aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py460
1 files changed, 460 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py
new file mode 100644
index 00000000..e3c88525
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py
@@ -0,0 +1,460 @@
+# pylint: disable-msg=W0611, W0612, W0511,R0201
+"""Tests suite for MaskedArray & subclassing.
+
+:author: Pierre Gerard-Marchant
+:contact: pierregm_at_uga_dot_edu
+:version: $Id: test_subclassing.py 3473 2007-10-29 15:18:13Z jarrod.millman $
+
+"""
+import numpy as np
+from numpy.lib.mixins import NDArrayOperatorsMixin
+from numpy.testing import assert_, assert_raises
+from numpy.ma.testutils import assert_equal
+from numpy.ma.core import (
+ array, arange, masked, MaskedArray, masked_array, log, add, hypot,
+ divide, asarray, asanyarray, nomask
+ )
+# from numpy.ma.core import (
+
+def assert_startswith(a, b):
+ # produces a better error message than assert_(a.startswith(b))
+ assert_equal(a[:len(b)], b)
+
+class SubArray(np.ndarray):
+ # Defines a generic np.ndarray subclass, that stores some metadata
+ # in the dictionary `info`.
+ def __new__(cls,arr,info={}):
+ x = np.asanyarray(arr).view(cls)
+ x.info = info.copy()
+ return x
+
+ def __array_finalize__(self, obj):
+ super().__array_finalize__(obj)
+ self.info = getattr(obj, 'info', {}).copy()
+ return
+
+ def __add__(self, other):
+ result = super().__add__(other)
+ result.info['added'] = result.info.get('added', 0) + 1
+ return result
+
+ def __iadd__(self, other):
+ result = super().__iadd__(other)
+ result.info['iadded'] = result.info.get('iadded', 0) + 1
+ return result
+
+
+subarray = SubArray
+
+
+class SubMaskedArray(MaskedArray):
+ """Pure subclass of MaskedArray, keeping some info on subclass."""
+ def __new__(cls, info=None, **kwargs):
+ obj = super().__new__(cls, **kwargs)
+ obj._optinfo['info'] = info
+ return obj
+
+
+class MSubArray(SubArray, MaskedArray):
+
+ def __new__(cls, data, info={}, mask=nomask):
+ subarr = SubArray(data, info)
+ _data = MaskedArray.__new__(cls, data=subarr, mask=mask)
+ _data.info = subarr.info
+ return _data
+
+ @property
+ def _series(self):
+ _view = self.view(MaskedArray)
+ _view._sharedmask = False
+ return _view
+
+msubarray = MSubArray
+
+
+# Also a subclass that overrides __str__, __repr__ and __setitem__, disallowing
+# setting to non-class values (and thus np.ma.core.masked_print_option)
+# and overrides __array_wrap__, updating the info dict, to check that this
+# doesn't get destroyed by MaskedArray._update_from. But this one also needs
+# its own iterator...
+class CSAIterator:
+ """
+ Flat iterator object that uses its own setter/getter
+ (works around ndarray.flat not propagating subclass setters/getters
+ see https://github.com/numpy/numpy/issues/4564)
+ roughly following MaskedIterator
+ """
+ def __init__(self, a):
+ self._original = a
+ self._dataiter = a.view(np.ndarray).flat
+
+ def __iter__(self):
+ return self
+
+ def __getitem__(self, indx):
+ out = self._dataiter.__getitem__(indx)
+ if not isinstance(out, np.ndarray):
+ out = out.__array__()
+ out = out.view(type(self._original))
+ return out
+
+ def __setitem__(self, index, value):
+ self._dataiter[index] = self._original._validate_input(value)
+
+ def __next__(self):
+ return next(self._dataiter).__array__().view(type(self._original))
+
+
+class ComplicatedSubArray(SubArray):
+
+ def __str__(self):
+ return f'myprefix {self.view(SubArray)} mypostfix'
+
+ def __repr__(self):
+ # Return a repr that does not start with 'name('
+ return f'<{self.__class__.__name__} {self}>'
+
+ def _validate_input(self, value):
+ if not isinstance(value, ComplicatedSubArray):
+ raise ValueError("Can only set to MySubArray values")
+ return value
+
+ def __setitem__(self, item, value):
+ # validation ensures direct assignment with ndarray or
+ # masked_print_option will fail
+ super().__setitem__(item, self._validate_input(value))
+
+ def __getitem__(self, item):
+ # ensure getter returns our own class also for scalars
+ value = super().__getitem__(item)
+ if not isinstance(value, np.ndarray): # scalar
+ value = value.__array__().view(ComplicatedSubArray)
+ return value
+
+ @property
+ def flat(self):
+ return CSAIterator(self)
+
+ @flat.setter
+ def flat(self, value):
+ y = self.ravel()
+ y[:] = value
+
+ def __array_wrap__(self, obj, context=None):
+ obj = super().__array_wrap__(obj, context)
+ if context is not None and context[0] is np.multiply:
+ obj.info['multiplied'] = obj.info.get('multiplied', 0) + 1
+
+ return obj
+
+
+class WrappedArray(NDArrayOperatorsMixin):
+ """
+ Wrapping a MaskedArray rather than subclassing to test that
+ ufunc deferrals are commutative.
