aboutsummaryrefslogtreecommitdiff
path: root/src/logistic.cpp
diff options
context:
space:
mode:
authorPjotr Prins2017-07-07 06:29:47 +0000
committerPjotr Prins2017-07-07 06:29:47 +0000
commitdd72b87354d1d3f6d3aa42ed0123a23880e9cb15 (patch)
treee08ca195b8ea77956a062a6843cf614e2d453191 /src/logistic.cpp
parent450341a7969b1da1d036be2dcdfab919e39d6473 (diff)
downloadpangemma-dd72b87354d1d3f6d3aa42ed0123a23880e9cb15.tar.gz
Some three compile time fixes for the GNU GCC 7.1.0 compiler on Linux.
This patch is a mess because we use different line endings. I propose to convert to standard Unix mode (as was the original GEMMA code). To convert with vim one can use set fileformat=unix Do not merge this pull request, we can handle te fixes later.
Diffstat (limited to 'src/logistic.cpp')
-rw-r--r--src/logistic.cpp1449
1 files changed, 724 insertions, 725 deletions
diff --git a/src/logistic.cpp b/src/logistic.cpp
index c1ddac1..f9edc68 100644
--- a/src/logistic.cpp
+++ b/src/logistic.cpp
@@ -1,725 +1,724 @@
-#include <stdio.h>
-#include <math.h>
-#include <gsl/gsl_matrix.h>
-#include <gsl/gsl_rng.h>
-#include <gsl/gsl_multimin.h>
-#include <gsl/gsl_sf.h>
-#include <gsl/gsl_linalg.h>
-#include "logistic.h"
-
-// I need to bundle all the data that goes to the function to optimze
-// together.
-typedef struct{
- gsl_matrix_int *X;
- gsl_vector_int *nlev;
- gsl_vector *y;
- gsl_matrix *Xc; // Continuous covariates matrix Nobs x Kc (NULL if not used).
- double lambdaL1;
- double lambdaL2;
-} fix_parm_mixed_T;
-
-double fLogit_mixed(gsl_vector *beta,
- gsl_matrix_int *X,
- gsl_vector_int *nlev,
- gsl_matrix *Xc,
- gsl_vector *y,
- double lambdaL1,
- double lambdaL2) {
- int n = y->size;
- int npar = beta->size;
- double total = 0;
- double aux = 0;
-
- // Changed loop start at 1 instead of 0 to avoid regularization of
- // beta_0*\/
- // #pragma omp parallel for reduction (+:total)
- for(int i = 1; i < npar; ++i)
- total += beta->data[i]*beta->data[i];
- total = (-total*lambdaL2/2);
- // #pragma omp parallel for reduction (+:aux)
- for(int i = 1; i < npar; ++i)
- aux += (beta->data[i]>0 ? beta->data[i] : -beta->data[i]);
- total = total-aux*lambdaL1;
- // #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y)
- // #reduction (+:total)
- for(int i = 0; i < n; ++i) {
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < X->size2; ++k) {
- if(gsl_matrix_int_get(X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
- iParm+=nlev->data[k]-1;
- }
- for(int k = 0; k < (Xc->size2); ++k)
- Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
- total += y->data[i]*Xbetai-gsl_sf_log_1plusx(gsl_sf_exp(Xbetai));
- }
- return -total;
-}
-
-void logistic_mixed_pred(gsl_vector *beta, // Vector of parameters
- // length = 1 + Sum_k(C_k -1)
- gsl_matrix_int *X, // Matrix Nobs x K
- gsl_vector_int *nlev, // Vector with number categories
- gsl_matrix *Xc, // Continuous covariates matrix:
- // obs x Kc (NULL if not used).
- gsl_vector *yhat){ // Vector of prob. predicted by
- // the logistic
- for(int i = 0; i < X->size1; ++i) {
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < X->size2; ++k) {
- if(gsl_matrix_int_get(X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
- iParm+=nlev->data[k]-1;
- }
- // Adding the continuous.
- for(int k = 0; k < (Xc->size2); ++k)
- Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
- yhat->data[i]=1/(1 + gsl_sf_exp(-Xbetai));
- }
-}
-
-
-// The gradient of f, df = (df/dx, df/dy).
-void wgsl_mixed_optim_df (const gsl_vector *beta, void *params,
- gsl_vector *out) {
- fix_parm_mixed_T *p = (fix_parm_mixed_T *)params;
- int n = p->y->size;
- int K = p->X->size2;
- int Kc = p->Xc->size2;
- int npar = beta->size;
-
- // Intitialize gradient out necessary?
- for(int i = 0; i < npar; ++i)
- out->data[i]= 0;
-
- // Changed loop start at 1 instead of 0 to avoid regularization of beta 0.
- for(int i = 1; i < npar; ++i)
- out->data[i]= p->lambdaL2*beta->data[i];
- for(int i = 1; i < npar; ++i)
- out->data[i]+= p->lambdaL1*((beta->data[i]>0)-(beta->data[i]<0));
-
- for(int i = 0; i < n; ++i) {
- double pn=0;
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm];
- iParm+=p->nlev->data[k]-1;
- }
-
- // Adding the continuous.
- for(int k = 0; k < Kc; ++k)
- Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm++];
-
- pn= -( p->y->data[i] - 1/(1 + gsl_sf_exp(-Xbetai)) );
-
- out->data[0]+= pn;
- iParm=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- out->data[gsl_matrix_int_get(p->X,i,k)-1+iParm]+=pn;
- iParm+=p->nlev->data[k]-1;
- }
-
- // Adding the continuous.
- for(int k = 0; k < Kc; ++k) {
- out->data[iParm++] += gsl_matrix_get(p->Xc,i,k)*pn;
- }
- }
-
-}
-
-// The Hessian of f.
