aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/ma/tests
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/ma/tests')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/tests/__init__.py0
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/tests/test_core.py5687
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/tests/test_deprecations.py84
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/tests/test_extras.py1870
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/tests/test_mrecords.py493
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/tests/test_old_ma.py874
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/tests/test_regression.py97
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py460
8 files changed, 9565 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/__init__.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__init__.py
new file mode 100644
index 00000000..e69de29b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__init__.py
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_core.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_core.py
new file mode 100644
index 00000000..08ddc46c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_core.py
@@ -0,0 +1,5687 @@
+# pylint: disable-msg=W0400,W0511,W0611,W0612,W0614,R0201,E1102
+"""Tests suite for MaskedArray & subclassing.
+
+:author: Pierre Gerard-Marchant
+:contact: pierregm_at_uga_dot_edu
+"""
+__author__ = "Pierre GF Gerard-Marchant"
+
+import sys
+import warnings
+import copy
+import operator
+import itertools
+import textwrap
+import pytest
+
+from functools import reduce
+
+
+import numpy as np
+import numpy.ma.core
+import numpy.core.fromnumeric as fromnumeric
+import numpy.core.umath as umath
+from numpy.testing import (
+ assert_raises, assert_warns, suppress_warnings, IS_WASM
+ )
+from numpy.testing._private.utils import requires_memory
+from numpy import ndarray
+from numpy.compat import asbytes
+from numpy.ma.testutils import (
+ assert_, assert_array_equal, assert_equal, assert_almost_equal,
+ assert_equal_records, fail_if_equal, assert_not_equal,
+ assert_mask_equal
+ )
+from numpy.ma.core import (
+ MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all,
+ allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2,
+ arcsin, arctan, argsort, array, asarray, choose, concatenate,
+ conjugate, cos, cosh, count, default_fill_value, diag, divide, doc_note,
+ empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid,
+ flatten_structured_array, fromflex, getmask, getmaskarray, greater,
+ greater_equal, identity, inner, isMaskedArray, less, less_equal, log,
+ log10, make_mask, make_mask_descr, mask_or, masked, masked_array,
+ masked_equal, masked_greater, masked_greater_equal, masked_inside,
+ masked_less, masked_less_equal, masked_not_equal, masked_outside,
+ masked_print_option, masked_values, masked_where, max, maximum,
+ maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply,
+ mvoid, nomask, not_equal, ones, ones_like, outer, power, product, put,
+ putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort,
+ sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros, zeros_like,
+ )
+from numpy.compat import pickle
+
+pi = np.pi
+
+
+suppress_copy_mask_on_assignment = suppress_warnings()
+suppress_copy_mask_on_assignment.filter(
+ numpy.ma.core.MaskedArrayFutureWarning,
+ "setting an item on a masked array which has a shared mask will not copy")
+
+
+# For parametrized numeric testing
+num_dts = [np.dtype(dt_) for dt_ in '?bhilqBHILQefdgFD']
+num_ids = [dt_.char for dt_ in num_dts]
+
+
+class TestMaskedArray:
+ # Base test class for MaskedArrays.
+
+ def setup_method(self):
+ # Base data definition.
+ x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
+ y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
+ a10 = 10.
+ m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+ m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
+ xm = masked_array(x, mask=m1)
+ ym = masked_array(y, mask=m2)
+ z = np.array([-.5, 0., .5, .8])
+ zm = masked_array(z, mask=[0, 1, 0, 0])
+ xf = np.where(m1, 1e+20, x)
+ xm.set_fill_value(1e+20)
+ self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
+
+ def test_basicattributes(self):
+ # Tests some basic array attributes.
+ a = array([1, 3, 2])
+ b = array([1, 3, 2], mask=[1, 0, 1])
+ assert_equal(a.ndim, 1)
+ assert_equal(b.ndim, 1)
+ assert_equal(a.size, 3)
+ assert_equal(b.size, 3)
+ assert_equal(a.shape, (3,))
+ assert_equal(b.shape, (3,))
+
+ def test_basic0d(self):
+ # Checks masking a scalar
+ x = masked_array(0)
+ assert_equal(str(x), '0')
+ x = masked_array(0, mask=True)
+ assert_equal(str(x), str(masked_print_option))
+ x = masked_array(0, mask=False)
+ assert_equal(str(x), '0')
+ x = array(0, mask=1)
+ assert_(x.filled().dtype is x._data.dtype)
+
+ def test_basic1d(self):
+ # Test of basic array creation and properties in 1 dimension.
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+ assert_(not isMaskedArray(x))
+ assert_(isMaskedArray(xm))
+ assert_((xm - ym).filled(0).any())
+ fail_if_equal(xm.mask.astype(int), ym.mask.astype(int))
+ s = x.shape
+ assert_equal(np.shape(xm), s)
+ assert_equal(xm.shape, s)
+ assert_equal(xm.dtype, x.dtype)
+ assert_equal(zm.dtype, z.dtype)
+ assert_equal(xm.size, reduce(lambda x, y:x * y, s))
+ assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1))
+ assert_array_equal(xm, xf)
+ assert_array_equal(filled(xm, 1.e20), xf)
+ assert_array_equal(x, xm)
+
+ def test_basic2d(self):
+ # Test of basic array creation and properties in 2 dimensions.
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+ for s in [(4, 3), (6, 2)]:
+ x.shape = s
+ y.shape = s
+ xm.shape = s
+ ym.shape = s
+ xf.shape = s
+
+ assert_(not isMaskedArray(x))
+ assert_(isMaskedArray(xm))
+ assert_equal(shape(xm), s)
+ assert_equal(xm.shape, s)
+ assert_equal(xm.size, reduce(lambda x, y:x * y, s))
+ assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1))
+ assert_equal(xm, xf)
+ assert_equal(filled(xm, 1.e20), xf)
+ assert_equal(x, xm)
+
+ def test_concatenate_basic(self):
+ # Tests concatenations.
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+ # basic concatenation
+ assert_equal(np.concatenate((x, y)), concatenate((xm, ym)))
+ assert_equal(np.concatenate((x, y)), concatenate((x, y)))
+ assert_equal(np.concatenate((x, y)), concatenate((xm, y)))
+ assert_equal(np.concatenate((x, y, x)), concatenate((x, ym, x)))
+
+ def test_concatenate_alongaxis(self):
+ # Tests concatenations.
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+ # Concatenation along an axis
+ s = (3, 4)
+ x.shape = y.shape = xm.shape = ym.shape = s
+ assert_equal(xm.mask, np.reshape(m1, s))
+ assert_equal(ym.mask, np.reshape(m2, s))
+ xmym = concatenate((xm, ym), 1)
+ assert_equal(np.concatenate((x, y), 1), xmym)
+ assert_equal(np.concatenate((xm.mask, ym.mask), 1), xmym._mask)
+
+ x = zeros(2)
+ y = array(ones(2), mask=[False, True])
+ z = concatenate((x, y))
+ assert_array_equal(z, [0, 0, 1, 1])
+ assert_array_equal(z.mask, [False, False, False, True])
+ z = concatenate((y, x))
+ assert_array_equal(z, [1, 1, 0, 0])
+ assert_array_equal(z.mask, [False, True, False, False])
+
+ def test_concatenate_flexible(self):
+ # Tests the concatenation on flexible arrays.
+ data = masked_array(list(zip(np.random.rand(10),
+ np.arange(10))),
+ dtype=[('a', float), ('b', int)])
+
+ test = concatenate([data[:5], data[5:]])
+ assert_equal_records(test, data)
+
+ def test_creation_ndmin(self):
+ # Check the use of ndmin
+ x = array([1, 2, 3], mask=[1, 0, 0], ndmin=2)
+ assert_equal(x.shape, (1, 3))
+ assert_equal(x._data, [[1, 2, 3]])
+ assert_equal(x._mask, [[1, 0, 0]])
+
+ def test_creation_ndmin_from_maskedarray(self):
+ # Make sure we're not losing the original mask w/ ndmin
+ x = array([1, 2, 3])
+ x[-1] = masked
+ xx = array(x, ndmin=2, dtype=float)
+ assert_equal(x.shape, x._mask.shape)
+ assert_equal(xx.shape, xx._mask.shape)
+
+ def test_creation_maskcreation(self):
+ # Tests how masks are initialized at the creation of Maskedarrays.
+ data = arange(24, dtype=float)
+ data[[3, 6, 15]] = masked
+ dma_1 = MaskedArray(data)
+ assert_equal(dma_1.mask, data.mask)
+ dma_2 = MaskedArray(dma_1)
+ assert_equal(dma_2.mask, dma_1.mask)
+ dma_3 = MaskedArray(dma_1, mask=[1, 0, 0, 0] * 6)
+ fail_if_equal(dma_3.mask, dma_1.mask)
+
+ x = array([1, 2, 3], mask=True)
+ assert_equal(x._mask, [True, True, True])
+ x = array([1, 2, 3], mask=False)
+ assert_equal(x._mask, [False, False, False])
+ y = array([1, 2, 3], mask=x._mask, copy=False)
+ assert_(np.may_share_memory(x.mask, y.mask))
+ y = array([1, 2, 3], mask=x._mask, copy=True)
+ assert_(not np.may_share_memory(x.mask, y.mask))
+ x = array([1, 2, 3], mask=None)
+ assert_equal(x._mask, [False, False, False])
+
+ def test_masked_singleton_array_creation_warns(self):
+ # The first works, but should not (ideally), there may be no way
+ # to solve this, however, as long as `np.ma.masked` is an ndarray.
+ np.array(np.ma.masked)
+ with pytest.warns(UserWarning):
+ # Tries to create a float array, using `float(np.ma.masked)`.
+ # We may want to define this is invalid behaviour in the future!
+ # (requiring np.ma.masked to be a known NumPy scalar probably
+ # with a DType.)
+ np.array([3., np.ma.masked])
+
+ def test_creation_with_list_of_maskedarrays(self):
+ # Tests creating a masked array from a list of masked arrays.
+ x = array(np.arange(5), mask=[1, 0, 0, 0, 0])
+ data = array((x, x[::-1]))
+ assert_equal(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]])
+ assert_equal(data._mask, [[1, 0, 0, 0, 0], [0, 0, 0, 0, 1]])
+
+ x.mask = nomask
+ data = array((x, x[::-1]))
+ assert_equal(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]])
+ assert_(data.mask is nomask)
+
+ def test_creation_with_list_of_maskedarrays_no_bool_cast(self):
+ # Tests the regression in gh-18551
+ masked_str = np.ma.masked_array(['a', 'b'], mask=[True, False])
+ normal_int = np.arange(2)
+ res = np.ma.asarray([masked_str, normal_int], dtype="U21")
+ assert_array_equal(res.mask, [[True, False], [False, False]])
+
+ # The above only failed due a long chain of oddity, try also with
+ # an object array that cannot be converted to bool always:
+ class NotBool():
+ def __bool__(self):
+ raise ValueError("not a bool!")
+ masked_obj = np.ma.masked_array([NotBool(), 'b'], mask=[True, False])
+ # Check that the NotBool actually fails like we would expect:
+ with pytest.raises(ValueError, match="not a bool!"):
+ np.asarray([masked_obj], dtype=bool)
+
+ res = np.ma.asarray([masked_obj, normal_int])
+ assert_array_equal(res.mask, [[True, False], [False, False]])
+
+ def test_creation_from_ndarray_with_padding(self):
+ x = np.array([('A', 0)], dtype={'names':['f0','f1'],
+ 'formats':['S4','i8'],
+ 'offsets':[0,8]})
+ array(x) # used to fail due to 'V' padding field in x.dtype.descr
+
+ def test_unknown_keyword_parameter(self):
+ with pytest.raises(TypeError, match="unexpected keyword argument"):
+ MaskedArray([1, 2, 3], maks=[0, 1, 0]) # `mask` is misspelled.
+
+ def test_asarray(self):
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+ xm.fill_value = -9999
+ xm._hardmask = True
+ xmm = asarray(xm)
+ assert_equal(xmm._data, xm._data)
+ assert_equal(xmm._mask, xm._mask)
+ assert_equal(xmm.fill_value, xm.fill_value)
+ assert_equal(xmm._hardmask, xm._hardmask)
+
+ def test_asarray_default_order(self):
+ # See Issue #6646
+ m = np.eye(3).T
+ assert_(not m.flags.c_contiguous)
+
+ new_m = asarray(m)
+ assert_(new_m.flags.c_contiguous)
+
+ def test_asarray_enforce_order(self):
+ # See Issue #6646
+ m = np.eye(3).T
+ assert_(not m.flags.c_contiguous)
+
+ new_m = asarray(m, order='C')
+ assert_(new_m.flags.c_contiguous)
+
+ def test_fix_invalid(self):
+ # Checks fix_invalid.
+ with np.errstate(invalid='ignore'):
+ data = masked_array([np.nan, 0., 1.], mask=[0, 0, 1])
+ data_fixed = fix_invalid(data)
+ assert_equal(data_fixed._data, [data.fill_value, 0., 1.])
+ assert_equal(data_fixed._mask, [1., 0., 1.])
+
+ def test_maskedelement(self):
+ # Test of masked element
+ x = arange(6)
+ x[1] = masked
+ assert_(str(masked) == '--')
+ assert_(x[1] is masked)
+ assert_equal(filled(x[1], 0), 0)
+
+ def test_set_element_as_object(self):
+ # Tests setting elements with object
+ a = empty(1, dtype=object)
+ x = (1, 2, 3, 4, 5)
+ a[0] = x
+ assert_equal(a[0], x)
+ assert_(a[0] is x)
+
+ import datetime
+ dt = datetime.datetime.now()
+ a[0] = dt
+ assert_(a[0] is dt)
+
+ def test_indexing(self):
+ # Tests conversions and indexing
+ x1 = np.array([1, 2, 4, 3])
+ x2 = array(x1, mask=[1, 0, 0, 0])
+ x3 = array(x1, mask=[0, 1, 0, 1])
+ x4 = array(x1)
+ # test conversion to strings
+ str(x2) # raises?
+ repr(x2) # raises?
+ assert_equal(np.sort(x1), sort(x2, endwith=False))
+ # tests of indexing
+ assert_(type(x2[1]) is type(x1[1]))
+ assert_(x1[1] == x2[1])
+ assert_(x2[0] is masked)
+ assert_equal(x1[2], x2[2])
+ assert_equal(x1[2:5], x2[2:5])
+ assert_equal(x1[:], x2[:])
+ assert_equal(x1[1:], x3[1:])
+ x1[2] = 9
+ x2[2] = 9
+ assert_equal(x1, x2)
+ x1[1:3] = 99
+ x2[1:3] = 99
+ assert_equal(x1, x2)
+ x2[1] = masked
+ assert_equal(x1, x2)
+ x2[1:3] = masked
+ assert_equal(x1, x2)
+ x2[:] = x1
+ x2[1] = masked
+ assert_(allequal(getmask(x2), array([0, 1, 0, 0])))
+ x3[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0])
+ assert_(allequal(getmask(x3), array([0, 1, 1, 0])))
+ x4[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0])
+ assert_(allequal(getmask(x4), array([0, 1, 1, 0])))
+ assert_(allequal(x4, array([1, 2, 3, 4])))
+ x1 = np.arange(5) * 1.0
+ x2 = masked_values(x1, 3.0)
+ assert_equal(x1, x2)
+ assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask))
+ assert_equal(3.0, x2.fill_value)
+ x1 = array([1, 'hello', 2, 3], object)
+ x2 = np.array([1, 'hello', 2, 3], object)
+ s1 = x1[1]
+ s2 = x2[1]
+ assert_equal(type(s2), str)
+ assert_equal(type(s1), str)
+ assert_equal(s1, s2)
+ assert_(x1[1:1].shape == (0,))
+
+ def test_setitem_no_warning(self):
+ # Setitem shouldn't warn, because the assignment might be masked
+ # and warning for a masked assignment is weird (see gh-23000)
+ # (When the value is masked, otherwise a warning would be acceptable
+ # but is not given currently.)
+ x = np.ma.arange(60).reshape((6, 10))
+ index = (slice(1, 5, 2), [7, 5])
+ value = np.ma.masked_all((2, 2))
+ value._data[...] = np.inf # not a valid integer...
+ x[index] = value
+ # The masked scalar is special cased, but test anyway (it's NaN):
+ x[...] = np.ma.masked
+ # Finally, a large value that cannot be cast to the float32 `x`
+ x = np.ma.arange(3., dtype=np.float32)
+ value = np.ma.array([2e234, 1, 1], mask=[True, False, False])
+ x[...] = value
+ x[[0, 1, 2]] = value
+
+ @suppress_copy_mask_on_assignment
+ def test_copy(self):
+ # Tests of some subtle points of copying and sizing.
+ n = [0, 0, 1, 0, 0]
+ m = make_mask(n)
+ m2 = make_mask(m)
+ assert_(m is m2)
+ m3 = make_mask(m, copy=True)
+ assert_(m is not m3)
+
+ x1 = np.arange(5)
+ y1 = array(x1, mask=m)
+ assert_equal(y1._data.__array_interface__, x1.__array_interface__)
+ assert_(allequal(x1, y1.data))
+ assert_equal(y1._mask.__array_interface__, m.__array_interface__)
+
+ y1a = array(y1)
+ # Default for masked array is not to copy; see gh-10318.
+ assert_(y1a._data.__array_interface__ ==
+ y1._data.__array_interface__)
+ assert_(y1a._mask.__array_interface__ ==
+ y1._mask.__array_interface__)
+
+ y2 = array(x1, mask=m3)
+ assert_(y2._data.__array_interface__ == x1.__array_interface__)
+ assert_(y2._mask.__array_interface__ == m3.__array_interface__)
+ assert_(y2[2] is masked)
+ y2[2] = 9
+ assert_(y2[2] is not masked)
+ assert_(y2._mask.__array_interface__ == m3.__array_interface__)
+ assert_(allequal(y2.mask, 0))
+
+ y2a = array(x1, mask=m, copy=1)
+ assert_(y2a._data.__array_interface__ != x1.__array_interface__)
+ #assert_( y2a._mask is not m)
+ assert_(y2a._mask.__array_interface__ != m.__array_interface__)
+ assert_(y2a[2] is masked)
+ y2a[2] = 9
+ assert_(y2a[2] is not masked)
+ #assert_( y2a._mask is not m)
+ assert_(y2a._mask.__array_interface__ != m.__array_interface__)
+ assert_(allequal(y2a.mask, 0))
+
+ y3 = array(x1 * 1.0, mask=m)
+ assert_(filled(y3).dtype is (x1 * 1.0).dtype)
+
+ x4 = arange(4)
+ x4[2] = masked
+ y4 = resize(x4, (8,))
+ assert_equal(concatenate([x4, x4]), y4)
+ assert_equal(getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0])
+ y5 = repeat(x4, (2, 2, 2, 2), axis=0)
+ assert_equal(y5, [0, 0, 1, 1, 2, 2, 3, 3])
+ y6 = repeat(x4, 2, axis=0)
+ assert_equal(y5, y6)
+ y7 = x4.repeat((2, 2, 2, 2), axis=0)
+ assert_equal(y5, y7)
+ y8 = x4.repeat(2, 0)
+ assert_equal(y5, y8)
+
+ y9 = x4.copy()
+ assert_equal(y9._data, x4._data)
+ assert_equal(y9._mask, x4._mask)
+
+ x = masked_array([1, 2, 3], mask=[0, 1, 0])
+ # Copy is False by default
+ y = masked_array(x)
+ assert_equal(y._data.ctypes.data, x._data.ctypes.data)
+ assert_equal(y._mask.ctypes.data, x._mask.ctypes.data)
+ y = masked_array(x, copy=True)
+ assert_not_equal(y._data.ctypes.data, x._data.ctypes.data)
+ assert_not_equal(y._mask.ctypes.data, x._mask.ctypes.data)
+
+ def test_copy_0d(self):
+ # gh-9430
+ x = np.ma.array(43, mask=True)
+ xc = x.copy()
+ assert_equal(xc.mask, True)
+
+ def test_copy_on_python_builtins(self):
+ # Tests copy works on python builtins (issue#8019)
+ assert_(isMaskedArray(np.ma.copy([1,2,3])))
+ assert_(isMaskedArray(np.ma.copy((1,2,3))))
+
+ def test_copy_immutable(self):
+ # Tests that the copy method is immutable, GitHub issue #5247
+ a = np.ma.array([1, 2, 3])
+ b = np.ma.array([4, 5, 6])
+ a_copy_method = a.copy
+ b.copy
+ assert_equal(a_copy_method(), [1, 2, 3])
+
+ def test_deepcopy(self):
+ from copy import deepcopy
+ a = array([0, 1, 2], mask=[False, True, False])
+ copied = deepcopy(a)
+ assert_equal(copied.mask, a.mask)
+ assert_not_equal(id(a._mask), id(copied._mask))
+
+ copied[1] = 1
+ assert_equal(copied.mask, [0, 0, 0])
+ assert_equal(a.mask, [0, 1, 0])
+
+ copied = deepcopy(a)
+ assert_equal(copied.mask, a.mask)
+ copied.mask[1] = False
+ assert_equal(copied.mask, [0, 0, 0])
+ assert_equal(a.mask, [0, 1, 0])
+
+ def test_format(self):
+ a = array([0, 1, 2], mask=[False, True, False])
+ assert_equal(format(a), "[0 -- 2]")
+ assert_equal(format(masked), "--")
+ assert_equal(format(masked, ""), "--")
+
+ # Postponed from PR #15410, perhaps address in the future.
+ # assert_equal(format(masked, " >5"), " --")
+ # assert_equal(format(masked, " <5"), "-- ")
+
+ # Expect a FutureWarning for using format_spec with MaskedElement
+ with assert_warns(FutureWarning):
+ with_format_string = format(masked, " >5")
+ assert_equal(with_format_string, "--")
+
+ def test_str_repr(self):
+ a = array([0, 1, 2], mask=[False, True, False])
+ assert_equal(str(a), '[0 -- 2]')
+ assert_equal(
+ repr(a),
+ textwrap.dedent('''\
+ masked_array(data=[0, --, 2],
+ mask=[False, True, False],
+ fill_value=999999)''')
+ )
+
+ # arrays with a continuation
+ a = np.ma.arange(2000)
+ a[1:50] = np.ma.masked
+ assert_equal(
+ repr(a),
+ textwrap.dedent('''\
+ masked_array(data=[0, --, --, ..., 1997, 1998, 1999],
+ mask=[False, True, True, ..., False, False, False],
+ fill_value=999999)''')
+ )
+
+ # line-wrapped 1d arrays are correctly aligned
+ a = np.ma.arange(20)
+ assert_equal(
+ repr(a),
+ textwrap.dedent('''\
+ masked_array(data=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
+ 14, 15, 16, 17, 18, 19],
+ mask=False,
+ fill_value=999999)''')
+ )
+
+ # 2d arrays cause wrapping
+ a = array([[1, 2, 3], [4, 5, 6]], dtype=np.int8)
+ a[1,1] = np.ma.masked
+ assert_equal(
+ repr(a),
+ textwrap.dedent('''\
+ masked_array(
+ data=[[1, 2, 3],
+ [4, --, 6]],
+ mask=[[False, False, False],
+ [False, True, False]],
+ fill_value=999999,
+ dtype=int8)''')
+ )
+
+ # but not it they're a row vector
+ assert_equal(
+ repr(a[:1]),
+ textwrap.dedent('''\
+ masked_array(data=[[1, 2, 3]],
+ mask=[[False, False, False]],
+ fill_value=999999,
+ dtype=int8)''')
+ )
+
+ # dtype=int is implied, so not shown
+ assert_equal(
+ repr(a.astype(int)),
+ textwrap.dedent('''\
+ masked_array(
+ data=[[1, 2, 3],
+ [4, --, 6]],
+ mask=[[False, False, False],
+ [False, True, False]],
+ fill_value=999999)''')
+ )
+
+ def test_str_repr_legacy(self):
+ oldopts = np.get_printoptions()
+ np.set_printoptions(legacy='1.13')
+ try:
+ a = array([0, 1, 2], mask=[False, True, False])
+ assert_equal(str(a), '[0 -- 2]')
+ assert_equal(repr(a), 'masked_array(data = [0 -- 2],\n'
+ ' mask = [False True False],\n'
+ ' fill_value = 999999)\n')
+
+ a = np.ma.arange(2000)
+ a[1:50] = np.ma.masked
+ assert_equal(
+ repr(a),
+ 'masked_array(data = [0 -- -- ..., 1997 1998 1999],\n'
+ ' mask = [False True True ..., False False False],\n'
+ ' fill_value = 999999)\n'
+ )
+ finally:
+ np.set_printoptions(**oldopts)
+
+ def test_0d_unicode(self):
+ u = 'caf\xe9'
+ utype = type(u)
+
+ arr_nomask = np.ma.array(u)
+ arr_masked = np.ma.array(u, mask=True)
+
+ assert_equal(utype(arr_nomask), u)
+ assert_equal(utype(arr_masked), '--')
+
+ def test_pickling(self):
+ # Tests pickling
+ for dtype in (int, float, str, object):
+ a = arange(10).astype(dtype)
+ a.fill_value = 999
+
+ masks = ([0, 0, 0, 1, 0, 1, 0, 1, 0, 1], # partially masked
+ True, # Fully masked
+ False) # Fully unmasked
+
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ for mask in masks:
+ a.mask = mask
+ a_pickled = pickle.loads(pickle.dumps(a, protocol=proto))
+ assert_equal(a_pickled._mask, a._mask)
+ assert_equal(a_pickled._data, a._data)
+ if dtype in (object, int):
+ assert_equal(a_pickled.fill_value, 999)
+ else:
+ assert_equal(a_pickled.fill_value, dtype(999))
+ assert_array_equal(a_pickled.mask, mask)
+
+ def test_pickling_subbaseclass(self):
+ # Test pickling w/ a subclass of ndarray
+ x = np.array([(1.0, 2), (3.0, 4)],
+ dtype=[('x', float), ('y', int)]).view(np.recarray)
+ a = masked_array(x, mask=[(True, False), (False, True)])
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ a_pickled = pickle.loads(pickle.dumps(a, protocol=proto))
+ assert_equal(a_pickled._mask, a._mask)
+ assert_equal(a_pickled, a)
+ assert_(isinstance(a_pickled._data, np.recarray))
+
+ def test_pickling_maskedconstant(self):
+ # Test pickling MaskedConstant
+ mc = np.ma.masked
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ mc_pickled = pickle.loads(pickle.dumps(mc, protocol=proto))
+ assert_equal(mc_pickled._baseclass, mc._baseclass)
+ assert_equal(mc_pickled._mask, mc._mask)
+ assert_equal(mc_pickled._data, mc._data)
+
+ def test_pickling_wstructured(self):
+ # Tests pickling w/ structured array
+ a = array([(1, 1.), (2, 2.)], mask=[(0, 0), (0, 1)],
+ dtype=[('a', int), ('b', float)])
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ a_pickled = pickle.loads(pickle.dumps(a, protocol=proto))
+ assert_equal(a_pickled._mask, a._mask)
+ assert_equal(a_pickled, a)
+
+ def test_pickling_keepalignment(self):
+ # Tests pickling w/ F_CONTIGUOUS arrays
+ a = arange(10)
+ a.shape = (-1, 2)
+ b = a.T
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ test = pickle.loads(pickle.dumps(b, protocol=proto))
+ assert_equal(test, b)
+
+ def test_single_element_subscript(self):
+ # Tests single element subscripts of Maskedarrays.
+ a = array([1, 3, 2])
+ b = array([1, 3, 2], mask=[1, 0, 1])
+ assert_equal(a[0].shape, ())
+ assert_equal(b[0].shape, ())
+ assert_equal(b[1].shape, ())
+
+ def test_topython(self):
+ # Tests some communication issues with Python.
+ assert_equal(1, int(array(1)))
+ assert_equal(1.0, float(array(1)))
+ assert_equal(1, int(array([[[1]]])))
+ assert_equal(1.0, float(array([[1]])))
+ assert_raises(TypeError, float, array([1, 1]))
+
+ with suppress_warnings() as sup:
+ sup.filter(UserWarning, 'Warning: converting a masked element')
+ assert_(np.isnan(float(array([1], mask=[1]))))
+
+ a = array([1, 2, 3], mask=[1, 0, 0])
+ assert_raises(TypeError, lambda: float(a))
+ assert_equal(float(a[-1]), 3.)
+ assert_(np.isnan(float(a[0])))
+ assert_raises(TypeError, int, a)
+ assert_equal(int(a[-1]), 3)
+ assert_raises(MAError, lambda:int(a[0]))
+
+ def test_oddfeatures_1(self):
+ # Test of other odd features
+ x = arange(20)
+ x = x.reshape(4, 5)
+ x.flat[5] = 12
+ assert_(x[1, 0] == 12)
+ z = x + 10j * x
+ assert_equal(z.real, x)
+ assert_equal(z.imag, 10 * x)
+ assert_equal((z * conjugate(z)).real, 101 * x * x)
+ z.imag[...] = 0.0
+
+ x = arange(10)
+ x[3] = masked
+ assert_(str(x[3]) == str(masked))
+ c = x >= 8
+ assert_(count(where(c, masked, masked)) == 0)
+ assert_(shape(where(c, masked, masked)) == c.shape)
+
+ z = masked_where(c, x)
+ assert_(z.dtype is x.dtype)
+ assert_(z[3] is masked)
+ assert_(z[4] is not masked)
+ assert_(z[7] is not masked)
+ assert_(z[8] is masked)
+ assert_(z[9] is masked)
+ assert_equal(x, z)
+
+ def test_oddfeatures_2(self):
+ # Tests some more features.
+ x = array([1., 2., 3., 4., 5.])
+ c = array([1, 1, 1, 0, 0])
+ x[2] = masked
+ z = where(c, x, -x)
+ assert_equal(z, [1., 2., 0., -4., -5])
+ c[0] = masked
+ z = where(c, x, -x)
+ assert_equal(z, [1., 2., 0., -4., -5])
+ assert_(z[0] is masked)
+ assert_(z[1] is not masked)
+ assert_(z[2] is masked)
+
+ @suppress_copy_mask_on_assignment
+ def test_oddfeatures_3(self):
+ # Tests some generic features
+ atest = array([10], mask=True)
+ btest = array([20])
+ idx = atest.mask
+ atest[idx] = btest[idx]
+ assert_equal(atest, [20])
+
+ def test_filled_with_object_dtype(self):
+ a = np.ma.masked_all(1, dtype='O')
+ assert_equal(a.filled('x')[0], 'x')
+
+ def test_filled_with_flexible_dtype(self):
+ # Test filled w/ flexible dtype
+ flexi = array([(1, 1, 1)],
+ dtype=[('i', int), ('s', '|S8'), ('f', float)])
+ flexi[0] = masked
+ assert_equal(flexi.filled(),
+ np.array([(default_fill_value(0),
+ default_fill_value('0'),
+ default_fill_value(0.),)], dtype=flexi.dtype))
+ flexi[0] = masked
+ assert_equal(flexi.filled(1),
+ np.array([(1, '1', 1.)], dtype=flexi.dtype))
+
+ def test_filled_with_mvoid(self):
+ # Test filled w/ mvoid
+ ndtype = [('a', int), ('b', float)]
+ a = mvoid((1, 2.), mask=[(0, 1)], dtype=ndtype)
+ # Filled using default
+ test = a.filled()
+ assert_equal(tuple(test), (1, default_fill_value(1.)))
+ # Explicit fill_value
+ test = a.filled((-1, -1))
+ assert_equal(tuple(test), (1, -1))
+ # Using predefined filling values
+ a.fill_value = (-999, -999)
+ assert_equal(tuple(a.filled()), (1, -999))
+
+ def test_filled_with_nested_dtype(self):
+ # Test filled w/ nested dtype
+ ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])]
+ a = array([(1, (1, 1)), (2, (2, 2))],
+ mask=[(0, (1, 0)), (0, (0, 1))], dtype=ndtype)
+ test = a.filled(0)
+ control = np.array([(1, (0, 1)), (2, (2, 0))], dtype=ndtype)
+ assert_equal(test, control)
+
+ test = a['B'].filled(0)
+ control = np.array([(0, 1), (2, 0)], dtype=a['B'].dtype)
+ assert_equal(test, control)
+
+ # test if mask gets set correctly (see #6760)
+ Z = numpy.ma.zeros(2, numpy.dtype([("A", "(2,2)i1,(2,2)i1", (2,2))]))
+ assert_equal(Z.data.dtype, numpy.dtype([('A', [('f0', 'i1', (2, 2)),
+ ('f1', 'i1', (2, 2))], (2, 2))]))
+ assert_equal(Z.mask.dtype, numpy.dtype([('A', [('f0', '?', (2, 2)),
+ ('f1', '?', (2, 2))], (2, 2))]))
+
+ def test_filled_with_f_order(self):
+ # Test filled w/ F-contiguous array
+ a = array(np.array([(0, 1, 2), (4, 5, 6)], order='F'),
+ mask=np.array([(0, 0, 1), (1, 0, 0)], order='F'),
+ order='F') # this is currently ignored
+ assert_(a.flags['F_CONTIGUOUS'])
+ assert_(a.filled(0).flags['F_CONTIGUOUS'])
+
+ def test_optinfo_propagation(self):
+ # Checks that _optinfo dictionary isn't back-propagated
+ x = array([1, 2, 3, ], dtype=float)
+ x._optinfo['info'] = '???'
+ y = x.copy()
+ assert_equal(y._optinfo['info'], '???')
+ y._optinfo['info'] = '!!!'
+ assert_equal(x._optinfo['info'], '???')
+
+ def test_optinfo_forward_propagation(self):
+ a = array([1,2,2,4])
+ a._optinfo["key"] = "value"
+ assert_equal(a._optinfo["key"], (a == 2)._optinfo["key"])
+ assert_equal(a._optinfo["key"], (a != 2)._optinfo["key"])
+ assert_equal(a._optinfo["key"], (a > 2)._optinfo["key"])
+ assert_equal(a._optinfo["key"], (a >= 2)._optinfo["key"])
+ assert_equal(a._optinfo["key"], (a <= 2)._optinfo["key"])
+ assert_equal(a._optinfo["key"], (a + 2)._optinfo["key"])
+ assert_equal(a._optinfo["key"], (a - 2)._optinfo["key"])
+ assert_equal(a._optinfo["key"], (a * 2)._optinfo["key"])
+ assert_equal(a._optinfo["key"], (a / 2)._optinfo["key"])
+ assert_equal(a._optinfo["key"], a[:2]._optinfo["key"])
+ assert_equal(a._optinfo["key"], a[[0,0,2]]._optinfo["key"])
+ assert_equal(a._optinfo["key"], np.exp(a)._optinfo["key"])
+ assert_equal(a._optinfo["key"], np.abs(a)._optinfo["key"])
+ assert_equal(a._optinfo["key"], array(a, copy=True)._optinfo["key"])
+ assert_equal(a._optinfo["key"], np.zeros_like(a)._optinfo["key"])
+
+ def test_fancy_printoptions(self):
+ # Test printing a masked array w/ fancy dtype.
+ fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])])
+ test = array([(1, (2, 3.0)), (4, (5, 6.0))],
+ mask=[(1, (0, 1)), (0, (1, 0))],
+ dtype=fancydtype)
+ control = "[(--, (2, --)) (4, (--, 6.0))]"
+ assert_equal(str(test), control)
+
+ # Test 0-d array with multi-dimensional dtype
+ t_2d0 = masked_array(data = (0, [[0.0, 0.0, 0.0],
+ [0.0, 0.0, 0.0]],
+ 0.0),
+ mask = (False, [[True, False, True],
+ [False, False, True]],
+ False),
+ dtype = "int, (2,3)float, float")
+ control = "(0, [[--, 0.0, --], [0.0, 0.0, --]], 0.0)"
+ assert_equal(str(t_2d0), control)
+
+ def test_flatten_structured_array(self):
+ # Test flatten_structured_array on arrays
+ # On ndarray
+ ndtype = [('a', int), ('b', float)]
+ a = np.array([(1, 1), (2, 2)], dtype=ndtype)
+ test = flatten_structured_array(a)
+ control = np.array([[1., 1.], [2., 2.]], dtype=float)
+ assert_equal(test, control)
+ assert_equal(test.dtype, control.dtype)
+ # On masked_array
+ a = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype)
+ test = flatten_structured_array(a)
+ control = array([[1., 1.], [2., 2.]],
+ mask=[[0, 1], [1, 0]], dtype=float)
+ assert_equal(test, control)
+ assert_equal(test.dtype, control.dtype)
+ assert_equal(test.mask, control.mask)
+ # On masked array with nested structure
+ ndtype = [('a', int), ('b', [('ba', int), ('bb', float)])]
+ a = array([(1, (1, 1.1)), (2, (2, 2.2))],
+ mask=[(0, (1, 0)), (1, (0, 1))], dtype=ndtype)
+ test = flatten_structured_array(a)
+ control = array([[1., 1., 1.1], [2., 2., 2.2]],
+ mask=[[0, 1, 0], [1, 0, 1]], dtype=float)
+ assert_equal(test, control)
+ assert_equal(test.dtype, control.dtype)
+ assert_equal(test.mask, control.mask)
+ # Keeping the initial shape
+ ndtype = [('a', int), ('b', float)]
+ a = np.array([[(1, 1), ], [(2, 2), ]], dtype=ndtype)
+ test = flatten_structured_array(a)
+ control = np.array([[[1., 1.], ], [[2., 2.], ]], dtype=float)
+ assert_equal(test, control)
+ assert_equal(test.dtype, control.dtype)
+
+ def test_void0d(self):
+ # Test creating a mvoid object
+ ndtype = [('a', int), ('b', int)]
+ a = np.array([(1, 2,)], dtype=ndtype)[0]
+ f = mvoid(a)
+ assert_(isinstance(f, mvoid))
+
+ a = masked_array([(1, 2)], mask=[(1, 0)], dtype=ndtype)[0]
+ assert_(isinstance(a, mvoid))
+
+ a = masked_array([(1, 2), (1, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype)
+ f = mvoid(a._data[0], a._mask[0])
+ assert_(isinstance(f, mvoid))
+
+ def test_mvoid_getitem(self):
+ # Test mvoid.__getitem__
+ ndtype = [('a', int), ('b', int)]
+ a = masked_array([(1, 2,), (3, 4)], mask=[(0, 0), (1, 0)],
+ dtype=ndtype)
+ # w/o mask
+ f = a[0]
+ assert_(isinstance(f, mvoid))
+ assert_equal((f[0], f['a']), (1, 1))
+ assert_equal(f['b'], 2)
+ # w/ mask
+ f = a[1]
+ assert_(isinstance(f, mvoid))
+ assert_(f[0] is masked)
+ assert_(f['a'] is masked)
+ assert_equal(f[1], 4)
+
+ # exotic dtype
+ A = masked_array(data=[([0,1],)],
+ mask=[([True, False],)],
+ dtype=[("A", ">i2", (2,))])
+ assert_equal(A[0]["A"], A["A"][0])
+ assert_equal(A[0]["A"], masked_array(data=[0, 1],
+ mask=[True, False], dtype=">i2"))
+
+ def test_mvoid_iter(self):
+ # Test iteration on __getitem__
+ ndtype = [('a', int), ('b', int)]
+ a = masked_array([(1, 2,), (3, 4)], mask=[(0, 0), (1, 0)],
+ dtype=ndtype)
+ # w/o mask
+ assert_equal(list(a[0]), [1, 2])
+ # w/ mask
+ assert_equal(list(a[1]), [masked, 4])
+
+ def test_mvoid_print(self):
+ # Test printing a mvoid
+ mx = array([(1, 1), (2, 2)], dtype=[('a', int), ('b', int)])
+ assert_equal(str(mx[0]), "(1, 1)")
+ mx['b'][0] = masked
+ ini_display = masked_print_option._display
+ masked_print_option.set_display("-X-")
+ try:
+ assert_equal(str(mx[0]), "(1, -X-)")
+ assert_equal(repr(mx[0]), "(1, -X-)")
+ finally:
+ masked_print_option.set_display(ini_display)
+
+ # also check if there are object datatypes (see gh-7493)
+ mx = array([(1,), (2,)], dtype=[('a', 'O')])
+ assert_equal(str(mx[0]), "(1,)")
+
+ def test_mvoid_multidim_print(self):
+
+ # regression test for gh-6019
+ t_ma = masked_array(data = [([1, 2, 3],)],
+ mask = [([False, True, False],)],
+ fill_value = ([999999, 999999, 999999],),
+ dtype = [('a', '<i4', (3,))])
+ assert_(str(t_ma[0]) == "([1, --, 3],)")
+ assert_(repr(t_ma[0]) == "([1, --, 3],)")
+
+ # additional tests with structured arrays
+
+ t_2d = masked_array(data = [([[1, 2], [3,4]],)],
+ mask = [([[False, True], [True, False]],)],
+ dtype = [('a', '<i4', (2,2))])
+ assert_(str(t_2d[0]) == "([[1, --], [--, 4]],)")
+ assert_(repr(t_2d[0]) == "([[1, --], [--, 4]],)")
+
+ t_0d = masked_array(data = [(1,2)],
+ mask = [(True,False)],
+ dtype = [('a', '<i4'), ('b', '<i4')])
+ assert_(str(t_0d[0]) == "(--, 2)")
+ assert_(repr(t_0d[0]) == "(--, 2)")
+
+ t_2d = masked_array(data = [([[1, 2], [3,4]], 1)],
+ mask = [([[False, True], [True, False]], False)],
+ dtype = [('a', '<i4', (2,2)), ('b', float)])
+ assert_(str(t_2d[0]) == "([[1, --], [--, 4]], 1.0)")
+ assert_(repr(t_2d[0]) == "([[1, --], [--, 4]], 1.0)")
+
+ t_ne = masked_array(data=[(1, (1, 1))],
+ mask=[(True, (True, False))],
+ dtype = [('a', '<i4'), ('b', 'i4,i4')])
+ assert_(str(t_ne[0]) == "(--, (--, 1))")
+ assert_(repr(t_ne[0]) == "(--, (--, 1))")
+
+ def test_object_with_array(self):
+ mx1 = masked_array([1.], mask=[True])
+ mx2 = masked_array([1., 2.])
+ mx = masked_array([mx1, mx2], mask=[False, True], dtype=object)
+ assert_(mx[0] is mx1)
+ assert_(mx[1] is not mx2)
+ assert_(np.all(mx[1].data == mx2.data))
+ assert_(np.all(mx[1].mask))
+ # check that we return a view.
+ mx[1].data[0] = 0.
+ assert_(mx2[0] == 0.)
+
+
+class TestMaskedArrayArithmetic:
+ # Base test class for MaskedArrays.
+
+ def setup_method(self):
+ # Base data definition.
+ x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
+ y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
+ a10 = 10.
+ m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+ m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
+ xm = masked_array(x, mask=m1)
+ ym = masked_array(y, mask=m2)
+ z = np.array([-.5, 0., .5, .8])
+ zm = masked_array(z, mask=[0, 1, 0, 0])
+ xf = np.where(m1, 1e+20, x)
+ xm.set_fill_value(1e+20)
+ self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
+ self.err_status = np.geterr()
+ np.seterr(divide='ignore', invalid='ignore')
+
+ def teardown_method(self):
+ np.seterr(**self.err_status)
+
+ def test_basic_arithmetic(self):
+ # Test of basic arithmetic.
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+ a2d = array([[1, 2], [0, 4]])
+ a2dm = masked_array(a2d, [[0, 0], [1, 0]])
+ assert_equal(a2d * a2d, a2d * a2dm)
+ assert_equal(a2d + a2d, a2d + a2dm)
+ assert_equal(a2d - a2d, a2d - a2dm)
+ for s in [(12,), (4, 3), (2, 6)]:
+ x = x.reshape(s)
+ y = y.reshape(s)
+ xm = xm.reshape(s)
+ ym = ym.reshape(s)
+ xf = xf.reshape(s)
+ assert_equal(-x, -xm)
+ assert_equal(x + y, xm + ym)
+ assert_equal(x - y, xm - ym)
+ assert_equal(x * y, xm * ym)
+ assert_equal(x / y, xm / ym)
+ assert_equal(a10 + y, a10 + ym)
+ assert_equal(a10 - y, a10 - ym)
+ assert_equal(a10 * y, a10 * ym)
+ assert_equal(a10 / y, a10 / ym)
+ assert_equal(x + a10, xm + a10)
+ assert_equal(x - a10, xm - a10)
+ assert_equal(x * a10, xm * a10)
+ assert_equal(x / a10, xm / a10)
+ assert_equal(x ** 2, xm ** 2)
+ assert_equal(abs(x) ** 2.5, abs(xm) ** 2.5)
+ assert_equal(x ** y, xm ** ym)
+ assert_equal(np.add(x, y), add(xm, ym))
+ assert_equal(np.subtract(x, y), subtract(xm, ym))
+ assert_equal(np.multiply(x, y), multiply(xm, ym))
+ assert_equal(np.divide(x, y), divide(xm, ym))
+
+ def test_divide_on_different_shapes(self):
+ x = arange(6, dtype=float)
+ x.shape = (2, 3)
+ y = arange(3, dtype=float)
+
+ z = x / y
+ assert_equal(z, [[-1., 1., 1.], [-1., 4., 2.5]])
+ assert_equal(z.mask, [[1, 0, 0], [1, 0, 0]])
+
+ z = x / y[None,:]
+ assert_equal(z, [[-1., 1., 1.], [-1., 4., 2.5]])
+ assert_equal(z.mask, [[1, 0, 0], [1, 0, 0]])
+
+ y = arange(2, dtype=float)
+ z = x / y[:, None]
+ assert_equal(z, [[-1., -1., -1.], [3., 4., 5.]])
+ assert_equal(z.mask, [[1, 1, 1], [0, 0, 0]])
+
+ def test_mixed_arithmetic(self):
+ # Tests mixed arithmetic.
+ na = np.array([1])
+ ma = array([1])
+ assert_(isinstance(na + ma, MaskedArray))
+ assert_(isinstance(ma + na, MaskedArray))
+
+ def test_limits_arithmetic(self):
+ tiny = np.finfo(float).tiny
+ a = array([tiny, 1. / tiny, 0.])
+ assert_equal(getmaskarray(a / 2), [0, 0, 0])
+ assert_equal(getmaskarray(2 / a), [1, 0, 1])
+
+ def test_masked_singleton_arithmetic(self):
+ # Tests some scalar arithmetic on MaskedArrays.
+ # Masked singleton should remain masked no matter what
+ xm = array(0, mask=1)
+ assert_((1 / array(0)).mask)
+ assert_((1 + xm).mask)
+ assert_((-xm).mask)
+ assert_(maximum(xm, xm).mask)
+ assert_(minimum(xm, xm).mask)
+
+ def test_masked_singleton_equality(self):
+ # Tests (in)equality on masked singleton
+ a = array([1, 2, 3], mask=[1, 1, 0])
+ assert_((a[0] == 0) is masked)
+ assert_((a[0] != 0) is masked)
+ assert_equal((a[-1] == 0), False)
+ assert_equal((a[-1] != 0), True)
+
+ def test_arithmetic_with_masked_singleton(self):
+ # Checks that there's no collapsing to masked
+ x = masked_array([1, 2])
+ y = x * masked
+ assert_equal(y.shape, x.shape)
+ assert_equal(y._mask, [True, True])
+ y = x[0] * masked
+ assert_(y is masked)
+ y = x + masked
+ assert_equal(y.shape, x.shape)
+ assert_equal(y._mask, [True, True])
+
+ def test_arithmetic_with_masked_singleton_on_1d_singleton(self):
+ # Check that we're not losing the shape of a singleton
+ x = masked_array([1, ])
+ y = x + masked
+ assert_equal(y.shape, x.shape)
+ assert_equal(y.mask, [True, ])
+
+ def test_scalar_arithmetic(self):
+ x = array(0, mask=0)
+ assert_equal(x.filled().ctypes.data, x.ctypes.data)
+ # Make sure we don't lose the shape in some circumstances
+ xm = array((0, 0)) / 0.
+ assert_equal(xm.shape, (2,))
+ assert_equal(xm.mask, [1, 1])
+
+ def test_basic_ufuncs(self):
+ # Test various functions such as sin, cos.
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+ assert_equal(np.cos(x), cos(xm))
+ assert_equal(np.cosh(x), cosh(xm))
+ assert_equal(np.sin(x), sin(xm))
+ assert_equal(np.sinh(x), sinh(xm))
+ assert_equal(np.tan(x), tan(xm))
+ assert_equal(np.tanh(x), tanh(xm))
+ assert_equal(np.sqrt(abs(x)), sqrt(xm))
+ assert_equal(np.log(abs(x)), log(xm))
+ assert_equal(np.log10(abs(x)), log10(xm))
+ assert_equal(np.exp(x), exp(xm))
+ assert_equal(np.arcsin(z), arcsin(zm))
+ assert_equal(np.arccos(z), arccos(zm))
+ assert_equal(np.arctan(z), arctan(zm))
+ assert_equal(np.arctan2(x, y), arctan2(xm, ym))
+ assert_equal(np.absolute(x), absolute(xm))
+ assert_equal(np.angle(x + 1j*y), angle(xm + 1j*ym))
+ assert_equal(np.angle(x + 1j*y, deg=True), angle(xm + 1j*ym, deg=True))
+ assert_equal(np.equal(x, y), equal(xm, ym))
+ assert_equal(np.not_equal(x, y), not_equal(xm, ym))
+ assert_equal(np.less(x, y), less(xm, ym))
+ assert_equal(np.greater(x, y), greater(xm, ym))
+ assert_equal(np.less_equal(x, y), less_equal(xm, ym))
+ assert_equal(np.greater_equal(x, y), greater_equal(xm, ym))
+ assert_equal(np.conjugate(x), conjugate(xm))
+
+ def test_count_func(self):
+ # Tests count
+ assert_equal(1, count(1))
+ assert_equal(0, array(1, mask=[1]))
+
+ ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
+ res = count(ott)
+ assert_(res.dtype.type is np.intp)
+ assert_equal(3, res)
+
+ ott = ott.reshape((2, 2))
+ res = count(ott)
+ assert_(res.dtype.type is np.intp)
+ assert_equal(3, res)
+ res = count(ott, 0)
+ assert_(isinstance(res, ndarray))
+ assert_equal([1, 2], res)
+ assert_(getmask(res) is nomask)
+
+ ott = array([0., 1., 2., 3.])
