assert_equal(m.mask, [0, 1] * 5)
+
+    def test_compress(self):
+        # test compress
+        a = masked_array([1., 2., 3., 4., 5.], fill_value=9999)
+        condition = (a > 1.5) & (a < 3.5)
+        assert_equal(a.compress(condition), [2., 3.])
+
+        a[[2, 3]] = masked
+        b = a.compress(condition)
+        assert_equal(b._data, [2., 3.])
+        assert_equal(b._mask, [0, 1])
+        assert_equal(b.fill_value, 9999)
+        assert_equal(b, a[condition])
+
+        condition = (a < 4.)
+        b = a.compress(condition)
+        assert_equal(b._data, [1., 2., 3.])
+        assert_equal(b._mask, [0, 0, 1])
+        assert_equal(b.fill_value, 9999)
+        assert_equal(b, a[condition])
+
+        a = masked_array([[10, 20, 30], [40, 50, 60]],
+                         mask=[[0, 0, 1], [1, 0, 0]])
+        b = a.compress(a.ravel() >= 22)
+        assert_equal(b._data, [30, 40, 50, 60])
+        assert_equal(b._mask, [1, 1, 0, 0])
+
+        x = np.array([3, 1, 2])
+        b = a.compress(x >= 2, axis=1)
+        assert_equal(b._data, [[10, 30], [40, 60]])
+        assert_equal(b._mask, [[0, 1], [1, 0]])
+
+    def test_compressed(self):
+        # Tests compressed
+        a = array([1, 2, 3, 4], mask=[0, 0, 0, 0])
+        b = a.compressed()
+        assert_equal(b, a)
+        a[0] = masked
+        b = a.compressed()
+        assert_equal(b, [2, 3, 4])
+
+    def test_empty(self):
+        # Tests empty/like
+        datatype = [('a', int), ('b', float), ('c', '|S8')]
+        a = masked_array([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')],
+                         dtype=datatype)
+        assert_equal(len(a.fill_value.item()), len(datatype))
+
+        b = empty_like(a)
+        assert_equal(b.shape, a.shape)
+        assert_equal(b.fill_value, a.fill_value)
+
+        b = empty(len(a), dtype=datatype)
+        assert_equal(b.shape, a.shape)
+        assert_equal(b.fill_value, a.fill_value)
+
+        # check empty_like mask handling
+        a = masked_array([1, 2, 3], mask=[False, True, False])
+        b = empty_like(a)
+        assert_(not np.may_share_memory(a.mask, b.mask))
+        b = a.view(masked_array)
+        assert_(np.may_share_memory(a.mask, b.mask))
+
+    def test_zeros(self):
+        # Tests zeros/like
+        datatype = [('a', int), ('b', float), ('c', '|S8')]
+        a = masked_array([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')],
+                         dtype=datatype)
+        assert_equal(len(a.fill_value.item()), len(datatype))
+
+        b = zeros(len(a), dtype=datatype)
+        assert_equal(b.shape, a.shape)
+        assert_equal(b.fill_value, a.fill_value)
+
+        b = zeros_like(a)
+        assert_equal(b.shape, a.shape)
+        assert_equal(b.fill_value, a.fill_value)
+
+        # check zeros_like mask handling
+        a = masked_array([1, 2, 3], mask=[False, True, False])
+        b = zeros_like(a)
+        assert_(not np.may_share_memory(a.mask, b.mask))
+        b = a.view()
+        assert_(np.may_share_memory(a.mask, b.mask))
+
+    def test_ones(self):
+        # Tests ones/like
+        datatype = [('a', int), ('b', float), ('c', '|S8')]
+        a = masked_array([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')],
+                         dtype=datatype)
+        assert_equal(len(a.fill_value.item()), len(datatype))
+
+        b = ones(len(a), dtype=datatype)
+        assert_equal(b.shape, a.shape)
+        assert_equal(b.fill_value, a.fill_value)
+
+        b = ones_like(a)
+        assert_equal(b.shape, a.shape)
+        assert_equal(b.fill_value, a.fill_value)
+
+        # check ones_like mask handling
+        a = masked_array([1, 2, 3], mask=[False, True, False])
+        b = ones_like(a)
+        assert_(not np.may_share_memory(a.mask, b.mask))
+        b = a.view()
+        assert_(np.may_share_memory(a.mask, b.mask))
+
+    @suppress_copy_mask_on_assignment
+    def test_put(self):
+        # Tests put.
+        d = arange(5)
+        n = [0, 0, 0, 1, 1]
+        m = make_mask(n)
+        x = array(d, mask=m)
+        assert_(x[3] is masked)
+        assert_(x[4] is masked)
+        x[[1, 4]] = [10, 40]
+        assert_(x[3] is masked)
+        assert_(x[4] is not masked)
+        assert_equal(x, [0, 10, 2, -1, 40])
+
+        x = masked_array(arange(10), mask=[1, 0, 0, 0, 0] * 2)
+        i = [0, 2, 4, 6]
+        x.put(i, [6, 4, 2, 0])
+        assert_equal(x, asarray([6, 1, 4, 3, 2, 5, 0, 7, 8, 9, ]))
+        assert_equal(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0])
+        x.put(i, masked_array([0, 2, 4, 6], [1, 0, 1, 0]))
+        assert_array_equal(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ])
+        assert_equal(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0])
+
+        x = masked_array(arange(10), mask=[1, 0, 0, 0, 0] * 2)
+        put(x, i, [6, 4, 2, 0])
+        assert_equal(x, asarray([6, 1, 4, 3, 2, 5, 0, 7, 8, 9, ]))
+        assert_equal(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0])
+        put(x, i, masked_array([0, 2, 4, 6], [1, 0, 1, 0]))
+        assert_array_equal(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ])
+        assert_equal(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0])
+
+    def test_put_nomask(self):
+        # GitHub issue 6425
+        x = zeros(10)
+        z = array([3., -1.], mask=[False, True])
+
+        x.put([1, 2], z)
+        assert_(x[0] is not masked)
+        assert_equal(x[0], 0)
+        assert_(x[1] is not masked)
+        assert_equal(x[1], 3)
+        assert_(x[2] is masked)
+        assert_(x[3] is not masked)
+        assert_equal(x[3], 0)
+
+    def test_put_hardmask(self):
+        # Tests put on hardmask
+        d = arange(5)
+        n = [0, 0, 0, 1, 1]
+        m = make_mask(n)
+        xh = array(d + 1, mask=m, hard_mask=True, copy=True)
+        xh.put([4, 2, 0, 1, 3], [1, 2, 3, 4, 5])
+        assert_equal(xh._data, [3, 4, 2, 4, 5])
+
+    def test_putmask(self):
+        x = arange(6) + 1
+        mx = array(x, mask=[0, 0, 0, 1, 1, 1])
+        mask = [0, 0, 1, 0, 0, 1]
+        # w/o mask, w/o masked values
+        xx = x.copy()
+        putmask(xx, mask, 99)
+        assert_equal(xx, [1, 2, 99, 4, 5, 99])
+        # w/ mask, w/o masked values
+        mxx = mx.copy()
+        putmask(mxx, mask, 99)
+        assert_equal(mxx._data, [1, 2, 99, 4, 5, 99])
+        assert_equal(mxx._mask, [0, 0, 0, 1, 1, 0])
+        # w/o mask, w/ masked values
+        values = array([10, 20, 30, 40, 50, 60], mask=[1, 1, 1, 0, 0, 0])
+        xx = x.copy()
+        putmask(xx, mask, values)
+        assert_equal(xx._data, [1, 2, 30, 4, 5, 60])
+        assert_equal(xx._mask, [0, 0, 1, 0, 0, 0])
+        # w/ mask, w/ masked values
+        mxx = mx.copy()
+        putmask(mxx, mask, values)
+        assert_equal(mxx._data, [1, 2, 30, 4, 5, 60])
+        assert_equal(mxx._mask, [0, 0, 1, 1, 1, 0])
+        # w/ mask, w/ masked values + hardmask
+        mxx = mx.copy()
+        mxx.harden_mask()
+        putmask(mxx, mask, values)
+        assert_equal(mxx, [1, 2, 30, 4, 5, 60])
+
+    def test_ravel(self):
+        # Tests ravel
+        a = array([[1, 2, 3, 4, 5]], mask=[[0, 1, 0, 0, 0]])
+        aravel = a.ravel()
+        assert_equal(aravel._mask.shape, aravel.shape)
+        a = array([0, 0], mask=[1, 1])
+        aravel = a.ravel()
+        assert_equal(aravel._mask.shape, a.shape)
+        # Checks that small_mask is preserved
+        a = array([1, 2, 3, 4], mask=[0, 0, 0, 0], shrink=False)
+        assert_equal(a.ravel()._mask, [0, 0, 0, 0])
+        # Test that the fill_value is preserved
+        a.fill_value = -99
+        a.shape = (2, 2)
+        ar = a.ravel()
+        assert_equal(ar._mask, [0, 0, 0, 0])
+        assert_equal(ar._data, [1, 2, 3, 4])
+        assert_equal(ar.fill_value, -99)
+        # Test index ordering
+        assert_equal(a.ravel(order='C'), [1, 2, 3, 4])
+        assert_equal(a.ravel(order='F'), [1, 3, 2, 4])
+
+    @pytest.mark.parametrize("order", "AKCF")
+    @pytest.mark.parametrize("data_order", "CF")
+    def test_ravel_order(self, order, data_order):
+        # Ravelling must ravel mask and data in the same order always to avoid
+        # misaligning the two in the ravel result.
+        arr = np.ones((5, 10), order=data_order)
+        arr[0, :] = 0
+        mask = np.ones((10, 5), dtype=bool, order=data_order).T
+        mask[0, :] = False
+        x = array(arr, mask=mask)
+        assert x._data.flags.fnc != x._mask.flags.fnc
+        assert (x.filled(0) == 0).all()
+        raveled = x.ravel(order)
+        assert (raveled.filled(0) == 0).all()
+
+        # NOTE: Can be wrong if arr order is neither C nor F and `order="K"`
+        assert_array_equal(arr.ravel(order), x.ravel(order)._data)
+
+    def test_reshape(self):
+        # Tests reshape
+        x = arange(4)
+        x[0] = masked
+        y = x.reshape(2, 2)
+        assert_equal(y.shape, (2, 2,))
+        assert_equal(y._mask.shape, (2, 2,))
+        assert_equal(x.shape, (4,))
+        assert_equal(x._mask.shape, (4,))
+
+    def test_sort(self):
+        # Test sort
+        x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8)
+
+        sortedx = sort(x)
+        assert_equal(sortedx._data, [1, 2, 3, 4])
+        assert_equal(sortedx._mask, [0, 0, 0, 1])
+
+        sortedx = sort(x, endwith=False)
+        assert_equal(sortedx._data, [4, 1, 2, 3])
+        assert_equal(sortedx._mask, [1, 0, 0, 0])
+
+        x.sort()
+        assert_equal(x._data, [1, 2, 3, 4])
+        assert_equal(x._mask, [0, 0, 0, 1])
+
+        x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8)
+        x.sort(endwith=False)
+        assert_equal(x._data, [4, 1, 2, 3])
+        assert_equal(x._mask, [1, 0, 0, 0])
+
+        x = [1, 4, 2, 3]
+        sortedx = sort(x)
+        assert_(not isinstance(sorted, MaskedArray))
+
+        x = array([0, 1, -1, -2, 2], mask=nomask, dtype=np.int8)
+        sortedx = sort(x, endwith=False)
+        assert_equal(sortedx._data, [-2, -1, 0, 1, 2])
+        x = array([0, 1, -1, -2, 2], mask=[0, 1, 0, 0, 1], dtype=np.int8)
+        sortedx = sort(x, endwith=False)
+        assert_equal(sortedx._data, [1, 2, -2, -1, 0])
+        assert_equal(sortedx._mask, [1, 1, 0, 0, 0])
+
+        x = array([0, -1], dtype=np.int8)
+        sortedx = sort(x, kind="stable")
+        assert_equal(sortedx, array([-1, 0], dtype=np.int8))
+
+    def test_stable_sort(self):
+        x = array([1, 2, 3, 1, 2, 3], dtype=np.uint8)
+        expected = array([0, 3, 1, 4, 2, 5])
+        computed = argsort(x, kind='stable')
+        assert_equal(computed, expected)
+
+    def test_argsort_matches_sort(self):
+        x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8)
+
+        for kwargs in [dict(),
+                       dict(endwith=True),
+                       dict(endwith=False),
+                       dict(fill_value=2),
+                       dict(fill_value=2, endwith=True),
+                       dict(fill_value=2, endwith=False)]:
+            sortedx = sort(x, **kwargs)
+            argsortedx = x[argsort(x, **kwargs)]
+            assert_equal(sortedx._data, argsortedx._data)
+            assert_equal(sortedx._mask, argsortedx._mask)
+
+    def test_sort_2d(self):
+        # Check sort of 2D array.
+        # 2D array w/o mask
+        a = masked_array([[8, 4, 1], [2, 0, 9]])
+        a.sort(0)
+        assert_equal(a, [[2, 0, 1], [8, 4, 9]])
+        a = masked_array([[8, 4, 1], [2, 0, 9]])
+        a.sort(1)
+        assert_equal(a, [[1, 4, 8], [0, 2, 9]])
+        # 2D array w/mask
+        a = masked_array([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]])
+        a.sort(0)
+        assert_equal(a, [[2, 0, 1], [8, 4, 9]])
+        assert_equal(a._mask, [[0, 0, 0], [1, 0, 1]])
+        a = masked_array([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]])
+        a.sort(1)
+        assert_equal(a, [[1, 4, 8], [0, 2, 9]])
+        assert_equal(a._mask, [[0, 0, 1], [0, 0, 1]])
+        # 3D
+        a = masked_array([[[7, 8, 9], [4, 5, 6], [1, 2, 3]],
+                          [[1, 2, 3], [7, 8, 9], [4, 5, 6]],
+                          [[7, 8, 9], [1, 2, 3], [4, 5, 6]],
+                          [[4, 5, 6], [1, 2, 3], [7, 8, 9]]])
+        a[a % 4 == 0] = masked
+        am = a.copy()
+        an = a.filled(99)
+        am.sort(0)
+        an.sort(0)
+        assert_equal(am, an)
+        am = a.copy()
+        an = a.filled(99)
+        am.sort(1)
+        an.sort(1)
+        assert_equal(am, an)
+        am = a.copy()
+        an = a.filled(99)
+        am.sort(2)
+        an.sort(2)
+        assert_equal(am, an)
+
+    def test_sort_flexible(self):
+        # Test sort on structured dtype.
+        a = array(
+            data=[(3, 3), (3, 2), (2, 2), (2, 1), (1, 0), (1, 1), (1, 2)],
+            mask=[(0, 0), (0, 1), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0)],
+            dtype=[('A', int), ('B', int)])
+        mask_last = array(
+            data=[(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 2), (1, 0)],
+            mask=[(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (1, 0)],
+            dtype=[('A', int), ('B', int)])
+        mask_first = array(
+            data=[(1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (3, 3)],
+            mask=[(1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (0, 0)],
+            dtype=[('A', int), ('B', int)])
+
+        test = sort(a)
+        assert_equal(test, mask_last)
+        assert_equal(test.mask, mask_last.mask)
+
+        test = sort(a, endwith=False)
+        assert_equal(test, mask_first)
+        assert_equal(test.mask, mask_first.mask)
+
+        # Test sort on dtype with subarray (gh-8069)
+        # Just check that the sort does not error, structured array subarrays
+        # are treated as byte strings and that leads to differing behavior
+        # depending on endianness and `endwith`.
+        dt = np.dtype([('v', int, 2)])
+        a = a.view(dt)
+        test = sort(a)
+        test = sort(a, endwith=False)
+
+    def test_argsort(self):
+        # Test argsort
+        a = array([1, 5, 2, 4, 3], mask=[1, 0, 0, 1, 0])
+        assert_equal(np.argsort(a), argsort(a))
+
+    def test_squeeze(self):
+        # Check squeeze
+        data = masked_array([[1, 2, 3]])
+        assert_equal(data.squeeze(), [1, 2, 3])
+        data = masked_array([[1, 2, 3]], mask=[[1, 1, 1]])
+        assert_equal(data.squeeze(), [1, 2, 3])
+        assert_equal(data.squeeze()._mask, [1, 1, 1])
+
+        # normal ndarrays return a view
+        arr = np.array([[1]])
+        arr_sq = arr.squeeze()
+        assert_equal(arr_sq, 1)
+        arr_sq[...] = 2
+        assert_equal(arr[0,0], 2)
+
+        # so maskedarrays should too
+        m_arr = masked_array([[1]], mask=True)
+        m_arr_sq = m_arr.squeeze()
+        assert_(m_arr_sq is not np.ma.masked)
+        assert_equal(m_arr_sq.mask, True)
+        m_arr_sq[...] = 2
+        assert_equal(m_arr[0,0], 2)
+
+    def test_swapaxes(self):
+        # Tests swapaxes on MaskedArrays.
+        x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
+                      8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
+                      3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
+                      6.04, 9.63, 7.712, 3.382, 4.489, 6.479,
+                      7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
+                      7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
+        m = np.array([0, 1, 0, 1, 0, 0,
+                      1, 0, 1, 1, 0, 1,
+                      0, 0, 0, 1, 0, 1,
+                      0, 0, 0, 1, 1, 1,
+                      1, 0, 0, 1, 0, 0,
+                      0, 0, 1, 0, 1, 0])
+        mX = array(x, mask=m).reshape(6, 6)
+        mXX = mX.reshape(3, 2, 2, 3)
+
+        mXswapped = mX.swapaxes(0, 1)
+        assert_equal(mXswapped[-1], mX[:, -1])
+
+        mXXswapped = mXX.swapaxes(0, 2)
+        assert_equal(mXXswapped.shape, (2, 2, 3, 3))
+
+    def test_take(self):
+        # Tests take
+        x = masked_array([10, 20, 30, 40], [0, 1, 0, 1])
+        assert_equal(x.take([0, 0, 3]), masked_array([10, 10, 40], [0, 0, 1]))
+        assert_equal(x.take([0, 0, 3]), x[[0, 0, 3]])
+        assert_equal(x.take([[0, 1], [0, 1]]),
+                     masked_array([[10, 20], [10, 20]], [[0, 1], [0, 1]]))
+
+        # assert_equal crashes when passed np.ma.mask
+        assert_(x[1] is np.ma.masked)
+        assert_(x.take(1) is np.ma.masked)
+
+        x = array([[10, 20, 30], [40, 50, 60]], mask=[[0, 0, 1], [1, 0, 0, ]])
+        assert_equal(x.take([0, 2], axis=1),
+                     array([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]]))
+        assert_equal(take(x, [0, 2], axis=1),
+                     array([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]]))
+
+    def test_take_masked_indices(self):
+        # Test take w/ masked indices
+        a = np.array((40, 18, 37, 9, 22))
+        indices = np.arange(3)[None,:] + np.arange(5)[:, None]
+        mindices = array(indices, mask=(indices >= len(a)))
+        # No mask
+        test = take(a, mindices, mode='clip')
+        ctrl = array([[40, 18, 37],
+                      [18, 37, 9],
+                      [37, 9, 22],
+                      [9, 22, 22],
+                      [22, 22, 22]])
+        assert_equal(test, ctrl)
+        # Masked indices
+        test = take(a, mindices)
+        ctrl = array([[40, 18, 37],
+                      [18, 37, 9],
+                      [37, 9, 22],
+                      [9, 22, 40],
+                      [22, 40, 40]])
+        ctrl[3, 2] = ctrl[4, 1] = ctrl[4, 2] = masked
+        assert_equal(test, ctrl)
+        assert_equal(test.mask, ctrl.mask)
+        # Masked input + masked indices
+        a = array((40, 18, 37, 9, 22), mask=(0, 1, 0, 0, 0))
+        test = take(a, mindices)
+        ctrl[0, 1] = ctrl[1, 0] = masked
+        assert_equal(test, ctrl)
+        assert_equal(test.mask, ctrl.mask)
+
+    def test_tolist(self):
+        # Tests to list
+        # ... on 1D
+        x = array(np.arange(12))
+        x[[1, -2]] = masked
+        xlist = x.tolist()
+        assert_(xlist[1] is None)
+        assert_(xlist[-2] is None)
+        # ... on 2D
+        x.shape = (3, 4)
+        xlist = x.tolist()
+        ctrl = [[0, None, 2, 3], [4, 5, 6, 7], [8, 9, None, 11]]
+        assert_equal(xlist[0], [0, None, 2, 3])
+        assert_equal(xlist[1], [4, 5, 6, 7])
+        assert_equal(xlist[2], [8, 9, None, 11])
+        assert_equal(xlist, ctrl)
+        # ... on structured array w/ masked records
+        x = array(list(zip([1, 2, 3],
+                           [1.1, 2.2, 3.3],
+                           ['one', 'two', 'thr'])),
+                  dtype=[('a', int), ('b', float), ('c', '|S8')])
+        x[-1] = masked
+        assert_equal(x.tolist(),
+                     [(1, 1.1, b'one'),
+                      (2, 2.2, b'two'),
+                      (None, None, None)])
+        # ... on structured array w/ masked fields
+        a = array([(1, 2,), (3, 4)], mask=[(0, 1), (0, 0)],
+                  dtype=[('a', int), ('b', int)])
+        test = a.tolist()
+        assert_equal(test, [[1, None], [3, 4]])
+        # ... on mvoid
+        a = a[0]
+        test = a.tolist()
+        assert_equal(test, [1, None])
+
+    def test_tolist_specialcase(self):
+        # Test mvoid.tolist: make sure we return a standard Python object
+        a = array([(0, 1), (2, 3)], dtype=[('a', int), ('b', int)])
+        # w/o mask: each entry is a np.void whose elements are standard Python
+        for entry in a:
+            for item in entry.tolist():
+                assert_(not isinstance(item, np.generic))
+        # w/ mask: each entry is a ma.void whose elements should be
+        # standard Python
+        a.mask[0] = (0, 1)
+        for entry in a:
+            for item in entry.tolist():
+                assert_(not isinstance(item, np.generic))
+
+    def test_toflex(self):
+        # Test the conversion to records
+        data = arange(10)
+        record = data.toflex()
+        assert_equal(record['_data'], data._data)
+        assert_equal(record['_mask'], data._mask)
+
+        data[[0, 1, 2, -1]] = masked
+        record = data.toflex()
+        assert_equal(record['_data'], data._data)
+        assert_equal(record['_mask'], data._mask)
+
+        ndtype = [('i', int), ('s', '|S3'), ('f', float)]
+        data = array([(i, s, f) for (i, s, f) in zip(np.arange(10),
+                                                     'ABCDEFGHIJKLM',
+                                                     np.random.rand(10))],
+                     dtype=ndtype)
+        data[[0, 1, 2, -1]] = masked
+        record = data.toflex()
+        assert_equal(record['_data'], data._data)
+        assert_equal(record['_mask'], data._mask)
+
+        ndtype = np.dtype("int, (2,3)float, float")
+        data = array([(i, f, ff) for (i, f, ff) in zip(np.arange(10),
+                                                       np.random.rand(10),
+                                                       np.random.rand(10))],
+                     dtype=ndtype)
+        data[[0, 1, 2, -1]] = masked
+        record = data.toflex()
+        assert_equal_records(record['_data'], data._data)
+        assert_equal_records(record['_mask'], data._mask)
+
+    def test_fromflex(self):
+        # Test the reconstruction of a masked_array from a record
+        a = array([1, 2, 3])
+        test = fromflex(a.toflex())
+        assert_equal(test, a)
+        assert_equal(test.mask, a.mask)
+
+        a = array([1, 2, 3], mask=[0, 0, 1])
+        test = fromflex(a.toflex())
+        assert_equal(test, a)
+        assert_equal(test.mask, a.mask)
+
+        a = array([(1, 1.), (2, 2.), (3, 3.)], mask=[(1, 0), (0, 0), (0, 1)],
+                  dtype=[('A', int), ('B', float)])
+        test = fromflex(a.toflex())
+        assert_equal(test, a)
+        assert_equal(test.data, a.data)
+
+    def test_arraymethod(self):
+        # Test a _arraymethod w/ n argument
+        marray = masked_array([[1, 2, 3, 4, 5]], mask=[0, 0, 1, 0, 0])
+        control = masked_array([[1], [2], [3], [4], [5]],
+                               mask=[0, 0, 1, 0, 0])
+        assert_equal(marray.T, control)
+        assert_equal(marray.transpose(), control)
+
+        assert_equal(MaskedArray.cumsum(marray.T, 0), control.cumsum(0))
+
+    def test_arraymethod_0d(self):
+        # gh-9430
+        x = np.ma.array(42, mask=True)
+        assert_equal(x.T.mask, x.mask)
+        assert_equal(x.T.data, x.data)
+
+    def test_transpose_view(self):
+        x = np.ma.array([[1, 2, 3], [4, 5, 6]])
+        x[0,1] = np.ma.masked
+        xt = x.T
+
+        xt[1,0] = 10
+        xt[0,1] = np.ma.masked
+
+        assert_equal(x.data, xt.T.data)
+        assert_equal(x.mask, xt.T.mask)
+
+    def test_diagonal_view(self):
+        x = np.ma.zeros((3,3))
+        x[0,0] = 10
+        x[1,1] = np.ma.masked
+        x[2,2] = 20
+        xd = x.diagonal()
+        x[1,1] = 15
+        assert_equal(xd.mask, x.diagonal().mask)
+        assert_equal(xd.data, x.diagonal().data)
+
+
+class TestMaskedArrayMathMethods:
+
+    def setup_method(self):
+        # Base data definition.
+        x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
+                      8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
+                      3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
+                      6.04, 9.63, 7.712, 3.382, 4.489, 6.479,
+                      7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
+                      7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
+        X = x.reshape(6, 6)
+        XX = x.reshape(3, 2, 2, 3)
+
+        m = np.array([0, 1, 0, 1, 0, 0,
+                     1, 0, 1, 1, 0, 1,
+                     0, 0, 0, 1, 0, 1,
+                     0, 0, 0, 1, 1, 1,
+                     1, 0, 0, 1, 0, 0,
+                     0, 0, 1, 0, 1, 0])
+        mx = array(data=x, mask=m)
+        mX = array(data=X, mask=m.reshape(X.shape))
+        mXX = array(data=XX, mask=m.reshape(XX.shape))
+
+        m2 = np.array([1, 1, 0, 1, 0, 0,
+                      1, 1, 1, 1, 0, 1,
+                      0, 0, 1, 1, 0, 1,
+                      0, 0, 0, 1, 1, 1,
+                      1, 0, 0, 1, 1, 0,
+                      0, 0, 1, 0, 1, 1])
+        m2x = array(data=x, mask=m2)
+        m2X = array(data=X, mask=m2.reshape(X.shape))
+        m2XX = array(data=XX, mask=m2.reshape(XX.shape))
+        self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX)
+
+    def test_cumsumprod(self):
+        # Tests cumsum & cumprod on MaskedArrays.
+        (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
+        mXcp = mX.cumsum(0)
+        assert_equal(mXcp._data, mX.filled(0).cumsum(0))
+        mXcp = mX.cumsum(1)
+        assert_equal(mXcp._data, mX.filled(0).cumsum(1))
+
+        mXcp = mX.cumprod(0)
+        assert_equal(mXcp._data, mX.filled(1).cumprod(0))
+        mXcp = mX.cumprod(1)
+        assert_equal(mXcp._data, mX.filled(1).cumprod(1))
+
+    def test_cumsumprod_with_output(self):
+        # Tests cumsum/cumprod w/ output
+        xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4)
+        xm[:, 0] = xm[0] = xm[-1, -1] = masked
+
+        for funcname in ('cumsum', 'cumprod'):
+            npfunc = getattr(np, funcname)
+            xmmeth = getattr(xm, funcname)
+
+            # A ndarray as explicit input
+            output = np.empty((3, 4), dtype=float)
+            output.fill(-9999)
+            result = npfunc(xm, axis=0, out=output)
+            # ... the result should be the given output
+            assert_(result is output)
+            assert_equal(result, xmmeth(axis=0, out=output))
+
+            output = empty((3, 4), dtype=int)
+            result = xmmeth(axis=0, out=output)
+            assert_(result is output)
+
+    def test_ptp(self):
+        # Tests ptp on MaskedArrays.
+        (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
+        (n, m) = X.shape
+        assert_equal(mx.ptp(), mx.compressed().ptp())
+        rows = np.zeros(n, float)
+        cols = np.zeros(m, float)
+        for k in range(m):
+            cols[k] = mX[:, k].compressed().ptp()
+        for k in range(n):
+            rows[k] = mX[k].compressed().ptp()
+        assert_equal(mX.ptp(0), cols)
+        assert_equal(mX.ptp(1), rows)
+
+    def test_add_object(self):
+        x = masked_array(['a', 'b'], mask=[1, 0], dtype=object)
+        y = x + 'x'
+        assert_equal(y[1], 'bx')
+        assert_(y.mask[0])
+
+    def test_sum_object(self):
+        # Test sum on object dtype
+        a = masked_array([1, 2, 3], mask=[1, 0, 0], dtype=object)
+        assert_equal(a.sum(), 5)
+        a = masked_array([[1, 2, 3], [4, 5, 6]], dtype=object)
+        assert_equal(a.sum(axis=0), [5, 7, 9])
+
+    def test_prod_object(self):
+        # Test prod on object dtype
+        a = masked_array([1, 2, 3], mask=[1, 0, 0], dtype=object)
+        assert_equal(a.prod(), 2 * 3)
+        a = masked_array([[1, 2, 3], [4, 5, 6]], dtype=object)
+        assert_equal(a.prod(axis=0), [4, 10, 18])
+
+    def test_meananom_object(self):
+        # Test mean/anom on object dtype
+        a = masked_array([1, 2, 3], dtype=object)
+        assert_equal(a.mean(), 2)
+        assert_equal(a.anom(), [-1, 0, 1])
+
+    def test_anom_shape(self):
+        a = masked_array([1, 2, 3])
+        assert_equal(a.anom().shape, a.shape)
+        a.mask = True
+        assert_equal(a.anom().shape, a.shape)
+        assert_(np.ma.is_masked(a.anom()))
+
+    def test_anom(self):
+        a = masked_array(np.arange(1, 7).reshape(2, 3))
+        assert_almost_equal(a.anom(),
+                            [[-2.5, -1.5, -0.5], [0.5, 1.5, 2.5]])
+        assert_almost_equal(a.anom(axis=0),
+                            [[-1.5, -1.5, -1.5], [1.5, 1.5, 1.5]])
+        assert_almost_equal(a.anom(axis=1),
+                            [[-1., 0., 1.], [-1., 0., 1.]])
+        a.mask = [[0, 0, 1], [0, 1, 0]]
+        mval = -99
+        assert_almost_equal(a.anom().filled(mval),
+                            [[-2.25, -1.25, mval], [0.75, mval, 2.75]])
+        assert_almost_equal(a.anom(axis=0).filled(mval),
+                            [[-1.5, 0.0, mval], [1.5, mval, 0.0]])
+        assert_almost_equal(a.anom(axis=1).filled(mval),
+                            [[-0.5, 0.5, mval], [-1.0, mval, 1.0]])
+
+    def test_trace(self):
+        # Tests trace on MaskedArrays.
+        (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
+        mXdiag = mX.diagonal()
+        assert_equal(mX.trace(), mX.diagonal().compressed().sum())
+        assert_almost_equal(mX.trace(),
+                            X.trace() - sum(mXdiag.mask * X.diagonal(),
+                                            axis=0))
+        assert_equal(np.trace(mX), mX.trace())
+
+        # gh-5560
+        arr = np.arange(2*4*4).reshape(2,4,4)
+        m_arr = np.ma.masked_array(arr, False)
+        assert_equal(arr.trace(axis1=1, axis2=2), m_arr.trace(axis1=1, axis2=2))
+
+    def test_dot(self):
+        # Tests dot on MaskedArrays.
+        (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
+        fx = mx.filled(0)
+        r = mx.dot(mx)
+        assert_almost_equal(r.filled(0), fx.dot(fx))
+        assert_(r.mask is nomask)
+
+        fX = mX.filled(0)
+        r = mX.dot(mX)
+        assert_almost_equal(r.filled(0), fX.dot(fX))
+        assert_(r.mask[1,3])
+        r1 = empty_like(r)
+        mX.dot(mX, out=r1)
+        assert_almost_equal(r, r1)
+
+        mYY = mXX.swapaxes(-1, -2)
+        fXX, fYY = mXX.filled(0), mYY.filled(0)
+        r = mXX.dot(mYY)
+        assert_almost_equal(r.filled(0), fXX.dot(fYY))
+        r1 = empty_like(r)
+        mXX.dot(mYY, out=r1)
+        assert_almost_equal(r, r1)
+
+    def test_dot_shape_mismatch(self):
+        # regression test
+        x = masked_array([[1,2],[3,4]], mask=[[0,1],[0,0]])
+        y = masked_array([[1,2],[3,4]], mask=[[0,1],[0,0]])
+        z = masked_array([[0,1],[3,3]])
+        x.dot(y, out=z)
+        assert_almost_equal(z.filled(0), [[1, 0], [15, 16]])
+        assert_almost_equal(z.mask, [[0, 1], [0, 0]])
+
+    def test_varmean_nomask(self):
+        # gh-5769
+        foo = array([1,2,3,4], dtype='f8')
+        bar = array([1,2,3,4], dtype='f8')
+        assert_equal(type(foo.mean()), np.float64)
+        assert_equal(type(foo.var()), np.float64)
+        assert((foo.mean() == bar.mean()) is np.bool_(True))
+
+        # check array type is preserved and out works
+        foo = array(np.arange(16).reshape((4,4)), dtype='f8')
+        bar = empty(4, dtype='f4')
+        assert_equal(type(foo.mean(axis=1)), MaskedArray)
+        assert_equal(type(foo.var(axis=1)), MaskedArray)
+        assert_(foo.mean(axis=1, out=bar) is bar)
+        assert_(foo.var(axis=1, out=bar) is bar)
+
+    def test_varstd(self):
+        # Tests var & std on MaskedArrays.