-void wgsl_mixed_optim_hessian (const gsl_vector *beta, void *params,
- gsl_matrix *out) {
- fix_parm_mixed_T *p = (fix_parm_mixed_T *)params;
- int n = p->y->size;
- int K = p->X->size2;
- int Kc = p->Xc->size2;
- int npar = beta->size;
- gsl_vector *gn = gsl_vector_alloc(npar); // gn
-
- // Intitialize Hessian out necessary ???
- gsl_matrix_set_zero(out);
-
- /* Changed loop start at 1 instead of 0 to avoid regularization of beta 0*/
- for(int i = 1; i < npar; ++i)
- gsl_matrix_set(out,i,i,(p->lambdaL2)); // Double-check this.
-
- // L1 penalty not working yet, as not differentiable, I may need to
- // do coordinate descent (as in glm_net)
- for(int i = 0; i < n; ++i) {
- double pn=0;
- double aux=0;
- double Xbetai=beta->data[0];
- int iParm1=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm1];
- iParm1+=p->nlev->data[k]-1; //-1?
- }
-
- // Adding the continuous.
- for(int k = 0; k < Kc; ++k)
- Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm1++];
-
- pn= 1/(1 + gsl_sf_exp(-Xbetai));
-
- // Add a protection for pn very close to 0 or 1?
- aux=pn*(1-pn);
-
- // Calculate sub-gradient vector gn.
- gsl_vector_set_zero(gn);
- gn->data[0]= 1;
- iParm1=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- gn->data[gsl_matrix_int_get(p->X,i,k)-1+iParm1]=1;
- iParm1+=p->nlev->data[k]-1;
- }
-
- // Adding the continuous.
- for(int k = 0; k < Kc; ++k) {
- gn->data[iParm1++] = gsl_matrix_get(p->Xc,i,k);
- }
-
- for(int k1=0;k1<npar; ++k1)
- if(gn->data[k1]!=0)
- for(int k2=0;k2<npar; ++k2)
- if(gn->data[k2]!=0)
- *gsl_matrix_ptr(out,k1,k2) += (aux * gn->data[k1] * gn->data[k2]);
- }
- gsl_vector_free(gn);
-}
-
-double wgsl_mixed_optim_f(gsl_vector *v, void *params) {
- double mLogLik=0;
- fix_parm_mixed_T *p = (fix_parm_mixed_T *)params;
- mLogLik = fLogit_mixed(v,p->X,p->nlev,p->Xc,p->y,p->lambdaL1,p->lambdaL2);
- return mLogLik;
-}
-
-// Compute both f and df together.
-void
-wgsl_mixed_optim_fdf (gsl_vector *x, void *params, double *f, gsl_vector *df) {
- *f = wgsl_mixed_optim_f(x, params);
- wgsl_mixed_optim_df(x, params, df);
-}
-
-// Xc is the matrix of continuous covariates, Nobs x Kc (NULL if not used).
-int logistic_mixed_fit(gsl_vector *beta, gsl_matrix_int *X,
- gsl_vector_int *nlev, gsl_matrix *Xc,
- gsl_vector *y, double lambdaL1, double lambdaL2) {
- double mLogLik=0;
- fix_parm_mixed_T p;
- int npar = beta->size;
- int iter=0;
- double maxchange=0;
-
- // Intializing fix parameters.
- p.X=X;
- p.Xc=Xc;
- p.nlev=nlev;
- p.y=y;
- p.lambdaL1=lambdaL1;
- p.lambdaL2=lambdaL2;
-
- // Initial fit.
- mLogLik = wgsl_mixed_optim_f(beta,&p);
-
- gsl_matrix *myH = gsl_matrix_alloc(npar,npar); // Hessian matrix.
- gsl_vector *stBeta = gsl_vector_alloc(npar); // Direction to move.
-
- gsl_vector *myG = gsl_vector_alloc(npar); // Gradient.
- gsl_vector *tau = gsl_vector_alloc(npar); // tau for QR.
-
- for(iter=0;iter<100;iter++){
- wgsl_mixed_optim_hessian(beta,&p,myH); // Calculate Hessian.
- wgsl_mixed_optim_df(beta,&p,myG); // Calculate Gradient.
- gsl_linalg_QR_decomp(myH,tau); // Calculate next beta.
- gsl_linalg_QR_solve(myH,tau,myG,stBeta);
- gsl_vector_sub(beta,stBeta);
-
- // Monitor convergence.
- maxchange=0;
- for(int i=0;i<npar; i++)
- if(maxchange<fabs(stBeta->data[i]))
- maxchange=fabs(stBeta->data[i]);
-
- if(maxchange<1E-4)
- break;
- }
-
- // Final fit.
- mLogLik = wgsl_mixed_optim_f(beta,&p);
-
- gsl_vector_free (tau);
- gsl_vector_free (stBeta);
- gsl_vector_free (myG);
- gsl_matrix_free (myH);
-
- return 0;
-}
-
-/***************/
-/* Categorical */
-/***************/
-
-// I need to bundle all the data that goes to the function to optimze
-// together.