+ res = count(ott, 0)
+ assert_(isinstance(res, ndarray))
+ assert_(res.dtype.type is np.intp)
+ assert_raises(np.AxisError, ott.count, axis=1)
+
+ def test_count_on_python_builtins(self):
+ # Tests count works on python builtins (issue#8019)
+ assert_equal(3, count([1,2,3]))
+ assert_equal(2, count((1,2)))
+
+ def test_minmax_func(self):
+ # Tests minimum and maximum.
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+ # max doesn't work if shaped
+ xr = np.ravel(x)
+ xmr = ravel(xm)
+ # following are true because of careful selection of data
+ assert_equal(max(xr), maximum.reduce(xmr))
+ assert_equal(min(xr), minimum.reduce(xmr))
+
+ assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
+ assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
+ x = arange(5)
+ y = arange(5) - 2
+ x[3] = masked
+ y[0] = masked
+ assert_equal(minimum(x, y), where(less(x, y), x, y))
+ assert_equal(maximum(x, y), where(greater(x, y), x, y))
+ assert_(minimum.reduce(x) == 0)
+ assert_(maximum.reduce(x) == 4)
+
+ x = arange(4).reshape(2, 2)
+ x[-1, -1] = masked
+ assert_equal(maximum.reduce(x, axis=None), 2)
+
+ def test_minimummaximum_func(self):
+ a = np.ones((2, 2))
+ aminimum = minimum(a, a)
+ assert_(isinstance(aminimum, MaskedArray))
+ assert_equal(aminimum, np.minimum(a, a))
+
+ aminimum = minimum.outer(a, a)
+ assert_(isinstance(aminimum, MaskedArray))
+ assert_equal(aminimum, np.minimum.outer(a, a))
+
+ amaximum = maximum(a, a)
+ assert_(isinstance(amaximum, MaskedArray))
+ assert_equal(amaximum, np.maximum(a, a))
+
+ amaximum = maximum.outer(a, a)
+ assert_(isinstance(amaximum, MaskedArray))
+ assert_equal(amaximum, np.maximum.outer(a, a))
+
+ def test_minmax_reduce(self):
+ # Test np.min/maximum.reduce on array w/ full False mask
+ a = array([1, 2, 3], mask=[False, False, False])
+ b = np.maximum.reduce(a)
+ assert_equal(b, 3)
+
+ def test_minmax_funcs_with_output(self):
+ # Tests the min/max functions with explicit outputs
+ mask = np.random.rand(12).round()
+ xm = array(np.random.uniform(0, 10, 12), mask=mask)
+ xm.shape = (3, 4)
+ for funcname in ('min', 'max'):
+ # Initialize
+ npfunc = getattr(np, funcname)
+ mafunc = getattr(numpy.ma.core, funcname)
+ # Use the np version
+ nout = np.empty((4,), dtype=int)
+ try:
+ result = npfunc(xm, axis=0, out=nout)
+ except MaskError:
+ pass
+ nout = np.empty((4,), dtype=float)
+ result = npfunc(xm, axis=0, out=nout)
+ assert_(result is nout)
+ # Use the ma version
+ nout.fill(-999)
+ result = mafunc(xm, axis=0, out=nout)
+ assert_(result is nout)
+
+ def test_minmax_methods(self):
+ # Additional tests on max/min
+ (_, _, _, _, _, xm, _, _, _, _) = self.d
+ xm.shape = (xm.size,)
+ assert_equal(xm.max(), 10)
+ assert_(xm[0].max() is masked)
+ assert_(xm[0].max(0) is masked)
+ assert_(xm[0].max(-1) is masked)
+ assert_equal(xm.min(), -10.)
+ assert_(xm[0].min() is masked)
+ assert_(xm[0].min(0) is masked)
+ assert_(xm[0].min(-1) is masked)
+ assert_equal(xm.ptp(), 20.)
+ assert_(xm[0].ptp() is masked)
+ assert_(xm[0].ptp(0) is masked)
+ assert_(xm[0].ptp(-1) is masked)
+
+ x = array([1, 2, 3], mask=True)
+ assert_(x.min() is masked)
+ assert_(x.max() is masked)
+ assert_(x.ptp() is masked)
+
+ def test_minmax_dtypes(self):
+ # Additional tests on max/min for non-standard float and complex dtypes
+ x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
+ a10 = 10.
+ an10 = -10.0
+ m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+ xm = masked_array(x, mask=m1)
+ xm.set_fill_value(1e+20)
+ float_dtypes = [np.float16, np.float32, np.float64, np.longdouble,
+ np.complex64, np.complex128, np.clongdouble]
+ for float_dtype in float_dtypes:
+ assert_equal(masked_array(x, mask=m1, dtype=float_dtype).max(),
+ float_dtype(a10))
+ assert_equal(masked_array(x, mask=m1, dtype=float_dtype).min(),
+ float_dtype(an10))
+
+ assert_equal(xm.min(), an10)
+ assert_equal(xm.max(), a10)
+
+ # Non-complex type only test
+ for float_dtype in float_dtypes[:4]:
+ assert_equal(masked_array(x, mask=m1, dtype=float_dtype).max(),
+ float_dtype(a10))
+ assert_equal(masked_array(x, mask=m1, dtype=float_dtype).min(),
+ float_dtype(an10))
+
+ # Complex types only test
+ for float_dtype in float_dtypes[-3:]:
+ ym = masked_array([1e20+1j, 1e20-2j, 1e20-1j], mask=[0, 1, 0],
+ dtype=float_dtype)
+ assert_equal(ym.min(), float_dtype(1e20-1j))
+ assert_equal(ym.max(), float_dtype(1e20+1j))
+
+ zm = masked_array([np.inf+2j, np.inf+3j, -np.inf-1j], mask=[0, 1, 0],
+ dtype=float_dtype)
+ assert_equal(zm.min(), float_dtype(-np.inf-1j))
+ assert_equal(zm.max(), float_dtype(np.inf+2j))
+
+ cmax = np.inf - 1j * np.finfo(np.float64).max
+ assert masked_array([-cmax, 0], mask=[0, 1]).max() == -cmax
+ assert masked_array([cmax, 0], mask=[0, 1]).min() == cmax
+
+ def test_addsumprod(self):
+ # Tests add, sum, product.
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+ assert_equal(np.add.reduce(x), add.reduce(x))
+ assert_equal(np.add.accumulate(x), add.accumulate(x))
+ assert_equal(4, sum(array(4), axis=0))
+ assert_equal(4, sum(array(4), axis=0))
+ assert_equal(np.sum(x, axis=0), sum(x, axis=0))
+ assert_equal(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0))
+ assert_equal(np.sum(x, 0), sum(x, 0))
+ assert_equal(np.prod(x, axis=0), product(x, axis=0))
+ assert_equal(np.prod(x, 0), product(x, 0))
+ assert_equal(np.prod(filled(xm, 1), axis=0), product(xm, axis=0))
+ s = (3, 4)
+ x.shape = y.shape = xm.shape = ym.shape = s
+ if len(s) > 1:
+ assert_equal(np.concatenate((x, y), 1), concatenate((xm, ym), 1))
+ assert_equal(np.add.reduce(x, 1), add.reduce(x, 1))
+ assert_equal(np.sum(x, 1), sum(x, 1))
+ assert_equal(np.prod(x, 1), product(x, 1))
+
+ def test_binops_d2D(self):
+ # Test binary operations on 2D data
+ a = array([[1.], [2.], [3.]], mask=[[False], [True], [True]])
+ b = array([[2., 3.], [4., 5.], [6., 7.]])
+
+ test = a * b
+ control = array([[2., 3.], [2., 2.], [3., 3.]],
+ mask=[[0, 0], [1, 1], [1, 1]])
+ assert_equal(test, control)
+ assert_equal(test.data, control.data)
+ assert_equal(test.mask, control.mask)
+
+ test = b * a
+ control = array([[2., 3.], [4., 5.], [6., 7.]],
+ mask=[[0, 0], [1, 1], [1, 1]])
+ assert_equal(test, control)
+ assert_equal(test.data, control.data)
+ assert_equal(test.mask, control.mask)
+
+ a = array([[1.], [2.], [3.]])
+ b = array([[2., 3.], [4., 5.], [6., 7.]],
+ mask=[[0, 0], [0, 0], [0, 1]])
+ test = a * b
+ control = array([[2, 3], [8, 10], [18, 3]],
+ mask=[[0, 0], [0, 0], [0, 1]])
+ assert_equal(test, control)
+ assert_equal(test.data, control.data)
+ assert_equal(test.mask, control.mask)
+
+ test = b * a
+ control = array([[2, 3], [8, 10], [18, 7]],
+ mask=[[0, 0], [0, 0], [0, 1]])
+ assert_equal(test, control)
+ assert_equal(test.data, control.data)
+ assert_equal(test.mask, control.mask)
+
+ def test_domained_binops_d2D(self):
+ # Test domained binary operations on 2D data
+ a = array([[1.], [2.], [3.]], mask=[[False], [True], [True]])
+ b = array([[2., 3.], [4., 5.], [6., 7.]])
+
+ test = a / b
+ control = array([[1. / 2., 1. / 3.], [2., 2.], [3., 3.]],
+ mask=[[0, 0], [1, 1], [1, 1]])
+ assert_equal(test, control)
+ assert_equal(test.data, control.data)
+ assert_equal(test.mask, control.mask)
+
+ test = b / a
+ control = array([[2. / 1., 3. / 1.], [4., 5.], [6., 7.]],
+ mask=[[0, 0], [1, 1], [1, 1]])
+ assert_equal(test, control)
+ assert_equal(test.data, control.data)
+ assert_equal(test.mask, control.mask)
+
+ a = array([[1.], [2.], [3.]])
+ b = array([[2., 3.], [4., 5.], [6., 7.]],
+ mask=[[0, 0], [0, 0], [0, 1]])
+ test = a / b
+ control = array([[1. / 2, 1. / 3], [2. / 4, 2. / 5], [3. / 6, 3]],
+ mask=[[0, 0], [0, 0], [0, 1]])
+ assert_equal(test, control)
+ assert_equal(test.data, control.data)
+ assert_equal(test.mask, control.mask)
+
+ test = b / a
+ control = array([[2 / 1., 3 / 1.], [4 / 2., 5 / 2.], [6 / 3., 7]],
+ mask=[[0, 0], [0, 0], [0, 1]])
+ assert_equal(test, control)
+ assert_equal(test.data, control.data)
+ assert_equal(test.mask, control.mask)
+
+ def test_noshrinking(self):
+ # Check that we don't shrink a mask when not wanted
+ # Binary operations
+ a = masked_array([1., 2., 3.], mask=[False, False, False],
+ shrink=False)
+ b = a + 1
+ assert_equal(b.mask, [0, 0, 0])
+ # In place binary operation
+ a += 1
+ assert_equal(a.mask, [0, 0, 0])
+ # Domained binary operation
+ b = a / 1.
+ assert_equal(b.mask, [0, 0, 0])
+ # In place binary operation
+ a /= 1.
+ assert_equal(a.mask, [0, 0, 0])
+
+ def test_ufunc_nomask(self):
+ # check the case ufuncs should set the mask to false
+ m = np.ma.array([1])
+ # check we don't get array([False], dtype=bool)
+ assert_equal(np.true_divide(m, 5).mask.shape, ())
+
+ def test_noshink_on_creation(self):
+ # Check that the mask is not shrunk on array creation when not wanted
+ a = np.ma.masked_values([1., 2.5, 3.1], 1.5, shrink=False)
+ assert_equal(a.mask, [0, 0, 0])
+
+ def test_mod(self):
+ # Tests mod
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
+ assert_equal(mod(x, y), mod(xm, ym))
+ test = mod(ym, xm)
+ assert_equal(test, np.mod(ym, xm))
+ assert_equal(test.mask, mask_or(xm.mask, ym.mask))
+ test = mod(xm, ym)
+ assert_equal(test, np.mod(xm, ym))
+ assert_equal(test.mask, mask_or(mask_or(xm.mask, ym.mask), (ym == 0)))
+
+ def test_TakeTransposeInnerOuter(self):
+ # Test of take, transpose, inner, outer products
+ x = arange(24)
+ y = np.arange(24)
+ x[5:6] = masked
+ x = x.reshape(2, 3, 4)
+ y = y.reshape(2, 3, 4)
+ assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))
+ assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))
+ assert_equal(np.inner(filled(x, 0), filled(y, 0)),
+ inner(x, y))
+ assert_equal(np.outer(filled(x, 0), filled(y, 0)),
+ outer(x, y))
+ y = array(['abc', 1, 'def', 2, 3], object)
+ y[2] = masked
+ t = take(y, [0, 3, 4])
+ assert_(t[0] == 'abc')
+ assert_(t[1] == 2)
+ assert_(t[2] == 3)
+
+ def test_imag_real(self):
+ # Check complex
+ xx = array([1 + 10j, 20 + 2j], mask=[1, 0])
+ assert_equal(xx.imag, [10, 2])
+ assert_equal(xx.imag.filled(), [1e+20, 2])
+ assert_equal(xx.imag.dtype, xx._data.imag.dtype)
+ assert_equal(xx.real, [1, 20])
+ assert_equal(xx.real.filled(), [1e+20, 20])
+ assert_equal(xx.real.dtype, xx._data.real.dtype)
+
+ def test_methods_with_output(self):
+ xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4)
+ xm[:, 0] = xm[0] = xm[-1, -1] = masked
+
+ funclist = ('sum', 'prod', 'var', 'std', 'max', 'min', 'ptp', 'mean',)
+
+ for funcname in funclist:
+ npfunc = getattr(np, funcname)
+ xmmeth = getattr(xm, funcname)
+ # A ndarray as explicit input
+ output = np.empty(4, dtype=float)
+ output.fill(-9999)
+ result = npfunc(xm, axis=0, out=output)
+ # ... the result should be the given output
+ assert_(result is output)
+ assert_equal(result, xmmeth(axis=0, out=output))
+
+ output = empty(4, dtype=int)
+ result = xmmeth(axis=0, out=output)
+ assert_(result is output)
+ assert_(output[0] is masked)
+
+ def test_eq_on_structured(self):
+ # Test the equality of structured arrays
+ ndtype = [('A', int), ('B', int)]
+ a = array([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype)
+
+ test = (a == a)
+ assert_equal(test.data, [True, True])
+ assert_equal(test.mask, [False, False])
+ assert_(test.fill_value == True)
+
+ test = (a == a[0])
+ assert_equal(test.data, [True, False])
+ assert_equal(test.mask, [False, False])
+ assert_(test.fill_value == True)
+
+ b = array([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype)
+ test = (a == b)
+ assert_equal(test.data, [False, True])
+ assert_equal(test.mask, [True, False])
+ assert_(test.fill_value == True)
+
+ test = (a[0] == b)
+ assert_equal(test.data, [False, False])
+ assert_equal(test.mask, [True, False])
+ assert_(test.fill_value == True)
+
+ b = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype)
+ test = (a == b)
+ assert_equal(test.data, [True, True])
+ assert_equal(test.mask, [False, False])
+ assert_(test.fill_value == True)
+
+ # complicated dtype, 2-dimensional array.
+ ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])]
+ a = array([[(1, (1, 1)), (2, (2, 2))],
+ [(3, (3, 3)), (4, (4, 4))]],
+ mask=[[(0, (1, 0)), (0, (0, 1))],
+ [(1, (0, 0)), (1, (1, 1))]], dtype=ndtype)
+ test = (a[0, 0] == a)
+ assert_equal(test.data, [[True, False], [False, False]])
+ assert_equal(test.mask, [[False, False], [False, True]])
+ assert_(test.fill_value == True)
+
+ def test_ne_on_structured(self):
+ # Test the equality of structured arrays
+ ndtype = [('A', int), ('B', int)]
+ a = array([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype)
+
+ test = (a != a)
+ assert_equal(test.data, [False, False])
+ assert_equal(test.mask, [False, False])
+ assert_(test.fill_value == True)
+
+ test = (a != a[0])
+ assert_equal(test.data, [False, True])
+ assert_equal(test.mask, [False, False])
+ assert_(test.fill_value == True)
+
+ b = array([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype)
+ test = (a != b)
+ assert_equal(test.data, [True, False])
+ assert_equal(test.mask, [True, False])
+ assert_(test.fill_value == True)
+
+ test = (a[0] != b)
+ assert_equal(test.data, [True, True])
+ assert_equal(test.mask, [True, False])
+ assert_(test.fill_value == True)
+
+ b = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype)
+ test = (a != b)
+ assert_equal(test.data, [False, False])
+ assert_equal(test.mask, [False, False])
+ assert_(test.fill_value == True)
+
+ # complicated dtype, 2-dimensional array.
+ ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])]
+ a = array([[(1, (1, 1)), (2, (2, 2))],
+ [(3, (3, 3)), (4, (4, 4))]],
+ mask=[[(0, (1, 0)), (0, (0, 1))],
+ [(1, (0, 0)), (1, (1, 1))]], dtype=ndtype)
+ test = (a[0, 0] != a)
+ assert_equal(test.data, [[False, True], [True, True]])
+ assert_equal(test.mask, [[False, False], [False, True]])
+ assert_(test.fill_value == True)
+
+ def test_eq_ne_structured_with_non_masked(self):
+ a = array([(1, 1), (2, 2), (3, 4)],
+ mask=[(0, 1), (0, 0), (1, 1)], dtype='i4,i4')
+ eq = a == a.data
+ ne = a.data != a
+ # Test the obvious.
+ assert_(np.all(eq))
+ assert_(not np.any(ne))
+ # Expect the mask set only for items with all fields masked.
+ expected_mask = a.mask == np.ones((), a.mask.dtype)
+ assert_array_equal(eq.mask, expected_mask)
+ assert_array_equal(ne.mask, expected_mask)
+ # The masked element will indicated not equal, because the
+ # masks did not match.
+ assert_equal(eq.data, [True, True, False])
+ assert_array_equal(eq.data, ~ne.data)
+
+ def test_eq_ne_structured_extra(self):
+ # ensure simple examples are symmetric and make sense.
+ # from https://github.com/numpy/numpy/pull/8590#discussion_r101126465
+ dt = np.dtype('i4,i4')
+ for m1 in (mvoid((1, 2), mask=(0, 0), dtype=dt),
+ mvoid((1, 2), mask=(0, 1), dtype=dt),
+ mvoid((1, 2), mask=(1, 0), dtype=dt),
+ mvoid((1, 2), mask=(1, 1), dtype=dt)):
+ ma1 = m1.view(MaskedArray)
+ r1 = ma1.view('2i4')
+ for m2 in (np.array((1, 1), dtype=dt),
+ mvoid((1, 1), dtype=dt),
+ mvoid((1, 0), mask=(0, 1), dtype=dt),
+ mvoid((3, 2), mask=(0, 1), dtype=dt)):
+ ma2 = m2.view(MaskedArray)
+ r2 = ma2.view('2i4')
+ eq_expected = (r1 == r2).all()
+ assert_equal(m1 == m2, eq_expected)
+ assert_equal(m2 == m1, eq_expected)
+ assert_equal(ma1 == m2, eq_expected)
+ assert_equal(m1 == ma2, eq_expected)
+ assert_equal(ma1 == ma2, eq_expected)
+ # Also check it is the same if we do it element by element.
+ el_by_el = [m1[name] == m2[name] for name in dt.names]
+ assert_equal(array(el_by_el, dtype=bool).all(), eq_expected)
+ ne_expected = (r1 != r2).any()
+ assert_equal(m1 != m2, ne_expected)
+ assert_equal(m2 != m1, ne_expected)
+ assert_equal(ma1 != m2, ne_expected)
+ assert_equal(m1 != ma2, ne_expected)
+ assert_equal(ma1 != ma2, ne_expected)
+ el_by_el = [m1[name] != m2[name] for name in dt.names]
+ assert_equal(array(el_by_el, dtype=bool).any(), ne_expected)
+
+ @pytest.mark.parametrize('dt', ['S', 'U'])
+ @pytest.mark.parametrize('fill', [None, 'A'])
+ def test_eq_for_strings(self, dt, fill):
+ # Test the equality of structured arrays
+ a = array(['a', 'b'], dtype=dt, mask=[0, 1], fill_value=fill)
+
+ test = (a == a)
+ assert_equal(test.data, [True, True])
+ assert_equal(test.mask, [False, True])
+ assert_(test.fill_value == True)
+
+ test = (a == a[0])
+ assert_equal(test.data, [True, False])
+ assert_equal(test.mask, [False, True])
+ assert_(test.fill_value == True)
+
+ b = array(['a', 'b'], dtype=dt, mask=[1, 0], fill_value=fill)
+ test = (a == b)
+ assert_equal(test.data, [False, False])
+ assert_equal(test.mask, [True, True])
+ assert_(test.fill_value == True)
+
+ test = (a[0] == b)
+ assert_equal(test.data, [False, False])
+ assert_equal(test.mask, [True, False])
+ assert_(test.fill_value == True)
+
+ test = (b == a[0])
+ assert_equal(test.data, [False, False])
+ assert_equal(test.mask, [True, False])
+ assert_(test.fill_value == True)
+
+ @pytest.mark.parametrize('dt', ['S', 'U'])
+ @pytest.mark.parametrize('fill', [None, 'A'])
+ def test_ne_for_strings(self, dt, fill):
+ # Test the equality of structured arrays
+ a = array(['a', 'b'], dtype=dt, mask=[0, 1], fill_value=fill)
+
+ test = (a != a)
+ assert_equal(test.data, [False, False])
+ assert_equal(test.mask, [False, True])
+ assert_(test.fill_value == True)
+
+ test = (a != a[0])
+ assert_equal(test.data, [False, True])
+ assert_equal(test.mask, [False, True])
+ assert_(test.fill_value == True)
+
+ b = array(['a', 'b'], dtype=dt, mask=[1, 0], fill_value=fill)
+ test = (a != b)
+ assert_equal(test.data, [True, True])
+ assert_equal(test.mask, [True, True])
+ assert_(test.fill_value == True)
+
+ test = (a[0] != b)
+ assert_equal(test.data, [True, True])
+ assert_equal(test.mask, [True, False])
+ assert_(test.fill_value == True)
+
+ test = (b != a[0])
+ assert_equal(test.data, [True, True])
+ assert_equal(test.mask, [True, False])
+ assert_(test.fill_value == True)
+
+ @pytest.mark.parametrize('dt1', num_dts, ids=num_ids)
+ @pytest.mark.parametrize('dt2', num_dts, ids=num_ids)
+ @pytest.mark.parametrize('fill', [None, 1])
+ def test_eq_for_numeric(self, dt1, dt2, fill):
+ # Test the equality of structured arrays
+ a = array([0, 1], dtype=dt1, mask=[0, 1], fill_value=fill)
+
+ test = (a == a)
+ assert_equal(test.data, [True, True])
+ assert_equal(test.mask, [False, True])
+ assert_(test.fill_value == True)
+
+ test = (a == a[0])
+ assert_equal(test.data, [True, False])
+ assert_equal(test.mask, [False, True])
+ assert_(test.fill_value == True)
+
+ b = array([0, 1], dtype=dt2, mask=[1, 0], fill_value=fill)
+ test = (a == b)
+ assert_equal(test.data, [False, False])
+ assert_equal(test.mask, [True, True])
+ assert_(test.fill_value == True)
+
+ test = (a[0] == b)
+ assert_equal(test.data, [False, False])
+ assert_equal(test.mask, [True, False])
+ assert_(test.fill_value == True)
+
+ test = (b == a[0])
+ assert_equal(test.data, [False, False])
+ assert_equal(test.mask, [True, False])
+ assert_(test.fill_value == True)
+
+ @pytest.mark.parametrize("op", [operator.eq, operator.lt])
+ def test_eq_broadcast_with_unmasked(self, op):
+ a = array([0, 1], mask=[0, 1])
+ b = np.arange(10).reshape(5, 2)
+ result = op(a, b)
+ assert_(result.mask.shape == b.shape)
+ assert_equal(result.mask, np.zeros(b.shape, bool) | a.mask)
+
+ @pytest.mark.parametrize("op", [operator.eq, operator.gt])
+ def test_comp_no_mask_not_broadcast(self, op):
+ # Regression test for failing doctest in MaskedArray.nonzero
+ # after gh-24556.
+ a = array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
+ result = op(a, 3)
+ assert_(not result.mask.shape)
+ assert_(result.mask is nomask)
+
+ @pytest.mark.parametrize('dt1', num_dts, ids=num_ids)
+ @pytest.mark.parametrize('dt2', num_dts, ids=num_ids)
+ @pytest.mark.parametrize('fill', [None, 1])
+ def test_ne_for_numeric(self, dt1, dt2, fill):
+ # Test the equality of structured arrays
+ a = array([0, 1], dtype=dt1, mask=[0, 1], fill_value=fill)
+
+ test = (a != a)
+ assert_equal(test.data, [False, False])
+ assert_equal(test.mask, [False, True])
+ assert_(test.fill_value == True)
+
+ test = (a != a[0])
+ assert_equal(test.data, [False, True])
+ assert_equal(test.mask, [False, True])
+ assert_(test.fill_value == True)
+
+ b = array([0, 1], dtype=dt2, mask=[1, 0], fill_value=fill)
+ test = (a != b)
+ assert_equal(test.data, [True, True])
+ assert_equal(test.mask, [True, True])
+ assert_(test.fill_value == True)
+
+ test = (a[0] != b)
+ assert_equal(test.data, [True, True])
+ assert_equal(test.mask, [True, False])
+ assert_(test.fill_value == True)
+
+ test = (b != a[0])
+ assert_equal(test.data, [True, True])
+ assert_equal(test.mask, [True, False])
+ assert_(test.fill_value == True)
+
+ @pytest.mark.parametrize('dt1', num_dts, ids=num_ids)
+ @pytest.mark.parametrize('dt2', num_dts, ids=num_ids)
+ @pytest.mark.parametrize('fill', [None, 1])
+ @pytest.mark.parametrize('op',
+ [operator.le, operator.lt, operator.ge, operator.gt])
+ def test_comparisons_for_numeric(self, op, dt1, dt2, fill):
+ # Test the equality of structured arrays
+ a = array([0, 1], dtype=dt1, mask=[0, 1], fill_value=fill)
+
+ test = op(a, a)
+ assert_equal(test.data, op(a._data, a._data))
+ assert_equal(test.mask, [False, True])
+ assert_(test.fill_value == True)
+
+ test = op(a, a[0])
+ assert_equal(test.data, op(a._data, a._data[0]))
+ assert_equal(test.mask, [False, True])
+ assert_(test.fill_value == True)
+
+ b = array([0, 1], dtype=dt2, mask=[1, 0], fill_value=fill)
+ test = op(a, b)
+ assert_equal(test.data, op(a._data, b._data))
+ assert_equal(test.mask, [True, True])
+ assert_(test.fill_value == True)
+
+ test = op(a[0], b)
+ assert_equal(test.data, op(a._data[0], b._data))
+ assert_equal(test.mask, [True, False])
+ assert_(test.fill_value == True)
+
+ test = op(b, a[0])
+ assert_equal(test.data, op(b._data, a._data[0]))
+ assert_equal(test.mask, [True, False])
+ assert_(test.fill_value == True)
+
+ @pytest.mark.parametrize('op',
+ [operator.le, operator.lt, operator.ge, operator.gt])
+ @pytest.mark.parametrize('fill', [None, "N/A"])
+ def test_comparisons_strings(self, op, fill):
+ # See gh-21770, mask propagation is broken for strings (and some other
+ # cases) so we explicitly test strings here.
+ # In principle only == and != may need special handling...
+ ma1 = masked_array(["a", "b", "cde"], mask=[0, 1, 0], fill_value=fill)
+ ma2 = masked_array(["cde", "b", "a"], mask=[0, 1, 0], fill_value=fill)
+ assert_equal(op(ma1, ma2)._data, op(ma1._data, ma2._data))
+
+ def test_eq_with_None(self):
+ # Really, comparisons with None should not be done, but check them
+ # anyway. Note that pep8 will flag these tests.
+ # Deprecation is in place for arrays, and when it happens this
+ # test will fail (and have to be changed accordingly).
+
+ # With partial mask
+ with suppress_warnings() as sup:
+ sup.filter(FutureWarning, "Comparison to `None`")
+ a = array([None, 1], mask=[0, 1])
+ assert_equal(a == None, array([True, False], mask=[0, 1]))
+ assert_equal(a.data == None, [True, False])
+ assert_equal(a != None, array([False, True], mask=[0, 1]))
+ # With nomask
+ a = array([None, 1], mask=False)
+ assert_equal(a == None, [True, False])
+ assert_equal(a != None, [False, True])
+ # With complete mask
+ a = array([None, 2], mask=True)
+ assert_equal(a == None, array([False, True], mask=True))
+ assert_equal(a != None, array([True, False], mask=True))
+ # Fully masked, even comparison to None should return "masked"
+ a = masked
+ assert_equal(a == None, masked)
+
+ def test_eq_with_scalar(self):
+ a = array(1)
+ assert_equal(a == 1, True)
+ assert_equal(a == 0, False)
+ assert_equal(a != 1, False)
+ assert_equal(a != 0, True)
+ b = array(1, mask=True)
+ assert_equal(b == 0, masked)
+ assert_equal(b == 1, masked)
+ assert_equal(b != 0, masked)
+ assert_equal(b != 1, masked)
+
+ def test_eq_different_dimensions(self):
+ m1 = array([1, 1], mask=[0, 1])
+ # test comparison with both masked and regular arrays.
+ for m2 in (array([[0, 1], [1, 2]]),
+ np.array([[0, 1], [1, 2]])):
+ test = (m1 == m2)
+ assert_equal(test.data, [[False, False],
+ [True, False]])
+ assert_equal(test.mask, [[False, True],
+ [False, True]])
+
+ def test_numpyarithmetic(self):
+ # Check that the mask is not back-propagated when using numpy functions
+ a = masked_array([-1, 0, 1, 2, 3], mask=[0, 0, 0, 0, 1])
+ control = masked_array([np.nan, np.nan, 0, np.log(2), -1],
+ mask=[1, 1, 0, 0, 1])
+
+ test = log(a)
+ assert_equal(test, control)
+ assert_equal(test.mask, control.mask)
+ assert_equal(a.mask, [0, 0, 0, 0, 1])
+
+ test = np.log(a)
+ assert_equal(test, control)
+ assert_equal(test.mask, control.mask)
+ assert_equal(a.mask, [0, 0, 0, 0, 1])
+
+
+class TestMaskedArrayAttributes:
+
+ def test_keepmask(self):
+ # Tests the keep mask flag
+ x = masked_array([1, 2, 3], mask=[1, 0, 0])
+ mx = masked_array(x)
+ assert_equal(mx.mask, x.mask)
+ mx = masked_array(x, mask=[0, 1, 0], keep_mask=False)
+ assert_equal(mx.mask, [0, 1, 0])
+ mx = masked_array(x, mask=[0, 1, 0], keep_mask=True)
+ assert_equal(mx.mask, [1, 1, 0])
+ # We default to true
+ mx = masked_array(x, mask=[0, 1, 0])
+ assert_equal(mx.mask, [1, 1, 0])
+
+ def test_hardmask(self):
+ # Test hard_mask
+ d = arange(5)
+ n = [0, 0, 0, 1, 1]
+ m = make_mask(n)
+ xh = array(d, mask=m, hard_mask=True)
+ # We need to copy, to avoid updating d in xh !
+ xs = array(d, mask=m, hard_mask=False, copy=True)
+ xh[[1, 4]] = [10, 40]
+ xs[[1, 4]] = [10, 40]
+ assert_equal(xh._data, [0, 10, 2, 3, 4])
+ assert_equal(xs._data, [0, 10, 2, 3, 40])
+ assert_equal(xs.mask, [0, 0, 0, 1, 0])
+ assert_(xh._hardmask)
+ assert_(not xs._hardmask)
+ xh[1:4] = [10, 20, 30]
+ xs[1:4] = [10, 20, 30]
+ assert_equal(xh._data, [0, 10, 20, 3, 4])
+ assert_equal(xs._data, [0, 10, 20, 30, 40])
+ assert_equal(xs.mask, nomask)
+ xh[0] = masked
+ xs[0] = masked
+ assert_equal(xh.mask, [1, 0, 0, 1, 1])
+ assert_equal(xs.mask, [1, 0, 0, 0, 0])
+ xh[:] = 1
+ xs[:] = 1
+ assert_equal(xh._data, [0, 1, 1, 3, 4])
+ assert_equal(xs._data, [1, 1, 1, 1, 1])
+ assert_equal(xh.mask, [1, 0, 0, 1, 1])
+ assert_equal(xs.mask, nomask)
+ # Switch to soft mask
+ xh.soften_mask()
+ xh[:] = arange(5)
+ assert_equal(xh._data, [0, 1, 2, 3, 4])
+ assert_equal(xh.mask, nomask)
+ # Switch back to hard mask
+ xh.harden_mask()
+ xh[xh < 3] = masked
+ assert_equal(xh._data, [0, 1, 2, 3, 4])
+ assert_equal(xh._mask, [1, 1, 1, 0, 0])
+ xh[filled(xh > 1, False)] = 5
+ assert_equal(xh._data, [0, 1, 2, 5, 5])
+ assert_equal(xh._mask, [1, 1, 1, 0, 0])
+
+ xh = array([[1, 2], [3, 4]], mask=[[1, 0], [0, 0]], hard_mask=True)
+ xh[0] = 0
+ assert_equal(xh._data, [[1, 0], [3, 4]])
+ assert_equal(xh._mask, [[1, 0], [0, 0]])
+ xh[-1, -1] = 5
+ assert_equal(xh._data, [[1, 0], [3, 5]])
+ assert_equal(xh._mask, [[1, 0], [0, 0]])
+ xh[filled(xh < 5, False)] = 2
+ assert_equal(xh._data, [[1, 2], [2, 5]])
+ assert_equal(xh._mask, [[1, 0], [0, 0]])
+
+ def test_hardmask_again(self):
+ # Another test of hardmask
+ d = arange(5)
+ n = [0, 0, 0, 1, 1]
+ m = make_mask(n)
+ xh = array(d, mask=m, hard_mask=True)
+ xh[4:5] = 999
+ xh[0:1] = 999
+ assert_equal(xh._data, [999, 1, 2, 3, 4])
+
+ def test_hardmask_oncemore_yay(self):
+ # OK, yet another test of hardmask
+ # Make sure that harden_mask/soften_mask//unshare_mask returns self
+ a = array([1, 2, 3], mask=[1, 0, 0])
+ b = a.harden_mask()
+ assert_equal(a, b)
+ b[0] = 0
+ assert_equal(a, b)
+ assert_equal(b, array([1, 2, 3], mask=[1, 0, 0]))
+ a = b.soften_mask()
+ a[0] = 0
+ assert_equal(a, b)
+ assert_equal(b, array([0, 2, 3], mask=[0, 0, 0]))
+
+ def test_smallmask(self):
+ # Checks the behaviour of _smallmask
+ a = arange(10)
+ a[1] = masked
+ a[1] = 1
+ assert_equal(a._mask, nomask)
+ a = arange(10)
+ a._smallmask = False
+ a[1] = masked
+ a[1] = 1
+ assert_equal(a._mask, zeros(10))
+
+ def test_shrink_mask(self):
+ # Tests .shrink_mask()
+ a = array([1, 2, 3], mask=[0, 0, 0])
+ b = a.shrink_mask()
+ assert_equal(a, b)
+ assert_equal(a.mask, nomask)
+
+ # Mask cannot be shrunk on structured types, so is a no-op
+ a = np.ma.array([(1, 2.0)], [('a', int), ('b', float)])
+ b = a.copy()
+ a.shrink_mask()
+ assert_equal(a.mask, b.mask)
+
+ def test_flat(self):
+ # Test that flat can return all types of items [#4585, #4615]
+ # test 2-D record array
+ # ... on structured array w/ masked records
+ x = array([[(1, 1.1, 'one'), (2, 2.2, 'two'), (3, 3.3, 'thr')],
+ [(4, 4.4, 'fou'), (5, 5.5, 'fiv'), (6, 6.6, 'six')]],
+ dtype=[('a', int), ('b', float), ('c', '|S8')])
+ x['a'][0, 1] = masked
+ x['b'][1, 0] = masked
+ x['c'][0, 2] = masked
+ x[-1, -1] = masked
+ xflat = x.flat
+ assert_equal(xflat[0], x[0, 0])
+ assert_equal(xflat[1], x[0, 1])
+ assert_equal(xflat[2], x[0, 2])
+ assert_equal(xflat[:3], x[0])
+ assert_equal(xflat[3], x[1, 0])
+ assert_equal(xflat[4], x[1, 1])
+ assert_equal(xflat[5], x[1, 2])
+ assert_equal(xflat[3:], x[1])
+ assert_equal(xflat[-1], x[-1, -1])
+ i = 0
+ j = 0
+ for xf in xflat:
+ assert_equal(xf, x[j, i])
+ i += 1
+ if i >= x.shape[-1]:
+ i = 0
+ j += 1
+
+ def test_assign_dtype(self):
+ # check that the mask's dtype is updated when dtype is changed
+ a = np.zeros(4, dtype='f4,i4')
+
+ m = np.ma.array(a)
+ m.dtype = np.dtype('f4')
+ repr(m) # raises?
+ assert_equal(m.dtype, np.dtype('f4'))
+
+ # check that dtype changes that change shape of mask too much
+ # are not allowed
+ def assign():
+ m = np.ma.array(a)
+ m.dtype = np.dtype('f8')
+ assert_raises(ValueError, assign)
+
+ b = a.view(dtype='f4', type=np.ma.MaskedArray) # raises?
+ assert_equal(b.dtype, np.dtype('f4'))
+
+ # check that nomask is preserved
+ a = np.zeros(4, dtype='f4')
+ m = np.ma.array(a)
+ m.dtype = np.dtype('f4,i4')
+ assert_equal(m.dtype, np.dtype('f4,i4'))
+ assert_equal(m._mask, np.ma.nomask)
+
+
+class TestFillingValues:
+
+ def test_check_on_scalar(self):
+ # Test _check_fill_value set to valid and invalid values
+ _check_fill_value = np.ma.core._check_fill_value
+
+ fval = _check_fill_value(0, int)
+ assert_equal(fval, 0)
+ fval = _check_fill_value(None, int)
+ assert_equal(fval, default_fill_value(0))
+
+ fval = _check_fill_value(0, "|S3")
+ assert_equal(fval, b"0")
+ fval = _check_fill_value(None, "|S3")
+ assert_equal(fval, default_fill_value(b"camelot!"))
+ assert_raises(TypeError, _check_fill_value, 1e+20, int)
+ assert_raises(TypeError, _check_fill_value, 'stuff', int)
+
+ def test_check_on_fields(self):
+ # Tests _check_fill_value with records
+ _check_fill_value = np.ma.core._check_fill_value
+ ndtype = [('a', int), ('b', float), ('c', "|S3")]
+ # A check on a list should return a single record
+ fval = _check_fill_value([-999, -12345678.9, "???"], ndtype)
+ assert_(isinstance(fval, ndarray))
+ assert_equal(fval.item(), [-999, -12345678.9, b"???"])
+ # A check on None should output the defaults
+ fval = _check_fill_value(None, ndtype)
+ assert_(isinstance(fval, ndarray))
+ assert_equal(fval.item(), [default_fill_value(0),
+ default_fill_value(0.),
+ asbytes(default_fill_value("0"))])
+ #.....Using a structured type as fill_value should work
+ fill_val = np.array((-999, -12345678.9, "???"), dtype=ndtype)
+ fval = _check_fill_value(fill_val, ndtype)
+ assert_(isinstance(fval, ndarray))
+ assert_equal(fval.item(), [-999, -12345678.9, b"???"])
+
+ #.....Using a flexible type w/ a different type shouldn't matter
+ # BEHAVIOR in 1.5 and earlier, and 1.13 and later: match structured
+ # types by position
+ fill_val = np.array((-999, -12345678.9, "???"),
+ dtype=[("A", int), ("B", float), ("C", "|S3")])
+ fval = _check_fill_value(fill_val, ndtype)
+ assert_(isinstance(fval, ndarray))
+ assert_equal(fval.item(), [-999, -12345678.9, b"???"])
+
+ #.....Using an object-array shouldn't matter either
+ fill_val = np.ndarray(shape=(1,), dtype=object)
+ fill_val[0] = (-999, -12345678.9, b"???")
+ fval = _check_fill_value(fill_val, object)
+ assert_(isinstance(fval, ndarray))
+ assert_equal(fval.item(), [-999, -12345678.9, b"???"])
+ # NOTE: This test was never run properly as "fill_value" rather than
+ # "fill_val" was assigned. Written properly, it fails.
+ #fill_val = np.array((-999, -12345678.9, "???"))
+ #fval = _check_fill_value(fill_val, ndtype)
+ #assert_(isinstance(fval, ndarray))
+ #assert_equal(fval.item(), [-999, -12345678.9, b"???"])
+ #.....One-field-only flexible type should work as well
+ ndtype = [("a", int)]
+ fval = _check_fill_value(-999999999, ndtype)
+ assert_(isinstance(fval, ndarray))
+ assert_equal(fval.item(), (-999999999,))
+
+ def test_fillvalue_conversion(self):
+ # Tests the behavior of fill_value during conversion
+ # We had a tailored comment to make sure special attributes are
+ # properly dealt with
+ a = array([b'3', b'4', b'5'])
+ a._optinfo.update({'comment':"updated!"})
+
+ b = array(a, dtype=int)
+ assert_equal(b._data, [3, 4, 5])
+ assert_equal(b.fill_value, default_fill_value(0))
+
+ b = array(a, dtype=float)
+ assert_equal(b._data, [3, 4, 5])
+ assert_equal(b.fill_value, default_fill_value(0.))
+
+ b = a.astype(int)
+ assert_equal(b._data, [3, 4, 5])
+ assert_equal(b.fill_value, default_fill_value(0))
+ assert_equal(b._optinfo['comment'], "updated!")
+
+ b = a.astype([('a', '|S3')])
+ assert_equal(b['a']._data, a._data)
+ assert_equal(b['a'].fill_value, a.fill_value)
+
+ def test_default_fill_value(self):
+ # check all calling conventions
+ f1 = default_fill_value(1.)
+ f2 = default_fill_value(np.array(1.))
+ f3 = default_fill_value(np.array(1.).dtype)
+ assert_equal(f1, f2)
+ assert_equal(f1, f3)
+
+ def test_default_fill_value_structured(self):
+ fields = array([(1, 1, 1)],
+ dtype=[('i', int), ('s', '|S8'), ('f', float)])
+
+ f1 = default_fill_value(fields)
+ f2 = default_fill_value(fields.dtype)
+ expected = np.array((default_fill_value(0),
+ default_fill_value('0'),
+ default_fill_value(0.)), dtype=fields.dtype)
+ assert_equal(f1, expected)
+ assert_equal(f2, expected)
+
+ def test_default_fill_value_void(self):
+ dt = np.dtype([('v', 'V7')])
+ f = default_fill_value(dt)
+ assert_equal(f['v'], np.array(default_fill_value(dt['v']), dt['v']))
+
+ def test_fillvalue(self):
+ # Yet more fun with the fill_value
+ data = masked_array([1, 2, 3], fill_value=-999)
+ series = data[[0, 2, 1]]
+ assert_equal(series._fill_value, data._fill_value)
+
+ mtype = [('f', float), ('s', '|S3')]
+ x = array([(1, 'a'), (2, 'b'), (pi, 'pi')], dtype=mtype)
+ x.fill_value = 999
+ assert_equal(x.fill_value.item(), [999., b'999'])
+ assert_equal(x['f'].fill_value, 999)
+ assert_equal(x['s'].fill_value, b'999')
+
+ x.fill_value = (9, '???')
+ assert_equal(x.fill_value.item(), (9, b'???'))
+ assert_equal(x['f'].fill_value, 9)
+ assert_equal(x['s'].fill_value, b'???')
+
+ x = array([1, 2, 3.1])
+ x.fill_value = 999
+ assert_equal(np.asarray(x.fill_value).dtype, float)
+ assert_equal(x.fill_value, 999.)
+ assert_equal(x._fill_value, np.array(999.))
+
+ def test_subarray_fillvalue(self):
+ # gh-10483 test multi-field index fill value
+ fields = array([(1, 1, 1)],
+ dtype=[('i', int), ('s', '|S8'), ('f', float)])
+ with suppress_warnings() as sup:
+ sup.filter(FutureWarning, "Numpy has detected")
+ subfields = fields[['i', 'f']]
+ assert_equal(tuple(subfields.fill_value), (999999, 1.e+20))
+ # test comparison does not raise:
+ subfields[1:] == subfields[:-1]
+
+ def test_fillvalue_exotic_dtype(self):
+ # Tests yet more exotic flexible dtypes
+ _check_fill_value = np.ma.core._check_fill_value
+ ndtype = [('i', int), ('s', '|S8'), ('f', float)]
+ control = np.array((default_fill_value(0),
+ default_fill_value('0'),
+ default_fill_value(0.),),
+ dtype=ndtype)
+ assert_equal(_check_fill_value(None, ndtype), control)
+ # The shape shouldn't matter
+ ndtype = [('f0', float, (2, 2))]
+ control = np.array((default_fill_value(0.),),
+ dtype=[('f0', float)]).astype(ndtype)
+ assert_equal(_check_fill_value(None, ndtype), control)
+ control = np.array((0,), dtype=[('f0', float)]).astype(ndtype)
+ assert_equal(_check_fill_value(0, ndtype), control)
+
+ ndtype = np.dtype("int, (2,3)float, float")
+ control = np.array((default_fill_value(0),
+ default_fill_value(0.),
+ default_fill_value(0.),),
+ dtype="int, float, float").astype(ndtype)
+ test = _check_fill_value(None, ndtype)
+ assert_equal(test, control)
+ control = np.array((0, 0, 0), dtype="int, float, float").astype(ndtype)
+ assert_equal(_check_fill_value(0, ndtype), control)
+ # but when indexing, fill value should become scalar not tuple
+ # See issue #6723
+ M = masked_array(control)
+ assert_equal(M["f1"].fill_value.ndim, 0)
+
+ def test_fillvalue_datetime_timedelta(self):
+ # Test default fillvalue for datetime64 and timedelta64 types.
+ # See issue #4476, this would return '?' which would cause errors
+ # elsewhere
+
+ for timecode in ("as", "fs", "ps", "ns", "us", "ms", "s", "m",
+ "h", "D", "W", "M", "Y"):
+ control = numpy.datetime64("NaT", timecode)
+ test = default_fill_value(numpy.dtype("<M8[" + timecode + "]"))
+ np.testing.assert_equal(test, control)
+
+ control = numpy.timedelta64("NaT", timecode)
+ test = default_fill_value(numpy.dtype("<m8[" + timecode + "]"))
+ np.testing.assert_equal(test, control)
+
+ def test_extremum_fill_value(self):
+ # Tests extremum fill values for flexible type.
+ a = array([(1, (2, 3)), (4, (5, 6))],
+ dtype=[('A', int), ('B', [('BA', int), ('BB', int)])])
+ test = a.fill_value
+ assert_equal(test.dtype, a.dtype)
+ assert_equal(test['A'], default_fill_value(a['A']))
+ assert_equal(test['B']['BA'], default_fill_value(a['B']['BA']))
+ assert_equal(test['B']['BB'], default_fill_value(a['B']['BB']))
+
+ test = minimum_fill_value(a)
+ assert_equal(test.dtype, a.dtype)
+ assert_equal(test[0], minimum_fill_value(a['A']))
+ assert_equal(test[1][0], minimum_fill_value(a['B']['BA']))
+ assert_equal(test[1][1], minimum_fill_value(a['B']['BB']))
+ assert_equal(test[1], minimum_fill_value(a['B']))
+
+ test = maximum_fill_value(a)
+ assert_equal(test.dtype, a.dtype)
+ assert_equal(test[0], maximum_fill_value(a['A']))
+ assert_equal(test[1][0], maximum_fill_value(a['B']['BA']))
+ assert_equal(test[1][1], maximum_fill_value(a['B']['BB']))
+ assert_equal(test[1], maximum_fill_value(a['B']))
+
+ def test_extremum_fill_value_subdtype(self):
+ a = array(([2, 3, 4],), dtype=[('value', np.int8, 3)])
+
+ test = minimum_fill_value(a)
+ assert_equal(test.dtype, a.dtype)
+ assert_equal(test[0], np.full(3, minimum_fill_value(a['value'])))
+
+ test = maximum_fill_value(a)
+ assert_equal(test.dtype, a.dtype)
+ assert_equal(test[0], np.full(3, maximum_fill_value(a['value'])))
+
+ def test_fillvalue_individual_fields(self):
+ # Test setting fill_value on individual fields
+ ndtype = [('a', int), ('b', int)]
+ # Explicit fill_value
+ a = array(list(zip([1, 2, 3], [4, 5, 6])),
+ fill_value=(-999, -999), dtype=ndtype)
+ aa = a['a']
+ aa.set_fill_value(10)
+ assert_equal(aa._fill_value, np.array(10))
+ assert_equal(tuple(a.fill_value), (10, -999))
+ a.fill_value['b'] = -10
+ assert_equal(tuple(a.fill_value), (10, -10))
+ # Implicit fill_value
+ t = array(list(zip([1, 2, 3], [4, 5, 6])), dtype=ndtype)
+ tt = t['a']
+ tt.set_fill_value(10)
+ assert_equal(tt._fill_value, np.array(10))
+ assert_equal(tuple(t.fill_value), (10, default_fill_value(0)))
+
+ def test_fillvalue_implicit_structured_array(self):
+ # Check that fill_value is always defined for structured arrays
+ ndtype = ('b', float)
+ adtype = ('a', float)
+ a = array([(1.,), (2.,)], mask=[(False,), (False,)],
+ fill_value=(np.nan,), dtype=np.dtype([adtype]))
+ b = empty(a.shape, dtype=[adtype, ndtype])
+ b['a'] = a['a']
+ b['a'].set_fill_value(a['a'].fill_value)
+ f = b._fill_value[()]
+ assert_(np.isnan(f[0]))
+ assert_equal(f[-1], default_fill_value(1.))