+        (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
+        assert_almost_equal(mX.var(axis=None), mX.compressed().var())
+        assert_almost_equal(mX.std(axis=None), mX.compressed().std())
+        assert_almost_equal(mX.std(axis=None, ddof=1),
+                            mX.compressed().std(ddof=1))
+        assert_almost_equal(mX.var(axis=None, ddof=1),
+                            mX.compressed().var(ddof=1))
+        assert_equal(mXX.var(axis=3).shape, XX.var(axis=3).shape)
+        assert_equal(mX.var().shape, X.var().shape)
+        (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1))
+        assert_almost_equal(mX.var(axis=None, ddof=2),
+                            mX.compressed().var(ddof=2))
+        assert_almost_equal(mX.std(axis=None, ddof=2),
+                            mX.compressed().std(ddof=2))
+        for k in range(6):
+            assert_almost_equal(mXvar1[k], mX[k].compressed().var())
+            assert_almost_equal(mXvar0[k], mX[:, k].compressed().var())
+            assert_almost_equal(np.sqrt(mXvar0[k]),
+                                mX[:, k].compressed().std())
+
+    @suppress_copy_mask_on_assignment
+    def test_varstd_specialcases(self):
+        # Test a special case for var
+        nout = np.array(-1, dtype=float)
+        mout = array(-1, dtype=float)
+
+        x = array(arange(10), mask=True)
+        for methodname in ('var', 'std'):
+            method = getattr(x, methodname)
+            assert_(method() is masked)
+            assert_(method(0) is masked)
+            assert_(method(-1) is masked)
+            # Using a masked array as explicit output
+            method(out=mout)
+            assert_(mout is not masked)
+            assert_equal(mout.mask, True)
+            # Using a ndarray as explicit output
+            method(out=nout)
+            assert_(np.isnan(nout))
+
+        x = array(arange(10), mask=True)
+        x[-1] = 9
+        for methodname in ('var', 'std'):
+            method = getattr(x, methodname)
+            assert_(method(ddof=1) is masked)
+            assert_(method(0, ddof=1) is masked)
+            assert_(method(-1, ddof=1) is masked)
+            # Using a masked array as explicit output
+            method(out=mout, ddof=1)
+            assert_(mout is not masked)
+            assert_equal(mout.mask, True)
+            # Using a ndarray as explicit output
+            method(out=nout, ddof=1)
+            assert_(np.isnan(nout))
+
+    def test_varstd_ddof(self):
+        a = array([[1, 1, 0], [1, 1, 0]], mask=[[0, 0, 1], [0, 0, 1]])
+        test = a.std(axis=0, ddof=0)
+        assert_equal(test.filled(0), [0, 0, 0])
+        assert_equal(test.mask, [0, 0, 1])
+        test = a.std(axis=0, ddof=1)
+        assert_equal(test.filled(0), [0, 0, 0])
+        assert_equal(test.mask, [0, 0, 1])
+        test = a.std(axis=0, ddof=2)
+        assert_equal(test.filled(0), [0, 0, 0])
+        assert_equal(test.mask, [1, 1, 1])
+
+    def test_diag(self):
+        # Test diag
+        x = arange(9).reshape((3, 3))
+        x[1, 1] = masked
+        out = np.diag(x)
+        assert_equal(out, [0, 4, 8])
+        out = diag(x)
+        assert_equal(out, [0, 4, 8])
+        assert_equal(out.mask, [0, 1, 0])
+        out = diag(out)
+        control = array([[0, 0, 0], [0, 4, 0], [0, 0, 8]],
+                        mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
+        assert_equal(out, control)
+
+    def test_axis_methods_nomask(self):
+        # Test the combination nomask & methods w/ axis
+        a = array([[1, 2, 3], [4, 5, 6]])
+
+        assert_equal(a.sum(0), [5, 7, 9])
+        assert_equal(a.sum(-1), [6, 15])
+        assert_equal(a.sum(1), [6, 15])
+
+        assert_equal(a.prod(0), [4, 10, 18])
+        assert_equal(a.prod(-1), [6, 120])
+        assert_equal(a.prod(1), [6, 120])
+
+        assert_equal(a.min(0), [1, 2, 3])
+        assert_equal(a.min(-1), [1, 4])
+        assert_equal(a.min(1), [1, 4])
+
+        assert_equal(a.max(0), [4, 5, 6])
+        assert_equal(a.max(-1), [3, 6])
+        assert_equal(a.max(1), [3, 6])
+
+    @requires_memory(free_bytes=2 * 10000 * 1000 * 2)
+    def test_mean_overflow(self):
+        # Test overflow in masked arrays
+        # gh-20272
+        a = masked_array(np.full((10000, 10000), 65535, dtype=np.uint16),
+                         mask=np.zeros((10000, 10000)))
+        assert_equal(a.mean(), 65535.0)
+
+    def test_diff_with_prepend(self):
+        # GH 22465
+        x = np.array([1, 2, 2, 3, 4, 2, 1, 1])
+
+        a = np.ma.masked_equal(x[3:], value=2)
+        a_prep = np.ma.masked_equal(x[:3], value=2)
+        diff1 = np.ma.diff(a, prepend=a_prep, axis=0)
+
+        b = np.ma.masked_equal(x, value=2)
+        diff2 = np.ma.diff(b, axis=0)
+
+        assert_(np.ma.allequal(diff1, diff2))
+
+    def test_diff_with_append(self):
+        # GH 22465
+        x = np.array([1, 2, 2, 3, 4, 2, 1, 1])
+
+        a = np.ma.masked_equal(x[:3], value=2)
+        a_app = np.ma.masked_equal(x[3:], value=2)
+        diff1 = np.ma.diff(a, append=a_app, axis=0)
+
+        b = np.ma.masked_equal(x, value=2)
+        diff2 = np.ma.diff(b, axis=0)
+
+        assert_(np.ma.allequal(diff1, diff2))
+
+    def test_diff_with_dim_0(self):
+        with pytest.raises(
+            ValueError,
+            match="diff requires input that is at least one dimensional"
+            ):
+            np.ma.diff(np.array(1))
+
+    def test_diff_with_n_0(self):
+        a = np.ma.masked_equal([1, 2, 2, 3, 4, 2, 1, 1], value=2)
+        diff = np.ma.diff(a, n=0, axis=0)
+
+        assert_(np.ma.allequal(a, diff))
+
+
+class TestMaskedArrayMathMethodsComplex:
+    # Test class for miscellaneous MaskedArrays methods.
+    def setup_method(self):
+        # Base data definition.
+        x = np.array([8.375j, 7.545j, 8.828j, 8.5j, 1.757j, 5.928,
+                      8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
+                      3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
+                      6.04, 9.63, 7.712, 3.382, 4.489, 6.479j,
+                      7.189j, 9.645, 5.395, 4.961, 9.894, 2.893,
+                      7.357, 9.828, 6.272, 3.758, 6.693, 0.993j])
+        X = x.reshape(6, 6)
+        XX = x.reshape(3, 2, 2, 3)
+
+        m = np.array([0, 1, 0, 1, 0, 0,
+                     1, 0, 1, 1, 0, 1,
+                     0, 0, 0, 1, 0, 1,
+                     0, 0, 0, 1, 1, 1,
+                     1, 0, 0, 1, 0, 0,
+                     0, 0, 1, 0, 1, 0])
+        mx = array(data=x, mask=m)
+        mX = array(data=X, mask=m.reshape(X.shape))
+        mXX = array(data=XX, mask=m.reshape(XX.shape))
+
+        m2 = np.array([1, 1, 0, 1, 0, 0,
+                      1, 1, 1, 1, 0, 1,
+                      0, 0, 1, 1, 0, 1,
+                      0, 0, 0, 1, 1, 1,
+                      1, 0, 0, 1, 1, 0,
+                      0, 0, 1, 0, 1, 1])
+        m2x = array(data=x, mask=m2)
+        m2X = array(data=X, mask=m2.reshape(X.shape))
+        m2XX = array(data=XX, mask=m2.reshape(XX.shape))
+        self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX)
+
+    def test_varstd(self):
+        # Tests var & std on MaskedArrays.
+        (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
+        assert_almost_equal(mX.var(axis=None), mX.compressed().var())
+        assert_almost_equal(mX.std(axis=None), mX.compressed().std())
+        assert_equal(mXX.var(axis=3).shape, XX.var(axis=3).shape)
+        assert_equal(mX.var().shape, X.var().shape)
+        (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1))
+        assert_almost_equal(mX.var(axis=None, ddof=2),
+                            mX.compressed().var(ddof=2))
+        assert_almost_equal(mX.std(axis=None, ddof=2),
+                            mX.compressed().std(ddof=2))
+        for k in range(6):
+            assert_almost_equal(mXvar1[k], mX[k].compressed().var())
+            assert_almost_equal(mXvar0[k], mX[:, k].compressed().var())
+            assert_almost_equal(np.sqrt(mXvar0[k]),
+                                mX[:, k].compressed().std())
+
+
+class TestMaskedArrayFunctions:
+    # Test class for miscellaneous functions.
+
+    def setup_method(self):
+        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
+        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
+        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
+        xm = masked_array(x, mask=m1)
+        ym = masked_array(y, mask=m2)
+        xm.set_fill_value(1e+20)
+        self.info = (xm, ym)
+
+    def test_masked_where_bool(self):
+        x = [1, 2]
+        y = masked_where(False, x)
+        assert_equal(y, [1, 2])
+        assert_equal(y[1], 2)
+
+    def test_masked_equal_wlist(self):
+        x = [1, 2, 3]
+        mx = masked_equal(x, 3)
+        assert_equal(mx, x)
+        assert_equal(mx._mask, [0, 0, 1])
+        mx = masked_not_equal(x, 3)
+        assert_equal(mx, x)
+        assert_equal(mx._mask, [1, 1, 0])
+
+    def test_masked_equal_fill_value(self):
+        x = [1, 2, 3]
+        mx = masked_equal(x, 3)
+        assert_equal(mx._mask, [0, 0, 1])
+        assert_equal(mx.fill_value, 3)
+
+    def test_masked_where_condition(self):
+        # Tests masking functions.
+        x = array([1., 2., 3., 4., 5.])
+        x[2] = masked
+        assert_equal(masked_where(greater(x, 2), x), masked_greater(x, 2))
+        assert_equal(masked_where(greater_equal(x, 2), x),
+                     masked_greater_equal(x, 2))
+        assert_equal(masked_where(less(x, 2), x), masked_less(x, 2))
+        assert_equal(masked_where(less_equal(x, 2), x),
+                     masked_less_equal(x, 2))
+        assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2))
+        assert_equal(masked_where(equal(x, 2), x), masked_equal(x, 2))
+        assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2))
+        assert_equal(masked_where([1, 1, 0, 0, 0], [1, 2, 3, 4, 5]),
+                     [99, 99, 3, 4, 5])
+
+    def test_masked_where_oddities(self):
+        # Tests some generic features.
+        atest = ones((10, 10, 10), dtype=float)
+        btest = zeros(atest.shape, MaskType)
+        ctest = masked_where(btest, atest)
+        assert_equal(atest, ctest)
+
+    def test_masked_where_shape_constraint(self):
+        a = arange(10)
+        with assert_raises(IndexError):
+            masked_equal(1, a)
+        test = masked_equal(a, 1)
+        assert_equal(test.mask, [0, 1, 0, 0, 0, 0, 0, 0, 0, 0])
+
+    def test_masked_where_structured(self):
+        # test that masked_where on a structured array sets a structured
+        # mask (see issue #2972)
+        a = np.zeros(10, dtype=[("A", "<f2"), ("B", "<f4")])
+        with np.errstate(over="ignore"):
+            # NOTE: The float16 "uses" 1e20 as mask, which overflows to inf
+            #       and warns.  Unrelated to this test, but probably undesired.
+            #       But NumPy previously did not warn for this overflow.
+            am = np.ma.masked_where(a["A"] < 5, a)
+        assert_equal(am.mask.dtype.names, am.dtype.names)
+        assert_equal(am["A"],
+                    np.ma.masked_array(np.zeros(10), np.ones(10)))
+
+    def test_masked_where_mismatch(self):
+        # gh-4520
+        x = np.arange(10)
+        y = np.arange(5)
+        assert_raises(IndexError, np.ma.masked_where, y > 6, x)
+
+    def test_masked_otherfunctions(self):
+        assert_equal(masked_inside(list(range(5)), 1, 3),
+                     [0, 199, 199, 199, 4])
+        assert_equal(masked_outside(list(range(5)), 1, 3), [199, 1, 2, 3, 199])
+        assert_equal(masked_inside(array(list(range(5)),
+                                         mask=[1, 0, 0, 0, 0]), 1, 3).mask,
+                     [1, 1, 1, 1, 0])
+        assert_equal(masked_outside(array(list(range(5)),
+                                          mask=[0, 1, 0, 0, 0]), 1, 3).mask,
+                     [1, 1, 0, 0, 1])
+        assert_equal(masked_equal(array(list(range(5)),
+                                        mask=[1, 0, 0, 0, 0]), 2).mask,
+                     [1, 0, 1, 0, 0])
+        assert_equal(masked_not_equal(array([2, 2, 1, 2, 1],
+                                            mask=[1, 0, 0, 0, 0]), 2).mask,
+                     [1, 0, 1, 0, 1])
+
+    def test_round(self):
+        a = array([1.23456, 2.34567, 3.45678, 4.56789, 5.67890],
+                  mask=[0, 1, 0, 0, 0])
+        assert_equal(a.round(), [1., 2., 3., 5., 6.])
+        assert_equal(a.round(1), [1.2, 2.3, 3.5, 4.6, 5.7])
+        assert_equal(a.round(3), [1.235, 2.346, 3.457, 4.568, 5.679])
+        b = empty_like(a)
+        a.round(out=b)
+        assert_equal(b, [1., 2., 3., 5., 6.])
+
+        x = array([1., 2., 3., 4., 5.])
+        c = array([1, 1, 1, 0, 0])
+        x[2] = masked
+        z = where(c, x, -x)
+        assert_equal(z, [1., 2., 0., -4., -5])
+        c[0] = masked
+        z = where(c, x, -x)
+        assert_equal(z, [1., 2., 0., -4., -5])
+        assert_(z[0] is masked)
+        assert_(z[1] is not masked)
+        assert_(z[2] is masked)
+
+    def test_round_with_output(self):
+        # Testing round with an explicit output
+
+        xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4)
+        xm[:, 0] = xm[0] = xm[-1, -1] = masked
+
+        # A ndarray as explicit input
+        output = np.empty((3, 4), dtype=float)
+        output.fill(-9999)
+        result = np.round(xm, decimals=2, out=output)
+        # ... the result should be the given output
+        assert_(result is output)
+        assert_equal(result, xm.round(decimals=2, out=output))
+
+        output = empty((3, 4), dtype=float)
+        result = xm.round(decimals=2, out=output)
+        assert_(result is output)
+
+    def test_round_with_scalar(self):
+        # Testing round with scalar/zero dimension input
+        # GH issue 2244
+        a = array(1.1, mask=[False])
+        assert_equal(a.round(), 1)
+
+        a = array(1.1, mask=[True])
+        assert_(a.round() is masked)
+
+        a = array(1.1, mask=[False])
+        output = np.empty(1, dtype=float)
+        output.fill(-9999)
+        a.round(out=output)
+        assert_equal(output, 1)
+
+        a = array(1.1, mask=[False])
+        output = array(-9999., mask=[True])
+        a.round(out=output)
+        assert_equal(output[()], 1)
+
+        a = array(1.1, mask=[True])
+        output = array(-9999., mask=[False])
+        a.round(out=output)
+        assert_(output[()] is masked)
+
+    def test_identity(self):
+        a = identity(5)
+        assert_(isinstance(a, MaskedArray))
+        assert_equal(a, np.identity(5))
+
+    def test_power(self):
+        x = -1.1
+        assert_almost_equal(power(x, 2.), 1.21)
+        assert_(power(x, masked) is masked)
+        x = array([-1.1, -1.1, 1.1, 1.1, 0.])
+        b = array([0.5, 2., 0.5, 2., -1.], mask=[0, 0, 0, 0, 1])
+        y = power(x, b)
+        assert_almost_equal(y, [0, 1.21, 1.04880884817, 1.21, 0.])
+        assert_equal(y._mask, [1, 0, 0, 0, 1])
+        b.mask = nomask
+        y = power(x, b)
+        assert_equal(y._mask, [1, 0, 0, 0, 1])
+        z = x ** b
+        assert_equal(z._mask, y._mask)
+        assert_almost_equal(z, y)
+        assert_almost_equal(z._data, y._data)
+        x **= b
+        assert_equal(x._mask, y._mask)
+        assert_almost_equal(x, y)
+        assert_almost_equal(x._data, y._data)
+
+    def test_power_with_broadcasting(self):
+        # Test power w/ broadcasting
+        a2 = np.array([[1., 2., 3.], [4., 5., 6.]])
+        a2m = array(a2, mask=[[1, 0, 0], [0, 0, 1]])
+        b1 = np.array([2, 4, 3])
+        b2 = np.array([b1, b1])
+        b2m = array(b2, mask=[[0, 1, 0], [0, 1, 0]])
+
+        ctrl = array([[1 ** 2, 2 ** 4, 3 ** 3], [4 ** 2, 5 ** 4, 6 ** 3]],
+                     mask=[[1, 1, 0], [0, 1, 1]])
+        # No broadcasting, base & exp w/ mask
+        test = a2m ** b2m
+        assert_equal(test, ctrl)
+        assert_equal(test.mask, ctrl.mask)
+        # No broadcasting, base w/ mask, exp w/o mask
+        test = a2m ** b2
+        assert_equal(test, ctrl)
+        assert_equal(test.mask, a2m.mask)
+        # No broadcasting, base w/o mask, exp w/ mask
+        test = a2 ** b2m
+        assert_equal(test, ctrl)
+        assert_equal(test.mask, b2m.mask)
+
+        ctrl = array([[2 ** 2, 4 ** 4, 3 ** 3], [2 ** 2, 4 ** 4, 3 ** 3]],
+                     mask=[[0, 1, 0], [0, 1, 0]])
+        test = b1 ** b2m
+        assert_equal(test, ctrl)
+        assert_equal(test.mask, ctrl.mask)
+        test = b2m ** b1
+        assert_equal(test, ctrl)
+        assert_equal(test.mask, ctrl.mask)
+
+    @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+    def test_where(self):
+        # Test the where function
+        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
+        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
+        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
+        xm = masked_array(x, mask=m1)
+        ym = masked_array(y, mask=m2)
+        xm.set_fill_value(1e+20)
+
+        d = where(xm > 2, xm, -9)
+        assert_equal(d, [-9., -9., -9., -9., -9., 4.,
+                         -9., -9., 10., -9., -9., 3.])
+        assert_equal(d._mask, xm._mask)
+        d = where(xm > 2, -9, ym)
+        assert_equal(d, [5., 0., 3., 2., -1., -9.,
+                         -9., -10., -9., 1., 0., -9.])
+        assert_equal(d._mask, [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0])
+        d = where(xm > 2, xm, masked)
+        assert_equal(d, [-9., -9., -9., -9., -9., 4.,
+                         -9., -9., 10., -9., -9., 3.])
+        tmp = xm._mask.copy()
+        tmp[(xm <= 2).filled(True)] = True
+        assert_equal(d._mask, tmp)
+
+        with np.errstate(invalid="warn"):
+            # The fill value is 1e20, it cannot be converted to `int`:
+            with pytest.warns(RuntimeWarning, match="invalid value"):
+                ixm = xm.astype(int)
+        d = where(ixm > 2, ixm, masked)
+        assert_equal(d, [-9, -9, -9, -9, -9, 4, -9, -9, 10, -9, -9, 3])
+        assert_equal(d.dtype, ixm.dtype)
+
+    def test_where_object(self):
+        a = np.array(None)
+        b = masked_array(None)
+        r = b.copy()
+        assert_equal(np.ma.where(True, a, a), r)
+        assert_equal(np.ma.where(True, b, b), r)
+
+    def test_where_with_masked_choice(self):
+        x = arange(10)
+        x[3] = masked
+        c = x >= 8
+        # Set False to masked
+        z = where(c, x, masked)
+        assert_(z.dtype is x.dtype)
+        assert_(z[3] is masked)
+        assert_(z[4] is masked)
+        assert_(z[7] is masked)
+        assert_(z[8] is not masked)
+        assert_(z[9] is not masked)
+        assert_equal(x, z)
+        # Set True to masked
+        z = where(c, masked, x)
+        assert_(z.dtype is x.dtype)
+        assert_(z[3] is masked)
+        assert_(z[4] is not masked)
+        assert_(z[7] is not masked)
+        assert_(z[8] is masked)
+        assert_(z[9] is masked)
+
+    def test_where_with_masked_condition(self):
+        x = array([1., 2., 3., 4., 5.])
+        c = array([1, 1, 1, 0, 0])
+        x[2] = masked
+        z = where(c, x, -x)
+        assert_equal(z, [1., 2., 0., -4., -5])
+        c[0] = masked
+        z = where(c, x, -x)
+        assert_equal(z, [1., 2., 0., -4., -5])
+        assert_(z[0] is masked)
+        assert_(z[1] is not masked)
+        assert_(z[2] is masked)
+
+        x = arange(1, 6)
+        x[-1] = masked
+        y = arange(1, 6) * 10
+        y[2] = masked
+        c = array([1, 1, 1, 0, 0], mask=[1, 0, 0, 0, 0])
+        cm = c.filled(1)
+        z = where(c, x, y)
+        zm = where(cm, x, y)
+        assert_equal(z, zm)
+        assert_(getmask(zm) is nomask)
+        assert_equal(zm, [1, 2, 3, 40, 50])
+        z = where(c, masked, 1)
+        assert_equal(z, [99, 99, 99, 1, 1])
+        z = where(c, 1, masked)
+        assert_equal(z, [99, 1, 1, 99, 99])
+
+    def test_where_type(self):
+        # Test the type conservation with where
+        x = np.arange(4, dtype=np.int32)
+        y = np.arange(4, dtype=np.float32) * 2.2
+        test = where(x > 1.5, y, x).dtype
+        control = np.result_type(np.int32, np.float32)
+        assert_equal(test, control)
+
+    def test_where_broadcast(self):
+        # Issue 8599
+        x = np.arange(9).reshape(3, 3)
+        y = np.zeros(3)
+        core = np.where([1, 0, 1], x, y)
+        ma = where([1, 0, 1], x, y)
+
+        assert_equal(core, ma)
+        assert_equal(core.dtype, ma.dtype)
+
+    def test_where_structured(self):
+        # Issue 8600
+        dt = np.dtype([('a', int), ('b', int)])
+        x = np.array([(1, 2), (3, 4), (5, 6)], dtype=dt)
+        y = np.array((10, 20), dtype=dt)
+        core = np.where([0, 1, 1], x, y)
+        ma = np.where([0, 1, 1], x, y)
+
+        assert_equal(core, ma)
+        assert_equal(core.dtype, ma.dtype)
+
+    def test_where_structured_masked(self):
+        dt = np.dtype([('a', int), ('b', int)])
+        x = np.array([(1, 2), (3, 4), (5, 6)], dtype=dt)
+
+        ma = where([0, 1, 1], x, masked)
+        expected = masked_where([1, 0, 0], x)
+
+        assert_equal(ma.dtype, expected.dtype)
+        assert_equal(ma, expected)
+        assert_equal(ma.mask, expected.mask)
+
+    def test_masked_invalid_error(self):
+        a = np.arange(5, dtype=object)
+        a[3] = np.PINF
+        a[2] = np.NaN
+        with pytest.raises(TypeError,
+                           match="not supported for the input types"):
+            np.ma.masked_invalid(a)
+
+    def test_masked_invalid_pandas(self):
+        # getdata() used to be bad for pandas series due to its _data
+        # attribute.  This test is a regression test mainly and may be
+        # removed if getdata() is adjusted.
+        class Series():
+            _data = "nonsense"
+
+            def __array__(self):
+                return np.array([5, np.nan, np.inf])
+
+        arr = np.ma.masked_invalid(Series())
+        assert_array_equal(arr._data, np.array(Series()))
+        assert_array_equal(arr._mask, [False, True, True])
+
+    @pytest.mark.parametrize("copy", [True, False])
+    def test_masked_invalid_full_mask(self, copy):
+        # Matplotlib relied on masked_invalid always returning a full mask
+        # (Also astropy projects, but were ok with it gh-22720 and gh-22842)
+        a = np.ma.array([1, 2, 3, 4])
+        assert a._mask is nomask
+        res = np.ma.masked_invalid(a, copy=copy)
+        assert res.mask is not nomask
+        # mask of a should not be mutated
+        assert a.mask is nomask
+        assert np.may_share_memory(a._data, res._data) != copy
+
+    def test_choose(self):
+        # Test choose
+        choices = [[0, 1, 2, 3], [10, 11, 12, 13],
+                   [20, 21, 22, 23], [30, 31, 32, 33]]
+        chosen = choose([2, 3, 1, 0], choices)
+        assert_equal(chosen, array([20, 31, 12, 3]))
+        chosen = choose([2, 4, 1, 0], choices, mode='clip')
+        assert_equal(chosen, array([20, 31, 12, 3]))
+        chosen = choose([2, 4, 1, 0], choices, mode='wrap')
+        assert_equal(chosen, array([20, 1, 12, 3]))
+        # Check with some masked indices
+        indices_ = array([2, 4, 1, 0], mask=[1, 0, 0, 1])
+        chosen = choose(indices_, choices, mode='wrap')
+        assert_equal(chosen, array([99, 1, 12, 99]))
+        assert_equal(chosen.mask, [1, 0, 0, 1])
+        # Check with some masked choices
+        choices = array(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1],
+                                       [1, 0, 0, 0], [0, 0, 0, 0]])
+        indices_ = [2, 3, 1, 0]
+        chosen = choose(indices_, choices, mode='wrap')
+        assert_equal(chosen, array([20, 31, 12, 3]))
+        assert_equal(chosen.mask, [1, 0, 0, 1])
+
+    def test_choose_with_out(self):
+        # Test choose with an explicit out keyword
+        choices = [[0, 1, 2, 3], [10, 11, 12, 13],
+                   [20, 21, 22, 23], [30, 31, 32, 33]]
+        store = empty(4, dtype=int)
+        chosen = choose([2, 3, 1, 0], choices, out=store)
+        assert_equal(store, array([20, 31, 12, 3]))
+        assert_(store is chosen)
+        # Check with some masked indices + out
+        store = empty(4, dtype=int)
+        indices_ = array([2, 3, 1, 0], mask=[1, 0, 0, 1])
+        chosen = choose(indices_, choices, mode='wrap', out=store)
+        assert_equal(store, array([99, 31, 12, 99]))
+        assert_equal(store.mask, [1, 0, 0, 1])
+        # Check with some masked choices + out ina ndarray !
+        choices = array(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1],
+                                       [1, 0, 0, 0], [0, 0, 0, 0]])
+        indices_ = [2, 3, 1, 0]
+        store = empty(4, dtype=int).view(ndarray)
+        chosen = choose(indices_, choices, mode='wrap', out=store)
+        assert_equal(store, array([999999, 31, 12, 999999]))
+
+    def test_reshape(self):
+        a = arange(10)
+        a[0] = masked
+        # Try the default
+        b = a.reshape((5, 2))
+        assert_equal(b.shape, (5, 2))
+        assert_(b.flags['C'])
+        # Try w/ arguments as list instead of tuple
+        b = a.reshape(5, 2)
+        assert_equal(b.shape, (5, 2))
+        assert_(b.flags['C'])
+        # Try w/ order
+        b = a.reshape((5, 2), order='F')
+        assert_equal(b.shape, (5, 2))
+        assert_(b.flags['F'])
+        # Try w/ order
+        b = a.reshape(5, 2, order='F')
+        assert_equal(b.shape, (5, 2))
+        assert_(b.flags['F'])
+
+        c = np.reshape(a, (2, 5))
+        assert_(isinstance(c, MaskedArray))
+        assert_equal(c.shape, (2, 5))
+        assert_(c[0, 0] is masked)
+        assert_(c.flags['C'])
+
+    def test_make_mask_descr(self):
+        # Flexible
+        ntype = [('a', float), ('b', float)]
+        test = make_mask_descr(ntype)
+        assert_equal(test, [('a', bool), ('b', bool)])
+        assert_(test is make_mask_descr(test))
+
+        # Standard w/ shape
+        ntype = (float, 2)
+        test = make_mask_descr(ntype)
+        assert_equal(test, (bool, 2))
+        assert_(test is make_mask_descr(test))
+
+        # Standard standard
+        ntype = float
+        test = make_mask_descr(ntype)
+        assert_equal(test, np.dtype(bool))
+        assert_(test is make_mask_descr(test))
+
+        # Nested
+        ntype = [('a', float), ('b', [('ba', float), ('bb', float)])]
+        test = make_mask_descr(ntype)
+        control = np.dtype([('a', 'b1'), ('b', [('ba', 'b1'), ('bb', 'b1')])])
+        assert_equal(test, control)
+        assert_(test is make_mask_descr(test))
+
+        # Named+ shape
+        ntype = [('a', (float, 2))]
+        test = make_mask_descr(ntype)
+        assert_equal(test, np.dtype([('a', (bool, 2))]))
+        assert_(test is make_mask_descr(test))
+
+        # 2 names
+        ntype = [(('A', 'a'), float)]
+        test = make_mask_descr(ntype)
+        assert_equal(test, np.dtype([(('A', 'a'), bool)]))
+        assert_(test is make_mask_descr(test))
+
+        # nested boolean types should preserve identity
+        base_type = np.dtype([('a', int, 3)])
+        base_mtype = make_mask_descr(base_type)
+        sub_type = np.dtype([('a', int), ('b', base_mtype)])
+        test = make_mask_descr(sub_type)
+        assert_equal(test, np.dtype([('a', bool), ('b', [('a', bool, 3)])]))
+        assert_(test.fields['b'][0] is base_mtype)
+
+    def test_make_mask(self):
+        # Test make_mask
+        # w/ a list as an input
+        mask = [0, 1]
+        test = make_mask(mask)
+        assert_equal(test.dtype, MaskType)
+        assert_equal(test, [0, 1])
+        # w/ a ndarray as an input
+        mask = np.array([0, 1], dtype=bool)
+        test = make_mask(mask)
+        assert_equal(test.dtype, MaskType)
+        assert_equal(test, [0, 1])
+        # w/ a flexible-type ndarray as an input - use default
+        mdtype = [('a', bool), ('b', bool)]
+        mask = np.array([(0, 0), (0, 1)], dtype=mdtype)
+        test = make_mask(mask)
+        assert_equal(test.dtype, MaskType)
+        assert_equal(test, [1, 1])
+        # w/ a flexible-type ndarray as an input - use input dtype
+        mdtype = [('a', bool), ('b', bool)]
+        mask = np.array([(0, 0), (0, 1)], dtype=mdtype)
+        test = make_mask(mask, dtype=mask.dtype)
+        assert_equal(test.dtype, mdtype)
+        assert_equal(test, mask)
+        # w/ a flexible-type ndarray as an input - use input dtype
+        mdtype = [('a', float), ('b', float)]
+        bdtype = [('a', bool), ('b', bool)]
+        mask = np.array([(0, 0), (0, 1)], dtype=mdtype)
+        test = make_mask(mask, dtype=mask.dtype)
+        assert_equal(test.dtype, bdtype)
+        assert_equal(test, np.array([(0, 0), (0, 1)], dtype=bdtype))
+        # Ensure this also works for void
+        mask = np.array((False, True), dtype='?,?')[()]
+        assert_(isinstance(mask, np.void))
+        test = make_mask(mask, dtype=mask.dtype)
+        assert_equal(test, mask)
+        assert_(test is not mask)
+        mask = np.array((0, 1), dtype='i4,i4')[()]
+        test2 = make_mask(mask, dtype=mask.dtype)
+        assert_equal(test2, test)
+        # test that nomask is returned when m is nomask.