-typedef struct {
- gsl_matrix_int *X;
- gsl_vector_int *nlev;
- gsl_vector *y;
- double lambdaL1;
- double lambdaL2;
-} fix_parm_cat_T;
-
-double fLogit_cat (gsl_vector *beta, gsl_matrix_int *X, gsl_vector_int *nlev,
- gsl_vector *y, double lambdaL1, double lambdaL2) {
- int n = y->size;
- int npar = beta->size;
- double total = 0;
- double aux = 0;
-
- // omp_set_num_threads(ompthr); /\* Changed loop start at 1 instead
- // of 0 to avoid regularization of beta 0*\/ /\*#pragma omp parallel
- // for reduction (+:total)*\/
- for(int i = 1; i < npar; ++i)
- total += beta->data[i]*beta->data[i];
- total = (-total*lambdaL2/2);
-
- // /\*#pragma omp parallel for reduction (+:aux)*\/
- for(int i = 1; i < npar; ++i)
- aux += (beta->data[i]>0 ? beta->data[i] : -beta->data[i]);
- total = total-aux*lambdaL1;
-
- // #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y)
- // #reduction (+:total)
- for(int i = 0; i < n; ++i) {
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < X->size2; ++k) {
- if(gsl_matrix_int_get(X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
- iParm+=nlev->data[k]-1;
- }
- total += y->data[i]*Xbetai-gsl_sf_log_1plusx(gsl_sf_exp(Xbetai));
- }
- return -total;
-}
-
-void logistic_cat_pred (gsl_vector *beta, // Vector of parameters
- // length = 1 + Sum_k(C_k-1).
- gsl_matrix_int *X, // Matrix Nobs x K
- gsl_vector_int *nlev, // Vector with #categories
- gsl_vector *yhat){ // Vector of prob. predicted by
- // the logistic.
- for(int i = 0; i < X->size1; ++i) {
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < X->size2; ++k) {
- if(gsl_matrix_int_get(X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
- iParm+=nlev->data[k]-1;
- }
- yhat->data[i]=1/(1 + gsl_sf_exp(-Xbetai));
- }
-}
-
-// The gradient of f, df = (df/dx, df/dy).
-void wgsl_cat_optim_df (const gsl_vector *beta, void *params,
- gsl_vector *out) {
- fix_parm_cat_T *p = (fix_parm_cat_T *)params;
- int n = p->y->size;
- int K = p->X->size2;
- int npar = beta->size;
-
- // Intitialize gradient out necessary?
- for(int i = 0; i < npar; ++i)
- out->data[i]= 0;
-
- // Changed loop start at 1 instead of 0 to avoid regularization of beta 0.
- for(int i = 1; i < npar; ++i)
- out->data[i]= p->lambdaL2*beta->data[i];
- for(int i = 1; i < npar; ++i)
- out->data[i]+= p->lambdaL1*((beta->data[i]>0)-(beta->data[i]<0));
-
- for(int i = 0; i < n; ++i) {
- double pn=0;
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm];
- iParm+=p->nlev->data[k]-1;
- }
-
- pn= -( p->y->data[i] - 1/(1 + gsl_sf_exp(-Xbetai)) );
-
- out->data[0]+= pn;
- iParm=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- out->data[gsl_matrix_int_get(p->X,i,k)-1+iParm]+=pn;
- iParm+=p->nlev->data[k]-1;
- }
- }
-}
-
-// The Hessian of f.
-void wgsl_cat_optim_hessian (const gsl_vector *beta, void *params,
- gsl_matrix *out) {
- fix_parm_cat_T *p = (fix_parm_cat_T *)params;
- int n = p->y->size;
- int K = p->X->size2;
- int npar = beta->size;
-
- // Intitialize Hessian out necessary.
- gsl_matrix_set_zero(out);
-
- // Changed loop start at 1 instead of 0 to avoid regularization of beta.
- for(int i = 1; i < npar; ++i)
- gsl_matrix_set(out,i,i,(p->lambdaL2)); // Double-check this.
-
- // L1 penalty not working yet, as not differentiable, I may need to
- // do coordinate descent (as in glm_net).
- for(int i = 0; i < n; ++i) {
- double pn=0;
- double aux=0;
- double Xbetai=beta->data[0];
- int iParm2=1;
- int iParm1=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm1];
- iParm1+=p->nlev->data[k]-1; //-1?
- }
-
- pn= 1/(1 + gsl_sf_exp(-Xbetai));
-
- // Add a protection for pn very close to 0 or 1?
- aux=pn*(1-pn);
- *gsl_matrix_ptr(out,0,0)+=aux;
- iParm2=1;
- for(int k2 = 0; k2 < K; ++k2) {
- if(gsl_matrix_int_get(p->X,i,k2)>0)
- *gsl_matrix_ptr(out,0,gsl_matrix_int_get(p->X,i,k2)-1+iParm2)+=aux;
- iParm2+=p->nlev->data[k2]-1; //-1?
- }
- iParm1=1;
- for(int k1 = 0; k1 < K; ++k1) {
- if(gsl_matrix_int_get(p->X,i,k1)>0)
- *gsl_matrix_ptr(out,gsl_matrix_int_get(p->X,i,k1)-1+iParm1,0)+=aux;
- iParm2=1;
- for(int k2 = 0; k2 < K; ++k2) {
- if((gsl_matrix_int_get(p->X,i,k1)>0) &&
- (gsl_matrix_int_get(p->X,i,k2)>0))
- *gsl_matrix_ptr(out
- ,gsl_matrix_int_get(p->X,i,k1)-1+iParm1
- ,gsl_matrix_int_get(p->X,i,k2)-1+iParm2
- )+=aux;
- iParm2+=p->nlev->data[k2]-1; //-1?
- }
- iParm1+=p->nlev->data[k1]-1; //-1?
- }
- }
-}
-
-double wgsl_cat_optim_f(gsl_vector *v, void *params) {
- double mLogLik=0;
- fix_parm_cat_T *p = (fix_parm_cat_T *)params;
- mLogLik = fLogit_cat(v,p->X,p->nlev,p->y,p->lambdaL1,p->lambdaL2);
- return mLogLik;
-}
-
-// Compute both f and df together.