+
+ def test_fillvalue_as_arguments(self):
+ # Test adding a fill_value parameter to empty/ones/zeros
+ a = empty(3, fill_value=999.)
+ assert_equal(a.fill_value, 999.)
+
+ a = ones(3, fill_value=999., dtype=float)
+ assert_equal(a.fill_value, 999.)
+
+ a = zeros(3, fill_value=0., dtype=complex)
+ assert_equal(a.fill_value, 0.)
+
+ a = identity(3, fill_value=0., dtype=complex)
+ assert_equal(a.fill_value, 0.)
+
+ def test_shape_argument(self):
+ # Test that shape can be provides as an argument
+ # GH issue 6106
+ a = empty(shape=(3, ))
+ assert_equal(a.shape, (3, ))
+
+ a = ones(shape=(3, ), dtype=float)
+ assert_equal(a.shape, (3, ))
+
+ a = zeros(shape=(3, ), dtype=complex)
+ assert_equal(a.shape, (3, ))
+
+ def test_fillvalue_in_view(self):
+ # Test the behavior of fill_value in view
+
+ # Create initial masked array
+ x = array([1, 2, 3], fill_value=1, dtype=np.int64)
+
+ # Check that fill_value is preserved by default
+ y = x.view()
+ assert_(y.fill_value == 1)
+
+ # Check that fill_value is preserved if dtype is specified and the
+ # dtype is an ndarray sub-class and has a _fill_value attribute
+ y = x.view(MaskedArray)
+ assert_(y.fill_value == 1)
+
+ # Check that fill_value is preserved if type is specified and the
+ # dtype is an ndarray sub-class and has a _fill_value attribute (by
+ # default, the first argument is dtype, not type)
+ y = x.view(type=MaskedArray)
+ assert_(y.fill_value == 1)
+
+ # Check that code does not crash if passed an ndarray sub-class that
+ # does not have a _fill_value attribute
+ y = x.view(np.ndarray)
+ y = x.view(type=np.ndarray)
+
+ # Check that fill_value can be overridden with view
+ y = x.view(MaskedArray, fill_value=2)
+ assert_(y.fill_value == 2)
+
+ # Check that fill_value can be overridden with view (using type=)
+ y = x.view(type=MaskedArray, fill_value=2)
+ assert_(y.fill_value == 2)
+
+ # Check that fill_value gets reset if passed a dtype but not a
+ # fill_value. This is because even though in some cases one can safely
+ # cast the fill_value, e.g. if taking an int64 view of an int32 array,
+ # in other cases, this cannot be done (e.g. int32 view of an int64
+ # array with a large fill_value).
+ y = x.view(dtype=np.int32)
+ assert_(y.fill_value == 999999)
+
+ def test_fillvalue_bytes_or_str(self):
+ # Test whether fill values work as expected for structured dtypes
+ # containing bytes or str. See issue #7259.
+ a = empty(shape=(3, ), dtype="(2)3S,(2)3U")
+ assert_equal(a["f0"].fill_value, default_fill_value(b"spam"))
+ assert_equal(a["f1"].fill_value, default_fill_value("eggs"))
+
+
+class TestUfuncs:
+ # Test class for the application of ufuncs on MaskedArrays.
+
+ def setup_method(self):
+ # Base data definition.
+ self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6),
+ array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),)
+ self.err_status = np.geterr()
+ np.seterr(divide='ignore', invalid='ignore')
+
+ def teardown_method(self):
+ np.seterr(**self.err_status)
+
+ def test_testUfuncRegression(self):
+ # Tests new ufuncs on MaskedArrays.
+ for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
+ 'sin', 'cos', 'tan',
+ 'arcsin', 'arccos', 'arctan',
+ 'sinh', 'cosh', 'tanh',
+ 'arcsinh',
+ 'arccosh',
+ 'arctanh',
+ 'absolute', 'fabs', 'negative',
+ 'floor', 'ceil',
+ 'logical_not',
+ 'add', 'subtract', 'multiply',
+ 'divide', 'true_divide', 'floor_divide',
+ 'remainder', 'fmod', 'hypot', 'arctan2',
+ 'equal', 'not_equal', 'less_equal', 'greater_equal',
+ 'less', 'greater',
+ 'logical_and', 'logical_or', 'logical_xor',
+ ]:
+ try:
+ uf = getattr(umath, f)
+ except AttributeError:
+ uf = getattr(fromnumeric, f)
+ mf = getattr(numpy.ma.core, f)
+ args = self.d[:uf.nin]
+ ur = uf(*args)
+ mr = mf(*args)
+ assert_equal(ur.filled(0), mr.filled(0), f)
+ assert_mask_equal(ur.mask, mr.mask, err_msg=f)
+
+ def test_reduce(self):
+ # Tests reduce on MaskedArrays.
+ a = self.d[0]
+ assert_(not alltrue(a, axis=0))
+ assert_(sometrue(a, axis=0))
+ assert_equal(sum(a[:3], axis=0), 0)
+ assert_equal(product(a, axis=0), 0)
+ assert_equal(add.reduce(a), pi)
+
+ def test_minmax(self):
+ # Tests extrema on MaskedArrays.
+ a = arange(1, 13).reshape(3, 4)
+ amask = masked_where(a < 5, a)
+ assert_equal(amask.max(), a.max())
+ assert_equal(amask.min(), 5)
+ assert_equal(amask.max(0), a.max(0))
+ assert_equal(amask.min(0), [5, 6, 7, 8])
+ assert_(amask.max(1)[0].mask)
+ assert_(amask.min(1)[0].mask)
+
+ def test_ndarray_mask(self):
+ # Check that the mask of the result is a ndarray (not a MaskedArray...)
+ a = masked_array([-1, 0, 1, 2, 3], mask=[0, 0, 0, 0, 1])
+ test = np.sqrt(a)
+ control = masked_array([-1, 0, 1, np.sqrt(2), -1],
+ mask=[1, 0, 0, 0, 1])
+ assert_equal(test, control)
+ assert_equal(test.mask, control.mask)
+ assert_(not isinstance(test.mask, MaskedArray))
+
+ def test_treatment_of_NotImplemented(self):
+ # Check that NotImplemented is returned at appropriate places
+
+ a = masked_array([1., 2.], mask=[1, 0])
+ assert_raises(TypeError, operator.mul, a, "abc")
+ assert_raises(TypeError, operator.truediv, a, "abc")
+
+ class MyClass:
+ __array_priority__ = a.__array_priority__ + 1
+
+ def __mul__(self, other):
+ return "My mul"
+
+ def __rmul__(self, other):
+ return "My rmul"
+
+ me = MyClass()
+ assert_(me * a == "My mul")
+ assert_(a * me == "My rmul")
+
+ # and that __array_priority__ is respected
+ class MyClass2:
+ __array_priority__ = 100
+
+ def __mul__(self, other):
+ return "Me2mul"
+
+ def __rmul__(self, other):
+ return "Me2rmul"
+
+ def __rdiv__(self, other):
+ return "Me2rdiv"
+
+ __rtruediv__ = __rdiv__
+
+ me_too = MyClass2()
+ assert_(a.__mul__(me_too) is NotImplemented)
+ assert_(all(multiply.outer(a, me_too) == "Me2rmul"))
+ assert_(a.__truediv__(me_too) is NotImplemented)
+ assert_(me_too * a == "Me2mul")
+ assert_(a * me_too == "Me2rmul")
+ assert_(a / me_too == "Me2rdiv")
+
+ def test_no_masked_nan_warnings(self):
+ # check that a nan in masked position does not
+ # cause ufunc warnings
+
+ m = np.ma.array([0.5, np.nan], mask=[0,1])
+
+ with warnings.catch_warnings():
+ warnings.filterwarnings("error")
+
+ # test unary and binary ufuncs
+ exp(m)
+ add(m, 1)
+ m > 0
+
+ # test different unary domains
+ sqrt(m)
+ log(m)
+ tan(m)
+ arcsin(m)
+ arccos(m)
+ arccosh(m)
+
+ # test binary domains
+ divide(m, 2)
+
+ # also check that allclose uses ma ufuncs, to avoid warning
+ allclose(m, 0.5)
+
+class TestMaskedArrayInPlaceArithmetic:
+ # Test MaskedArray Arithmetic
+
+ def setup_method(self):
+ x = arange(10)
+ y = arange(10)
+ xm = arange(10)
+ xm[2] = masked
+ self.intdata = (x, y, xm)
+ self.floatdata = (x.astype(float), y.astype(float), xm.astype(float))
+ self.othertypes = np.typecodes['AllInteger'] + np.typecodes['AllFloat']
+ self.othertypes = [np.dtype(_).type for _ in self.othertypes]
+ self.uint8data = (
+ x.astype(np.uint8),
+ y.astype(np.uint8),
+ xm.astype(np.uint8)
+ )
+
+ def test_inplace_addition_scalar(self):
+ # Test of inplace additions
+ (x, y, xm) = self.intdata
+ xm[2] = masked
+ x += 1
+ assert_equal(x, y + 1)
+ xm += 1
+ assert_equal(xm, y + 1)
+
+ (x, _, xm) = self.floatdata
+ id1 = x.data.ctypes.data
+ x += 1.
+ assert_(id1 == x.data.ctypes.data)
+ assert_equal(x, y + 1.)
+
+ def test_inplace_addition_array(self):
+ # Test of inplace additions
+ (x, y, xm) = self.intdata
+ m = xm.mask
+ a = arange(10, dtype=np.int16)
+ a[-1] = masked
+ x += a
+ xm += a
+ assert_equal(x, y + a)
+ assert_equal(xm, y + a)
+ assert_equal(xm.mask, mask_or(m, a.mask))
+
+ def test_inplace_subtraction_scalar(self):
+ # Test of inplace subtractions
+ (x, y, xm) = self.intdata
+ x -= 1
+ assert_equal(x, y - 1)
+ xm -= 1
+ assert_equal(xm, y - 1)
+
+ def test_inplace_subtraction_array(self):
+ # Test of inplace subtractions
+ (x, y, xm) = self.floatdata
+ m = xm.mask
+ a = arange(10, dtype=float)
+ a[-1] = masked
+ x -= a
+ xm -= a
+ assert_equal(x, y - a)
+ assert_equal(xm, y - a)
+ assert_equal(xm.mask, mask_or(m, a.mask))
+
+ def test_inplace_multiplication_scalar(self):
+ # Test of inplace multiplication
+ (x, y, xm) = self.floatdata
+ x *= 2.0
+ assert_equal(x, y * 2)
+ xm *= 2.0
+ assert_equal(xm, y * 2)
+
+ def test_inplace_multiplication_array(self):
+ # Test of inplace multiplication
+ (x, y, xm) = self.floatdata
+ m = xm.mask
+ a = arange(10, dtype=float)
+ a[-1] = masked
+ x *= a
+ xm *= a
+ assert_equal(x, y * a)
+ assert_equal(xm, y * a)
+ assert_equal(xm.mask, mask_or(m, a.mask))
+
+ def test_inplace_division_scalar_int(self):
+ # Test of inplace division
+ (x, y, xm) = self.intdata
+ x = arange(10) * 2
+ xm = arange(10) * 2
+ xm[2] = masked
+ x //= 2
+ assert_equal(x, y)
+ xm //= 2
+ assert_equal(xm, y)
+
+ def test_inplace_division_scalar_float(self):
+ # Test of inplace division
+ (x, y, xm) = self.floatdata
+ x /= 2.0
+ assert_equal(x, y / 2.0)
+ xm /= arange(10)
+ assert_equal(xm, ones((10,)))
+
+ def test_inplace_division_array_float(self):
+ # Test of inplace division
+ (x, y, xm) = self.floatdata
+ m = xm.mask
+ a = arange(10, dtype=float)
+ a[-1] = masked
+ x /= a
+ xm /= a
+ assert_equal(x, y / a)
+ assert_equal(xm, y / a)
+ assert_equal(xm.mask, mask_or(mask_or(m, a.mask), (a == 0)))
+
+ def test_inplace_division_misc(self):
+
+ x = [1., 1., 1., -2., pi / 2., 4., 5., -10., 10., 1., 2., 3.]
+ y = [5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]
+ m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+ m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
+ xm = masked_array(x, mask=m1)
+ ym = masked_array(y, mask=m2)
+
+ z = xm / ym
+ assert_equal(z._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1])
+ assert_equal(z._data,
+ [1., 1., 1., -1., -pi / 2., 4., 5., 1., 1., 1., 2., 3.])
+
+ xm = xm.copy()
+ xm /= ym
+ assert_equal(xm._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1])
+ assert_equal(z._data,
+ [1., 1., 1., -1., -pi / 2., 4., 5., 1., 1., 1., 2., 3.])
+
+ def test_datafriendly_add(self):
+ # Test keeping data w/ (inplace) addition
+ x = array([1, 2, 3], mask=[0, 0, 1])
+ # Test add w/ scalar
+ xx = x + 1
+ assert_equal(xx.data, [2, 3, 3])
+ assert_equal(xx.mask, [0, 0, 1])
+ # Test iadd w/ scalar
+ x += 1
+ assert_equal(x.data, [2, 3, 3])
+ assert_equal(x.mask, [0, 0, 1])
+ # Test add w/ array
+ x = array([1, 2, 3], mask=[0, 0, 1])
+ xx = x + array([1, 2, 3], mask=[1, 0, 0])
+ assert_equal(xx.data, [1, 4, 3])
+ assert_equal(xx.mask, [1, 0, 1])
+ # Test iadd w/ array
+ x = array([1, 2, 3], mask=[0, 0, 1])
+ x += array([1, 2, 3], mask=[1, 0, 0])
+ assert_equal(x.data, [1, 4, 3])
+ assert_equal(x.mask, [1, 0, 1])
+
+ def test_datafriendly_sub(self):
+ # Test keeping data w/ (inplace) subtraction
+ # Test sub w/ scalar
+ x = array([1, 2, 3], mask=[0, 0, 1])
+ xx = x - 1
+ assert_equal(xx.data, [0, 1, 3])
+ assert_equal(xx.mask, [0, 0, 1])
+ # Test isub w/ scalar
+ x = array([1, 2, 3], mask=[0, 0, 1])
+ x -= 1
+ assert_equal(x.data, [0, 1, 3])
+ assert_equal(x.mask, [0, 0, 1])
+ # Test sub w/ array
+ x = array([1, 2, 3], mask=[0, 0, 1])
+ xx = x - array([1, 2, 3], mask=[1, 0, 0])
+ assert_equal(xx.data, [1, 0, 3])
+ assert_equal(xx.mask, [1, 0, 1])
+ # Test isub w/ array
+ x = array([1, 2, 3], mask=[0, 0, 1])
+ x -= array([1, 2, 3], mask=[1, 0, 0])
+ assert_equal(x.data, [1, 0, 3])
+ assert_equal(x.mask, [1, 0, 1])
+
+ def test_datafriendly_mul(self):
+ # Test keeping data w/ (inplace) multiplication
+ # Test mul w/ scalar
+ x = array([1, 2, 3], mask=[0, 0, 1])
+ xx = x * 2
+ assert_equal(xx.data, [2, 4, 3])
+ assert_equal(xx.mask, [0, 0, 1])
+ # Test imul w/ scalar
+ x = array([1, 2, 3], mask=[0, 0, 1])
+ x *= 2
+ assert_equal(x.data, [2, 4, 3])
+ assert_equal(x.mask, [0, 0, 1])
+ # Test mul w/ array
+ x = array([1, 2, 3], mask=[0, 0, 1])
+ xx = x * array([10, 20, 30], mask=[1, 0, 0])
+ assert_equal(xx.data, [1, 40, 3])
+ assert_equal(xx.mask, [1, 0, 1])
+ # Test imul w/ array
+ x = array([1, 2, 3], mask=[0, 0, 1])
+ x *= array([10, 20, 30], mask=[1, 0, 0])
+ assert_equal(x.data, [1, 40, 3])
+ assert_equal(x.mask, [1, 0, 1])
+
+ def test_datafriendly_div(self):
+ # Test keeping data w/ (inplace) division
+ # Test div on scalar
+ x = array([1, 2, 3], mask=[0, 0, 1])
+ xx = x / 2.
+ assert_equal(xx.data, [1 / 2., 2 / 2., 3])
+ assert_equal(xx.mask, [0, 0, 1])
+ # Test idiv on scalar
+ x = array([1., 2., 3.], mask=[0, 0, 1])
+ x /= 2.
+ assert_equal(x.data, [1 / 2., 2 / 2., 3])
+ assert_equal(x.mask, [0, 0, 1])
+ # Test div on array
+ x = array([1., 2., 3.], mask=[0, 0, 1])
+ xx = x / array([10., 20., 30.], mask=[1, 0, 0])
+ assert_equal(xx.data, [1., 2. / 20., 3.])
+ assert_equal(xx.mask, [1, 0, 1])
+ # Test idiv on array
+ x = array([1., 2., 3.], mask=[0, 0, 1])
+ x /= array([10., 20., 30.], mask=[1, 0, 0])
+ assert_equal(x.data, [1., 2 / 20., 3.])
+ assert_equal(x.mask, [1, 0, 1])
+
+ def test_datafriendly_pow(self):
+ # Test keeping data w/ (inplace) power
+ # Test pow on scalar
+ x = array([1., 2., 3.], mask=[0, 0, 1])
+ xx = x ** 2.5
+ assert_equal(xx.data, [1., 2. ** 2.5, 3.])
+ assert_equal(xx.mask, [0, 0, 1])
+ # Test ipow on scalar
+ x **= 2.5
+ assert_equal(x.data, [1., 2. ** 2.5, 3])
+ assert_equal(x.mask, [0, 0, 1])
+
+ def test_datafriendly_add_arrays(self):
+ a = array([[1, 1], [3, 3]])
+ b = array([1, 1], mask=[0, 0])
+ a += b
+ assert_equal(a, [[2, 2], [4, 4]])
+ if a.mask is not nomask:
+ assert_equal(a.mask, [[0, 0], [0, 0]])
+
+ a = array([[1, 1], [3, 3]])
+ b = array([1, 1], mask=[0, 1])
+ a += b
+ assert_equal(a, [[2, 2], [4, 4]])
+ assert_equal(a.mask, [[0, 1], [0, 1]])
+
+ def test_datafriendly_sub_arrays(self):
+ a = array([[1, 1], [3, 3]])
+ b = array([1, 1], mask=[0, 0])
+ a -= b
+ assert_equal(a, [[0, 0], [2, 2]])
+ if a.mask is not nomask:
+ assert_equal(a.mask, [[0, 0], [0, 0]])
+
+ a = array([[1, 1], [3, 3]])
+ b = array([1, 1], mask=[0, 1])
+ a -= b
+ assert_equal(a, [[0, 0], [2, 2]])
+ assert_equal(a.mask, [[0, 1], [0, 1]])
+
+ def test_datafriendly_mul_arrays(self):
+ a = array([[1, 1], [3, 3]])
+ b = array([1, 1], mask=[0, 0])
+ a *= b
+ assert_equal(a, [[1, 1], [3, 3]])
+ if a.mask is not nomask:
+ assert_equal(a.mask, [[0, 0], [0, 0]])
+
+ a = array([[1, 1], [3, 3]])
+ b = array([1, 1], mask=[0, 1])
+ a *= b
+ assert_equal(a, [[1, 1], [3, 3]])
+ assert_equal(a.mask, [[0, 1], [0, 1]])
+
+ def test_inplace_addition_scalar_type(self):
+ # Test of inplace additions
+ for t in self.othertypes:
+ with warnings.catch_warnings():
+ warnings.filterwarnings("error")
+ (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+ xm[2] = masked
+ x += t(1)
+ assert_equal(x, y + t(1))
+ xm += t(1)
+ assert_equal(xm, y + t(1))
+
+ def test_inplace_addition_array_type(self):
+ # Test of inplace additions
+ for t in self.othertypes:
+ with warnings.catch_warnings():
+ warnings.filterwarnings("error")
+ (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+ m = xm.mask
+ a = arange(10, dtype=t)
+ a[-1] = masked
+ x += a
+ xm += a
+ assert_equal(x, y + a)
+ assert_equal(xm, y + a)
+ assert_equal(xm.mask, mask_or(m, a.mask))
+
+ def test_inplace_subtraction_scalar_type(self):
+ # Test of inplace subtractions
+ for t in self.othertypes:
+ with warnings.catch_warnings():
+ warnings.filterwarnings("error")
+ (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+ x -= t(1)
+ assert_equal(x, y - t(1))
+ xm -= t(1)
+ assert_equal(xm, y - t(1))
+
+ def test_inplace_subtraction_array_type(self):
+ # Test of inplace subtractions
+ for t in self.othertypes:
+ with warnings.catch_warnings():
+ warnings.filterwarnings("error")
+ (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+ m = xm.mask
+ a = arange(10, dtype=t)
+ a[-1] = masked
+ x -= a
+ xm -= a
+ assert_equal(x, y - a)
+ assert_equal(xm, y - a)
+ assert_equal(xm.mask, mask_or(m, a.mask))
+
+ def test_inplace_multiplication_scalar_type(self):
+ # Test of inplace multiplication
+ for t in self.othertypes:
+ with warnings.catch_warnings():
+ warnings.filterwarnings("error")
+ (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+ x *= t(2)
+ assert_equal(x, y * t(2))
+ xm *= t(2)
+ assert_equal(xm, y * t(2))
+
+ def test_inplace_multiplication_array_type(self):
+ # Test of inplace multiplication
+ for t in self.othertypes:
+ with warnings.catch_warnings():
+ warnings.filterwarnings("error")
+ (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+ m = xm.mask
+ a = arange(10, dtype=t)
+ a[-1] = masked
+ x *= a
+ xm *= a
+ assert_equal(x, y * a)
+ assert_equal(xm, y * a)
+ assert_equal(xm.mask, mask_or(m, a.mask))
+
+ def test_inplace_floor_division_scalar_type(self):
+ # Test of inplace division
+ # Check for TypeError in case of unsupported types
+ unsupported = {np.dtype(t).type for t in np.typecodes["Complex"]}
+ for t in self.othertypes:
+ with warnings.catch_warnings():
+ warnings.filterwarnings("error")
+ (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+ x = arange(10, dtype=t) * t(2)
+ xm = arange(10, dtype=t) * t(2)
+ xm[2] = masked
+ try:
+ x //= t(2)
+ xm //= t(2)
+ assert_equal(x, y)
+ assert_equal(xm, y)
+ except TypeError:
+ msg = f"Supported type {t} throwing TypeError"
+ assert t in unsupported, msg
+
+ def test_inplace_floor_division_array_type(self):
+ # Test of inplace division
+ # Check for TypeError in case of unsupported types
+ unsupported = {np.dtype(t).type for t in np.typecodes["Complex"]}
+ for t in self.othertypes:
+ with warnings.catch_warnings():
+ warnings.filterwarnings("error")
+ (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+ m = xm.mask
+ a = arange(10, dtype=t)
+ a[-1] = masked
+ try:
+ x //= a
+ xm //= a
+ assert_equal(x, y // a)
+ assert_equal(xm, y // a)
+ assert_equal(
+ xm.mask,
+ mask_or(mask_or(m, a.mask), (a == t(0)))
+ )
+ except TypeError:
+ msg = f"Supported type {t} throwing TypeError"
+ assert t in unsupported, msg
+
+ def test_inplace_division_scalar_type(self):
+ # Test of inplace division
+ for t in self.othertypes:
+ with suppress_warnings() as sup:
+ sup.record(UserWarning)
+
+ (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+ x = arange(10, dtype=t) * t(2)
+ xm = arange(10, dtype=t) * t(2)
+ xm[2] = masked
+
+ # May get a DeprecationWarning or a TypeError.
+ #
+ # This is a consequence of the fact that this is true divide
+ # and will require casting to float for calculation and
+ # casting back to the original type. This will only be raised
+ # with integers. Whether it is an error or warning is only
+ # dependent on how stringent the casting rules are.
+ #
+ # Will handle the same way.
+ try:
+ x /= t(2)
+ assert_equal(x, y)
+ except (DeprecationWarning, TypeError) as e:
+ warnings.warn(str(e), stacklevel=1)
+ try:
+ xm /= t(2)
+ assert_equal(xm, y)
+ except (DeprecationWarning, TypeError) as e:
+ warnings.warn(str(e), stacklevel=1)
+
+ if issubclass(t, np.integer):
+ assert_equal(len(sup.log), 2, f'Failed on type={t}.')
+ else:
+ assert_equal(len(sup.log), 0, f'Failed on type={t}.')
+
+ def test_inplace_division_array_type(self):
+ # Test of inplace division
+ for t in self.othertypes:
+ with suppress_warnings() as sup:
+ sup.record(UserWarning)
+ (x, y, xm) = (_.astype(t) for _ in self.uint8data)
+ m = xm.mask
+ a = arange(10, dtype=t)
+ a[-1] = masked
+
+ # May get a DeprecationWarning or a TypeError.
+ #
+ # This is a consequence of the fact that this is true divide
+ # and will require casting to float for calculation and
+ # casting back to the original type. This will only be raised
+ # with integers. Whether it is an error or warning is only
+ # dependent on how stringent the casting rules are.
+ #
+ # Will handle the same way.
+ try:
+ x /= a
+ assert_equal(x, y / a)
+ except (DeprecationWarning, TypeError) as e:
+ warnings.warn(str(e), stacklevel=1)
+ try:
+ xm /= a
+ assert_equal(xm, y / a)
+ assert_equal(
+ xm.mask,
+ mask_or(mask_or(m, a.mask), (a == t(0)))
+ )
+ except (DeprecationWarning, TypeError) as e:
+ warnings.warn(str(e), stacklevel=1)
+
+ if issubclass(t, np.integer):
+ assert_equal(len(sup.log), 2, f'Failed on type={t}.')
+ else:
+ assert_equal(len(sup.log), 0, f'Failed on type={t}.')
+
+ def test_inplace_pow_type(self):
+ # Test keeping data w/ (inplace) power
+ for t in self.othertypes:
+ with warnings.catch_warnings():
+ warnings.filterwarnings("error")
+ # Test pow on scalar
+ x = array([1, 2, 3], mask=[0, 0, 1], dtype=t)
+ xx = x ** t(2)
+ xx_r = array([1, 2 ** 2, 3], mask=[0, 0, 1], dtype=t)
+ assert_equal(xx.data, xx_r.data)
+ assert_equal(xx.mask, xx_r.mask)
+ # Test ipow on scalar
+ x **= t(2)
+ assert_equal(x.data, xx_r.data)
+ assert_equal(x.mask, xx_r.mask)
+
+
+class TestMaskedArrayMethods:
+ # Test class for miscellaneous MaskedArrays methods.
+ def setup_method(self):
+ # Base data definition.
+ x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
+ 8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
+ 3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
+ 6.04, 9.63, 7.712, 3.382, 4.489, 6.479,
+ 7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
+ 7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
+ X = x.reshape(6, 6)
+ XX = x.reshape(3, 2, 2, 3)
+
+ m = np.array([0, 1, 0, 1, 0, 0,
+ 1, 0, 1, 1, 0, 1,
+ 0, 0, 0, 1, 0, 1,
+ 0, 0, 0, 1, 1, 1,
+ 1, 0, 0, 1, 0, 0,
+ 0, 0, 1, 0, 1, 0])
+ mx = array(data=x, mask=m)
+ mX = array(data=X, mask=m.reshape(X.shape))
+ mXX = array(data=XX, mask=m.reshape(XX.shape))
+
+ m2 = np.array([1, 1, 0, 1, 0, 0,
+ 1, 1, 1, 1, 0, 1,
+ 0, 0, 1, 1, 0, 1,
+ 0, 0, 0, 1, 1, 1,
+ 1, 0, 0, 1, 1, 0,
+ 0, 0, 1, 0, 1, 1])
+ m2x = array(data=x, mask=m2)
+ m2X = array(data=X, mask=m2.reshape(X.shape))
+ m2XX = array(data=XX, mask=m2.reshape(XX.shape))
+ self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX)
+
+ def test_generic_methods(self):
+ # Tests some MaskedArray methods.
+ a = array([1, 3, 2])
+ assert_equal(a.any(), a._data.any())
+ assert_equal(a.all(), a._data.all())
+ assert_equal(a.argmax(), a._data.argmax())
+ assert_equal(a.argmin(), a._data.argmin())
+ assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4))
+ assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1]))
+ assert_equal(a.conj(), a._data.conj())
+ assert_equal(a.conjugate(), a._data.conjugate())
+
+ m = array([[1, 2], [3, 4]])
+ assert_equal(m.diagonal(), m._data.diagonal())
+ assert_equal(a.sum(), a._data.sum())
+ assert_equal(a.take([1, 2]), a._data.take([1, 2]))
+ assert_equal(m.transpose(), m._data.transpose())
+
+ def test_allclose(self):
+ # Tests allclose on arrays
+ a = np.random.rand(10)
+ b = a + np.random.rand(10) * 1e-8
+ assert_(allclose(a, b))
+ # Test allclose w/ infs
+ a[0] = np.inf
+ assert_(not allclose(a, b))
+ b[0] = np.inf
+ assert_(allclose(a, b))
+ # Test allclose w/ masked
+ a = masked_array(a)
+ a[-1] = masked
+ assert_(allclose(a, b, masked_equal=True))
+ assert_(not allclose(a, b, masked_equal=False))
+ # Test comparison w/ scalar
+ a *= 1e-8
+ a[0] = 0
+ assert_(allclose(a, 0, masked_equal=True))
+
+ # Test that the function works for MIN_INT integer typed arrays
+ a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
+ assert_(allclose(a, a))
+
+ def test_allclose_timedelta(self):
+ # Allclose currently works for timedelta64 as long as `atol` is
+ # an integer or also a timedelta64
+ a = np.array([[1, 2, 3, 4]], dtype="m8[ns]")
+ assert allclose(a, a, atol=0)
+ assert allclose(a, a, atol=np.timedelta64(1, "ns"))
+
+ def test_allany(self):
+ # Checks the any/all methods/functions.
+ x = np.array([[0.13, 0.26, 0.90],
+ [0.28, 0.33, 0.63],
+ [0.31, 0.87, 0.70]])
+ m = np.array([[True, False, False],
+ [False, False, False],
+ [True, True, False]], dtype=np.bool_)
+ mx = masked_array(x, mask=m)
+ mxbig = (mx > 0.5)
+ mxsmall = (mx < 0.5)
+
+ assert_(not mxbig.all())
+ assert_(mxbig.any())
+ assert_equal(mxbig.all(0), [False, False, True])
+ assert_equal(mxbig.all(1), [False, False, True])
+ assert_equal(mxbig.any(0), [False, False, True])
+ assert_equal(mxbig.any(1), [True, True, True])
+
+ assert_(not mxsmall.all())
+ assert_(mxsmall.any())
+ assert_equal(mxsmall.all(0), [True, True, False])
+ assert_equal(mxsmall.all(1), [False, False, False])
+ assert_equal(mxsmall.any(0), [True, True, False])
+ assert_equal(mxsmall.any(1), [True, True, False])
+
+ def test_allany_oddities(self):
+ # Some fun with all and any
+ store = empty((), dtype=bool)
+ full = array([1, 2, 3], mask=True)
+
+ assert_(full.all() is masked)
+ full.all(out=store)
+ assert_(store)
+ assert_(store._mask, True)
+ assert_(store is not masked)
+
+ store = empty((), dtype=bool)
+ assert_(full.any() is masked)
+ full.any(out=store)
+ assert_(not store)
+ assert_(store._mask, True)
+ assert_(store is not masked)
+
+ def test_argmax_argmin(self):
+ # Tests argmin & argmax on MaskedArrays.
+ (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
+
+ assert_equal(mx.argmin(), 35)
+ assert_equal(mX.argmin(), 35)
+ assert_equal(m2x.argmin(), 4)
+ assert_equal(m2X.argmin(), 4)
+ assert_equal(mx.argmax(), 28)
+ assert_equal(mX.argmax(), 28)
+ assert_equal(m2x.argmax(), 31)
+ assert_equal(m2X.argmax(), 31)
+
+ assert_equal(mX.argmin(0), [2, 2, 2, 5, 0, 5])
+ assert_equal(m2X.argmin(0), [2, 2, 4, 5, 0, 4])
+ assert_equal(mX.argmax(0), [0, 5, 0, 5, 4, 0])
+ assert_equal(m2X.argmax(0), [5, 5, 0, 5, 1, 0])
+
+ assert_equal(mX.argmin(1), [4, 1, 0, 0, 5, 5, ])
+ assert_equal(m2X.argmin(1), [4, 4, 0, 0, 5, 3])
+ assert_equal(mX.argmax(1), [2, 4, 1, 1, 4, 1])
+ assert_equal(m2X.argmax(1), [2, 4, 1, 1, 1, 1])
+
+ def test_clip(self):
+ # Tests clip on MaskedArrays.
+ x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
+ 8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
+ 3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
+ 6.04, 9.63, 7.712, 3.382, 4.489, 6.479,
+ 7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
+ 7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
+ m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1,
+ 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1,
+ 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0])
+ mx = array(x, mask=m)
+ clipped = mx.clip(2, 8)
+ assert_equal(clipped.mask, mx.mask)
+ assert_equal(clipped._data, x.clip(2, 8))
+ assert_equal(clipped._data, mx._data.clip(2, 8))
+
+ def test_clip_out(self):
+ # gh-14140
+ a = np.arange(10)
+ m = np.ma.MaskedArray(a, mask=[0, 1] * 5)
+ m.clip(0, 5, out=m)
+ assert_equal(m.mask, [0, 1] * 5)
+
+ def test_compress(self):
+ # test compress
+ a = masked_array([1., 2., 3., 4., 5.], fill_value=9999)
+ condition = (a > 1.5) & (a < 3.5)
+ assert_equal(a.compress(condition), [2., 3.])
+
+ a[[2, 3]] = masked
+ b = a.compress(condition)
+ assert_equal(b._data, [2., 3.])
+ assert_equal(b._mask, [0, 1])
+ assert_equal(b.fill_value, 9999)
+ assert_equal(b, a[condition])
+
+ condition = (a < 4.)
+ b = a.compress(condition)
+ assert_equal(b._data, [1., 2., 3.])
+ assert_equal(b._mask, [0, 0, 1])
+ assert_equal(b.fill_value, 9999)
+ assert_equal(b, a[condition])
+
+ a = masked_array([[10, 20, 30], [40, 50, 60]],
+ mask=[[0, 0, 1], [1, 0, 0]])
+ b = a.compress(a.ravel() >= 22)
+ assert_equal(b._data, [30, 40, 50, 60])
+ assert_equal(b._mask, [1, 1, 0, 0])
+
+ x = np.array([3, 1, 2])
+ b = a.compress(x >= 2, axis=1)
+ assert_equal(b._data, [[10, 30], [40, 60]])
+ assert_equal(b._mask, [[0, 1], [1, 0]])
+
+ def test_compressed(self):
+ # Tests compressed
+ a = array([1, 2, 3, 4], mask=[0, 0, 0, 0])
+ b = a.compressed()
+ assert_equal(b, a)
+ a[0] = masked
+ b = a.compressed()
+ assert_equal(b, [2, 3, 4])
+
+ def test_empty(self):
+ # Tests empty/like
+ datatype = [('a', int), ('b', float), ('c', '|S8')]
+ a = masked_array([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')],
+ dtype=datatype)
+ assert_equal(len(a.fill_value.item()), len(datatype))
+
+ b = empty_like(a)
+ assert_equal(b.shape, a.shape)
+ assert_equal(b.fill_value, a.fill_value)
+
+ b = empty(len(a), dtype=datatype)
+ assert_equal(b.shape, a.shape)
+ assert_equal(b.fill_value, a.fill_value)
+
+ # check empty_like mask handling
+ a = masked_array([1, 2, 3], mask=[False, True, False])
+ b = empty_like(a)
+ assert_(not np.may_share_memory(a.mask, b.mask))
+ b = a.view(masked_array)
+ assert_(np.may_share_memory(a.mask, b.mask))
+
+ def test_zeros(self):
+ # Tests zeros/like
+ datatype = [('a', int), ('b', float), ('c', '|S8')]
+ a = masked_array([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')],
+ dtype=datatype)
+ assert_equal(len(a.fill_value.item()), len(datatype))
+
+ b = zeros(len(a), dtype=datatype)
+ assert_equal(b.shape, a.shape)
+ assert_equal(b.fill_value, a.fill_value)
+
+ b = zeros_like(a)
+ assert_equal(b.shape, a.shape)
+ assert_equal(b.fill_value, a.fill_value)
+
+ # check zeros_like mask handling
+ a = masked_array([1, 2, 3], mask=[False, True, False])
+ b = zeros_like(a)
+ assert_(not np.may_share_memory(a.mask, b.mask))
+ b = a.view()
+ assert_(np.may_share_memory(a.mask, b.mask))
+
+ def test_ones(self):
+ # Tests ones/like
+ datatype = [('a', int), ('b', float), ('c', '|S8')]
+ a = masked_array([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')],
+ dtype=datatype)
+ assert_equal(len(a.fill_value.item()), len(datatype))
+
+ b = ones(len(a), dtype=datatype)
+ assert_equal(b.shape, a.shape)
+ assert_equal(b.fill_value, a.fill_value)
+
+ b = ones_like(a)
+ assert_equal(b.shape, a.shape)
+ assert_equal(b.fill_value, a.fill_value)
+
+ # check ones_like mask handling
+ a = masked_array([1, 2, 3], mask=[False, True, False])
+ b = ones_like(a)
+ assert_(not np.may_share_memory(a.mask, b.mask))
+ b = a.view()
+ assert_(np.may_share_memory(a.mask, b.mask))
+
+ @suppress_copy_mask_on_assignment
+ def test_put(self):
+ # Tests put.
+ d = arange(5)
+ n = [0, 0, 0, 1, 1]
+ m = make_mask(n)
+ x = array(d, mask=m)
+ assert_(x[3] is masked)
+ assert_(x[4] is masked)
+ x[[1, 4]] = [10, 40]
+ assert_(x[3] is masked)
+ assert_(x[4] is not masked)
+ assert_equal(x, [0, 10, 2, -1, 40])
+
+ x = masked_array(arange(10), mask=[1, 0, 0, 0, 0] * 2)
+ i = [0, 2, 4, 6]
+ x.put(i, [6, 4, 2, 0])
+ assert_equal(x, asarray([6, 1, 4, 3, 2, 5, 0, 7, 8, 9, ]))
+ assert_equal(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0])
+ x.put(i, masked_array([0, 2, 4, 6], [1, 0, 1, 0]))
+ assert_array_equal(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ])
+ assert_equal(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0])
+
+ x = masked_array(arange(10), mask=[1, 0, 0, 0, 0] * 2)
+ put(x, i, [6, 4, 2, 0])
+ assert_equal(x, asarray([6, 1, 4, 3, 2, 5, 0, 7, 8, 9, ]))
+ assert_equal(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0])
+ put(x, i, masked_array([0, 2, 4, 6], [1, 0, 1, 0]))
+ assert_array_equal(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ])
+ assert_equal(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0])
+
+ def test_put_nomask(self):
+ # GitHub issue 6425
+ x = zeros(10)
+ z = array([3., -1.], mask=[False, True])
+
+ x.put([1, 2], z)
+ assert_(x[0] is not masked)
+ assert_equal(x[0], 0)
+ assert_(x[1] is not masked)
+ assert_equal(x[1], 3)
+ assert_(x[2] is masked)
+ assert_(x[3] is not masked)
+ assert_equal(x[3], 0)
+
+ def test_put_hardmask(self):
+ # Tests put on hardmask
+ d = arange(5)
+ n = [0, 0, 0, 1, 1]
+ m = make_mask(n)
+ xh = array(d + 1, mask=m, hard_mask=True, copy=True)
+ xh.put([4, 2, 0, 1, 3], [1, 2, 3, 4, 5])
+ assert_equal(xh._data, [3, 4, 2, 4, 5])
+
+ def test_putmask(self):
+ x = arange(6) + 1
+ mx = array(x, mask=[0, 0, 0, 1, 1, 1])
+ mask = [0, 0, 1, 0, 0, 1]
+ # w/o mask, w/o masked values
+ xx = x.copy()
+ putmask(xx, mask, 99)
+ assert_equal(xx, [1, 2, 99, 4, 5, 99])
+ # w/ mask, w/o masked values
+ mxx = mx.copy()
+ putmask(mxx, mask, 99)
+ assert_equal(mxx._data, [1, 2, 99, 4, 5, 99])
+ assert_equal(mxx._mask, [0, 0, 0, 1, 1, 0])
+ # w/o mask, w/ masked values
+ values = array([10, 20, 30, 40, 50, 60], mask=[1, 1, 1, 0, 0, 0])
+ xx = x.copy()
+ putmask(xx, mask, values)
+ assert_equal(xx._data, [1, 2, 30, 4, 5, 60])
+ assert_equal(xx._mask, [0, 0, 1, 0, 0, 0])
+ # w/ mask, w/ masked values
+ mxx = mx.copy()
+ putmask(mxx, mask, values)
+ assert_equal(mxx._data, [1, 2, 30, 4, 5, 60])
+ assert_equal(mxx._mask, [0, 0, 1, 1, 1, 0])
+ # w/ mask, w/ masked values + hardmask
+ mxx = mx.copy()
+ mxx.harden_mask()
+ putmask(mxx, mask, values)
+ assert_equal(mxx, [1, 2, 30, 4, 5, 60])
+
+ def test_ravel(self):
+ # Tests ravel
+ a = array([[1, 2, 3, 4, 5]], mask=[[0, 1, 0, 0, 0]])
+ aravel = a.ravel()
+ assert_equal(aravel._mask.shape, aravel.shape)
+ a = array([0, 0], mask=[1, 1])
+ aravel = a.ravel()
+ assert_equal(aravel._mask.shape, a.shape)
+ # Checks that small_mask is preserved
+ a = array([1, 2, 3, 4], mask=[0, 0, 0, 0], shrink=False)
+ assert_equal(a.ravel()._mask, [0, 0, 0, 0])
+ # Test that the fill_value is preserved
+ a.fill_value = -99
+ a.shape = (2, 2)
+ ar = a.ravel()
+ assert_equal(ar._mask, [0, 0, 0, 0])
+ assert_equal(ar._data, [1, 2, 3, 4])
+ assert_equal(ar.fill_value, -99)
+ # Test index ordering
+ assert_equal(a.ravel(order='C'), [1, 2, 3, 4])
+ assert_equal(a.ravel(order='F'), [1, 3, 2, 4])
+
+ @pytest.mark.parametrize("order", "AKCF")
+ @pytest.mark.parametrize("data_order", "CF")
+ def test_ravel_order(self, order, data_order):
+ # Ravelling must ravel mask and data in the same order always to avoid
+ # misaligning the two in the ravel result.
+ arr = np.ones((5, 10), order=data_order)
+ arr[0, :] = 0
+ mask = np.ones((10, 5), dtype=bool, order=data_order).T
+ mask[0, :] = False
+ x = array(arr, mask=mask)
+ assert x._data.flags.fnc != x._mask.flags.fnc
+ assert (x.filled(0) == 0).all()
+ raveled = x.ravel(order)
+ assert (raveled.filled(0) == 0).all()
+
+ # NOTE: Can be wrong if arr order is neither C nor F and `order="K"`
+ assert_array_equal(arr.ravel(order), x.ravel(order)._data)
+
+ def test_reshape(self):
+ # Tests reshape
+ x = arange(4)
+ x[0] = masked
+ y = x.reshape(2, 2)
+ assert_equal(y.shape, (2, 2,))
+ assert_equal(y._mask.shape, (2, 2,))
+ assert_equal(x.shape, (4,))
+ assert_equal(x._mask.shape, (4,))
+
+ def test_sort(self):
+ # Test sort
+ x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8)
+
+ sortedx = sort(x)
+ assert_equal(sortedx._data, [1, 2, 3, 4])
+ assert_equal(sortedx._mask, [0, 0, 0, 1])
+
+ sortedx = sort(x, endwith=False)
+ assert_equal(sortedx._data, [4, 1, 2, 3])
+ assert_equal(sortedx._mask, [1, 0, 0, 0])
+
+ x.sort()
+ assert_equal(x._data, [1, 2, 3, 4])
+ assert_equal(x._mask, [0, 0, 0, 1])
+
+ x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8)
+ x.sort(endwith=False)
+ assert_equal(x._data, [4, 1, 2, 3])
+ assert_equal(x._mask, [1, 0, 0, 0])
+
+ x = [1, 4, 2, 3]
+ sortedx = sort(x)
+ assert_(not isinstance(sorted, MaskedArray))
+
+ x = array([0, 1, -1, -2, 2], mask=nomask, dtype=np.int8)
+ sortedx = sort(x, endwith=False)
+ assert_equal(sortedx._data, [-2, -1, 0, 1, 2])
+ x = array([0, 1, -1, -2, 2], mask=[0, 1, 0, 0, 1], dtype=np.int8)
+ sortedx = sort(x, endwith=False)
+ assert_equal(sortedx._data, [1, 2, -2, -1, 0])
+ assert_equal(sortedx._mask, [1, 1, 0, 0, 0])
+
+ x = array([0, -1], dtype=np.int8)
+ sortedx = sort(x, kind="stable")
+ assert_equal(sortedx, array([-1, 0], dtype=np.int8))
+
+ def test_stable_sort(self):
+ x = array([1, 2, 3, 1, 2, 3], dtype=np.uint8)
+ expected = array([0, 3, 1, 4, 2, 5])
+ computed = argsort(x, kind='stable')
+ assert_equal(computed, expected)
+
+ def test_argsort_matches_sort(self):
+ x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8)
+
+ for kwargs in [dict(),
+ dict(endwith=True),
+ dict(endwith=False),
+ dict(fill_value=2),
+ dict(fill_value=2, endwith=True),
+ dict(fill_value=2, endwith=False)]:
+ sortedx = sort(x, **kwargs)
+ argsortedx = x[argsort(x, **kwargs)]
+ assert_equal(sortedx._data, argsortedx._data)
+ assert_equal(sortedx._mask, argsortedx._mask)
+
+ def test_sort_2d(self):
+ # Check sort of 2D array.
+ # 2D array w/o mask
+ a = masked_array([[8, 4, 1], [2, 0, 9]])
+ a.sort(0)
+ assert_equal(a, [[2, 0, 1], [8, 4, 9]])
+ a = masked_array([[8, 4, 1], [2, 0, 9]])
+ a.sort(1)
+ assert_equal(a, [[1, 4, 8], [0, 2, 9]])
+ # 2D array w/mask
+ a = masked_array([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]])
+ a.sort(0)
+ assert_equal(a, [[2, 0, 1], [8, 4, 9]])
+ assert_equal(a._mask, [[0, 0, 0], [1, 0, 1]])
+ a = masked_array([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]])
+ a.sort(1)
+ assert_equal(a, [[1, 4, 8], [0, 2, 9]])
+ assert_equal(a._mask, [[0, 0, 1], [0, 0, 1]])
+ # 3D
+ a = masked_array([[[7, 8, 9], [4, 5, 6], [1, 2, 3]],
+ [[1, 2, 3], [7, 8, 9], [4, 5, 6]],
+ [[7, 8, 9], [1, 2, 3], [4, 5, 6]],
+ [[4, 5, 6], [1, 2, 3], [7, 8, 9]]])
+ a[a % 4 == 0] = masked
+ am = a.copy()
+ an = a.filled(99)
+ am.sort(0)
+ an.sort(0)
+ assert_equal(am, an)
+ am = a.copy()
+ an = a.filled(99)
+ am.sort(1)
+ an.sort(1)
+ assert_equal(am, an)
+ am = a.copy()
+ an = a.filled(99)
+ am.sort(2)
+ an.sort(2)
+ assert_equal(am, an)
+
+ def test_sort_flexible(self):
+ # Test sort on structured dtype.
+ a = array(
+ data=[(3, 3), (3, 2), (2, 2), (2, 1), (1, 0), (1, 1), (1, 2)],
+ mask=[(0, 0), (0, 1), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0)],
+ dtype=[('A', int), ('B', int)])
+ mask_last = array(
+ data=[(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 2), (1, 0)],
+ mask=[(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (1, 0)],
+ dtype=[('A', int), ('B', int)])
+ mask_first = array(
+ data=[(1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (3, 3)],
+ mask=[(1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (0, 0)],
+ dtype=[('A', int), ('B', int)])
+
+ test = sort(a)
+ assert_equal(test, mask_last)
+ assert_equal(test.mask, mask_last.mask)
+
+ test = sort(a, endwith=False)
+ assert_equal(test, mask_first)
+ assert_equal(test.mask, mask_first.mask)
+
+ # Test sort on dtype with subarray (gh-8069)
+ # Just check that the sort does not error, structured array subarrays
+ # are treated as byte strings and that leads to differing behavior
+ # depending on endianness and `endwith`.
+ dt = np.dtype([('v', int, 2)])
+ a = a.view(dt)
+ test = sort(a)
+ test = sort(a, endwith=False)
+
+ def test_argsort(self):
+ # Test argsort
+ a = array([1, 5, 2, 4, 3], mask=[1, 0, 0, 1, 0])
+ assert_equal(np.argsort(a), argsort(a))
+
+ def test_squeeze(self):
+ # Check squeeze
+ data = masked_array([[1, 2, 3]])
+ assert_equal(data.squeeze(), [1, 2, 3])
+ data = masked_array([[1, 2, 3]], mask=[[1, 1, 1]])
+ assert_equal(data.squeeze(), [1, 2, 3])
+ assert_equal(data.squeeze()._mask, [1, 1, 1])
+
+ # normal ndarrays return a view
+ arr = np.array([[1]])
+ arr_sq = arr.squeeze()
+ assert_equal(arr_sq, 1)
+ arr_sq[...] = 2
+ assert_equal(arr[0,0], 2)
+
+ # so maskedarrays should too
+ m_arr = masked_array([[1]], mask=True)
+ m_arr_sq = m_arr.squeeze()
+ assert_(m_arr_sq is not np.ma.masked)
+ assert_equal(m_arr_sq.mask, True)
+ m_arr_sq[...] = 2
+ assert_equal(m_arr[0,0], 2)
+
+ def test_swapaxes(self):
+ # Tests swapaxes on MaskedArrays.