+        bools = [True, False]
+        dtypes = [MaskType, float]
+        msgformat = 'copy=%s, shrink=%s, dtype=%s'
+        for cpy, shr, dt in itertools.product(bools, bools, dtypes):
+            res = make_mask(nomask, copy=cpy, shrink=shr, dtype=dt)
+            assert_(res is nomask, msgformat % (cpy, shr, dt))
+
+    def test_mask_or(self):
+        # Initialize
+        mtype = [('a', bool), ('b', bool)]
+        mask = np.array([(0, 0), (0, 1), (1, 0), (0, 0)], dtype=mtype)
+        # Test using nomask as input
+        test = mask_or(mask, nomask)
+        assert_equal(test, mask)
+        test = mask_or(nomask, mask)
+        assert_equal(test, mask)
+        # Using False as input
+        test = mask_or(mask, False)
+        assert_equal(test, mask)
+        # Using another array w / the same dtype
+        other = np.array([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=mtype)
+        test = mask_or(mask, other)
+        control = np.array([(0, 1), (0, 1), (1, 1), (0, 1)], dtype=mtype)
+        assert_equal(test, control)
+        # Using another array w / a different dtype
+        othertype = [('A', bool), ('B', bool)]
+        other = np.array([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=othertype)
+        try:
+            test = mask_or(mask, other)
+        except ValueError:
+            pass
+        # Using nested arrays
+        dtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])]
+        amask = np.array([(0, (1, 0)), (0, (1, 0))], dtype=dtype)
+        bmask = np.array([(1, (0, 1)), (0, (0, 0))], dtype=dtype)
+        cntrl = np.array([(1, (1, 1)), (0, (1, 0))], dtype=dtype)
+        assert_equal(mask_or(amask, bmask), cntrl)
+
+    def test_flatten_mask(self):
+        # Tests flatten mask
+        # Standard dtype
+        mask = np.array([0, 0, 1], dtype=bool)
+        assert_equal(flatten_mask(mask), mask)
+        # Flexible dtype
+        mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)])
+        test = flatten_mask(mask)
+        control = np.array([0, 0, 0, 1], dtype=bool)
+        assert_equal(test, control)
+
+        mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])]
+        data = [(0, (0, 0)), (0, (0, 1))]
+        mask = np.array(data, dtype=mdtype)
+        test = flatten_mask(mask)
+        control = np.array([0, 0, 0, 0, 0, 1], dtype=bool)
+        assert_equal(test, control)
+
+    def test_on_ndarray(self):
+        # Test functions on ndarrays
+        a = np.array([1, 2, 3, 4])
+        m = array(a, mask=False)
+        test = anom(a)
+        assert_equal(test, m.anom())
+        test = reshape(a, (2, 2))
+        assert_equal(test, m.reshape(2, 2))
+
+    def test_compress(self):
+        # Test compress function on ndarray and masked array
+        # Address Github #2495.
+        arr = np.arange(8)
+        arr.shape = 4, 2
+        cond = np.array([True, False, True, True])
+        control = arr[[0, 2, 3]]
+        test = np.ma.compress(cond, arr, axis=0)
+        assert_equal(test, control)
+        marr = np.ma.array(arr)
+        test = np.ma.compress(cond, marr, axis=0)
+        assert_equal(test, control)
+
+    def test_compressed(self):
+        # Test ma.compressed function.
+        # Address gh-4026
+        a = np.ma.array([1, 2])
+        test = np.ma.compressed(a)
+        assert_(type(test) is np.ndarray)
+
+        # Test case when input data is ndarray subclass
+        class A(np.ndarray):
+            pass
+
+        a = np.ma.array(A(shape=0))
+        test = np.ma.compressed(a)
+        assert_(type(test) is A)
+
+        # Test that compress flattens
+        test = np.ma.compressed([[1],[2]])
+        assert_equal(test.ndim, 1)
+        test = np.ma.compressed([[[[[1]]]]])
+        assert_equal(test.ndim, 1)
+
+        # Test case when input is MaskedArray subclass
+        class M(MaskedArray):
+            pass
+
+        test = np.ma.compressed(M([[[]], [[]]]))
+        assert_equal(test.ndim, 1)
+
+        # with .compressed() overridden
+        class M(MaskedArray):
+            def compressed(self):
+                return 42
+
+        test = np.ma.compressed(M([[[]], [[]]]))
+        assert_equal(test, 42)
+
+    def test_convolve(self):
+        a = masked_equal(np.arange(5), 2)
+        b = np.array([1, 1])
+        test = np.ma.convolve(a, b)
+        assert_equal(test, masked_equal([0, 1, -1, -1, 7, 4], -1))
+
+        test = np.ma.convolve(a, b, propagate_mask=False)
+        assert_equal(test, masked_equal([0, 1, 1, 3, 7, 4], -1))
+
+        test = np.ma.convolve([1, 1], [1, 1, 1])
+        assert_equal(test, masked_equal([1, 2, 2, 1], -1))
+
+        a = [1, 1]
+        b = masked_equal([1, -1, -1, 1], -1)
+        test = np.ma.convolve(a, b, propagate_mask=False)
+        assert_equal(test, masked_equal([1, 1, -1, 1, 1], -1))
+        test = np.ma.convolve(a, b, propagate_mask=True)
+        assert_equal(test, masked_equal([-1, -1, -1, -1, -1], -1))
+
+
+class TestMaskedFields:
+
+    def setup_method(self):
+        ilist = [1, 2, 3, 4, 5]
+        flist = [1.1, 2.2, 3.3, 4.4, 5.5]
+        slist = ['one', 'two', 'three', 'four', 'five']
+        ddtype = [('a', int), ('b', float), ('c', '|S8')]
+        mdtype = [('a', bool), ('b', bool), ('c', bool)]
+        mask = [0, 1, 0, 0, 1]
+        base = array(list(zip(ilist, flist, slist)), mask=mask, dtype=ddtype)
+        self.data = dict(base=base, mask=mask, ddtype=ddtype, mdtype=mdtype)
+
+    def test_set_records_masks(self):
+        base = self.data['base']
+        mdtype = self.data['mdtype']
+        # Set w/ nomask or masked
+        base.mask = nomask
+        assert_equal_records(base._mask, np.zeros(base.shape, dtype=mdtype))
+        base.mask = masked
+        assert_equal_records(base._mask, np.ones(base.shape, dtype=mdtype))
+        # Set w/ simple boolean
+        base.mask = False
+        assert_equal_records(base._mask, np.zeros(base.shape, dtype=mdtype))
+        base.mask = True
+        assert_equal_records(base._mask, np.ones(base.shape, dtype=mdtype))
+        # Set w/ list
+        base.mask = [0, 0, 0, 1, 1]
+        assert_equal_records(base._mask,
+                             np.array([(x, x, x) for x in [0, 0, 0, 1, 1]],
+                                      dtype=mdtype))
+
+    def test_set_record_element(self):
+        # Check setting an element of a record)
+        base = self.data['base']
+        (base_a, base_b, base_c) = (base['a'], base['b'], base['c'])
+        base[0] = (pi, pi, 'pi')
+
+        assert_equal(base_a.dtype, int)
+        assert_equal(base_a._data, [3, 2, 3, 4, 5])
+
+        assert_equal(base_b.dtype, float)
+        assert_equal(base_b._data, [pi, 2.2, 3.3, 4.4, 5.5])
+
+        assert_equal(base_c.dtype, '|S8')
+        assert_equal(base_c._data,
+                     [b'pi', b'two', b'three', b'four', b'five'])
+
+    def test_set_record_slice(self):
+        base = self.data['base']
+        (base_a, base_b, base_c) = (base['a'], base['b'], base['c'])
+        base[:3] = (pi, pi, 'pi')
+
+        assert_equal(base_a.dtype, int)
+        assert_equal(base_a._data, [3, 3, 3, 4, 5])
+
+        assert_equal(base_b.dtype, float)
+        assert_equal(base_b._data, [pi, pi, pi, 4.4, 5.5])
+
+        assert_equal(base_c.dtype, '|S8')
+        assert_equal(base_c._data,
+                     [b'pi', b'pi', b'pi', b'four', b'five'])
+
+    def test_mask_element(self):
+        "Check record access"
+        base = self.data['base']
+        base[0] = masked
+
+        for n in ('a', 'b', 'c'):
+            assert_equal(base[n].mask, [1, 1, 0, 0, 1])
+            assert_equal(base[n]._data, base._data[n])
+
+    def test_getmaskarray(self):
+        # Test getmaskarray on flexible dtype
+        ndtype = [('a', int), ('b', float)]
+        test = empty(3, dtype=ndtype)
+        assert_equal(getmaskarray(test),
+                     np.array([(0, 0), (0, 0), (0, 0)],
+                              dtype=[('a', '|b1'), ('b', '|b1')]))
+        test[:] = masked
+        assert_equal(getmaskarray(test),
+                     np.array([(1, 1), (1, 1), (1, 1)],
+                              dtype=[('a', '|b1'), ('b', '|b1')]))
+
+    def test_view(self):
+        # Test view w/ flexible dtype
+        iterator = list(zip(np.arange(10), np.random.rand(10)))
+        data = np.array(iterator)
+        a = array(iterator, dtype=[('a', float), ('b', float)])
+        a.mask[0] = (1, 0)
+        controlmask = np.array([1] + 19 * [0], dtype=bool)
+        # Transform globally to simple dtype
+        test = a.view(float)
+        assert_equal(test, data.ravel())
+        assert_equal(test.mask, controlmask)
+        # Transform globally to dty
+        test = a.view((float, 2))
+        assert_equal(test, data)
+        assert_equal(test.mask, controlmask.reshape(-1, 2))
+
+    def test_getitem(self):
+        ndtype = [('a', float), ('b', float)]
+        a = array(list(zip(np.random.rand(10), np.arange(10))), dtype=ndtype)
+        a.mask = np.array(list(zip([0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
+                                   [1, 0, 0, 0, 0, 0, 0, 0, 1, 0])),
+                          dtype=[('a', bool), ('b', bool)])
+
+        def _test_index(i):
+            assert_equal(type(a[i]), mvoid)
+            assert_equal_records(a[i]._data, a._data[i])
+            assert_equal_records(a[i]._mask, a._mask[i])
+
+            assert_equal(type(a[i, ...]), MaskedArray)
+            assert_equal_records(a[i,...]._data, a._data[i,...])
+            assert_equal_records(a[i,...]._mask, a._mask[i,...])
+
+        _test_index(1)   # No mask
+        _test_index(0)   # One element masked
+        _test_index(-2)  # All element masked
+
+    def test_setitem(self):
+        # Issue 4866: check that one can set individual items in [record][col]
+        # and [col][record] order
+        ndtype = np.dtype([('a', float), ('b', int)])
+        ma = np.ma.MaskedArray([(1.0, 1), (2.0, 2)], dtype=ndtype)
+        ma['a'][1] = 3.0
+        assert_equal(ma['a'], np.array([1.0, 3.0]))
+        ma[1]['a'] = 4.0
+        assert_equal(ma['a'], np.array([1.0, 4.0]))
+        # Issue 2403
+        mdtype = np.dtype([('a', bool), ('b', bool)])
+        # soft mask
+        control = np.array([(False, True), (True, True)], dtype=mdtype)
+        a = np.ma.masked_all((2,), dtype=ndtype)
+        a['a'][0] = 2
+        assert_equal(a.mask, control)
+        a = np.ma.masked_all((2,), dtype=ndtype)
+        a[0]['a'] = 2
+        assert_equal(a.mask, control)
+        # hard mask
+        control = np.array([(True, True), (True, True)], dtype=mdtype)
+        a = np.ma.masked_all((2,), dtype=ndtype)
+        a.harden_mask()
+        a['a'][0] = 2
+        assert_equal(a.mask, control)
+        a = np.ma.masked_all((2,), dtype=ndtype)
+        a.harden_mask()
+        a[0]['a'] = 2
+        assert_equal(a.mask, control)
+
+    def test_setitem_scalar(self):
+        # 8510
+        mask_0d = np.ma.masked_array(1, mask=True)
+        arr = np.ma.arange(3)
+        arr[0] = mask_0d
+        assert_array_equal(arr.mask, [True, False, False])
+
+    def test_element_len(self):
+        # check that len() works for mvoid (Github issue #576)
+        for rec in self.data['base']:
+            assert_equal(len(rec), len(self.data['ddtype']))
+
+
+class TestMaskedObjectArray:
+
+    def test_getitem(self):
+        arr = np.ma.array([None, None])
+        for dt in [float, object]:
+            a0 = np.eye(2).astype(dt)
+            a1 = np.eye(3).astype(dt)
+            arr[0] = a0
+            arr[1] = a1
+
+            assert_(arr[0] is a0)
+            assert_(arr[1] is a1)
+            assert_(isinstance(arr[0,...], MaskedArray))
+            assert_(isinstance(arr[1,...], MaskedArray))
+            assert_(arr[0,...][()] is a0)
+            assert_(arr[1,...][()] is a1)
+
+            arr[0] = np.ma.masked
+
+            assert_(arr[1] is a1)
+            assert_(isinstance(arr[0,...], MaskedArray))
+            assert_(isinstance(arr[1,...], MaskedArray))
+            assert_equal(arr[0,...].mask, True)
+            assert_(arr[1,...][()] is a1)
+
+            # gh-5962 - object arrays of arrays do something special
+            assert_equal(arr[0].data, a0)
+            assert_equal(arr[0].mask, True)
+            assert_equal(arr[0,...][()].data, a0)
+            assert_equal(arr[0,...][()].mask, True)
+
+    def test_nested_ma(self):
+
+        arr = np.ma.array([None, None])
+        # set the first object to be an unmasked masked constant. A little fiddly
+        arr[0,...] = np.array([np.ma.masked], object)[0,...]
+
+        # check the above line did what we were aiming for
+        assert_(arr.data[0] is np.ma.masked)
+
+        # test that getitem returned the value by identity
+        assert_(arr[0] is np.ma.masked)
+
+        # now mask the masked value!
+        arr[0] = np.ma.masked
+        assert_(arr[0] is np.ma.masked)
+
+
+class TestMaskedView:
+
+    def setup_method(self):
+        iterator = list(zip(np.arange(10), np.random.rand(10)))
+        data = np.array(iterator)
+        a = array(iterator, dtype=[('a', float), ('b', float)])
+        a.mask[0] = (1, 0)
+        controlmask = np.array([1] + 19 * [0], dtype=bool)
+        self.data = (data, a, controlmask)
+
+    def test_view_to_nothing(self):
+        (data, a, controlmask) = self.data
+        test = a.view()
+        assert_(isinstance(test, MaskedArray))
+        assert_equal(test._data, a._data)
+        assert_equal(test._mask, a._mask)
+
+    def test_view_to_type(self):
+        (data, a, controlmask) = self.data
+        test = a.view(np.ndarray)
+        assert_(not isinstance(test, MaskedArray))
+        assert_equal(test, a._data)
+        assert_equal_records(test, data.view(a.dtype).squeeze())
+
+    def test_view_to_simple_dtype(self):
+        (data, a, controlmask) = self.data
+        # View globally
+        test = a.view(float)
+        assert_(isinstance(test, MaskedArray))
+        assert_equal(test, data.ravel())
+        assert_equal(test.mask, controlmask)
+
+    def test_view_to_flexible_dtype(self):
+        (data, a, controlmask) = self.data
+
+        test = a.view([('A', float), ('B', float)])
+        assert_equal(test.mask.dtype.names, ('A', 'B'))
+        assert_equal(test['A'], a['a'])
+        assert_equal(test['B'], a['b'])
+
+        test = a[0].view([('A', float), ('B', float)])
+        assert_(isinstance(test, MaskedArray))
+        assert_equal(test.mask.dtype.names, ('A', 'B'))
+        assert_equal(test['A'], a['a'][0])
+        assert_equal(test['B'], a['b'][0])
+
+        test = a[-1].view([('A', float), ('B', float)])
+        assert_(isinstance(test, MaskedArray))
+        assert_equal(test.dtype.names, ('A', 'B'))
+        assert_equal(test['A'], a['a'][-1])
+        assert_equal(test['B'], a['b'][-1])
+
+    def test_view_to_subdtype(self):
+        (data, a, controlmask) = self.data
+        # View globally
+        test = a.view((float, 2))
+        assert_(isinstance(test, MaskedArray))
+        assert_equal(test, data)
+        assert_equal(test.mask, controlmask.reshape(-1, 2))
+        # View on 1 masked element
+        test = a[0].view((float, 2))
+        assert_(isinstance(test, MaskedArray))
+        assert_equal(test, data[0])
+        assert_equal(test.mask, (1, 0))
+        # View on 1 unmasked element
+        test = a[-1].view((float, 2))
+        assert_(isinstance(test, MaskedArray))
+        assert_equal(test, data[-1])
+
+    def test_view_to_dtype_and_type(self):
+        (data, a, controlmask) = self.data
+
+        test = a.view((float, 2), np.recarray)
+        assert_equal(test, data)
+        assert_(isinstance(test, np.recarray))
+        assert_(not isinstance(test, MaskedArray))
+
+
+class TestOptionalArgs:
+    def test_ndarrayfuncs(self):
+        # test axis arg behaves the same as ndarray (including multiple axes)
+
+        d = np.arange(24.0).reshape((2,3,4))
+        m = np.zeros(24, dtype=bool).reshape((2,3,4))
+        # mask out last element of last dimension
+        m[:,:,-1] = True
+        a = np.ma.array(d, mask=m)
+
+        def testaxis(f, a, d):
+            numpy_f = numpy.__getattribute__(f)
+            ma_f = np.ma.__getattribute__(f)
+
+            # test axis arg
+            assert_equal(ma_f(a, axis=1)[...,:-1], numpy_f(d[...,:-1], axis=1))
+            assert_equal(ma_f(a, axis=(0,1))[...,:-1],
+                         numpy_f(d[...,:-1], axis=(0,1)))
+
+        def testkeepdims(f, a, d):
+            numpy_f = numpy.__getattribute__(f)
+            ma_f = np.ma.__getattribute__(f)
+
+            # test keepdims arg
+            assert_equal(ma_f(a, keepdims=True).shape,
+                         numpy_f(d, keepdims=True).shape)
+            assert_equal(ma_f(a, keepdims=False).shape,
+                         numpy_f(d, keepdims=False).shape)
+
+            # test both at once
+            assert_equal(ma_f(a, axis=1, keepdims=True)[...,:-1],
+                         numpy_f(d[...,:-1], axis=1, keepdims=True))
+            assert_equal(ma_f(a, axis=(0,1), keepdims=True)[...,:-1],
+                         numpy_f(d[...,:-1], axis=(0,1), keepdims=True))
+
+        for f in ['sum', 'prod', 'mean', 'var', 'std']:
+            testaxis(f, a, d)
+            testkeepdims(f, a, d)
+
+        for f in ['min', 'max']:
+            testaxis(f, a, d)
+
+        d = (np.arange(24).reshape((2,3,4))%2 == 0)
+        a = np.ma.array(d, mask=m)
+        for f in ['all', 'any']:
+            testaxis(f, a, d)
+            testkeepdims(f, a, d)
+
+    def test_count(self):
+        # test np.ma.count specially
+
+        d = np.arange(24.0).reshape((2,3,4))
+        m = np.zeros(24, dtype=bool).reshape((2,3,4))
+        m[:,0,:] = True
+        a = np.ma.array(d, mask=m)
+
+        assert_equal(count(a), 16)
+        assert_equal(count(a, axis=1), 2*ones((2,4)))
+        assert_equal(count(a, axis=(0,1)), 4*ones((4,)))
+        assert_equal(count(a, keepdims=True), 16*ones((1,1,1)))
+        assert_equal(count(a, axis=1, keepdims=True), 2*ones((2,1,4)))
+        assert_equal(count(a, axis=(0,1), keepdims=True), 4*ones((1,1,4)))
+        assert_equal(count(a, axis=-2), 2*ones((2,4)))
+        assert_raises(ValueError, count, a, axis=(1,1))
+        assert_raises(np.AxisError, count, a, axis=3)
+
+        # check the 'nomask' path
+        a = np.ma.array(d, mask=nomask)
+
+        assert_equal(count(a), 24)
+        assert_equal(count(a, axis=1), 3*ones((2,4)))
+        assert_equal(count(a, axis=(0,1)), 6*ones((4,)))
+        assert_equal(count(a, keepdims=True), 24*ones((1,1,1)))
+        assert_equal(np.ndim(count(a, keepdims=True)), 3)
+        assert_equal(count(a, axis=1, keepdims=True), 3*ones((2,1,4)))
+        assert_equal(count(a, axis=(0,1), keepdims=True), 6*ones((1,1,4)))
+        assert_equal(count(a, axis=-2), 3*ones((2,4)))
+        assert_raises(ValueError, count, a, axis=(1,1))
+        assert_raises(np.AxisError, count, a, axis=3)
+
+        # check the 'masked' singleton
+        assert_equal(count(np.ma.masked), 0)
+
+        # check 0-d arrays do not allow axis > 0
+        assert_raises(np.AxisError, count, np.ma.array(1), axis=1)
+
+
+class TestMaskedConstant:
+    def _do_add_test(self, add):
+        # sanity check
+        assert_(add(np.ma.masked, 1) is np.ma.masked)
+
+        # now try with a vector
+        vector = np.array([1, 2, 3])
+        result = add(np.ma.masked, vector)
+
+        # lots of things could go wrong here
+        assert_(result is not np.ma.masked)
+        assert_(not isinstance(result, np.ma.core.MaskedConstant))
+        assert_equal(result.shape, vector.shape)
+        assert_equal(np.ma.getmask(result), np.ones(vector.shape, dtype=bool))
+
+    def test_ufunc(self):
+        self._do_add_test(np.add)
+
+    def test_operator(self):
+        self._do_add_test(lambda a, b: a + b)
+
+    def test_ctor(self):
+        m = np.ma.array(np.ma.masked)
+
+        # most importantly, we do not want to create a new MaskedConstant
+        # instance
+        assert_(not isinstance(m, np.ma.core.MaskedConstant))
+        assert_(m is not np.ma.masked)
+
+    def test_repr(self):
+        # copies should not exist, but if they do, it should be obvious that
+        # something is wrong
+        assert_equal(repr(np.ma.masked), 'masked')
+
+        # create a new instance in a weird way
+        masked2 = np.ma.MaskedArray.__new__(np.ma.core.MaskedConstant)
+        assert_not_equal(repr(masked2), 'masked')
+
+    def test_pickle(self):
+        from io import BytesIO
+
+        for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+            with BytesIO() as f:
+                pickle.dump(np.ma.masked, f, protocol=proto)
+                f.seek(0)
+                res = pickle.load(f)
+            assert_(res is np.ma.masked)
+
+    def test_copy(self):
+        # gh-9328
+        # copy is a no-op, like it is with np.True_
+        assert_equal(
+            np.ma.masked.copy() is np.ma.masked,
+            np.True_.copy() is np.True_)
+
+    def test__copy(self):
+        import copy
+        assert_(
+            copy.copy(np.ma.masked) is np.ma.masked)
+
+    def test_deepcopy(self):
+        import copy
+        assert_(
+            copy.deepcopy(np.ma.masked) is np.ma.masked)
+
+    def test_immutable(self):
+        orig = np.ma.masked
+        assert_raises(np.ma.core.MaskError, operator.setitem, orig, (), 1)
+        assert_raises(ValueError,operator.setitem, orig.data, (), 1)
+        assert_raises(ValueError, operator.setitem, orig.mask, (), False)
+
+        view = np.ma.masked.view(np.ma.MaskedArray)
+        assert_raises(ValueError, operator.setitem, view, (), 1)
+        assert_raises(ValueError, operator.setitem, view.data, (), 1)
+        assert_raises(ValueError, operator.setitem, view.mask, (), False)
+
+    def test_coercion_int(self):
+        a_i = np.zeros((), int)
+        assert_raises(MaskError, operator.setitem, a_i, (), np.ma.masked)
+        assert_raises(MaskError, int, np.ma.masked)
+
+    def test_coercion_float(self):
+        a_f = np.zeros((), float)
+        assert_warns(UserWarning, operator.setitem, a_f, (), np.ma.masked)
+        assert_(np.isnan(a_f[()]))
+
+    @pytest.mark.xfail(reason="See gh-9750")
+    def test_coercion_unicode(self):
+        a_u = np.zeros((), 'U10')
+        a_u[()] = np.ma.masked
+        assert_equal(a_u[()], '--')
+
+    @pytest.mark.xfail(reason="See gh-9750")
+    def test_coercion_bytes(self):
+        a_b = np.zeros((), 'S10')
+        a_b[()] = np.ma.masked
+        assert_equal(a_b[()], b'--')
+
+    def test_subclass(self):
+        # https://github.com/astropy/astropy/issues/6645
+        class Sub(type(np.ma.masked)): pass
+
+        a = Sub()
+        assert_(a is Sub())
+        assert_(a is not np.ma.masked)
+        assert_not_equal(repr(a), 'masked')
+
+    def test_attributes_readonly(self):
+        assert_raises(AttributeError, setattr, np.ma.masked, 'shape', (1,))
+        assert_raises(AttributeError, setattr, np.ma.masked, 'dtype', np.int64)
+
+
+class TestMaskedWhereAliases:
+
+    # TODO: Test masked_object, masked_equal, ...
+
+    def test_masked_values(self):
+        res = masked_values(np.array([-32768.0]), np.int16(-32768))
+        assert_equal(res.mask, [True])
+
+        res = masked_values(np.inf, np.inf)
+        assert_equal(res.mask, True)
+
+        res = np.ma.masked_values(np.inf, -np.inf)
+        assert_equal(res.mask, False)
+
+        res = np.ma.masked_values([1, 2, 3, 4], 5, shrink=True)
+        assert_(res.mask is np.ma.nomask)
+
+        res = np.ma.masked_values([1, 2, 3, 4], 5, shrink=False)
+        assert_equal(res.mask, [False] * 4)
+
+
+def test_masked_array():
+    a = np.ma.array([0, 1, 2, 3], mask=[0, 0, 1, 0])
+    assert_equal(np.argwhere(a), [[1], [3]])
+
+def test_masked_array_no_copy():
+    # check nomask array is updated in place
+    a = np.ma.array([1, 2, 3, 4])
+    _ = np.ma.masked_where(a == 3, a, copy=False)
+    assert_array_equal(a.mask, [False, False, True, False])
+    # check masked array is updated in place
+    a = np.ma.array([1, 2, 3, 4], mask=[1, 0, 0, 0])
+    _ = np.ma.masked_where(a == 3, a, copy=False)
+    assert_array_equal(a.mask, [True, False, True, False])
+    # check masked array with masked_invalid is updated in place
+    a = np.ma.array([np.inf, 1, 2, 3, 4])
+    _ = np.ma.masked_invalid(a, copy=False)
+    assert_array_equal(a.mask, [True, False, False, False, False])
+
+def test_append_masked_array():
+    a = np.ma.masked_equal([1,2,3], value=2)
+    b = np.ma.masked_equal([4,3,2], value=2)
+
+    result = np.ma.append(a, b)
+    expected_data = [1, 2, 3, 4, 3, 2]
+    expected_mask = [False, True, False, False, False, True]
+    assert_array_equal(result.data, expected_data)
+    assert_array_equal(result.mask, expected_mask)
+
+    a = np.ma.masked_all((2,2))
+    b = np.ma.ones((3,1))
+
+    result = np.ma.append(a, b)
+    expected_data = [1] * 3
+    expected_mask = [True] * 4 + [False] * 3
+    assert_array_equal(result.data[-3], expected_data)
+    assert_array_equal(result.mask, expected_mask)
+
+    result = np.ma.append(a, b, axis=None)
+    assert_array_equal(result.data[-3], expected_data)
+    assert_array_equal(result.mask, expected_mask)
+
+
+def test_append_masked_array_along_axis():
+    a = np.ma.masked_equal([1,2,3], value=2)
+    b = np.ma.masked_values([[4, 5, 6], [7, 8, 9]], 7)
+
+    # When `axis` is specified, `values` must have the correct shape.
+    assert_raises(ValueError, np.ma.append, a, b, axis=0)
+
+    result = np.ma.append(a[np.newaxis,:], b, axis=0)
+    expected = np.ma.arange(1, 10)
+    expected[[1, 6]] = np.ma.masked
+    expected = expected.reshape((3,3))
+    assert_array_equal(result.data, expected.data)
+    assert_array_equal(result.mask, expected.mask)
+
+def test_default_fill_value_complex():
+    # regression test for Python 3, where 'unicode' was not defined
+    assert_(default_fill_value(1 + 1j) == 1.e20 + 0.0j)
+
+
+def test_ufunc_with_output():
+    # check that giving an output argument always returns that output.
+    # Regression test for gh-8416.
+    x = array([1., 2., 3.], mask=[0, 0, 1])
+    y = np.add(x, 1., out=x)
+    assert_(y is x)
+
+
+def test_ufunc_with_out_varied():
+    """ Test that masked arrays are immune to gh-10459 """
+    # the mask of the output should not affect the result, however it is passed
+    a        = array([ 1,  2,  3], mask=[1, 0, 0])
+    b        = array([10, 20, 30], mask=[1, 0, 0])
+    out      = array([ 0,  0,  0], mask=[0, 0, 1])
+    expected = array([11, 22, 33], mask=[1, 0, 0])
+
+    out_pos = out.copy()
+    res_pos = np.add(a, b, out_pos)
+
+    out_kw = out.copy()
+    res_kw = np.add(a, b, out=out_kw)
+
+    out_tup = out.copy()
+    res_tup = np.add(a, b, out=(out_tup,))
+
+    assert_equal(res_kw.mask,  expected.mask)
+    assert_equal(res_kw.data,  expected.data)
+    assert_equal(res_tup.mask, expected.mask)
+    assert_equal(res_tup.data, expected.data)
+    assert_equal(res_pos.mask, expected.mask)
+    assert_equal(res_pos.data, expected.data)
+
+
+def test_astype_mask_ordering():
+    descr = np.dtype([('v', int, 3), ('x', [('y', float)])])
+    x = array([
+        [([1, 2, 3], (1.0,)),  ([1, 2, 3], (2.0,))],
+        [([1, 2, 3], (3.0,)),  ([1, 2, 3], (4.0,))]], dtype=descr)
+    x[0]['v'][0] = np.ma.masked
+
+    x_a = x.astype(descr)
+    assert x_a.dtype.names == np.dtype(descr).names
+    assert x_a.mask.dtype.names == np.dtype(descr).names
+    assert_equal(x, x_a)
+
+    assert_(x is x.astype(x.dtype, copy=False))
+    assert_equal(type(x.astype(x.dtype, subok=False)), np.ndarray)
+
+    x_f = x.astype(x.dtype, order='F')
+    assert_(x_f.flags.f_contiguous)
+    assert_(x_f.mask.flags.f_contiguous)
+
+    # Also test the same indirectly, via np.array
+    x_a2 = np.array(x, dtype=descr, subok=True)
+    assert x_a2.dtype.names == np.dtype(descr).names
+    assert x_a2.mask.dtype.names == np.dtype(descr).names
+    assert_equal(x, x_a2)
+
+    assert_(x is np.array(x, dtype=descr, copy=False, subok=True))
+
+    x_f2 = np.array(x, dtype=x.dtype, order='F', subok=True)
+    assert_(x_f2.flags.f_contiguous)
+    assert_(x_f2.mask.flags.f_contiguous)
+
+
+@pytest.mark.parametrize('dt1', num_dts, ids=num_ids)
+@pytest.mark.parametrize('dt2', num_dts, ids=num_ids)
+@pytest.mark.filterwarnings('ignore::numpy.ComplexWarning')
+def test_astype_basic(dt1, dt2):
+    # See gh-12070
+    src = np.ma.array(ones(3, dt1), fill_value=1)
+    dst = src.astype(dt2)
+
+    assert_(src.fill_value == 1)
+    assert_(src.dtype == dt1)
+    assert_(src.fill_value.dtype == dt1)
+
+    assert_(dst.fill_value == 1)
+    assert_(dst.dtype == dt2)
+    assert_(dst.fill_value.dtype == dt2)
+
+    assert_equal(src, dst)
+
+
+def test_fieldless_void():
+    dt = np.dtype([])  # a void dtype with no fields
+    x = np.empty(4, dt)
+
+    # these arrays contain no values, so there's little to test - but this
+    # shouldn't crash
+    mx = np.ma.array(x)
+    assert_equal(mx.dtype, x.dtype)
+    assert_equal(mx.shape, x.shape)
+
+    mx = np.ma.array(x, mask=x)
+    assert_equal(mx.dtype, x.dtype)
+    assert_equal(mx.shape, x.shape)
+
+
+def test_mask_shape_assignment_does_not_break_masked():
+    a = np.ma.masked
+    b = np.ma.array(1, mask=a.mask)
+    b.shape = (1,)
+    assert_equal(a.mask.shape, ())
+
+@pytest.mark.skipif(sys.flags.optimize > 1,
+                    reason="no docstrings present to inspect when PYTHONOPTIMIZE/Py_OptimizeFlag > 1")
+def test_doc_note():
+    def method(self):
+        """This docstring
+
+        Has multiple lines
+
+        And notes
+
+        Notes
+        -----
+        original note
+        """
+        pass
+
+    expected_doc = """This docstring
+
+Has multiple lines
+
+And notes
+
+Notes
+-----
+note
+
+original note"""
+
+    assert_equal(np.ma.core.doc_note(method.__doc__, "note"), expected_doc)
+
+
+def test_gh_22556():
+    source = np.ma.array([0, [0, 1, 2]], dtype=object)
+    deepcopy = copy.deepcopy(source)
+    deepcopy[1].append('this should not appear in source')
+    assert len(source[1]) == 3
+
+
+def test_gh_21022():
+    # testing for absence of reported error
+    source = np.ma.masked_array(data=[-1, -1], mask=True, dtype=np.float64)
+    axis = np.array(0)
+    result = np.prod(source, axis=axis, keepdims=False)
+    result = np.ma.masked_array(result,
+                                mask=np.ones(result.shape, dtype=np.bool_))
+    array = np.ma.masked_array(data=-1, mask=True, dtype=np.float64)
+    copy.deepcopy(array)
+    copy.deepcopy(result)
+
+
+def test_deepcopy_2d_obj():
+    source = np.ma.array([[0, "dog"],
+                          [1, 1],
+                          [[1, 2], "cat"]],
+                        mask=[[0, 1],
+                              [0, 0],
+                              [0, 0]],
+                        dtype=object)
+    deepcopy = copy.deepcopy(source)
+    deepcopy[2, 0].extend(['this should not appear in source', 3])
+    assert len(source[2, 0]) == 2
+    assert len(deepcopy[2, 0]) == 4
+    assert_equal(deepcopy._mask, source._mask)
+    deepcopy._mask[0, 0] = 1
+    assert source._mask[0, 0] == 0
+
+
+def test_deepcopy_0d_obj():
+    source = np.ma.array(0, mask=[0], dtype=object)
+    deepcopy = copy.deepcopy(source)
+    deepcopy[...] = 17
+    assert_equal(source, 0)
+    assert_equal(deepcopy, 17)
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_deprecations.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_deprecations.py
new file mode 100644
index 00000000..40c8418f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_deprecations.py
@@ -0,0 +1,84 @@
+"""Test deprecation and future warnings.