-void wgsl_cat_optim_fdf (gsl_vector *x, void *params, double *f,
- gsl_vector *df) {
- *f = wgsl_cat_optim_f(x, params);
- wgsl_cat_optim_df(x, params, df);
-}
-
-int logistic_cat_fit(gsl_vector *beta,
- gsl_matrix_int *X,
- gsl_vector_int *nlev,
- gsl_vector *y,
- double lambdaL1,
- double lambdaL2) {
- double mLogLik=0;
- fix_parm_cat_T p;
- int npar = beta->size;
- int iter=0;
- double maxchange=0;
-
- // Intializing fix parameters.
- p.X=X;
- p.nlev=nlev;
- p.y=y;
- p.lambdaL1=lambdaL1;
- p.lambdaL2=lambdaL2;
-
- // Initial fit.
- mLogLik = wgsl_cat_optim_f(beta,&p);
-
- gsl_matrix *myH = gsl_matrix_alloc(npar,npar); // Hessian matrix.
- gsl_vector *stBeta = gsl_vector_alloc(npar); // Direction to move.
-
- gsl_vector *myG = gsl_vector_alloc(npar); // Gradient.
- gsl_vector *tau = gsl_vector_alloc(npar); // tau for QR.
-
- for(iter=0;iter<100;iter++){
- wgsl_cat_optim_hessian(beta,&p,myH); // Calculate Hessian.
- wgsl_cat_optim_df(beta,&p,myG); // Calculate Gradient.
- gsl_linalg_QR_decomp(myH,tau); // Calculate next beta.
- gsl_linalg_QR_solve(myH,tau,myG,stBeta);
- gsl_vector_sub(beta,stBeta);
-
- // Monitor convergence.
- maxchange=0;
- for(int i=0;i<npar; i++)
- if(maxchange<fabs(stBeta->data[i]))
- maxchange=fabs(stBeta->data[i]);
-
-#ifdef _RPR_DEBUG_
- mLogLik = wgsl_cat_optim_f(beta,&p);
-#endif
-
- if(maxchange<1E-4)
- break;
- }
-
- // Final fit.
- mLogLik = wgsl_cat_optim_f(beta,&p);
-
- gsl_vector_free (tau);
- gsl_vector_free (stBeta);
- gsl_vector_free (myG);
- gsl_matrix_free (myH);
-
- return 0;
-}
-
-/***************/
-/* Continuous */
-/***************/
-
-// I need to bundle all the data that goes to the function to optimze
-// together.
-typedef struct{
- gsl_matrix *Xc; // continuous covariates; Matrix Nobs x Kc
- gsl_vector *y;
- double lambdaL1;
- double lambdaL2;
-}fix_parm_cont_T;
-
-double fLogit_cont(gsl_vector *beta, gsl_matrix *Xc, gsl_vector *y,
- double lambdaL1, double lambdaL2) {
- int n = y->size;
- int npar = beta->size;
- double total = 0;
- double aux = 0;
-
- // omp_set_num_threads(ompthr); /\* Changed loop start at 1 instead
- // of 0 to avoid regularization of beta_0*\/ /\*#pragma omp parallel
- // for reduction (+:total)*\/
- for(int i = 1; i < npar; ++i)
- total += beta->data[i]*beta->data[i];
- total = (-total*lambdaL2/2);
-
- // /\*#pragma omp parallel for reduction (+:aux)*\/
- for(int i = 1; i < npar; ++i)
- aux += (beta->data[i]>0 ? beta->data[i] : -beta->data[i]);
- total = total-aux*lambdaL1;
-
- // #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y)
- // #reduction (+:total)
- for(int i = 0; i < n; ++i) {
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < (Xc->size2); ++k)
- Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
- total += y->data[i]*Xbetai-gsl_sf_log_1plusx(gsl_sf_exp(Xbetai));
- }
- return -total;
-}
-
-void logistic_cont_pred(gsl_vector *beta, // Vector of parameters
- // length = 1 + Sum_k(C_k-1).
- gsl_matrix *Xc, // Continuous covariates matrix,
- // Nobs x Kc (NULL if not used).
- ,gsl_vector *yhat) { // Vector of prob. predicted by
- // the logistic.
- for(int i = 0; i < Xc->size1; ++i) {
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < (Xc->size2); ++k)
- Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
- yhat->data[i]=1/(1 + gsl_sf_exp(-Xbetai));
- }
-}
-
-// The gradient of f, df = (df/dx, df/dy).
-void wgsl_cont_optim_df (const gsl_vector *beta, void *params,
- gsl_vector *out) {
- fix_parm_cont_T *p = (fix_parm_cont_T *)params;
- int n = p->y->size;
- int Kc = p->Xc->size2;
- int npar = beta->size;
-
- // Intitialize gradient out necessary?
- for(int i = 0; i < npar; ++i)
- out->data[i]= 0;
-
- // Changed loop start at 1 instead of 0 to avoid regularization of beta 0.
- for(int i = 1; i < npar; ++i)
- out->data[i]= p->lambdaL2*beta->data[i];
- for(int i = 1; i < npar; ++i)
- out->data[i]+= p->lambdaL1*((beta->data[i]>0)-(beta->data[i]<0));
-
- for(int i = 0; i < n; ++i) {
- double pn=0;
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < Kc; ++k)
- Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm++];
-
- pn= -( p->y->data[i] - 1/(1 + gsl_sf_exp(-Xbetai)) );
-
- out->data[0]+= pn;
- iParm=1;
-
- // Adding the continuous.
- for(int k = 0; k < Kc; ++k) {
- out->data[iParm++] += gsl_matrix_get(p->Xc,i,k)*pn;
- }
- }
-}
-
-// The Hessian of f.