+ x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
+ 8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
+ 3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
+ 6.04, 9.63, 7.712, 3.382, 4.489, 6.479,
+ 7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
+ 7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
+ m = np.array([0, 1, 0, 1, 0, 0,
+ 1, 0, 1, 1, 0, 1,
+ 0, 0, 0, 1, 0, 1,
+ 0, 0, 0, 1, 1, 1,
+ 1, 0, 0, 1, 0, 0,
+ 0, 0, 1, 0, 1, 0])
+ mX = array(x, mask=m).reshape(6, 6)
+ mXX = mX.reshape(3, 2, 2, 3)
+
+ mXswapped = mX.swapaxes(0, 1)
+ assert_equal(mXswapped[-1], mX[:, -1])
+
+ mXXswapped = mXX.swapaxes(0, 2)
+ assert_equal(mXXswapped.shape, (2, 2, 3, 3))
+
+ def test_take(self):
+ # Tests take
+ x = masked_array([10, 20, 30, 40], [0, 1, 0, 1])
+ assert_equal(x.take([0, 0, 3]), masked_array([10, 10, 40], [0, 0, 1]))
+ assert_equal(x.take([0, 0, 3]), x[[0, 0, 3]])
+ assert_equal(x.take([[0, 1], [0, 1]]),
+ masked_array([[10, 20], [10, 20]], [[0, 1], [0, 1]]))
+
+ # assert_equal crashes when passed np.ma.mask
+ assert_(x[1] is np.ma.masked)
+ assert_(x.take(1) is np.ma.masked)
+
+ x = array([[10, 20, 30], [40, 50, 60]], mask=[[0, 0, 1], [1, 0, 0, ]])
+ assert_equal(x.take([0, 2], axis=1),
+ array([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]]))
+ assert_equal(take(x, [0, 2], axis=1),
+ array([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]]))
+
+ def test_take_masked_indices(self):
+ # Test take w/ masked indices
+ a = np.array((40, 18, 37, 9, 22))
+ indices = np.arange(3)[None,:] + np.arange(5)[:, None]
+ mindices = array(indices, mask=(indices >= len(a)))
+ # No mask
+ test = take(a, mindices, mode='clip')
+ ctrl = array([[40, 18, 37],
+ [18, 37, 9],
+ [37, 9, 22],
+ [9, 22, 22],
+ [22, 22, 22]])
+ assert_equal(test, ctrl)
+ # Masked indices
+ test = take(a, mindices)
+ ctrl = array([[40, 18, 37],
+ [18, 37, 9],
+ [37, 9, 22],
+ [9, 22, 40],
+ [22, 40, 40]])
+ ctrl[3, 2] = ctrl[4, 1] = ctrl[4, 2] = masked
+ assert_equal(test, ctrl)
+ assert_equal(test.mask, ctrl.mask)
+ # Masked input + masked indices
+ a = array((40, 18, 37, 9, 22), mask=(0, 1, 0, 0, 0))
+ test = take(a, mindices)
+ ctrl[0, 1] = ctrl[1, 0] = masked
+ assert_equal(test, ctrl)
+ assert_equal(test.mask, ctrl.mask)
+
+ def test_tolist(self):
+ # Tests to list
+ # ... on 1D
+ x = array(np.arange(12))
+ x[[1, -2]] = masked
+ xlist = x.tolist()
+ assert_(xlist[1] is None)
+ assert_(xlist[-2] is None)
+ # ... on 2D
+ x.shape = (3, 4)
+ xlist = x.tolist()
+ ctrl = [[0, None, 2, 3], [4, 5, 6, 7], [8, 9, None, 11]]
+ assert_equal(xlist[0], [0, None, 2, 3])
+ assert_equal(xlist[1], [4, 5, 6, 7])
+ assert_equal(xlist[2], [8, 9, None, 11])
+ assert_equal(xlist, ctrl)
+ # ... on structured array w/ masked records
+ x = array(list(zip([1, 2, 3],
+ [1.1, 2.2, 3.3],
+ ['one', 'two', 'thr'])),
+ dtype=[('a', int), ('b', float), ('c', '|S8')])
+ x[-1] = masked
+ assert_equal(x.tolist(),
+ [(1, 1.1, b'one'),
+ (2, 2.2, b'two'),
+ (None, None, None)])
+ # ... on structured array w/ masked fields
+ a = array([(1, 2,), (3, 4)], mask=[(0, 1), (0, 0)],
+ dtype=[('a', int), ('b', int)])
+ test = a.tolist()
+ assert_equal(test, [[1, None], [3, 4]])
+ # ... on mvoid
+ a = a[0]
+ test = a.tolist()
+ assert_equal(test, [1, None])
+
+ def test_tolist_specialcase(self):
+ # Test mvoid.tolist: make sure we return a standard Python object
+ a = array([(0, 1), (2, 3)], dtype=[('a', int), ('b', int)])
+ # w/o mask: each entry is a np.void whose elements are standard Python
+ for entry in a:
+ for item in entry.tolist():
+ assert_(not isinstance(item, np.generic))
+ # w/ mask: each entry is a ma.void whose elements should be
+ # standard Python
+ a.mask[0] = (0, 1)
+ for entry in a:
+ for item in entry.tolist():
+ assert_(not isinstance(item, np.generic))
+
+ def test_toflex(self):
+ # Test the conversion to records
+ data = arange(10)
+ record = data.toflex()
+ assert_equal(record['_data'], data._data)
+ assert_equal(record['_mask'], data._mask)
+
+ data[[0, 1, 2, -1]] = masked
+ record = data.toflex()
+ assert_equal(record['_data'], data._data)
+ assert_equal(record['_mask'], data._mask)
+
+ ndtype = [('i', int), ('s', '|S3'), ('f', float)]
+ data = array([(i, s, f) for (i, s, f) in zip(np.arange(10),
+ 'ABCDEFGHIJKLM',
+ np.random.rand(10))],
+ dtype=ndtype)
+ data[[0, 1, 2, -1]] = masked
+ record = data.toflex()
+ assert_equal(record['_data'], data._data)
+ assert_equal(record['_mask'], data._mask)
+
+ ndtype = np.dtype("int, (2,3)float, float")
+ data = array([(i, f, ff) for (i, f, ff) in zip(np.arange(10),
+ np.random.rand(10),
+ np.random.rand(10))],
+ dtype=ndtype)
+ data[[0, 1, 2, -1]] = masked
+ record = data.toflex()
+ assert_equal_records(record['_data'], data._data)
+ assert_equal_records(record['_mask'], data._mask)
+
+ def test_fromflex(self):
+ # Test the reconstruction of a masked_array from a record
+ a = array([1, 2, 3])
+ test = fromflex(a.toflex())
+ assert_equal(test, a)
+ assert_equal(test.mask, a.mask)
+
+ a = array([1, 2, 3], mask=[0, 0, 1])
+ test = fromflex(a.toflex())
+ assert_equal(test, a)
+ assert_equal(test.mask, a.mask)
+
+ a = array([(1, 1.), (2, 2.), (3, 3.)], mask=[(1, 0), (0, 0), (0, 1)],
+ dtype=[('A', int), ('B', float)])
+ test = fromflex(a.toflex())
+ assert_equal(test, a)
+ assert_equal(test.data, a.data)
+
+ def test_arraymethod(self):
+ # Test a _arraymethod w/ n argument
+ marray = masked_array([[1, 2, 3, 4, 5]], mask=[0, 0, 1, 0, 0])
+ control = masked_array([[1], [2], [3], [4], [5]],
+ mask=[0, 0, 1, 0, 0])
+ assert_equal(marray.T, control)
+ assert_equal(marray.transpose(), control)
+
+ assert_equal(MaskedArray.cumsum(marray.T, 0), control.cumsum(0))
+
+ def test_arraymethod_0d(self):
+ # gh-9430
+ x = np.ma.array(42, mask=True)
+ assert_equal(x.T.mask, x.mask)
+ assert_equal(x.T.data, x.data)
+
+ def test_transpose_view(self):
+ x = np.ma.array([[1, 2, 3], [4, 5, 6]])
+ x[0,1] = np.ma.masked
+ xt = x.T
+
+ xt[1,0] = 10
+ xt[0,1] = np.ma.masked
+
+ assert_equal(x.data, xt.T.data)
+ assert_equal(x.mask, xt.T.mask)
+
+ def test_diagonal_view(self):
+ x = np.ma.zeros((3,3))
+ x[0,0] = 10
+ x[1,1] = np.ma.masked
+ x[2,2] = 20
+ xd = x.diagonal()
+ x[1,1] = 15
+ assert_equal(xd.mask, x.diagonal().mask)
+ assert_equal(xd.data, x.diagonal().data)
+
+
+class TestMaskedArrayMathMethods:
+
+ def setup_method(self):
+ # Base data definition.
+ x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
+ 8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
+ 3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
+ 6.04, 9.63, 7.712, 3.382, 4.489, 6.479,
+ 7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
+ 7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
+ X = x.reshape(6, 6)
+ XX = x.reshape(3, 2, 2, 3)
+
+ m = np.array([0, 1, 0, 1, 0, 0,
+ 1, 0, 1, 1, 0, 1,
+ 0, 0, 0, 1, 0, 1,
+ 0, 0, 0, 1, 1, 1,
+ 1, 0, 0, 1, 0, 0,
+ 0, 0, 1, 0, 1, 0])
+ mx = array(data=x, mask=m)
+ mX = array(data=X, mask=m.reshape(X.shape))
+ mXX = array(data=XX, mask=m.reshape(XX.shape))
+
+ m2 = np.array([1, 1, 0, 1, 0, 0,
+ 1, 1, 1, 1, 0, 1,
+ 0, 0, 1, 1, 0, 1,
+ 0, 0, 0, 1, 1, 1,
+ 1, 0, 0, 1, 1, 0,
+ 0, 0, 1, 0, 1, 1])
+ m2x = array(data=x, mask=m2)
+ m2X = array(data=X, mask=m2.reshape(X.shape))
+ m2XX = array(data=XX, mask=m2.reshape(XX.shape))
+ self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX)
+
+ def test_cumsumprod(self):
+ # Tests cumsum & cumprod on MaskedArrays.
+ (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
+ mXcp = mX.cumsum(0)
+ assert_equal(mXcp._data, mX.filled(0).cumsum(0))
+ mXcp = mX.cumsum(1)
+ assert_equal(mXcp._data, mX.filled(0).cumsum(1))
+
+ mXcp = mX.cumprod(0)
+ assert_equal(mXcp._data, mX.filled(1).cumprod(0))
+ mXcp = mX.cumprod(1)
+ assert_equal(mXcp._data, mX.filled(1).cumprod(1))
+
+ def test_cumsumprod_with_output(self):
+ # Tests cumsum/cumprod w/ output
+ xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4)
+ xm[:, 0] = xm[0] = xm[-1, -1] = masked
+
+ for funcname in ('cumsum', 'cumprod'):
+ npfunc = getattr(np, funcname)
+ xmmeth = getattr(xm, funcname)
+
+ # A ndarray as explicit input
+ output = np.empty((3, 4), dtype=float)
+ output.fill(-9999)
+ result = npfunc(xm, axis=0, out=output)
+ # ... the result should be the given output
+ assert_(result is output)
+ assert_equal(result, xmmeth(axis=0, out=output))
+
+ output = empty((3, 4), dtype=int)
+ result = xmmeth(axis=0, out=output)
+ assert_(result is output)
+
+ def test_ptp(self):
+ # Tests ptp on MaskedArrays.
+ (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
+ (n, m) = X.shape
+ assert_equal(mx.ptp(), mx.compressed().ptp())
+ rows = np.zeros(n, float)
+ cols = np.zeros(m, float)
+ for k in range(m):
+ cols[k] = mX[:, k].compressed().ptp()
+ for k in range(n):
+ rows[k] = mX[k].compressed().ptp()
+ assert_equal(mX.ptp(0), cols)
+ assert_equal(mX.ptp(1), rows)
+
+ def test_add_object(self):
+ x = masked_array(['a', 'b'], mask=[1, 0], dtype=object)
+ y = x + 'x'
+ assert_equal(y[1], 'bx')
+ assert_(y.mask[0])
+
+ def test_sum_object(self):
+ # Test sum on object dtype
+ a = masked_array([1, 2, 3], mask=[1, 0, 0], dtype=object)
+ assert_equal(a.sum(), 5)
+ a = masked_array([[1, 2, 3], [4, 5, 6]], dtype=object)
+ assert_equal(a.sum(axis=0), [5, 7, 9])
+
+ def test_prod_object(self):
+ # Test prod on object dtype
+ a = masked_array([1, 2, 3], mask=[1, 0, 0], dtype=object)
+ assert_equal(a.prod(), 2 * 3)
+ a = masked_array([[1, 2, 3], [4, 5, 6]], dtype=object)
+ assert_equal(a.prod(axis=0), [4, 10, 18])
+
+ def test_meananom_object(self):
+ # Test mean/anom on object dtype
+ a = masked_array([1, 2, 3], dtype=object)
+ assert_equal(a.mean(), 2)
+ assert_equal(a.anom(), [-1, 0, 1])
+
+ def test_anom_shape(self):
+ a = masked_array([1, 2, 3])
+ assert_equal(a.anom().shape, a.shape)
+ a.mask = True
+ assert_equal(a.anom().shape, a.shape)
+ assert_(np.ma.is_masked(a.anom()))
+
+ def test_anom(self):
+ a = masked_array(np.arange(1, 7).reshape(2, 3))
+ assert_almost_equal(a.anom(),
+ [[-2.5, -1.5, -0.5], [0.5, 1.5, 2.5]])
+ assert_almost_equal(a.anom(axis=0),
+ [[-1.5, -1.5, -1.5], [1.5, 1.5, 1.5]])
+ assert_almost_equal(a.anom(axis=1),
+ [[-1., 0., 1.], [-1., 0., 1.]])
+ a.mask = [[0, 0, 1], [0, 1, 0]]
+ mval = -99
+ assert_almost_equal(a.anom().filled(mval),
+ [[-2.25, -1.25, mval], [0.75, mval, 2.75]])
+ assert_almost_equal(a.anom(axis=0).filled(mval),
+ [[-1.5, 0.0, mval], [1.5, mval, 0.0]])
+ assert_almost_equal(a.anom(axis=1).filled(mval),
+ [[-0.5, 0.5, mval], [-1.0, mval, 1.0]])
+
+ def test_trace(self):
+ # Tests trace on MaskedArrays.
+ (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
+ mXdiag = mX.diagonal()
+ assert_equal(mX.trace(), mX.diagonal().compressed().sum())
+ assert_almost_equal(mX.trace(),
+ X.trace() - sum(mXdiag.mask * X.diagonal(),
+ axis=0))
+ assert_equal(np.trace(mX), mX.trace())
+
+ # gh-5560
+ arr = np.arange(2*4*4).reshape(2,4,4)
+ m_arr = np.ma.masked_array(arr, False)
+ assert_equal(arr.trace(axis1=1, axis2=2), m_arr.trace(axis1=1, axis2=2))
+
+ def test_dot(self):
+ # Tests dot on MaskedArrays.
+ (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
+ fx = mx.filled(0)
+ r = mx.dot(mx)
+ assert_almost_equal(r.filled(0), fx.dot(fx))
+ assert_(r.mask is nomask)
+
+ fX = mX.filled(0)
+ r = mX.dot(mX)
+ assert_almost_equal(r.filled(0), fX.dot(fX))
+ assert_(r.mask[1,3])
+ r1 = empty_like(r)
+ mX.dot(mX, out=r1)
+ assert_almost_equal(r, r1)
+
+ mYY = mXX.swapaxes(-1, -2)
+ fXX, fYY = mXX.filled(0), mYY.filled(0)
+ r = mXX.dot(mYY)
+ assert_almost_equal(r.filled(0), fXX.dot(fYY))
+ r1 = empty_like(r)
+ mXX.dot(mYY, out=r1)
+ assert_almost_equal(r, r1)
+
+ def test_dot_shape_mismatch(self):
+ # regression test
+ x = masked_array([[1,2],[3,4]], mask=[[0,1],[0,0]])
+ y = masked_array([[1,2],[3,4]], mask=[[0,1],[0,0]])
+ z = masked_array([[0,1],[3,3]])
+ x.dot(y, out=z)
+ assert_almost_equal(z.filled(0), [[1, 0], [15, 16]])
+ assert_almost_equal(z.mask, [[0, 1], [0, 0]])
+
+ def test_varmean_nomask(self):
+ # gh-5769
+ foo = array([1,2,3,4], dtype='f8')
+ bar = array([1,2,3,4], dtype='f8')
+ assert_equal(type(foo.mean()), np.float64)
+ assert_equal(type(foo.var()), np.float64)
+ assert((foo.mean() == bar.mean()) is np.bool_(True))
+
+ # check array type is preserved and out works
+ foo = array(np.arange(16).reshape((4,4)), dtype='f8')
+ bar = empty(4, dtype='f4')
+ assert_equal(type(foo.mean(axis=1)), MaskedArray)
+ assert_equal(type(foo.var(axis=1)), MaskedArray)
+ assert_(foo.mean(axis=1, out=bar) is bar)
+ assert_(foo.var(axis=1, out=bar) is bar)
+
+ def test_varstd(self):
+ # Tests var & std on MaskedArrays.
+ (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
+ assert_almost_equal(mX.var(axis=None), mX.compressed().var())
+ assert_almost_equal(mX.std(axis=None), mX.compressed().std())
+ assert_almost_equal(mX.std(axis=None, ddof=1),
+ mX.compressed().std(ddof=1))
+ assert_almost_equal(mX.var(axis=None, ddof=1),
+ mX.compressed().var(ddof=1))
+ assert_equal(mXX.var(axis=3).shape, XX.var(axis=3).shape)
+ assert_equal(mX.var().shape, X.var().shape)
+ (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1))
+ assert_almost_equal(mX.var(axis=None, ddof=2),
+ mX.compressed().var(ddof=2))
+ assert_almost_equal(mX.std(axis=None, ddof=2),
+ mX.compressed().std(ddof=2))
+ for k in range(6):
+ assert_almost_equal(mXvar1[k], mX[k].compressed().var())
+ assert_almost_equal(mXvar0[k], mX[:, k].compressed().var())
+ assert_almost_equal(np.sqrt(mXvar0[k]),
+ mX[:, k].compressed().std())
+
+ @suppress_copy_mask_on_assignment
+ def test_varstd_specialcases(self):
+ # Test a special case for var
+ nout = np.array(-1, dtype=float)
+ mout = array(-1, dtype=float)
+
+ x = array(arange(10), mask=True)
+ for methodname in ('var', 'std'):
+ method = getattr(x, methodname)
+ assert_(method() is masked)
+ assert_(method(0) is masked)
+ assert_(method(-1) is masked)
+ # Using a masked array as explicit output
+ method(out=mout)
+ assert_(mout is not masked)
+ assert_equal(mout.mask, True)
+ # Using a ndarray as explicit output
+ method(out=nout)
+ assert_(np.isnan(nout))
+
+ x = array(arange(10), mask=True)
+ x[-1] = 9
+ for methodname in ('var', 'std'):
+ method = getattr(x, methodname)
+ assert_(method(ddof=1) is masked)
+ assert_(method(0, ddof=1) is masked)
+ assert_(method(-1, ddof=1) is masked)
+ # Using a masked array as explicit output
+ method(out=mout, ddof=1)
+ assert_(mout is not masked)
+ assert_equal(mout.mask, True)
+ # Using a ndarray as explicit output
+ method(out=nout, ddof=1)
+ assert_(np.isnan(nout))
+
+ def test_varstd_ddof(self):
+ a = array([[1, 1, 0], [1, 1, 0]], mask=[[0, 0, 1], [0, 0, 1]])
+ test = a.std(axis=0, ddof=0)
+ assert_equal(test.filled(0), [0, 0, 0])
+ assert_equal(test.mask, [0, 0, 1])
+ test = a.std(axis=0, ddof=1)
+ assert_equal(test.filled(0), [0, 0, 0])
+ assert_equal(test.mask, [0, 0, 1])
+ test = a.std(axis=0, ddof=2)
+ assert_equal(test.filled(0), [0, 0, 0])
+ assert_equal(test.mask, [1, 1, 1])
+
+ def test_diag(self):
+ # Test diag
+ x = arange(9).reshape((3, 3))
+ x[1, 1] = masked
+ out = np.diag(x)
+ assert_equal(out, [0, 4, 8])
+ out = diag(x)
+ assert_equal(out, [0, 4, 8])
+ assert_equal(out.mask, [0, 1, 0])
+ out = diag(out)
+ control = array([[0, 0, 0], [0, 4, 0], [0, 0, 8]],
+ mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
+ assert_equal(out, control)
+
+ def test_axis_methods_nomask(self):
+ # Test the combination nomask & methods w/ axis
+ a = array([[1, 2, 3], [4, 5, 6]])
+
+ assert_equal(a.sum(0), [5, 7, 9])
+ assert_equal(a.sum(-1), [6, 15])
+ assert_equal(a.sum(1), [6, 15])
+
+ assert_equal(a.prod(0), [4, 10, 18])
+ assert_equal(a.prod(-1), [6, 120])
+ assert_equal(a.prod(1), [6, 120])
+
+ assert_equal(a.min(0), [1, 2, 3])
+ assert_equal(a.min(-1), [1, 4])
+ assert_equal(a.min(1), [1, 4])
+
+ assert_equal(a.max(0), [4, 5, 6])
+ assert_equal(a.max(-1), [3, 6])
+ assert_equal(a.max(1), [3, 6])
+
+ @requires_memory(free_bytes=2 * 10000 * 1000 * 2)
+ def test_mean_overflow(self):
+ # Test overflow in masked arrays
+ # gh-20272
+ a = masked_array(np.full((10000, 10000), 65535, dtype=np.uint16),
+ mask=np.zeros((10000, 10000)))
+ assert_equal(a.mean(), 65535.0)
+
+ def test_diff_with_prepend(self):
+ # GH 22465
+ x = np.array([1, 2, 2, 3, 4, 2, 1, 1])
+
+ a = np.ma.masked_equal(x[3:], value=2)
+ a_prep = np.ma.masked_equal(x[:3], value=2)
+ diff1 = np.ma.diff(a, prepend=a_prep, axis=0)
+
+ b = np.ma.masked_equal(x, value=2)
+ diff2 = np.ma.diff(b, axis=0)
+
+ assert_(np.ma.allequal(diff1, diff2))
+
+ def test_diff_with_append(self):
+ # GH 22465
+ x = np.array([1, 2, 2, 3, 4, 2, 1, 1])
+
+ a = np.ma.masked_equal(x[:3], value=2)
+ a_app = np.ma.masked_equal(x[3:], value=2)
+ diff1 = np.ma.diff(a, append=a_app, axis=0)
+
+ b = np.ma.masked_equal(x, value=2)
+ diff2 = np.ma.diff(b, axis=0)
+
+ assert_(np.ma.allequal(diff1, diff2))
+
+ def test_diff_with_dim_0(self):
+ with pytest.raises(
+ ValueError,
+ match="diff requires input that is at least one dimensional"
+ ):
+ np.ma.diff(np.array(1))
+
+ def test_diff_with_n_0(self):
+ a = np.ma.masked_equal([1, 2, 2, 3, 4, 2, 1, 1], value=2)
+ diff = np.ma.diff(a, n=0, axis=0)
+
+ assert_(np.ma.allequal(a, diff))
+
+
+class TestMaskedArrayMathMethodsComplex:
+ # Test class for miscellaneous MaskedArrays methods.
+ def setup_method(self):
+ # Base data definition.
+ x = np.array([8.375j, 7.545j, 8.828j, 8.5j, 1.757j, 5.928,
+ 8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
+ 3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
+ 6.04, 9.63, 7.712, 3.382, 4.489, 6.479j,
+ 7.189j, 9.645, 5.395, 4.961, 9.894, 2.893,
+ 7.357, 9.828, 6.272, 3.758, 6.693, 0.993j])
+ X = x.reshape(6, 6)
+ XX = x.reshape(3, 2, 2, 3)
+
+ m = np.array([0, 1, 0, 1, 0, 0,
+ 1, 0, 1, 1, 0, 1,
+ 0, 0, 0, 1, 0, 1,
+ 0, 0, 0, 1, 1, 1,
+ 1, 0, 0, 1, 0, 0,
+ 0, 0, 1, 0, 1, 0])
+ mx = array(data=x, mask=m)
+ mX = array(data=X, mask=m.reshape(X.shape))
+ mXX = array(data=XX, mask=m.reshape(XX.shape))
+
+ m2 = np.array([1, 1, 0, 1, 0, 0,
+ 1, 1, 1, 1, 0, 1,
+ 0, 0, 1, 1, 0, 1,
+ 0, 0, 0, 1, 1, 1,
+ 1, 0, 0, 1, 1, 0,
+ 0, 0, 1, 0, 1, 1])
+ m2x = array(data=x, mask=m2)
+ m2X = array(data=X, mask=m2.reshape(X.shape))
+ m2XX = array(data=XX, mask=m2.reshape(XX.shape))
+ self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX)
+
+ def test_varstd(self):
+ # Tests var & std on MaskedArrays.
+ (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
+ assert_almost_equal(mX.var(axis=None), mX.compressed().var())
+ assert_almost_equal(mX.std(axis=None), mX.compressed().std())
+ assert_equal(mXX.var(axis=3).shape, XX.var(axis=3).shape)
+ assert_equal(mX.var().shape, X.var().shape)
+ (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1))
+ assert_almost_equal(mX.var(axis=None, ddof=2),
+ mX.compressed().var(ddof=2))
+ assert_almost_equal(mX.std(axis=None, ddof=2),
+ mX.compressed().std(ddof=2))
+ for k in range(6):
+ assert_almost_equal(mXvar1[k], mX[k].compressed().var())
+ assert_almost_equal(mXvar0[k], mX[:, k].compressed().var())
+ assert_almost_equal(np.sqrt(mXvar0[k]),
+ mX[:, k].compressed().std())
+
+
+class TestMaskedArrayFunctions:
+ # Test class for miscellaneous functions.
+
+ def setup_method(self):
+ x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
+ y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
+ m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+ m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
+ xm = masked_array(x, mask=m1)
+ ym = masked_array(y, mask=m2)
+ xm.set_fill_value(1e+20)
+ self.info = (xm, ym)
+
+ def test_masked_where_bool(self):
+ x = [1, 2]
+ y = masked_where(False, x)
+ assert_equal(y, [1, 2])
+ assert_equal(y[1], 2)
+
+ def test_masked_equal_wlist(self):
+ x = [1, 2, 3]
+ mx = masked_equal(x, 3)
+ assert_equal(mx, x)
+ assert_equal(mx._mask, [0, 0, 1])
+ mx = masked_not_equal(x, 3)
+ assert_equal(mx, x)
+ assert_equal(mx._mask, [1, 1, 0])
+
+ def test_masked_equal_fill_value(self):
+ x = [1, 2, 3]
+ mx = masked_equal(x, 3)
+ assert_equal(mx._mask, [0, 0, 1])
+ assert_equal(mx.fill_value, 3)
+
+ def test_masked_where_condition(self):
+ # Tests masking functions.
+ x = array([1., 2., 3., 4., 5.])
+ x[2] = masked
+ assert_equal(masked_where(greater(x, 2), x), masked_greater(x, 2))
+ assert_equal(masked_where(greater_equal(x, 2), x),
+ masked_greater_equal(x, 2))
+ assert_equal(masked_where(less(x, 2), x), masked_less(x, 2))
+ assert_equal(masked_where(less_equal(x, 2), x),
+ masked_less_equal(x, 2))
+ assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2))
+ assert_equal(masked_where(equal(x, 2), x), masked_equal(x, 2))
+ assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2))
+ assert_equal(masked_where([1, 1, 0, 0, 0], [1, 2, 3, 4, 5]),
+ [99, 99, 3, 4, 5])
+
+ def test_masked_where_oddities(self):
+ # Tests some generic features.
+ atest = ones((10, 10, 10), dtype=float)
+ btest = zeros(atest.shape, MaskType)
+ ctest = masked_where(btest, atest)
+ assert_equal(atest, ctest)
+
+ def test_masked_where_shape_constraint(self):
+ a = arange(10)
+ with assert_raises(IndexError):
+ masked_equal(1, a)
+ test = masked_equal(a, 1)
+ assert_equal(test.mask, [0, 1, 0, 0, 0, 0, 0, 0, 0, 0])
+
+ def test_masked_where_structured(self):
+ # test that masked_where on a structured array sets a structured
+ # mask (see issue #2972)
+ a = np.zeros(10, dtype=[("A", "<f2"), ("B", "<f4")])
+ with np.errstate(over="ignore"):
+ # NOTE: The float16 "uses" 1e20 as mask, which overflows to inf
+ # and warns. Unrelated to this test, but probably undesired.
+ # But NumPy previously did not warn for this overflow.
+ am = np.ma.masked_where(a["A"] < 5, a)
+ assert_equal(am.mask.dtype.names, am.dtype.names)
+ assert_equal(am["A"],
+ np.ma.masked_array(np.zeros(10), np.ones(10)))
+
+ def test_masked_where_mismatch(self):
+ # gh-4520
+ x = np.arange(10)
+ y = np.arange(5)
+ assert_raises(IndexError, np.ma.masked_where, y > 6, x)
+
+ def test_masked_otherfunctions(self):
+ assert_equal(masked_inside(list(range(5)), 1, 3),
+ [0, 199, 199, 199, 4])
+ assert_equal(masked_outside(list(range(5)), 1, 3), [199, 1, 2, 3, 199])
+ assert_equal(masked_inside(array(list(range(5)),
+ mask=[1, 0, 0, 0, 0]), 1, 3).mask,
+ [1, 1, 1, 1, 0])
+ assert_equal(masked_outside(array(list(range(5)),
+ mask=[0, 1, 0, 0, 0]), 1, 3).mask,
+ [1, 1, 0, 0, 1])
+ assert_equal(masked_equal(array(list(range(5)),
+ mask=[1, 0, 0, 0, 0]), 2).mask,
+ [1, 0, 1, 0, 0])
+ assert_equal(masked_not_equal(array([2, 2, 1, 2, 1],
+ mask=[1, 0, 0, 0, 0]), 2).mask,
+ [1, 0, 1, 0, 1])
+
+ def test_round(self):
+ a = array([1.23456, 2.34567, 3.45678, 4.56789, 5.67890],
+ mask=[0, 1, 0, 0, 0])
+ assert_equal(a.round(), [1., 2., 3., 5., 6.])
+ assert_equal(a.round(1), [1.2, 2.3, 3.5, 4.6, 5.7])
+ assert_equal(a.round(3), [1.235, 2.346, 3.457, 4.568, 5.679])
+ b = empty_like(a)
+ a.round(out=b)
+ assert_equal(b, [1., 2., 3., 5., 6.])
+
+ x = array([1., 2., 3., 4., 5.])
+ c = array([1, 1, 1, 0, 0])
+ x[2] = masked
+ z = where(c, x, -x)
+ assert_equal(z, [1., 2., 0., -4., -5])
+ c[0] = masked
+ z = where(c, x, -x)
+ assert_equal(z, [1., 2., 0., -4., -5])
+ assert_(z[0] is masked)
+ assert_(z[1] is not masked)
+ assert_(z[2] is masked)
+
+ def test_round_with_output(self):
+ # Testing round with an explicit output
+
+ xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4)
+ xm[:, 0] = xm[0] = xm[-1, -1] = masked
+
+ # A ndarray as explicit input
+ output = np.empty((3, 4), dtype=float)
+ output.fill(-9999)
+ result = np.round(xm, decimals=2, out=output)
+ # ... the result should be the given output
+ assert_(result is output)
+ assert_equal(result, xm.round(decimals=2, out=output))
+
+ output = empty((3, 4), dtype=float)
+ result = xm.round(decimals=2, out=output)
+ assert_(result is output)
+
+ def test_round_with_scalar(self):
+ # Testing round with scalar/zero dimension input
+ # GH issue 2244
+ a = array(1.1, mask=[False])
+ assert_equal(a.round(), 1)
+
+ a = array(1.1, mask=[True])
+ assert_(a.round() is masked)
+
+ a = array(1.1, mask=[False])
+ output = np.empty(1, dtype=float)
+ output.fill(-9999)
+ a.round(out=output)
+ assert_equal(output, 1)
+
+ a = array(1.1, mask=[False])
+ output = array(-9999., mask=[True])
+ a.round(out=output)
+ assert_equal(output[()], 1)
+
+ a = array(1.1, mask=[True])
+ output = array(-9999., mask=[False])
+ a.round(out=output)
+ assert_(output[()] is masked)
+
+ def test_identity(self):
+ a = identity(5)
+ assert_(isinstance(a, MaskedArray))
+ assert_equal(a, np.identity(5))
+
+ def test_power(self):
+ x = -1.1
+ assert_almost_equal(power(x, 2.), 1.21)
+ assert_(power(x, masked) is masked)
+ x = array([-1.1, -1.1, 1.1, 1.1, 0.])
+ b = array([0.5, 2., 0.5, 2., -1.], mask=[0, 0, 0, 0, 1])
+ y = power(x, b)
+ assert_almost_equal(y, [0, 1.21, 1.04880884817, 1.21, 0.])
+ assert_equal(y._mask, [1, 0, 0, 0, 1])
+ b.mask = nomask
+ y = power(x, b)
+ assert_equal(y._mask, [1, 0, 0, 0, 1])
+ z = x ** b
+ assert_equal(z._mask, y._mask)
+ assert_almost_equal(z, y)
+ assert_almost_equal(z._data, y._data)
+ x **= b
+ assert_equal(x._mask, y._mask)
+ assert_almost_equal(x, y)
+ assert_almost_equal(x._data, y._data)
+
+ def test_power_with_broadcasting(self):
+ # Test power w/ broadcasting
+ a2 = np.array([[1., 2., 3.], [4., 5., 6.]])
+ a2m = array(a2, mask=[[1, 0, 0], [0, 0, 1]])
+ b1 = np.array([2, 4, 3])
+ b2 = np.array([b1, b1])
+ b2m = array(b2, mask=[[0, 1, 0], [0, 1, 0]])
+
+ ctrl = array([[1 ** 2, 2 ** 4, 3 ** 3], [4 ** 2, 5 ** 4, 6 ** 3]],
+ mask=[[1, 1, 0], [0, 1, 1]])
+ # No broadcasting, base & exp w/ mask
+ test = a2m ** b2m
+ assert_equal(test, ctrl)
+ assert_equal(test.mask, ctrl.mask)
+ # No broadcasting, base w/ mask, exp w/o mask
+ test = a2m ** b2
+ assert_equal(test, ctrl)
+ assert_equal(test.mask, a2m.mask)
+ # No broadcasting, base w/o mask, exp w/ mask
+ test = a2 ** b2m
+ assert_equal(test, ctrl)
+ assert_equal(test.mask, b2m.mask)
+
+ ctrl = array([[2 ** 2, 4 ** 4, 3 ** 3], [2 ** 2, 4 ** 4, 3 ** 3]],
+ mask=[[0, 1, 0], [0, 1, 0]])
+ test = b1 ** b2m
+ assert_equal(test, ctrl)
+ assert_equal(test.mask, ctrl.mask)
+ test = b2m ** b1
+ assert_equal(test, ctrl)
+ assert_equal(test.mask, ctrl.mask)
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ def test_where(self):
+ # Test the where function
+ x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
+ y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
+ m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+ m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
+ xm = masked_array(x, mask=m1)
+ ym = masked_array(y, mask=m2)
+ xm.set_fill_value(1e+20)
+
+ d = where(xm > 2, xm, -9)
+ assert_equal(d, [-9., -9., -9., -9., -9., 4.,
+ -9., -9., 10., -9., -9., 3.])
+ assert_equal(d._mask, xm._mask)
+ d = where(xm > 2, -9, ym)
+ assert_equal(d, [5., 0., 3., 2., -1., -9.,
+ -9., -10., -9., 1., 0., -9.])
+ assert_equal(d._mask, [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0])
+ d = where(xm > 2, xm, masked)
+ assert_equal(d, [-9., -9., -9., -9., -9., 4.,
+ -9., -9., 10., -9., -9., 3.])
+ tmp = xm._mask.copy()
+ tmp[(xm <= 2).filled(True)] = True
+ assert_equal(d._mask, tmp)
+
+ with np.errstate(invalid="warn"):
+ # The fill value is 1e20, it cannot be converted to `int`:
+ with pytest.warns(RuntimeWarning, match="invalid value"):
+ ixm = xm.astype(int)
+ d = where(ixm > 2, ixm, masked)
+ assert_equal(d, [-9, -9, -9, -9, -9, 4, -9, -9, 10, -9, -9, 3])
+ assert_equal(d.dtype, ixm.dtype)
+
+ def test_where_object(self):
+ a = np.array(None)
+ b = masked_array(None)
+ r = b.copy()
+ assert_equal(np.ma.where(True, a, a), r)
+ assert_equal(np.ma.where(True, b, b), r)
+
+ def test_where_with_masked_choice(self):
+ x = arange(10)
+ x[3] = masked
+ c = x >= 8
+ # Set False to masked
+ z = where(c, x, masked)
+ assert_(z.dtype is x.dtype)
+ assert_(z[3] is masked)
+ assert_(z[4] is masked)
+ assert_(z[7] is masked)
+ assert_(z[8] is not masked)
+ assert_(z[9] is not masked)
+ assert_equal(x, z)
+ # Set True to masked
+ z = where(c, masked, x)
+ assert_(z.dtype is x.dtype)
+ assert_(z[3] is masked)
+ assert_(z[4] is not masked)
+ assert_(z[7] is not masked)
+ assert_(z[8] is masked)
+ assert_(z[9] is masked)
+
+ def test_where_with_masked_condition(self):
+ x = array([1., 2., 3., 4., 5.])
+ c = array([1, 1, 1, 0, 0])
+ x[2] = masked
+ z = where(c, x, -x)
+ assert_equal(z, [1., 2., 0., -4., -5])
+ c[0] = masked
+ z = where(c, x, -x)
+ assert_equal(z, [1., 2., 0., -4., -5])
+ assert_(z[0] is masked)
+ assert_(z[1] is not masked)
+ assert_(z[2] is masked)
+
+ x = arange(1, 6)
+ x[-1] = masked
+ y = arange(1, 6) * 10
+ y[2] = masked
+ c = array([1, 1, 1, 0, 0], mask=[1, 0, 0, 0, 0])
+ cm = c.filled(1)
+ z = where(c, x, y)
+ zm = where(cm, x, y)
+ assert_equal(z, zm)
+ assert_(getmask(zm) is nomask)
+ assert_equal(zm, [1, 2, 3, 40, 50])
+ z = where(c, masked, 1)
+ assert_equal(z, [99, 99, 99, 1, 1])
+ z = where(c, 1, masked)
+ assert_equal(z, [99, 1, 1, 99, 99])
+
+ def test_where_type(self):
+ # Test the type conservation with where
+ x = np.arange(4, dtype=np.int32)
+ y = np.arange(4, dtype=np.float32) * 2.2
+ test = where(x > 1.5, y, x).dtype
+ control = np.result_type(np.int32, np.float32)
+ assert_equal(test, control)
+
+ def test_where_broadcast(self):
+ # Issue 8599
+ x = np.arange(9).reshape(3, 3)
+ y = np.zeros(3)
+ core = np.where([1, 0, 1], x, y)
+ ma = where([1, 0, 1], x, y)
+
+ assert_equal(core, ma)
+ assert_equal(core.dtype, ma.dtype)
+
+ def test_where_structured(self):
+ # Issue 8600
+ dt = np.dtype([('a', int), ('b', int)])
+ x = np.array([(1, 2), (3, 4), (5, 6)], dtype=dt)
+ y = np.array((10, 20), dtype=dt)
+ core = np.where([0, 1, 1], x, y)
+ ma = np.where([0, 1, 1], x, y)
+
+ assert_equal(core, ma)
+ assert_equal(core.dtype, ma.dtype)
+
+ def test_where_structured_masked(self):
+ dt = np.dtype([('a', int), ('b', int)])
+ x = np.array([(1, 2), (3, 4), (5, 6)], dtype=dt)
+
+ ma = where([0, 1, 1], x, masked)
+ expected = masked_where([1, 0, 0], x)
+
+ assert_equal(ma.dtype, expected.dtype)
+ assert_equal(ma, expected)
+ assert_equal(ma.mask, expected.mask)
+
+ def test_masked_invalid_error(self):
+ a = np.arange(5, dtype=object)
+ a[3] = np.PINF
+ a[2] = np.NaN
+ with pytest.raises(TypeError,
+ match="not supported for the input types"):
+ np.ma.masked_invalid(a)
+
+ def test_masked_invalid_pandas(self):
+ # getdata() used to be bad for pandas series due to its _data
+ # attribute. This test is a regression test mainly and may be
+ # removed if getdata() is adjusted.
+ class Series():
+ _data = "nonsense"
+
+ def __array__(self):
+ return np.array([5, np.nan, np.inf])
+
+ arr = np.ma.masked_invalid(Series())
+ assert_array_equal(arr._data, np.array(Series()))
+ assert_array_equal(arr._mask, [False, True, True])
+
+ @pytest.mark.parametrize("copy", [True, False])
+ def test_masked_invalid_full_mask(self, copy):
+ # Matplotlib relied on masked_invalid always returning a full mask
+ # (Also astropy projects, but were ok with it gh-22720 and gh-22842)
+ a = np.ma.array([1, 2, 3, 4])
+ assert a._mask is nomask
+ res = np.ma.masked_invalid(a, copy=copy)
+ assert res.mask is not nomask
+ # mask of a should not be mutated
+ assert a.mask is nomask
+ assert np.may_share_memory(a._data, res._data) != copy
+
+ def test_choose(self):
+ # Test choose
+ choices = [[0, 1, 2, 3], [10, 11, 12, 13],
+ [20, 21, 22, 23], [30, 31, 32, 33]]
+ chosen = choose([2, 3, 1, 0], choices)
+ assert_equal(chosen, array([20, 31, 12, 3]))
+ chosen = choose([2, 4, 1, 0], choices, mode='clip')
+ assert_equal(chosen, array([20, 31, 12, 3]))
+ chosen = choose([2, 4, 1, 0], choices, mode='wrap')
+ assert_equal(chosen, array([20, 1, 12, 3]))
+ # Check with some masked indices
+ indices_ = array([2, 4, 1, 0], mask=[1, 0, 0, 1])
+ chosen = choose(indices_, choices, mode='wrap')
+ assert_equal(chosen, array([99, 1, 12, 99]))
+ assert_equal(chosen.mask, [1, 0, 0, 1])
+ # Check with some masked choices
+ choices = array(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1],
+ [1, 0, 0, 0], [0, 0, 0, 0]])
+ indices_ = [2, 3, 1, 0]
+ chosen = choose(indices_, choices, mode='wrap')
+ assert_equal(chosen, array([20, 31, 12, 3]))
+ assert_equal(chosen.mask, [1, 0, 0, 1])
+
+ def test_choose_with_out(self):
+ # Test choose with an explicit out keyword
+ choices = [[0, 1, 2, 3], [10, 11, 12, 13],
+ [20, 21, 22, 23], [30, 31, 32, 33]]
+ store = empty(4, dtype=int)
+ chosen = choose([2, 3, 1, 0], choices, out=store)
+ assert_equal(store, array([20, 31, 12, 3]))
+ assert_(store is chosen)
+ # Check with some masked indices + out
+ store = empty(4, dtype=int)
+ indices_ = array([2, 3, 1, 0], mask=[1, 0, 0, 1])
+ chosen = choose(indices_, choices, mode='wrap', out=store)
+ assert_equal(store, array([99, 31, 12, 99]))
+ assert_equal(store.mask, [1, 0, 0, 1])
+ # Check with some masked choices + out ina ndarray !
+ choices = array(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1],
+ [1, 0, 0, 0], [0, 0, 0, 0]])
+ indices_ = [2, 3, 1, 0]
+ store = empty(4, dtype=int).view(ndarray)
+ chosen = choose(indices_, choices, mode='wrap', out=store)
+ assert_equal(store, array([999999, 31, 12, 999999]))
+
+ def test_reshape(self):
+ a = arange(10)
+ a[0] = masked
+ # Try the default
+ b = a.reshape((5, 2))
+ assert_equal(b.shape, (5, 2))
+ assert_(b.flags['C'])
+ # Try w/ arguments as list instead of tuple
+ b = a.reshape(5, 2)
+ assert_equal(b.shape, (5, 2))
+ assert_(b.flags['C'])
+ # Try w/ order
+ b = a.reshape((5, 2), order='F')
+ assert_equal(b.shape, (5, 2))
+ assert_(b.flags['F'])
+ # Try w/ order
+ b = a.reshape(5, 2, order='F')
+ assert_equal(b.shape, (5, 2))
+ assert_(b.flags['F'])
+
+ c = np.reshape(a, (2, 5))
+ assert_(isinstance(c, MaskedArray))
+ assert_equal(c.shape, (2, 5))
+ assert_(c[0, 0] is masked)
+ assert_(c.flags['C'])
+
+ def test_make_mask_descr(self):
+ # Flexible
+ ntype = [('a', float), ('b', float)]
+ test = make_mask_descr(ntype)
+ assert_equal(test, [('a', bool), ('b', bool)])
+ assert_(test is make_mask_descr(test))
+
+ # Standard w/ shape
+ ntype = (float, 2)
+ test = make_mask_descr(ntype)
+ assert_equal(test, (bool, 2))
+ assert_(test is make_mask_descr(test))
+
+ # Standard standard
+ ntype = float
+ test = make_mask_descr(ntype)
+ assert_equal(test, np.dtype(bool))
+ assert_(test is make_mask_descr(test))
+
+ # Nested
+ ntype = [('a', float), ('b', [('ba', float), ('bb', float)])]
+ test = make_mask_descr(ntype)
+ control = np.dtype([('a', 'b1'), ('b', [('ba', 'b1'), ('bb', 'b1')])])
+ assert_equal(test, control)
+ assert_(test is make_mask_descr(test))
+
+ # Named+ shape
+ ntype = [('a', (float, 2))]
+ test = make_mask_descr(ntype)
+ assert_equal(test, np.dtype([('a', (bool, 2))]))
+ assert_(test is make_mask_descr(test))
+
+ # 2 names
+ ntype = [(('A', 'a'), float)]
+ test = make_mask_descr(ntype)
+ assert_equal(test, np.dtype([(('A', 'a'), bool)]))
+ assert_(test is make_mask_descr(test))
+
+ # nested boolean types should preserve identity
+ base_type = np.dtype([('a', int, 3)])
+ base_mtype = make_mask_descr(base_type)
+ sub_type = np.dtype([('a', int), ('b', base_mtype)])
+ test = make_mask_descr(sub_type)
+ assert_equal(test, np.dtype([('a', bool), ('b', [('a', bool, 3)])]))
+ assert_(test.fields['b'][0] is base_mtype)
+
+ def test_make_mask(self):
+ # Test make_mask
+ # w/ a list as an input
+ mask = [0, 1]
+ test = make_mask(mask)
+ assert_equal(test.dtype, MaskType)
+ assert_equal(test, [0, 1])
+ # w/ a ndarray as an input
+ mask = np.array([0, 1], dtype=bool)
+ test = make_mask(mask)
+ assert_equal(test.dtype, MaskType)
+ assert_equal(test, [0, 1])
+ # w/ a flexible-type ndarray as an input - use default
+ mdtype = [('a', bool), ('b', bool)]
+ mask = np.array([(0, 0), (0, 1)], dtype=mdtype)
+ test = make_mask(mask)
+ assert_equal(test.dtype, MaskType)
+ assert_equal(test, [1, 1])
+ # w/ a flexible-type ndarray as an input - use input dtype
+ mdtype = [('a', bool), ('b', bool)]
+ mask = np.array([(0, 0), (0, 1)], dtype=mdtype)
+ test = make_mask(mask, dtype=mask.dtype)
+ assert_equal(test.dtype, mdtype)
+ assert_equal(test, mask)
+ # w/ a flexible-type ndarray as an input - use input dtype
+ mdtype = [('a', float), ('b', float)]
+ bdtype = [('a', bool), ('b', bool)]
+ mask = np.array([(0, 0), (0, 1)], dtype=mdtype)
+ test = make_mask(mask, dtype=mask.dtype)
+ assert_equal(test.dtype, bdtype)
+ assert_equal(test, np.array([(0, 0), (0, 1)], dtype=bdtype))
+ # Ensure this also works for void
+ mask = np.array((False, True), dtype='?,?')[()]
+ assert_(isinstance(mask, np.void))
+ test = make_mask(mask, dtype=mask.dtype)
+ assert_equal(test, mask)
+ assert_(test is not mask)
+ mask = np.array((0, 1), dtype='i4,i4')[()]
+ test2 = make_mask(mask, dtype=mask.dtype)
+ assert_equal(test2, test)
+ # test that nomask is returned when m is nomask.