+
+"""
+import pytest
+import numpy as np
+from numpy.testing import assert_warns
+from numpy.ma.testutils import assert_equal
+from numpy.ma.core import MaskedArrayFutureWarning
+import io
+import textwrap
+
+class TestArgsort:
+    """ gh-8701 """
+    def _test_base(self, argsort, cls):
+        arr_0d = np.array(1).view(cls)
+        argsort(arr_0d)
+
+        arr_1d = np.array([1, 2, 3]).view(cls)
+        argsort(arr_1d)
+
+        # argsort has a bad default for >1d arrays
+        arr_2d = np.array([[1, 2], [3, 4]]).view(cls)
+        result = assert_warns(
+            np.ma.core.MaskedArrayFutureWarning, argsort, arr_2d)
+        assert_equal(result, argsort(arr_2d, axis=None))
+
+        # should be no warnings for explicitly specifying it
+        argsort(arr_2d, axis=None)
+        argsort(arr_2d, axis=-1)
+
+    def test_function_ndarray(self):
+        return self._test_base(np.ma.argsort, np.ndarray)
+
+    def test_function_maskedarray(self):
+        return self._test_base(np.ma.argsort, np.ma.MaskedArray)
+
+    def test_method(self):
+        return self._test_base(np.ma.MaskedArray.argsort, np.ma.MaskedArray)
+
+
+class TestMinimumMaximum:
+
+    def test_axis_default(self):
+        # NumPy 1.13, 2017-05-06
+
+        data1d = np.ma.arange(6)
+        data2d = data1d.reshape(2, 3)
+
+        ma_min = np.ma.minimum.reduce
+        ma_max = np.ma.maximum.reduce
+
+        # check that the default axis is still None, but warns on 2d arrays
+        result = assert_warns(MaskedArrayFutureWarning, ma_max, data2d)
+        assert_equal(result, ma_max(data2d, axis=None))
+
+        result = assert_warns(MaskedArrayFutureWarning, ma_min, data2d)
+        assert_equal(result, ma_min(data2d, axis=None))
+
+        # no warnings on 1d, as both new and old defaults are equivalent
+        result = ma_min(data1d)
+        assert_equal(result, ma_min(data1d, axis=None))
+        assert_equal(result, ma_min(data1d, axis=0))
+
+        result = ma_max(data1d)
+        assert_equal(result, ma_max(data1d, axis=None))
+        assert_equal(result, ma_max(data1d, axis=0))
+
+
+class TestFromtextfile:
+    def test_fromtextfile_delimitor(self):
+        # NumPy 1.22.0, 2021-09-23
+
+        textfile = io.StringIO(textwrap.dedent(
+            """
+            A,B,C,D
+            'string 1';1;1.0;'mixed column'
+            'string 2';2;2.0;
+            'string 3';3;3.0;123
+            'string 4';4;4.0;3.14
+            """
+        ))
+
+        with pytest.warns(DeprecationWarning):
+            result = np.ma.mrecords.fromtextfile(textfile, delimitor=';')
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_extras.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_extras.py
new file mode 100644
index 00000000..d09a50fe
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_extras.py
@@ -0,0 +1,1870 @@
+# pylint: disable-msg=W0611, W0612, W0511
+"""Tests suite for MaskedArray.
+Adapted from the original test_ma by Pierre Gerard-Marchant
+
+:author: Pierre Gerard-Marchant
+:contact: pierregm_at_uga_dot_edu
+:version: $Id: test_extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $
+
+"""
+import warnings
+import itertools
+import pytest
+
+import numpy as np
+from numpy.core.numeric import normalize_axis_tuple
+from numpy.testing import (
+    assert_warns, suppress_warnings
+    )
+from numpy.ma.testutils import (
+    assert_, assert_array_equal, assert_equal, assert_almost_equal
+    )
+from numpy.ma.core import (
+    array, arange, masked, MaskedArray, masked_array, getmaskarray, shape,
+    nomask, ones, zeros, count
+    )
+from numpy.ma.extras import (
+    atleast_1d, atleast_2d, atleast_3d, mr_, dot, polyfit, cov, corrcoef,
+    median, average, unique, setxor1d, setdiff1d, union1d, intersect1d, in1d,
+    ediff1d, apply_over_axes, apply_along_axis, compress_nd, compress_rowcols,
+    mask_rowcols, clump_masked, clump_unmasked, flatnotmasked_contiguous,
+    notmasked_contiguous, notmasked_edges, masked_all, masked_all_like, isin,
+    diagflat, ndenumerate, stack, vstack
+    )
+
+
+class TestGeneric:
+    #
+    def test_masked_all(self):
+        # Tests masked_all
+        # Standard dtype
+        test = masked_all((2,), dtype=float)
+        control = array([1, 1], mask=[1, 1], dtype=float)
+        assert_equal(test, control)
+        # Flexible dtype
+        dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']})
+        test = masked_all((2,), dtype=dt)
+        control = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt)
+        assert_equal(test, control)
+        test = masked_all((2, 2), dtype=dt)
+        control = array([[(0, 0), (0, 0)], [(0, 0), (0, 0)]],
+                        mask=[[(1, 1), (1, 1)], [(1, 1), (1, 1)]],
+                        dtype=dt)
+        assert_equal(test, control)
+        # Nested dtype
+        dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])])
+        test = masked_all((2,), dtype=dt)
+        control = array([(1, (1, 1)), (1, (1, 1))],
+                        mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
+        assert_equal(test, control)
+        test = masked_all((2,), dtype=dt)
+        control = array([(1, (1, 1)), (1, (1, 1))],
+                        mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
+        assert_equal(test, control)
+        test = masked_all((1, 1), dtype=dt)
+        control = array([[(1, (1, 1))]], mask=[[(1, (1, 1))]], dtype=dt)
+        assert_equal(test, control)
+
+    def test_masked_all_with_object_nested(self):
+        # Test masked_all works with nested array with dtype of an 'object'
+        # refers to issue #15895
+        my_dtype = np.dtype([('b', ([('c', object)], (1,)))])
+        masked_arr = np.ma.masked_all((1,), my_dtype)
+
+        assert_equal(type(masked_arr['b']), np.ma.core.MaskedArray)
+        assert_equal(type(masked_arr['b']['c']), np.ma.core.MaskedArray)
+        assert_equal(len(masked_arr['b']['c']), 1)
+        assert_equal(masked_arr['b']['c'].shape, (1, 1))
+        assert_equal(masked_arr['b']['c']._fill_value.shape, ())
+
+    def test_masked_all_with_object(self):
+        # same as above except that the array is not nested
+        my_dtype = np.dtype([('b', (object, (1,)))])
+        masked_arr = np.ma.masked_all((1,), my_dtype)
+
+        assert_equal(type(masked_arr['b']), np.ma.core.MaskedArray)
+        assert_equal(len(masked_arr['b']), 1)
+        assert_equal(masked_arr['b'].shape, (1, 1))
+        assert_equal(masked_arr['b']._fill_value.shape, ())
+
+    def test_masked_all_like(self):
+        # Tests masked_all
+        # Standard dtype
+        base = array([1, 2], dtype=float)
+        test = masked_all_like(base)
+        control = array([1, 1], mask=[1, 1], dtype=float)
+        assert_equal(test, control)
+        # Flexible dtype
+        dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']})
+        base = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt)
+        test = masked_all_like(base)
+        control = array([(10, 10), (10, 10)], mask=[(1, 1), (1, 1)], dtype=dt)
+        assert_equal(test, control)
+        # Nested dtype
+        dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])])
+        control = array([(1, (1, 1)), (1, (1, 1))],
+                        mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
+        test = masked_all_like(control)
+        assert_equal(test, control)
+
+    def check_clump(self, f):
+        for i in range(1, 7):
+            for j in range(2**i):
+                k = np.arange(i, dtype=int)
+                ja = np.full(i, j, dtype=int)
+                a = masked_array(2**k)
+                a.mask = (ja & (2**k)) != 0
+                s = 0
+                for sl in f(a):
+                    s += a.data[sl].sum()
+                if f == clump_unmasked:
+                    assert_equal(a.compressed().sum(), s)
+                else:
+                    a.mask = ~a.mask
+                    assert_equal(a.compressed().sum(), s)
+
+    def test_clump_masked(self):
+        # Test clump_masked
+        a = masked_array(np.arange(10))
+        a[[0, 1, 2, 6, 8, 9]] = masked
+        #
+        test = clump_masked(a)
+        control = [slice(0, 3), slice(6, 7), slice(8, 10)]
+        assert_equal(test, control)
+
+        self.check_clump(clump_masked)
+
+    def test_clump_unmasked(self):
+        # Test clump_unmasked
+        a = masked_array(np.arange(10))
+        a[[0, 1, 2, 6, 8, 9]] = masked
+        test = clump_unmasked(a)
+        control = [slice(3, 6), slice(7, 8), ]
+        assert_equal(test, control)
+
+        self.check_clump(clump_unmasked)
+
+    def test_flatnotmasked_contiguous(self):
+        # Test flatnotmasked_contiguous
+        a = arange(10)
+        # No mask
+        test = flatnotmasked_contiguous(a)
+        assert_equal(test, [slice(0, a.size)])
+        # mask of all false
+        a.mask = np.zeros(10, dtype=bool)
+        assert_equal(test, [slice(0, a.size)])
+        # Some mask
+        a[(a < 3) | (a > 8) | (a == 5)] = masked
+        test = flatnotmasked_contiguous(a)
+        assert_equal(test, [slice(3, 5), slice(6, 9)])
+        #
+        a[:] = masked
+        test = flatnotmasked_contiguous(a)
+        assert_equal(test, [])
+
+
+class TestAverage:
+    # Several tests of average. Why so many ? Good point...
+    def test_testAverage1(self):
+        # Test of average.
+        ott = array([0., 1., 2., 3.], mask=[True, False, False, False])
+        assert_equal(2.0, average(ott, axis=0))
+        assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.]))
+        result, wts = average(ott, weights=[1., 1., 2., 1.], returned=True)
+        assert_equal(2.0, result)
+        assert_(wts == 4.0)
+        ott[:] = masked
+        assert_equal(average(ott, axis=0).mask, [True])
+        ott = array([0., 1., 2., 3.], mask=[True, False, False, False])
+        ott = ott.reshape(2, 2)
+        ott[:, 1] = masked
+        assert_equal(average(ott, axis=0), [2.0, 0.0])
+        assert_equal(average(ott, axis=1).mask[0], [True])
+        assert_equal([2., 0.], average(ott, axis=0))
+        result, wts = average(ott, axis=0, returned=True)
+        assert_equal(wts, [1., 0.])
+
+    def test_testAverage2(self):
+        # More tests of average.
+        w1 = [0, 1, 1, 1, 1, 0]
+        w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]]
+        x = arange(6, dtype=np.float_)
+        assert_equal(average(x, axis=0), 2.5)
+        assert_equal(average(x, axis=0, weights=w1), 2.5)
+        y = array([arange(6, dtype=np.float_), 2.0 * arange(6)])
+        assert_equal(average(y, None), np.add.reduce(np.arange(6)) * 3. / 12.)
+        assert_equal(average(y, axis=0), np.arange(6) * 3. / 2.)
+        assert_equal(average(y, axis=1),
+                     [average(x, axis=0), average(x, axis=0) * 2.0])
+        assert_equal(average(y, None, weights=w2), 20. / 6.)
+        assert_equal(average(y, axis=0, weights=w2),
+                     [0., 1., 2., 3., 4., 10.])
+        assert_equal(average(y, axis=1),
+                     [average(x, axis=0), average(x, axis=0) * 2.0])
+        m1 = zeros(6)
+        m2 = [0, 0, 1, 1, 0, 0]
+        m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]]
+        m4 = ones(6)
+        m5 = [0, 1, 1, 1, 1, 1]
+        assert_equal(average(masked_array(x, m1), axis=0), 2.5)
+        assert_equal(average(masked_array(x, m2), axis=0), 2.5)
+        assert_equal(average(masked_array(x, m4), axis=0).mask, [True])
+        assert_equal(average(masked_array(x, m5), axis=0), 0.0)
+        assert_equal(count(average(masked_array(x, m4), axis=0)), 0)
+        z = masked_array(y, m3)
+        assert_equal(average(z, None), 20. / 6.)
+        assert_equal(average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5])
+        assert_equal(average(z, axis=1), [2.5, 5.0])
+        assert_equal(average(z, axis=0, weights=w2),
+                     [0., 1., 99., 99., 4.0, 10.0])
+
+    def test_testAverage3(self):
+        # Yet more tests of average!
+        a = arange(6)
+        b = arange(6) * 3
+        r1, w1 = average([[a, b], [b, a]], axis=1, returned=True)
+        assert_equal(shape(r1), shape(w1))
+        assert_equal(r1.shape, w1.shape)
+        r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=True)
+        assert_equal(shape(w2), shape(r2))
+        r2, w2 = average(ones((2, 2, 3)), returned=True)
+        assert_equal(shape(w2), shape(r2))
+        r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=True)
+        assert_equal(shape(w2), shape(r2))
+        a2d = array([[1, 2], [0, 4]], float)
+        a2dm = masked_array(a2d, [[False, False], [True, False]])
+        a2da = average(a2d, axis=0)
+        assert_equal(a2da, [0.5, 3.0])
+        a2dma = average(a2dm, axis=0)
+        assert_equal(a2dma, [1.0, 3.0])
+        a2dma = average(a2dm, axis=None)
+        assert_equal(a2dma, 7. / 3.)
+        a2dma = average(a2dm, axis=1)
+        assert_equal(a2dma, [1.5, 4.0])
+
+    def test_testAverage4(self):
+        # Test that `keepdims` works with average
+        x = np.array([2, 3, 4]).reshape(3, 1)
+        b = np.ma.array(x, mask=[[False], [False], [True]])
+        w = np.array([4, 5, 6]).reshape(3, 1)
+        actual = average(b, weights=w, axis=1, keepdims=True)
+        desired = masked_array([[2.], [3.], [4.]], [[False], [False], [True]])
+        assert_equal(actual, desired)
+
+    def test_onintegers_with_mask(self):
+        # Test average on integers with mask
+        a = average(array([1, 2]))
+        assert_equal(a, 1.5)
+        a = average(array([1, 2, 3, 4], mask=[False, False, True, True]))
+        assert_equal(a, 1.5)
+
+    def test_complex(self):
+        # Test with complex data.
+        # (Regression test for https://github.com/numpy/numpy/issues/2684)
+        mask = np.array([[0, 0, 0, 1, 0],
+                         [0, 1, 0, 0, 0]], dtype=bool)
+        a = masked_array([[0, 1+2j, 3+4j, 5+6j, 7+8j],
+                          [9j, 0+1j, 2+3j, 4+5j, 7+7j]],
+                         mask=mask)
+
+        av = average(a)
+        expected = np.average(a.compressed())
+        assert_almost_equal(av.real, expected.real)
+        assert_almost_equal(av.imag, expected.imag)
+
+        av0 = average(a, axis=0)
+        expected0 = average(a.real, axis=0) + average(a.imag, axis=0)*1j
+        assert_almost_equal(av0.real, expected0.real)
+        assert_almost_equal(av0.imag, expected0.imag)
+
+        av1 = average(a, axis=1)
+        expected1 = average(a.real, axis=1) + average(a.imag, axis=1)*1j
+        assert_almost_equal(av1.real, expected1.real)
+        assert_almost_equal(av1.imag, expected1.imag)
+
+        # Test with the 'weights' argument.
+        wts = np.array([[0.5, 1.0, 2.0, 1.0, 0.5],
+                        [1.0, 1.0, 1.0, 1.0, 1.0]])
+        wav = average(a, weights=wts)
+        expected = np.average(a.compressed(), weights=wts[~mask])
+        assert_almost_equal(wav.real, expected.real)
+        assert_almost_equal(wav.imag, expected.imag)
+
+        wav0 = average(a, weights=wts, axis=0)
+        expected0 = (average(a.real, weights=wts, axis=0) +
+                     average(a.imag, weights=wts, axis=0)*1j)
+        assert_almost_equal(wav0.real, expected0.real)
+        assert_almost_equal(wav0.imag, expected0.imag)
+
+        wav1 = average(a, weights=wts, axis=1)
+        expected1 = (average(a.real, weights=wts, axis=1) +
+                     average(a.imag, weights=wts, axis=1)*1j)
+        assert_almost_equal(wav1.real, expected1.real)
+        assert_almost_equal(wav1.imag, expected1.imag)
+
+    @pytest.mark.parametrize(
+        'x, axis, expected_avg, weights, expected_wavg, expected_wsum',
+        [([1, 2, 3], None, [2.0], [3, 4, 1], [1.75], [8.0]),
+         ([[1, 2, 5], [1, 6, 11]], 0, [[1.0, 4.0, 8.0]],
+          [1, 3], [[1.0, 5.0, 9.5]], [[4, 4, 4]])],
+    )
+    def test_basic_keepdims(self, x, axis, expected_avg,
+                            weights, expected_wavg, expected_wsum):
+        avg = np.ma.average(x, axis=axis, keepdims=True)
+        assert avg.shape == np.shape(expected_avg)
+        assert_array_equal(avg, expected_avg)
+
+        wavg = np.ma.average(x, axis=axis, weights=weights, keepdims=True)
+        assert wavg.shape == np.shape(expected_wavg)
+        assert_array_equal(wavg, expected_wavg)
+
+        wavg, wsum = np.ma.average(x, axis=axis, weights=weights,
+                                   returned=True, keepdims=True)
+        assert wavg.shape == np.shape(expected_wavg)
+        assert_array_equal(wavg, expected_wavg)
+        assert wsum.shape == np.shape(expected_wsum)
+        assert_array_equal(wsum, expected_wsum)
+
+    def test_masked_weights(self):
+        # Test with masked weights.
+        # (Regression test for https://github.com/numpy/numpy/issues/10438)
+        a = np.ma.array(np.arange(9).reshape(3, 3),
+                        mask=[[1, 0, 0], [1, 0, 0], [0, 0, 0]])
+        weights_unmasked = masked_array([5, 28, 31], mask=False)
+        weights_masked = masked_array([5, 28, 31], mask=[1, 0, 0])
+
+        avg_unmasked = average(a, axis=0,
+                               weights=weights_unmasked, returned=False)
+        expected_unmasked = np.array([6.0, 5.21875, 6.21875])
+        assert_almost_equal(avg_unmasked, expected_unmasked)
+
+        avg_masked = average(a, axis=0, weights=weights_masked, returned=False)
+        expected_masked = np.array([6.0, 5.576271186440678, 6.576271186440678])
+        assert_almost_equal(avg_masked, expected_masked)
+
+        # weights should be masked if needed
+        # depending on the array mask. This is to avoid summing
+        # masked nan or other values that are not cancelled by a zero
+        a = np.ma.array([1.0,   2.0,   3.0,  4.0],
+                   mask=[False, False, True, True])
+        avg_unmasked = average(a, weights=[1, 1, 1, np.nan])
+
+        assert_almost_equal(avg_unmasked, 1.5)
+
+        a = np.ma.array([
+            [1.0, 2.0, 3.0, 4.0],
+            [5.0, 6.0, 7.0, 8.0],
+            [9.0, 1.0, 2.0, 3.0],
+        ], mask=[
+            [False, True, True, False],
+            [True, False, True, True],
+            [True, False, True, False],
+        ])
+
+        avg_masked = np.ma.average(a, weights=[1, np.nan, 1], axis=0)
+        avg_expected = np.ma.array([1.0, np.nan, np.nan, 3.5],
+                              mask=[False, True, True, False])
+
+        assert_almost_equal(avg_masked, avg_expected)
+        assert_equal(avg_masked.mask, avg_expected.mask)
+
+
+class TestConcatenator:
+    # Tests for mr_, the equivalent of r_ for masked arrays.
+
+    def test_1d(self):
+        # Tests mr_ on 1D arrays.
+        assert_array_equal(mr_[1, 2, 3, 4, 5, 6], array([1, 2, 3, 4, 5, 6]))
+        b = ones(5)
+        m = [1, 0, 0, 0, 0]
+        d = masked_array(b, mask=m)
+        c = mr_[d, 0, 0, d]
+        assert_(isinstance(c, MaskedArray))
+        assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1])
+        assert_array_equal(c.mask, mr_[m, 0, 0, m])
+
+    def test_2d(self):
+        # Tests mr_ on 2D arrays.
+        a_1 = np.random.rand(5, 5)
+        a_2 = np.random.rand(5, 5)
+        m_1 = np.round(np.random.rand(5, 5), 0)
+        m_2 = np.round(np.random.rand(5, 5), 0)
+        b_1 = masked_array(a_1, mask=m_1)
+        b_2 = masked_array(a_2, mask=m_2)
+        # append columns
+        d = mr_['1', b_1, b_2]
+        assert_(d.shape == (5, 10))
+        assert_array_equal(d[:, :5], b_1)
+        assert_array_equal(d[:, 5:], b_2)
+        assert_array_equal(d.mask, np.r_['1', m_1, m_2])
+        d = mr_[b_1, b_2]
+        assert_(d.shape == (10, 5))
+        assert_array_equal(d[:5,:], b_1)
+        assert_array_equal(d[5:,:], b_2)
+        assert_array_equal(d.mask, np.r_[m_1, m_2])
+
+    def test_masked_constant(self):
+        actual = mr_[np.ma.masked, 1]
+        assert_equal(actual.mask, [True, False])
+        assert_equal(actual.data[1], 1)
+
+        actual = mr_[[1, 2], np.ma.masked]
+        assert_equal(actual.mask, [False, False, True])
+        assert_equal(actual.data[:2], [1, 2])
+
+
+class TestNotMasked:
+    # Tests notmasked_edges and notmasked_contiguous.
+
+    def test_edges(self):
+        # Tests unmasked_edges
+        data = masked_array(np.arange(25).reshape(5, 5),
+                            mask=[[0, 0, 1, 0, 0],
+                                  [0, 0, 0, 1, 1],
+                                  [1, 1, 0, 0, 0],
+                                  [0, 0, 0, 0, 0],
+                                  [1, 1, 1, 0, 0]],)
+        test = notmasked_edges(data, None)
+        assert_equal(test, [0, 24])
+        test = notmasked_edges(data, 0)
+        assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)])
+        assert_equal(test[1], [(3, 3, 3, 4, 4), (0, 1, 2, 3, 4)])
+        test = notmasked_edges(data, 1)
+        assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 2, 0, 3)])
+        assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 2, 4, 4, 4)])
+        #
+        test = notmasked_edges(data.data, None)
+        assert_equal(test, [0, 24])
+        test = notmasked_edges(data.data, 0)
+        assert_equal(test[0], [(0, 0, 0, 0, 0), (0, 1, 2, 3, 4)])
+        assert_equal(test[1], [(4, 4, 4, 4, 4), (0, 1, 2, 3, 4)])
+        test = notmasked_edges(data.data, -1)
+        assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 0, 0, 0)])
+        assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 4, 4, 4, 4)])
+        #
+        data[-2] = masked
+        test = notmasked_edges(data, 0)
+        assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)])
+        assert_equal(test[1], [(1, 1, 2, 4, 4), (0, 1, 2, 3, 4)])
+        test = notmasked_edges(data, -1)
+        assert_equal(test[0], [(0, 1, 2, 4), (0, 0, 2, 3)])
+        assert_equal(test[1], [(0, 1, 2, 4), (4, 2, 4, 4)])
+
+    def test_contiguous(self):
+        # Tests notmasked_contiguous
+        a = masked_array(np.arange(24).reshape(3, 8),
+                         mask=[[0, 0, 0, 0, 1, 1, 1, 1],
+                               [1, 1, 1, 1, 1, 1, 1, 1],
+                               [0, 0, 0, 0, 0, 0, 1, 0]])
+        tmp = notmasked_contiguous(a, None)
+        assert_equal(tmp, [
+            slice(0, 4, None),
+            slice(16, 22, None),
+            slice(23, 24, None)
+        ])
+
+        tmp = notmasked_contiguous(a, 0)
+        assert_equal(tmp, [
+            [slice(0, 1, None), slice(2, 3, None)],
+            [slice(0, 1, None), slice(2, 3, None)],
+            [slice(0, 1, None), slice(2, 3, None)],
+            [slice(0, 1, None), slice(2, 3, None)],
+            [slice(2, 3, None)],
+            [slice(2, 3, None)],
+            [],
+            [slice(2, 3, None)]
+        ])
+        #
+        tmp = notmasked_contiguous(a, 1)
+        assert_equal(tmp, [
+            [slice(0, 4, None)],
+            [],
+            [slice(0, 6, None), slice(7, 8, None)]
+        ])
+
+
+class TestCompressFunctions:
+
+    def test_compress_nd(self):
+        # Tests compress_nd
+        x = np.array(list(range(3*4*5))).reshape(3, 4, 5)
+        m = np.zeros((3,4,5)).astype(bool)
+        m[1,1,1] = True
+        x = array(x, mask=m)
+
+        # axis=None
+        a = compress_nd(x)
+        assert_equal(a, [[[ 0,  2,  3,  4],
+                          [10, 12, 13, 14],
+                          [15, 17, 18, 19]],
+                         [[40, 42, 43, 44],
+                          [50, 52, 53, 54],
+                          [55, 57, 58, 59]]])
+
+        # axis=0
+        a = compress_nd(x, 0)
+        assert_equal(a, [[[ 0,  1,  2,  3,  4],
+                          [ 5,  6,  7,  8,  9],
+                          [10, 11, 12, 13, 14],
+                          [15, 16, 17, 18, 19]],
+                         [[40, 41, 42, 43, 44],
+                          [45, 46, 47, 48, 49],
+                          [50, 51, 52, 53, 54],
+                          [55, 56, 57, 58, 59]]])
+
+        # axis=1
+        a = compress_nd(x, 1)
+        assert_equal(a, [[[ 0,  1,  2,  3,  4],
+                          [10, 11, 12, 13, 14],
+                          [15, 16, 17, 18, 19]],
+                         [[20, 21, 22, 23, 24],
+                          [30, 31, 32, 33, 34],
+                          [35, 36, 37, 38, 39]],
+                         [[40, 41, 42, 43, 44],
+                          [50, 51, 52, 53, 54],
+                          [55, 56, 57, 58, 59]]])
+
+        a2 = compress_nd(x, (1,))
+        a3 = compress_nd(x, -2)
+        a4 = compress_nd(x, (-2,))
+        assert_equal(a, a2)
+        assert_equal(a, a3)
+        assert_equal(a, a4)
+
+        # axis=2
+        a = compress_nd(x, 2)
+        assert_equal(a, [[[ 0, 2,  3,  4],
+                          [ 5, 7,  8,  9],
+                          [10, 12, 13, 14],
+                          [15, 17, 18, 19]],
+                         [[20, 22, 23, 24],
+                          [25, 27, 28, 29],
+                          [30, 32, 33, 34],
+                          [35, 37, 38, 39]],
+                         [[40, 42, 43, 44],
+                          [45, 47, 48, 49],
+                          [50, 52, 53, 54],
+                          [55, 57, 58, 59]]])
+
+        a2 = compress_nd(x, (2,))
+        a3 = compress_nd(x, -1)
+        a4 = compress_nd(x, (-1,))
+        assert_equal(a, a2)
+        assert_equal(a, a3)
+        assert_equal(a, a4)
+
+        # axis=(0, 1)
+        a = compress_nd(x, (0, 1))
+        assert_equal(a, [[[ 0,  1,  2,  3,  4],
+                          [10, 11, 12, 13, 14],
+                          [15, 16, 17, 18, 19]],
+                         [[40, 41, 42, 43, 44],
+                          [50, 51, 52, 53, 54],
+                          [55, 56, 57, 58, 59]]])
+        a2 = compress_nd(x, (0, -2))
+        assert_equal(a, a2)
+
+        # axis=(1, 2)
+        a = compress_nd(x, (1, 2))
+        assert_equal(a, [[[ 0,  2,  3,  4],
+                          [10, 12, 13, 14],
+                          [15, 17, 18, 19]],
+                         [[20, 22, 23, 24],
+                          [30, 32, 33, 34],
+                          [35, 37, 38, 39]],
+                         [[40, 42, 43, 44],
+                          [50, 52, 53, 54],
+                          [55, 57, 58, 59]]])
+
+        a2 = compress_nd(x, (-2, 2))
+        a3 = compress_nd(x, (1, -1))
+        a4 = compress_nd(x, (-2, -1))
+        assert_equal(a, a2)
+        assert_equal(a, a3)
+        assert_equal(a, a4)
+
+        # axis=(0, 2)
+        a = compress_nd(x, (0, 2))
+        assert_equal(a, [[[ 0,  2,  3,  4],
+                          [ 5,  7,  8,  9],
+                          [10, 12, 13, 14],
+                          [15, 17, 18, 19]],
+                         [[40, 42, 43, 44],
+                          [45, 47, 48, 49],
+                          [50, 52, 53, 54],
+                          [55, 57, 58, 59]]])
+
+        a2 = compress_nd(x, (0, -1))
+        assert_equal(a, a2)
+
+    def test_compress_rowcols(self):
+        # Tests compress_rowcols
+        x = array(np.arange(9).reshape(3, 3),
+                  mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
+        assert_equal(compress_rowcols(x), [[4, 5], [7, 8]])
+        assert_equal(compress_rowcols(x, 0), [[3, 4, 5], [6, 7, 8]])
+        assert_equal(compress_rowcols(x, 1), [[1, 2], [4, 5], [7, 8]])
+        x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
+        assert_equal(compress_rowcols(x), [[0, 2], [6, 8]])
+        assert_equal(compress_rowcols(x, 0), [[0, 1, 2], [6, 7, 8]])
+        assert_equal(compress_rowcols(x, 1), [[0, 2], [3, 5], [6, 8]])
+        x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]])
+        assert_equal(compress_rowcols(x), [[8]])
+        assert_equal(compress_rowcols(x, 0), [[6, 7, 8]])
+        assert_equal(compress_rowcols(x, 1,), [[2], [5], [8]])
+        x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
+        assert_equal(compress_rowcols(x).size, 0)
+        assert_equal(compress_rowcols(x, 0).size, 0)
+        assert_equal(compress_rowcols(x, 1).size, 0)
+
+    def test_mask_rowcols(self):
+        # Tests mask_rowcols.