-void wgsl_cont_optim_hessian (const gsl_vector *beta, void *params,
- gsl_matrix *out) {
- fix_parm_cont_T *p = (fix_parm_cont_T *)params;
- int n = p->y->size;
- int Kc = p->Xc->size2;
- int npar = beta->size;
- gsl_vector *gn = gsl_vector_alloc(npar); // gn.
-
- // Intitialize Hessian out necessary ???
-
- gsl_matrix_set_zero(out);
-
- // Changed loop start at 1 instead of 0 to avoid regularization of
- // beta 0.
- for(int i = 1; i < npar; ++i)
- gsl_matrix_set(out,i,i,(p->lambdaL2)); // Double-check this.
-
- // L1 penalty not working yet, as not differentiable, I may need to
- // do coordinate descent (as in glm_net).
- for(int i = 0; i < n; ++i) {
- double pn=0;
- double aux=0;
- double Xbetai=beta->data[0];
- int iParm1=1;
- for(int k = 0; k < Kc; ++k)
- Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm1++];
-
- pn= 1/(1 + gsl_sf_exp(-Xbetai));
-
- // Add a protection for pn very close to 0 or 1?
- aux=pn*(1-pn);
-
- // Calculate sub-gradient vector gn.
- gsl_vector_set_zero(gn);
- gn->data[0]= 1;
- iParm1=1;
- for(int k = 0; k < Kc; ++k) {
- gn->data[iParm1++] = gsl_matrix_get(p->Xc,i,k);
- }
-
- for(int k1=0;k1<npar; ++k1)
- if(gn->data[k1]!=0)
- for(int k2=0;k2<npar; ++k2)
- if(gn->data[k2]!=0)
- *gsl_matrix_ptr(out,k1,k2) += (aux * gn->data[k1] * gn->data[k2]);
- }
- gsl_vector_free(gn);
-}
-
-double wgsl_cont_optim_f(gsl_vector *v, void *params) {
- double mLogLik=0;
- fix_parm_cont_T *p = (fix_parm_cont_T *)params;
- mLogLik = fLogit_cont(v,p->Xc,p->y,p->lambdaL1,p->lambdaL2);
- return mLogLik;
-}
-
-// Compute both f and df together.
-void wgsl_cont_optim_fdf (gsl_vector *x, void *params,
- double *f, gsl_vector *df) {
- *f = wgsl_cont_optim_f(x, params);
- wgsl_cont_optim_df(x, params, df);
-}
-
-int logistic_cont_fit (gsl_vector *beta,
- gsl_matrix *Xc, // Continuous covariates matrix,
- // Nobs x Kc (NULL if not used).
- gsl_vector *y,
- double lambdaL1,
- double lambdaL2) {
-
- double mLogLik=0;
- fix_parm_cont_T p;
- int npar = beta->size;
- int iter=0;
- double maxchange=0;
-
- // Initializing fix parameters.
- p.Xc=Xc;
- p.y=y;
- p.lambdaL1=lambdaL1;
- p.lambdaL2=lambdaL2;
-
- // Initial fit.
- mLogLik = wgsl_cont_optim_f(beta,&p);
-
- gsl_matrix *myH = gsl_matrix_alloc(npar,npar); // Hessian matrix.
- gsl_vector *stBeta = gsl_vector_alloc(npar); // Direction to move.
-
- gsl_vector *myG = gsl_vector_alloc(npar); // Gradient.
- gsl_vector *tau = gsl_vector_alloc(npar); // tau for QR.
-
- for(iter=0;iter<100;iter++){
- wgsl_cont_optim_hessian(beta,&p,myH); // Calculate Hessian.
- wgsl_cont_optim_df(beta,&p,myG); // Calculate Gradient.
- gsl_linalg_QR_decomp(myH,tau); // Calculate next beta.
- gsl_linalg_QR_solve(myH,tau,myG,stBeta);
- gsl_vector_sub(beta,stBeta);
-
- // Monitor convergence.
- maxchange=0;
- for(int i=0;i<npar; i++)
- if(maxchange<fabs(stBeta->data[i]))
- maxchange=fabs(stBeta->data[i]);
-
-#ifdef _RPR_DEBUG_
- mLogLik = wgsl_cont_optim_f(beta,&p);
-#endif
-
- if(maxchange<1E-4)
- break;
- }
-
- // Final fit.
- mLogLik = wgsl_cont_optim_f(beta,&p);
-
- gsl_vector_free (tau);
- gsl_vector_free (stBeta);
- gsl_vector_free (myG);
- gsl_matrix_free (myH);
-
- return 0;
-}
-
+#include <stdio.h>
+#include <math.h>
+#include <gsl/gsl_matrix.h>
+#include <gsl/gsl_rng.h>
+#include <gsl/gsl_multimin.h>
+#include <gsl/gsl_sf.h>
+#include <gsl/gsl_linalg.h>
+#include "logistic.h"
+
+// I need to bundle all the data that goes to the function to optimze
+// together.
+typedef struct{
+ gsl_matrix_int *X;
+ gsl_vector_int *nlev;
+ gsl_vector *y;
+ gsl_matrix *Xc; // Continuous covariates matrix Nobs x Kc (NULL if not used).