+ bools = [True, False]
+ dtypes = [MaskType, float]
+ msgformat = 'copy=%s, shrink=%s, dtype=%s'
+ for cpy, shr, dt in itertools.product(bools, bools, dtypes):
+ res = make_mask(nomask, copy=cpy, shrink=shr, dtype=dt)
+ assert_(res is nomask, msgformat % (cpy, shr, dt))
+
+ def test_mask_or(self):
+ # Initialize
+ mtype = [('a', bool), ('b', bool)]
+ mask = np.array([(0, 0), (0, 1), (1, 0), (0, 0)], dtype=mtype)
+ # Test using nomask as input
+ test = mask_or(mask, nomask)
+ assert_equal(test, mask)
+ test = mask_or(nomask, mask)
+ assert_equal(test, mask)
+ # Using False as input
+ test = mask_or(mask, False)
+ assert_equal(test, mask)
+ # Using another array w / the same dtype
+ other = np.array([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=mtype)
+ test = mask_or(mask, other)
+ control = np.array([(0, 1), (0, 1), (1, 1), (0, 1)], dtype=mtype)
+ assert_equal(test, control)
+ # Using another array w / a different dtype
+ othertype = [('A', bool), ('B', bool)]
+ other = np.array([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=othertype)
+ try:
+ test = mask_or(mask, other)
+ except ValueError:
+ pass
+ # Using nested arrays
+ dtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])]
+ amask = np.array([(0, (1, 0)), (0, (1, 0))], dtype=dtype)
+ bmask = np.array([(1, (0, 1)), (0, (0, 0))], dtype=dtype)
+ cntrl = np.array([(1, (1, 1)), (0, (1, 0))], dtype=dtype)
+ assert_equal(mask_or(amask, bmask), cntrl)
+
+ def test_flatten_mask(self):
+ # Tests flatten mask
+ # Standard dtype
+ mask = np.array([0, 0, 1], dtype=bool)
+ assert_equal(flatten_mask(mask), mask)
+ # Flexible dtype
+ mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)])
+ test = flatten_mask(mask)
+ control = np.array([0, 0, 0, 1], dtype=bool)
+ assert_equal(test, control)
+
+ mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])]
+ data = [(0, (0, 0)), (0, (0, 1))]
+ mask = np.array(data, dtype=mdtype)
+ test = flatten_mask(mask)
+ control = np.array([0, 0, 0, 0, 0, 1], dtype=bool)
+ assert_equal(test, control)
+
+ def test_on_ndarray(self):
+ # Test functions on ndarrays
+ a = np.array([1, 2, 3, 4])
+ m = array(a, mask=False)
+ test = anom(a)
+ assert_equal(test, m.anom())
+ test = reshape(a, (2, 2))
+ assert_equal(test, m.reshape(2, 2))
+
+ def test_compress(self):
+ # Test compress function on ndarray and masked array
+ # Address Github #2495.
+ arr = np.arange(8)
+ arr.shape = 4, 2
+ cond = np.array([True, False, True, True])
+ control = arr[[0, 2, 3]]
+ test = np.ma.compress(cond, arr, axis=0)
+ assert_equal(test, control)
+ marr = np.ma.array(arr)
+ test = np.ma.compress(cond, marr, axis=0)
+ assert_equal(test, control)
+
+ def test_compressed(self):
+ # Test ma.compressed function.
+ # Address gh-4026
+ a = np.ma.array([1, 2])
+ test = np.ma.compressed(a)
+ assert_(type(test) is np.ndarray)
+
+ # Test case when input data is ndarray subclass
+ class A(np.ndarray):
+ pass
+
+ a = np.ma.array(A(shape=0))
+ test = np.ma.compressed(a)
+ assert_(type(test) is A)
+
+ # Test that compress flattens
+ test = np.ma.compressed([[1],[2]])
+ assert_equal(test.ndim, 1)
+ test = np.ma.compressed([[[[[1]]]]])
+ assert_equal(test.ndim, 1)
+
+ # Test case when input is MaskedArray subclass
+ class M(MaskedArray):
+ pass
+
+ test = np.ma.compressed(M([[[]], [[]]]))
+ assert_equal(test.ndim, 1)
+
+ # with .compressed() overridden
+ class M(MaskedArray):
+ def compressed(self):
+ return 42
+
+ test = np.ma.compressed(M([[[]], [[]]]))
+ assert_equal(test, 42)
+
+ def test_convolve(self):
+ a = masked_equal(np.arange(5), 2)
+ b = np.array([1, 1])
+ test = np.ma.convolve(a, b)
+ assert_equal(test, masked_equal([0, 1, -1, -1, 7, 4], -1))
+
+ test = np.ma.convolve(a, b, propagate_mask=False)
+ assert_equal(test, masked_equal([0, 1, 1, 3, 7, 4], -1))
+
+ test = np.ma.convolve([1, 1], [1, 1, 1])
+ assert_equal(test, masked_equal([1, 2, 2, 1], -1))
+
+ a = [1, 1]
+ b = masked_equal([1, -1, -1, 1], -1)
+ test = np.ma.convolve(a, b, propagate_mask=False)
+ assert_equal(test, masked_equal([1, 1, -1, 1, 1], -1))
+ test = np.ma.convolve(a, b, propagate_mask=True)
+ assert_equal(test, masked_equal([-1, -1, -1, -1, -1], -1))
+
+
+class TestMaskedFields:
+
+ def setup_method(self):
+ ilist = [1, 2, 3, 4, 5]
+ flist = [1.1, 2.2, 3.3, 4.4, 5.5]
+ slist = ['one', 'two', 'three', 'four', 'five']
+ ddtype = [('a', int), ('b', float), ('c', '|S8')]
+ mdtype = [('a', bool), ('b', bool), ('c', bool)]
+ mask = [0, 1, 0, 0, 1]
+ base = array(list(zip(ilist, flist, slist)), mask=mask, dtype=ddtype)
+ self.data = dict(base=base, mask=mask, ddtype=ddtype, mdtype=mdtype)
+
+ def test_set_records_masks(self):
+ base = self.data['base']
+ mdtype = self.data['mdtype']
+ # Set w/ nomask or masked
+ base.mask = nomask
+ assert_equal_records(base._mask, np.zeros(base.shape, dtype=mdtype))
+ base.mask = masked
+ assert_equal_records(base._mask, np.ones(base.shape, dtype=mdtype))
+ # Set w/ simple boolean
+ base.mask = False
+ assert_equal_records(base._mask, np.zeros(base.shape, dtype=mdtype))
+ base.mask = True
+ assert_equal_records(base._mask, np.ones(base.shape, dtype=mdtype))
+ # Set w/ list
+ base.mask = [0, 0, 0, 1, 1]
+ assert_equal_records(base._mask,
+ np.array([(x, x, x) for x in [0, 0, 0, 1, 1]],
+ dtype=mdtype))
+
+ def test_set_record_element(self):
+ # Check setting an element of a record)
+ base = self.data['base']
+ (base_a, base_b, base_c) = (base['a'], base['b'], base['c'])
+ base[0] = (pi, pi, 'pi')
+
+ assert_equal(base_a.dtype, int)
+ assert_equal(base_a._data, [3, 2, 3, 4, 5])
+
+ assert_equal(base_b.dtype, float)
+ assert_equal(base_b._data, [pi, 2.2, 3.3, 4.4, 5.5])
+
+ assert_equal(base_c.dtype, '|S8')
+ assert_equal(base_c._data,
+ [b'pi', b'two', b'three', b'four', b'five'])
+
+ def test_set_record_slice(self):
+ base = self.data['base']
+ (base_a, base_b, base_c) = (base['a'], base['b'], base['c'])
+ base[:3] = (pi, pi, 'pi')
+
+ assert_equal(base_a.dtype, int)
+ assert_equal(base_a._data, [3, 3, 3, 4, 5])
+
+ assert_equal(base_b.dtype, float)
+ assert_equal(base_b._data, [pi, pi, pi, 4.4, 5.5])
+
+ assert_equal(base_c.dtype, '|S8')
+ assert_equal(base_c._data,
+ [b'pi', b'pi', b'pi', b'four', b'five'])
+
+ def test_mask_element(self):
+ "Check record access"
+ base = self.data['base']
+ base[0] = masked
+
+ for n in ('a', 'b', 'c'):
+ assert_equal(base[n].mask, [1, 1, 0, 0, 1])
+ assert_equal(base[n]._data, base._data[n])
+
+ def test_getmaskarray(self):
+ # Test getmaskarray on flexible dtype
+ ndtype = [('a', int), ('b', float)]
+ test = empty(3, dtype=ndtype)
+ assert_equal(getmaskarray(test),
+ np.array([(0, 0), (0, 0), (0, 0)],
+ dtype=[('a', '|b1'), ('b', '|b1')]))
+ test[:] = masked
+ assert_equal(getmaskarray(test),
+ np.array([(1, 1), (1, 1), (1, 1)],
+ dtype=[('a', '|b1'), ('b', '|b1')]))
+
+ def test_view(self):
+ # Test view w/ flexible dtype
+ iterator = list(zip(np.arange(10), np.random.rand(10)))
+ data = np.array(iterator)
+ a = array(iterator, dtype=[('a', float), ('b', float)])
+ a.mask[0] = (1, 0)
+ controlmask = np.array([1] + 19 * [0], dtype=bool)
+ # Transform globally to simple dtype
+ test = a.view(float)
+ assert_equal(test, data.ravel())
+ assert_equal(test.mask, controlmask)
+ # Transform globally to dty
+ test = a.view((float, 2))
+ assert_equal(test, data)
+ assert_equal(test.mask, controlmask.reshape(-1, 2))
+
+ def test_getitem(self):
+ ndtype = [('a', float), ('b', float)]
+ a = array(list(zip(np.random.rand(10), np.arange(10))), dtype=ndtype)
+ a.mask = np.array(list(zip([0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
+ [1, 0, 0, 0, 0, 0, 0, 0, 1, 0])),
+ dtype=[('a', bool), ('b', bool)])
+
+ def _test_index(i):
+ assert_equal(type(a[i]), mvoid)
+ assert_equal_records(a[i]._data, a._data[i])
+ assert_equal_records(a[i]._mask, a._mask[i])
+
+ assert_equal(type(a[i, ...]), MaskedArray)
+ assert_equal_records(a[i,...]._data, a._data[i,...])
+ assert_equal_records(a[i,...]._mask, a._mask[i,...])
+
+ _test_index(1) # No mask
+ _test_index(0) # One element masked
+ _test_index(-2) # All element masked
+
+ def test_setitem(self):
+ # Issue 4866: check that one can set individual items in [record][col]
+ # and [col][record] order
+ ndtype = np.dtype([('a', float), ('b', int)])
+ ma = np.ma.MaskedArray([(1.0, 1), (2.0, 2)], dtype=ndtype)
+ ma['a'][1] = 3.0
+ assert_equal(ma['a'], np.array([1.0, 3.0]))
+ ma[1]['a'] = 4.0
+ assert_equal(ma['a'], np.array([1.0, 4.0]))
+ # Issue 2403
+ mdtype = np.dtype([('a', bool), ('b', bool)])
+ # soft mask
+ control = np.array([(False, True), (True, True)], dtype=mdtype)
+ a = np.ma.masked_all((2,), dtype=ndtype)
+ a['a'][0] = 2
+ assert_equal(a.mask, control)
+ a = np.ma.masked_all((2,), dtype=ndtype)
+ a[0]['a'] = 2
+ assert_equal(a.mask, control)
+ # hard mask
+ control = np.array([(True, True), (True, True)], dtype=mdtype)
+ a = np.ma.masked_all((2,), dtype=ndtype)
+ a.harden_mask()
+ a['a'][0] = 2
+ assert_equal(a.mask, control)
+ a = np.ma.masked_all((2,), dtype=ndtype)
+ a.harden_mask()
+ a[0]['a'] = 2
+ assert_equal(a.mask, control)
+
+ def test_setitem_scalar(self):
+ # 8510
+ mask_0d = np.ma.masked_array(1, mask=True)
+ arr = np.ma.arange(3)
+ arr[0] = mask_0d
+ assert_array_equal(arr.mask, [True, False, False])
+
+ def test_element_len(self):
+ # check that len() works for mvoid (Github issue #576)
+ for rec in self.data['base']:
+ assert_equal(len(rec), len(self.data['ddtype']))
+
+
+class TestMaskedObjectArray:
+
+ def test_getitem(self):
+ arr = np.ma.array([None, None])
+ for dt in [float, object]:
+ a0 = np.eye(2).astype(dt)
+ a1 = np.eye(3).astype(dt)
+ arr[0] = a0
+ arr[1] = a1
+
+ assert_(arr[0] is a0)
+ assert_(arr[1] is a1)
+ assert_(isinstance(arr[0,...], MaskedArray))
+ assert_(isinstance(arr[1,...], MaskedArray))
+ assert_(arr[0,...][()] is a0)
+ assert_(arr[1,...][()] is a1)
+
+ arr[0] = np.ma.masked
+
+ assert_(arr[1] is a1)
+ assert_(isinstance(arr[0,...], MaskedArray))
+ assert_(isinstance(arr[1,...], MaskedArray))
+ assert_equal(arr[0,...].mask, True)
+ assert_(arr[1,...][()] is a1)
+
+ # gh-5962 - object arrays of arrays do something special
+ assert_equal(arr[0].data, a0)
+ assert_equal(arr[0].mask, True)
+ assert_equal(arr[0,...][()].data, a0)
+ assert_equal(arr[0,...][()].mask, True)
+
+ def test_nested_ma(self):
+
+ arr = np.ma.array([None, None])
+ # set the first object to be an unmasked masked constant. A little fiddly
+ arr[0,...] = np.array([np.ma.masked], object)[0,...]
+
+ # check the above line did what we were aiming for
+ assert_(arr.data[0] is np.ma.masked)
+
+ # test that getitem returned the value by identity
+ assert_(arr[0] is np.ma.masked)
+
+ # now mask the masked value!
+ arr[0] = np.ma.masked
+ assert_(arr[0] is np.ma.masked)
+
+
+class TestMaskedView:
+
+ def setup_method(self):
+ iterator = list(zip(np.arange(10), np.random.rand(10)))
+ data = np.array(iterator)
+ a = array(iterator, dtype=[('a', float), ('b', float)])
+ a.mask[0] = (1, 0)
+ controlmask = np.array([1] + 19 * [0], dtype=bool)
+ self.data = (data, a, controlmask)
+
+ def test_view_to_nothing(self):
+ (data, a, controlmask) = self.data
+ test = a.view()
+ assert_(isinstance(test, MaskedArray))
+ assert_equal(test._data, a._data)
+ assert_equal(test._mask, a._mask)
+
+ def test_view_to_type(self):
+ (data, a, controlmask) = self.data
+ test = a.view(np.ndarray)
+ assert_(not isinstance(test, MaskedArray))
+ assert_equal(test, a._data)
+ assert_equal_records(test, data.view(a.dtype).squeeze())
+
+ def test_view_to_simple_dtype(self):
+ (data, a, controlmask) = self.data
+ # View globally
+ test = a.view(float)
+ assert_(isinstance(test, MaskedArray))
+ assert_equal(test, data.ravel())
+ assert_equal(test.mask, controlmask)
+
+ def test_view_to_flexible_dtype(self):
+ (data, a, controlmask) = self.data
+
+ test = a.view([('A', float), ('B', float)])
+ assert_equal(test.mask.dtype.names, ('A', 'B'))
+ assert_equal(test['A'], a['a'])
+ assert_equal(test['B'], a['b'])
+
+ test = a[0].view([('A', float), ('B', float)])
+ assert_(isinstance(test, MaskedArray))
+ assert_equal(test.mask.dtype.names, ('A', 'B'))
+ assert_equal(test['A'], a['a'][0])
+ assert_equal(test['B'], a['b'][0])
+
+ test = a[-1].view([('A', float), ('B', float)])
+ assert_(isinstance(test, MaskedArray))
+ assert_equal(test.dtype.names, ('A', 'B'))
+ assert_equal(test['A'], a['a'][-1])
+ assert_equal(test['B'], a['b'][-1])
+
+ def test_view_to_subdtype(self):
+ (data, a, controlmask) = self.data
+ # View globally
+ test = a.view((float, 2))
+ assert_(isinstance(test, MaskedArray))
+ assert_equal(test, data)
+ assert_equal(test.mask, controlmask.reshape(-1, 2))
+ # View on 1 masked element
+ test = a[0].view((float, 2))
+ assert_(isinstance(test, MaskedArray))
+ assert_equal(test, data[0])
+ assert_equal(test.mask, (1, 0))
+ # View on 1 unmasked element
+ test = a[-1].view((float, 2))
+ assert_(isinstance(test, MaskedArray))
+ assert_equal(test, data[-1])
+
+ def test_view_to_dtype_and_type(self):
+ (data, a, controlmask) = self.data
+
+ test = a.view((float, 2), np.recarray)
+ assert_equal(test, data)
+ assert_(isinstance(test, np.recarray))
+ assert_(not isinstance(test, MaskedArray))
+
+
+class TestOptionalArgs:
+ def test_ndarrayfuncs(self):
+ # test axis arg behaves the same as ndarray (including multiple axes)
+
+ d = np.arange(24.0).reshape((2,3,4))
+ m = np.zeros(24, dtype=bool).reshape((2,3,4))
+ # mask out last element of last dimension
+ m[:,:,-1] = True
+ a = np.ma.array(d, mask=m)
+
+ def testaxis(f, a, d):
+ numpy_f = numpy.__getattribute__(f)
+ ma_f = np.ma.__getattribute__(f)
+
+ # test axis arg
+ assert_equal(ma_f(a, axis=1)[...,:-1], numpy_f(d[...,:-1], axis=1))
+ assert_equal(ma_f(a, axis=(0,1))[...,:-1],
+ numpy_f(d[...,:-1], axis=(0,1)))
+
+ def testkeepdims(f, a, d):
+ numpy_f = numpy.__getattribute__(f)
+ ma_f = np.ma.__getattribute__(f)
+
+ # test keepdims arg
+ assert_equal(ma_f(a, keepdims=True).shape,
+ numpy_f(d, keepdims=True).shape)
+ assert_equal(ma_f(a, keepdims=False).shape,
+ numpy_f(d, keepdims=False).shape)
+
+ # test both at once
+ assert_equal(ma_f(a, axis=1, keepdims=True)[...,:-1],
+ numpy_f(d[...,:-1], axis=1, keepdims=True))
+ assert_equal(ma_f(a, axis=(0,1), keepdims=True)[...,:-1],
+ numpy_f(d[...,:-1], axis=(0,1), keepdims=True))
+
+ for f in ['sum', 'prod', 'mean', 'var', 'std']:
+ testaxis(f, a, d)
+ testkeepdims(f, a, d)
+
+ for f in ['min', 'max']:
+ testaxis(f, a, d)
+
+ d = (np.arange(24).reshape((2,3,4))%2 == 0)
+ a = np.ma.array(d, mask=m)
+ for f in ['all', 'any']:
+ testaxis(f, a, d)
+ testkeepdims(f, a, d)
+
+ def test_count(self):
+ # test np.ma.count specially
+
+ d = np.arange(24.0).reshape((2,3,4))
+ m = np.zeros(24, dtype=bool).reshape((2,3,4))
+ m[:,0,:] = True
+ a = np.ma.array(d, mask=m)
+
+ assert_equal(count(a), 16)
+ assert_equal(count(a, axis=1), 2*ones((2,4)))
+ assert_equal(count(a, axis=(0,1)), 4*ones((4,)))
+ assert_equal(count(a, keepdims=True), 16*ones((1,1,1)))
+ assert_equal(count(a, axis=1, keepdims=True), 2*ones((2,1,4)))
+ assert_equal(count(a, axis=(0,1), keepdims=True), 4*ones((1,1,4)))
+ assert_equal(count(a, axis=-2), 2*ones((2,4)))
+ assert_raises(ValueError, count, a, axis=(1,1))
+ assert_raises(np.AxisError, count, a, axis=3)
+
+ # check the 'nomask' path
+ a = np.ma.array(d, mask=nomask)
+
+ assert_equal(count(a), 24)
+ assert_equal(count(a, axis=1), 3*ones((2,4)))
+ assert_equal(count(a, axis=(0,1)), 6*ones((4,)))
+ assert_equal(count(a, keepdims=True), 24*ones((1,1,1)))
+ assert_equal(np.ndim(count(a, keepdims=True)), 3)
+ assert_equal(count(a, axis=1, keepdims=True), 3*ones((2,1,4)))
+ assert_equal(count(a, axis=(0,1), keepdims=True), 6*ones((1,1,4)))
+ assert_equal(count(a, axis=-2), 3*ones((2,4)))
+ assert_raises(ValueError, count, a, axis=(1,1))
+ assert_raises(np.AxisError, count, a, axis=3)
+
+ # check the 'masked' singleton
+ assert_equal(count(np.ma.masked), 0)
+
+ # check 0-d arrays do not allow axis > 0
+ assert_raises(np.AxisError, count, np.ma.array(1), axis=1)
+
+
+class TestMaskedConstant:
+ def _do_add_test(self, add):
+ # sanity check
+ assert_(add(np.ma.masked, 1) is np.ma.masked)
+
+ # now try with a vector
+ vector = np.array([1, 2, 3])
+ result = add(np.ma.masked, vector)
+
+ # lots of things could go wrong here
+ assert_(result is not np.ma.masked)
+ assert_(not isinstance(result, np.ma.core.MaskedConstant))
+ assert_equal(result.shape, vector.shape)
+ assert_equal(np.ma.getmask(result), np.ones(vector.shape, dtype=bool))
+
+ def test_ufunc(self):
+ self._do_add_test(np.add)
+
+ def test_operator(self):
+ self._do_add_test(lambda a, b: a + b)
+
+ def test_ctor(self):
+ m = np.ma.array(np.ma.masked)
+
+ # most importantly, we do not want to create a new MaskedConstant
+ # instance
+ assert_(not isinstance(m, np.ma.core.MaskedConstant))
+ assert_(m is not np.ma.masked)
+
+ def test_repr(self):
+ # copies should not exist, but if they do, it should be obvious that
+ # something is wrong
+ assert_equal(repr(np.ma.masked), 'masked')
+
+ # create a new instance in a weird way
+ masked2 = np.ma.MaskedArray.__new__(np.ma.core.MaskedConstant)
+ assert_not_equal(repr(masked2), 'masked')
+
+ def test_pickle(self):
+ from io import BytesIO
+
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ with BytesIO() as f:
+ pickle.dump(np.ma.masked, f, protocol=proto)
+ f.seek(0)
+ res = pickle.load(f)
+ assert_(res is np.ma.masked)
+
+ def test_copy(self):
+ # gh-9328
+ # copy is a no-op, like it is with np.True_
+ assert_equal(
+ np.ma.masked.copy() is np.ma.masked,
+ np.True_.copy() is np.True_)
+
+ def test__copy(self):
+ import copy
+ assert_(
+ copy.copy(np.ma.masked) is np.ma.masked)
+
+ def test_deepcopy(self):
+ import copy
+ assert_(
+ copy.deepcopy(np.ma.masked) is np.ma.masked)
+
+ def test_immutable(self):
+ orig = np.ma.masked
+ assert_raises(np.ma.core.MaskError, operator.setitem, orig, (), 1)
+ assert_raises(ValueError,operator.setitem, orig.data, (), 1)
+ assert_raises(ValueError, operator.setitem, orig.mask, (), False)
+
+ view = np.ma.masked.view(np.ma.MaskedArray)
+ assert_raises(ValueError, operator.setitem, view, (), 1)
+ assert_raises(ValueError, operator.setitem, view.data, (), 1)
+ assert_raises(ValueError, operator.setitem, view.mask, (), False)
+
+ def test_coercion_int(self):
+ a_i = np.zeros((), int)
+ assert_raises(MaskError, operator.setitem, a_i, (), np.ma.masked)
+ assert_raises(MaskError, int, np.ma.masked)
+
+ def test_coercion_float(self):
+ a_f = np.zeros((), float)
+ assert_warns(UserWarning, operator.setitem, a_f, (), np.ma.masked)
+ assert_(np.isnan(a_f[()]))
+
+ @pytest.mark.xfail(reason="See gh-9750")
+ def test_coercion_unicode(self):
+ a_u = np.zeros((), 'U10')
+ a_u[()] = np.ma.masked
+ assert_equal(a_u[()], '--')
+
+ @pytest.mark.xfail(reason="See gh-9750")
+ def test_coercion_bytes(self):
+ a_b = np.zeros((), 'S10')
+ a_b[()] = np.ma.masked
+ assert_equal(a_b[()], b'--')
+
+ def test_subclass(self):
+ # https://github.com/astropy/astropy/issues/6645
+ class Sub(type(np.ma.masked)): pass
+
+ a = Sub()
+ assert_(a is Sub())
+ assert_(a is not np.ma.masked)
+ assert_not_equal(repr(a), 'masked')
+
+ def test_attributes_readonly(self):
+ assert_raises(AttributeError, setattr, np.ma.masked, 'shape', (1,))
+ assert_raises(AttributeError, setattr, np.ma.masked, 'dtype', np.int64)
+
+
+class TestMaskedWhereAliases:
+
+ # TODO: Test masked_object, masked_equal, ...
+
+ def test_masked_values(self):
+ res = masked_values(np.array([-32768.0]), np.int16(-32768))
+ assert_equal(res.mask, [True])
+
+ res = masked_values(np.inf, np.inf)
+ assert_equal(res.mask, True)
+
+ res = np.ma.masked_values(np.inf, -np.inf)
+ assert_equal(res.mask, False)
+
+ res = np.ma.masked_values([1, 2, 3, 4], 5, shrink=True)
+ assert_(res.mask is np.ma.nomask)
+
+ res = np.ma.masked_values([1, 2, 3, 4], 5, shrink=False)
+ assert_equal(res.mask, [False] * 4)
+
+
+def test_masked_array():
+ a = np.ma.array([0, 1, 2, 3], mask=[0, 0, 1, 0])
+ assert_equal(np.argwhere(a), [[1], [3]])
+
+def test_masked_array_no_copy():
+ # check nomask array is updated in place
+ a = np.ma.array([1, 2, 3, 4])
+ _ = np.ma.masked_where(a == 3, a, copy=False)
+ assert_array_equal(a.mask, [False, False, True, False])
+ # check masked array is updated in place
+ a = np.ma.array([1, 2, 3, 4], mask=[1, 0, 0, 0])
+ _ = np.ma.masked_where(a == 3, a, copy=False)
+ assert_array_equal(a.mask, [True, False, True, False])
+ # check masked array with masked_invalid is updated in place
+ a = np.ma.array([np.inf, 1, 2, 3, 4])
+ _ = np.ma.masked_invalid(a, copy=False)
+ assert_array_equal(a.mask, [True, False, False, False, False])
+
+def test_append_masked_array():
+ a = np.ma.masked_equal([1,2,3], value=2)
+ b = np.ma.masked_equal([4,3,2], value=2)
+
+ result = np.ma.append(a, b)
+ expected_data = [1, 2, 3, 4, 3, 2]
+ expected_mask = [False, True, False, False, False, True]
+ assert_array_equal(result.data, expected_data)
+ assert_array_equal(result.mask, expected_mask)
+
+ a = np.ma.masked_all((2,2))
+ b = np.ma.ones((3,1))
+
+ result = np.ma.append(a, b)
+ expected_data = [1] * 3
+ expected_mask = [True] * 4 + [False] * 3
+ assert_array_equal(result.data[-3], expected_data)
+ assert_array_equal(result.mask, expected_mask)
+
+ result = np.ma.append(a, b, axis=None)
+ assert_array_equal(result.data[-3], expected_data)
+ assert_array_equal(result.mask, expected_mask)
+
+
+def test_append_masked_array_along_axis():
+ a = np.ma.masked_equal([1,2,3], value=2)
+ b = np.ma.masked_values([[4, 5, 6], [7, 8, 9]], 7)
+
+ # When `axis` is specified, `values` must have the correct shape.
+ assert_raises(ValueError, np.ma.append, a, b, axis=0)
+
+ result = np.ma.append(a[np.newaxis,:], b, axis=0)
+ expected = np.ma.arange(1, 10)
+ expected[[1, 6]] = np.ma.masked
+ expected = expected.reshape((3,3))
+ assert_array_equal(result.data, expected.data)
+ assert_array_equal(result.mask, expected.mask)
+
+def test_default_fill_value_complex():
+ # regression test for Python 3, where 'unicode' was not defined
+ assert_(default_fill_value(1 + 1j) == 1.e20 + 0.0j)
+
+
+def test_ufunc_with_output():
+ # check that giving an output argument always returns that output.
+ # Regression test for gh-8416.
+ x = array([1., 2., 3.], mask=[0, 0, 1])
+ y = np.add(x, 1., out=x)
+ assert_(y is x)
+
+
+def test_ufunc_with_out_varied():
+ """ Test that masked arrays are immune to gh-10459 """
+ # the mask of the output should not affect the result, however it is passed
+ a = array([ 1, 2, 3], mask=[1, 0, 0])
+ b = array([10, 20, 30], mask=[1, 0, 0])
+ out = array([ 0, 0, 0], mask=[0, 0, 1])
+ expected = array([11, 22, 33], mask=[1, 0, 0])
+
+ out_pos = out.copy()
+ res_pos = np.add(a, b, out_pos)
+
+ out_kw = out.copy()
+ res_kw = np.add(a, b, out=out_kw)
+
+ out_tup = out.copy()
+ res_tup = np.add(a, b, out=(out_tup,))
+
+ assert_equal(res_kw.mask, expected.mask)
+ assert_equal(res_kw.data, expected.data)
+ assert_equal(res_tup.mask, expected.mask)
+ assert_equal(res_tup.data, expected.data)
+ assert_equal(res_pos.mask, expected.mask)
+ assert_equal(res_pos.data, expected.data)
+
+
+def test_astype_mask_ordering():
+ descr = np.dtype([('v', int, 3), ('x', [('y', float)])])
+ x = array([
+ [([1, 2, 3], (1.0,)), ([1, 2, 3], (2.0,))],
+ [([1, 2, 3], (3.0,)), ([1, 2, 3], (4.0,))]], dtype=descr)
+ x[0]['v'][0] = np.ma.masked
+
+ x_a = x.astype(descr)
+ assert x_a.dtype.names == np.dtype(descr).names
+ assert x_a.mask.dtype.names == np.dtype(descr).names
+ assert_equal(x, x_a)
+
+ assert_(x is x.astype(x.dtype, copy=False))
+ assert_equal(type(x.astype(x.dtype, subok=False)), np.ndarray)
+
+ x_f = x.astype(x.dtype, order='F')
+ assert_(x_f.flags.f_contiguous)
+ assert_(x_f.mask.flags.f_contiguous)
+
+ # Also test the same indirectly, via np.array
+ x_a2 = np.array(x, dtype=descr, subok=True)
+ assert x_a2.dtype.names == np.dtype(descr).names
+ assert x_a2.mask.dtype.names == np.dtype(descr).names
+ assert_equal(x, x_a2)
+
+ assert_(x is np.array(x, dtype=descr, copy=False, subok=True))
+
+ x_f2 = np.array(x, dtype=x.dtype, order='F', subok=True)
+ assert_(x_f2.flags.f_contiguous)
+ assert_(x_f2.mask.flags.f_contiguous)
+
+
+@pytest.mark.parametrize('dt1', num_dts, ids=num_ids)
+@pytest.mark.parametrize('dt2', num_dts, ids=num_ids)
+@pytest.mark.filterwarnings('ignore::numpy.ComplexWarning')
+def test_astype_basic(dt1, dt2):
+ # See gh-12070
+ src = np.ma.array(ones(3, dt1), fill_value=1)
+ dst = src.astype(dt2)
+
+ assert_(src.fill_value == 1)
+ assert_(src.dtype == dt1)
+ assert_(src.fill_value.dtype == dt1)
+
+ assert_(dst.fill_value == 1)
+ assert_(dst.dtype == dt2)
+ assert_(dst.fill_value.dtype == dt2)
+
+ assert_equal(src, dst)
+
+
+def test_fieldless_void():
+ dt = np.dtype([]) # a void dtype with no fields
+ x = np.empty(4, dt)
+
+ # these arrays contain no values, so there's little to test - but this
+ # shouldn't crash
+ mx = np.ma.array(x)
+ assert_equal(mx.dtype, x.dtype)
+ assert_equal(mx.shape, x.shape)
+
+ mx = np.ma.array(x, mask=x)
+ assert_equal(mx.dtype, x.dtype)
+ assert_equal(mx.shape, x.shape)
+
+
+def test_mask_shape_assignment_does_not_break_masked():
+ a = np.ma.masked
+ b = np.ma.array(1, mask=a.mask)
+ b.shape = (1,)
+ assert_equal(a.mask.shape, ())
+
+@pytest.mark.skipif(sys.flags.optimize > 1,
+ reason="no docstrings present to inspect when PYTHONOPTIMIZE/Py_OptimizeFlag > 1")
+def test_doc_note():
+ def method(self):
+ """This docstring
+
+ Has multiple lines
+
+ And notes
+
+ Notes
+ -----
+ original note
+ """
+ pass
+
+ expected_doc = """This docstring
+
+Has multiple lines
+
+And notes
+
+Notes
+-----
+note
+
+original note"""
+
+ assert_equal(np.ma.core.doc_note(method.__doc__, "note"), expected_doc)
+
+
+def test_gh_22556():
+ source = np.ma.array([0, [0, 1, 2]], dtype=object)
+ deepcopy = copy.deepcopy(source)
+ deepcopy[1].append('this should not appear in source')
+ assert len(source[1]) == 3
+
+
+def test_gh_21022():
+ # testing for absence of reported error
+ source = np.ma.masked_array(data=[-1, -1], mask=True, dtype=np.float64)
+ axis = np.array(0)
+ result = np.prod(source, axis=axis, keepdims=False)
+ result = np.ma.masked_array(result,
+ mask=np.ones(result.shape, dtype=np.bool_))
+ array = np.ma.masked_array(data=-1, mask=True, dtype=np.float64)
+ copy.deepcopy(array)
+ copy.deepcopy(result)
+
+
+def test_deepcopy_2d_obj():
+ source = np.ma.array([[0, "dog"],
+ [1, 1],
+ [[1, 2], "cat"]],
+ mask=[[0, 1],
+ [0, 0],
+ [0, 0]],
+ dtype=object)
+ deepcopy = copy.deepcopy(source)
+ deepcopy[2, 0].extend(['this should not appear in source', 3])
+ assert len(source[2, 0]) == 2
+ assert len(deepcopy[2, 0]) == 4
+ assert_equal(deepcopy._mask, source._mask)
+ deepcopy._mask[0, 0] = 1
+ assert source._mask[0, 0] == 0
+
+
+def test_deepcopy_0d_obj():
+ source = np.ma.array(0, mask=[0], dtype=object)
+ deepcopy = copy.deepcopy(source)
+ deepcopy[...] = 17
+ assert_equal(source, 0)
+ assert_equal(deepcopy, 17)
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_deprecations.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_deprecations.py
new file mode 100644
index 00000000..40c8418f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_deprecations.py
@@ -0,0 +1,84 @@
+"""Test deprecation and future warnings.
+
+"""
+import pytest
+import numpy as np
+from numpy.testing import assert_warns
+from numpy.ma.testutils import assert_equal
+from numpy.ma.core import MaskedArrayFutureWarning
+import io
+import textwrap
+
+class TestArgsort:
+ """ gh-8701 """
+ def _test_base(self, argsort, cls):
+ arr_0d = np.array(1).view(cls)
+ argsort(arr_0d)
+
+ arr_1d = np.array([1, 2, 3]).view(cls)
+ argsort(arr_1d)
+
+ # argsort has a bad default for >1d arrays
+ arr_2d = np.array([[1, 2], [3, 4]]).view(cls)
+ result = assert_warns(
+ np.ma.core.MaskedArrayFutureWarning, argsort, arr_2d)
+ assert_equal(result, argsort(arr_2d, axis=None))
+
+ # should be no warnings for explicitly specifying it
+ argsort(arr_2d, axis=None)
+ argsort(arr_2d, axis=-1)
+
+ def test_function_ndarray(self):
+ return self._test_base(np.ma.argsort, np.ndarray)
+
+ def test_function_maskedarray(self):
+ return self._test_base(np.ma.argsort, np.ma.MaskedArray)
+
+ def test_method(self):
+ return self._test_base(np.ma.MaskedArray.argsort, np.ma.MaskedArray)
+
+
+class TestMinimumMaximum:
+
+ def test_axis_default(self):
+ # NumPy 1.13, 2017-05-06
+
+ data1d = np.ma.arange(6)
+ data2d = data1d.reshape(2, 3)
+
+ ma_min = np.ma.minimum.reduce
+ ma_max = np.ma.maximum.reduce
+
+ # check that the default axis is still None, but warns on 2d arrays
+ result = assert_warns(MaskedArrayFutureWarning, ma_max, data2d)
+ assert_equal(result, ma_max(data2d, axis=None))
+
+ result = assert_warns(MaskedArrayFutureWarning, ma_min, data2d)
+ assert_equal(result, ma_min(data2d, axis=None))
+
+ # no warnings on 1d, as both new and old defaults are equivalent
+ result = ma_min(data1d)
+ assert_equal(result, ma_min(data1d, axis=None))
+ assert_equal(result, ma_min(data1d, axis=0))
+
+ result = ma_max(data1d)
+ assert_equal(result, ma_max(data1d, axis=None))
+ assert_equal(result, ma_max(data1d, axis=0))
+
+
+class TestFromtextfile:
+ def test_fromtextfile_delimitor(self):
+ # NumPy 1.22.0, 2021-09-23
+
+ textfile = io.StringIO(textwrap.dedent(
+ """
+ A,B,C,D
+ 'string 1';1;1.0;'mixed column'
+ 'string 2';2;2.0;
+ 'string 3';3;3.0;123
+ 'string 4';4;4.0;3.14
+ """
+ ))
+
+ with pytest.warns(DeprecationWarning):
+ result = np.ma.mrecords.fromtextfile(textfile, delimitor=';')
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_extras.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_extras.py
new file mode 100644
index 00000000..d09a50fe
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_extras.py
@@ -0,0 +1,1870 @@
+# pylint: disable-msg=W0611, W0612, W0511
+"""Tests suite for MaskedArray.
+Adapted from the original test_ma by Pierre Gerard-Marchant
+
+:author: Pierre Gerard-Marchant
+:contact: pierregm_at_uga_dot_edu
+:version: $Id: test_extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $
+
+"""
+import warnings
+import itertools
+import pytest
+
+import numpy as np
+from numpy.core.numeric import normalize_axis_tuple
+from numpy.testing import (
+ assert_warns, suppress_warnings
+ )
+from numpy.ma.testutils import (
+ assert_, assert_array_equal, assert_equal, assert_almost_equal
+ )
+from numpy.ma.core import (
+ array, arange, masked, MaskedArray, masked_array, getmaskarray, shape,
+ nomask, ones, zeros, count
+ )
+from numpy.ma.extras import (
+ atleast_1d, atleast_2d, atleast_3d, mr_, dot, polyfit, cov, corrcoef,
+ median, average, unique, setxor1d, setdiff1d, union1d, intersect1d, in1d,
+ ediff1d, apply_over_axes, apply_along_axis, compress_nd, compress_rowcols,
+ mask_rowcols, clump_masked, clump_unmasked, flatnotmasked_contiguous,
+ notmasked_contiguous, notmasked_edges, masked_all, masked_all_like, isin,
+ diagflat, ndenumerate, stack, vstack
+ )
+
+
+class TestGeneric:
+ #
+ def test_masked_all(self):
+ # Tests masked_all
+ # Standard dtype
+ test = masked_all((2,), dtype=float)
+ control = array([1, 1], mask=[1, 1], dtype=float)
+ assert_equal(test, control)
+ # Flexible dtype
+ dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']})
+ test = masked_all((2,), dtype=dt)
+ control = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt)
+ assert_equal(test, control)
+ test = masked_all((2, 2), dtype=dt)
+ control = array([[(0, 0), (0, 0)], [(0, 0), (0, 0)]],
+ mask=[[(1, 1), (1, 1)], [(1, 1), (1, 1)]],
+ dtype=dt)
+ assert_equal(test, control)
+ # Nested dtype
+ dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])])
+ test = masked_all((2,), dtype=dt)
+ control = array([(1, (1, 1)), (1, (1, 1))],
+ mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
+ assert_equal(test, control)
+ test = masked_all((2,), dtype=dt)
+ control = array([(1, (1, 1)), (1, (1, 1))],
+ mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
+ assert_equal(test, control)
+ test = masked_all((1, 1), dtype=dt)
+ control = array([[(1, (1, 1))]], mask=[[(1, (1, 1))]], dtype=dt)
+ assert_equal(test, control)
+
+ def test_masked_all_with_object_nested(self):
+ # Test masked_all works with nested array with dtype of an 'object'
+ # refers to issue #15895
+ my_dtype = np.dtype([('b', ([('c', object)], (1,)))])
+ masked_arr = np.ma.masked_all((1,), my_dtype)
+
+ assert_equal(type(masked_arr['b']), np.ma.core.MaskedArray)
+ assert_equal(type(masked_arr['b']['c']), np.ma.core.MaskedArray)
+ assert_equal(len(masked_arr['b']['c']), 1)
+ assert_equal(masked_arr['b']['c'].shape, (1, 1))
+ assert_equal(masked_arr['b']['c']._fill_value.shape, ())
+
+ def test_masked_all_with_object(self):
+ # same as above except that the array is not nested
+ my_dtype = np.dtype([('b', (object, (1,)))])
+ masked_arr = np.ma.masked_all((1,), my_dtype)
+
+ assert_equal(type(masked_arr['b']), np.ma.core.MaskedArray)
+ assert_equal(len(masked_arr['b']), 1)
+ assert_equal(masked_arr['b'].shape, (1, 1))
+ assert_equal(masked_arr['b']._fill_value.shape, ())
+
+ def test_masked_all_like(self):
+ # Tests masked_all
+ # Standard dtype
+ base = array([1, 2], dtype=float)
+ test = masked_all_like(base)
+ control = array([1, 1], mask=[1, 1], dtype=float)
+ assert_equal(test, control)
+ # Flexible dtype
+ dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']})
+ base = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt)
+ test = masked_all_like(base)
+ control = array([(10, 10), (10, 10)], mask=[(1, 1), (1, 1)], dtype=dt)
+ assert_equal(test, control)
+ # Nested dtype
+ dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])])
+ control = array([(1, (1, 1)), (1, (1, 1))],
+ mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
+ test = masked_all_like(control)
+ assert_equal(test, control)
+
+ def check_clump(self, f):
+ for i in range(1, 7):
+ for j in range(2**i):
+ k = np.arange(i, dtype=int)
+ ja = np.full(i, j, dtype=int)
+ a = masked_array(2**k)
+ a.mask = (ja & (2**k)) != 0
+ s = 0
+ for sl in f(a):
+ s += a.data[sl].sum()
+ if f == clump_unmasked:
+ assert_equal(a.compressed().sum(), s)
+ else:
+ a.mask = ~a.mask
+ assert_equal(a.compressed().sum(), s)
+
+ def test_clump_masked(self):
+ # Test clump_masked
+ a = masked_array(np.arange(10))
+ a[[0, 1, 2, 6, 8, 9]] = masked
+ #
+ test = clump_masked(a)
+ control = [slice(0, 3), slice(6, 7), slice(8, 10)]
+ assert_equal(test, control)
+
+ self.check_clump(clump_masked)
+
+ def test_clump_unmasked(self):
+ # Test clump_unmasked
+ a = masked_array(np.arange(10))
+ a[[0, 1, 2, 6, 8, 9]] = masked
+ test = clump_unmasked(a)
+ control = [slice(3, 6), slice(7, 8), ]
+ assert_equal(test, control)
+
+ self.check_clump(clump_unmasked)
+
+ def test_flatnotmasked_contiguous(self):
+ # Test flatnotmasked_contiguous
+ a = arange(10)
+ # No mask
+ test = flatnotmasked_contiguous(a)
+ assert_equal(test, [slice(0, a.size)])
+ # mask of all false
+ a.mask = np.zeros(10, dtype=bool)
+ assert_equal(test, [slice(0, a.size)])
+ # Some mask
+ a[(a < 3) | (a > 8) | (a == 5)] = masked
+ test = flatnotmasked_contiguous(a)
+ assert_equal(test, [slice(3, 5), slice(6, 9)])
+ #
+ a[:] = masked
+ test = flatnotmasked_contiguous(a)
+ assert_equal(test, [])
+
+
+class TestAverage:
+ # Several tests of average. Why so many ? Good point...
+ def test_testAverage1(self):
+ # Test of average.
+ ott = array([0., 1., 2., 3.], mask=[True, False, False, False])
+ assert_equal(2.0, average(ott, axis=0))
+ assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.]))
+ result, wts = average(ott, weights=[1., 1., 2., 1.], returned=True)
+ assert_equal(2.0, result)
+ assert_(wts == 4.0)
+ ott[:] = masked
+ assert_equal(average(ott, axis=0).mask, [True])
+ ott = array([0., 1., 2., 3.], mask=[True, False, False, False])
+ ott = ott.reshape(2, 2)
+ ott[:, 1] = masked
+ assert_equal(average(ott, axis=0), [2.0, 0.0])
+ assert_equal(average(ott, axis=1).mask[0], [True])
+ assert_equal([2., 0.], average(ott, axis=0))
+ result, wts = average(ott, axis=0, returned=True)
+ assert_equal(wts, [1., 0.])
+
+ def test_testAverage2(self):
+ # More tests of average.
+ w1 = [0, 1, 1, 1, 1, 0]
+ w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]]
+ x = arange(6, dtype=np.float_)
+ assert_equal(average(x, axis=0), 2.5)
+ assert_equal(average(x, axis=0, weights=w1), 2.5)
+ y = array([arange(6, dtype=np.float_), 2.0 * arange(6)])
+ assert_equal(average(y, None), np.add.reduce(np.arange(6)) * 3. / 12.)
+ assert_equal(average(y, axis=0), np.arange(6) * 3. / 2.)
+ assert_equal(average(y, axis=1),
+ [average(x, axis=0), average(x, axis=0) * 2.0])
+ assert_equal(average(y, None, weights=w2), 20. / 6.)
+ assert_equal(average(y, axis=0, weights=w2),
+ [0., 1., 2., 3., 4., 10.])
+ assert_equal(average(y, axis=1),
+ [average(x, axis=0), average(x, axis=0) * 2.0])
+ m1 = zeros(6)
+ m2 = [0, 0, 1, 1, 0, 0]
+ m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]]
+ m4 = ones(6)
+ m5 = [0, 1, 1, 1, 1, 1]
+ assert_equal(average(masked_array(x, m1), axis=0), 2.5)
+ assert_equal(average(masked_array(x, m2), axis=0), 2.5)
+ assert_equal(average(masked_array(x, m4), axis=0).mask, [True])
+ assert_equal(average(masked_array(x, m5), axis=0), 0.0)
+ assert_equal(count(average(masked_array(x, m4), axis=0)), 0)
+ z = masked_array(y, m3)
+ assert_equal(average(z, None), 20. / 6.)
+ assert_equal(average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5])
+ assert_equal(average(z, axis=1), [2.5, 5.0])
+ assert_equal(average(z, axis=0, weights=w2),
+ [0., 1., 99., 99., 4.0, 10.0])
+
+ def test_testAverage3(self):
+ # Yet more tests of average!
+ a = arange(6)
+ b = arange(6) * 3
+ r1, w1 = average([[a, b], [b, a]], axis=1, returned=True)
+ assert_equal(shape(r1), shape(w1))
+ assert_equal(r1.shape, w1.shape)
+ r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=True)
+ assert_equal(shape(w2), shape(r2))
+ r2, w2 = average(ones((2, 2, 3)), returned=True)
+ assert_equal(shape(w2), shape(r2))
+ r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=True)
+ assert_equal(shape(w2), shape(r2))
+ a2d = array([[1, 2], [0, 4]], float)
+ a2dm = masked_array(a2d, [[False, False], [True, False]])
+ a2da = average(a2d, axis=0)
+ assert_equal(a2da, [0.5, 3.0])
+ a2dma = average(a2dm, axis=0)
+ assert_equal(a2dma, [1.0, 3.0])
+ a2dma = average(a2dm, axis=None)
+ assert_equal(a2dma, 7. / 3.)
+ a2dma = average(a2dm, axis=1)
+ assert_equal(a2dma, [1.5, 4.0])
+
+ def test_testAverage4(self):
+ # Test that `keepdims` works with average
+ x = np.array([2, 3, 4]).reshape(3, 1)
+ b = np.ma.array(x, mask=[[False], [False], [True]])
+ w = np.array([4, 5, 6]).reshape(3, 1)
+ actual = average(b, weights=w, axis=1, keepdims=True)
+ desired = masked_array([[2.], [3.], [4.]], [[False], [False], [True]])
+ assert_equal(actual, desired)
+
+ def test_onintegers_with_mask(self):
+ # Test average on integers with mask
+ a = average(array([1, 2]))
+ assert_equal(a, 1.5)
+ a = average(array([1, 2, 3, 4], mask=[False, False, True, True]))
+ assert_equal(a, 1.5)
+
+ def test_complex(self):
+ # Test with complex data.
+ # (Regression test for https://github.com/numpy/numpy/issues/2684)
+ mask = np.array([[0, 0, 0, 1, 0],
+ [0, 1, 0, 0, 0]], dtype=bool)
+ a = masked_array([[0, 1+2j, 3+4j, 5+6j, 7+8j],
+ [9j, 0+1j, 2+3j, 4+5j, 7+7j]],
+ mask=mask)
+
+ av = average(a)
+ expected = np.average(a.compressed())
+ assert_almost_equal(av.real, expected.real)
+ assert_almost_equal(av.imag, expected.imag)
+
+ av0 = average(a, axis=0)
+ expected0 = average(a.real, axis=0) + average(a.imag, axis=0)*1j
+ assert_almost_equal(av0.real, expected0.real)
+ assert_almost_equal(av0.imag, expected0.imag)
+
+ av1 = average(a, axis=1)
+ expected1 = average(a.real, axis=1) + average(a.imag, axis=1)*1j
+ assert_almost_equal(av1.real, expected1.real)
+ assert_almost_equal(av1.imag, expected1.imag)
+
+ # Test with the 'weights' argument.