+ See: https://github.com/numpy/numpy/issues/15200)
+ """
+ __slots__ = ('_array', 'attrs')
+ __array_priority__ = 20
+
+ def __init__(self, array, **attrs):
+ self._array = array
+ self.attrs = attrs
+
+ def __repr__(self):
+ return f"{self.__class__.__name__}(\n{self._array}\n{self.attrs}\n)"
+
+ def __array__(self):
+ return np.asarray(self._array)
+
+ def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
+ if method == '__call__':
+ inputs = [arg._array if isinstance(arg, self.__class__) else arg
+ for arg in inputs]
+ return self.__class__(ufunc(*inputs, **kwargs), **self.attrs)
+ else:
+ return NotImplemented
+
+
+class TestSubclassing:
+ # Test suite for masked subclasses of ndarray.
+
+ def setup_method(self):
+ x = np.arange(5, dtype='float')
+ mx = msubarray(x, mask=[0, 1, 0, 0, 0])
+ self.data = (x, mx)
+
+ def test_data_subclassing(self):
+ # Tests whether the subclass is kept.
+ x = np.arange(5)
+ m = [0, 0, 1, 0, 0]
+ xsub = SubArray(x)
+ xmsub = masked_array(xsub, mask=m)
+ assert_(isinstance(xmsub, MaskedArray))
+ assert_equal(xmsub._data, xsub)
+ assert_(isinstance(xmsub._data, SubArray))
+
+ def test_maskedarray_subclassing(self):
+ # Tests subclassing MaskedArray
+ (x, mx) = self.data
+ assert_(isinstance(mx._data, subarray))
+
+ def test_masked_unary_operations(self):
+ # Tests masked_unary_operation
+ (x, mx) = self.data
+ with np.errstate(divide='ignore'):
+ assert_(isinstance(log(mx), msubarray))
+ assert_equal(log(x), np.log(x))
+
+ def test_masked_binary_operations(self):
+ # Tests masked_binary_operation
+ (x, mx) = self.data
+ # Result should be a msubarray
+ assert_(isinstance(add(mx, mx), msubarray))
+ assert_(isinstance(add(mx, x), msubarray))
+ # Result should work
+ assert_equal(add(mx, x), mx+x)
+ assert_(isinstance(add(mx, mx)._data, subarray))
+ assert_(isinstance(add.outer(mx, mx), msubarray))
+ assert_(isinstance(hypot(mx, mx), msubarray))
+ assert_(isinstance(hypot(mx, x), msubarray))
+
+ def test_masked_binary_operations2(self):
+ # Tests domained_masked_binary_operation
+ (x, mx) = self.data
+ xmx = masked_array(mx.data.__array__(), mask=mx.mask)
+ assert_(isinstance(divide(mx, mx), msubarray))
+ assert_(isinstance(divide(mx, x), msubarray))
+ assert_equal(divide(mx, mx), divide(xmx, xmx))
+
+ def test_attributepropagation(self):
+ x = array(arange(5), mask=[0]+[1]*4)
+ my = masked_array(subarray(x))
+ ym = msubarray(x)
+ #
+ z = (my+1)
+ assert_(isinstance(z, MaskedArray))
+ assert_(not isinstance(z, MSubArray))
+ assert_(isinstance(z._data, SubArray))
+ assert_equal(z._data.info, {})
+ #
+ z = (ym+1)
+ assert_(isinstance(z, MaskedArray))
+ assert_(isinstance(z, MSubArray))
+ assert_(isinstance(z._data, SubArray))
+ assert_(z._data.info['added'] > 0)
+ # Test that inplace methods from data get used (gh-4617)
+ ym += 1
+ assert_(isinstance(ym, MaskedArray))
+ assert_(isinstance(ym, MSubArray))
+ assert_(isinstance(ym._data, SubArray))
+ assert_(ym._data.info['iadded'] > 0)
+ #
+ ym._set_mask([1, 0, 0, 0, 1])
+ assert_equal(ym._mask, [1, 0, 0, 0, 1])
+ ym._series._set_mask([0, 0, 0, 0, 1])
+ assert_equal(ym._mask, [0, 0, 0, 0, 1])
+ #
+ xsub = subarray(x, info={'name':'x'})
+ mxsub = masked_array(xsub)
+ assert_(hasattr(mxsub, 'info'))
+ assert_equal(mxsub.info, xsub.info)
+
+ def test_subclasspreservation(self):
+ # Checks that masked_array(...,subok=True) preserves the class.