+ double lambdaL1;
+ double lambdaL2;
+} fix_parm_mixed_T;
+
+double fLogit_mixed(gsl_vector *beta,
+ gsl_matrix_int *X,
+ gsl_vector_int *nlev,
+ gsl_matrix *Xc,
+ gsl_vector *y,
+ double lambdaL1,
+ double lambdaL2) {
+ int n = y->size;
+ int npar = beta->size;
+ double total = 0;
+ double aux = 0;
+
+ // Changed loop start at 1 instead of 0 to avoid regularization of
+ // beta_0*\/
+ // #pragma omp parallel for reduction (+:total)
+ for(int i = 1; i < npar; ++i)
+ total += beta->data[i]*beta->data[i];
+ total = (-total*lambdaL2/2);
+ // #pragma omp parallel for reduction (+:aux)
+ for(int i = 1; i < npar; ++i)
+ aux += (beta->data[i]>0 ? beta->data[i] : -beta->data[i]);
+ total = total-aux*lambdaL1;
+ // #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y)
+ // #reduction (+:total)
+ for(int i = 0; i < n; ++i) {
+ double Xbetai=beta->data[0];
+ int iParm=1;
+ for(int k = 0; k < X->size2; ++k) {
+ if(gsl_matrix_int_get(X,i,k)>0)
+ Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
+ iParm+=nlev->data[k]-1;
+ }
+ for(int k = 0; k < (Xc->size2); ++k)
+ Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
+ total += y->data[i]*Xbetai-gsl_sf_log_1plusx(gsl_sf_exp(Xbetai));
+ }
+ return -total;
+}
+
+void logistic_mixed_pred(gsl_vector *beta, // Vector of parameters
+ // length = 1 + Sum_k(C_k -1)
+ gsl_matrix_int *X, // Matrix Nobs x K
+ gsl_vector_int *nlev, // Vector with number categories
+ gsl_matrix *Xc, // Continuous covariates matrix:
+ // obs x Kc (NULL if not used).
+ gsl_vector *yhat){ // Vector of prob. predicted by
+ // the logistic
+ for(int i = 0; i < X->size1; ++i) {
+ double Xbetai=beta->data[0];
+ int iParm=1;
+ for(int k = 0; k < X->size2; ++k) {
+ if(gsl_matrix_int_get(X,i,k)>0)
+ Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
+ iParm+=nlev->data[k]-1;
+ }
+ // Adding the continuous.
+ for(int k = 0; k < (Xc->size2); ++k)
+ Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
+ yhat->data[i]=1/(1 + gsl_sf_exp(-Xbetai));
+ }
+}
+
+
+// The gradient of f, df = (df/dx, df/dy).
+void wgsl_mixed_optim_df (const gsl_vector *beta, void *params,
+ gsl_vector *out) {
+ fix_parm_mixed_T *p = (fix_parm_mixed_T *)params;
+ int n = p->y->size;
+ int K = p->X->size2;
+ int Kc = p->Xc->size2;
+ int npar = beta->size;
+
+ // Intitialize gradient out necessary?
+ for(int i = 0; i < npar; ++i)
+ out->data[i]= 0;
+
+ // Changed loop start at 1 instead of 0 to avoid regularization of beta 0.
+ for(int i = 1; i < npar; ++i)
+ out->data[i]= p->lambdaL2*beta->data[i];
+ for(int i = 1; i < npar; ++i)
+ out->data[i]+= p->lambdaL1*((beta->data[i]>0)-(beta->data[i]<0));
+
+ for(int i = 0; i < n; ++i) {
+ double pn=0;
+ double Xbetai=beta->data[0];
+ int iParm=1;
+ for(int k = 0; k < K; ++k) {
+ if(gsl_matrix_int_get(p->X,i,k)>0)
+ Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm];
+ iParm+=p->nlev->data[k]-1;
+ }
+
+ // Adding the continuous.
+ for(int k = 0; k < Kc; ++k)
+ Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm++];
+
+ pn= -( p->y->data[i] - 1/(1 + gsl_sf_exp(-Xbetai)) );
+
+ out->data[0]+= pn;
+ iParm=1;
+ for(int k = 0; k < K; ++k) {
+ if(gsl_matrix_int_get(p->X,i,k)>0)
+ out->data[gsl_matrix_int_get(p->X,i,k)-1+iParm]+=pn;
+ iParm+=p->nlev->data[k]-1;
+ }
+
+ // Adding the continuous.
+ for(int k = 0; k < Kc; ++k) {
+ out->data[iParm++] += gsl_matrix_get(p->Xc,i,k)*pn;
+ }
+ }
+
+}
+
+// The Hessian of f.
+void wgsl_mixed_optim_hessian (const gsl_vector *beta, void *params,
+ gsl_matrix *out) {
+ fix_parm_mixed_T *p = (fix_parm_mixed_T *)params;
+ int n = p->y->size;
+ int K = p->X->size2;
+ int Kc = p->Xc->size2;
+ int npar = beta->size;
+ gsl_vector *gn = gsl_vector_alloc(npar); // gn
+
+ // Intitialize Hessian out necessary ???
+ gsl_matrix_set_zero(out);
+
+ /* Changed loop start at 1 instead of 0 to avoid regularization of beta 0*/
+ for(int i = 1; i < npar; ++i)
+ gsl_matrix_set(out,i,i,(p->lambdaL2)); // Double-check this.
+
+ // L1 penalty not working yet, as not differentiable, I may need to
+ // do coordinate descent (as in glm_net)
+ for(int i = 0; i < n; ++i) {
+ double pn=0;
+ double aux=0;
+ double Xbetai=beta->data[0];
+ int iParm1=1;
+ for(int k = 0; k < K; ++k) {
+ if(gsl_matrix_int_get(p->X,i,k)>0)
+ Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm1];
+ iParm1+=p->nlev->data[k]-1; //-1?
+ }
+
+ // Adding the continuous.
+ for(int k = 0; k < Kc; ++k)
+ Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm1++];
+
+ pn= 1/(1 + gsl_sf_exp(-Xbetai));
+
+ // Add a protection for pn very close to 0 or 1?
+ aux=pn*(1-pn);
+
+ // Calculate sub-gradient vector gn.