+ wts = np.array([[0.5, 1.0, 2.0, 1.0, 0.5],
+ [1.0, 1.0, 1.0, 1.0, 1.0]])
+ wav = average(a, weights=wts)
+ expected = np.average(a.compressed(), weights=wts[~mask])
+ assert_almost_equal(wav.real, expected.real)
+ assert_almost_equal(wav.imag, expected.imag)
+
+ wav0 = average(a, weights=wts, axis=0)
+ expected0 = (average(a.real, weights=wts, axis=0) +
+ average(a.imag, weights=wts, axis=0)*1j)
+ assert_almost_equal(wav0.real, expected0.real)
+ assert_almost_equal(wav0.imag, expected0.imag)
+
+ wav1 = average(a, weights=wts, axis=1)
+ expected1 = (average(a.real, weights=wts, axis=1) +
+ average(a.imag, weights=wts, axis=1)*1j)
+ assert_almost_equal(wav1.real, expected1.real)
+ assert_almost_equal(wav1.imag, expected1.imag)
+
+ @pytest.mark.parametrize(
+ 'x, axis, expected_avg, weights, expected_wavg, expected_wsum',
+ [([1, 2, 3], None, [2.0], [3, 4, 1], [1.75], [8.0]),
+ ([[1, 2, 5], [1, 6, 11]], 0, [[1.0, 4.0, 8.0]],
+ [1, 3], [[1.0, 5.0, 9.5]], [[4, 4, 4]])],
+ )
+ def test_basic_keepdims(self, x, axis, expected_avg,
+ weights, expected_wavg, expected_wsum):
+ avg = np.ma.average(x, axis=axis, keepdims=True)
+ assert avg.shape == np.shape(expected_avg)
+ assert_array_equal(avg, expected_avg)
+
+ wavg = np.ma.average(x, axis=axis, weights=weights, keepdims=True)
+ assert wavg.shape == np.shape(expected_wavg)
+ assert_array_equal(wavg, expected_wavg)
+
+ wavg, wsum = np.ma.average(x, axis=axis, weights=weights,
+ returned=True, keepdims=True)
+ assert wavg.shape == np.shape(expected_wavg)
+ assert_array_equal(wavg, expected_wavg)
+ assert wsum.shape == np.shape(expected_wsum)
+ assert_array_equal(wsum, expected_wsum)
+
+ def test_masked_weights(self):
+ # Test with masked weights.
+ # (Regression test for https://github.com/numpy/numpy/issues/10438)
+ a = np.ma.array(np.arange(9).reshape(3, 3),
+ mask=[[1, 0, 0], [1, 0, 0], [0, 0, 0]])
+ weights_unmasked = masked_array([5, 28, 31], mask=False)
+ weights_masked = masked_array([5, 28, 31], mask=[1, 0, 0])
+
+ avg_unmasked = average(a, axis=0,
+ weights=weights_unmasked, returned=False)
+ expected_unmasked = np.array([6.0, 5.21875, 6.21875])
+ assert_almost_equal(avg_unmasked, expected_unmasked)
+
+ avg_masked = average(a, axis=0, weights=weights_masked, returned=False)
+ expected_masked = np.array([6.0, 5.576271186440678, 6.576271186440678])
+ assert_almost_equal(avg_masked, expected_masked)
+
+ # weights should be masked if needed
+ # depending on the array mask. This is to avoid summing
+ # masked nan or other values that are not cancelled by a zero
+ a = np.ma.array([1.0, 2.0, 3.0, 4.0],
+ mask=[False, False, True, True])
+ avg_unmasked = average(a, weights=[1, 1, 1, np.nan])
+
+ assert_almost_equal(avg_unmasked, 1.5)
+
+ a = np.ma.array([
+ [1.0, 2.0, 3.0, 4.0],
+ [5.0, 6.0, 7.0, 8.0],
+ [9.0, 1.0, 2.0, 3.0],
+ ], mask=[
+ [False, True, True, False],
+ [True, False, True, True],
+ [True, False, True, False],
+ ])
+
+ avg_masked = np.ma.average(a, weights=[1, np.nan, 1], axis=0)
+ avg_expected = np.ma.array([1.0, np.nan, np.nan, 3.5],
+ mask=[False, True, True, False])
+
+ assert_almost_equal(avg_masked, avg_expected)
+ assert_equal(avg_masked.mask, avg_expected.mask)
+
+
+class TestConcatenator:
+ # Tests for mr_, the equivalent of r_ for masked arrays.
+
+ def test_1d(self):
+ # Tests mr_ on 1D arrays.
+ assert_array_equal(mr_[1, 2, 3, 4, 5, 6], array([1, 2, 3, 4, 5, 6]))
+ b = ones(5)
+ m = [1, 0, 0, 0, 0]
+ d = masked_array(b, mask=m)
+ c = mr_[d, 0, 0, d]
+ assert_(isinstance(c, MaskedArray))
+ assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1])
+ assert_array_equal(c.mask, mr_[m, 0, 0, m])
+
+ def test_2d(self):
+ # Tests mr_ on 2D arrays.
+ a_1 = np.random.rand(5, 5)
+ a_2 = np.random.rand(5, 5)
+ m_1 = np.round(np.random.rand(5, 5), 0)
+ m_2 = np.round(np.random.rand(5, 5), 0)
+ b_1 = masked_array(a_1, mask=m_1)
+ b_2 = masked_array(a_2, mask=m_2)
+ # append columns
+ d = mr_['1', b_1, b_2]
+ assert_(d.shape == (5, 10))
+ assert_array_equal(d[:, :5], b_1)
+ assert_array_equal(d[:, 5:], b_2)
+ assert_array_equal(d.mask, np.r_['1', m_1, m_2])
+ d = mr_[b_1, b_2]
+ assert_(d.shape == (10, 5))
+ assert_array_equal(d[:5,:], b_1)
+ assert_array_equal(d[5:,:], b_2)
+ assert_array_equal(d.mask, np.r_[m_1, m_2])
+
+ def test_masked_constant(self):
+ actual = mr_[np.ma.masked, 1]
+ assert_equal(actual.mask, [True, False])
+ assert_equal(actual.data[1], 1)
+
+ actual = mr_[[1, 2], np.ma.masked]
+ assert_equal(actual.mask, [False, False, True])
+ assert_equal(actual.data[:2], [1, 2])
+
+
+class TestNotMasked:
+ # Tests notmasked_edges and notmasked_contiguous.
+
+ def test_edges(self):
+ # Tests unmasked_edges
+ data = masked_array(np.arange(25).reshape(5, 5),
+ mask=[[0, 0, 1, 0, 0],
+ [0, 0, 0, 1, 1],
+ [1, 1, 0, 0, 0],
+ [0, 0, 0, 0, 0],
+ [1, 1, 1, 0, 0]],)
+ test = notmasked_edges(data, None)
+ assert_equal(test, [0, 24])
+ test = notmasked_edges(data, 0)
+ assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)])
+ assert_equal(test[1], [(3, 3, 3, 4, 4), (0, 1, 2, 3, 4)])
+ test = notmasked_edges(data, 1)
+ assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 2, 0, 3)])
+ assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 2, 4, 4, 4)])
+ #
+ test = notmasked_edges(data.data, None)
+ assert_equal(test, [0, 24])
+ test = notmasked_edges(data.data, 0)
+ assert_equal(test[0], [(0, 0, 0, 0, 0), (0, 1, 2, 3, 4)])
+ assert_equal(test[1], [(4, 4, 4, 4, 4), (0, 1, 2, 3, 4)])
+ test = notmasked_edges(data.data, -1)
+ assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 0, 0, 0)])
+ assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 4, 4, 4, 4)])
+ #
+ data[-2] = masked
+ test = notmasked_edges(data, 0)
+ assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)])
+ assert_equal(test[1], [(1, 1, 2, 4, 4), (0, 1, 2, 3, 4)])
+ test = notmasked_edges(data, -1)
+ assert_equal(test[0], [(0, 1, 2, 4), (0, 0, 2, 3)])
+ assert_equal(test[1], [(0, 1, 2, 4), (4, 2, 4, 4)])
+
+ def test_contiguous(self):
+ # Tests notmasked_contiguous
+ a = masked_array(np.arange(24).reshape(3, 8),
+ mask=[[0, 0, 0, 0, 1, 1, 1, 1],
+ [1, 1, 1, 1, 1, 1, 1, 1],
+ [0, 0, 0, 0, 0, 0, 1, 0]])
+ tmp = notmasked_contiguous(a, None)
+ assert_equal(tmp, [
+ slice(0, 4, None),
+ slice(16, 22, None),
+ slice(23, 24, None)
+ ])
+
+ tmp = notmasked_contiguous(a, 0)
+ assert_equal(tmp, [
+ [slice(0, 1, None), slice(2, 3, None)],
+ [slice(0, 1, None), slice(2, 3, None)],
+ [slice(0, 1, None), slice(2, 3, None)],
+ [slice(0, 1, None), slice(2, 3, None)],
+ [slice(2, 3, None)],
+ [slice(2, 3, None)],
+ [],
+ [slice(2, 3, None)]
+ ])
+ #
+ tmp = notmasked_contiguous(a, 1)
+ assert_equal(tmp, [
+ [slice(0, 4, None)],
+ [],
+ [slice(0, 6, None), slice(7, 8, None)]
+ ])
+
+
+class TestCompressFunctions:
+
+ def test_compress_nd(self):
+ # Tests compress_nd
+ x = np.array(list(range(3*4*5))).reshape(3, 4, 5)
+ m = np.zeros((3,4,5)).astype(bool)
+ m[1,1,1] = True
+ x = array(x, mask=m)
+
+ # axis=None
+ a = compress_nd(x)
+ assert_equal(a, [[[ 0, 2, 3, 4],
+ [10, 12, 13, 14],
+ [15, 17, 18, 19]],
+ [[40, 42, 43, 44],
+ [50, 52, 53, 54],
+ [55, 57, 58, 59]]])
+
+ # axis=0
+ a = compress_nd(x, 0)
+ assert_equal(a, [[[ 0, 1, 2, 3, 4],
+ [ 5, 6, 7, 8, 9],
+ [10, 11, 12, 13, 14],
+ [15, 16, 17, 18, 19]],
+ [[40, 41, 42, 43, 44],
+ [45, 46, 47, 48, 49],
+ [50, 51, 52, 53, 54],
+ [55, 56, 57, 58, 59]]])
+
+ # axis=1
+ a = compress_nd(x, 1)
+ assert_equal(a, [[[ 0, 1, 2, 3, 4],
+ [10, 11, 12, 13, 14],
+ [15, 16, 17, 18, 19]],
+ [[20, 21, 22, 23, 24],
+ [30, 31, 32, 33, 34],
+ [35, 36, 37, 38, 39]],
+ [[40, 41, 42, 43, 44],
+ [50, 51, 52, 53, 54],
+ [55, 56, 57, 58, 59]]])
+
+ a2 = compress_nd(x, (1,))
+ a3 = compress_nd(x, -2)
+ a4 = compress_nd(x, (-2,))
+ assert_equal(a, a2)
+ assert_equal(a, a3)
+ assert_equal(a, a4)
+
+ # axis=2
+ a = compress_nd(x, 2)
+ assert_equal(a, [[[ 0, 2, 3, 4],
+ [ 5, 7, 8, 9],
+ [10, 12, 13, 14],
+ [15, 17, 18, 19]],
+ [[20, 22, 23, 24],
+ [25, 27, 28, 29],
+ [30, 32, 33, 34],
+ [35, 37, 38, 39]],
+ [[40, 42, 43, 44],
+ [45, 47, 48, 49],
+ [50, 52, 53, 54],
+ [55, 57, 58, 59]]])
+
+ a2 = compress_nd(x, (2,))
+ a3 = compress_nd(x, -1)
+ a4 = compress_nd(x, (-1,))
+ assert_equal(a, a2)
+ assert_equal(a, a3)
+ assert_equal(a, a4)
+
+ # axis=(0, 1)
+ a = compress_nd(x, (0, 1))
+ assert_equal(a, [[[ 0, 1, 2, 3, 4],
+ [10, 11, 12, 13, 14],
+ [15, 16, 17, 18, 19]],
+ [[40, 41, 42, 43, 44],
+ [50, 51, 52, 53, 54],
+ [55, 56, 57, 58, 59]]])
+ a2 = compress_nd(x, (0, -2))
+ assert_equal(a, a2)
+
+ # axis=(1, 2)
+ a = compress_nd(x, (1, 2))
+ assert_equal(a, [[[ 0, 2, 3, 4],
+ [10, 12, 13, 14],
+ [15, 17, 18, 19]],
+ [[20, 22, 23, 24],
+ [30, 32, 33, 34],
+ [35, 37, 38, 39]],
+ [[40, 42, 43, 44],
+ [50, 52, 53, 54],
+ [55, 57, 58, 59]]])
+
+ a2 = compress_nd(x, (-2, 2))
+ a3 = compress_nd(x, (1, -1))
+ a4 = compress_nd(x, (-2, -1))
+ assert_equal(a, a2)
+ assert_equal(a, a3)
+ assert_equal(a, a4)
+
+ # axis=(0, 2)
+ a = compress_nd(x, (0, 2))
+ assert_equal(a, [[[ 0, 2, 3, 4],
+ [ 5, 7, 8, 9],
+ [10, 12, 13, 14],
+ [15, 17, 18, 19]],
+ [[40, 42, 43, 44],
+ [45, 47, 48, 49],
+ [50, 52, 53, 54],
+ [55, 57, 58, 59]]])
+
+ a2 = compress_nd(x, (0, -1))
+ assert_equal(a, a2)
+
+ def test_compress_rowcols(self):
+ # Tests compress_rowcols
+ x = array(np.arange(9).reshape(3, 3),
+ mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
+ assert_equal(compress_rowcols(x), [[4, 5], [7, 8]])
+ assert_equal(compress_rowcols(x, 0), [[3, 4, 5], [6, 7, 8]])
+ assert_equal(compress_rowcols(x, 1), [[1, 2], [4, 5], [7, 8]])
+ x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
+ assert_equal(compress_rowcols(x), [[0, 2], [6, 8]])
+ assert_equal(compress_rowcols(x, 0), [[0, 1, 2], [6, 7, 8]])
+ assert_equal(compress_rowcols(x, 1), [[0, 2], [3, 5], [6, 8]])
+ x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]])
+ assert_equal(compress_rowcols(x), [[8]])
+ assert_equal(compress_rowcols(x, 0), [[6, 7, 8]])
+ assert_equal(compress_rowcols(x, 1,), [[2], [5], [8]])
+ x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
+ assert_equal(compress_rowcols(x).size, 0)
+ assert_equal(compress_rowcols(x, 0).size, 0)
+ assert_equal(compress_rowcols(x, 1).size, 0)
+
+ def test_mask_rowcols(self):
+ # Tests mask_rowcols.
+ x = array(np.arange(9).reshape(3, 3),
+ mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
+ assert_equal(mask_rowcols(x).mask,
+ [[1, 1, 1], [1, 0, 0], [1, 0, 0]])
+ assert_equal(mask_rowcols(x, 0).mask,
+ [[1, 1, 1], [0, 0, 0], [0, 0, 0]])
+ assert_equal(mask_rowcols(x, 1).mask,
+ [[1, 0, 0], [1, 0, 0], [1, 0, 0]])
+ x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
+ assert_equal(mask_rowcols(x).mask,
+ [[0, 1, 0], [1, 1, 1], [0, 1, 0]])
+ assert_equal(mask_rowcols(x, 0).mask,
+ [[0, 0, 0], [1, 1, 1], [0, 0, 0]])
+ assert_equal(mask_rowcols(x, 1).mask,
+ [[0, 1, 0], [0, 1, 0], [0, 1, 0]])
+ x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]])
+ assert_equal(mask_rowcols(x).mask,
+ [[1, 1, 1], [1, 1, 1], [1, 1, 0]])
+ assert_equal(mask_rowcols(x, 0).mask,
+ [[1, 1, 1], [1, 1, 1], [0, 0, 0]])
+ assert_equal(mask_rowcols(x, 1,).mask,
+ [[1, 1, 0], [1, 1, 0], [1, 1, 0]])
+ x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
+ assert_(mask_rowcols(x).all() is masked)
+ assert_(mask_rowcols(x, 0).all() is masked)
+ assert_(mask_rowcols(x, 1).all() is masked)
+ assert_(mask_rowcols(x).mask.all())
+ assert_(mask_rowcols(x, 0).mask.all())
+ assert_(mask_rowcols(x, 1).mask.all())
+
+ @pytest.mark.parametrize("axis", [None, 0, 1])
+ @pytest.mark.parametrize(["func", "rowcols_axis"],
+ [(np.ma.mask_rows, 0), (np.ma.mask_cols, 1)])
+ def test_mask_row_cols_axis_deprecation(self, axis, func, rowcols_axis):
+ # Test deprecation of the axis argument to `mask_rows` and `mask_cols`
+ x = array(np.arange(9).reshape(3, 3),
+ mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
+
+ with assert_warns(DeprecationWarning):
+ res = func(x, axis=axis)
+ assert_equal(res, mask_rowcols(x, rowcols_axis))
+
+ def test_dot(self):
+ # Tests dot product
+ n = np.arange(1, 7)
+ #
+ m = [1, 0, 0, 0, 0, 0]
+ a = masked_array(n, mask=m).reshape(2, 3)
+ b = masked_array(n, mask=m).reshape(3, 2)
+ c = dot(a, b, strict=True)
+ assert_equal(c.mask, [[1, 1], [1, 0]])
+ c = dot(b, a, strict=True)
+ assert_equal(c.mask, [[1, 1, 1], [1, 0, 0], [1, 0, 0]])
+ c = dot(a, b, strict=False)
+ assert_equal(c, np.dot(a.filled(0), b.filled(0)))
+ c = dot(b, a, strict=False)
+ assert_equal(c, np.dot(b.filled(0), a.filled(0)))
+ #
+ m = [0, 0, 0, 0, 0, 1]
+ a = masked_array(n, mask=m).reshape(2, 3)
+ b = masked_array(n, mask=m).reshape(3, 2)
+ c = dot(a, b, strict=True)
+ assert_equal(c.mask, [[0, 1], [1, 1]])
+ c = dot(b, a, strict=True)
+ assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [1, 1, 1]])
+ c = dot(a, b, strict=False)
+ assert_equal(c, np.dot(a.filled(0), b.filled(0)))
+ assert_equal(c, dot(a, b))
+ c = dot(b, a, strict=False)
+ assert_equal(c, np.dot(b.filled(0), a.filled(0)))
+ #
+ m = [0, 0, 0, 0, 0, 0]
+ a = masked_array(n, mask=m).reshape(2, 3)
+ b = masked_array(n, mask=m).reshape(3, 2)
+ c = dot(a, b)
+ assert_equal(c.mask, nomask)
+ c = dot(b, a)
+ assert_equal(c.mask, nomask)
+ #
+ a = masked_array(n, mask=[1, 0, 0, 0, 0, 0]).reshape(2, 3)
+ b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2)
+ c = dot(a, b, strict=True)
+ assert_equal(c.mask, [[1, 1], [0, 0]])
+ c = dot(a, b, strict=False)
+ assert_equal(c, np.dot(a.filled(0), b.filled(0)))
+ c = dot(b, a, strict=True)
+ assert_equal(c.mask, [[1, 0, 0], [1, 0, 0], [1, 0, 0]])
+ c = dot(b, a, strict=False)
+ assert_equal(c, np.dot(b.filled(0), a.filled(0)))
+ #
+ a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3)
+ b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2)
+ c = dot(a, b, strict=True)
+ assert_equal(c.mask, [[0, 0], [1, 1]])
+ c = dot(a, b)
+ assert_equal(c, np.dot(a.filled(0), b.filled(0)))
+ c = dot(b, a, strict=True)
+ assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [0, 0, 1]])
+ c = dot(b, a, strict=False)
+ assert_equal(c, np.dot(b.filled(0), a.filled(0)))
+ #
+ a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3)
+ b = masked_array(n, mask=[0, 0, 1, 0, 0, 0]).reshape(3, 2)
+ c = dot(a, b, strict=True)
+ assert_equal(c.mask, [[1, 0], [1, 1]])
+ c = dot(a, b, strict=False)
+ assert_equal(c, np.dot(a.filled(0), b.filled(0)))
+ c = dot(b, a, strict=True)
+ assert_equal(c.mask, [[0, 0, 1], [1, 1, 1], [0, 0, 1]])
+ c = dot(b, a, strict=False)
+ assert_equal(c, np.dot(b.filled(0), a.filled(0)))
+ #
+ a = masked_array(np.arange(8).reshape(2, 2, 2),
+ mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+ b = masked_array(np.arange(8).reshape(2, 2, 2),
+ mask=[[[0, 0], [0, 0]], [[0, 0], [0, 1]]])
+ c = dot(a, b, strict=True)
+ assert_equal(c.mask,
+ [[[[1, 1], [1, 1]], [[0, 0], [0, 1]]],
+ [[[0, 0], [0, 1]], [[0, 0], [0, 1]]]])
+ c = dot(a, b, strict=False)
+ assert_equal(c.mask,
+ [[[[0, 0], [0, 1]], [[0, 0], [0, 0]]],
+ [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]])
+ c = dot(b, a, strict=True)
+ assert_equal(c.mask,
+ [[[[1, 0], [0, 0]], [[1, 0], [0, 0]]],
+ [[[1, 0], [0, 0]], [[1, 1], [1, 1]]]])
+ c = dot(b, a, strict=False)
+ assert_equal(c.mask,
+ [[[[0, 0], [0, 0]], [[0, 0], [0, 0]]],
+ [[[0, 0], [0, 0]], [[1, 0], [0, 0]]]])
+ #
+ a = masked_array(np.arange(8).reshape(2, 2, 2),
+ mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+ b = 5.
+ c = dot(a, b, strict=True)
+ assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+ c = dot(a, b, strict=False)
+ assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+ c = dot(b, a, strict=True)
+ assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+ c = dot(b, a, strict=False)
+ assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+ #
+ a = masked_array(np.arange(8).reshape(2, 2, 2),
+ mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
+ b = masked_array(np.arange(2), mask=[0, 1])
+ c = dot(a, b, strict=True)
+ assert_equal(c.mask, [[1, 1], [1, 1]])
+ c = dot(a, b, strict=False)
+ assert_equal(c.mask, [[1, 0], [0, 0]])
+
+ def test_dot_returns_maskedarray(self):
+ # See gh-6611
+ a = np.eye(3)
+ b = array(a)
+ assert_(type(dot(a, a)) is MaskedArray)
+ assert_(type(dot(a, b)) is MaskedArray)
+ assert_(type(dot(b, a)) is MaskedArray)
+ assert_(type(dot(b, b)) is MaskedArray)
+
+ def test_dot_out(self):
+ a = array(np.eye(3))
+ out = array(np.zeros((3, 3)))
+ res = dot(a, a, out=out)
+ assert_(res is out)
+ assert_equal(a, res)
+
+
+class TestApplyAlongAxis:
+ # Tests 2D functions
+ def test_3d(self):
+ a = arange(12.).reshape(2, 2, 3)
+
+ def myfunc(b):
+ return b[1]
+
+ xa = apply_along_axis(myfunc, 2, a)
+ assert_equal(xa, [[1, 4], [7, 10]])
+
+ # Tests kwargs functions
+ def test_3d_kwargs(self):
+ a = arange(12).reshape(2, 2, 3)
+
+ def myfunc(b, offset=0):
+ return b[1+offset]
+
+ xa = apply_along_axis(myfunc, 2, a, offset=1)
+ assert_equal(xa, [[2, 5], [8, 11]])
+
+
+class TestApplyOverAxes:
+ # Tests apply_over_axes
+ def test_basic(self):
+ a = arange(24).reshape(2, 3, 4)
+ test = apply_over_axes(np.sum, a, [0, 2])
+ ctrl = np.array([[[60], [92], [124]]])
+ assert_equal(test, ctrl)
+ a[(a % 2).astype(bool)] = masked
+ test = apply_over_axes(np.sum, a, [0, 2])
+ ctrl = np.array([[[28], [44], [60]]])
+ assert_equal(test, ctrl)
+
+
+class TestMedian:
+ def test_pytype(self):
+ r = np.ma.median([[np.inf, np.inf], [np.inf, np.inf]], axis=-1)
+ assert_equal(r, np.inf)
+
+ def test_inf(self):
+ # test that even which computes handles inf / x = masked
+ r = np.ma.median(np.ma.masked_array([[np.inf, np.inf],
+ [np.inf, np.inf]]), axis=-1)
+ assert_equal(r, np.inf)
+ r = np.ma.median(np.ma.masked_array([[np.inf, np.inf],
+ [np.inf, np.inf]]), axis=None)
+ assert_equal(r, np.inf)
+ # all masked
+ r = np.ma.median(np.ma.masked_array([[np.inf, np.inf],
+ [np.inf, np.inf]], mask=True),
+ axis=-1)
+ assert_equal(r.mask, True)
+ r = np.ma.median(np.ma.masked_array([[np.inf, np.inf],
+ [np.inf, np.inf]], mask=True),
+ axis=None)
+ assert_equal(r.mask, True)
+
+ def test_non_masked(self):
+ x = np.arange(9)
+ assert_equal(np.ma.median(x), 4.)
+ assert_(type(np.ma.median(x)) is not MaskedArray)
+ x = range(8)
+ assert_equal(np.ma.median(x), 3.5)
+ assert_(type(np.ma.median(x)) is not MaskedArray)
+ x = 5
+ assert_equal(np.ma.median(x), 5.)
+ assert_(type(np.ma.median(x)) is not MaskedArray)
+ # integer
+ x = np.arange(9 * 8).reshape(9, 8)
+ assert_equal(np.ma.median(x, axis=0), np.median(x, axis=0))
+ assert_equal(np.ma.median(x, axis=1), np.median(x, axis=1))
+ assert_(np.ma.median(x, axis=1) is not MaskedArray)
+ # float
+ x = np.arange(9 * 8.).reshape(9, 8)
+ assert_equal(np.ma.median(x, axis=0), np.median(x, axis=0))
+ assert_equal(np.ma.median(x, axis=1), np.median(x, axis=1))
+ assert_(np.ma.median(x, axis=1) is not MaskedArray)
+
+ def test_docstring_examples(self):
+ "test the examples given in the docstring of ma.median"
+ x = array(np.arange(8), mask=[0]*4 + [1]*4)
+ assert_equal(np.ma.median(x), 1.5)
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+ assert_(type(np.ma.median(x)) is not MaskedArray)
+ x = array(np.arange(10).reshape(2, 5), mask=[0]*6 + [1]*4)
+ assert_equal(np.ma.median(x), 2.5)
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+ assert_(type(np.ma.median(x)) is not MaskedArray)
+ ma_x = np.ma.median(x, axis=-1, overwrite_input=True)
+ assert_equal(ma_x, [2., 5.])
+ assert_equal(ma_x.shape, (2,), "shape mismatch")
+ assert_(type(ma_x) is MaskedArray)
+
+ def test_axis_argument_errors(self):
+ msg = "mask = %s, ndim = %s, axis = %s, overwrite_input = %s"
+ for ndmin in range(5):
+ for mask in [False, True]:
+ x = array(1, ndmin=ndmin, mask=mask)
+
+ # Valid axis values should not raise exception
+ args = itertools.product(range(-ndmin, ndmin), [False, True])
+ for axis, over in args:
+ try:
+ np.ma.median(x, axis=axis, overwrite_input=over)
+ except Exception:
+ raise AssertionError(msg % (mask, ndmin, axis, over))
+
+ # Invalid axis values should raise exception
+ args = itertools.product([-(ndmin + 1), ndmin], [False, True])
+ for axis, over in args:
+ try:
+ np.ma.median(x, axis=axis, overwrite_input=over)
+ except np.AxisError:
+ pass
+ else:
+ raise AssertionError(msg % (mask, ndmin, axis, over))
+
+ def test_masked_0d(self):
+ # Check values
+ x = array(1, mask=False)
+ assert_equal(np.ma.median(x), 1)
+ x = array(1, mask=True)
+ assert_equal(np.ma.median(x), np.ma.masked)
+
+ def test_masked_1d(self):
+ x = array(np.arange(5), mask=True)
+ assert_equal(np.ma.median(x), np.ma.masked)
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+ assert_(type(np.ma.median(x)) is np.ma.core.MaskedConstant)
+ x = array(np.arange(5), mask=False)
+ assert_equal(np.ma.median(x), 2.)
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+ assert_(type(np.ma.median(x)) is not MaskedArray)
+ x = array(np.arange(5), mask=[0,1,0,0,0])
+ assert_equal(np.ma.median(x), 2.5)
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+ assert_(type(np.ma.median(x)) is not MaskedArray)
+ x = array(np.arange(5), mask=[0,1,1,1,1])
+ assert_equal(np.ma.median(x), 0.)
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+ assert_(type(np.ma.median(x)) is not MaskedArray)
+ # integer
+ x = array(np.arange(5), mask=[0,1,1,0,0])
+ assert_equal(np.ma.median(x), 3.)
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+ assert_(type(np.ma.median(x)) is not MaskedArray)
+ # float
+ x = array(np.arange(5.), mask=[0,1,1,0,0])
+ assert_equal(np.ma.median(x), 3.)
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+ assert_(type(np.ma.median(x)) is not MaskedArray)
+ # integer
+ x = array(np.arange(6), mask=[0,1,1,1,1,0])
+ assert_equal(np.ma.median(x), 2.5)
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+ assert_(type(np.ma.median(x)) is not MaskedArray)
+ # float
+ x = array(np.arange(6.), mask=[0,1,1,1,1,0])
+ assert_equal(np.ma.median(x), 2.5)
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
+ assert_(type(np.ma.median(x)) is not MaskedArray)
+
+ def test_1d_shape_consistency(self):
+ assert_equal(np.ma.median(array([1,2,3],mask=[0,0,0])).shape,
+ np.ma.median(array([1,2,3],mask=[0,1,0])).shape )
+
+ def test_2d(self):
+ # Tests median w/ 2D
+ (n, p) = (101, 30)
+ x = masked_array(np.linspace(-1., 1., n),)
+ x[:10] = x[-10:] = masked
+ z = masked_array(np.empty((n, p), dtype=float))
+ z[:, 0] = x[:]
+ idx = np.arange(len(x))
+ for i in range(1, p):
+ np.random.shuffle(idx)
+ z[:, i] = x[idx]
+ assert_equal(median(z[:, 0]), 0)
+ assert_equal(median(z), 0)
+ assert_equal(median(z, axis=0), np.zeros(p))
+ assert_equal(median(z.T, axis=1), np.zeros(p))
+
+ def test_2d_waxis(self):
+ # Tests median w/ 2D arrays and different axis.
+ x = masked_array(np.arange(30).reshape(10, 3))
+ x[:3] = x[-3:] = masked
+ assert_equal(median(x), 14.5)
+ assert_(type(np.ma.median(x)) is not MaskedArray)
+ assert_equal(median(x, axis=0), [13.5, 14.5, 15.5])
+ assert_(type(np.ma.median(x, axis=0)) is MaskedArray)
+ assert_equal(median(x, axis=1), [0, 0, 0, 10, 13, 16, 19, 0, 0, 0])
+ assert_(type(np.ma.median(x, axis=1)) is MaskedArray)
+ assert_equal(median(x, axis=1).mask, [1, 1, 1, 0, 0, 0, 0, 1, 1, 1])
+
+ def test_3d(self):
+ # Tests median w/ 3D
+ x = np.ma.arange(24).reshape(3, 4, 2)
+ x[x % 3 == 0] = masked
+ assert_equal(median(x, 0), [[12, 9], [6, 15], [12, 9], [18, 15]])
+ x.shape = (4, 3, 2)
+ assert_equal(median(x, 0), [[99, 10], [11, 99], [13, 14]])
+ x = np.ma.arange(24).reshape(4, 3, 2)
+ x[x % 5 == 0] = masked
+ assert_equal(median(x, 0), [[12, 10], [8, 9], [16, 17]])
+
+ def test_neg_axis(self):
+ x = masked_array(np.arange(30).reshape(10, 3))
+ x[:3] = x[-3:] = masked
+ assert_equal(median(x, axis=-1), median(x, axis=1))
+
+ def test_out_1d(self):
+ # integer float even odd
+ for v in (30, 30., 31, 31.):
+ x = masked_array(np.arange(v))
+ x[:3] = x[-3:] = masked
+ out = masked_array(np.ones(()))
+ r = median(x, out=out)
+ if v == 30:
+ assert_equal(out, 14.5)
+ else:
+ assert_equal(out, 15.)
+ assert_(r is out)
+ assert_(type(r) is MaskedArray)
+
+ def test_out(self):
+ # integer float even odd
+ for v in (40, 40., 30, 30.):
+ x = masked_array(np.arange(v).reshape(10, -1))
+ x[:3] = x[-3:] = masked
+ out = masked_array(np.ones(10))
+ r = median(x, axis=1, out=out)
+ if v == 30:
+ e = masked_array([0.]*3 + [10, 13, 16, 19] + [0.]*3,
+ mask=[True] * 3 + [False] * 4 + [True] * 3)
+ else:
+ e = masked_array([0.]*3 + [13.5, 17.5, 21.5, 25.5] + [0.]*3,
+ mask=[True]*3 + [False]*4 + [True]*3)
+ assert_equal(r, e)
+ assert_(r is out)
+ assert_(type(r) is MaskedArray)
+
+ @pytest.mark.parametrize(
+ argnames='axis',
+ argvalues=[
+ None,
+ 1,
+ (1, ),
+ (0, 1),
+ (-3, -1),
+ ]
+ )
+ def test_keepdims_out(self, axis):
+ mask = np.zeros((3, 5, 7, 11), dtype=bool)
+ # Randomly set some elements to True:
+ w = np.random.random((4, 200)) * np.array(mask.shape)[:, None]
+ w = w.astype(np.intp)
+ mask[tuple(w)] = np.nan
+ d = masked_array(np.ones(mask.shape), mask=mask)
+ if axis is None:
+ shape_out = (1,) * d.ndim
+ else:
+ axis_norm = normalize_axis_tuple(axis, d.ndim)
+ shape_out = tuple(
+ 1 if i in axis_norm else d.shape[i] for i in range(d.ndim))
+ out = masked_array(np.empty(shape_out))
+ result = median(d, axis=axis, keepdims=True, out=out)
+ assert result is out
+ assert_equal(result.shape, shape_out)
+
+ def test_single_non_masked_value_on_axis(self):
+ data = [[1., 0.],
+ [0., 3.],
+ [0., 0.]]
+ masked_arr = np.ma.masked_equal(data, 0)
+ expected = [1., 3.]
+ assert_array_equal(np.ma.median(masked_arr, axis=0),
+ expected)
+
+ def test_nan(self):
+ for mask in (False, np.zeros(6, dtype=bool)):
+ dm = np.ma.array([[1, np.nan, 3], [1, 2, 3]])
+ dm.mask = mask
+
+ # scalar result
+ r = np.ma.median(dm, axis=None)
+ assert_(np.isscalar(r))
+ assert_array_equal(r, np.nan)
+ r = np.ma.median(dm.ravel(), axis=0)
+ assert_(np.isscalar(r))
+ assert_array_equal(r, np.nan)
+
+ r = np.ma.median(dm, axis=0)
+ assert_equal(type(r), MaskedArray)
+ assert_array_equal(r, [1, np.nan, 3])
+ r = np.ma.median(dm, axis=1)
+ assert_equal(type(r), MaskedArray)
+ assert_array_equal(r, [np.nan, 2])
+ r = np.ma.median(dm, axis=-1)
+ assert_equal(type(r), MaskedArray)
+ assert_array_equal(r, [np.nan, 2])
+
+ dm = np.ma.array([[1, np.nan, 3], [1, 2, 3]])
+ dm[:, 2] = np.ma.masked
+ assert_array_equal(np.ma.median(dm, axis=None), np.nan)
+ assert_array_equal(np.ma.median(dm, axis=0), [1, np.nan, 3])
+ assert_array_equal(np.ma.median(dm, axis=1), [np.nan, 1.5])
+
+ def test_out_nan(self):
+ o = np.ma.masked_array(np.zeros((4,)))
+ d = np.ma.masked_array(np.ones((3, 4)))
+ d[2, 1] = np.nan
+ d[2, 2] = np.ma.masked
+ assert_equal(np.ma.median(d, 0, out=o), o)
+ o = np.ma.masked_array(np.zeros((3,)))
+ assert_equal(np.ma.median(d, 1, out=o), o)
+ o = np.ma.masked_array(np.zeros(()))
+ assert_equal(np.ma.median(d, out=o), o)
+
+ def test_nan_behavior(self):
+ a = np.ma.masked_array(np.arange(24, dtype=float))
+ a[::3] = np.ma.masked
+ a[2] = np.nan
+ assert_array_equal(np.ma.median(a), np.nan)
+ assert_array_equal(np.ma.median(a, axis=0), np.nan)
+
+ a = np.ma.masked_array(np.arange(24, dtype=float).reshape(2, 3, 4))
+ a.mask = np.arange(a.size) % 2 == 1
+ aorig = a.copy()
+ a[1, 2, 3] = np.nan
+ a[1, 1, 2] = np.nan
+
+ # no axis
+ assert_array_equal(np.ma.median(a), np.nan)
+ assert_(np.isscalar(np.ma.median(a)))
+
+ # axis0
+ b = np.ma.median(aorig, axis=0)
+ b[2, 3] = np.nan
+ b[1, 2] = np.nan
+ assert_equal(np.ma.median(a, 0), b)
+
+ # axis1
+ b = np.ma.median(aorig, axis=1)
+ b[1, 3] = np.nan
+ b[1, 2] = np.nan
+ assert_equal(np.ma.median(a, 1), b)
+
+ # axis02
+ b = np.ma.median(aorig, axis=(0, 2))
+ b[1] = np.nan
+ b[2] = np.nan
+ assert_equal(np.ma.median(a, (0, 2)), b)
+
+ def test_ambigous_fill(self):
+ # 255 is max value, used as filler for sort
+ a = np.array([[3, 3, 255], [3, 3, 255]], dtype=np.uint8)
+ a = np.ma.masked_array(a, mask=a == 3)
+ assert_array_equal(np.ma.median(a, axis=1), 255)
+ assert_array_equal(np.ma.median(a, axis=1).mask, False)
+ assert_array_equal(np.ma.median(a, axis=0), a[0])
+ assert_array_equal(np.ma.median(a), 255)
+
+ def test_special(self):
+ for inf in [np.inf, -np.inf]:
+ a = np.array([[inf, np.nan], [np.nan, np.nan]])
+ a = np.ma.masked_array(a, mask=np.isnan(a))
+ assert_equal(np.ma.median(a, axis=0), [inf, np.nan])
+ assert_equal(np.ma.median(a, axis=1), [inf, np.nan])
+ assert_equal(np.ma.median(a), inf)
+
+ a = np.array([[np.nan, np.nan, inf], [np.nan, np.nan, inf]])
+ a = np.ma.masked_array(a, mask=np.isnan(a))
+ assert_array_equal(np.ma.median(a, axis=1), inf)
+ assert_array_equal(np.ma.median(a, axis=1).mask, False)
+ assert_array_equal(np.ma.median(a, axis=0), a[0])
+ assert_array_equal(np.ma.median(a), inf)
+
+ # no mask
+ a = np.array([[inf, inf], [inf, inf]])
+ assert_equal(np.ma.median(a), inf)
+ assert_equal(np.ma.median(a, axis=0), inf)
+ assert_equal(np.ma.median(a, axis=1), inf)
+
+ a = np.array([[inf, 7, -inf, -9],
+ [-10, np.nan, np.nan, 5],
+ [4, np.nan, np.nan, inf]],
+ dtype=np.float32)
+ a = np.ma.masked_array(a, mask=np.isnan(a))
+ if inf > 0:
+ assert_equal(np.ma.median(a, axis=0), [4., 7., -inf, 5.])
+ assert_equal(np.ma.median(a), 4.5)
+ else:
+ assert_equal(np.ma.median(a, axis=0), [-10., 7., -inf, -9.])
+ assert_equal(np.ma.median(a), -2.5)
+ assert_equal(np.ma.median(a, axis=1), [-1., -2.5, inf])
+
+ for i in range(0, 10):
+ for j in range(1, 10):
+ a = np.array([([np.nan] * i) + ([inf] * j)] * 2)
+ a = np.ma.masked_array(a, mask=np.isnan(a))
+ assert_equal(np.ma.median(a), inf)
+ assert_equal(np.ma.median(a, axis=1), inf)
+ assert_equal(np.ma.median(a, axis=0),
+ ([np.nan] * i) + [inf] * j)
+
+ def test_empty(self):
+ # empty arrays
+ a = np.ma.masked_array(np.array([], dtype=float))
+ with suppress_warnings() as w:
+ w.record(RuntimeWarning)
+ assert_array_equal(np.ma.median(a), np.nan)
+ assert_(w.log[0].category is RuntimeWarning)
+
+ # multiple dimensions
+ a = np.ma.masked_array(np.array([], dtype=float, ndmin=3))
+ # no axis
+ with suppress_warnings() as w:
+ w.record(RuntimeWarning)
+ warnings.filterwarnings('always', '', RuntimeWarning)
+ assert_array_equal(np.ma.median(a), np.nan)
+ assert_(w.log[0].category is RuntimeWarning)
+
+ # axis 0 and 1
+ b = np.ma.masked_array(np.array([], dtype=float, ndmin=2))
+ assert_equal(np.ma.median(a, axis=0), b)
+ assert_equal(np.ma.median(a, axis=1), b)
+
+ # axis 2
+ b = np.ma.masked_array(np.array(np.nan, dtype=float, ndmin=2))
+ with warnings.catch_warnings(record=True) as w:
+ warnings.filterwarnings('always', '', RuntimeWarning)
+ assert_equal(np.ma.median(a, axis=2), b)
+ assert_(w[0].category is RuntimeWarning)
+
+ def test_object(self):
+ o = np.ma.masked_array(np.arange(7.))
+ assert_(type(np.ma.median(o.astype(object))), float)
+ o[2] = np.nan
+ assert_(type(np.ma.median(o.astype(object))), float)
+
+
+class TestCov:
+
+ def setup_method(self):
+ self.data = array(np.random.rand(12))
+
+ def test_1d_without_missing(self):
+ # Test cov on 1D variable w/o missing values
+ x = self.data
+ assert_almost_equal(np.cov(x), cov(x))
+ assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
+ assert_almost_equal(np.cov(x, rowvar=False, bias=True),
+ cov(x, rowvar=False, bias=True))
+
+ def test_2d_without_missing(self):
+ # Test cov on 1 2D variable w/o missing values
+ x = self.data.reshape(3, 4)
+ assert_almost_equal(np.cov(x), cov(x))
+ assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
+ assert_almost_equal(np.cov(x, rowvar=False, bias=True),
+ cov(x, rowvar=False, bias=True))
+
+ def test_1d_with_missing(self):
+ # Test cov 1 1D variable w/missing values
+ x = self.data
+ x[-1] = masked
+ x -= x.mean()
+ nx = x.compressed()
+ assert_almost_equal(np.cov(nx), cov(x))
+ assert_almost_equal(np.cov(nx, rowvar=False), cov(x, rowvar=False))
+ assert_almost_equal(np.cov(nx, rowvar=False, bias=True),
+ cov(x, rowvar=False, bias=True))
+ #
+ try:
+ cov(x, allow_masked=False)
+ except ValueError:
+ pass
+ #
+ # 2 1D variables w/ missing values
+ nx = x[1:-1]
+ assert_almost_equal(np.cov(nx, nx[::-1]), cov(x, x[::-1]))
+ assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False),
+ cov(x, x[::-1], rowvar=False))
+ assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False, bias=True),
+ cov(x, x[::-1], rowvar=False, bias=True))
+
+ def test_2d_with_missing(self):
+ # Test cov on 2D variable w/ missing value
+ x = self.data
+ x[-1] = masked
+ x = x.reshape(3, 4)
+ valid = np.logical_not(getmaskarray(x)).astype(int)
+ frac = np.dot(valid, valid.T)
+ xf = (x - x.mean(1)[:, None]).filled(0)
+ assert_almost_equal(cov(x),
+ np.cov(xf) * (x.shape[1] - 1) / (frac - 1.))
+ assert_almost_equal(cov(x, bias=True),
+ np.cov(xf, bias=True) * x.shape[1] / frac)
+ frac = np.dot(valid.T, valid)
+ xf = (x - x.mean(0)).filled(0)
+ assert_almost_equal(cov(x, rowvar=False),
+ (np.cov(xf, rowvar=False) *
+ (x.shape[0] - 1) / (frac - 1.)))