+        x = array(np.arange(9).reshape(3, 3),
+                  mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
+        assert_equal(mask_rowcols(x).mask,
+                     [[1, 1, 1], [1, 0, 0], [1, 0, 0]])
+        assert_equal(mask_rowcols(x, 0).mask,
+                     [[1, 1, 1], [0, 0, 0], [0, 0, 0]])
+        assert_equal(mask_rowcols(x, 1).mask,
+                     [[1, 0, 0], [1, 0, 0], [1, 0, 0]])
+        x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
+        assert_equal(mask_rowcols(x).mask,
+                     [[0, 1, 0], [1, 1, 1], [0, 1, 0]])
+        assert_equal(mask_rowcols(x, 0).mask,
+                     [[0, 0, 0], [1, 1, 1], [0, 0, 0]])
+        assert_equal(mask_rowcols(x, 1).mask,
+                     [[0, 1, 0], [0, 1, 0], [0, 1, 0]])
+        x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]])
+        assert_equal(mask_rowcols(x).mask,
+                     [[1, 1, 1], [1, 1, 1], [1, 1, 0]])
+        assert_equal(mask_rowcols(x, 0).mask,
+                     [[1, 1, 1], [1, 1, 1], [0, 0, 0]])
+        assert_equal(mask_rowcols(x, 1,).mask,
+                     [[1, 1, 0], [1, 1, 0], [1, 1, 0]])
+        x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
+        assert_(mask_rowcols(x).all() is masked)
+        assert_(mask_rowcols(x, 0).all() is masked)
+        assert_(mask_rowcols(x, 1).all() is masked)
+        assert_(mask_rowcols(x).mask.all())
+        assert_(mask_rowcols(x, 0).mask.all())
+        assert_(mask_rowcols(x, 1).mask.all())
+
+    @pytest.mark.parametrize("axis", [None, 0, 1])
+    @pytest.mark.parametrize(["func", "rowcols_axis"],
+                             [(np.ma.mask_rows, 0), (np.ma.mask_cols, 1)])
+    def test_mask_row_cols_axis_deprecation(self, axis, func, rowcols_axis):
+        # Test deprecation of the axis argument to `mask_rows` and `mask_cols`
+        x = array(np.arange(9).reshape(3, 3),
+                  mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
+
+        with assert_warns(DeprecationWarning):
+            res = func(x, axis=axis)
+            assert_equal(res, mask_rowcols(x, rowcols_axis))
+
+    def test_dot(self):
+        # Tests dot product
+        n = np.arange(1, 7)
+        #
+        m = [1, 0, 0, 0, 0, 0]
+        a = masked_array(n, mask=m).reshape(2, 3)
+        b = masked_array(n, mask=m).reshape(3, 2)
+        c = dot(a, b, strict=True)
+        assert_equal(c.mask, [[1, 1], [1, 0]])
+        c = dot(b, a, strict=True)
+        assert_equal(c.mask, [[1, 1, 1], [1, 0, 0], [1, 0, 0]])
+        c = dot(a, b, strict=False)
+        assert_equal(c, np.dot(a.filled(0), b.filled(0)))
+        c = dot(b, a, strict=False)
+        assert_equal(c, np.dot(b.filled(0), a.filled(0)))
+        #
+        m = [0, 0, 0, 0, 0, 1]
+        a = masked_array(n, mask=m).reshape(2, 3)
+        b = masked_array(n, mask=m).reshape(3, 2)
+        c = dot(a, b, strict=True)
+        assert_equal(c.mask, [[0, 1], [1, 1]])
+        c = dot(b, a, strict=True)
+        assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [1, 1, 1]])
+        c = dot(a, b, strict=False)
+        assert_equal(c, np.dot(a.filled(0), b.filled(0)))
+        assert_equal(c, dot(a, b))
+        c = dot(b, a, strict=False)
+        assert_equal(c, np.dot(b.filled(0), a.filled(0)))
+        #
+        m = [0, 0, 0, 0, 0, 0]
+        a = masked_array(n, mask=m).reshape(2, 3)
+        b = masked_array(n, mask=m).reshape(3, 2)
+        c = dot(a, b)
+        assert_equal(c.mask, nomask)
+        c = dot(b, a)
+        assert_equal(c.mask, nomask)
+        #
+        a = masked_array(n, mask=[1, 0, 0, 0, 0, 0]).reshape(2, 3)
+        b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2)
+        c = dot(a, b, strict=True)
+        assert_equal(c.mask, [[1, 1], [0, 0]])
+        c = dot(a, b, strict=False)
+        assert_equal(c, np.dot(a.filled(0), b.filled(0)))
+        c = dot(b, a, strict=True)
+        assert_equal(c.mask, [[1, 0, 0], [1, 0, 0], [1, 0, 0]])
+        c = dot(b, a, strict=False)
+        assert_equal(c, np.dot(b.filled(0), a.filled(0)))
+        #
+        a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3)
+        b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2)
+        c = dot(a, b, strict=True)
+        assert_equal(c.mask, [[0, 0], [1, 1]])
+        c = dot(a, b)
+        assert_equal(c, np.dot(a.filled(0), b.filled(0)))
+        c = dot(b, a, strict=True)
+        assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [0, 0, 1]])
+        c = dot(b, a, strict=False)
+        assert_equal(c, np.dot(b.filled(0), a.filled(0)))
+        #
+        a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3)
+        b = masked_array(n, mask=[0, 0, 1, 0, 0, 0]).reshape(3, 2)
+        c = dot(a, b, strict=True)
+        assert_equal(c.mask, [[1, 0], [1, 1]])
+        c = dot(a, b, strict=False)
+        assert_equal(c, np.dot(a.filled(0), b.filled(0)))
+        c = dot(b, a, strict=True)
+        assert_equal(c.mask, [[0, 0, 1], [1, 1, 1], [0, 0, 1]])
+        c = dot(b, a, strict=False)
+        assert_equal(c, np.dot(b.filled(0), a.filled(0)))
+        #
+        a = masked_array(np.arange(8).reshape(2, 2, 2),
+                         mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+        b = masked_array(np.arange(8).reshape(2, 2, 2),
+                         mask=[[[0, 0], [0, 0]], [[0, 0], [0, 1]]])
+        c = dot(a, b, strict=True)
+        assert_equal(c.mask,
+                     [[[[1, 1], [1, 1]], [[0, 0], [0, 1]]],
+                      [[[0, 0], [0, 1]], [[0, 0], [0, 1]]]])
+        c = dot(a, b, strict=False)
+        assert_equal(c.mask,
+                     [[[[0, 0], [0, 1]], [[0, 0], [0, 0]]],
+                      [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]])
+        c = dot(b, a, strict=True)
+        assert_equal(c.mask,
+                     [[[[1, 0], [0, 0]], [[1, 0], [0, 0]]],
+                      [[[1, 0], [0, 0]], [[1, 1], [1, 1]]]])
+        c = dot(b, a, strict=False)
+        assert_equal(c.mask,
+                     [[[[0, 0], [0, 0]], [[0, 0], [0, 0]]],
+                      [[[0, 0], [0, 0]], [[1, 0], [0, 0]]]])
+        #
+        a = masked_array(np.arange(8).reshape(2, 2, 2),
+                         mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+        b = 5.
+        c = dot(a, b, strict=True)
+        assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+        c = dot(a, b, strict=False)
+        assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+        c = dot(b, a, strict=True)
+        assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+        c = dot(b, a, strict=False)
+        assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+        #
+        a = masked_array(np.arange(8).reshape(2, 2, 2),
+                         mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+        b = masked_array(np.arange(2), mask=[0, 1])
+        c = dot(a, b, strict=True)
+        assert_equal(c.mask, [[1, 1], [1, 1]])
+        c = dot(a, b, strict=False)
+        assert_equal(c.mask, [[1, 0], [0, 0]])
+
+    def test_dot_returns_maskedarray(self):
+        # See gh-6611
+        a = np.eye(3)
+        b = array(a)
+        assert_(type(dot(a, a)) is MaskedArray)
+        assert_(type(dot(a, b)) is MaskedArray)
+        assert_(type(dot(b, a)) is MaskedArray)
+        assert_(type(dot(b, b)) is MaskedArray)
+
+    def test_dot_out(self):
+        a = array(np.eye(3))
+        out = array(np.zeros((3, 3)))
+        res = dot(a, a, out=out)
+        assert_(res is out)
+        assert_equal(a, res)
+
+
+class TestApplyAlongAxis:
+    # Tests 2D functions
+    def test_3d(self):
+        a = arange(12.).reshape(2, 2, 3)
+
+        def myfunc(b):
+            return b[1]
+
+        xa = apply_along_axis(myfunc, 2, a)
+        assert_equal(xa, [[1, 4], [7, 10]])
+
+    # Tests kwargs functions
+    def test_3d_kwargs(self):
+        a = arange(12).reshape(2, 2, 3)
+
+        def myfunc(b, offset=0):
+            return b[1+offset]
+
+        xa = apply_along_axis(myfunc, 2, a, offset=1)
+        assert_equal(xa, [[2, 5], [8, 11]])
+
+
+class TestApplyOverAxes:
+    # Tests apply_over_axes
+    def test_basic(self):
+        a = arange(24).reshape(2, 3, 4)
+        test = apply_over_axes(np.sum, a, [0, 2])
+        ctrl = np.array([[[60], [92], [124]]])
+        assert_equal(test, ctrl)
+        a[(a % 2).astype(bool)] = masked
+        test = apply_over_axes(np.sum, a, [0, 2])
+        ctrl = np.array([[[28], [44], [60]]])
+        assert_equal(test, ctrl)
+
+
+class TestMedian:
+    def test_pytype(self):
+        r = np.ma.median([[np.inf, np.inf], [np.inf, np.inf]], axis=-1)
+        assert_equal(r, np.inf)
+
+    def test_inf(self):
+        # test that even which computes handles inf / x = masked
+        r = np.ma.median(np.ma.masked_array([[np.inf, np.inf],
+                                             [np.inf, np.inf]]), axis=-1)
+        assert_equal(r, np.inf)
+        r = np.ma.median(np.ma.masked_array([[np.inf, np.inf],
+                                             [np.inf, np.inf]]), axis=None)
+        assert_equal(r, np.inf)
+        # all masked
+        r = np.ma.median(np.ma.masked_array([[np.inf, np.inf],
+                                             [np.inf, np.inf]], mask=True),
+                         axis=-1)
+        assert_equal(r.mask, True)
+        r = np.ma.median(np.ma.masked_array([[np.inf, np.inf],
+                                             [np.inf, np.inf]], mask=True),
+                         axis=None)
+        assert_equal(r.mask, True)
+
+    def test_non_masked(self):
+        x = np.arange(9)
+        assert_equal(np.ma.median(x), 4.)
+        assert_(type(np.ma.median(x)) is not MaskedArray)
+        x = range(8)
+        assert_equal(np.ma.median(x), 3.5)
+        assert_(type(np.ma.median(x)) is not MaskedArray)
+        x = 5
+        assert_equal(np.ma.median(x), 5.)
+        assert_(type(np.ma.median(x)) is not MaskedArray)
+        # integer
+        x = np.arange(9 * 8).reshape(9, 8)
+        assert_equal(np.ma.median(x, axis=0), np.median(x, axis=0))
+        assert_equal(np.ma.median(x, axis=1), np.median(x, axis=1))
+        assert_(np.ma.median(x, axis=1) is not MaskedArray)
+        # float
+        x = np.arange(9 * 8.).reshape(9, 8)
+        assert_equal(np.ma.median(x, axis=0), np.median(x, axis=0))
+        assert_equal(np.ma.median(x, axis=1), np.median(x, axis=1))
+        assert_(np.ma.median(x, axis=1) is not MaskedArray)
+
+    def test_docstring_examples(self):
+        "test the examples given in the docstring of ma.median"
+        x = array(np.arange(8), mask=[0]*4 + [1]*4)
+        assert_equal(np.ma.median(x), 1.5)
+        assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+        assert_(type(np.ma.median(x)) is not MaskedArray)
+        x = array(np.arange(10).reshape(2, 5), mask=[0]*6 + [1]*4)
+        assert_equal(np.ma.median(x), 2.5)
+        assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+        assert_(type(np.ma.median(x)) is not MaskedArray)
+        ma_x = np.ma.median(x, axis=-1, overwrite_input=True)
+        assert_equal(ma_x, [2., 5.])
+        assert_equal(ma_x.shape, (2,), "shape mismatch")
+        assert_(type(ma_x) is MaskedArray)
+
+    def test_axis_argument_errors(self):
+        msg = "mask = %s, ndim = %s, axis = %s, overwrite_input = %s"
+        for ndmin in range(5):
+            for mask in [False, True]:
+                x = array(1, ndmin=ndmin, mask=mask)
+
+                # Valid axis values should not raise exception
+                args = itertools.product(range(-ndmin, ndmin), [False, True])
+                for axis, over in args:
+                    try:
+                        np.ma.median(x, axis=axis, overwrite_input=over)
+                    except Exception:
+                        raise AssertionError(msg % (mask, ndmin, axis, over))
+
+                # Invalid axis values should raise exception
+                args = itertools.product([-(ndmin + 1), ndmin], [False, True])
+                for axis, over in args:
+                    try:
+                        np.ma.median(x, axis=axis, overwrite_input=over)
+                    except np.AxisError:
+                        pass
+                    else:
+                        raise AssertionError(msg % (mask, ndmin, axis, over))
+
+    def test_masked_0d(self):
+        # Check values
+        x = array(1, mask=False)
+        assert_equal(np.ma.median(x), 1)
+        x = array(1, mask=True)
+        assert_equal(np.ma.median(x), np.ma.masked)
+
+    def test_masked_1d(self):
+        x = array(np.arange(5), mask=True)
+        assert_equal(np.ma.median(x), np.ma.masked)
+        assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+        assert_(type(np.ma.median(x)) is np.ma.core.MaskedConstant)
+        x = array(np.arange(5), mask=False)
+        assert_equal(np.ma.median(x), 2.)
+        assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+        assert_(type(np.ma.median(x)) is not MaskedArray)
+        x = array(np.arange(5), mask=[0,1,0,0,0])
+        assert_equal(np.ma.median(x), 2.5)
+        assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+        assert_(type(np.ma.median(x)) is not MaskedArray)
+        x = array(np.arange(5), mask=[0,1,1,1,1])
+        assert_equal(np.ma.median(x), 0.)
+        assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+        assert_(type(np.ma.median(x)) is not MaskedArray)
+        # integer
+        x = array(np.arange(5), mask=[0,1,1,0,0])
+        assert_equal(np.ma.median(x), 3.)
+        assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+        assert_(type(np.ma.median(x)) is not MaskedArray)
+        # float
+        x = array(np.arange(5.), mask=[0,1,1,0,0])
+        assert_equal(np.ma.median(x), 3.)
+        assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+        assert_(type(np.ma.median(x)) is not MaskedArray)
+        # integer
+        x = array(np.arange(6), mask=[0,1,1,1,1,0])
+        assert_equal(np.ma.median(x), 2.5)
+        assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+        assert_(type(np.ma.median(x)) is not MaskedArray)
+        # float
+        x = array(np.arange(6.), mask=[0,1,1,1,1,0])
+        assert_equal(np.ma.median(x), 2.5)
+        assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+        assert_(type(np.ma.median(x)) is not MaskedArray)
+
+    def test_1d_shape_consistency(self):
+        assert_equal(np.ma.median(array([1,2,3],mask=[0,0,0])).shape,
+                     np.ma.median(array([1,2,3],mask=[0,1,0])).shape )
+
+    def test_2d(self):
+        # Tests median w/ 2D
+        (n, p) = (101, 30)
+        x = masked_array(np.linspace(-1., 1., n),)
+        x[:10] = x[-10:] = masked
+        z = masked_array(np.empty((n, p), dtype=float))
+        z[:, 0] = x[:]
+        idx = np.arange(len(x))
+        for i in range(1, p):
+            np.random.shuffle(idx)
+            z[:, i] = x[idx]
+        assert_equal(median(z[:, 0]), 0)
+        assert_equal(median(z), 0)
+        assert_equal(median(z, axis=0), np.zeros(p))
+        assert_equal(median(z.T, axis=1), np.zeros(p))
+
+    def test_2d_waxis(self):
+        # Tests median w/ 2D arrays and different axis.
+        x = masked_array(np.arange(30).reshape(10, 3))
+        x[:3] = x[-3:] = masked
+        assert_equal(median(x), 14.5)
+        assert_(type(np.ma.median(x)) is not MaskedArray)
+        assert_equal(median(x, axis=0), [13.5, 14.5, 15.5])
+        assert_(type(np.ma.median(x, axis=0)) is MaskedArray)
+        assert_equal(median(x, axis=1), [0, 0, 0, 10, 13, 16, 19, 0, 0, 0])
+        assert_(type(np.ma.median(x, axis=1)) is MaskedArray)
+        assert_equal(median(x, axis=1).mask, [1, 1, 1, 0, 0, 0, 0, 1, 1, 1])
+
+    def test_3d(self):
+        # Tests median w/ 3D
+        x = np.ma.arange(24).reshape(3, 4, 2)
+        x[x % 3 == 0] = masked
+        assert_equal(median(x, 0), [[12, 9], [6, 15], [12, 9], [18, 15]])
+        x.shape = (4, 3, 2)
+        assert_equal(median(x, 0), [[99, 10], [11, 99], [13, 14]])
+        x = np.ma.arange(24).reshape(4, 3, 2)
+        x[x % 5 == 0] = masked
+        assert_equal(median(x, 0), [[12, 10], [8, 9], [16, 17]])
+
+    def test_neg_axis(self):
+        x = masked_array(np.arange(30).reshape(10, 3))
+        x[:3] = x[-3:] = masked
+        assert_equal(median(x, axis=-1), median(x, axis=1))
+
+    def test_out_1d(self):
+        # integer float even odd
+        for v in (30, 30., 31, 31.):
+            x = masked_array(np.arange(v))
+            x[:3] = x[-3:] = masked
+            out = masked_array(np.ones(()))
+            r = median(x, out=out)
+            if v == 30:
+                assert_equal(out, 14.5)
+            else:
+                assert_equal(out, 15.)
+            assert_(r is out)
+            assert_(type(r) is MaskedArray)
+
+    def test_out(self):
+        # integer float even odd
+        for v in (40, 40., 30, 30.):
+            x = masked_array(np.arange(v).reshape(10, -1))
+            x[:3] = x[-3:] = masked
+            out = masked_array(np.ones(10))
+            r = median(x, axis=1, out=out)
+            if v == 30:
+                e = masked_array([0.]*3 + [10, 13, 16, 19] + [0.]*3,
+                                 mask=[True] * 3 + [False] * 4 + [True] * 3)
+            else:
+                e = masked_array([0.]*3 + [13.5, 17.5, 21.5, 25.5] + [0.]*3,
+                                 mask=[True]*3 + [False]*4 + [True]*3)
+            assert_equal(r, e)
+            assert_(r is out)
+            assert_(type(r) is MaskedArray)
+
+    @pytest.mark.parametrize(
+        argnames='axis',
+        argvalues=[
+            None,
+            1,
+            (1, ),
+            (0, 1),
+            (-3, -1),
+        ]
+    )
+    def test_keepdims_out(self, axis):
+        mask = np.zeros((3, 5, 7, 11), dtype=bool)
+        # Randomly set some elements to True:
+        w = np.random.random((4, 200)) * np.array(mask.shape)[:, None]
+        w = w.astype(np.intp)
+        mask[tuple(w)] = np.nan
+        d = masked_array(np.ones(mask.shape), mask=mask)
+        if axis is None:
+            shape_out = (1,) * d.ndim
+        else:
+            axis_norm = normalize_axis_tuple(axis, d.ndim)
+            shape_out = tuple(
+                1 if i in axis_norm else d.shape[i] for i in range(d.ndim))
+        out = masked_array(np.empty(shape_out))
+        result = median(d, axis=axis, keepdims=True, out=out)
+        assert result is out
+        assert_equal(result.shape, shape_out)
+
+    def test_single_non_masked_value_on_axis(self):
+        data = [[1., 0.],
+                [0., 3.],
+                [0., 0.]]
+        masked_arr = np.ma.masked_equal(data, 0)
+        expected = [1., 3.]
+        assert_array_equal(np.ma.median(masked_arr, axis=0),
+                           expected)
+
+    def test_nan(self):
+        for mask in (False, np.zeros(6, dtype=bool)):
+            dm = np.ma.array([[1, np.nan, 3], [1, 2, 3]])
+            dm.mask = mask
+
+            # scalar result
+            r = np.ma.median(dm, axis=None)
+            assert_(np.isscalar(r))
+            assert_array_equal(r, np.nan)
+            r = np.ma.median(dm.ravel(), axis=0)
+            assert_(np.isscalar(r))
+            assert_array_equal(r, np.nan)
+
+            r = np.ma.median(dm, axis=0)
+            assert_equal(type(r), MaskedArray)
+            assert_array_equal(r, [1, np.nan, 3])
+            r = np.ma.median(dm, axis=1)
+            assert_equal(type(r), MaskedArray)
+            assert_array_equal(r, [np.nan, 2])
+            r = np.ma.median(dm, axis=-1)
+            assert_equal(type(r), MaskedArray)
+            assert_array_equal(r, [np.nan, 2])
+
+        dm = np.ma.array([[1, np.nan, 3], [1, 2, 3]])
+        dm[:, 2] = np.ma.masked
+        assert_array_equal(np.ma.median(dm, axis=None), np.nan)
+        assert_array_equal(np.ma.median(dm, axis=0), [1, np.nan, 3])
+        assert_array_equal(np.ma.median(dm, axis=1), [np.nan, 1.5])
+
+    def test_out_nan(self):
+        o = np.ma.masked_array(np.zeros((4,)))
+        d = np.ma.masked_array(np.ones((3, 4)))
+        d[2, 1] = np.nan
+        d[2, 2] = np.ma.masked
+        assert_equal(np.ma.median(d, 0, out=o), o)
+        o = np.ma.masked_array(np.zeros((3,)))
+        assert_equal(np.ma.median(d, 1, out=o), o)
+        o = np.ma.masked_array(np.zeros(()))
+        assert_equal(np.ma.median(d, out=o), o)
+
+    def test_nan_behavior(self):
+        a = np.ma.masked_array(np.arange(24, dtype=float))
+        a[::3] = np.ma.masked
+        a[2] = np.nan
+        assert_array_equal(np.ma.median(a), np.nan)
+        assert_array_equal(np.ma.median(a, axis=0), np.nan)
+
+        a = np.ma.masked_array(np.arange(24, dtype=float).reshape(2, 3, 4))
+        a.mask = np.arange(a.size) % 2 == 1
+        aorig = a.copy()
+        a[1, 2, 3] = np.nan
+        a[1, 1, 2] = np.nan
+
+        # no axis
+        assert_array_equal(np.ma.median(a), np.nan)
+        assert_(np.isscalar(np.ma.median(a)))
+
+        # axis0
+        b = np.ma.median(aorig, axis=0)
+        b[2, 3] = np.nan
+        b[1, 2] = np.nan
+        assert_equal(np.ma.median(a, 0), b)
+
+        # axis1
+        b = np.ma.median(aorig, axis=1)
+        b[1, 3] = np.nan
+        b[1, 2] = np.nan
+        assert_equal(np.ma.median(a, 1), b)
+
+        # axis02
+        b = np.ma.median(aorig, axis=(0, 2))
+        b[1] = np.nan
+        b[2] = np.nan
+        assert_equal(np.ma.median(a, (0, 2)), b)
+
+    def test_ambigous_fill(self):
+        # 255 is max value, used as filler for sort
+        a = np.array([[3, 3, 255], [3, 3, 255]], dtype=np.uint8)
+        a = np.ma.masked_array(a, mask=a == 3)
+        assert_array_equal(np.ma.median(a, axis=1), 255)
+        assert_array_equal(np.ma.median(a, axis=1).mask, False)
+        assert_array_equal(np.ma.median(a, axis=0), a[0])
+        assert_array_equal(np.ma.median(a), 255)
+
+    def test_special(self):
+        for inf in [np.inf, -np.inf]:
+            a = np.array([[inf,  np.nan], [np.nan, np.nan]])
+            a = np.ma.masked_array(a, mask=np.isnan(a))
+            assert_equal(np.ma.median(a, axis=0), [inf,  np.nan])
+            assert_equal(np.ma.median(a, axis=1), [inf,  np.nan])
+            assert_equal(np.ma.median(a), inf)
+
+            a = np.array([[np.nan, np.nan, inf], [np.nan, np.nan, inf]])
+            a = np.ma.masked_array(a, mask=np.isnan(a))
+            assert_array_equal(np.ma.median(a, axis=1), inf)
+            assert_array_equal(np.ma.median(a, axis=1).mask, False)
+            assert_array_equal(np.ma.median(a, axis=0), a[0])
+            assert_array_equal(np.ma.median(a), inf)
+
+            # no mask
+            a = np.array([[inf, inf], [inf, inf]])
+            assert_equal(np.ma.median(a), inf)
+            assert_equal(np.ma.median(a, axis=0), inf)
+            assert_equal(np.ma.median(a, axis=1), inf)
+
+            a = np.array([[inf, 7, -inf, -9],
+                          [-10, np.nan, np.nan, 5],
+                          [4, np.nan, np.nan, inf]],
+                          dtype=np.float32)
+            a = np.ma.masked_array(a, mask=np.isnan(a))
+            if inf > 0:
+                assert_equal(np.ma.median(a, axis=0), [4., 7., -inf, 5.])
+                assert_equal(np.ma.median(a), 4.5)
+            else:
+                assert_equal(np.ma.median(a, axis=0), [-10., 7., -inf, -9.])
+                assert_equal(np.ma.median(a), -2.5)
+            assert_equal(np.ma.median(a, axis=1), [-1., -2.5, inf])
+
+            for i in range(0, 10):
+                for j in range(1, 10):
+                    a = np.array([([np.nan] * i) + ([inf] * j)] * 2)
+                    a = np.ma.masked_array(a, mask=np.isnan(a))
+                    assert_equal(np.ma.median(a), inf)
+                    assert_equal(np.ma.median(a, axis=1), inf)
+                    assert_equal(np.ma.median(a, axis=0),
+                                 ([np.nan] * i) + [inf] * j)
+
+    def test_empty(self):
+        # empty arrays
+        a = np.ma.masked_array(np.array([], dtype=float))
+        with suppress_warnings() as w:
+            w.record(RuntimeWarning)
+            assert_array_equal(np.ma.median(a), np.nan)
+            assert_(w.log[0].category is RuntimeWarning)
+
+        # multiple dimensions
+        a = np.ma.masked_array(np.array([], dtype=float, ndmin=3))
+        # no axis
+        with suppress_warnings() as w:
+            w.record(RuntimeWarning)
+            warnings.filterwarnings('always', '', RuntimeWarning)
+            assert_array_equal(np.ma.median(a), np.nan)
+            assert_(w.log[0].category is RuntimeWarning)
+
+        # axis 0 and 1
+        b = np.ma.masked_array(np.array([], dtype=float, ndmin=2))
+        assert_equal(np.ma.median(a, axis=0), b)
+        assert_equal(np.ma.median(a, axis=1), b)
+
+        # axis 2
+        b = np.ma.masked_array(np.array(np.nan, dtype=float, ndmin=2))
+        with warnings.catch_warnings(record=True) as w:
+            warnings.filterwarnings('always', '', RuntimeWarning)
+            assert_equal(np.ma.median(a, axis=2), b)
+            assert_(w[0].category is RuntimeWarning)
+
+    def test_object(self):
+        o = np.ma.masked_array(np.arange(7.))
+        assert_(type(np.ma.median(o.astype(object))), float)
+        o[2] = np.nan
+        assert_(type(np.ma.median(o.astype(object))), float)
+
+
+class TestCov:
+
+    def setup_method(self):
+        self.data = array(np.random.rand(12))
+
+    def test_1d_without_missing(self):
+        # Test cov on 1D variable w/o missing values
+        x = self.data
+        assert_almost_equal(np.cov(x), cov(x))
+        assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
+        assert_almost_equal(np.cov(x, rowvar=False, bias=True),
+                            cov(x, rowvar=False, bias=True))
+
+    def test_2d_without_missing(self):
+        # Test cov on 1 2D variable w/o missing values
+        x = self.data.reshape(3, 4)
+        assert_almost_equal(np.cov(x), cov(x))
+        assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
+        assert_almost_equal(np.cov(x, rowvar=False, bias=True),
+                            cov(x, rowvar=False, bias=True))
+
+    def test_1d_with_missing(self):
+        # Test cov 1 1D variable w/missing values
+        x = self.data
+        x[-1] = masked
+        x -= x.mean()
+        nx = x.compressed()
+        assert_almost_equal(np.cov(nx), cov(x))
+        assert_almost_equal(np.cov(nx, rowvar=False), cov(x, rowvar=False))
+        assert_almost_equal(np.cov(nx, rowvar=False, bias=True),
+                            cov(x, rowvar=False, bias=True))
+        #
+        try:
+            cov(x, allow_masked=False)
+        except ValueError:
+            pass
+        #
+        # 2 1D variables w/ missing values
+        nx = x[1:-1]
+        assert_almost_equal(np.cov(nx, nx[::-1]), cov(x, x[::-1]))
+        assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False),
+                            cov(x, x[::-1], rowvar=False))
+        assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False, bias=True),
+                            cov(x, x[::-1], rowvar=False, bias=True))
+
+    def test_2d_with_missing(self):
+        # Test cov on 2D variable w/ missing value
+        x = self.data
+        x[-1] = masked
+        x = x.reshape(3, 4)
+        valid = np.logical_not(getmaskarray(x)).astype(int)
+        frac = np.dot(valid, valid.T)
+        xf = (x - x.mean(1)[:, None]).filled(0)
+        assert_almost_equal(cov(x),
+                            np.cov(xf) * (x.shape[1] - 1) / (frac - 1.))
+        assert_almost_equal(cov(x, bias=True),
+                            np.cov(xf, bias=True) * x.shape[1] / frac)
+        frac = np.dot(valid.T, valid)
+        xf = (x - x.mean(0)).filled(0)
+        assert_almost_equal(cov(x, rowvar=False),
+                            (np.cov(xf, rowvar=False) *
+                             (x.shape[0] - 1) / (frac - 1.)))