+ gsl_vector_set_zero(gn);
+ gn->data[0]= 1;
+ iParm1=1;
+ for(int k = 0; k < K; ++k) {
+ if(gsl_matrix_int_get(p->X,i,k)>0)
+ gn->data[gsl_matrix_int_get(p->X,i,k)-1+iParm1]=1;
+ iParm1+=p->nlev->data[k]-1;
+ }
+
+ // Adding the continuous.
+ for(int k = 0; k < Kc; ++k) {
+ gn->data[iParm1++] = gsl_matrix_get(p->Xc,i,k);
+ }
+
+ for(int k1=0;k1<npar; ++k1)
+ if(gn->data[k1]!=0)
+ for(int k2=0;k2<npar; ++k2)
+ if(gn->data[k2]!=0)
+ *gsl_matrix_ptr(out,k1,k2) += (aux * gn->data[k1] * gn->data[k2]);
+ }
+ gsl_vector_free(gn);
+}
+
+double wgsl_mixed_optim_f(gsl_vector *v, void *params) {
+ double mLogLik=0;
+ fix_parm_mixed_T *p = (fix_parm_mixed_T *)params;
+ mLogLik = fLogit_mixed(v,p->X,p->nlev,p->Xc,p->y,p->lambdaL1,p->lambdaL2);
+ return mLogLik;
+}
+
+// Compute both f and df together.
+void
+wgsl_mixed_optim_fdf (gsl_vector *x, void *params, double *f, gsl_vector *df) {
+ *f = wgsl_mixed_optim_f(x, params);
+ wgsl_mixed_optim_df(x, params, df);
+}
+
+// Xc is the matrix of continuous covariates, Nobs x Kc (NULL if not used).
+int logistic_mixed_fit(gsl_vector *beta, gsl_matrix_int *X,
+ gsl_vector_int *nlev, gsl_matrix *Xc,
+ gsl_vector *y, double lambdaL1, double lambdaL2) {
+ double mLogLik=0;
+ fix_parm_mixed_T p;
+ int npar = beta->size;
+ int iter=0;
+ double maxchange=0;
+
+ // Intializing fix parameters.
+ p.X=X;
+ p.Xc=Xc;
+ p.nlev=nlev;
+ p.y=y;
+ p.lambdaL1=lambdaL1;
+ p.lambdaL2=lambdaL2;
+
+ // Initial fit.
+ mLogLik = wgsl_mixed_optim_f(beta,&p);
+
+ gsl_matrix *myH = gsl_matrix_alloc(npar,npar); // Hessian matrix.
+ gsl_vector *stBeta = gsl_vector_alloc(npar); // Direction to move.
+
+ gsl_vector *myG = gsl_vector_alloc(npar); // Gradient.
+ gsl_vector *tau = gsl_vector_alloc(npar); // tau for QR.
+
+ for(iter=0;iter<100;iter++){
+ wgsl_mixed_optim_hessian(beta,&p,myH); // Calculate Hessian.
+ wgsl_mixed_optim_df(beta,&p,myG); // Calculate Gradient.
+ gsl_linalg_QR_decomp(myH,tau); // Calculate next beta.
+ gsl_linalg_QR_solve(myH,tau,myG,stBeta);
+ gsl_vector_sub(beta,stBeta);
+
+ // Monitor convergence.
+ maxchange=0;
+ for(int i=0;i<npar; i++)
+ if(maxchange<fabs(stBeta->data[i]))
+ maxchange=fabs(stBeta->data[i]);
+
+ if(maxchange<1E-4)
+ break;
+ }
+
+ // Final fit.
+ mLogLik = wgsl_mixed_optim_f(beta,&p);
+
+ gsl_vector_free (tau);
+ gsl_vector_free (stBeta);
+ gsl_vector_free (myG);
+ gsl_matrix_free (myH);
+
+ return 0;
+}
+
+/***************/
+/* Categorical */
+/***************/
+
+// I need to bundle all the data that goes to the function to optimze
+// together.
+typedef struct {
+ gsl_matrix_int *X;
+ gsl_vector_int *nlev;
+ gsl_vector *y;
+ double lambdaL1;
+ double lambdaL2;
+} fix_parm_cat_T;
+
+double fLogit_cat (gsl_vector *beta, gsl_matrix_int *X, gsl_vector_int *nlev,
+ gsl_vector *y, double lambdaL1, double lambdaL2) {
+ int n = y->size;
+ int npar = beta->size;
+ double total = 0;
+ double aux = 0;
+
+ // omp_set_num_threads(ompthr); /\* Changed loop start at 1 instead
+ // of 0 to avoid regularization of beta 0*\/ /\*#pragma omp parallel
+ // for reduction (+:total)*\/
+ for(int i = 1; i < npar; ++i)
+ total += beta->data[i]*beta->data[i];
+ total = (-total*lambdaL2/2);
+
+ // /\*#pragma omp parallel for reduction (+:aux)*\/
+ for(int i = 1; i < npar; ++i)
+ aux += (beta->data[i]>0 ? beta->data[i] : -beta->data[i]);
+ total = total-aux*lambdaL1;
+
+ // #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y)
+ // #reduction (+:total)
+ for(int i = 0; i < n; ++i) {
+ double Xbetai=beta->data[0];
+ int iParm=1;
+ for(int k = 0; k < X->size2; ++k) {
+ if(gsl_matrix_int_get(X,i,k)>0)
+ Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
+ iParm+=nlev->data[k]-1;
+ }
+ total += y->data[i]*Xbetai-gsl_sf_log_1plusx(gsl_sf_exp(Xbetai));
+ }
+ return -total;
+}
+
+void logistic_cat_pred (gsl_vector *beta, // Vector of parameters
+ // length = 1 + Sum_k(C_k-1).