+ x = np.arange(5)
+ m = [0, 0, 1, 0, 0]
+ xinfo = [(i, j) for (i, j) in zip(x, m)]
+ xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
+ #
+ mxsub = masked_array(xsub, subok=False)
+ assert_(not isinstance(mxsub, MSubArray))
+ assert_(isinstance(mxsub, MaskedArray))
+ assert_equal(mxsub._mask, m)
+ #
+ mxsub = asarray(xsub)
+ assert_(not isinstance(mxsub, MSubArray))
+ assert_(isinstance(mxsub, MaskedArray))
+ assert_equal(mxsub._mask, m)
+ #
+ mxsub = masked_array(xsub, subok=True)
+ assert_(isinstance(mxsub, MSubArray))
+ assert_equal(mxsub.info, xsub.info)
+ assert_equal(mxsub._mask, xsub._mask)
+ #
+ mxsub = asanyarray(xsub)
+ assert_(isinstance(mxsub, MSubArray))
+ assert_equal(mxsub.info, xsub.info)
+ assert_equal(mxsub._mask, m)
+
+ def test_subclass_items(self):
+ """test that getter and setter go via baseclass"""
+ x = np.arange(5)
+ xcsub = ComplicatedSubArray(x)
+ mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
+ # getter should return a ComplicatedSubArray, even for single item
+ # first check we wrote ComplicatedSubArray correctly
+ assert_(isinstance(xcsub[1], ComplicatedSubArray))
+ assert_(isinstance(xcsub[1,...], ComplicatedSubArray))
+ assert_(isinstance(xcsub[1:4], ComplicatedSubArray))
+
+ # now that it propagates inside the MaskedArray
+ assert_(isinstance(mxcsub[1], ComplicatedSubArray))
+ assert_(isinstance(mxcsub[1,...].data, ComplicatedSubArray))
+ assert_(mxcsub[0] is masked)
+ assert_(isinstance(mxcsub[0,...].data, ComplicatedSubArray))
+ assert_(isinstance(mxcsub[1:4].data, ComplicatedSubArray))
+
+ # also for flattened version (which goes via MaskedIterator)
+ assert_(isinstance(mxcsub.flat[1].data, ComplicatedSubArray))
+ assert_(mxcsub.flat[0] is masked)
+ assert_(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray))
+
+ # setter should only work with ComplicatedSubArray input
+ # first check we wrote ComplicatedSubArray correctly
+ assert_raises(ValueError, xcsub.__setitem__, 1, x[4])
+ # now that it propagates inside the MaskedArray
+ assert_raises(ValueError, mxcsub.__setitem__, 1, x[4])
+ assert_raises(ValueError, mxcsub.__setitem__, slice(1, 4), x[1:4])
+ mxcsub[1] = xcsub[4]
+ mxcsub[1:4] = xcsub[1:4]
+ # also for flattened version (which goes via MaskedIterator)
+ assert_raises(ValueError, mxcsub.flat.__setitem__, 1, x[4])
+ assert_raises(ValueError, mxcsub.flat.__setitem__, slice(1, 4), x[1:4])
+ mxcsub.flat[1] = xcsub[4]
+ mxcsub.flat[1:4] = xcsub[1:4]
+
+ def test_subclass_nomask_items(self):
+ x = np.arange(5)
+ xcsub = ComplicatedSubArray(x)
+ mxcsub_nomask = masked_array(xcsub)
+
+ assert_(isinstance(mxcsub_nomask[1,...].data, ComplicatedSubArray))
+ assert_(isinstance(mxcsub_nomask[0,...].data, ComplicatedSubArray))
+
+ assert_(isinstance(mxcsub_nomask[1], ComplicatedSubArray))
+ assert_(isinstance(mxcsub_nomask[0], ComplicatedSubArray))
+
+ def test_subclass_repr(self):
+ """test that repr uses the name of the subclass
+ and 'array' for np.ndarray"""
+ x = np.arange(5)
+ mx = masked_array(x, mask=[True, False, True, False, False])
+ assert_startswith(repr(mx), 'masked_array')
+ xsub = SubArray(x)
+ mxsub = masked_array(xsub, mask=[True, False, True, False, False])
+ assert_startswith(repr(mxsub),
+ f'masked_{SubArray.__name__}(data=[--, 1, --, 3, 4]')
+
+ def test_subclass_str(self):
+ """test str with subclass that has overridden str, setitem"""
+ # first without override
+ x = np.arange(5)
+ xsub = SubArray(x)
+ mxsub = masked_array(xsub, mask=[True, False, True, False, False])
+ assert_equal(str(mxsub), '[-- 1 -- 3 4]')
+
+ xcsub = ComplicatedSubArray(x)
+ assert_raises(ValueError, xcsub.__setitem__, 0,
+ np.ma.core.masked_print_option)
+ mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
+ assert_equal(str(mxcsub), 'myprefix [-- 1 -- 3 4] mypostfix')
+
+ def test_pure_subclass_info_preservation(self):
+ # Test that ufuncs and methods conserve extra information consistently;
+ # see gh-7122.