+        assert_almost_equal(cov(x, rowvar=False, bias=True),
+                            (np.cov(xf, rowvar=False, bias=True) *
+                             x.shape[0] / frac))
+
+
+class TestCorrcoef:
+
+    def setup_method(self):
+        self.data = array(np.random.rand(12))
+        self.data2 = array(np.random.rand(12))
+
+    def test_ddof(self):
+        # ddof raises DeprecationWarning
+        x, y = self.data, self.data2
+        expected = np.corrcoef(x)
+        expected2 = np.corrcoef(x, y)
+        with suppress_warnings() as sup:
+            warnings.simplefilter("always")
+            assert_warns(DeprecationWarning, corrcoef, x, ddof=-1)
+            sup.filter(DeprecationWarning, "bias and ddof have no effect")
+            # ddof has no or negligible effect on the function
+            assert_almost_equal(np.corrcoef(x, ddof=0), corrcoef(x, ddof=0))
+            assert_almost_equal(corrcoef(x, ddof=-1), expected)
+            assert_almost_equal(corrcoef(x, y, ddof=-1), expected2)
+            assert_almost_equal(corrcoef(x, ddof=3), expected)
+            assert_almost_equal(corrcoef(x, y, ddof=3), expected2)
+
+    def test_bias(self):
+        x, y = self.data, self.data2
+        expected = np.corrcoef(x)
+        # bias raises DeprecationWarning
+        with suppress_warnings() as sup:
+            warnings.simplefilter("always")
+            assert_warns(DeprecationWarning, corrcoef, x, y, True, False)
+            assert_warns(DeprecationWarning, corrcoef, x, y, True, True)
+            assert_warns(DeprecationWarning, corrcoef, x, bias=False)
+            sup.filter(DeprecationWarning, "bias and ddof have no effect")
+            # bias has no or negligible effect on the function
+            assert_almost_equal(corrcoef(x, bias=1), expected)
+
+    def test_1d_without_missing(self):
+        # Test cov on 1D variable w/o missing values
+        x = self.data
+        assert_almost_equal(np.corrcoef(x), corrcoef(x))
+        assert_almost_equal(np.corrcoef(x, rowvar=False),
+                            corrcoef(x, rowvar=False))
+        with suppress_warnings() as sup:
+            sup.filter(DeprecationWarning, "bias and ddof have no effect")
+            assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True),
+                                corrcoef(x, rowvar=False, bias=True))
+
+    def test_2d_without_missing(self):
+        # Test corrcoef on 1 2D variable w/o missing values
+        x = self.data.reshape(3, 4)
+        assert_almost_equal(np.corrcoef(x), corrcoef(x))
+        assert_almost_equal(np.corrcoef(x, rowvar=False),
+                            corrcoef(x, rowvar=False))
+        with suppress_warnings() as sup:
+            sup.filter(DeprecationWarning, "bias and ddof have no effect")
+            assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True),
+                                corrcoef(x, rowvar=False, bias=True))
+
+    def test_1d_with_missing(self):
+        # Test corrcoef 1 1D variable w/missing values
+        x = self.data
+        x[-1] = masked
+        x -= x.mean()
+        nx = x.compressed()
+        assert_almost_equal(np.corrcoef(nx), corrcoef(x))
+        assert_almost_equal(np.corrcoef(nx, rowvar=False),
+                            corrcoef(x, rowvar=False))
+        with suppress_warnings() as sup:
+            sup.filter(DeprecationWarning, "bias and ddof have no effect")
+            assert_almost_equal(np.corrcoef(nx, rowvar=False, bias=True),
+                                corrcoef(x, rowvar=False, bias=True))
+        try:
+            corrcoef(x, allow_masked=False)
+        except ValueError:
+            pass
+        # 2 1D variables w/ missing values
+        nx = x[1:-1]
+        assert_almost_equal(np.corrcoef(nx, nx[::-1]), corrcoef(x, x[::-1]))
+        assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False),
+                            corrcoef(x, x[::-1], rowvar=False))
+        with suppress_warnings() as sup:
+            sup.filter(DeprecationWarning, "bias and ddof have no effect")
+            # ddof and bias have no or negligible effect on the function
+            assert_almost_equal(np.corrcoef(nx, nx[::-1]),
+                                corrcoef(x, x[::-1], bias=1))
+            assert_almost_equal(np.corrcoef(nx, nx[::-1]),
+                                corrcoef(x, x[::-1], ddof=2))
+
+    def test_2d_with_missing(self):
+        # Test corrcoef on 2D variable w/ missing value
+        x = self.data
+        x[-1] = masked
+        x = x.reshape(3, 4)
+
+        test = corrcoef(x)
+        control = np.corrcoef(x)
+        assert_almost_equal(test[:-1, :-1], control[:-1, :-1])
+        with suppress_warnings() as sup:
+            sup.filter(DeprecationWarning, "bias and ddof have no effect")
+            # ddof and bias have no or negligible effect on the function
+            assert_almost_equal(corrcoef(x, ddof=-2)[:-1, :-1],
+                                control[:-1, :-1])
+            assert_almost_equal(corrcoef(x, ddof=3)[:-1, :-1],
+                                control[:-1, :-1])
+            assert_almost_equal(corrcoef(x, bias=1)[:-1, :-1],
+                                control[:-1, :-1])
+
+
+class TestPolynomial:
+    #
+    def test_polyfit(self):
+        # Tests polyfit
+        # On ndarrays
+        x = np.random.rand(10)
+        y = np.random.rand(20).reshape(-1, 2)
+        assert_almost_equal(polyfit(x, y, 3), np.polyfit(x, y, 3))
+        # ON 1D maskedarrays
+        x = x.view(MaskedArray)
+        x[0] = masked
+        y = y.view(MaskedArray)
+        y[0, 0] = y[-1, -1] = masked
+        #
+        (C, R, K, S, D) = polyfit(x, y[:, 0], 3, full=True)
+        (c, r, k, s, d) = np.polyfit(x[1:], y[1:, 0].compressed(), 3,
+                                     full=True)
+        for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
+            assert_almost_equal(a, a_)
+        #
+        (C, R, K, S, D) = polyfit(x, y[:, -1], 3, full=True)
+        (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, -1], 3, full=True)
+        for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
+            assert_almost_equal(a, a_)
+        #
+        (C, R, K, S, D) = polyfit(x, y, 3, full=True)
+        (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1,:], 3, full=True)
+        for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
+            assert_almost_equal(a, a_)
+        #
+        w = np.random.rand(10) + 1
+        wo = w.copy()
+        xs = x[1:-1]
+        ys = y[1:-1]
+        ws = w[1:-1]
+        (C, R, K, S, D) = polyfit(x, y, 3, full=True, w=w)
+        (c, r, k, s, d) = np.polyfit(xs, ys, 3, full=True, w=ws)
+        assert_equal(w, wo)
+        for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
+            assert_almost_equal(a, a_)
+
+    def test_polyfit_with_masked_NaNs(self):
+        x = np.random.rand(10)
+        y = np.random.rand(20).reshape(-1, 2)
+
+        x[0] = np.nan
+        y[-1,-1] = np.nan
+        x = x.view(MaskedArray)
+        y = y.view(MaskedArray)
+        x[0] = masked
+        y[-1,-1] = masked
+
+        (C, R, K, S, D) = polyfit(x, y, 3, full=True)
+        (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1,:], 3, full=True)
+        for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
+            assert_almost_equal(a, a_)
+
+
+class TestArraySetOps:
+
+    def test_unique_onlist(self):
+        # Test unique on list
+        data = [1, 1, 1, 2, 2, 3]
+        test = unique(data, return_index=True, return_inverse=True)
+        assert_(isinstance(test[0], MaskedArray))
+        assert_equal(test[0], masked_array([1, 2, 3], mask=[0, 0, 0]))
+        assert_equal(test[1], [0, 3, 5])
+        assert_equal(test[2], [0, 0, 0, 1, 1, 2])
+
+    def test_unique_onmaskedarray(self):
+        # Test unique on masked data w/use_mask=True
+        data = masked_array([1, 1, 1, 2, 2, 3], mask=[0, 0, 1, 0, 1, 0])
+        test = unique(data, return_index=True, return_inverse=True)
+        assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1]))
+        assert_equal(test[1], [0, 3, 5, 2])
+        assert_equal(test[2], [0, 0, 3, 1, 3, 2])
+        #
+        data.fill_value = 3
+        data = masked_array(data=[1, 1, 1, 2, 2, 3],
+                            mask=[0, 0, 1, 0, 1, 0], fill_value=3)
+        test = unique(data, return_index=True, return_inverse=True)
+        assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1]))
+        assert_equal(test[1], [0, 3, 5, 2])
+        assert_equal(test[2], [0, 0, 3, 1, 3, 2])
+
+    def test_unique_allmasked(self):
+        # Test all masked
+        data = masked_array([1, 1, 1], mask=True)
+        test = unique(data, return_index=True, return_inverse=True)
+        assert_equal(test[0], masked_array([1, ], mask=[True]))
+        assert_equal(test[1], [0])
+        assert_equal(test[2], [0, 0, 0])
+        #
+        # Test masked
+        data = masked
+        test = unique(data, return_index=True, return_inverse=True)
+        assert_equal(test[0], masked_array(masked))
+        assert_equal(test[1], [0])
+        assert_equal(test[2], [0])
+
+    def test_ediff1d(self):
+        # Tests mediff1d
+        x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
+        control = array([1, 1, 1, 4], mask=[1, 0, 0, 1])
+        test = ediff1d(x)
+        assert_equal(test, control)
+        assert_equal(test.filled(0), control.filled(0))
+        assert_equal(test.mask, control.mask)
+
+    def test_ediff1d_tobegin(self):
+        # Test ediff1d w/ to_begin
+        x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
+        test = ediff1d(x, to_begin=masked)
+        control = array([0, 1, 1, 1, 4], mask=[1, 1, 0, 0, 1])
+        assert_equal(test, control)
+        assert_equal(test.filled(0), control.filled(0))
+        assert_equal(test.mask, control.mask)
+        #
+        test = ediff1d(x, to_begin=[1, 2, 3])
+        control = array([1, 2, 3, 1, 1, 1, 4], mask=[0, 0, 0, 1, 0, 0, 1])
+        assert_equal(test, control)
+        assert_equal(test.filled(0), control.filled(0))
+        assert_equal(test.mask, control.mask)
+
+    def test_ediff1d_toend(self):
+        # Test ediff1d w/ to_end
+        x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
+        test = ediff1d(x, to_end=masked)
+        control = array([1, 1, 1, 4, 0], mask=[1, 0, 0, 1, 1])
+        assert_equal(test, control)
+        assert_equal(test.filled(0), control.filled(0))
+        assert_equal(test.mask, control.mask)
+        #
+        test = ediff1d(x, to_end=[1, 2, 3])
+        control = array([1, 1, 1, 4, 1, 2, 3], mask=[1, 0, 0, 1, 0, 0, 0])
+        assert_equal(test, control)
+        assert_equal(test.filled(0), control.filled(0))
+        assert_equal(test.mask, control.mask)
+
+    def test_ediff1d_tobegin_toend(self):
+        # Test ediff1d w/ to_begin and to_end
+        x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
+        test = ediff1d(x, to_end=masked, to_begin=masked)
+        control = array([0, 1, 1, 1, 4, 0], mask=[1, 1, 0, 0, 1, 1])
+        assert_equal(test, control)
+        assert_equal(test.filled(0), control.filled(0))
+        assert_equal(test.mask, control.mask)
+        #
+        test = ediff1d(x, to_end=[1, 2, 3], to_begin=masked)
+        control = array([0, 1, 1, 1, 4, 1, 2, 3],
+                        mask=[1, 1, 0, 0, 1, 0, 0, 0])
+        assert_equal(test, control)
+        assert_equal(test.filled(0), control.filled(0))
+        assert_equal(test.mask, control.mask)
+
+    def test_ediff1d_ndarray(self):
+        # Test ediff1d w/ a ndarray
+        x = np.arange(5)
+        test = ediff1d(x)
+        control = array([1, 1, 1, 1], mask=[0, 0, 0, 0])
+        assert_equal(test, control)
+        assert_(isinstance(test, MaskedArray))
+        assert_equal(test.filled(0), control.filled(0))
+        assert_equal(test.mask, control.mask)
+        #
+        test = ediff1d(x, to_end=masked, to_begin=masked)
+        control = array([0, 1, 1, 1, 1, 0], mask=[1, 0, 0, 0, 0, 1])
+        assert_(isinstance(test, MaskedArray))
+        assert_equal(test.filled(0), control.filled(0))
+        assert_equal(test.mask, control.mask)
+
+    def test_intersect1d(self):
+        # Test intersect1d
+        x = array([1, 3, 3, 3], mask=[0, 0, 0, 1])
+        y = array([3, 1, 1, 1], mask=[0, 0, 0, 1])
+        test = intersect1d(x, y)
+        control = array([1, 3, -1], mask=[0, 0, 1])
+        assert_equal(test, control)
+
+    def test_setxor1d(self):
+        # Test setxor1d
+        a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
+        b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
+        test = setxor1d(a, b)
+        assert_equal(test, array([3, 4, 7]))
+        #
+        a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
+        b = [1, 2, 3, 4, 5]
+        test = setxor1d(a, b)
+        assert_equal(test, array([3, 4, 7, -1], mask=[0, 0, 0, 1]))
+        #
+        a = array([1, 2, 3])
+        b = array([6, 5, 4])
+        test = setxor1d(a, b)
+        assert_(isinstance(test, MaskedArray))
+        assert_equal(test, [1, 2, 3, 4, 5, 6])
+        #
+        a = array([1, 8, 2, 3], mask=[0, 1, 0, 0])
+        b = array([6, 5, 4, 8], mask=[0, 0, 0, 1])
+        test = setxor1d(a, b)
+        assert_(isinstance(test, MaskedArray))
+        assert_equal(test, [1, 2, 3, 4, 5, 6])
+        #
+        assert_array_equal([], setxor1d([], []))
+
+    def test_isin(self):
+        # the tests for in1d cover most of isin's behavior
+        # if in1d is removed, would need to change those tests to test
+        # isin instead.
+        a = np.arange(24).reshape([2, 3, 4])
+        mask = np.zeros([2, 3, 4])
+        mask[1, 2, 0] = 1
+        a = array(a, mask=mask)
+        b = array(data=[0, 10, 20, 30,  1,  3, 11, 22, 33],
+                  mask=[0,  1,  0,  1,  0,  1,  0,  1,  0])
+        ec = zeros((2, 3, 4), dtype=bool)
+        ec[0, 0, 0] = True
+        ec[0, 0, 1] = True
+        ec[0, 2, 3] = True
+        c = isin(a, b)
+        assert_(isinstance(c, MaskedArray))
+        assert_array_equal(c, ec)
+        #compare results of np.isin to ma.isin
+        d = np.isin(a, b[~b.mask]) & ~a.mask
+        assert_array_equal(c, d)
+
+    def test_in1d(self):
+        # Test in1d
+        a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
+        b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
+        test = in1d(a, b)
+        assert_equal(test, [True, True, True, False, True])
+        #
+        a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1])
+        b = array([1, 5, -1], mask=[0, 0, 1])
+        test = in1d(a, b)
+        assert_equal(test, [True, True, False, True, True])
+        #
+        assert_array_equal([], in1d([], []))
+
+    def test_in1d_invert(self):
+        # Test in1d's invert parameter
+        a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
+        b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
+        assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
+
+        a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1])
+        b = array([1, 5, -1], mask=[0, 0, 1])
+        assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
+
+        assert_array_equal([], in1d([], [], invert=True))
+
+    def test_union1d(self):
+        # Test union1d
+        a = array([1, 2, 5, 7, 5, -1], mask=[0, 0, 0, 0, 0, 1])
+        b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
+        test = union1d(a, b)
+        control = array([1, 2, 3, 4, 5, 7, -1], mask=[0, 0, 0, 0, 0, 0, 1])
+        assert_equal(test, control)
+
+        # Tests gh-10340, arguments to union1d should be
+        # flattened if they are not already 1D
+        x = array([[0, 1, 2], [3, 4, 5]], mask=[[0, 0, 0], [0, 0, 1]])
+        y = array([0, 1, 2, 3, 4], mask=[0, 0, 0, 0, 1])
+        ez = array([0, 1, 2, 3, 4, 5], mask=[0, 0, 0, 0, 0, 1])
+        z = union1d(x, y)
+        assert_equal(z, ez)
+        #
+        assert_array_equal([], union1d([], []))
+
+    def test_setdiff1d(self):
+        # Test setdiff1d
+        a = array([6, 5, 4, 7, 7, 1, 2, 1], mask=[0, 0, 0, 0, 0, 0, 0, 1])
+        b = array([2, 4, 3, 3, 2, 1, 5])
+        test = setdiff1d(a, b)
+        assert_equal(test, array([6, 7, -1], mask=[0, 0, 1]))
+        #
+        a = arange(10)
+        b = arange(8)
+        assert_equal(setdiff1d(a, b), array([8, 9]))
+        a = array([], np.uint32, mask=[])
+        assert_equal(setdiff1d(a, []).dtype, np.uint32)
+
+    def test_setdiff1d_char_array(self):
+        # Test setdiff1d_charray
+        a = np.array(['a', 'b', 'c'])
+        b = np.array(['a', 'b', 's'])
+        assert_array_equal(setdiff1d(a, b), np.array(['c']))
+
+
+class TestShapeBase:
+
+    def test_atleast_2d(self):
+        # Test atleast_2d
+        a = masked_array([0, 1, 2], mask=[0, 1, 0])
+        b = atleast_2d(a)
+        assert_equal(b.shape, (1, 3))
+        assert_equal(b.mask.shape, b.data.shape)
+        assert_equal(a.shape, (3,))
+        assert_equal(a.mask.shape, a.data.shape)
+        assert_equal(b.mask.shape, b.data.shape)
+
+    def test_shape_scalar(self):
+        # the atleast and diagflat function should work with scalars
+        # GitHub issue #3367
+        # Additionally, the atleast functions should accept multiple scalars
+        # correctly
+        b = atleast_1d(1.0)
+        assert_equal(b.shape, (1,))
+        assert_equal(b.mask.shape, b.shape)
+        assert_equal(b.data.shape, b.shape)
+
+        b = atleast_1d(1.0, 2.0)
+        for a in b:
+            assert_equal(a.shape, (1,))
+            assert_equal(a.mask.shape, a.shape)
+            assert_equal(a.data.shape, a.shape)
+
+        b = atleast_2d(1.0)
+        assert_equal(b.shape, (1, 1))
+        assert_equal(b.mask.shape, b.shape)
+        assert_equal(b.data.shape, b.shape)
+
+        b = atleast_2d(1.0, 2.0)
+        for a in b:
+            assert_equal(a.shape, (1, 1))
+            assert_equal(a.mask.shape, a.shape)
+            assert_equal(a.data.shape, a.shape)
+
+        b = atleast_3d(1.0)
+        assert_equal(b.shape, (1, 1, 1))
+        assert_equal(b.mask.shape, b.shape)
+        assert_equal(b.data.shape, b.shape)
+
+        b = atleast_3d(1.0, 2.0)
+        for a in b:
+            assert_equal(a.shape, (1, 1, 1))
+            assert_equal(a.mask.shape, a.shape)
+            assert_equal(a.data.shape, a.shape)
+
+        b = diagflat(1.0)
+        assert_equal(b.shape, (1, 1))
+        assert_equal(b.mask.shape, b.data.shape)
+
+
+class TestNDEnumerate:
+
+    def test_ndenumerate_nomasked(self):
+        ordinary = np.arange(6.).reshape((1, 3, 2))
+        empty_mask = np.zeros_like(ordinary, dtype=bool)
+        with_mask = masked_array(ordinary, mask=empty_mask)
+        assert_equal(list(np.ndenumerate(ordinary)),
+                     list(ndenumerate(ordinary)))
+        assert_equal(list(ndenumerate(ordinary)),
+                     list(ndenumerate(with_mask)))
+        assert_equal(list(ndenumerate(with_mask)),
+                     list(ndenumerate(with_mask, compressed=False)))
+
+    def test_ndenumerate_allmasked(self):
+        a = masked_all(())
+        b = masked_all((100,))
+        c = masked_all((2, 3, 4))
+        assert_equal(list(ndenumerate(a)), [])
+        assert_equal(list(ndenumerate(b)), [])
+        assert_equal(list(ndenumerate(b, compressed=False)),
+                     list(zip(np.ndindex((100,)), 100 * [masked])))
+        assert_equal(list(ndenumerate(c)), [])
+        assert_equal(list(ndenumerate(c, compressed=False)),
+                     list(zip(np.ndindex((2, 3, 4)), 2 * 3 * 4 * [masked])))
+
+    def test_ndenumerate_mixedmasked(self):
+        a = masked_array(np.arange(12).reshape((3, 4)),
+                         mask=[[1, 1, 1, 1],
+                               [1, 1, 0, 1],
+                               [0, 0, 0, 0]])
+        items = [((1, 2), 6),
+                 ((2, 0), 8), ((2, 1), 9), ((2, 2), 10), ((2, 3), 11)]
+        assert_equal(list(ndenumerate(a)), items)
+        assert_equal(len(list(ndenumerate(a, compressed=False))), a.size)
+        for coordinate, value in ndenumerate(a, compressed=False):
+            assert_equal(a[coordinate], value)
+
+
+class TestStack:
+
+    def test_stack_1d(self):
+        a = masked_array([0, 1, 2], mask=[0, 1, 0])
+        b = masked_array([9, 8, 7], mask=[1, 0, 0])
+
+        c = stack([a, b], axis=0)
+        assert_equal(c.shape, (2, 3))
+        assert_array_equal(a.mask, c[0].mask)
+        assert_array_equal(b.mask, c[1].mask)
+
+        d = vstack([a, b])
+        assert_array_equal(c.data, d.data)
+        assert_array_equal(c.mask, d.mask)
+
+        c = stack([a, b], axis=1)
+        assert_equal(c.shape, (3, 2))
+        assert_array_equal(a.mask, c[:, 0].mask)
+        assert_array_equal(b.mask, c[:, 1].mask)
+
+    def test_stack_masks(self):
+        a = masked_array([0, 1, 2], mask=True)
+        b = masked_array([9, 8, 7], mask=False)
+
+        c = stack([a, b], axis=0)
+        assert_equal(c.shape, (2, 3))
+        assert_array_equal(a.mask, c[0].mask)
+        assert_array_equal(b.mask, c[1].mask)
+
+        d = vstack([a, b])
+        assert_array_equal(c.data, d.data)
+        assert_array_equal(c.mask, d.mask)
+
+        c = stack([a, b], axis=1)
+        assert_equal(c.shape, (3, 2))
+        assert_array_equal(a.mask, c[:, 0].mask)
+        assert_array_equal(b.mask, c[:, 1].mask)
+
+    def test_stack_nd(self):
+        # 2D
+        shp = (3, 2)
+        d1 = np.random.randint(0, 10, shp)
+        d2 = np.random.randint(0, 10, shp)
+        m1 = np.random.randint(0, 2, shp).astype(bool)
+        m2 = np.random.randint(0, 2, shp).astype(bool)
+        a1 = masked_array(d1, mask=m1)
+        a2 = masked_array(d2, mask=m2)
+
+        c = stack([a1, a2], axis=0)
+        c_shp = (2,) + shp
+        assert_equal(c.shape, c_shp)
+        assert_array_equal(a1.mask, c[0].mask)
+        assert_array_equal(a2.mask, c[1].mask)
+
+        c = stack([a1, a2], axis=-1)
+        c_shp = shp + (2,)
+        assert_equal(c.shape, c_shp)
+        assert_array_equal(a1.mask, c[..., 0].mask)
+        assert_array_equal(a2.mask, c[..., 1].mask)
+
+        # 4D
+        shp = (3, 2, 4, 5,)
+        d1 = np.random.randint(0, 10, shp)
+        d2 = np.random.randint(0, 10, shp)
+        m1 = np.random.randint(0, 2, shp).astype(bool)
+        m2 = np.random.randint(0, 2, shp).astype(bool)
+        a1 = masked_array(d1, mask=m1)
+        a2 = masked_array(d2, mask=m2)
+
+        c = stack([a1, a2], axis=0)
+        c_shp = (2,) + shp
+        assert_equal(c.shape, c_shp)
+        assert_array_equal(a1.mask, c[0].mask)
+        assert_array_equal(a2.mask, c[1].mask)
+
+        c = stack([a1, a2], axis=-1)
+        c_shp = shp + (2,)
+        assert_equal(c.shape, c_shp)
+        assert_array_equal(a1.mask, c[..., 0].mask)
+        assert_array_equal(a2.mask, c[..., 1].mask)
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_mrecords.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_mrecords.py
new file mode 100644
index 00000000..77123c3c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_mrecords.py
@@ -0,0 +1,493 @@
+# pylint: disable-msg=W0611, W0612, W0511,R0201
+"""Tests suite for mrecords.
+
+:author: Pierre Gerard-Marchant
+:contact: pierregm_at_uga_dot_edu
+
+"""
+import numpy as np
+import numpy.ma as ma
+from numpy import recarray
+from numpy.ma import masked, nomask
+from numpy.testing import temppath
+from numpy.core.records import (
+    fromrecords as recfromrecords, fromarrays as recfromarrays
+    )
+from numpy.ma.mrecords import (
+    MaskedRecords, mrecarray, fromarrays, fromtextfile, fromrecords,
+    addfield
+    )
+from numpy.ma.testutils import (
+    assert_, assert_equal,
+    assert_equal_records,
+    )
+from numpy.compat import pickle
+
+
+class TestMRecords:
+
+    ilist = [1, 2, 3, 4, 5]
+    flist = [1.1, 2.2, 3.3, 4.4, 5.5]
+    slist = [b'one', b'two', b'three', b'four', b'five']
+    ddtype = [('a', int), ('b', float), ('c', '|S8')]
+    mask = [0, 1, 0, 0, 1]
+    base = ma.array(list(zip(ilist, flist, slist)), mask=mask, dtype=ddtype)
+
+    def test_byview(self):
+        # Test creation by view
+        base = self.base
+        mbase = base.view(mrecarray)
+        assert_equal(mbase.recordmask, base.recordmask)
+        assert_equal_records(mbase._mask, base._mask)
+        assert_(isinstance(mbase._data, recarray))
+        assert_equal_records(mbase._data, base._data.view(recarray))
+        for field in ('a', 'b', 'c'):
+            assert_equal(base[field], mbase[field])
+        assert_equal_records(mbase.view(mrecarray), mbase)
+
+    def test_get(self):
+        # Tests fields retrieval
+        base = self.base.copy()
+        mbase = base.view(mrecarray)
+        # As fields..........
+        for field in ('a', 'b', 'c'):
+            assert_equal(getattr(mbase, field), mbase[field])
+            assert_equal(base[field], mbase[field])
+        # as elements .......
+        mbase_first = mbase[0]
+        assert_(isinstance(mbase_first, mrecarray))
+        assert_equal(mbase_first.dtype, mbase.dtype)
+        assert_equal(mbase_first.tolist(), (1, 1.1, b'one'))
+        # Used to be mask, now it's recordmask
+        assert_equal(mbase_first.recordmask, nomask)
+        assert_equal(mbase_first._mask.item(), (False, False, False))
+        assert_equal(mbase_first['a'], mbase['a'][0])
+        mbase_last = mbase[-1]
+        assert_(isinstance(mbase_last, mrecarray))
+        assert_equal(mbase_last.dtype, mbase.dtype)
+        assert_equal(mbase_last.tolist(), (None, None, None))
+        # Used to be mask, now it's recordmask
+        assert_equal(mbase_last.recordmask, True)
+        assert_equal(mbase_last._mask.item(), (True, True, True))
+        assert_equal(mbase_last['a'], mbase['a'][-1])
+        assert_((mbase_last['a'] is masked))
+        # as slice ..........
+        mbase_sl = mbase[:2]
+        assert_(isinstance(mbase_sl, mrecarray))
+        assert_equal(mbase_sl.dtype, mbase.dtype)
+        # Used to be mask, now it's recordmask
+        assert_equal(mbase_sl.recordmask, [0, 1])
+        assert_equal_records(mbase_sl.mask,
+                             np.array([(False, False, False),
+                                       (True, True, True)],
+                                      dtype=mbase._mask.dtype))
+        assert_equal_records(mbase_sl, base[:2].view(mrecarray))
+        for field in ('a', 'b', 'c'):
+            assert_equal(getattr(mbase_sl, field), base[:2][field])
+
+    def test_set_fields(self):
+        # Tests setting fields.
+        base = self.base.copy()
+        mbase = base.view(mrecarray)
+        mbase = mbase.copy()
+        mbase.fill_value = (999999, 1e20, 'N/A')
+        # Change the data, the mask should be conserved
+        mbase.a._data[:] = 5
+        assert_equal(mbase['a']._data, [5, 5, 5, 5, 5])
+        assert_equal(mbase['a']._mask, [0, 1, 0, 0, 1])
+        # Change the elements, and the mask will follow
+        mbase.a = 1
+        assert_equal(mbase['a']._data, [1]*5)
+        assert_equal(ma.getmaskarray(mbase['a']), [0]*5)
+        # Use to be _mask, now it's recordmask
+        assert_equal(mbase.recordmask, [False]*5)
+        assert_equal(mbase._mask.tolist(),
+                     np.array([(0, 0, 0),
+                               (0, 1, 1),
+                               (0, 0, 0),
+                               (0, 0, 0),
+                               (0, 1, 1)],
+                              dtype=bool))
+        # Set a field to mask ........................
+        mbase.c = masked
+        # Use to be mask, and now it's still mask !
+        assert_equal(mbase.c.mask, [1]*5)
+        assert_equal(mbase.c.recordmask, [1]*5)
+        assert_equal(ma.getmaskarray(mbase['c']), [1]*5)
+        assert_equal(ma.getdata(mbase['c']), [b'N/A']*5)
+        assert_equal(mbase._mask.tolist(),
+                     np.array([(0, 0, 1),
+                               (0, 1, 1),
+                               (0, 0, 1),
+                               (0, 0, 1),
+                               (0, 1, 1)],
+                              dtype=bool))
+        # Set fields by slices .......................
+        mbase = base.view(mrecarray).copy()
+        mbase.a[3:] = 5
+        assert_equal(mbase.a, [1, 2, 3, 5, 5])
+        assert_equal(mbase.a._mask, [0, 1, 0, 0, 0])
+        mbase.b[3:] = masked
+        assert_equal(mbase.b, base['b'])
+        assert_equal(mbase.b._mask, [0, 1, 0, 1, 1])
+        # Set fields globally..........................
+        ndtype = [('alpha', '|S1'), ('num', int)]
+        data = ma.array([('a', 1), ('b', 2), ('c', 3)], dtype=ndtype)
+        rdata = data.view(MaskedRecords)
+        val = ma.array([10, 20, 30], mask=[1, 0, 0])
+
+        rdata['num'] = val
+        assert_equal(rdata.num, val)
+        assert_equal(rdata.num.mask, [1, 0, 0])
+
+    def test_set_fields_mask(self):
+        # Tests setting the mask of a field.
+        base = self.base.copy()
+        # This one has already a mask....
+        mbase = base.view(mrecarray)
+        mbase['a'][-2] = masked
+        assert_equal(mbase.a, [1, 2, 3, 4, 5])
+        assert_equal(mbase.a._mask, [0, 1, 0, 1, 1])
+        # This one has not yet
+        mbase = fromarrays([np.arange(5), np.random.rand(5)],
+                           dtype=[('a', int), ('b', float)])
+        mbase['a'][-2] = masked
+        assert_equal(mbase.a, [0, 1, 2, 3, 4])
+        assert_equal(mbase.a._mask, [0, 0, 0, 1, 0])
+
+    def test_set_mask(self):
+        base = self.base.copy()
+        mbase = base.view(mrecarray)
+        # Set the mask to True .......................
+        mbase.mask = masked
+        assert_equal(ma.getmaskarray(mbase['b']), [1]*5)
+        assert_equal(mbase['a']._mask, mbase['b']._mask)
+        assert_equal(mbase['a']._mask, mbase['c']._mask)
+        assert_equal(mbase._mask.tolist(),
+                     np.array([(1, 1, 1)]*5, dtype=bool))
+        # Delete the mask ............................
+        mbase.mask = nomask
+        assert_equal(ma.getmaskarray(mbase['c']), [0]*5)
+        assert_equal(mbase._mask.tolist(),
+                     np.array([(0, 0, 0)]*5, dtype=bool))
+
+    def test_set_mask_fromarray(self):
+        base = self.base.copy()
+        mbase = base.view(mrecarray)
+        # Sets the mask w/ an array
+        mbase.mask = [1, 0, 0, 0, 1]
+        assert_equal(mbase.a.mask, [1, 0, 0, 0, 1])
+        assert_equal(mbase.b.mask, [1, 0, 0, 0, 1])
+        assert_equal(mbase.c.mask, [1, 0, 0, 0, 1])
+        # Yay, once more !
+        mbase.mask = [0, 0, 0, 0, 1]
+        assert_equal(mbase.a.mask, [0, 0, 0, 0, 1])
+        assert_equal(mbase.b.mask, [0, 0, 0, 0, 1])
+        assert_equal(mbase.c.mask, [0, 0, 0, 0, 1])
+
+    def test_set_mask_fromfields(self):
+        mbase = self.base.copy().view(mrecarray)
+
+        nmask = np.array(
+            [(0, 1, 0), (0, 1, 0), (1, 0, 1), (1, 0, 1), (0, 0, 0)],
+            dtype=[('a', bool), ('b', bool), ('c', bool)])
+        mbase.mask = nmask
+        assert_equal(mbase.a.mask, [0, 0, 1, 1, 0])
+        assert_equal(mbase.b.mask, [1, 1, 0, 0, 0])
+        assert_equal(mbase.c.mask, [0, 0, 1, 1, 0])
+        # Reinitialize and redo
+        mbase.mask = False
+        mbase.fieldmask = nmask
+        assert_equal(mbase.a.mask, [0, 0, 1, 1, 0])
+        assert_equal(mbase.b.mask, [1, 1, 0, 0, 0])
+        assert_equal(mbase.c.mask, [0, 0, 1, 1, 0])
+
+    def test_set_elements(self):
+        base = self.base.copy()
+        # Set an element to mask .....................
+        mbase = base.view(mrecarray).copy()
+        mbase[-2] = masked
+        assert_equal(
+            mbase._mask.tolist(),
+            np.array([(0, 0, 0), (1, 1, 1), (0, 0, 0), (1, 1, 1), (1, 1, 1)],
+                     dtype=bool))
+        # Used to be mask, now it's recordmask!
+        assert_equal(mbase.recordmask, [0, 1, 0, 1, 1])
+        # Set slices .................................
+        mbase = base.view(mrecarray).copy()
+        mbase[:2] = (5, 5, 5)
+        assert_equal(mbase.a._data, [5, 5, 3, 4, 5])
+        assert_equal(mbase.a._mask, [0, 0, 0, 0, 1])
+        assert_equal(mbase.b._data, [5., 5., 3.3, 4.4, 5.5])
+        assert_equal(mbase.b._mask, [0, 0, 0, 0, 1])
+        assert_equal(mbase.c._data,
+                     [b'5', b'5', b'three', b'four', b'five'])
+        assert_equal(mbase.b._mask, [0, 0, 0, 0, 1])
+
+        mbase = base.view(mrecarray).copy()
+        mbase[:2] = masked
+        assert_equal(mbase.a._data, [1, 2, 3, 4, 5])
+        assert_equal(mbase.a._mask, [1, 1, 0, 0, 1])
+        assert_equal(mbase.b._data, [1.1, 2.2, 3.3, 4.4, 5.5])
+        assert_equal(mbase.b._mask, [1, 1, 0, 0, 1])
+        assert_equal(mbase.c._data,
+                     [b'one', b'two', b'three', b'four', b'five'])
+        assert_equal(mbase.b._mask, [1, 1, 0, 0, 1])
+
+    def test_setslices_hardmask(self):
+        # Tests setting slices w/ hardmask.
+        base = self.base.copy()
+        mbase = base.view(mrecarray)
+        mbase.harden_mask()
+        try:
+            mbase[-2:] = (5, 5, 5)
+            assert_equal(mbase.a._data, [1, 2, 3, 5, 5])
+            assert_equal(mbase.b._data, [1.1, 2.2, 3.3, 5, 5.5])
+            assert_equal(mbase.c._data,
+                         [b'one', b'two', b'three', b'5', b'five'])
+            assert_equal(mbase.a._mask, [0, 1, 0, 0, 1])
+            assert_equal(mbase.b._mask, mbase.a._mask)
+            assert_equal(mbase.b._mask, mbase.c._mask)
+        except NotImplementedError:
+            # OK, not implemented yet...
+            pass
+        except AssertionError:
+            raise
+        else:
+            raise Exception("Flexible hard masks should be supported !")
+        # Not using a tuple should crash
+        try:
+            mbase[-2:] = 3
+        except (NotImplementedError, TypeError):
+            pass
+        else:
+            raise TypeError("Should have expected a readable buffer object!")
+
+    def test_hardmask(self):
+        # Test hardmask
+        base = self.base.copy()
+        mbase = base.view(mrecarray)
+        mbase.harden_mask()
+        assert_(mbase._hardmask)
+        mbase.mask = nomask
+        assert_equal_records(mbase._mask, base._mask)
+        mbase.soften_mask()
+        assert_(not mbase._hardmask)
+        mbase.mask = nomask
+        # So, the mask of a field is no longer set to nomask...
+        assert_equal_records(mbase._mask,
+                             ma.make_mask_none(base.shape, base.dtype))
+        assert_(ma.make_mask(mbase['b']._mask) is nomask)
+        assert_equal(mbase['a']._mask, mbase['b']._mask)
+
+    def test_pickling(self):
+        # Test pickling
+        base = self.base.copy()
+        mrec = base.view(mrecarray)
+        for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+            _ = pickle.dumps(mrec, protocol=proto)
+            mrec_ = pickle.loads(_)
+            assert_equal(mrec_.dtype, mrec.dtype)
+            assert_equal_records(mrec_._data, mrec._data)
+            assert_equal(mrec_._mask, mrec._mask)
+            assert_equal_records(mrec_._mask, mrec._mask)
+
+    def test_filled(self):
+        # Test filling the array
+        _a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int)
+        _b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float)
+        _c = ma.array(['one', 'two', 'three'], mask=[0, 0, 1], dtype='|S8')
+        ddtype = [('a', int), ('b', float), ('c', '|S8')]
+        mrec = fromarrays([_a, _b, _c], dtype=ddtype,
+                          fill_value=(99999, 99999., 'N/A'))
+        mrecfilled = mrec.filled()
+        assert_equal(mrecfilled['a'], np.array((1, 2, 99999), dtype=int))
+        assert_equal(mrecfilled['b'], np.array((1.1, 2.2, 99999.),
+                                               dtype=float))
+        assert_equal(mrecfilled['c'], np.array(('one', 'two', 'N/A'),
+                                               dtype='|S8'))
+
+    def test_tolist(self):
+        # Test tolist.
+        _a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int)
+        _b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float)
+        _c = ma.array(['one', 'two', 'three'], mask=[1, 0, 0], dtype='|S8')
+        ddtype = [('a', int), ('b', float), ('c', '|S8')]
+        mrec = fromarrays([_a, _b, _c], dtype=ddtype,
+                          fill_value=(99999, 99999., 'N/A'))
+
+        assert_equal(mrec.tolist(),
+                     [(1, 1.1, None), (2, 2.2, b'two'),
+                      (None, None, b'three')])
+
+    def test_withnames(self):
+        # Test the creation w/ format and names
+        x = mrecarray(1, formats=float, names='base')
+        x[0]['base'] = 10
+        assert_equal(x['base'][0], 10)
+
+    def test_exotic_formats(self):
+        # Test that 'exotic' formats are processed properly
+        easy = mrecarray(1, dtype=[('i', int), ('s', '|S8'), ('f', float)])
+        easy[0] = masked
+        assert_equal(easy.filled(1).item(), (1, b'1', 1.))