+ assert_almost_equal(cov(x, rowvar=False, bias=True),
+ (np.cov(xf, rowvar=False, bias=True) *
+ x.shape[0] / frac))
+
+
+class TestCorrcoef:
+
+ def setup_method(self):
+ self.data = array(np.random.rand(12))
+ self.data2 = array(np.random.rand(12))
+
+ def test_ddof(self):
+ # ddof raises DeprecationWarning
+ x, y = self.data, self.data2
+ expected = np.corrcoef(x)
+ expected2 = np.corrcoef(x, y)
+ with suppress_warnings() as sup:
+ warnings.simplefilter("always")
+ assert_warns(DeprecationWarning, corrcoef, x, ddof=-1)
+ sup.filter(DeprecationWarning, "bias and ddof have no effect")
+ # ddof has no or negligible effect on the function
+ assert_almost_equal(np.corrcoef(x, ddof=0), corrcoef(x, ddof=0))
+ assert_almost_equal(corrcoef(x, ddof=-1), expected)
+ assert_almost_equal(corrcoef(x, y, ddof=-1), expected2)
+ assert_almost_equal(corrcoef(x, ddof=3), expected)
+ assert_almost_equal(corrcoef(x, y, ddof=3), expected2)
+
+ def test_bias(self):
+ x, y = self.data, self.data2
+ expected = np.corrcoef(x)
+ # bias raises DeprecationWarning
+ with suppress_warnings() as sup:
+ warnings.simplefilter("always")
+ assert_warns(DeprecationWarning, corrcoef, x, y, True, False)
+ assert_warns(DeprecationWarning, corrcoef, x, y, True, True)
+ assert_warns(DeprecationWarning, corrcoef, x, bias=False)
+ sup.filter(DeprecationWarning, "bias and ddof have no effect")
+ # bias has no or negligible effect on the function
+ assert_almost_equal(corrcoef(x, bias=1), expected)
+
+ def test_1d_without_missing(self):
+ # Test cov on 1D variable w/o missing values
+ x = self.data
+ assert_almost_equal(np.corrcoef(x), corrcoef(x))
+ assert_almost_equal(np.corrcoef(x, rowvar=False),
+ corrcoef(x, rowvar=False))
+ with suppress_warnings() as sup:
+ sup.filter(DeprecationWarning, "bias and ddof have no effect")
+ assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True),
+ corrcoef(x, rowvar=False, bias=True))
+
+ def test_2d_without_missing(self):
+ # Test corrcoef on 1 2D variable w/o missing values
+ x = self.data.reshape(3, 4)
+ assert_almost_equal(np.corrcoef(x), corrcoef(x))
+ assert_almost_equal(np.corrcoef(x, rowvar=False),
+ corrcoef(x, rowvar=False))
+ with suppress_warnings() as sup:
+ sup.filter(DeprecationWarning, "bias and ddof have no effect")
+ assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True),
+ corrcoef(x, rowvar=False, bias=True))
+
+ def test_1d_with_missing(self):
+ # Test corrcoef 1 1D variable w/missing values
+ x = self.data
+ x[-1] = masked
+ x -= x.mean()
+ nx = x.compressed()
+ assert_almost_equal(np.corrcoef(nx), corrcoef(x))
+ assert_almost_equal(np.corrcoef(nx, rowvar=False),
+ corrcoef(x, rowvar=False))
+ with suppress_warnings() as sup:
+ sup.filter(DeprecationWarning, "bias and ddof have no effect")
+ assert_almost_equal(np.corrcoef(nx, rowvar=False, bias=True),
+ corrcoef(x, rowvar=False, bias=True))
+ try:
+ corrcoef(x, allow_masked=False)
+ except ValueError:
+ pass
+ # 2 1D variables w/ missing values
+ nx = x[1:-1]
+ assert_almost_equal(np.corrcoef(nx, nx[::-1]), corrcoef(x, x[::-1]))
+ assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False),
+ corrcoef(x, x[::-1], rowvar=False))
+ with suppress_warnings() as sup:
+ sup.filter(DeprecationWarning, "bias and ddof have no effect")
+ # ddof and bias have no or negligible effect on the function
+ assert_almost_equal(np.corrcoef(nx, nx[::-1]),
+ corrcoef(x, x[::-1], bias=1))
+ assert_almost_equal(np.corrcoef(nx, nx[::-1]),
+ corrcoef(x, x[::-1], ddof=2))
+
+ def test_2d_with_missing(self):
+ # Test corrcoef on 2D variable w/ missing value
+ x = self.data
+ x[-1] = masked
+ x = x.reshape(3, 4)
+
+ test = corrcoef(x)
+ control = np.corrcoef(x)
+ assert_almost_equal(test[:-1, :-1], control[:-1, :-1])
+ with suppress_warnings() as sup:
+ sup.filter(DeprecationWarning, "bias and ddof have no effect")
+ # ddof and bias have no or negligible effect on the function
+ assert_almost_equal(corrcoef(x, ddof=-2)[:-1, :-1],
+ control[:-1, :-1])
+ assert_almost_equal(corrcoef(x, ddof=3)[:-1, :-1],
+ control[:-1, :-1])
+ assert_almost_equal(corrcoef(x, bias=1)[:-1, :-1],
+ control[:-1, :-1])
+
+
+class TestPolynomial:
+ #
+ def test_polyfit(self):
+ # Tests polyfit
+ # On ndarrays
+ x = np.random.rand(10)
+ y = np.random.rand(20).reshape(-1, 2)
+ assert_almost_equal(polyfit(x, y, 3), np.polyfit(x, y, 3))
+ # ON 1D maskedarrays
+ x = x.view(MaskedArray)
+ x[0] = masked
+ y = y.view(MaskedArray)
+ y[0, 0] = y[-1, -1] = masked
+ #
+ (C, R, K, S, D) = polyfit(x, y[:, 0], 3, full=True)
+ (c, r, k, s, d) = np.polyfit(x[1:], y[1:, 0].compressed(), 3,
+ full=True)
+ for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
+ assert_almost_equal(a, a_)
+ #
+ (C, R, K, S, D) = polyfit(x, y[:, -1], 3, full=True)
+ (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, -1], 3, full=True)
+ for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
+ assert_almost_equal(a, a_)
+ #
+ (C, R, K, S, D) = polyfit(x, y, 3, full=True)
+ (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1,:], 3, full=True)
+ for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
+ assert_almost_equal(a, a_)
+ #
+ w = np.random.rand(10) + 1
+ wo = w.copy()
+ xs = x[1:-1]
+ ys = y[1:-1]
+ ws = w[1:-1]
+ (C, R, K, S, D) = polyfit(x, y, 3, full=True, w=w)
+ (c, r, k, s, d) = np.polyfit(xs, ys, 3, full=True, w=ws)
+ assert_equal(w, wo)
+ for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
+ assert_almost_equal(a, a_)
+
+ def test_polyfit_with_masked_NaNs(self):
+ x = np.random.rand(10)
+ y = np.random.rand(20).reshape(-1, 2)
+
+ x[0] = np.nan
+ y[-1,-1] = np.nan
+ x = x.view(MaskedArray)
+ y = y.view(MaskedArray)
+ x[0] = masked
+ y[-1,-1] = masked
+
+ (C, R, K, S, D) = polyfit(x, y, 3, full=True)
+ (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1,:], 3, full=True)
+ for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
+ assert_almost_equal(a, a_)
+
+
+class TestArraySetOps:
+
+ def test_unique_onlist(self):
+ # Test unique on list
+ data = [1, 1, 1, 2, 2, 3]
+ test = unique(data, return_index=True, return_inverse=True)
+ assert_(isinstance(test[0], MaskedArray))
+ assert_equal(test[0], masked_array([1, 2, 3], mask=[0, 0, 0]))
+ assert_equal(test[1], [0, 3, 5])
+ assert_equal(test[2], [0, 0, 0, 1, 1, 2])
+
+ def test_unique_onmaskedarray(self):
+ # Test unique on masked data w/use_mask=True
+ data = masked_array([1, 1, 1, 2, 2, 3], mask=[0, 0, 1, 0, 1, 0])
+ test = unique(data, return_index=True, return_inverse=True)
+ assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1]))
+ assert_equal(test[1], [0, 3, 5, 2])
+ assert_equal(test[2], [0, 0, 3, 1, 3, 2])
+ #
+ data.fill_value = 3
+ data = masked_array(data=[1, 1, 1, 2, 2, 3],
+ mask=[0, 0, 1, 0, 1, 0], fill_value=3)
+ test = unique(data, return_index=True, return_inverse=True)
+ assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1]))
+ assert_equal(test[1], [0, 3, 5, 2])
+ assert_equal(test[2], [0, 0, 3, 1, 3, 2])
+
+ def test_unique_allmasked(self):
+ # Test all masked
+ data = masked_array([1, 1, 1], mask=True)
+ test = unique(data, return_index=True, return_inverse=True)
+ assert_equal(test[0], masked_array([1, ], mask=[True]))
+ assert_equal(test[1], [0])
+ assert_equal(test[2], [0, 0, 0])
+ #
+ # Test masked
+ data = masked
+ test = unique(data, return_index=True, return_inverse=True)
+ assert_equal(test[0], masked_array(masked))
+ assert_equal(test[1], [0])
+ assert_equal(test[2], [0])
+
+ def test_ediff1d(self):
+ # Tests mediff1d
+ x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
+ control = array([1, 1, 1, 4], mask=[1, 0, 0, 1])
+ test = ediff1d(x)
+ assert_equal(test, control)
+ assert_equal(test.filled(0), control.filled(0))
+ assert_equal(test.mask, control.mask)
+
+ def test_ediff1d_tobegin(self):
+ # Test ediff1d w/ to_begin
+ x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
+ test = ediff1d(x, to_begin=masked)
+ control = array([0, 1, 1, 1, 4], mask=[1, 1, 0, 0, 1])
+ assert_equal(test, control)
+ assert_equal(test.filled(0), control.filled(0))
+ assert_equal(test.mask, control.mask)
+ #
+ test = ediff1d(x, to_begin=[1, 2, 3])
+ control = array([1, 2, 3, 1, 1, 1, 4], mask=[0, 0, 0, 1, 0, 0, 1])
+ assert_equal(test, control)
+ assert_equal(test.filled(0), control.filled(0))
+ assert_equal(test.mask, control.mask)
+
+ def test_ediff1d_toend(self):
+ # Test ediff1d w/ to_end
+ x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
+ test = ediff1d(x, to_end=masked)
+ control = array([1, 1, 1, 4, 0], mask=[1, 0, 0, 1, 1])
+ assert_equal(test, control)
+ assert_equal(test.filled(0), control.filled(0))
+ assert_equal(test.mask, control.mask)
+ #
+ test = ediff1d(x, to_end=[1, 2, 3])
+ control = array([1, 1, 1, 4, 1, 2, 3], mask=[1, 0, 0, 1, 0, 0, 0])
+ assert_equal(test, control)
+ assert_equal(test.filled(0), control.filled(0))
+ assert_equal(test.mask, control.mask)
+
+ def test_ediff1d_tobegin_toend(self):
+ # Test ediff1d w/ to_begin and to_end
+ x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
+ test = ediff1d(x, to_end=masked, to_begin=masked)
+ control = array([0, 1, 1, 1, 4, 0], mask=[1, 1, 0, 0, 1, 1])
+ assert_equal(test, control)
+ assert_equal(test.filled(0), control.filled(0))
+ assert_equal(test.mask, control.mask)
+ #
+ test = ediff1d(x, to_end=[1, 2, 3], to_begin=masked)
+ control = array([0, 1, 1, 1, 4, 1, 2, 3],
+ mask=[1, 1, 0, 0, 1, 0, 0, 0])
+ assert_equal(test, control)
+ assert_equal(test.filled(0), control.filled(0))
+ assert_equal(test.mask, control.mask)
+
+ def test_ediff1d_ndarray(self):
+ # Test ediff1d w/ a ndarray
+ x = np.arange(5)
+ test = ediff1d(x)
+ control = array([1, 1, 1, 1], mask=[0, 0, 0, 0])
+ assert_equal(test, control)
+ assert_(isinstance(test, MaskedArray))
+ assert_equal(test.filled(0), control.filled(0))
+ assert_equal(test.mask, control.mask)
+ #
+ test = ediff1d(x, to_end=masked, to_begin=masked)
+ control = array([0, 1, 1, 1, 1, 0], mask=[1, 0, 0, 0, 0, 1])
+ assert_(isinstance(test, MaskedArray))
+ assert_equal(test.filled(0), control.filled(0))
+ assert_equal(test.mask, control.mask)
+
+ def test_intersect1d(self):
+ # Test intersect1d
+ x = array([1, 3, 3, 3], mask=[0, 0, 0, 1])
+ y = array([3, 1, 1, 1], mask=[0, 0, 0, 1])
+ test = intersect1d(x, y)
+ control = array([1, 3, -1], mask=[0, 0, 1])
+ assert_equal(test, control)
+
+ def test_setxor1d(self):
+ # Test setxor1d
+ a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
+ b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
+ test = setxor1d(a, b)
+ assert_equal(test, array([3, 4, 7]))
+ #
+ a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
+ b = [1, 2, 3, 4, 5]
+ test = setxor1d(a, b)
+ assert_equal(test, array([3, 4, 7, -1], mask=[0, 0, 0, 1]))
+ #
+ a = array([1, 2, 3])
+ b = array([6, 5, 4])
+ test = setxor1d(a, b)
+ assert_(isinstance(test, MaskedArray))
+ assert_equal(test, [1, 2, 3, 4, 5, 6])
+ #
+ a = array([1, 8, 2, 3], mask=[0, 1, 0, 0])
+ b = array([6, 5, 4, 8], mask=[0, 0, 0, 1])
+ test = setxor1d(a, b)
+ assert_(isinstance(test, MaskedArray))
+ assert_equal(test, [1, 2, 3, 4, 5, 6])
+ #
+ assert_array_equal([], setxor1d([], []))
+
+ def test_isin(self):
+ # the tests for in1d cover most of isin's behavior
+ # if in1d is removed, would need to change those tests to test
+ # isin instead.
+ a = np.arange(24).reshape([2, 3, 4])
+ mask = np.zeros([2, 3, 4])
+ mask[1, 2, 0] = 1
+ a = array(a, mask=mask)
+ b = array(data=[0, 10, 20, 30, 1, 3, 11, 22, 33],
+ mask=[0, 1, 0, 1, 0, 1, 0, 1, 0])
+ ec = zeros((2, 3, 4), dtype=bool)
+ ec[0, 0, 0] = True
+ ec[0, 0, 1] = True
+ ec[0, 2, 3] = True
+ c = isin(a, b)
+ assert_(isinstance(c, MaskedArray))
+ assert_array_equal(c, ec)
+ #compare results of np.isin to ma.isin
+ d = np.isin(a, b[~b.mask]) & ~a.mask
+ assert_array_equal(c, d)
+
+ def test_in1d(self):
+ # Test in1d
+ a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
+ b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
+ test = in1d(a, b)
+ assert_equal(test, [True, True, True, False, True])
+ #
+ a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1])
+ b = array([1, 5, -1], mask=[0, 0, 1])
+ test = in1d(a, b)
+ assert_equal(test, [True, True, False, True, True])
+ #
+ assert_array_equal([], in1d([], []))
+
+ def test_in1d_invert(self):
+ # Test in1d's invert parameter
+ a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
+ b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
+ assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
+
+ a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1])
+ b = array([1, 5, -1], mask=[0, 0, 1])
+ assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
+
+ assert_array_equal([], in1d([], [], invert=True))
+
+ def test_union1d(self):
+ # Test union1d
+ a = array([1, 2, 5, 7, 5, -1], mask=[0, 0, 0, 0, 0, 1])
+ b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
+ test = union1d(a, b)
+ control = array([1, 2, 3, 4, 5, 7, -1], mask=[0, 0, 0, 0, 0, 0, 1])
+ assert_equal(test, control)
+
+ # Tests gh-10340, arguments to union1d should be
+ # flattened if they are not already 1D
+ x = array([[0, 1, 2], [3, 4, 5]], mask=[[0, 0, 0], [0, 0, 1]])
+ y = array([0, 1, 2, 3, 4], mask=[0, 0, 0, 0, 1])
+ ez = array([0, 1, 2, 3, 4, 5], mask=[0, 0, 0, 0, 0, 1])
+ z = union1d(x, y)
+ assert_equal(z, ez)
+ #
+ assert_array_equal([], union1d([], []))
+
+ def test_setdiff1d(self):
+ # Test setdiff1d
+ a = array([6, 5, 4, 7, 7, 1, 2, 1], mask=[0, 0, 0, 0, 0, 0, 0, 1])
+ b = array([2, 4, 3, 3, 2, 1, 5])
+ test = setdiff1d(a, b)
+ assert_equal(test, array([6, 7, -1], mask=[0, 0, 1]))
+ #
+ a = arange(10)
+ b = arange(8)
+ assert_equal(setdiff1d(a, b), array([8, 9]))
+ a = array([], np.uint32, mask=[])
+ assert_equal(setdiff1d(a, []).dtype, np.uint32)
+
+ def test_setdiff1d_char_array(self):
+ # Test setdiff1d_charray
+ a = np.array(['a', 'b', 'c'])
+ b = np.array(['a', 'b', 's'])
+ assert_array_equal(setdiff1d(a, b), np.array(['c']))
+
+
+class TestShapeBase:
+
+ def test_atleast_2d(self):
+ # Test atleast_2d
+ a = masked_array([0, 1, 2], mask=[0, 1, 0])
+ b = atleast_2d(a)
+ assert_equal(b.shape, (1, 3))
+ assert_equal(b.mask.shape, b.data.shape)
+ assert_equal(a.shape, (3,))
+ assert_equal(a.mask.shape, a.data.shape)
+ assert_equal(b.mask.shape, b.data.shape)
+
+ def test_shape_scalar(self):
+ # the atleast and diagflat function should work with scalars
+ # GitHub issue #3367
+ # Additionally, the atleast functions should accept multiple scalars
+ # correctly
+ b = atleast_1d(1.0)
+ assert_equal(b.shape, (1,))
+ assert_equal(b.mask.shape, b.shape)
+ assert_equal(b.data.shape, b.shape)
+
+ b = atleast_1d(1.0, 2.0)
+ for a in b:
+ assert_equal(a.shape, (1,))
+ assert_equal(a.mask.shape, a.shape)
+ assert_equal(a.data.shape, a.shape)
+
+ b = atleast_2d(1.0)
+ assert_equal(b.shape, (1, 1))
+ assert_equal(b.mask.shape, b.shape)
+ assert_equal(b.data.shape, b.shape)
+
+ b = atleast_2d(1.0, 2.0)
+ for a in b:
+ assert_equal(a.shape, (1, 1))
+ assert_equal(a.mask.shape, a.shape)
+ assert_equal(a.data.shape, a.shape)
+
+ b = atleast_3d(1.0)
+ assert_equal(b.shape, (1, 1, 1))
+ assert_equal(b.mask.shape, b.shape)
+ assert_equal(b.data.shape, b.shape)
+
+ b = atleast_3d(1.0, 2.0)
+ for a in b:
+ assert_equal(a.shape, (1, 1, 1))
+ assert_equal(a.mask.shape, a.shape)
+ assert_equal(a.data.shape, a.shape)
+
+ b = diagflat(1.0)
+ assert_equal(b.shape, (1, 1))
+ assert_equal(b.mask.shape, b.data.shape)
+
+
+class TestNDEnumerate:
+
+ def test_ndenumerate_nomasked(self):
+ ordinary = np.arange(6.).reshape((1, 3, 2))
+ empty_mask = np.zeros_like(ordinary, dtype=bool)
+ with_mask = masked_array(ordinary, mask=empty_mask)
+ assert_equal(list(np.ndenumerate(ordinary)),
+ list(ndenumerate(ordinary)))
+ assert_equal(list(ndenumerate(ordinary)),
+ list(ndenumerate(with_mask)))
+ assert_equal(list(ndenumerate(with_mask)),
+ list(ndenumerate(with_mask, compressed=False)))
+
+ def test_ndenumerate_allmasked(self):
+ a = masked_all(())
+ b = masked_all((100,))
+ c = masked_all((2, 3, 4))
+ assert_equal(list(ndenumerate(a)), [])
+ assert_equal(list(ndenumerate(b)), [])
+ assert_equal(list(ndenumerate(b, compressed=False)),
+ list(zip(np.ndindex((100,)), 100 * [masked])))
+ assert_equal(list(ndenumerate(c)), [])
+ assert_equal(list(ndenumerate(c, compressed=False)),
+ list(zip(np.ndindex((2, 3, 4)), 2 * 3 * 4 * [masked])))
+
+ def test_ndenumerate_mixedmasked(self):
+ a = masked_array(np.arange(12).reshape((3, 4)),
+ mask=[[1, 1, 1, 1],
+ [1, 1, 0, 1],
+ [0, 0, 0, 0]])
+ items = [((1, 2), 6),
+ ((2, 0), 8), ((2, 1), 9), ((2, 2), 10), ((2, 3), 11)]
+ assert_equal(list(ndenumerate(a)), items)
+ assert_equal(len(list(ndenumerate(a, compressed=False))), a.size)
+ for coordinate, value in ndenumerate(a, compressed=False):
+ assert_equal(a[coordinate], value)
+
+
+class TestStack:
+
+ def test_stack_1d(self):
+ a = masked_array([0, 1, 2], mask=[0, 1, 0])
+ b = masked_array([9, 8, 7], mask=[1, 0, 0])
+
+ c = stack([a, b], axis=0)
+ assert_equal(c.shape, (2, 3))
+ assert_array_equal(a.mask, c[0].mask)
+ assert_array_equal(b.mask, c[1].mask)
+
+ d = vstack([a, b])
+ assert_array_equal(c.data, d.data)
+ assert_array_equal(c.mask, d.mask)
+
+ c = stack([a, b], axis=1)
+ assert_equal(c.shape, (3, 2))
+ assert_array_equal(a.mask, c[:, 0].mask)
+ assert_array_equal(b.mask, c[:, 1].mask)
+
+ def test_stack_masks(self):
+ a = masked_array([0, 1, 2], mask=True)
+ b = masked_array([9, 8, 7], mask=False)
+
+ c = stack([a, b], axis=0)
+ assert_equal(c.shape, (2, 3))
+ assert_array_equal(a.mask, c[0].mask)
+ assert_array_equal(b.mask, c[1].mask)
+
+ d = vstack([a, b])
+ assert_array_equal(c.data, d.data)
+ assert_array_equal(c.mask, d.mask)
+
+ c = stack([a, b], axis=1)
+ assert_equal(c.shape, (3, 2))
+ assert_array_equal(a.mask, c[:, 0].mask)
+ assert_array_equal(b.mask, c[:, 1].mask)
+
+ def test_stack_nd(self):
+ # 2D
+ shp = (3, 2)
+ d1 = np.random.randint(0, 10, shp)
+ d2 = np.random.randint(0, 10, shp)
+ m1 = np.random.randint(0, 2, shp).astype(bool)
+ m2 = np.random.randint(0, 2, shp).astype(bool)
+ a1 = masked_array(d1, mask=m1)
+ a2 = masked_array(d2, mask=m2)
+
+ c = stack([a1, a2], axis=0)
+ c_shp = (2,) + shp
+ assert_equal(c.shape, c_shp)
+ assert_array_equal(a1.mask, c[0].mask)
+ assert_array_equal(a2.mask, c[1].mask)
+
+ c = stack([a1, a2], axis=-1)
+ c_shp = shp + (2,)
+ assert_equal(c.shape, c_shp)
+ assert_array_equal(a1.mask, c[..., 0].mask)
+ assert_array_equal(a2.mask, c[..., 1].mask)
+
+ # 4D
+ shp = (3, 2, 4, 5,)
+ d1 = np.random.randint(0, 10, shp)
+ d2 = np.random.randint(0, 10, shp)
+ m1 = np.random.randint(0, 2, shp).astype(bool)
+ m2 = np.random.randint(0, 2, shp).astype(bool)
+ a1 = masked_array(d1, mask=m1)
+ a2 = masked_array(d2, mask=m2)
+
+ c = stack([a1, a2], axis=0)
+ c_shp = (2,) + shp
+ assert_equal(c.shape, c_shp)
+ assert_array_equal(a1.mask, c[0].mask)
+ assert_array_equal(a2.mask, c[1].mask)
+
+ c = stack([a1, a2], axis=-1)
+ c_shp = shp + (2,)
+ assert_equal(c.shape, c_shp)
+ assert_array_equal(a1.mask, c[..., 0].mask)
+ assert_array_equal(a2.mask, c[..., 1].mask)
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_mrecords.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_mrecords.py
new file mode 100644
index 00000000..77123c3c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_mrecords.py
@@ -0,0 +1,493 @@
+# pylint: disable-msg=W0611, W0612, W0511,R0201
+"""Tests suite for mrecords.
+
+:author: Pierre Gerard-Marchant
+:contact: pierregm_at_uga_dot_edu
+
+"""
+import numpy as np
+import numpy.ma as ma
+from numpy import recarray
+from numpy.ma import masked, nomask
+from numpy.testing import temppath
+from numpy.core.records import (
+ fromrecords as recfromrecords, fromarrays as recfromarrays
+ )
+from numpy.ma.mrecords import (
+ MaskedRecords, mrecarray, fromarrays, fromtextfile, fromrecords,
+ addfield
+ )
+from numpy.ma.testutils import (
+ assert_, assert_equal,
+ assert_equal_records,
+ )
+from numpy.compat import pickle
+
+
+class TestMRecords:
+
+ ilist = [1, 2, 3, 4, 5]
+ flist = [1.1, 2.2, 3.3, 4.4, 5.5]
+ slist = [b'one', b'two', b'three', b'four', b'five']
+ ddtype = [('a', int), ('b', float), ('c', '|S8')]
+ mask = [0, 1, 0, 0, 1]
+ base = ma.array(list(zip(ilist, flist, slist)), mask=mask, dtype=ddtype)
+
+ def test_byview(self):
+ # Test creation by view
+ base = self.base
+ mbase = base.view(mrecarray)
+ assert_equal(mbase.recordmask, base.recordmask)
+ assert_equal_records(mbase._mask, base._mask)
+ assert_(isinstance(mbase._data, recarray))
+ assert_equal_records(mbase._data, base._data.view(recarray))
+ for field in ('a', 'b', 'c'):
+ assert_equal(base[field], mbase[field])
+ assert_equal_records(mbase.view(mrecarray), mbase)
+
+ def test_get(self):
+ # Tests fields retrieval
+ base = self.base.copy()
+ mbase = base.view(mrecarray)
+ # As fields..........
+ for field in ('a', 'b', 'c'):
+ assert_equal(getattr(mbase, field), mbase[field])
+ assert_equal(base[field], mbase[field])
+ # as elements .......
+ mbase_first = mbase[0]
+ assert_(isinstance(mbase_first, mrecarray))
+ assert_equal(mbase_first.dtype, mbase.dtype)
+ assert_equal(mbase_first.tolist(), (1, 1.1, b'one'))
+ # Used to be mask, now it's recordmask
+ assert_equal(mbase_first.recordmask, nomask)
+ assert_equal(mbase_first._mask.item(), (False, False, False))
+ assert_equal(mbase_first['a'], mbase['a'][0])
+ mbase_last = mbase[-1]
+ assert_(isinstance(mbase_last, mrecarray))
+ assert_equal(mbase_last.dtype, mbase.dtype)
+ assert_equal(mbase_last.tolist(), (None, None, None))
+ # Used to be mask, now it's recordmask
+ assert_equal(mbase_last.recordmask, True)
+ assert_equal(mbase_last._mask.item(), (True, True, True))
+ assert_equal(mbase_last['a'], mbase['a'][-1])
+ assert_((mbase_last['a'] is masked))
+ # as slice ..........
+ mbase_sl = mbase[:2]
+ assert_(isinstance(mbase_sl, mrecarray))
+ assert_equal(mbase_sl.dtype, mbase.dtype)
+ # Used to be mask, now it's recordmask
+ assert_equal(mbase_sl.recordmask, [0, 1])
+ assert_equal_records(mbase_sl.mask,
+ np.array([(False, False, False),
+ (True, True, True)],
+ dtype=mbase._mask.dtype))
+ assert_equal_records(mbase_sl, base[:2].view(mrecarray))
+ for field in ('a', 'b', 'c'):
+ assert_equal(getattr(mbase_sl, field), base[:2][field])
+
+ def test_set_fields(self):
+ # Tests setting fields.
+ base = self.base.copy()
+ mbase = base.view(mrecarray)
+ mbase = mbase.copy()
+ mbase.fill_value = (999999, 1e20, 'N/A')
+ # Change the data, the mask should be conserved
+ mbase.a._data[:] = 5
+ assert_equal(mbase['a']._data, [5, 5, 5, 5, 5])
+ assert_equal(mbase['a']._mask, [0, 1, 0, 0, 1])
+ # Change the elements, and the mask will follow
+ mbase.a = 1
+ assert_equal(mbase['a']._data, [1]*5)
+ assert_equal(ma.getmaskarray(mbase['a']), [0]*5)
+ # Use to be _mask, now it's recordmask
+ assert_equal(mbase.recordmask, [False]*5)
+ assert_equal(mbase._mask.tolist(),
+ np.array([(0, 0, 0),
+ (0, 1, 1),
+ (0, 0, 0),
+ (0, 0, 0),
+ (0, 1, 1)],
+ dtype=bool))
+ # Set a field to mask ........................
+ mbase.c = masked
+ # Use to be mask, and now it's still mask !
+ assert_equal(mbase.c.mask, [1]*5)
+ assert_equal(mbase.c.recordmask, [1]*5)
+ assert_equal(ma.getmaskarray(mbase['c']), [1]*5)
+ assert_equal(ma.getdata(mbase['c']), [b'N/A']*5)
+ assert_equal(mbase._mask.tolist(),
+ np.array([(0, 0, 1),
+ (0, 1, 1),
+ (0, 0, 1),
+ (0, 0, 1),
+ (0, 1, 1)],
+ dtype=bool))
+ # Set fields by slices .......................
+ mbase = base.view(mrecarray).copy()
+ mbase.a[3:] = 5
+ assert_equal(mbase.a, [1, 2, 3, 5, 5])
+ assert_equal(mbase.a._mask, [0, 1, 0, 0, 0])
+ mbase.b[3:] = masked
+ assert_equal(mbase.b, base['b'])
+ assert_equal(mbase.b._mask, [0, 1, 0, 1, 1])
+ # Set fields globally..........................
+ ndtype = [('alpha', '|S1'), ('num', int)]
+ data = ma.array([('a', 1), ('b', 2), ('c', 3)], dtype=ndtype)
+ rdata = data.view(MaskedRecords)
+ val = ma.array([10, 20, 30], mask=[1, 0, 0])
+
+ rdata['num'] = val
+ assert_equal(rdata.num, val)
+ assert_equal(rdata.num.mask, [1, 0, 0])
+
+ def test_set_fields_mask(self):
+ # Tests setting the mask of a field.
+ base = self.base.copy()
+ # This one has already a mask....
+ mbase = base.view(mrecarray)
+ mbase['a'][-2] = masked
+ assert_equal(mbase.a, [1, 2, 3, 4, 5])
+ assert_equal(mbase.a._mask, [0, 1, 0, 1, 1])
+ # This one has not yet
+ mbase = fromarrays([np.arange(5), np.random.rand(5)],
+ dtype=[('a', int), ('b', float)])
+ mbase['a'][-2] = masked
+ assert_equal(mbase.a, [0, 1, 2, 3, 4])
+ assert_equal(mbase.a._mask, [0, 0, 0, 1, 0])
+
+ def test_set_mask(self):
+ base = self.base.copy()
+ mbase = base.view(mrecarray)
+ # Set the mask to True .......................
+ mbase.mask = masked
+ assert_equal(ma.getmaskarray(mbase['b']), [1]*5)
+ assert_equal(mbase['a']._mask, mbase['b']._mask)
+ assert_equal(mbase['a']._mask, mbase['c']._mask)
+ assert_equal(mbase._mask.tolist(),
+ np.array([(1, 1, 1)]*5, dtype=bool))
+ # Delete the mask ............................
+ mbase.mask = nomask
+ assert_equal(ma.getmaskarray(mbase['c']), [0]*5)
+ assert_equal(mbase._mask.tolist(),
+ np.array([(0, 0, 0)]*5, dtype=bool))
+
+ def test_set_mask_fromarray(self):
+ base = self.base.copy()
+ mbase = base.view(mrecarray)
+ # Sets the mask w/ an array
+ mbase.mask = [1, 0, 0, 0, 1]
+ assert_equal(mbase.a.mask, [1, 0, 0, 0, 1])
+ assert_equal(mbase.b.mask, [1, 0, 0, 0, 1])
+ assert_equal(mbase.c.mask, [1, 0, 0, 0, 1])
+ # Yay, once more !
+ mbase.mask = [0, 0, 0, 0, 1]
+ assert_equal(mbase.a.mask, [0, 0, 0, 0, 1])
+ assert_equal(mbase.b.mask, [0, 0, 0, 0, 1])
+ assert_equal(mbase.c.mask, [0, 0, 0, 0, 1])
+
+ def test_set_mask_fromfields(self):
+ mbase = self.base.copy().view(mrecarray)
+
+ nmask = np.array(
+ [(0, 1, 0), (0, 1, 0), (1, 0, 1), (1, 0, 1), (0, 0, 0)],
+ dtype=[('a', bool), ('b', bool), ('c', bool)])
+ mbase.mask = nmask
+ assert_equal(mbase.a.mask, [0, 0, 1, 1, 0])
+ assert_equal(mbase.b.mask, [1, 1, 0, 0, 0])
+ assert_equal(mbase.c.mask, [0, 0, 1, 1, 0])
+ # Reinitialize and redo
+ mbase.mask = False
+ mbase.fieldmask = nmask
+ assert_equal(mbase.a.mask, [0, 0, 1, 1, 0])
+ assert_equal(mbase.b.mask, [1, 1, 0, 0, 0])
+ assert_equal(mbase.c.mask, [0, 0, 1, 1, 0])
+
+ def test_set_elements(self):
+ base = self.base.copy()
+ # Set an element to mask .....................
+ mbase = base.view(mrecarray).copy()
+ mbase[-2] = masked
+ assert_equal(
+ mbase._mask.tolist(),
+ np.array([(0, 0, 0), (1, 1, 1), (0, 0, 0), (1, 1, 1), (1, 1, 1)],
+ dtype=bool))
+ # Used to be mask, now it's recordmask!
+ assert_equal(mbase.recordmask, [0, 1, 0, 1, 1])
+ # Set slices .................................
+ mbase = base.view(mrecarray).copy()
+ mbase[:2] = (5, 5, 5)
+ assert_equal(mbase.a._data, [5, 5, 3, 4, 5])
+ assert_equal(mbase.a._mask, [0, 0, 0, 0, 1])
+ assert_equal(mbase.b._data, [5., 5., 3.3, 4.4, 5.5])
+ assert_equal(mbase.b._mask, [0, 0, 0, 0, 1])
+ assert_equal(mbase.c._data,
+ [b'5', b'5', b'three', b'four', b'five'])
+ assert_equal(mbase.b._mask, [0, 0, 0, 0, 1])
+
+ mbase = base.view(mrecarray).copy()
+ mbase[:2] = masked
+ assert_equal(mbase.a._data, [1, 2, 3, 4, 5])
+ assert_equal(mbase.a._mask, [1, 1, 0, 0, 1])
+ assert_equal(mbase.b._data, [1.1, 2.2, 3.3, 4.4, 5.5])
+ assert_equal(mbase.b._mask, [1, 1, 0, 0, 1])
+ assert_equal(mbase.c._data,
+ [b'one', b'two', b'three', b'four', b'five'])
+ assert_equal(mbase.b._mask, [1, 1, 0, 0, 1])
+
+ def test_setslices_hardmask(self):
+ # Tests setting slices w/ hardmask.
+ base = self.base.copy()
+ mbase = base.view(mrecarray)
+ mbase.harden_mask()
+ try:
+ mbase[-2:] = (5, 5, 5)
+ assert_equal(mbase.a._data, [1, 2, 3, 5, 5])
+ assert_equal(mbase.b._data, [1.1, 2.2, 3.3, 5, 5.5])
+ assert_equal(mbase.c._data,
+ [b'one', b'two', b'three', b'5', b'five'])
+ assert_equal(mbase.a._mask, [0, 1, 0, 0, 1])
+ assert_equal(mbase.b._mask, mbase.a._mask)
+ assert_equal(mbase.b._mask, mbase.c._mask)
+ except NotImplementedError:
+ # OK, not implemented yet...
+ pass
+ except AssertionError:
+ raise
+ else:
+ raise Exception("Flexible hard masks should be supported !")
+ # Not using a tuple should crash
+ try:
+ mbase[-2:] = 3
+ except (NotImplementedError, TypeError):
+ pass
+ else:
+ raise TypeError("Should have expected a readable buffer object!")
+
+ def test_hardmask(self):
+ # Test hardmask
+ base = self.base.copy()
+ mbase = base.view(mrecarray)
+ mbase.harden_mask()
+ assert_(mbase._hardmask)
+ mbase.mask = nomask
+ assert_equal_records(mbase._mask, base._mask)
+ mbase.soften_mask()
+ assert_(not mbase._hardmask)
+ mbase.mask = nomask
+ # So, the mask of a field is no longer set to nomask...
+ assert_equal_records(mbase._mask,
+ ma.make_mask_none(base.shape, base.dtype))
+ assert_(ma.make_mask(mbase['b']._mask) is nomask)
+ assert_equal(mbase['a']._mask, mbase['b']._mask)
+
+ def test_pickling(self):
+ # Test pickling
+ base = self.base.copy()
+ mrec = base.view(mrecarray)
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ _ = pickle.dumps(mrec, protocol=proto)
+ mrec_ = pickle.loads(_)
+ assert_equal(mrec_.dtype, mrec.dtype)
+ assert_equal_records(mrec_._data, mrec._data)
+ assert_equal(mrec_._mask, mrec._mask)
+ assert_equal_records(mrec_._mask, mrec._mask)
+
+ def test_filled(self):
+ # Test filling the array
+ _a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int)
+ _b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float)
+ _c = ma.array(['one', 'two', 'three'], mask=[0, 0, 1], dtype='|S8')
+ ddtype = [('a', int), ('b', float), ('c', '|S8')]
+ mrec = fromarrays([_a, _b, _c], dtype=ddtype,
+ fill_value=(99999, 99999., 'N/A'))
+ mrecfilled = mrec.filled()
+ assert_equal(mrecfilled['a'], np.array((1, 2, 99999), dtype=int))
+ assert_equal(mrecfilled['b'], np.array((1.1, 2.2, 99999.),
+ dtype=float))
+ assert_equal(mrecfilled['c'], np.array(('one', 'two', 'N/A'),
+ dtype='|S8'))
+
+ def test_tolist(self):
+ # Test tolist.
+ _a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int)
+ _b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float)
+ _c = ma.array(['one', 'two', 'three'], mask=[1, 0, 0], dtype='|S8')
+ ddtype = [('a', int), ('b', float), ('c', '|S8')]
+ mrec = fromarrays([_a, _b, _c], dtype=ddtype,
+ fill_value=(99999, 99999., 'N/A'))
+
+ assert_equal(mrec.tolist(),
+ [(1, 1.1, None), (2, 2.2, b'two'),
+ (None, None, b'three')])
+
+ def test_withnames(self):
+ # Test the creation w/ format and names
+ x = mrecarray(1, formats=float, names='base')
+ x[0]['base'] = 10
+ assert_equal(x['base'][0], 10)
+
+ def test_exotic_formats(self):
+ # Test that 'exotic' formats are processed properly
+ easy = mrecarray(1, dtype=[('i', int), ('s', '|S8'), ('f', float)])
+ easy[0] = masked
+ assert_equal(easy.filled(1).item(), (1, b'1', 1.))
+
+ solo = mrecarray(1, dtype=[('f0', '<f8', (2, 2))])
+ solo[0] = masked
+ assert_equal(solo.filled(1).item(),
+ np.array((1,), dtype=solo.dtype).item())
+
+ mult = mrecarray(2, dtype="i4, (2,3)float, float")
+ mult[0] = masked
+ mult[1] = (1, 1, 1)
+ mult.filled(0)
+ assert_equal_records(mult.filled(0),
+ np.array([(0, 0, 0), (1, 1, 1)],
+ dtype=mult.dtype))
+
+
+class TestView:
+
+ def setup_method(self):
+ (a, b) = (np.arange(10), np.random.rand(10))
+ ndtype = [('a', float), ('b', float)]
+ arr = np.array(list(zip(a, b)), dtype=ndtype)
+
+ mrec = fromarrays([a, b], dtype=ndtype, fill_value=(-9., -99.))
+ mrec.mask[3] = (False, True)
+ self.data = (mrec, a, b, arr)
+
+ def test_view_by_itself(self):
+ (mrec, a, b, arr) = self.data
+ test = mrec.view()
+ assert_(isinstance(test, MaskedRecords))
+ assert_equal_records(test, mrec)
+ assert_equal_records(test._mask, mrec._mask)
+
+ def test_view_simple_dtype(self):
+ (mrec, a, b, arr) = self.data
+ ntype = (float, 2)
+ test = mrec.view(ntype)
+ assert_(isinstance(test, ma.MaskedArray))
+ assert_equal(test, np.array(list(zip(a, b)), dtype=float))
+ assert_(test[3, 1] is ma.masked)
+
+ def test_view_flexible_type(self):
+ (mrec, a, b, arr) = self.data
+ alttype = [('A', float), ('B', float)]
+ test = mrec.view(alttype)
+ assert_(isinstance(test, MaskedRecords))
+ assert_equal_records(test, arr.view(alttype))
+ assert_(test['B'][3] is masked)
+ assert_equal(test.dtype, np.dtype(alttype))
+ assert_(test._fill_value is None)
+
+
+##############################################################################
+class TestMRecordsImport:
+
+ _a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int)
+ _b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float)
+ _c = ma.array([b'one', b'two', b'three'],
+ mask=[0, 0, 1], dtype='|S8')
+ ddtype = [('a', int), ('b', float), ('c', '|S8')]
+ mrec = fromarrays([_a, _b, _c], dtype=ddtype,
+ fill_value=(b'99999', b'99999.',
+ b'N/A'))
+ nrec = recfromarrays((_a._data, _b._data, _c._data), dtype=ddtype)
+ data = (mrec, nrec, ddtype)
+
+ def test_fromarrays(self):
+ _a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int)
+ _b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float)
+ _c = ma.array(['one', 'two', 'three'], mask=[0, 0, 1], dtype='|S8')
+ (mrec, nrec, _) = self.data
+ for (f, l) in zip(('a', 'b', 'c'), (_a, _b, _c)):
+ assert_equal(getattr(mrec, f)._mask, l._mask)
+ # One record only
+ _x = ma.array([1, 1.1, 'one'], mask=[1, 0, 0], dtype=object)
+ assert_equal_records(fromarrays(_x, dtype=mrec.dtype), mrec[0])
+
+ def test_fromrecords(self):
+ # Test construction from records.
+ (mrec, nrec, ddtype) = self.data
+ #......
+ palist = [(1, 'abc', 3.7000002861022949, 0),
+ (2, 'xy', 6.6999998092651367, 1),
+ (0, ' ', 0.40000000596046448, 0)]
+ pa = recfromrecords(palist, names='c1, c2, c3, c4')
+ mpa = fromrecords(palist, names='c1, c2, c3, c4')
+ assert_equal_records(pa, mpa)
+ #.....
+ _mrec = fromrecords(nrec)
+ assert_equal(_mrec.dtype, mrec.dtype)
+ for field in _mrec.dtype.names:
+ assert_equal(getattr(_mrec, field), getattr(mrec._data, field))
+
+ _mrec = fromrecords(nrec.tolist(), names='c1,c2,c3')
+ assert_equal(_mrec.dtype, [('c1', int), ('c2', float), ('c3', '|S5')])
+ for (f, n) in zip(('c1', 'c2', 'c3'), ('a', 'b', 'c')):
+ assert_equal(getattr(_mrec, f), getattr(mrec._data, n))
+
+ _mrec = fromrecords(mrec)
+ assert_equal(_mrec.dtype, mrec.dtype)
+ assert_equal_records(_mrec._data, mrec.filled())
+ assert_equal_records(_mrec._mask, mrec._mask)
+
+ def test_fromrecords_wmask(self):
+ # Tests construction from records w/ mask.
+ (mrec, nrec, ddtype) = self.data
+
+ _mrec = fromrecords(nrec.tolist(), dtype=ddtype, mask=[0, 1, 0,])
+ assert_equal_records(_mrec._data, mrec._data)
+ assert_equal(_mrec._mask.tolist(), [(0, 0, 0), (1, 1, 1), (0, 0, 0)])
+
+ _mrec = fromrecords(nrec.tolist(), dtype=ddtype, mask=True)
+ assert_equal_records(_mrec._data, mrec._data)
+ assert_equal(_mrec._mask.tolist(), [(1, 1, 1), (1, 1, 1), (1, 1, 1)])
+
+ _mrec = fromrecords(nrec.tolist(), dtype=ddtype, mask=mrec._mask)
+ assert_equal_records(_mrec._data, mrec._data)
+ assert_equal(_mrec._mask.tolist(), mrec._mask.tolist())
+
+ _mrec = fromrecords(nrec.tolist(), dtype=ddtype,
+ mask=mrec._mask.tolist())
+ assert_equal_records(_mrec._data, mrec._data)
+ assert_equal(_mrec._mask.tolist(), mrec._mask.tolist())
+
+ def test_fromtextfile(self):
+ # Tests reading from a text file.
+ fcontent = (
+"""#
+'One (S)','Two (I)','Three (F)','Four (M)','Five (-)','Six (C)'
+'strings',1,1.0,'mixed column',,1
+'with embedded "double quotes"',2,2.0,1.0,,1
+'strings',3,3.0E5,3,,1
+'strings',4,-1e-10,,,1
+""")
+ with temppath() as path:
+ with open(path, 'w') as f:
+ f.write(fcontent)
+ mrectxt = fromtextfile(path, delimiter=',', varnames='ABCDEFG')
+ assert_(isinstance(mrectxt, MaskedRecords))
+ assert_equal(mrectxt.F, [1, 1, 1, 1])
+ assert_equal(mrectxt.E._mask, [1, 1, 1, 1])
+ assert_equal(mrectxt.C, [1, 2, 3.e+5, -1e-10])
+
+ def test_addfield(self):
+ # Tests addfield
+ (mrec, nrec, ddtype) = self.data
+ (d, m) = ([100, 200, 300], [1, 0, 0])
+ mrec = addfield(mrec, ma.array(d, mask=m))
+ assert_equal(mrec.f3, d)
+ assert_equal(mrec.f3._mask, m)
+
+
+def test_record_array_with_object_field():
+ # Trac #1839
+ y = ma.masked_array(
+ [(1, '2'), (3, '4')],
+ mask=[(0, 0), (0, 1)],
+ dtype=[('a', int), ('b', object)])
+ # getting an item used to fail
+ y[1]
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_old_ma.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_old_ma.py
new file mode 100644
index 00000000..7b892ad2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_old_ma.py
@@ -0,0 +1,874 @@
+from functools import reduce
+
+import pytest
+
+import numpy as np
+import numpy.core.umath as umath
+import numpy.core.fromnumeric as fromnumeric
+from numpy.testing import (
+ assert_, assert_raises, assert_equal,
+ )
+from numpy.ma import (
+ MaskType, MaskedArray, absolute, add, all, allclose, allequal, alltrue,
+ arange, arccos, arcsin, arctan, arctan2, array, average, choose,
+ concatenate, conjugate, cos, cosh, count, divide, equal, exp, filled,
+ getmask, greater, greater_equal, inner, isMaskedArray, less,
+ less_equal, log, log10, make_mask, masked, masked_array, masked_equal,
+ masked_greater, masked_greater_equal, masked_inside, masked_less,
+ masked_less_equal, masked_not_equal, masked_outside,
+ masked_print_option, masked_values, masked_where, maximum, minimum,
+ multiply, nomask, nonzero, not_equal, ones, outer, product, put, ravel,
+ repeat, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum,
+ take, tan, tanh, transpose, where, zeros,
+ )
+from numpy.compat import pickle
+
+pi = np.pi
+
+
+def eq(v, w, msg=''):
+ result = allclose(v, w)
+ if not result:
+ print(f'Not eq:{msg}\n{v}\n----{w}')
+ return result
+
+
+class TestMa:
+
+ def setup_method(self):
+ x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
+ y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
+ a10 = 10.
+ m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+ m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
+ xm = array(x, mask=m1)
+ ym = array(y, mask=m2)
+ z = np.array([-.5, 0., .5, .8])
+ zm = array(z, mask=[0, 1, 0, 0])
+ xf = np.where(m1, 1e+20, x)
+ s = x.shape
+ xm.set_fill_value(1e+20)
+ self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf, s)
+
+ def test_testBasic1d(self):
+ # Test of basic array creation and properties in 1 dimension.
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+ assert_(not isMaskedArray(x))
+ assert_(isMaskedArray(xm))
+ assert_equal(shape(xm), s)
+ assert_equal(xm.shape, s)
+ assert_equal(xm.dtype, x.dtype)
+ assert_equal(xm.size, reduce(lambda x, y:x * y, s))
+ assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1))
+ assert_(eq(xm, xf))
+ assert_(eq(filled(xm, 1.e20), xf))
+ assert_(eq(x, xm))
+
+ @pytest.mark.parametrize("s", [(4, 3), (6, 2)])
+ def test_testBasic2d(self, s):
+ # Test of basic array creation and properties in 2 dimensions.
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+ x.shape = s
+ y.shape = s
+ xm.shape = s
+ ym.shape = s
+ xf.shape = s
+
+ assert_(not isMaskedArray(x))
+ assert_(isMaskedArray(xm))
+ assert_equal(shape(xm), s)
+ assert_equal(xm.shape, s)
+ assert_equal(xm.size, reduce(lambda x, y: x * y, s))
+ assert_equal(count(xm), len(m1) - reduce(lambda x, y: x + y, m1))
+ assert_(eq(xm, xf))
+ assert_(eq(filled(xm, 1.e20), xf))
+ assert_(eq(x, xm))
+
+ def test_testArithmetic(self):
+ # Test of basic arithmetic.
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+ a2d = array([[1, 2], [0, 4]])
+ a2dm = masked_array(a2d, [[0, 0], [1, 0]])
+ assert_(eq(a2d * a2d, a2d * a2dm))
+ assert_(eq(a2d + a2d, a2d + a2dm))
+ assert_(eq(a2d - a2d, a2d - a2dm))
+ for s in [(12,), (4, 3), (2, 6)]:
+ x = x.reshape(s)
+ y = y.reshape(s)
+ xm = xm.reshape(s)
+ ym = ym.reshape(s)
+ xf = xf.reshape(s)
+ assert_(eq(-x, -xm))
+ assert_(eq(x + y, xm + ym))
+ assert_(eq(x - y, xm - ym))
+ assert_(eq(x * y, xm * ym))
+ with np.errstate(divide='ignore', invalid='ignore'):
+ assert_(eq(x / y, xm / ym))
+ assert_(eq(a10 + y, a10 + ym))
+ assert_(eq(a10 - y, a10 - ym))
+ assert_(eq(a10 * y, a10 * ym))
+ with np.errstate(divide='ignore', invalid='ignore'):
+ assert_(eq(a10 / y, a10 / ym))
+ assert_(eq(x + a10, xm + a10))
+ assert_(eq(x - a10, xm - a10))
+ assert_(eq(x * a10, xm * a10))
+ assert_(eq(x / a10, xm / a10))
+ assert_(eq(x ** 2, xm ** 2))
+ assert_(eq(abs(x) ** 2.5, abs(xm) ** 2.5))
+ assert_(eq(x ** y, xm ** ym))
+ assert_(eq(np.add(x, y), add(xm, ym)))
+ assert_(eq(np.subtract(x, y), subtract(xm, ym)))
+ assert_(eq(np.multiply(x, y), multiply(xm, ym)))
+ with np.errstate(divide='ignore', invalid='ignore'):
+ assert_(eq(np.divide(x, y), divide(xm, ym)))
+
+ def test_testMixedArithmetic(self):
+ na = np.array([1])
+ ma = array([1])
+ assert_(isinstance(na + ma, MaskedArray))
+ assert_(isinstance(ma + na, MaskedArray))
+
+ def test_testUfuncs1(self):
+ # Test various functions such as sin, cos.
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+ assert_(eq(np.cos(x), cos(xm)))
+ assert_(eq(np.cosh(x), cosh(xm)))
+ assert_(eq(np.sin(x), sin(xm)))
+ assert_(eq(np.sinh(x), sinh(xm)))
+ assert_(eq(np.tan(x), tan(xm)))
+ assert_(eq(np.tanh(x), tanh(xm)))
+ with np.errstate(divide='ignore', invalid='ignore'):
+ assert_(eq(np.sqrt(abs(x)), sqrt(xm)))
+ assert_(eq(np.log(abs(x)), log(xm)))
+ assert_(eq(np.log10(abs(x)), log10(xm)))
+ assert_(eq(np.exp(x), exp(xm)))
+ assert_(eq(np.arcsin(z), arcsin(zm)))
+ assert_(eq(np.arccos(z), arccos(zm)))
+ assert_(eq(np.arctan(z), arctan(zm)))
+ assert_(eq(np.arctan2(x, y), arctan2(xm, ym)))
+ assert_(eq(np.absolute(x), absolute(xm)))
+ assert_(eq(np.equal(x, y), equal(xm, ym)))
+ assert_(eq(np.not_equal(x, y), not_equal(xm, ym)))
+ assert_(eq(np.less(x, y), less(xm, ym)))
+ assert_(eq(np.greater(x, y), greater(xm, ym)))
+ assert_(eq(np.less_equal(x, y), less_equal(xm, ym)))
+ assert_(eq(np.greater_equal(x, y), greater_equal(xm, ym)))
+ assert_(eq(np.conjugate(x), conjugate(xm)))
+ assert_(eq(np.concatenate((x, y)), concatenate((xm, ym))))
+ assert_(eq(np.concatenate((x, y)), concatenate((x, y))))
+ assert_(eq(np.concatenate((x, y)), concatenate((xm, y))))
+ assert_(eq(np.concatenate((x, y, x)), concatenate((x, ym, x))))
+
+ def test_xtestCount(self):
+ # Test count
+ ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
+ assert_(count(ott).dtype.type is np.intp)
+ assert_equal(3, count(ott))
+ assert_equal(1, count(1))
+ assert_(eq(0, array(1, mask=[1])))
+ ott = ott.reshape((2, 2))
+ assert_(count(ott).dtype.type is np.intp)
+ assert_(isinstance(count(ott, 0), np.ndarray))
+ assert_(count(ott).dtype.type is np.intp)
+ assert_(eq(3, count(ott)))
+ assert_(getmask(count(ott, 0)) is nomask)
+ assert_(eq([1, 2], count(ott, 0)))
+
+ def test_testMinMax(self):
+ # Test minimum and maximum.
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+ xr = np.ravel(x) # max doesn't work if shaped
+ xmr = ravel(xm)
+
+ # true because of careful selection of data
+ assert_(eq(max(xr), maximum.reduce(xmr)))
+ assert_(eq(min(xr), minimum.reduce(xmr)))
+
+ def test_testAddSumProd(self):
+ # Test add, sum, product.
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+ assert_(eq(np.add.reduce(x), add.reduce(x)))
+ assert_(eq(np.add.accumulate(x), add.accumulate(x)))
+ assert_(eq(4, sum(array(4), axis=0)))
+ assert_(eq(4, sum(array(4), axis=0)))
+ assert_(eq(np.sum(x, axis=0), sum(x, axis=0)))
+ assert_(eq(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0)))
+ assert_(eq(np.sum(x, 0), sum(x, 0)))
+ assert_(eq(np.prod(x, axis=0), product(x, axis=0)))
+ assert_(eq(np.prod(x, 0), product(x, 0)))
+ assert_(eq(np.prod(filled(xm, 1), axis=0),
+ product(xm, axis=0)))
+ if len(s) > 1:
+ assert_(eq(np.concatenate((x, y), 1),
+ concatenate((xm, ym), 1)))
+ assert_(eq(np.add.reduce(x, 1), add.reduce(x, 1)))
+ assert_(eq(np.sum(x, 1), sum(x, 1)))
+ assert_(eq(np.prod(x, 1), product(x, 1)))
+
+ def test_testCI(self):
+ # Test of conversions and indexing
+ x1 = np.array([1, 2, 4, 3])
+ x2 = array(x1, mask=[1, 0, 0, 0])
+ x3 = array(x1, mask=[0, 1, 0, 1])
+ x4 = array(x1)
+ # test conversion to strings
+ str(x2) # raises?