+ arr1 = SubMaskedArray('test', data=[1,2,3,4,5,6])
+ arr2 = SubMaskedArray(data=[0,1,2,3,4,5])
+ diff1 = np.subtract(arr1, arr2)
+ assert_('info' in diff1._optinfo)
+ assert_(diff1._optinfo['info'] == 'test')
+ diff2 = arr1 - arr2
+ assert_('info' in diff2._optinfo)
+ assert_(diff2._optinfo['info'] == 'test')
+
+
+class ArrayNoInheritance:
+ """Quantity-like class that does not inherit from ndarray"""
+ def __init__(self, data, units):
+ self.magnitude = data
+ self.units = units
+
+ def __getattr__(self, attr):
+ return getattr(self.magnitude, attr)
+
+
+def test_array_no_inheritance():
+ data_masked = np.ma.array([1, 2, 3], mask=[True, False, True])
+ data_masked_units = ArrayNoInheritance(data_masked, 'meters')
+
+ # Get the masked representation of the Quantity-like class
+ new_array = np.ma.array(data_masked_units)
+ assert_equal(data_masked.data, new_array.data)
+ assert_equal(data_masked.mask, new_array.mask)
+ # Test sharing the mask
+ data_masked.mask = [True, False, False]
+ assert_equal(data_masked.mask, new_array.mask)
+ assert_(new_array.sharedmask)
+
+ # Get the masked representation of the Quantity-like class
+ new_array = np.ma.array(data_masked_units, copy=True)
+ assert_equal(data_masked.data, new_array.data)
+ assert_equal(data_masked.mask, new_array.mask)
+ # Test that the mask is not shared when copy=True
+ data_masked.mask = [True, False, True]
+ assert_equal([True, False, False], new_array.mask)
+ assert_(not new_array.sharedmask)
+
+ # Get the masked representation of the Quantity-like class
+ new_array = np.ma.array(data_masked_units, keep_mask=False)
+ assert_equal(data_masked.data, new_array.data)
+ # The change did not affect the original mask
+ assert_equal(data_masked.mask, [True, False, True])
+ # Test that the mask is False and not shared when keep_mask=False
+ assert_(not new_array.mask)
+ assert_(not new_array.sharedmask)
+
+
+class TestClassWrapping:
+ # Test suite for classes that wrap MaskedArrays
+
+ def setup_method(self):
+ m = np.ma.masked_array([1, 3, 5], mask=[False, True, False])
+ wm = WrappedArray(m)
+ self.data = (m, wm)
+
+ def test_masked_unary_operations(self):
+ # Tests masked_unary_operation
+ (m, wm) = self.data
+ with np.errstate(divide='ignore'):
+ assert_(isinstance(np.log(wm), WrappedArray))
+
+ def test_masked_binary_operations(self):
+ # Tests masked_binary_operation
+ (m, wm) = self.data
+ # Result should be a WrappedArray
+ assert_(isinstance(np.add(wm, wm), WrappedArray))
+ assert_(isinstance(np.add(m, wm), WrappedArray))
+ assert_(isinstance(np.add(wm, m), WrappedArray))
+ # add and '+' should call the same ufunc
+ assert_equal(np.add(m, wm), m + wm)
+ assert_(isinstance(np.hypot(m, wm), WrappedArray))
+ assert_(isinstance(np.hypot(wm, m), WrappedArray))
+ # Test domained binary operations
+ assert_(isinstance(np.divide(wm, m), WrappedArray))
+ assert_(isinstance(np.divide(m, wm), WrappedArray))
+ assert_equal(np.divide(wm, m) * m, np.divide(m, m) * wm)
+ # Test broadcasting
+ m2 = np.stack([m, m])
+ assert_(isinstance(np.divide(wm, m2), WrappedArray))
+ assert_(isinstance(np.divide(m2, wm), WrappedArray))
+ assert_equal(np.divide(m2, wm), np.divide(wm, m2))
+
+ def test_mixins_have_slots(self):
+ mixin = NDArrayOperatorsMixin()
+ # Should raise an error
+ assert_raises(AttributeError, mixin.__setattr__, "not_a_real_attr", 1)
+
+ m = np.ma.masked_array([1, 3, 5], mask=[False, True, False])
+ wm = WrappedArray(m)
+ assert_raises(AttributeError, wm.__setattr__, "not_an_attr", 2)