+
+        solo = mrecarray(1, dtype=[('f0', '<f8', (2, 2))])
+        solo[0] = masked
+        assert_equal(solo.filled(1).item(),
+                     np.array((1,), dtype=solo.dtype).item())
+
+        mult = mrecarray(2, dtype="i4, (2,3)float, float")
+        mult[0] = masked
+        mult[1] = (1, 1, 1)
+        mult.filled(0)
+        assert_equal_records(mult.filled(0),
+                             np.array([(0, 0, 0), (1, 1, 1)],
+                                      dtype=mult.dtype))
+
+
+class TestView:
+
+    def setup_method(self):
+        (a, b) = (np.arange(10), np.random.rand(10))
+        ndtype = [('a', float), ('b', float)]
+        arr = np.array(list(zip(a, b)), dtype=ndtype)
+
+        mrec = fromarrays([a, b], dtype=ndtype, fill_value=(-9., -99.))
+        mrec.mask[3] = (False, True)
+        self.data = (mrec, a, b, arr)
+
+    def test_view_by_itself(self):
+        (mrec, a, b, arr) = self.data
+        test = mrec.view()
+        assert_(isinstance(test, MaskedRecords))
+        assert_equal_records(test, mrec)
+        assert_equal_records(test._mask, mrec._mask)
+
+    def test_view_simple_dtype(self):
+        (mrec, a, b, arr) = self.data
+        ntype = (float, 2)
+        test = mrec.view(ntype)
+        assert_(isinstance(test, ma.MaskedArray))
+        assert_equal(test, np.array(list(zip(a, b)), dtype=float))
+        assert_(test[3, 1] is ma.masked)
+
+    def test_view_flexible_type(self):
+        (mrec, a, b, arr) = self.data
+        alttype = [('A', float), ('B', float)]
+        test = mrec.view(alttype)
+        assert_(isinstance(test, MaskedRecords))
+        assert_equal_records(test, arr.view(alttype))
+        assert_(test['B'][3] is masked)
+        assert_equal(test.dtype, np.dtype(alttype))
+        assert_(test._fill_value is None)
+
+
+##############################################################################
+class TestMRecordsImport:
+
+    _a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int)
+    _b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float)
+    _c = ma.array([b'one', b'two', b'three'],
+                  mask=[0, 0, 1], dtype='|S8')
+    ddtype = [('a', int), ('b', float), ('c', '|S8')]
+    mrec = fromarrays([_a, _b, _c], dtype=ddtype,
+                      fill_value=(b'99999', b'99999.',
+                                  b'N/A'))
+    nrec = recfromarrays((_a._data, _b._data, _c._data), dtype=ddtype)
+    data = (mrec, nrec, ddtype)
+
+    def test_fromarrays(self):
+        _a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int)
+        _b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float)
+        _c = ma.array(['one', 'two', 'three'], mask=[0, 0, 1], dtype='|S8')
+        (mrec, nrec, _) = self.data
+        for (f, l) in zip(('a', 'b', 'c'), (_a, _b, _c)):
+            assert_equal(getattr(mrec, f)._mask, l._mask)
+        # One record only
+        _x = ma.array([1, 1.1, 'one'], mask=[1, 0, 0], dtype=object)
+        assert_equal_records(fromarrays(_x, dtype=mrec.dtype), mrec[0])
+
+    def test_fromrecords(self):
+        # Test construction from records.
+        (mrec, nrec, ddtype) = self.data
+        #......
+        palist = [(1, 'abc', 3.7000002861022949, 0),
+                  (2, 'xy', 6.6999998092651367, 1),
+                  (0, ' ', 0.40000000596046448, 0)]
+        pa = recfromrecords(palist, names='c1, c2, c3, c4')
+        mpa = fromrecords(palist, names='c1, c2, c3, c4')
+        assert_equal_records(pa, mpa)
+        #.....
+        _mrec = fromrecords(nrec)
+        assert_equal(_mrec.dtype, mrec.dtype)
+        for field in _mrec.dtype.names:
+            assert_equal(getattr(_mrec, field), getattr(mrec._data, field))
+
+        _mrec = fromrecords(nrec.tolist(), names='c1,c2,c3')
+        assert_equal(_mrec.dtype, [('c1', int), ('c2', float), ('c3', '|S5')])
+        for (f, n) in zip(('c1', 'c2', 'c3'), ('a', 'b', 'c')):
+            assert_equal(getattr(_mrec, f), getattr(mrec._data, n))
+
+        _mrec = fromrecords(mrec)
+        assert_equal(_mrec.dtype, mrec.dtype)
+        assert_equal_records(_mrec._data, mrec.filled())
+        assert_equal_records(_mrec._mask, mrec._mask)
+
+    def test_fromrecords_wmask(self):
+        # Tests construction from records w/ mask.
+        (mrec, nrec, ddtype) = self.data
+
+        _mrec = fromrecords(nrec.tolist(), dtype=ddtype, mask=[0, 1, 0,])
+        assert_equal_records(_mrec._data, mrec._data)
+        assert_equal(_mrec._mask.tolist(), [(0, 0, 0), (1, 1, 1), (0, 0, 0)])
+
+        _mrec = fromrecords(nrec.tolist(), dtype=ddtype, mask=True)
+        assert_equal_records(_mrec._data, mrec._data)
+        assert_equal(_mrec._mask.tolist(), [(1, 1, 1), (1, 1, 1), (1, 1, 1)])
+
+        _mrec = fromrecords(nrec.tolist(), dtype=ddtype, mask=mrec._mask)
+        assert_equal_records(_mrec._data, mrec._data)
+        assert_equal(_mrec._mask.tolist(), mrec._mask.tolist())
+
+        _mrec = fromrecords(nrec.tolist(), dtype=ddtype,
+                            mask=mrec._mask.tolist())
+        assert_equal_records(_mrec._data, mrec._data)
+        assert_equal(_mrec._mask.tolist(), mrec._mask.tolist())
+
+    def test_fromtextfile(self):
+        # Tests reading from a text file.
+        fcontent = (
+"""#
+'One (S)','Two (I)','Three (F)','Four (M)','Five (-)','Six (C)'
+'strings',1,1.0,'mixed column',,1
+'with embedded "double quotes"',2,2.0,1.0,,1
+'strings',3,3.0E5,3,,1
+'strings',4,-1e-10,,,1
+""")
+        with temppath() as path:
+            with open(path, 'w') as f:
+                f.write(fcontent)
+            mrectxt = fromtextfile(path, delimiter=',', varnames='ABCDEFG')
+        assert_(isinstance(mrectxt, MaskedRecords))
+        assert_equal(mrectxt.F, [1, 1, 1, 1])
+        assert_equal(mrectxt.E._mask, [1, 1, 1, 1])
+        assert_equal(mrectxt.C, [1, 2, 3.e+5, -1e-10])
+
+    def test_addfield(self):
+        # Tests addfield
+        (mrec, nrec, ddtype) = self.data
+        (d, m) = ([100, 200, 300], [1, 0, 0])
+        mrec = addfield(mrec, ma.array(d, mask=m))
+        assert_equal(mrec.f3, d)
+        assert_equal(mrec.f3._mask, m)
+
+
+def test_record_array_with_object_field():
+    # Trac #1839
+    y = ma.masked_array(
+        [(1, '2'), (3, '4')],
+        mask=[(0, 0), (0, 1)],
+        dtype=[('a', int), ('b', object)])
+    # getting an item used to fail
+    y[1]
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_old_ma.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_old_ma.py
new file mode 100644
index 00000000..7b892ad2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_old_ma.py
@@ -0,0 +1,874 @@
+from functools import reduce
+
+import pytest
+
+import numpy as np
+import numpy.core.umath as umath
+import numpy.core.fromnumeric as fromnumeric
+from numpy.testing import (
+    assert_, assert_raises, assert_equal,
+    )
+from numpy.ma import (
+    MaskType, MaskedArray, absolute, add, all, allclose, allequal, alltrue,
+    arange, arccos, arcsin, arctan, arctan2, array, average, choose,
+    concatenate, conjugate, cos, cosh, count, divide, equal, exp, filled,
+    getmask, greater, greater_equal, inner, isMaskedArray, less,
+    less_equal, log, log10, make_mask, masked, masked_array, masked_equal,
+    masked_greater, masked_greater_equal, masked_inside, masked_less,
+    masked_less_equal, masked_not_equal, masked_outside,
+    masked_print_option, masked_values, masked_where, maximum, minimum,
+    multiply, nomask, nonzero, not_equal, ones, outer, product, put, ravel,
+    repeat, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum,
+    take, tan, tanh, transpose, where, zeros,
+    )
+from numpy.compat import pickle
+
+pi = np.pi
+
+
+def eq(v, w, msg=''):
+    result = allclose(v, w)
+    if not result:
+        print(f'Not eq:{msg}\n{v}\n----{w}')
+    return result
+
+
+class TestMa:
+
+    def setup_method(self):
+        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
+        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
+        a10 = 10.
+        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
+        xm = array(x, mask=m1)
+        ym = array(y, mask=m2)
+        z = np.array([-.5, 0., .5, .8])
+        zm = array(z, mask=[0, 1, 0, 0])
+        xf = np.where(m1, 1e+20, x)
+        s = x.shape
+        xm.set_fill_value(1e+20)
+        self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf, s)
+
+    def test_testBasic1d(self):
+        # Test of basic array creation and properties in 1 dimension.
+        (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+        assert_(not isMaskedArray(x))
+        assert_(isMaskedArray(xm))
+        assert_equal(shape(xm), s)
+        assert_equal(xm.shape, s)
+        assert_equal(xm.dtype, x.dtype)
+        assert_equal(xm.size, reduce(lambda x, y:x * y, s))
+        assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1))
+        assert_(eq(xm, xf))
+        assert_(eq(filled(xm, 1.e20), xf))
+        assert_(eq(x, xm))
+
+    @pytest.mark.parametrize("s", [(4, 3), (6, 2)])
+    def test_testBasic2d(self, s):
+        # Test of basic array creation and properties in 2 dimensions.
+        (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+        x.shape = s
+        y.shape = s
+        xm.shape = s
+        ym.shape = s
+        xf.shape = s
+
+        assert_(not isMaskedArray(x))
+        assert_(isMaskedArray(xm))
+        assert_equal(shape(xm), s)
+        assert_equal(xm.shape, s)
+        assert_equal(xm.size, reduce(lambda x, y: x * y, s))
+        assert_equal(count(xm), len(m1) - reduce(lambda x, y: x + y, m1))
+        assert_(eq(xm, xf))
+        assert_(eq(filled(xm, 1.e20), xf))
+        assert_(eq(x, xm))
+
+    def test_testArithmetic(self):
+        # Test of basic arithmetic.
+        (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+        a2d = array([[1, 2], [0, 4]])
+        a2dm = masked_array(a2d, [[0, 0], [1, 0]])
+        assert_(eq(a2d * a2d, a2d * a2dm))
+        assert_(eq(a2d + a2d, a2d + a2dm))
+        assert_(eq(a2d - a2d, a2d - a2dm))
+        for s in [(12,), (4, 3), (2, 6)]:
+            x = x.reshape(s)
+            y = y.reshape(s)
+            xm = xm.reshape(s)
+            ym = ym.reshape(s)
+            xf = xf.reshape(s)
+            assert_(eq(-x, -xm))
+            assert_(eq(x + y, xm + ym))
+            assert_(eq(x - y, xm - ym))
+            assert_(eq(x * y, xm * ym))
+            with np.errstate(divide='ignore', invalid='ignore'):
+                assert_(eq(x / y, xm / ym))
+            assert_(eq(a10 + y, a10 + ym))
+            assert_(eq(a10 - y, a10 - ym))
+            assert_(eq(a10 * y, a10 * ym))
+            with np.errstate(divide='ignore', invalid='ignore'):
+                assert_(eq(a10 / y, a10 / ym))
+            assert_(eq(x + a10, xm + a10))
+            assert_(eq(x - a10, xm - a10))
+            assert_(eq(x * a10, xm * a10))
+            assert_(eq(x / a10, xm / a10))
+            assert_(eq(x ** 2, xm ** 2))
+            assert_(eq(abs(x) ** 2.5, abs(xm) ** 2.5))
+            assert_(eq(x ** y, xm ** ym))
+            assert_(eq(np.add(x, y), add(xm, ym)))
+            assert_(eq(np.subtract(x, y), subtract(xm, ym)))
+            assert_(eq(np.multiply(x, y), multiply(xm, ym)))
+            with np.errstate(divide='ignore', invalid='ignore'):
+                assert_(eq(np.divide(x, y), divide(xm, ym)))
+
+    def test_testMixedArithmetic(self):
+        na = np.array([1])
+        ma = array([1])
+        assert_(isinstance(na + ma, MaskedArray))
+        assert_(isinstance(ma + na, MaskedArray))
+
+    def test_testUfuncs1(self):
+        # Test various functions such as sin, cos.
+        (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+        assert_(eq(np.cos(x), cos(xm)))
+        assert_(eq(np.cosh(x), cosh(xm)))
+        assert_(eq(np.sin(x), sin(xm)))
+        assert_(eq(np.sinh(x), sinh(xm)))
+        assert_(eq(np.tan(x), tan(xm)))
+        assert_(eq(np.tanh(x), tanh(xm)))
+        with np.errstate(divide='ignore', invalid='ignore'):
+            assert_(eq(np.sqrt(abs(x)), sqrt(xm)))
+            assert_(eq(np.log(abs(x)), log(xm)))
+            assert_(eq(np.log10(abs(x)), log10(xm)))
+        assert_(eq(np.exp(x), exp(xm)))
+        assert_(eq(np.arcsin(z), arcsin(zm)))
+        assert_(eq(np.arccos(z), arccos(zm)))
+        assert_(eq(np.arctan(z), arctan(zm)))
+        assert_(eq(np.arctan2(x, y), arctan2(xm, ym)))
+        assert_(eq(np.absolute(x), absolute(xm)))
+        assert_(eq(np.equal(x, y), equal(xm, ym)))
+        assert_(eq(np.not_equal(x, y), not_equal(xm, ym)))
+        assert_(eq(np.less(x, y), less(xm, ym)))
+        assert_(eq(np.greater(x, y), greater(xm, ym)))
+        assert_(eq(np.less_equal(x, y), less_equal(xm, ym)))
+        assert_(eq(np.greater_equal(x, y), greater_equal(xm, ym)))
+        assert_(eq(np.conjugate(x), conjugate(xm)))
+        assert_(eq(np.concatenate((x, y)), concatenate((xm, ym))))
+        assert_(eq(np.concatenate((x, y)), concatenate((x, y))))
+        assert_(eq(np.concatenate((x, y)), concatenate((xm, y))))
+        assert_(eq(np.concatenate((x, y, x)), concatenate((x, ym, x))))
+
+    def test_xtestCount(self):
+        # Test count
+        ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
+        assert_(count(ott).dtype.type is np.intp)
+        assert_equal(3, count(ott))
+        assert_equal(1, count(1))
+        assert_(eq(0, array(1, mask=[1])))
+        ott = ott.reshape((2, 2))
+        assert_(count(ott).dtype.type is np.intp)
+        assert_(isinstance(count(ott, 0), np.ndarray))
+        assert_(count(ott).dtype.type is np.intp)
+        assert_(eq(3, count(ott)))
+        assert_(getmask(count(ott, 0)) is nomask)
+        assert_(eq([1, 2], count(ott, 0)))
+
+    def test_testMinMax(self):
+        # Test minimum and maximum.
+        (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+        xr = np.ravel(x)  # max doesn't work if shaped
+        xmr = ravel(xm)
+
+        # true because of careful selection of data
+        assert_(eq(max(xr), maximum.reduce(xmr)))
+        assert_(eq(min(xr), minimum.reduce(xmr)))
+
+    def test_testAddSumProd(self):
+        # Test add, sum, product.
+        (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+        assert_(eq(np.add.reduce(x), add.reduce(x)))
+        assert_(eq(np.add.accumulate(x), add.accumulate(x)))
+        assert_(eq(4, sum(array(4), axis=0)))
+        assert_(eq(4, sum(array(4), axis=0)))
+        assert_(eq(np.sum(x, axis=0), sum(x, axis=0)))
+        assert_(eq(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0)))
+        assert_(eq(np.sum(x, 0), sum(x, 0)))
+        assert_(eq(np.prod(x, axis=0), product(x, axis=0)))
+        assert_(eq(np.prod(x, 0), product(x, 0)))
+        assert_(eq(np.prod(filled(xm, 1), axis=0),
+                           product(xm, axis=0)))
+        if len(s) > 1:
+            assert_(eq(np.concatenate((x, y), 1),
+                               concatenate((xm, ym), 1)))
+            assert_(eq(np.add.reduce(x, 1), add.reduce(x, 1)))
+            assert_(eq(np.sum(x, 1), sum(x, 1)))
+            assert_(eq(np.prod(x, 1), product(x, 1)))
+
+    def test_testCI(self):
+        # Test of conversions and indexing
+        x1 = np.array([1, 2, 4, 3])
+        x2 = array(x1, mask=[1, 0, 0, 0])
+        x3 = array(x1, mask=[0, 1, 0, 1])
+        x4 = array(x1)
+        # test conversion to strings
+        str(x2)  # raises?
+        repr(x2)  # raises?
+        assert_(eq(np.sort(x1), sort(x2, fill_value=0)))
+        # tests of indexing
+        assert_(type(x2[1]) is type(x1[1]))
+        assert_(x1[1] == x2[1])
+        assert_(x2[0] is masked)
+        assert_(eq(x1[2], x2[2]))
+        assert_(eq(x1[2:5], x2[2:5]))
+        assert_(eq(x1[:], x2[:]))
+        assert_(eq(x1[1:], x3[1:]))
+        x1[2] = 9
+        x2[2] = 9
+        assert_(eq(x1, x2))
+        x1[1:3] = 99
+        x2[1:3] = 99
+        assert_(eq(x1, x2))
+        x2[1] = masked
+        assert_(eq(x1, x2))
+        x2[1:3] = masked
+        assert_(eq(x1, x2))
+        x2[:] = x1
+        x2[1] = masked
+        assert_(allequal(getmask(x2), array([0, 1, 0, 0])))
+        x3[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0])
+        assert_(allequal(getmask(x3), array([0, 1, 1, 0])))
+        x4[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0])
+        assert_(allequal(getmask(x4), array([0, 1, 1, 0])))
+        assert_(allequal(x4, array([1, 2, 3, 4])))
+        x1 = np.arange(5) * 1.0
+        x2 = masked_values(x1, 3.0)
+        assert_(eq(x1, x2))
+        assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask))
+        assert_(eq(3.0, x2.fill_value))
+        x1 = array([1, 'hello', 2, 3], object)
+        x2 = np.array([1, 'hello', 2, 3], object)
+        s1 = x1[1]
+        s2 = x2[1]
+        assert_equal(type(s2), str)
+        assert_equal(type(s1), str)
+        assert_equal(s1, s2)
+        assert_(x1[1:1].shape == (0,))
+
+    def test_testCopySize(self):
+        # Tests of some subtle points of copying and sizing.
+        n = [0, 0, 1, 0, 0]
+        m = make_mask(n)
+        m2 = make_mask(m)
+        assert_(m is m2)
+        m3 = make_mask(m, copy=True)
+        assert_(m is not m3)
+
+        x1 = np.arange(5)
+        y1 = array(x1, mask=m)
+        assert_(y1._data is not x1)
+        assert_(allequal(x1, y1._data))
+        assert_(y1._mask is m)
+
+        y1a = array(y1, copy=0)
+        # For copy=False, one might expect that the array would just
+        # passed on, i.e., that it would be "is" instead of "==".
+        # See gh-4043 for discussion.
+        assert_(y1a._mask.__array_interface__ ==
+                y1._mask.__array_interface__)
+
+        y2 = array(x1, mask=m3, copy=0)
+        assert_(y2._mask is m3)
+        assert_(y2[2] is masked)
+        y2[2] = 9
+        assert_(y2[2] is not masked)
+        assert_(y2._mask is m3)
+        assert_(allequal(y2.mask, 0))
+
+        y2a = array(x1, mask=m, copy=1)
+        assert_(y2a._mask is not m)
+        assert_(y2a[2] is masked)
+        y2a[2] = 9
+        assert_(y2a[2] is not masked)
+        assert_(y2a._mask is not m)
+        assert_(allequal(y2a.mask, 0))
+
+        y3 = array(x1 * 1.0, mask=m)
+        assert_(filled(y3).dtype is (x1 * 1.0).dtype)
+
+        x4 = arange(4)
+        x4[2] = masked
+        y4 = resize(x4, (8,))
+        assert_(eq(concatenate([x4, x4]), y4))
+        assert_(eq(getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0]))
+        y5 = repeat(x4, (2, 2, 2, 2), axis=0)
+        assert_(eq(y5, [0, 0, 1, 1, 2, 2, 3, 3]))
+        y6 = repeat(x4, 2, axis=0)
+        assert_(eq(y5, y6))
+
+    def test_testPut(self):
+        # Test of put
+        d = arange(5)
+        n = [0, 0, 0, 1, 1]
+        m = make_mask(n)
+        m2 = m.copy()
+        x = array(d, mask=m)
+        assert_(x[3] is masked)
+        assert_(x[4] is masked)
+        x[[1, 4]] = [10, 40]
+        assert_(x._mask is m)
+        assert_(x[3] is masked)
+        assert_(x[4] is not masked)
+        assert_(eq(x, [0, 10, 2, -1, 40]))
+
+        x = array(d, mask=m2, copy=True)
+        x.put([0, 1, 2], [-1, 100, 200])
+        assert_(x._mask is not m2)
+        assert_(x[3] is masked)
+        assert_(x[4] is masked)
+        assert_(eq(x, [-1, 100, 200, 0, 0]))
+
+    def test_testPut2(self):
+        # Test of put
+        d = arange(5)
+        x = array(d, mask=[0, 0, 0, 0, 0])
+        z = array([10, 40], mask=[1, 0])
+        assert_(x[2] is not masked)
+        assert_(x[3] is not masked)
+        x[2:4] = z
+        assert_(x[2] is masked)
+        assert_(x[3] is not masked)
+        assert_(eq(x, [0, 1, 10, 40, 4]))
+
+        d = arange(5)
+        x = array(d, mask=[0, 0, 0, 0, 0])
+        y = x[2:4]
+        z = array([10, 40], mask=[1, 0])
+        assert_(x[2] is not masked)
+        assert_(x[3] is not masked)
+        y[:] = z
+        assert_(y[0] is masked)
+        assert_(y[1] is not masked)
+        assert_(eq(y, [10, 40]))
+        assert_(x[2] is masked)
+        assert_(x[3] is not masked)
+        assert_(eq(x, [0, 1, 10, 40, 4]))
+
+    def test_testMaPut(self):
+        (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+        m = [1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1]
+        i = np.nonzero(m)[0]
+        put(ym, i, zm)
+        assert_(all(take(ym, i, axis=0) == zm))
+
+    def test_testOddFeatures(self):
+        # Test of other odd features
+        x = arange(20)
+        x = x.reshape(4, 5)
+        x.flat[5] = 12
+        assert_(x[1, 0] == 12)
+        z = x + 10j * x
+        assert_(eq(z.real, x))
+        assert_(eq(z.imag, 10 * x))
+        assert_(eq((z * conjugate(z)).real, 101 * x * x))
+        z.imag[...] = 0.0
+
+        x = arange(10)
+        x[3] = masked
+        assert_(str(x[3]) == str(masked))
+        c = x >= 8
+        assert_(count(where(c, masked, masked)) == 0)
+        assert_(shape(where(c, masked, masked)) == c.shape)
+        z = where(c, x, masked)
+        assert_(z.dtype is x.dtype)
+        assert_(z[3] is masked)
+        assert_(z[4] is masked)
+        assert_(z[7] is masked)
+        assert_(z[8] is not masked)
+        assert_(z[9] is not masked)
+        assert_(eq(x, z))
+        z = where(c, masked, x)
+        assert_(z.dtype is x.dtype)
+        assert_(z[3] is masked)
+        assert_(z[4] is not masked)
+        assert_(z[7] is not masked)
+        assert_(z[8] is masked)
+        assert_(z[9] is masked)
+        z = masked_where(c, x)
+        assert_(z.dtype is x.dtype)
+        assert_(z[3] is masked)
+        assert_(z[4] is not masked)
+        assert_(z[7] is not masked)
+        assert_(z[8] is masked)
+        assert_(z[9] is masked)
+        assert_(eq(x, z))
+        x = array([1., 2., 3., 4., 5.])
+        c = array([1, 1, 1, 0, 0])
+        x[2] = masked
+        z = where(c, x, -x)
+        assert_(eq(z, [1., 2., 0., -4., -5]))
+        c[0] = masked
+        z = where(c, x, -x)
+        assert_(eq(z, [1., 2., 0., -4., -5]))
+        assert_(z[0] is masked)
+        assert_(z[1] is not masked)
+        assert_(z[2] is masked)
+        assert_(eq(masked_where(greater(x, 2), x), masked_greater(x, 2)))
+        assert_(eq(masked_where(greater_equal(x, 2), x),
+                   masked_greater_equal(x, 2)))
+        assert_(eq(masked_where(less(x, 2), x), masked_less(x, 2)))
+        assert_(eq(masked_where(less_equal(x, 2), x), masked_less_equal(x, 2)))
+        assert_(eq(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2)))
+        assert_(eq(masked_where(equal(x, 2), x), masked_equal(x, 2)))
+        assert_(eq(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2)))
+        assert_(eq(masked_inside(list(range(5)), 1, 3), [0, 199, 199, 199, 4]))
+        assert_(eq(masked_outside(list(range(5)), 1, 3), [199, 1, 2, 3, 199]))
+        assert_(eq(masked_inside(array(list(range(5)),
+                                       mask=[1, 0, 0, 0, 0]), 1, 3).mask,
+                   [1, 1, 1, 1, 0]))
+        assert_(eq(masked_outside(array(list(range(5)),
+                                        mask=[0, 1, 0, 0, 0]), 1, 3).mask,
+                   [1, 1, 0, 0, 1]))
+        assert_(eq(masked_equal(array(list(range(5)),
+                                      mask=[1, 0, 0, 0, 0]), 2).mask,
+                   [1, 0, 1, 0, 0]))
+        assert_(eq(masked_not_equal(array([2, 2, 1, 2, 1],
+                                          mask=[1, 0, 0, 0, 0]), 2).mask,
+                   [1, 0, 1, 0, 1]))
+        assert_(eq(masked_where([1, 1, 0, 0, 0], [1, 2, 3, 4, 5]),
+                   [99, 99, 3, 4, 5]))
+        atest = ones((10, 10, 10), dtype=np.float32)
+        btest = zeros(atest.shape, MaskType)
+        ctest = masked_where(btest, atest)
+        assert_(eq(atest, ctest))
+        z = choose(c, (-x, x))
+        assert_(eq(z, [1., 2., 0., -4., -5]))
+        assert_(z[0] is masked)
+        assert_(z[1] is not masked)
+        assert_(z[2] is masked)
+        x = arange(6)
+        x[5] = masked
+        y = arange(6) * 10
+        y[2] = masked
+        c = array([1, 1, 1, 0, 0, 0], mask=[1, 0, 0, 0, 0, 0])
+        cm = c.filled(1)
+        z = where(c, x, y)
+        zm = where(cm, x, y)
+        assert_(eq(z, zm))
+        assert_(getmask(zm) is nomask)
+        assert_(eq(zm, [0, 1, 2, 30, 40, 50]))
+        z = where(c, masked, 1)
+        assert_(eq(z, [99, 99, 99, 1, 1, 1]))
+        z = where(c, 1, masked)
+        assert_(eq(z, [99, 1, 1, 99, 99, 99]))
+
+    def test_testMinMax2(self):
+        # Test of minimum, maximum.
+        assert_(eq(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3]))
+        assert_(eq(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9]))
+        x = arange(5)
+        y = arange(5) - 2
+        x[3] = masked
+        y[0] = masked
+        assert_(eq(minimum(x, y), where(less(x, y), x, y)))
+        assert_(eq(maximum(x, y), where(greater(x, y), x, y)))
+        assert_(minimum.reduce(x) == 0)
+        assert_(maximum.reduce(x) == 4)
+
+    def test_testTakeTransposeInnerOuter(self):
+        # Test of take, transpose, inner, outer products
+        x = arange(24)
+        y = np.arange(24)
+        x[5:6] = masked
+        x = x.reshape(2, 3, 4)
+        y = y.reshape(2, 3, 4)
+        assert_(eq(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1))))
+        assert_(eq(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1)))
+        assert_(eq(np.inner(filled(x, 0), filled(y, 0)),
+                   inner(x, y)))
+        assert_(eq(np.outer(filled(x, 0), filled(y, 0)),
+                   outer(x, y)))
+        y = array(['abc', 1, 'def', 2, 3], object)
+        y[2] = masked
+        t = take(y, [0, 3, 4])
+        assert_(t[0] == 'abc')
+        assert_(t[1] == 2)
+        assert_(t[2] == 3)
+
+    def test_testInplace(self):
+        # Test of inplace operations and rich comparisons
+        y = arange(10)
+
+        x = arange(10)
+        xm = arange(10)
+        xm[2] = masked
+        x += 1
+        assert_(eq(x, y + 1))
+        xm += 1
+        assert_(eq(x, y + 1))
+
+        x = arange(10)
+        xm = arange(10)
+        xm[2] = masked
+        x -= 1
+        assert_(eq(x, y - 1))
+        xm -= 1
+        assert_(eq(xm, y - 1))
+
+        x = arange(10) * 1.0
+        xm = arange(10) * 1.0
+        xm[2] = masked
+        x *= 2.0
+        assert_(eq(x, y * 2))
+        xm *= 2.0
+        assert_(eq(xm, y * 2))
+
+        x = arange(10) * 2
+        xm = arange(10)
+        xm[2] = masked
+        x //= 2
+        assert_(eq(x, y))
+        xm //= 2
+        assert_(eq(x, y))
+
+        x = arange(10) * 1.0
+        xm = arange(10) * 1.0
+        xm[2] = masked
+        x /= 2.0
+        assert_(eq(x, y / 2.0))
+        xm /= arange(10)
+        assert_(eq(xm, ones((10,))))
+
+        x = arange(10).astype(np.float32)
+        xm = arange(10)
+        xm[2] = masked
+        x += 1.
+        assert_(eq(x, y + 1.))
+
+    def test_testPickle(self):
+        # Test of pickling
+        x = arange(12)
+        x[4:10:2] = masked
+        x = x.reshape(4, 3)
+        for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+            s = pickle.dumps(x, protocol=proto)
+            y = pickle.loads(s)
+            assert_(eq(x, y))
+
+    def test_testMasked(self):
+        # Test of masked element
+        xx = arange(6)
+        xx[1] = masked
+        assert_(str(masked) == '--')
+        assert_(xx[1] is masked)
+        assert_equal(filled(xx[1], 0), 0)
+
+    def test_testAverage1(self):
+        # Test of average.
+        ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
+        assert_(eq(2.0, average(ott, axis=0)))
+        assert_(eq(2.0, average(ott, weights=[1., 1., 2., 1.])))
+        result, wts = average(ott, weights=[1., 1., 2., 1.], returned=True)
+        assert_(eq(2.0, result))
+        assert_(wts == 4.0)
+        ott[:] = masked
+        assert_(average(ott, axis=0) is masked)
+        ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
+        ott = ott.reshape(2, 2)
+        ott[:, 1] = masked
+        assert_(eq(average(ott, axis=0), [2.0, 0.0]))
+        assert_(average(ott, axis=1)[0] is masked)
+        assert_(eq([2., 0.], average(ott, axis=0)))
+        result, wts = average(ott, axis=0, returned=True)
+        assert_(eq(wts, [1., 0.]))
+
+    def test_testAverage2(self):
+        # More tests of average.
+        w1 = [0, 1, 1, 1, 1, 0]
+        w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]]
+        x = arange(6)
+        assert_(allclose(average(x, axis=0), 2.5))
+        assert_(allclose(average(x, axis=0, weights=w1), 2.5))
+        y = array([arange(6), 2.0 * arange(6)])
+        assert_(allclose(average(y, None),
+                                 np.add.reduce(np.arange(6)) * 3. / 12.))
+        assert_(allclose(average(y, axis=0), np.arange(6) * 3. / 2.))
+        assert_(allclose(average(y, axis=1),
+                                 [average(x, axis=0), average(x, axis=0)*2.0]))
+        assert_(allclose(average(y, None, weights=w2), 20. / 6.))
+        assert_(allclose(average(y, axis=0, weights=w2),
+                                 [0., 1., 2., 3., 4., 10.]))
+        assert_(allclose(average(y, axis=1),
+                                 [average(x, axis=0), average(x, axis=0)*2.0]))
+        m1 = zeros(6)
+        m2 = [0, 0, 1, 1, 0, 0]
+        m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]]
+        m4 = ones(6)
+        m5 = [0, 1, 1, 1, 1, 1]
+        assert_(allclose(average(masked_array(x, m1), axis=0), 2.5))
+        assert_(allclose(average(masked_array(x, m2), axis=0), 2.5))
+        assert_(average(masked_array(x, m4), axis=0) is masked)
+        assert_equal(average(masked_array(x, m5), axis=0), 0.0)
+        assert_equal(count(average(masked_array(x, m4), axis=0)), 0)
+        z = masked_array(y, m3)
+        assert_(allclose(average(z, None), 20. / 6.))