+ repr(x2) # raises?
+ assert_(eq(np.sort(x1), sort(x2, fill_value=0)))
+ # tests of indexing
+ assert_(type(x2[1]) is type(x1[1]))
+ assert_(x1[1] == x2[1])
+ assert_(x2[0] is masked)
+ assert_(eq(x1[2], x2[2]))
+ assert_(eq(x1[2:5], x2[2:5]))
+ assert_(eq(x1[:], x2[:]))
+ assert_(eq(x1[1:], x3[1:]))
+ x1[2] = 9
+ x2[2] = 9
+ assert_(eq(x1, x2))
+ x1[1:3] = 99
+ x2[1:3] = 99
+ assert_(eq(x1, x2))
+ x2[1] = masked
+ assert_(eq(x1, x2))
+ x2[1:3] = masked
+ assert_(eq(x1, x2))
+ x2[:] = x1
+ x2[1] = masked
+ assert_(allequal(getmask(x2), array([0, 1, 0, 0])))
+ x3[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0])
+ assert_(allequal(getmask(x3), array([0, 1, 1, 0])))
+ x4[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0])
+ assert_(allequal(getmask(x4), array([0, 1, 1, 0])))
+ assert_(allequal(x4, array([1, 2, 3, 4])))
+ x1 = np.arange(5) * 1.0
+ x2 = masked_values(x1, 3.0)
+ assert_(eq(x1, x2))
+ assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask))
+ assert_(eq(3.0, x2.fill_value))
+ x1 = array([1, 'hello', 2, 3], object)
+ x2 = np.array([1, 'hello', 2, 3], object)
+ s1 = x1[1]
+ s2 = x2[1]
+ assert_equal(type(s2), str)
+ assert_equal(type(s1), str)
+ assert_equal(s1, s2)
+ assert_(x1[1:1].shape == (0,))
+
+ def test_testCopySize(self):
+ # Tests of some subtle points of copying and sizing.
+ n = [0, 0, 1, 0, 0]
+ m = make_mask(n)
+ m2 = make_mask(m)
+ assert_(m is m2)
+ m3 = make_mask(m, copy=True)
+ assert_(m is not m3)
+
+ x1 = np.arange(5)
+ y1 = array(x1, mask=m)
+ assert_(y1._data is not x1)
+ assert_(allequal(x1, y1._data))
+ assert_(y1._mask is m)
+
+ y1a = array(y1, copy=0)
+ # For copy=False, one might expect that the array would just
+ # passed on, i.e., that it would be "is" instead of "==".
+ # See gh-4043 for discussion.
+ assert_(y1a._mask.__array_interface__ ==
+ y1._mask.__array_interface__)
+
+ y2 = array(x1, mask=m3, copy=0)
+ assert_(y2._mask is m3)
+ assert_(y2[2] is masked)
+ y2[2] = 9
+ assert_(y2[2] is not masked)
+ assert_(y2._mask is m3)
+ assert_(allequal(y2.mask, 0))
+
+ y2a = array(x1, mask=m, copy=1)
+ assert_(y2a._mask is not m)
+ assert_(y2a[2] is masked)
+ y2a[2] = 9
+ assert_(y2a[2] is not masked)
+ assert_(y2a._mask is not m)
+ assert_(allequal(y2a.mask, 0))
+
+ y3 = array(x1 * 1.0, mask=m)
+ assert_(filled(y3).dtype is (x1 * 1.0).dtype)
+
+ x4 = arange(4)
+ x4[2] = masked
+ y4 = resize(x4, (8,))
+ assert_(eq(concatenate([x4, x4]), y4))
+ assert_(eq(getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0]))
+ y5 = repeat(x4, (2, 2, 2, 2), axis=0)
+ assert_(eq(y5, [0, 0, 1, 1, 2, 2, 3, 3]))
+ y6 = repeat(x4, 2, axis=0)
+ assert_(eq(y5, y6))
+
+ def test_testPut(self):
+ # Test of put
+ d = arange(5)
+ n = [0, 0, 0, 1, 1]
+ m = make_mask(n)
+ m2 = m.copy()
+ x = array(d, mask=m)
+ assert_(x[3] is masked)
+ assert_(x[4] is masked)
+ x[[1, 4]] = [10, 40]
+ assert_(x._mask is m)
+ assert_(x[3] is masked)
+ assert_(x[4] is not masked)
+ assert_(eq(x, [0, 10, 2, -1, 40]))
+
+ x = array(d, mask=m2, copy=True)
+ x.put([0, 1, 2], [-1, 100, 200])
+ assert_(x._mask is not m2)
+ assert_(x[3] is masked)
+ assert_(x[4] is masked)
+ assert_(eq(x, [-1, 100, 200, 0, 0]))
+
+ def test_testPut2(self):
+ # Test of put
+ d = arange(5)
+ x = array(d, mask=[0, 0, 0, 0, 0])
+ z = array([10, 40], mask=[1, 0])
+ assert_(x[2] is not masked)
+ assert_(x[3] is not masked)
+ x[2:4] = z
+ assert_(x[2] is masked)
+ assert_(x[3] is not masked)
+ assert_(eq(x, [0, 1, 10, 40, 4]))
+
+ d = arange(5)
+ x = array(d, mask=[0, 0, 0, 0, 0])
+ y = x[2:4]
+ z = array([10, 40], mask=[1, 0])
+ assert_(x[2] is not masked)
+ assert_(x[3] is not masked)
+ y[:] = z
+ assert_(y[0] is masked)
+ assert_(y[1] is not masked)
+ assert_(eq(y, [10, 40]))
+ assert_(x[2] is masked)
+ assert_(x[3] is not masked)
+ assert_(eq(x, [0, 1, 10, 40, 4]))
+
+ def test_testMaPut(self):
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+ m = [1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1]
+ i = np.nonzero(m)[0]
+ put(ym, i, zm)
+ assert_(all(take(ym, i, axis=0) == zm))
+
+ def test_testOddFeatures(self):
+ # Test of other odd features
+ x = arange(20)
+ x = x.reshape(4, 5)
+ x.flat[5] = 12
+ assert_(x[1, 0] == 12)
+ z = x + 10j * x
+ assert_(eq(z.real, x))
+ assert_(eq(z.imag, 10 * x))
+ assert_(eq((z * conjugate(z)).real, 101 * x * x))
+ z.imag[...] = 0.0
+
+ x = arange(10)
+ x[3] = masked
+ assert_(str(x[3]) == str(masked))
+ c = x >= 8
+ assert_(count(where(c, masked, masked)) == 0)
+ assert_(shape(where(c, masked, masked)) == c.shape)
+ z = where(c, x, masked)
+ assert_(z.dtype is x.dtype)
+ assert_(z[3] is masked)
+ assert_(z[4] is masked)
+ assert_(z[7] is masked)
+ assert_(z[8] is not masked)
+ assert_(z[9] is not masked)
+ assert_(eq(x, z))
+ z = where(c, masked, x)
+ assert_(z.dtype is x.dtype)
+ assert_(z[3] is masked)
+ assert_(z[4] is not masked)
+ assert_(z[7] is not masked)
+ assert_(z[8] is masked)
+ assert_(z[9] is masked)
+ z = masked_where(c, x)
+ assert_(z.dtype is x.dtype)
+ assert_(z[3] is masked)
+ assert_(z[4] is not masked)
+ assert_(z[7] is not masked)
+ assert_(z[8] is masked)
+ assert_(z[9] is masked)
+ assert_(eq(x, z))
+ x = array([1., 2., 3., 4., 5.])
+ c = array([1, 1, 1, 0, 0])
+ x[2] = masked
+ z = where(c, x, -x)
+ assert_(eq(z, [1., 2., 0., -4., -5]))
+ c[0] = masked
+ z = where(c, x, -x)
+ assert_(eq(z, [1., 2., 0., -4., -5]))
+ assert_(z[0] is masked)
+ assert_(z[1] is not masked)
+ assert_(z[2] is masked)
+ assert_(eq(masked_where(greater(x, 2), x), masked_greater(x, 2)))
+ assert_(eq(masked_where(greater_equal(x, 2), x),
+ masked_greater_equal(x, 2)))
+ assert_(eq(masked_where(less(x, 2), x), masked_less(x, 2)))
+ assert_(eq(masked_where(less_equal(x, 2), x), masked_less_equal(x, 2)))
+ assert_(eq(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2)))
+ assert_(eq(masked_where(equal(x, 2), x), masked_equal(x, 2)))
+ assert_(eq(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2)))
+ assert_(eq(masked_inside(list(range(5)), 1, 3), [0, 199, 199, 199, 4]))
+ assert_(eq(masked_outside(list(range(5)), 1, 3), [199, 1, 2, 3, 199]))
+ assert_(eq(masked_inside(array(list(range(5)),
+ mask=[1, 0, 0, 0, 0]), 1, 3).mask,
+ [1, 1, 1, 1, 0]))
+ assert_(eq(masked_outside(array(list(range(5)),
+ mask=[0, 1, 0, 0, 0]), 1, 3).mask,
+ [1, 1, 0, 0, 1]))
+ assert_(eq(masked_equal(array(list(range(5)),
+ mask=[1, 0, 0, 0, 0]), 2).mask,
+ [1, 0, 1, 0, 0]))
+ assert_(eq(masked_not_equal(array([2, 2, 1, 2, 1],
+ mask=[1, 0, 0, 0, 0]), 2).mask,
+ [1, 0, 1, 0, 1]))
+ assert_(eq(masked_where([1, 1, 0, 0, 0], [1, 2, 3, 4, 5]),
+ [99, 99, 3, 4, 5]))
+ atest = ones((10, 10, 10), dtype=np.float32)
+ btest = zeros(atest.shape, MaskType)
+ ctest = masked_where(btest, atest)
+ assert_(eq(atest, ctest))
+ z = choose(c, (-x, x))
+ assert_(eq(z, [1., 2., 0., -4., -5]))
+ assert_(z[0] is masked)
+ assert_(z[1] is not masked)
+ assert_(z[2] is masked)
+ x = arange(6)
+ x[5] = masked
+ y = arange(6) * 10
+ y[2] = masked
+ c = array([1, 1, 1, 0, 0, 0], mask=[1, 0, 0, 0, 0, 0])
+ cm = c.filled(1)
+ z = where(c, x, y)
+ zm = where(cm, x, y)
+ assert_(eq(z, zm))
+ assert_(getmask(zm) is nomask)
+ assert_(eq(zm, [0, 1, 2, 30, 40, 50]))
+ z = where(c, masked, 1)
+ assert_(eq(z, [99, 99, 99, 1, 1, 1]))
+ z = where(c, 1, masked)
+ assert_(eq(z, [99, 1, 1, 99, 99, 99]))
+
+ def test_testMinMax2(self):
+ # Test of minimum, maximum.
+ assert_(eq(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3]))
+ assert_(eq(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9]))
+ x = arange(5)
+ y = arange(5) - 2
+ x[3] = masked
+ y[0] = masked
+ assert_(eq(minimum(x, y), where(less(x, y), x, y)))
+ assert_(eq(maximum(x, y), where(greater(x, y), x, y)))
+ assert_(minimum.reduce(x) == 0)
+ assert_(maximum.reduce(x) == 4)
+
+ def test_testTakeTransposeInnerOuter(self):
+ # Test of take, transpose, inner, outer products
+ x = arange(24)
+ y = np.arange(24)
+ x[5:6] = masked
+ x = x.reshape(2, 3, 4)
+ y = y.reshape(2, 3, 4)
+ assert_(eq(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1))))
+ assert_(eq(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1)))
+ assert_(eq(np.inner(filled(x, 0), filled(y, 0)),
+ inner(x, y)))
+ assert_(eq(np.outer(filled(x, 0), filled(y, 0)),
+ outer(x, y)))
+ y = array(['abc', 1, 'def', 2, 3], object)
+ y[2] = masked
+ t = take(y, [0, 3, 4])
+ assert_(t[0] == 'abc')
+ assert_(t[1] == 2)
+ assert_(t[2] == 3)
+
+ def test_testInplace(self):
+ # Test of inplace operations and rich comparisons
+ y = arange(10)
+
+ x = arange(10)
+ xm = arange(10)
+ xm[2] = masked
+ x += 1
+ assert_(eq(x, y + 1))
+ xm += 1
+ assert_(eq(x, y + 1))
+
+ x = arange(10)
+ xm = arange(10)
+ xm[2] = masked
+ x -= 1
+ assert_(eq(x, y - 1))
+ xm -= 1
+ assert_(eq(xm, y - 1))
+
+ x = arange(10) * 1.0
+ xm = arange(10) * 1.0
+ xm[2] = masked
+ x *= 2.0
+ assert_(eq(x, y * 2))
+ xm *= 2.0
+ assert_(eq(xm, y * 2))
+
+ x = arange(10) * 2
+ xm = arange(10)
+ xm[2] = masked
+ x //= 2
+ assert_(eq(x, y))
+ xm //= 2
+ assert_(eq(x, y))
+
+ x = arange(10) * 1.0
+ xm = arange(10) * 1.0
+ xm[2] = masked
+ x /= 2.0
+ assert_(eq(x, y / 2.0))
+ xm /= arange(10)
+ assert_(eq(xm, ones((10,))))
+
+ x = arange(10).astype(np.float32)
+ xm = arange(10)
+ xm[2] = masked
+ x += 1.
+ assert_(eq(x, y + 1.))
+
+ def test_testPickle(self):
+ # Test of pickling
+ x = arange(12)
+ x[4:10:2] = masked
+ x = x.reshape(4, 3)
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ s = pickle.dumps(x, protocol=proto)
+ y = pickle.loads(s)
+ assert_(eq(x, y))
+
+ def test_testMasked(self):
+ # Test of masked element
+ xx = arange(6)
+ xx[1] = masked
+ assert_(str(masked) == '--')
+ assert_(xx[1] is masked)
+ assert_equal(filled(xx[1], 0), 0)
+
+ def test_testAverage1(self):
+ # Test of average.
+ ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
+ assert_(eq(2.0, average(ott, axis=0)))
+ assert_(eq(2.0, average(ott, weights=[1., 1., 2., 1.])))
+ result, wts = average(ott, weights=[1., 1., 2., 1.], returned=True)
+ assert_(eq(2.0, result))
+ assert_(wts == 4.0)
+ ott[:] = masked
+ assert_(average(ott, axis=0) is masked)
+ ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
+ ott = ott.reshape(2, 2)
+ ott[:, 1] = masked
+ assert_(eq(average(ott, axis=0), [2.0, 0.0]))
+ assert_(average(ott, axis=1)[0] is masked)
+ assert_(eq([2., 0.], average(ott, axis=0)))
+ result, wts = average(ott, axis=0, returned=True)
+ assert_(eq(wts, [1., 0.]))
+
+ def test_testAverage2(self):
+ # More tests of average.
+ w1 = [0, 1, 1, 1, 1, 0]
+ w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]]
+ x = arange(6)
+ assert_(allclose(average(x, axis=0), 2.5))
+ assert_(allclose(average(x, axis=0, weights=w1), 2.5))
+ y = array([arange(6), 2.0 * arange(6)])
+ assert_(allclose(average(y, None),
+ np.add.reduce(np.arange(6)) * 3. / 12.))
+ assert_(allclose(average(y, axis=0), np.arange(6) * 3. / 2.))
+ assert_(allclose(average(y, axis=1),
+ [average(x, axis=0), average(x, axis=0)*2.0]))
+ assert_(allclose(average(y, None, weights=w2), 20. / 6.))
+ assert_(allclose(average(y, axis=0, weights=w2),
+ [0., 1., 2., 3., 4., 10.]))
+ assert_(allclose(average(y, axis=1),
+ [average(x, axis=0), average(x, axis=0)*2.0]))
+ m1 = zeros(6)
+ m2 = [0, 0, 1, 1, 0, 0]
+ m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]]
+ m4 = ones(6)
+ m5 = [0, 1, 1, 1, 1, 1]
+ assert_(allclose(average(masked_array(x, m1), axis=0), 2.5))
+ assert_(allclose(average(masked_array(x, m2), axis=0), 2.5))
+ assert_(average(masked_array(x, m4), axis=0) is masked)
+ assert_equal(average(masked_array(x, m5), axis=0), 0.0)
+ assert_equal(count(average(masked_array(x, m4), axis=0)), 0)
+ z = masked_array(y, m3)
+ assert_(allclose(average(z, None), 20. / 6.))
+ assert_(allclose(average(z, axis=0),
+ [0., 1., 99., 99., 4.0, 7.5]))
+ assert_(allclose(average(z, axis=1), [2.5, 5.0]))
+ assert_(allclose(average(z, axis=0, weights=w2),
+ [0., 1., 99., 99., 4.0, 10.0]))
+
+ a = arange(6)
+ b = arange(6) * 3
+ r1, w1 = average([[a, b], [b, a]], axis=1, returned=True)
+ assert_equal(shape(r1), shape(w1))
+ assert_equal(r1.shape, w1.shape)
+ r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=True)
+ assert_equal(shape(w2), shape(r2))
+ r2, w2 = average(ones((2, 2, 3)), returned=True)
+ assert_equal(shape(w2), shape(r2))
+ r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=True)
+ assert_(shape(w2) == shape(r2))
+ a2d = array([[1, 2], [0, 4]], float)
+ a2dm = masked_array(a2d, [[0, 0], [1, 0]])
+ a2da = average(a2d, axis=0)
+ assert_(eq(a2da, [0.5, 3.0]))
+ a2dma = average(a2dm, axis=0)
+ assert_(eq(a2dma, [1.0, 3.0]))
+ a2dma = average(a2dm, axis=None)
+ assert_(eq(a2dma, 7. / 3.))
+ a2dma = average(a2dm, axis=1)
+ assert_(eq(a2dma, [1.5, 4.0]))
+
+ def test_testToPython(self):
+ assert_equal(1, int(array(1)))
+ assert_equal(1.0, float(array(1)))
+ assert_equal(1, int(array([[[1]]])))
+ assert_equal(1.0, float(array([[1]])))
+ assert_raises(TypeError, float, array([1, 1]))
+ assert_raises(ValueError, bool, array([0, 1]))
+ assert_raises(ValueError, bool, array([0, 0], mask=[0, 1]))
+
+ def test_testScalarArithmetic(self):
+ xm = array(0, mask=1)
+ #TODO FIXME: Find out what the following raises a warning in r8247
+ with np.errstate(divide='ignore'):
+ assert_((1 / array(0)).mask)
+ assert_((1 + xm).mask)
+ assert_((-xm).mask)
+ assert_((-xm).mask)
+ assert_(maximum(xm, xm).mask)
+ assert_(minimum(xm, xm).mask)
+ assert_(xm.filled().dtype is xm._data.dtype)
+ x = array(0, mask=0)
+ assert_(x.filled() == x._data)
+ assert_equal(str(xm), str(masked_print_option))
+
+ def test_testArrayMethods(self):
+ a = array([1, 3, 2])
+ assert_(eq(a.any(), a._data.any()))
+ assert_(eq(a.all(), a._data.all()))
+ assert_(eq(a.argmax(), a._data.argmax()))
+ assert_(eq(a.argmin(), a._data.argmin()))
+ assert_(eq(a.choose(0, 1, 2, 3, 4),
+ a._data.choose(0, 1, 2, 3, 4)))
+ assert_(eq(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])))
+ assert_(eq(a.conj(), a._data.conj()))
+ assert_(eq(a.conjugate(), a._data.conjugate()))
+ m = array([[1, 2], [3, 4]])
+ assert_(eq(m.diagonal(), m._data.diagonal()))
+ assert_(eq(a.sum(), a._data.sum()))
+ assert_(eq(a.take([1, 2]), a._data.take([1, 2])))
+ assert_(eq(m.transpose(), m._data.transpose()))
+
+ def test_testArrayAttributes(self):
+ a = array([1, 3, 2])
+ assert_equal(a.ndim, 1)
+
+ def test_testAPI(self):
+ assert_(not [m for m in dir(np.ndarray)
+ if m not in dir(MaskedArray) and
+ not m.startswith('_')])
+
+ def test_testSingleElementSubscript(self):
+ a = array([1, 3, 2])
+ b = array([1, 3, 2], mask=[1, 0, 1])
+ assert_equal(a[0].shape, ())
+ assert_equal(b[0].shape, ())
+ assert_equal(b[1].shape, ())
+
+ def test_assignment_by_condition(self):
+ # Test for gh-18951
+ a = array([1, 2, 3, 4], mask=[1, 0, 1, 0])
+ c = a >= 3
+ a[c] = 5
+ assert_(a[2] is masked)
+
+ def test_assignment_by_condition_2(self):
+ # gh-19721
+ a = masked_array([0, 1], mask=[False, False])
+ b = masked_array([0, 1], mask=[True, True])
+ mask = a < 1
+ b[mask] = a[mask]
+ expected_mask = [False, True]
+ assert_equal(b.mask, expected_mask)
+
+
+class TestUfuncs:
+ def setup_method(self):
+ self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6),
+ array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),)
+
+ def test_testUfuncRegression(self):
+ f_invalid_ignore = [
+ 'sqrt', 'arctanh', 'arcsin', 'arccos',
+ 'arccosh', 'arctanh', 'log', 'log10', 'divide',
+ 'true_divide', 'floor_divide', 'remainder', 'fmod']
+ for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
+ 'sin', 'cos', 'tan',
+ 'arcsin', 'arccos', 'arctan',
+ 'sinh', 'cosh', 'tanh',
+ 'arcsinh',
+ 'arccosh',
+ 'arctanh',
+ 'absolute', 'fabs', 'negative',
+ 'floor', 'ceil',
+ 'logical_not',
+ 'add', 'subtract', 'multiply',
+ 'divide', 'true_divide', 'floor_divide',
+ 'remainder', 'fmod', 'hypot', 'arctan2',
+ 'equal', 'not_equal', 'less_equal', 'greater_equal',
+ 'less', 'greater',
+ 'logical_and', 'logical_or', 'logical_xor']:
+ try:
+ uf = getattr(umath, f)
+ except AttributeError:
+ uf = getattr(fromnumeric, f)
+ mf = getattr(np.ma, f)
+ args = self.d[:uf.nin]
+ with np.errstate():
+ if f in f_invalid_ignore:
+ np.seterr(invalid='ignore')
+ if f in ['arctanh', 'log', 'log10']:
+ np.seterr(divide='ignore')
+ ur = uf(*args)
+ mr = mf(*args)
+ assert_(eq(ur.filled(0), mr.filled(0), f))
+ assert_(eqmask(ur.mask, mr.mask))
+
+ def test_reduce(self):
+ a = self.d[0]
+ assert_(not alltrue(a, axis=0))
+ assert_(sometrue(a, axis=0))
+ assert_equal(sum(a[:3], axis=0), 0)
+ assert_equal(product(a, axis=0), 0)
+
+ def test_minmax(self):
+ a = arange(1, 13).reshape(3, 4)
+ amask = masked_where(a < 5, a)
+ assert_equal(amask.max(), a.max())
+ assert_equal(amask.min(), 5)
+ assert_((amask.max(0) == a.max(0)).all())
+ assert_((amask.min(0) == [5, 6, 7, 8]).all())
+ assert_(amask.max(1)[0].mask)
+ assert_(amask.min(1)[0].mask)
+
+ def test_nonzero(self):
+ for t in "?bhilqpBHILQPfdgFDGO":
+ x = array([1, 0, 2, 0], mask=[0, 0, 1, 1])
+ assert_(eq(nonzero(x), [0]))
+
+
+class TestArrayMethods:
+
+ def setup_method(self):
+ x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
+ 8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
+ 3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
+ 6.04, 9.63, 7.712, 3.382, 4.489, 6.479,
+ 7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
+ 7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
+ X = x.reshape(6, 6)
+ XX = x.reshape(3, 2, 2, 3)
+
+ m = np.array([0, 1, 0, 1, 0, 0,
+ 1, 0, 1, 1, 0, 1,
+ 0, 0, 0, 1, 0, 1,
+ 0, 0, 0, 1, 1, 1,
+ 1, 0, 0, 1, 0, 0,
+ 0, 0, 1, 0, 1, 0])
+ mx = array(data=x, mask=m)
+ mX = array(data=X, mask=m.reshape(X.shape))
+ mXX = array(data=XX, mask=m.reshape(XX.shape))
+
+ self.d = (x, X, XX, m, mx, mX, mXX)
+
+ def test_trace(self):
+ (x, X, XX, m, mx, mX, mXX,) = self.d
+ mXdiag = mX.diagonal()
+ assert_equal(mX.trace(), mX.diagonal().compressed().sum())
+ assert_(eq(mX.trace(),
+ X.trace() - sum(mXdiag.mask * X.diagonal(),
+ axis=0)))
+
+ def test_clip(self):
+ (x, X, XX, m, mx, mX, mXX,) = self.d
+ clipped = mx.clip(2, 8)
+ assert_(eq(clipped.mask, mx.mask))
+ assert_(eq(clipped._data, x.clip(2, 8)))
+ assert_(eq(clipped._data, mx._data.clip(2, 8)))
+
+ def test_ptp(self):
+ (x, X, XX, m, mx, mX, mXX,) = self.d
+ (n, m) = X.shape
+ assert_equal(mx.ptp(), mx.compressed().ptp())
+ rows = np.zeros(n, np.float_)
+ cols = np.zeros(m, np.float_)
+ for k in range(m):
+ cols[k] = mX[:, k].compressed().ptp()
+ for k in range(n):
+ rows[k] = mX[k].compressed().ptp()
+ assert_(eq(mX.ptp(0), cols))
+ assert_(eq(mX.ptp(1), rows))
+
+ def test_swapaxes(self):
+ (x, X, XX, m, mx, mX, mXX,) = self.d
+ mXswapped = mX.swapaxes(0, 1)
+ assert_(eq(mXswapped[-1], mX[:, -1]))
+ mXXswapped = mXX.swapaxes(0, 2)
+ assert_equal(mXXswapped.shape, (2, 2, 3, 3))
+
+ def test_cumprod(self):
+ (x, X, XX, m, mx, mX, mXX,) = self.d
+ mXcp = mX.cumprod(0)
+ assert_(eq(mXcp._data, mX.filled(1).cumprod(0)))
+ mXcp = mX.cumprod(1)
+ assert_(eq(mXcp._data, mX.filled(1).cumprod(1)))
+
+ def test_cumsum(self):
+ (x, X, XX, m, mx, mX, mXX,) = self.d
+ mXcp = mX.cumsum(0)
+ assert_(eq(mXcp._data, mX.filled(0).cumsum(0)))
+ mXcp = mX.cumsum(1)
+ assert_(eq(mXcp._data, mX.filled(0).cumsum(1)))
+
+ def test_varstd(self):
+ (x, X, XX, m, mx, mX, mXX,) = self.d
+ assert_(eq(mX.var(axis=None), mX.compressed().var()))
+ assert_(eq(mX.std(axis=None), mX.compressed().std()))
+ assert_(eq(mXX.var(axis=3).shape, XX.var(axis=3).shape))
+ assert_(eq(mX.var().shape, X.var().shape))
+ (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1))
+ for k in range(6):
+ assert_(eq(mXvar1[k], mX[k].compressed().var()))
+ assert_(eq(mXvar0[k], mX[:, k].compressed().var()))
+ assert_(eq(np.sqrt(mXvar0[k]),
+ mX[:, k].compressed().std()))
+
+
+def eqmask(m1, m2):
+ if m1 is nomask:
+ return m2 is nomask
+ if m2 is nomask:
+ return m1 is nomask
+ return (m1 == m2).all()
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_regression.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_regression.py
new file mode 100644
index 00000000..f4f32cc7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_regression.py
@@ -0,0 +1,97 @@
+import numpy as np
+from numpy.testing import (
+ assert_, assert_array_equal, assert_allclose, suppress_warnings
+ )
+
+
+class TestRegression:
+ def test_masked_array_create(self):
+ # Ticket #17
+ x = np.ma.masked_array([0, 1, 2, 3, 0, 4, 5, 6],
+ mask=[0, 0, 0, 1, 1, 1, 0, 0])
+ assert_array_equal(np.ma.nonzero(x), [[1, 2, 6, 7]])
+
+ def test_masked_array(self):
+ # Ticket #61
+ np.ma.array(1, mask=[1])
+
+ def test_mem_masked_where(self):
+ # Ticket #62
+ from numpy.ma import masked_where, MaskType
+ a = np.zeros((1, 1))
+ b = np.zeros(a.shape, MaskType)
+ c = masked_where(b, a)
+ a-c
+
+ def test_masked_array_multiply(self):
+ # Ticket #254
+ a = np.ma.zeros((4, 1))
+ a[2, 0] = np.ma.masked
+ b = np.zeros((4, 2))
+ a*b
+ b*a
+
+ def test_masked_array_repeat(self):
+ # Ticket #271
+ np.ma.array([1], mask=False).repeat(10)
+
+ def test_masked_array_repr_unicode(self):
+ # Ticket #1256
+ repr(np.ma.array("Unicode"))
+
+ def test_atleast_2d(self):
+ # Ticket #1559
+ a = np.ma.masked_array([0.0, 1.2, 3.5], mask=[False, True, False])
+ b = np.atleast_2d(a)
+ assert_(a.mask.ndim == 1)
+ assert_(b.mask.ndim == 2)
+
+ def test_set_fill_value_unicode_py3(self):
+ # Ticket #2733
+ a = np.ma.masked_array(['a', 'b', 'c'], mask=[1, 0, 0])
+ a.fill_value = 'X'
+ assert_(a.fill_value == 'X')
+
+ def test_var_sets_maskedarray_scalar(self):
+ # Issue gh-2757
+ a = np.ma.array(np.arange(5), mask=True)
+ mout = np.ma.array(-1, dtype=float)
+ a.var(out=mout)
+ assert_(mout._data == 0)
+
+ def test_ddof_corrcoef(self):
+ # See gh-3336
+ x = np.ma.masked_equal([1, 2, 3, 4, 5], 4)
+ y = np.array([2, 2.5, 3.1, 3, 5])
+ # this test can be removed after deprecation.
+ with suppress_warnings() as sup:
+ sup.filter(DeprecationWarning, "bias and ddof have no effect")
+ r0 = np.ma.corrcoef(x, y, ddof=0)
+ r1 = np.ma.corrcoef(x, y, ddof=1)
+ # ddof should not have an effect (it gets cancelled out)
+ assert_allclose(r0.data, r1.data)
+
+ def test_mask_not_backmangled(self):
+ # See gh-10314. Test case taken from gh-3140.
+ a = np.ma.MaskedArray([1., 2.], mask=[False, False])
+ assert_(a.mask.shape == (2,))
+ b = np.tile(a, (2, 1))
+ # Check that the above no longer changes a.shape to (1, 2)
+ assert_(a.mask.shape == (2,))
+ assert_(b.shape == (2, 2))
+ assert_(b.mask.shape == (2, 2))
+
+ def test_empty_list_on_structured(self):
+ # See gh-12464. Indexing with empty list should give empty result.
+ ma = np.ma.MaskedArray([(1, 1.), (2, 2.), (3, 3.)], dtype='i4,f4')
+ assert_array_equal(ma[[]], ma[:0])
+
+ def test_masked_array_tobytes_fortran(self):
+ ma = np.ma.arange(4).reshape((2,2))
+ assert_array_equal(ma.tobytes(order='F'), ma.T.tobytes())
+
+ def test_structured_array(self):
+ # see gh-22041
+ np.ma.array((1, (b"", b"")),
+ dtype=[("x", np.int_),
+ ("y", [("i", np.void), ("j", np.void)])])
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py
new file mode 100644
index 00000000..e3c88525
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py
@@ -0,0 +1,460 @@
+# pylint: disable-msg=W0611, W0612, W0511,R0201
+"""Tests suite for MaskedArray & subclassing.
+
+:author: Pierre Gerard-Marchant
+:contact: pierregm_at_uga_dot_edu
+:version: $Id: test_subclassing.py 3473 2007-10-29 15:18:13Z jarrod.millman $
+
+"""
+import numpy as np
+from numpy.lib.mixins import NDArrayOperatorsMixin
+from numpy.testing import assert_, assert_raises
+from numpy.ma.testutils import assert_equal
+from numpy.ma.core import (
+ array, arange, masked, MaskedArray, masked_array, log, add, hypot,
+ divide, asarray, asanyarray, nomask
+ )
+# from numpy.ma.core import (
+
+def assert_startswith(a, b):
+ # produces a better error message than assert_(a.startswith(b))
+ assert_equal(a[:len(b)], b)
+
+class SubArray(np.ndarray):
+ # Defines a generic np.ndarray subclass, that stores some metadata
+ # in the dictionary `info`.
+ def __new__(cls,arr,info={}):
+ x = np.asanyarray(arr).view(cls)
+ x.info = info.copy()
+ return x
+
+ def __array_finalize__(self, obj):
+ super().__array_finalize__(obj)
+ self.info = getattr(obj, 'info', {}).copy()
+ return
+
+ def __add__(self, other):
+ result = super().__add__(other)
+ result.info['added'] = result.info.get('added', 0) + 1
+ return result
+
+ def __iadd__(self, other):
+ result = super().__iadd__(other)
+ result.info['iadded'] = result.info.get('iadded', 0) + 1
+ return result
+
+
+subarray = SubArray
+
+
+class SubMaskedArray(MaskedArray):
+ """Pure subclass of MaskedArray, keeping some info on subclass."""
+ def __new__(cls, info=None, **kwargs):
+ obj = super().__new__(cls, **kwargs)
+ obj._optinfo['info'] = info
+ return obj
+
+
+class MSubArray(SubArray, MaskedArray):
+
+ def __new__(cls, data, info={}, mask=nomask):
+ subarr = SubArray(data, info)
+ _data = MaskedArray.__new__(cls, data=subarr, mask=mask)
+ _data.info = subarr.info
+ return _data
+
+ @property
+ def _series(self):
+ _view = self.view(MaskedArray)
+ _view._sharedmask = False
+ return _view
+
+msubarray = MSubArray
+
+
+# Also a subclass that overrides __str__, __repr__ and __setitem__, disallowing
+# setting to non-class values (and thus np.ma.core.masked_print_option)
+# and overrides __array_wrap__, updating the info dict, to check that this
+# doesn't get destroyed by MaskedArray._update_from. But this one also needs
+# its own iterator...
+class CSAIterator:
+ """
+ Flat iterator object that uses its own setter/getter
+ (works around ndarray.flat not propagating subclass setters/getters
+ see https://github.com/numpy/numpy/issues/4564)
+ roughly following MaskedIterator
+ """
+ def __init__(self, a):
+ self._original = a
+ self._dataiter = a.view(np.ndarray).flat
+
+ def __iter__(self):
+ return self
+
+ def __getitem__(self, indx):
+ out = self._dataiter.__getitem__(indx)
+ if not isinstance(out, np.ndarray):
+ out = out.__array__()
+ out = out.view(type(self._original))
+ return out
+
+ def __setitem__(self, index, value):
+ self._dataiter[index] = self._original._validate_input(value)
+
+ def __next__(self):
+ return next(self._dataiter).__array__().view(type(self._original))
+
+
+class ComplicatedSubArray(SubArray):
+
+ def __str__(self):
+ return f'myprefix {self.view(SubArray)} mypostfix'
+
+ def __repr__(self):
+ # Return a repr that does not start with 'name('
+ return f'<{self.__class__.__name__} {self}>'
+
+ def _validate_input(self, value):
+ if not isinstance(value, ComplicatedSubArray):
+ raise ValueError("Can only set to MySubArray values")
+ return value
+
+ def __setitem__(self, item, value):
+ # validation ensures direct assignment with ndarray or
+ # masked_print_option will fail
+ super().__setitem__(item, self._validate_input(value))
+
+ def __getitem__(self, item):
+ # ensure getter returns our own class also for scalars
+ value = super().__getitem__(item)
+ if not isinstance(value, np.ndarray): # scalar
+ value = value.__array__().view(ComplicatedSubArray)
+ return value
+
+ @property
+ def flat(self):
+ return CSAIterator(self)
+
+ @flat.setter
+ def flat(self, value):
+ y = self.ravel()
+ y[:] = value
+
+ def __array_wrap__(self, obj, context=None):
+ obj = super().__array_wrap__(obj, context)
+ if context is not None and context[0] is np.multiply:
+ obj.info['multiplied'] = obj.info.get('multiplied', 0) + 1
+
+ return obj
+
+
+class WrappedArray(NDArrayOperatorsMixin):
+ """
+ Wrapping a MaskedArray rather than subclassing to test that
+ ufunc deferrals are commutative.
+ See: https://github.com/numpy/numpy/issues/15200)
+ """
+ __slots__ = ('_array', 'attrs')
+ __array_priority__ = 20
+
+ def __init__(self, array, **attrs):
+ self._array = array
+ self.attrs = attrs
+
+ def __repr__(self):
+ return f"{self.__class__.__name__}(\n{self._array}\n{self.attrs}\n)"
+
+ def __array__(self):
+ return np.asarray(self._array)
+
+ def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
+ if method == '__call__':
+ inputs = [arg._array if isinstance(arg, self.__class__) else arg
+ for arg in inputs]
+ return self.__class__(ufunc(*inputs, **kwargs), **self.attrs)
+ else:
+ return NotImplemented
+
+
+class TestSubclassing:
+ # Test suite for masked subclasses of ndarray.
+
+ def setup_method(self):
+ x = np.arange(5, dtype='float')
+ mx = msubarray(x, mask=[0, 1, 0, 0, 0])
+ self.data = (x, mx)
+
+ def test_data_subclassing(self):
+ # Tests whether the subclass is kept.
+ x = np.arange(5)
+ m = [0, 0, 1, 0, 0]
+ xsub = SubArray(x)
+ xmsub = masked_array(xsub, mask=m)
+ assert_(isinstance(xmsub, MaskedArray))
+ assert_equal(xmsub._data, xsub)
+ assert_(isinstance(xmsub._data, SubArray))
+
+ def test_maskedarray_subclassing(self):
+ # Tests subclassing MaskedArray
+ (x, mx) = self.data
+ assert_(isinstance(mx._data, subarray))
+
+ def test_masked_unary_operations(self):
+ # Tests masked_unary_operation
+ (x, mx) = self.data
+ with np.errstate(divide='ignore'):
+ assert_(isinstance(log(mx), msubarray))
+ assert_equal(log(x), np.log(x))
+
+ def test_masked_binary_operations(self):
+ # Tests masked_binary_operation
+ (x, mx) = self.data
+ # Result should be a msubarray
+ assert_(isinstance(add(mx, mx), msubarray))
+ assert_(isinstance(add(mx, x), msubarray))
+ # Result should work
+ assert_equal(add(mx, x), mx+x)
+ assert_(isinstance(add(mx, mx)._data, subarray))
+ assert_(isinstance(add.outer(mx, mx), msubarray))
+ assert_(isinstance(hypot(mx, mx), msubarray))
+ assert_(isinstance(hypot(mx, x), msubarray))
+
+ def test_masked_binary_operations2(self):
+ # Tests domained_masked_binary_operation
+ (x, mx) = self.data
+ xmx = masked_array(mx.data.__array__(), mask=mx.mask)
+ assert_(isinstance(divide(mx, mx), msubarray))
+ assert_(isinstance(divide(mx, x), msubarray))
+ assert_equal(divide(mx, mx), divide(xmx, xmx))
+
+ def test_attributepropagation(self):
+ x = array(arange(5), mask=[0]+[1]*4)
+ my = masked_array(subarray(x))
+ ym = msubarray(x)
+ #
+ z = (my+1)
+ assert_(isinstance(z, MaskedArray))
+ assert_(not isinstance(z, MSubArray))
+ assert_(isinstance(z._data, SubArray))
+ assert_equal(z._data.info, {})
+ #
+ z = (ym+1)
+ assert_(isinstance(z, MaskedArray))
+ assert_(isinstance(z, MSubArray))
+ assert_(isinstance(z._data, SubArray))
+ assert_(z._data.info['added'] > 0)
+ # Test that inplace methods from data get used (gh-4617)
+ ym += 1
+ assert_(isinstance(ym, MaskedArray))
+ assert_(isinstance(ym, MSubArray))
+ assert_(isinstance(ym._data, SubArray))
+ assert_(ym._data.info['iadded'] > 0)
+ #
+ ym._set_mask([1, 0, 0, 0, 1])
+ assert_equal(ym._mask, [1, 0, 0, 0, 1])
+ ym._series._set_mask([0, 0, 0, 0, 1])
+ assert_equal(ym._mask, [0, 0, 0, 0, 1])
+ #
+ xsub = subarray(x, info={'name':'x'})
+ mxsub = masked_array(xsub)
+ assert_(hasattr(mxsub, 'info'))
+ assert_equal(mxsub.info, xsub.info)
+
+ def test_subclasspreservation(self):
+ # Checks that masked_array(...,subok=True) preserves the class.
+ x = np.arange(5)
+ m = [0, 0, 1, 0, 0]
+ xinfo = [(i, j) for (i, j) in zip(x, m)]
+ xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
+ #
+ mxsub = masked_array(xsub, subok=False)
+ assert_(not isinstance(mxsub, MSubArray))
+ assert_(isinstance(mxsub, MaskedArray))
+ assert_equal(mxsub._mask, m)
+ #
+ mxsub = asarray(xsub)
+ assert_(not isinstance(mxsub, MSubArray))
+ assert_(isinstance(mxsub, MaskedArray))
+ assert_equal(mxsub._mask, m)
+ #
+ mxsub = masked_array(xsub, subok=True)
+ assert_(isinstance(mxsub, MSubArray))
+ assert_equal(mxsub.info, xsub.info)
+ assert_equal(mxsub._mask, xsub._mask)
+ #
+ mxsub = asanyarray(xsub)
+ assert_(isinstance(mxsub, MSubArray))
+ assert_equal(mxsub.info, xsub.info)
+ assert_equal(mxsub._mask, m)
+
+ def test_subclass_items(self):
+ """test that getter and setter go via baseclass"""
+ x = np.arange(5)
+ xcsub = ComplicatedSubArray(x)
+ mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
+ # getter should return a ComplicatedSubArray, even for single item
+ # first check we wrote ComplicatedSubArray correctly
+ assert_(isinstance(xcsub[1], ComplicatedSubArray))
+ assert_(isinstance(xcsub[1,...], ComplicatedSubArray))
+ assert_(isinstance(xcsub[1:4], ComplicatedSubArray))
+
+ # now that it propagates inside the MaskedArray
+ assert_(isinstance(mxcsub[1], ComplicatedSubArray))
+ assert_(isinstance(mxcsub[1,...].data, ComplicatedSubArray))
+ assert_(mxcsub[0] is masked)
+ assert_(isinstance(mxcsub[0,...].data, ComplicatedSubArray))
+ assert_(isinstance(mxcsub[1:4].data, ComplicatedSubArray))
+
+ # also for flattened version (which goes via MaskedIterator)
+ assert_(isinstance(mxcsub.flat[1].data, ComplicatedSubArray))
+ assert_(mxcsub.flat[0] is masked)
+ assert_(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray))
+
+ # setter should only work with ComplicatedSubArray input
+ # first check we wrote ComplicatedSubArray correctly
+ assert_raises(ValueError, xcsub.__setitem__, 1, x[4])
+ # now that it propagates inside the MaskedArray
+ assert_raises(ValueError, mxcsub.__setitem__, 1, x[4])
+ assert_raises(ValueError, mxcsub.__setitem__, slice(1, 4), x[1:4])
+ mxcsub[1] = xcsub[4]
+ mxcsub[1:4] = xcsub[1:4]
+ # also for flattened version (which goes via MaskedIterator)
+ assert_raises(ValueError, mxcsub.flat.__setitem__, 1, x[4])
+ assert_raises(ValueError, mxcsub.flat.__setitem__, slice(1, 4), x[1:4])
+ mxcsub.flat[1] = xcsub[4]
+ mxcsub.flat[1:4] = xcsub[1:4]
+
+ def test_subclass_nomask_items(self):
+ x = np.arange(5)
+ xcsub = ComplicatedSubArray(x)
+ mxcsub_nomask = masked_array(xcsub)
+
+ assert_(isinstance(mxcsub_nomask[1,...].data, ComplicatedSubArray))
+ assert_(isinstance(mxcsub_nomask[0,...].data, ComplicatedSubArray))
+
+ assert_(isinstance(mxcsub_nomask[1], ComplicatedSubArray))
+ assert_(isinstance(mxcsub_nomask[0], ComplicatedSubArray))
+
+ def test_subclass_repr(self):
+ """test that repr uses the name of the subclass
+ and 'array' for np.ndarray"""
+ x = np.arange(5)
+ mx = masked_array(x, mask=[True, False, True, False, False])
+ assert_startswith(repr(mx), 'masked_array')
+ xsub = SubArray(x)
+ mxsub = masked_array(xsub, mask=[True, False, True, False, False])
+ assert_startswith(repr(mxsub),
+ f'masked_{SubArray.__name__}(data=[--, 1, --, 3, 4]')
+
+ def test_subclass_str(self):
+ """test str with subclass that has overridden str, setitem"""
+ # first without override
+ x = np.arange(5)
+ xsub = SubArray(x)
+ mxsub = masked_array(xsub, mask=[True, False, True, False, False])
+ assert_equal(str(mxsub), '[-- 1 -- 3 4]')
+
+ xcsub = ComplicatedSubArray(x)
+ assert_raises(ValueError, xcsub.__setitem__, 0,
+ np.ma.core.masked_print_option)
+ mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
+ assert_equal(str(mxcsub), 'myprefix [-- 1 -- 3 4] mypostfix')
+
+ def test_pure_subclass_info_preservation(self):
+ # Test that ufuncs and methods conserve extra information consistently;
+ # see gh-7122.
+ arr1 = SubMaskedArray('test', data=[1,2,3,4,5,6])
+ arr2 = SubMaskedArray(data=[0,1,2,3,4,5])
+ diff1 = np.subtract(arr1, arr2)
+ assert_('info' in diff1._optinfo)
+ assert_(diff1._optinfo['info'] == 'test')
+ diff2 = arr1 - arr2
+ assert_('info' in diff2._optinfo)
+ assert_(diff2._optinfo['info'] == 'test')
+
+
+class ArrayNoInheritance:
+ """Quantity-like class that does not inherit from ndarray"""
+ def __init__(self, data, units):
+ self.magnitude = data
+ self.units = units
+
+ def __getattr__(self, attr):
+ return getattr(self.magnitude, attr)
+
+
+def test_array_no_inheritance():
+ data_masked = np.ma.array([1, 2, 3], mask=[True, False, True])
+ data_masked_units = ArrayNoInheritance(data_masked, 'meters')
+
+ # Get the masked representation of the Quantity-like class
+ new_array = np.ma.array(data_masked_units)
+ assert_equal(data_masked.data, new_array.data)
+ assert_equal(data_masked.mask, new_array.mask)
+ # Test sharing the mask
+ data_masked.mask = [True, False, False]
+ assert_equal(data_masked.mask, new_array.mask)
+ assert_(new_array.sharedmask)
+
+ # Get the masked representation of the Quantity-like class
+ new_array = np.ma.array(data_masked_units, copy=True)
+ assert_equal(data_masked.data, new_array.data)
+ assert_equal(data_masked.mask, new_array.mask)
+ # Test that the mask is not shared when copy=True
+ data_masked.mask = [True, False, True]
+ assert_equal([True, False, False], new_array.mask)
+ assert_(not new_array.sharedmask)
+
+ # Get the masked representation of the Quantity-like class
+ new_array = np.ma.array(data_masked_units, keep_mask=False)
+ assert_equal(data_masked.data, new_array.data)
+ # The change did not affect the original mask
+ assert_equal(data_masked.mask, [True, False, True])
+ # Test that the mask is False and not shared when keep_mask=False
+ assert_(not new_array.mask)
+ assert_(not new_array.sharedmask)
+
+
+class TestClassWrapping:
+ # Test suite for classes that wrap MaskedArrays
+
+ def setup_method(self):
+ m = np.ma.masked_array([1, 3, 5], mask=[False, True, False])
+ wm = WrappedArray(m)
+ self.data = (m, wm)
+
+ def test_masked_unary_operations(self):
+ # Tests masked_unary_operation
+ (m, wm) = self.data
+ with np.errstate(divide='ignore'):
+ assert_(isinstance(np.log(wm), WrappedArray))
+
+ def test_masked_binary_operations(self):
+ # Tests masked_binary_operation
+ (m, wm) = self.data
+ # Result should be a WrappedArray
+ assert_(isinstance(np.add(wm, wm), WrappedArray))
+ assert_(isinstance(np.add(m, wm), WrappedArray))
+ assert_(isinstance(np.add(wm, m), WrappedArray))
+ # add and '+' should call the same ufunc
+ assert_equal(np.add(m, wm), m + wm)
+ assert_(isinstance(np.hypot(m, wm), WrappedArray))
+ assert_(isinstance(np.hypot(wm, m), WrappedArray))
+ # Test domained binary operations
+ assert_(isinstance(np.divide(wm, m), WrappedArray))
+ assert_(isinstance(np.divide(m, wm), WrappedArray))
+ assert_equal(np.divide(wm, m) * m, np.divide(m, m) * wm)
+ # Test broadcasting
+ m2 = np.stack([m, m])
+ assert_(isinstance(np.divide(wm, m2), WrappedArray))
+ assert_(isinstance(np.divide(m2, wm), WrappedArray))
+ assert_equal(np.divide(m2, wm), np.divide(wm, m2))
+
+ def test_mixins_have_slots(self):
+ mixin = NDArrayOperatorsMixin()
+ # Should raise an error
+ assert_raises(AttributeError, mixin.__setattr__, "not_a_real_attr", 1)
+
+ m = np.ma.masked_array([1, 3, 5], mask=[False, True, False])
+ wm = WrappedArray(m)
+ assert_raises(AttributeError, wm.__setattr__, "not_an_attr", 2)