+        assert_(allclose(average(z, axis=0),
+                                 [0., 1., 99., 99., 4.0, 7.5]))
+        assert_(allclose(average(z, axis=1), [2.5, 5.0]))
+        assert_(allclose(average(z, axis=0, weights=w2),
+                                 [0., 1., 99., 99., 4.0, 10.0]))
+
+        a = arange(6)
+        b = arange(6) * 3
+        r1, w1 = average([[a, b], [b, a]], axis=1, returned=True)
+        assert_equal(shape(r1), shape(w1))
+        assert_equal(r1.shape, w1.shape)
+        r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=True)
+        assert_equal(shape(w2), shape(r2))
+        r2, w2 = average(ones((2, 2, 3)), returned=True)
+        assert_equal(shape(w2), shape(r2))
+        r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=True)
+        assert_(shape(w2) == shape(r2))
+        a2d = array([[1, 2], [0, 4]], float)
+        a2dm = masked_array(a2d, [[0, 0], [1, 0]])
+        a2da = average(a2d, axis=0)
+        assert_(eq(a2da, [0.5, 3.0]))
+        a2dma = average(a2dm, axis=0)
+        assert_(eq(a2dma, [1.0, 3.0]))
+        a2dma = average(a2dm, axis=None)
+        assert_(eq(a2dma, 7. / 3.))
+        a2dma = average(a2dm, axis=1)
+        assert_(eq(a2dma, [1.5, 4.0]))
+
+    def test_testToPython(self):
+        assert_equal(1, int(array(1)))
+        assert_equal(1.0, float(array(1)))
+        assert_equal(1, int(array([[[1]]])))
+        assert_equal(1.0, float(array([[1]])))
+        assert_raises(TypeError, float, array([1, 1]))
+        assert_raises(ValueError, bool, array([0, 1]))
+        assert_raises(ValueError, bool, array([0, 0], mask=[0, 1]))
+
+    def test_testScalarArithmetic(self):
+        xm = array(0, mask=1)
+        #TODO FIXME: Find out what the following raises a warning in r8247
+        with np.errstate(divide='ignore'):
+            assert_((1 / array(0)).mask)
+        assert_((1 + xm).mask)
+        assert_((-xm).mask)
+        assert_((-xm).mask)
+        assert_(maximum(xm, xm).mask)
+        assert_(minimum(xm, xm).mask)
+        assert_(xm.filled().dtype is xm._data.dtype)
+        x = array(0, mask=0)
+        assert_(x.filled() == x._data)
+        assert_equal(str(xm), str(masked_print_option))
+
+    def test_testArrayMethods(self):
+        a = array([1, 3, 2])
+        assert_(eq(a.any(), a._data.any()))
+        assert_(eq(a.all(), a._data.all()))
+        assert_(eq(a.argmax(), a._data.argmax()))
+        assert_(eq(a.argmin(), a._data.argmin()))
+        assert_(eq(a.choose(0, 1, 2, 3, 4),
+                           a._data.choose(0, 1, 2, 3, 4)))
+        assert_(eq(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])))
+        assert_(eq(a.conj(), a._data.conj()))
+        assert_(eq(a.conjugate(), a._data.conjugate()))
+        m = array([[1, 2], [3, 4]])
+        assert_(eq(m.diagonal(), m._data.diagonal()))
+        assert_(eq(a.sum(), a._data.sum()))
+        assert_(eq(a.take([1, 2]), a._data.take([1, 2])))
+        assert_(eq(m.transpose(), m._data.transpose()))
+
+    def test_testArrayAttributes(self):
+        a = array([1, 3, 2])
+        assert_equal(a.ndim, 1)
+
+    def test_testAPI(self):
+        assert_(not [m for m in dir(np.ndarray)
+                     if m not in dir(MaskedArray) and
+                     not m.startswith('_')])
+
+    def test_testSingleElementSubscript(self):
+        a = array([1, 3, 2])
+        b = array([1, 3, 2], mask=[1, 0, 1])
+        assert_equal(a[0].shape, ())
+        assert_equal(b[0].shape, ())
+        assert_equal(b[1].shape, ())
+
+    def test_assignment_by_condition(self):
+        # Test for gh-18951
+        a = array([1, 2, 3, 4], mask=[1, 0, 1, 0])
+        c = a >= 3
+        a[c] = 5
+        assert_(a[2] is masked)
+
+    def test_assignment_by_condition_2(self):
+        # gh-19721
+        a = masked_array([0, 1], mask=[False, False])
+        b = masked_array([0, 1], mask=[True, True])
+        mask = a < 1
+        b[mask] = a[mask]
+        expected_mask = [False, True]
+        assert_equal(b.mask, expected_mask)
+
+
+class TestUfuncs:
+    def setup_method(self):
+        self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6),
+                  array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),)
+
+    def test_testUfuncRegression(self):
+        f_invalid_ignore = [
+            'sqrt', 'arctanh', 'arcsin', 'arccos',
+            'arccosh', 'arctanh', 'log', 'log10', 'divide',
+            'true_divide', 'floor_divide', 'remainder', 'fmod']
+        for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
+                  'sin', 'cos', 'tan',
+                  'arcsin', 'arccos', 'arctan',
+                  'sinh', 'cosh', 'tanh',
+                  'arcsinh',
+                  'arccosh',
+                  'arctanh',
+                  'absolute', 'fabs', 'negative',
+                  'floor', 'ceil',
+                  'logical_not',
+                  'add', 'subtract', 'multiply',
+                  'divide', 'true_divide', 'floor_divide',
+                  'remainder', 'fmod', 'hypot', 'arctan2',
+                  'equal', 'not_equal', 'less_equal', 'greater_equal',
+                  'less', 'greater',
+                  'logical_and', 'logical_or', 'logical_xor']:
+            try:
+                uf = getattr(umath, f)
+            except AttributeError:
+                uf = getattr(fromnumeric, f)
+            mf = getattr(np.ma, f)
+            args = self.d[:uf.nin]
+            with np.errstate():
+                if f in f_invalid_ignore:
+                    np.seterr(invalid='ignore')
+                if f in ['arctanh', 'log', 'log10']:
+                    np.seterr(divide='ignore')
+                ur = uf(*args)
+                mr = mf(*args)
+            assert_(eq(ur.filled(0), mr.filled(0), f))
+            assert_(eqmask(ur.mask, mr.mask))
+
+    def test_reduce(self):
+        a = self.d[0]
+        assert_(not alltrue(a, axis=0))
+        assert_(sometrue(a, axis=0))
+        assert_equal(sum(a[:3], axis=0), 0)
+        assert_equal(product(a, axis=0), 0)
+
+    def test_minmax(self):
+        a = arange(1, 13).reshape(3, 4)
+        amask = masked_where(a < 5, a)
+        assert_equal(amask.max(), a.max())
+        assert_equal(amask.min(), 5)
+        assert_((amask.max(0) == a.max(0)).all())
+        assert_((amask.min(0) == [5, 6, 7, 8]).all())
+        assert_(amask.max(1)[0].mask)
+        assert_(amask.min(1)[0].mask)
+
+    def test_nonzero(self):
+        for t in "?bhilqpBHILQPfdgFDGO":
+            x = array([1, 0, 2, 0], mask=[0, 0, 1, 1])
+            assert_(eq(nonzero(x), [0]))
+
+
+class TestArrayMethods:
+
+    def setup_method(self):
+        x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
+                      8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
+                      3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
+                      6.04, 9.63, 7.712, 3.382, 4.489, 6.479,
+                      7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
+                      7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
+        X = x.reshape(6, 6)
+        XX = x.reshape(3, 2, 2, 3)
+
+        m = np.array([0, 1, 0, 1, 0, 0,
+                      1, 0, 1, 1, 0, 1,
+                      0, 0, 0, 1, 0, 1,
+                      0, 0, 0, 1, 1, 1,
+                      1, 0, 0, 1, 0, 0,
+                      0, 0, 1, 0, 1, 0])
+        mx = array(data=x, mask=m)
+        mX = array(data=X, mask=m.reshape(X.shape))
+        mXX = array(data=XX, mask=m.reshape(XX.shape))
+
+        self.d = (x, X, XX, m, mx, mX, mXX)
+
+    def test_trace(self):
+        (x, X, XX, m, mx, mX, mXX,) = self.d
+        mXdiag = mX.diagonal()
+        assert_equal(mX.trace(), mX.diagonal().compressed().sum())
+        assert_(eq(mX.trace(),
+                           X.trace() - sum(mXdiag.mask * X.diagonal(),
+                                           axis=0)))
+
+    def test_clip(self):
+        (x, X, XX, m, mx, mX, mXX,) = self.d
+        clipped = mx.clip(2, 8)
+        assert_(eq(clipped.mask, mx.mask))
+        assert_(eq(clipped._data, x.clip(2, 8)))
+        assert_(eq(clipped._data, mx._data.clip(2, 8)))
+
+    def test_ptp(self):
+        (x, X, XX, m, mx, mX, mXX,) = self.d
+        (n, m) = X.shape
+        assert_equal(mx.ptp(), mx.compressed().ptp())
+        rows = np.zeros(n, np.float_)
+        cols = np.zeros(m, np.float_)
+        for k in range(m):
+            cols[k] = mX[:, k].compressed().ptp()
+        for k in range(n):
+            rows[k] = mX[k].compressed().ptp()
+        assert_(eq(mX.ptp(0), cols))
+        assert_(eq(mX.ptp(1), rows))
+
+    def test_swapaxes(self):
+        (x, X, XX, m, mx, mX, mXX,) = self.d
+        mXswapped = mX.swapaxes(0, 1)
+        assert_(eq(mXswapped[-1], mX[:, -1]))
+        mXXswapped = mXX.swapaxes(0, 2)
+        assert_equal(mXXswapped.shape, (2, 2, 3, 3))
+
+    def test_cumprod(self):
+        (x, X, XX, m, mx, mX, mXX,) = self.d
+        mXcp = mX.cumprod(0)
+        assert_(eq(mXcp._data, mX.filled(1).cumprod(0)))
+        mXcp = mX.cumprod(1)
+        assert_(eq(mXcp._data, mX.filled(1).cumprod(1)))
+
+    def test_cumsum(self):
+        (x, X, XX, m, mx, mX, mXX,) = self.d
+        mXcp = mX.cumsum(0)
+        assert_(eq(mXcp._data, mX.filled(0).cumsum(0)))
+        mXcp = mX.cumsum(1)
+        assert_(eq(mXcp._data, mX.filled(0).cumsum(1)))
+
+    def test_varstd(self):
+        (x, X, XX, m, mx, mX, mXX,) = self.d
+        assert_(eq(mX.var(axis=None), mX.compressed().var()))
+        assert_(eq(mX.std(axis=None), mX.compressed().std()))
+        assert_(eq(mXX.var(axis=3).shape, XX.var(axis=3).shape))
+        assert_(eq(mX.var().shape, X.var().shape))
+        (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1))
+        for k in range(6):
+            assert_(eq(mXvar1[k], mX[k].compressed().var()))
+            assert_(eq(mXvar0[k], mX[:, k].compressed().var()))
+            assert_(eq(np.sqrt(mXvar0[k]),
+                               mX[:, k].compressed().std()))
+
+
+def eqmask(m1, m2):
+    if m1 is nomask:
+        return m2 is nomask
+    if m2 is nomask:
+        return m1 is nomask
+    return (m1 == m2).all()
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_regression.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_regression.py
new file mode 100644
index 00000000..f4f32cc7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_regression.py
@@ -0,0 +1,97 @@
+import numpy as np
+from numpy.testing import (
+    assert_, assert_array_equal, assert_allclose, suppress_warnings
+    )
+
+
+class TestRegression:
+    def test_masked_array_create(self):
+        # Ticket #17
+        x = np.ma.masked_array([0, 1, 2, 3, 0, 4, 5, 6],
+                               mask=[0, 0, 0, 1, 1, 1, 0, 0])
+        assert_array_equal(np.ma.nonzero(x), [[1, 2, 6, 7]])
+
+    def test_masked_array(self):
+        # Ticket #61
+        np.ma.array(1, mask=[1])
+
+    def test_mem_masked_where(self):
+        # Ticket #62
+        from numpy.ma import masked_where, MaskType
+        a = np.zeros((1, 1))
+        b = np.zeros(a.shape, MaskType)
+        c = masked_where(b, a)
+        a-c
+
+    def test_masked_array_multiply(self):
+        # Ticket #254
+        a = np.ma.zeros((4, 1))
+        a[2, 0] = np.ma.masked
+        b = np.zeros((4, 2))
+        a*b
+        b*a
+
+    def test_masked_array_repeat(self):
+        # Ticket #271
+        np.ma.array([1], mask=False).repeat(10)
+
+    def test_masked_array_repr_unicode(self):
+        # Ticket #1256
+        repr(np.ma.array("Unicode"))
+
+    def test_atleast_2d(self):
+        # Ticket #1559
+        a = np.ma.masked_array([0.0, 1.2, 3.5], mask=[False, True, False])
+        b = np.atleast_2d(a)
+        assert_(a.mask.ndim == 1)
+        assert_(b.mask.ndim == 2)
+
+    def test_set_fill_value_unicode_py3(self):
+        # Ticket #2733
+        a = np.ma.masked_array(['a', 'b', 'c'], mask=[1, 0, 0])
+        a.fill_value = 'X'
+        assert_(a.fill_value == 'X')
+
+    def test_var_sets_maskedarray_scalar(self):
+        # Issue gh-2757
+        a = np.ma.array(np.arange(5), mask=True)
+        mout = np.ma.array(-1, dtype=float)
+        a.var(out=mout)
+        assert_(mout._data == 0)
+
+    def test_ddof_corrcoef(self):
+        # See gh-3336
+        x = np.ma.masked_equal([1, 2, 3, 4, 5], 4)
+        y = np.array([2, 2.5, 3.1, 3, 5])
+        # this test can be removed after deprecation.
+        with suppress_warnings() as sup:
+            sup.filter(DeprecationWarning, "bias and ddof have no effect")
+            r0 = np.ma.corrcoef(x, y, ddof=0)
+            r1 = np.ma.corrcoef(x, y, ddof=1)
+            # ddof should not have an effect (it gets cancelled out)
+            assert_allclose(r0.data, r1.data)
+
+    def test_mask_not_backmangled(self):
+        # See gh-10314.  Test case taken from gh-3140.
+        a = np.ma.MaskedArray([1., 2.], mask=[False, False])
+        assert_(a.mask.shape == (2,))
+        b = np.tile(a, (2, 1))
+        # Check that the above no longer changes a.shape to (1, 2)
+        assert_(a.mask.shape == (2,))
+        assert_(b.shape == (2, 2))
+        assert_(b.mask.shape == (2, 2))
+
+    def test_empty_list_on_structured(self):
+        # See gh-12464. Indexing with empty list should give empty result.
+        ma = np.ma.MaskedArray([(1, 1.), (2, 2.), (3, 3.)], dtype='i4,f4')
+        assert_array_equal(ma[[]], ma[:0])
+
+    def test_masked_array_tobytes_fortran(self):
+        ma = np.ma.arange(4).reshape((2,2))
+        assert_array_equal(ma.tobytes(order='F'), ma.T.tobytes())
+
+    def test_structured_array(self):
+        # see gh-22041
+        np.ma.array((1, (b"", b"")),
+                    dtype=[("x", np.int_),
+                          ("y", [("i", np.void), ("j", np.void)])])
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py
new file mode 100644
index 00000000..e3c88525
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py
@@ -0,0 +1,460 @@
+# pylint: disable-msg=W0611, W0612, W0511,R0201
+"""Tests suite for MaskedArray & subclassing.
+
+:author: Pierre Gerard-Marchant
+:contact: pierregm_at_uga_dot_edu
+:version: $Id: test_subclassing.py 3473 2007-10-29 15:18:13Z jarrod.millman $
+
+"""
+import numpy as np
+from numpy.lib.mixins import NDArrayOperatorsMixin
+from numpy.testing import assert_, assert_raises
+from numpy.ma.testutils import assert_equal
+from numpy.ma.core import (
+    array, arange, masked, MaskedArray, masked_array, log, add, hypot,
+    divide, asarray, asanyarray, nomask
+    )
+# from numpy.ma.core import (
+
+def assert_startswith(a, b):
+    # produces a better error message than assert_(a.startswith(b))
+    assert_equal(a[:len(b)], b)
+
+class SubArray(np.ndarray):
+    # Defines a generic np.ndarray subclass, that stores some metadata
+    # in the  dictionary `info`.
+    def __new__(cls,arr,info={}):
+        x = np.asanyarray(arr).view(cls)
+        x.info = info.copy()
+        return x
+
+    def __array_finalize__(self, obj):
+        super().__array_finalize__(obj)
+        self.info = getattr(obj, 'info', {}).copy()
+        return
+
+    def __add__(self, other):
+        result = super().__add__(other)
+        result.info['added'] = result.info.get('added', 0) + 1
+        return result
+
+    def __iadd__(self, other):
+        result = super().__iadd__(other)
+        result.info['iadded'] = result.info.get('iadded', 0) + 1
+        return result
+
+
+subarray = SubArray
+
+
+class SubMaskedArray(MaskedArray):
+    """Pure subclass of MaskedArray, keeping some info on subclass."""
+    def __new__(cls, info=None, **kwargs):
+        obj = super().__new__(cls, **kwargs)
+        obj._optinfo['info'] = info
+        return obj
+
+
+class MSubArray(SubArray, MaskedArray):
+
+    def __new__(cls, data, info={}, mask=nomask):
+        subarr = SubArray(data, info)
+        _data = MaskedArray.__new__(cls, data=subarr, mask=mask)
+        _data.info = subarr.info
+        return _data
+
+    @property
+    def _series(self):
+        _view = self.view(MaskedArray)
+        _view._sharedmask = False
+        return _view
+
+msubarray = MSubArray
+
+
+# Also a subclass that overrides __str__, __repr__ and __setitem__, disallowing
+# setting to non-class values (and thus np.ma.core.masked_print_option)
+# and overrides __array_wrap__, updating the info dict, to check that this
+# doesn't get destroyed by MaskedArray._update_from.  But this one also needs
+# its own iterator...
+class CSAIterator:
+    """
+    Flat iterator object that uses its own setter/getter
+    (works around ndarray.flat not propagating subclass setters/getters
+    see https://github.com/numpy/numpy/issues/4564)
+    roughly following MaskedIterator
+    """
+    def __init__(self, a):
+        self._original = a
+        self._dataiter = a.view(np.ndarray).flat
+
+    def __iter__(self):
+        return self
+
+    def __getitem__(self, indx):
+        out = self._dataiter.__getitem__(indx)
+        if not isinstance(out, np.ndarray):
+            out = out.__array__()
+        out = out.view(type(self._original))
+        return out
+
+    def __setitem__(self, index, value):
+        self._dataiter[index] = self._original._validate_input(value)
+
+    def __next__(self):
+        return next(self._dataiter).__array__().view(type(self._original))
+
+
+class ComplicatedSubArray(SubArray):
+
+    def __str__(self):
+        return f'myprefix {self.view(SubArray)} mypostfix'
+
+    def __repr__(self):
+        # Return a repr that does not start with 'name('
+        return f'<{self.__class__.__name__} {self}>'
+
+    def _validate_input(self, value):
+        if not isinstance(value, ComplicatedSubArray):
+            raise ValueError("Can only set to MySubArray values")
+        return value
+
+    def __setitem__(self, item, value):
+        # validation ensures direct assignment with ndarray or
+        # masked_print_option will fail
+        super().__setitem__(item, self._validate_input(value))
+
+    def __getitem__(self, item):
+        # ensure getter returns our own class also for scalars
+        value = super().__getitem__(item)
+        if not isinstance(value, np.ndarray):  # scalar
+            value = value.__array__().view(ComplicatedSubArray)
+        return value
+
+    @property
+    def flat(self):
+        return CSAIterator(self)
+
+    @flat.setter
+    def flat(self, value):
+        y = self.ravel()
+        y[:] = value
+
+    def __array_wrap__(self, obj, context=None):
+        obj = super().__array_wrap__(obj, context)
+        if context is not None and context[0] is np.multiply:
+            obj.info['multiplied'] = obj.info.get('multiplied', 0) + 1
+
+        return obj
+
+
+class WrappedArray(NDArrayOperatorsMixin):
+    """
+    Wrapping a MaskedArray rather than subclassing to test that
+    ufunc deferrals are commutative.
+    See: https://github.com/numpy/numpy/issues/15200)
+    """
+    __slots__ = ('_array', 'attrs')
+    __array_priority__ = 20
+
+    def __init__(self, array, **attrs):
+        self._array = array
+        self.attrs = attrs
+
+    def __repr__(self):
+        return f"{self.__class__.__name__}(\n{self._array}\n{self.attrs}\n)"
+
+    def __array__(self):
+        return np.asarray(self._array)
+
+    def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
+        if method == '__call__':
+            inputs = [arg._array if isinstance(arg, self.__class__) else arg
+                      for arg in inputs]
+            return self.__class__(ufunc(*inputs, **kwargs), **self.attrs)
+        else:
+            return NotImplemented
+
+
+class TestSubclassing:
+    # Test suite for masked subclasses of ndarray.
+
+    def setup_method(self):
+        x = np.arange(5, dtype='float')
+        mx = msubarray(x, mask=[0, 1, 0, 0, 0])
+        self.data = (x, mx)
+
+    def test_data_subclassing(self):
+        # Tests whether the subclass is kept.
+        x = np.arange(5)
+        m = [0, 0, 1, 0, 0]
+        xsub = SubArray(x)
+        xmsub = masked_array(xsub, mask=m)
+        assert_(isinstance(xmsub, MaskedArray))
+        assert_equal(xmsub._data, xsub)
+        assert_(isinstance(xmsub._data, SubArray))
+
+    def test_maskedarray_subclassing(self):
+        # Tests subclassing MaskedArray
+        (x, mx) = self.data
+        assert_(isinstance(mx._data, subarray))
+
+    def test_masked_unary_operations(self):
+        # Tests masked_unary_operation
+        (x, mx) = self.data
+        with np.errstate(divide='ignore'):
+            assert_(isinstance(log(mx), msubarray))
+            assert_equal(log(x), np.log(x))
+
+    def test_masked_binary_operations(self):
+        # Tests masked_binary_operation
+        (x, mx) = self.data
+        # Result should be a msubarray
+        assert_(isinstance(add(mx, mx), msubarray))
+        assert_(isinstance(add(mx, x), msubarray))
+        # Result should work
+        assert_equal(add(mx, x), mx+x)
+        assert_(isinstance(add(mx, mx)._data, subarray))
+        assert_(isinstance(add.outer(mx, mx), msubarray))
+        assert_(isinstance(hypot(mx, mx), msubarray))
+        assert_(isinstance(hypot(mx, x), msubarray))
+
+    def test_masked_binary_operations2(self):
+        # Tests domained_masked_binary_operation
+        (x, mx) = self.data
+        xmx = masked_array(mx.data.__array__(), mask=mx.mask)
+        assert_(isinstance(divide(mx, mx), msubarray))
+        assert_(isinstance(divide(mx, x), msubarray))
+        assert_equal(divide(mx, mx), divide(xmx, xmx))
+
+    def test_attributepropagation(self):
+        x = array(arange(5), mask=[0]+[1]*4)
+        my = masked_array(subarray(x))
+        ym = msubarray(x)
+        #
+        z = (my+1)
+        assert_(isinstance(z, MaskedArray))
+        assert_(not isinstance(z, MSubArray))
+        assert_(isinstance(z._data, SubArray))
+        assert_equal(z._data.info, {})
+        #
+        z = (ym+1)
+        assert_(isinstance(z, MaskedArray))
+        assert_(isinstance(z, MSubArray))
+        assert_(isinstance(z._data, SubArray))
+        assert_(z._data.info['added'] > 0)
+        # Test that inplace methods from data get used (gh-4617)
+        ym += 1
+        assert_(isinstance(ym, MaskedArray))
+        assert_(isinstance(ym, MSubArray))
+        assert_(isinstance(ym._data, SubArray))
+        assert_(ym._data.info['iadded'] > 0)
+        #
+        ym._set_mask([1, 0, 0, 0, 1])
+        assert_equal(ym._mask, [1, 0, 0, 0, 1])
+        ym._series._set_mask([0, 0, 0, 0, 1])
+        assert_equal(ym._mask, [0, 0, 0, 0, 1])
+        #
+        xsub = subarray(x, info={'name':'x'})
+        mxsub = masked_array(xsub)
+        assert_(hasattr(mxsub, 'info'))
+        assert_equal(mxsub.info, xsub.info)
+
+    def test_subclasspreservation(self):
+        # Checks that masked_array(...,subok=True) preserves the class.
+        x = np.arange(5)
+        m = [0, 0, 1, 0, 0]
+        xinfo = [(i, j) for (i, j) in zip(x, m)]
+        xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
+        #
+        mxsub = masked_array(xsub, subok=False)
+        assert_(not isinstance(mxsub, MSubArray))
+        assert_(isinstance(mxsub, MaskedArray))
+        assert_equal(mxsub._mask, m)
+        #
+        mxsub = asarray(xsub)
+        assert_(not isinstance(mxsub, MSubArray))
+        assert_(isinstance(mxsub, MaskedArray))
+        assert_equal(mxsub._mask, m)
+        #
+        mxsub = masked_array(xsub, subok=True)
+        assert_(isinstance(mxsub, MSubArray))
+        assert_equal(mxsub.info, xsub.info)
+        assert_equal(mxsub._mask, xsub._mask)
+        #
+        mxsub = asanyarray(xsub)
+        assert_(isinstance(mxsub, MSubArray))
+        assert_equal(mxsub.info, xsub.info)
+        assert_equal(mxsub._mask, m)
+
+    def test_subclass_items(self):
+        """test that getter and setter go via baseclass"""
+        x = np.arange(5)
+        xcsub = ComplicatedSubArray(x)
+        mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
+        # getter should  return a ComplicatedSubArray, even for single item
+        # first check we wrote ComplicatedSubArray correctly
+        assert_(isinstance(xcsub[1], ComplicatedSubArray))
+        assert_(isinstance(xcsub[1,...], ComplicatedSubArray))
+        assert_(isinstance(xcsub[1:4], ComplicatedSubArray))
+
+        # now that it propagates inside the MaskedArray
+        assert_(isinstance(mxcsub[1], ComplicatedSubArray))
+        assert_(isinstance(mxcsub[1,...].data, ComplicatedSubArray))
+        assert_(mxcsub[0] is masked)
+        assert_(isinstance(mxcsub[0,...].data, ComplicatedSubArray))
+        assert_(isinstance(mxcsub[1:4].data, ComplicatedSubArray))
+
+        # also for flattened version (which goes via MaskedIterator)
+        assert_(isinstance(mxcsub.flat[1].data, ComplicatedSubArray))
+        assert_(mxcsub.flat[0] is masked)
+        assert_(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray))
+
+        # setter should only work with ComplicatedSubArray input
+        # first check we wrote ComplicatedSubArray correctly
+        assert_raises(ValueError, xcsub.__setitem__, 1, x[4])
+        # now that it propagates inside the MaskedArray
+        assert_raises(ValueError, mxcsub.__setitem__, 1, x[4])
+        assert_raises(ValueError, mxcsub.__setitem__, slice(1, 4), x[1:4])
+        mxcsub[1] = xcsub[4]
+        mxcsub[1:4] = xcsub[1:4]
+        # also for flattened version (which goes via MaskedIterator)
+        assert_raises(ValueError, mxcsub.flat.__setitem__, 1, x[4])
+        assert_raises(ValueError, mxcsub.flat.__setitem__, slice(1, 4), x[1:4])
+        mxcsub.flat[1] = xcsub[4]
+        mxcsub.flat[1:4] = xcsub[1:4]
+
+    def test_subclass_nomask_items(self):
+        x = np.arange(5)
+        xcsub = ComplicatedSubArray(x)
+        mxcsub_nomask = masked_array(xcsub)
+
+        assert_(isinstance(mxcsub_nomask[1,...].data, ComplicatedSubArray))
+        assert_(isinstance(mxcsub_nomask[0,...].data, ComplicatedSubArray))
+
+        assert_(isinstance(mxcsub_nomask[1], ComplicatedSubArray))
+        assert_(isinstance(mxcsub_nomask[0], ComplicatedSubArray))
+
+    def test_subclass_repr(self):
+        """test that repr uses the name of the subclass
+        and 'array' for np.ndarray"""
+        x = np.arange(5)
+        mx = masked_array(x, mask=[True, False, True, False, False])
+        assert_startswith(repr(mx), 'masked_array')
+        xsub = SubArray(x)
+        mxsub = masked_array(xsub, mask=[True, False, True, False, False])
+        assert_startswith(repr(mxsub),
+            f'masked_{SubArray.__name__}(data=[--, 1, --, 3, 4]')
+
+    def test_subclass_str(self):
+        """test str with subclass that has overridden str, setitem"""
+        # first without override
+        x = np.arange(5)
+        xsub = SubArray(x)
+        mxsub = masked_array(xsub, mask=[True, False, True, False, False])
+        assert_equal(str(mxsub), '[-- 1 -- 3 4]')
+
+        xcsub = ComplicatedSubArray(x)
+        assert_raises(ValueError, xcsub.__setitem__, 0,
+                      np.ma.core.masked_print_option)
+        mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
+        assert_equal(str(mxcsub), 'myprefix [-- 1 -- 3 4] mypostfix')
+
+    def test_pure_subclass_info_preservation(self):
+        # Test that ufuncs and methods conserve extra information consistently;
+        # see gh-7122.
+        arr1 = SubMaskedArray('test', data=[1,2,3,4,5,6])
+        arr2 = SubMaskedArray(data=[0,1,2,3,4,5])
+        diff1 = np.subtract(arr1, arr2)
+        assert_('info' in diff1._optinfo)
+        assert_(diff1._optinfo['info'] == 'test')
+        diff2 = arr1 - arr2
+        assert_('info' in diff2._optinfo)
+        assert_(diff2._optinfo['info'] == 'test')
+
+
+class ArrayNoInheritance:
+    """Quantity-like class that does not inherit from ndarray"""
+    def __init__(self, data, units):
+        self.magnitude = data
+        self.units = units
+
+    def __getattr__(self, attr):
+        return getattr(self.magnitude, attr)
+
+
+def test_array_no_inheritance():
+    data_masked = np.ma.array([1, 2, 3], mask=[True, False, True])
+    data_masked_units = ArrayNoInheritance(data_masked, 'meters')
+
+    # Get the masked representation of the Quantity-like class
+    new_array = np.ma.array(data_masked_units)
+    assert_equal(data_masked.data, new_array.data)
+    assert_equal(data_masked.mask, new_array.mask)
+    # Test sharing the mask
+    data_masked.mask = [True, False, False]
+    assert_equal(data_masked.mask, new_array.mask)
+    assert_(new_array.sharedmask)
+
+    # Get the masked representation of the Quantity-like class
+    new_array = np.ma.array(data_masked_units, copy=True)
+    assert_equal(data_masked.data, new_array.data)
+    assert_equal(data_masked.mask, new_array.mask)
+    # Test that the mask is not shared when copy=True
+    data_masked.mask = [True, False, True]
+    assert_equal([True, False, False], new_array.mask)
+    assert_(not new_array.sharedmask)
+
+    # Get the masked representation of the Quantity-like class
+    new_array = np.ma.array(data_masked_units, keep_mask=False)
+    assert_equal(data_masked.data, new_array.data)
+    # The change did not affect the original mask
+    assert_equal(data_masked.mask, [True, False, True])
+    # Test that the mask is False and not shared when keep_mask=False
+    assert_(not new_array.mask)
+    assert_(not new_array.sharedmask)
+
+
+class TestClassWrapping:
+    # Test suite for classes that wrap MaskedArrays
+
+    def setup_method(self):
+        m = np.ma.masked_array([1, 3, 5], mask=[False, True, False])
+        wm = WrappedArray(m)
+        self.data = (m, wm)
+
+    def test_masked_unary_operations(self):
+        # Tests masked_unary_operation
+        (m, wm) = self.data
+        with np.errstate(divide='ignore'):
+            assert_(isinstance(np.log(wm), WrappedArray))
+
+    def test_masked_binary_operations(self):
+        # Tests masked_binary_operation
+        (m, wm) = self.data
+        # Result should be a WrappedArray
+        assert_(isinstance(np.add(wm, wm), WrappedArray))
+        assert_(isinstance(np.add(m, wm), WrappedArray))
+        assert_(isinstance(np.add(wm, m), WrappedArray))
+        # add and '+' should call the same ufunc
+        assert_equal(np.add(m, wm), m + wm)
+        assert_(isinstance(np.hypot(m, wm), WrappedArray))
+        assert_(isinstance(np.hypot(wm, m), WrappedArray))
+        # Test domained binary operations
+        assert_(isinstance(np.divide(wm, m), WrappedArray))
+        assert_(isinstance(np.divide(m, wm), WrappedArray))
+        assert_equal(np.divide(wm, m) * m, np.divide(m, m) * wm)
+        # Test broadcasting
+        m2 = np.stack([m, m])
+        assert_(isinstance(np.divide(wm, m2), WrappedArray))
+        assert_(isinstance(np.divide(m2, wm), WrappedArray))
+        assert_equal(np.divide(m2, wm), np.divide(wm, m2))
+
+    def test_mixins_have_slots(self):
+        mixin = NDArrayOperatorsMixin()
+        # Should raise an error
+        assert_raises(AttributeError, mixin.__setattr__, "not_a_real_attr", 1)
+
+        m = np.ma.masked_array([1, 3, 5], mask=[False, True, False])
+        wm = WrappedArray(m)
+        assert_raises(AttributeError, wm.__setattr__, "not_an_attr", 2)