+ gsl_matrix_int *X, // Matrix Nobs x K
+ gsl_vector_int *nlev, // Vector with #categories
+ gsl_vector *yhat){ // Vector of prob. predicted by
+ // the logistic.
+ for(int i = 0; i < X->size1; ++i) {
+ double Xbetai=beta->data[0];
+ int iParm=1;
+ for(int k = 0; k < X->size2; ++k) {
+ if(gsl_matrix_int_get(X,i,k)>0)
+ Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
+ iParm+=nlev->data[k]-1;
+ }
+ yhat->data[i]=1/(1 + gsl_sf_exp(-Xbetai));
+ }
+}
+
+// The gradient of f, df = (df/dx, df/dy).
+void wgsl_cat_optim_df (const gsl_vector *beta, void *params,
+ gsl_vector *out) {
+ fix_parm_cat_T *p = (fix_parm_cat_T *)params;
+ int n = p->y->size;
+ int K = p->X->size2;
+ int npar = beta->size;
+
+ // Intitialize gradient out necessary?
+ for(int i = 0; i < npar; ++i)
+ out->data[i]= 0;
+
+ // Changed loop start at 1 instead of 0 to avoid regularization of beta 0.
+ for(int i = 1; i < npar; ++i)
+ out->data[i]= p->lambdaL2*beta->data[i];
+ for(int i = 1; i < npar; ++i)
+ out->data[i]+= p->lambdaL1*((beta->data[i]>0)-(beta->data[i]<0));
+
+ for(int i = 0; i < n; ++i) {
+ double pn=0;
+ double Xbetai=beta->data[0];
+ int iParm=1;
+ for(int k = 0; k < K; ++k) {
+ if(gsl_matrix_int_get(p->X,i,k)>0)
+ Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm];
+ iParm+=p->nlev->data[k]-1;
+ }
+
+ pn= -( p->y->data[i] - 1/(1 + gsl_sf_exp(-Xbetai)) );
+
+ out->data[0]+= pn;
+ iParm=1;
+ for(int k = 0; k < K; ++k) {
+ if(gsl_matrix_int_get(p->X,i,k)>0)
+ out->data[gsl_matrix_int_get(p->X,i,k)-1+iParm]+=pn;
+ iParm+=p->nlev->data[k]-1;
+ }
+ }
+}
+
+// The Hessian of f.
+void wgsl_cat_optim_hessian (const gsl_vector *beta, void *params,
+ gsl_matrix *out) {
+ fix_parm_cat_T *p = (fix_parm_cat_T *)params;
+ int n = p->y->size;
+ int K = p->X->size2;
+ int npar = beta->size;
+
+ // Intitialize Hessian out necessary.
+ gsl_matrix_set_zero(out);
+
+ // Changed loop start at 1 instead of 0 to avoid regularization of beta.
+ for(int i = 1; i < npar; ++i)
+ gsl_matrix_set(out,i,i,(p->lambdaL2)); // Double-check this.
+
+ // L1 penalty not working yet, as not differentiable, I may need to
+ // do coordinate descent (as in glm_net).
+ for(int i = 0; i < n; ++i) {
+ double pn=0;
+ double aux=0;
+ double Xbetai=beta->data[0];
+ int iParm2=1;
+ int iParm1=1;
+ for(int k = 0; k < K; ++k) {
+ if(gsl_matrix_int_get(p->X,i,k)>0)
+ Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm1];
+ iParm1+=p->nlev->data[k]-1; //-1?
+ }
+
+ pn= 1/(1 + gsl_sf_exp(-Xbetai));
+
+ // Add a protection for pn very close to 0 or 1?
+ aux=pn*(1-pn);
+ *gsl_matrix_ptr(out,0,0)+=aux;
+ iParm2=1;
+ for(int k2 = 0; k2 < K; ++k2) {
+ if(gsl_matrix_int_get(p->X,i,k2)>0)
+ *gsl_matrix_ptr(out,0,gsl_matrix_int_get(p->X,i,k2)-1+iParm2)+=aux;
+ iParm2+=p->nlev->data[k2]-1; //-1?
+ }
+ iParm1=1;
+ for(int k1 = 0; k1 < K; ++k1) {
+ if(gsl_matrix_int_get(p->X,i,k1)>0)
+ *gsl_matrix_ptr(out,gsl_matrix_int_get(p->X,i,k1)-1+iParm1,0)+=aux;
+ iParm2=1;
+ for(int k2 = 0; k2 < K; ++k2) {
+ if((gsl_matrix_int_get(p->X,i,k1)>0) &&
+ (gsl_matrix_int_get(p->X,i,k2)>0))
+ *gsl_matrix_ptr(out
+ ,gsl_matrix_int_get(p->X,i,k1)-1+iParm1
+ ,gsl_matrix_int_get(p->X,i,k2)-1+iParm2
+ )+=aux;
+ iParm2+=p->nlev->data[k2]-1; //-1?
+ }
+ iParm1+=p->nlev->data[k1]-1; //-1?
+ }
+ }
+}
+
+double wgsl_cat_optim_f(gsl_vector *v, void *params) {
+ double mLogLik=0;
+ fix_parm_cat_T *p = (fix_parm_cat_T *)params;
+ mLogLik = fLogit_cat(v,p->X,p->nlev,p->y,p->lambdaL1,p->lambdaL2);
+ return mLogLik;
+}
+
+// Compute both f and df together.
+void wgsl_cat_optim_fdf (gsl_vector *x, void *params, double *f,
+ gsl_vector *df) {
+ *f = wgsl_cat_optim_f(x, params);
+ wgsl_cat_optim_df(x, params, df);
+}
+
+int logistic_cat_fit(gsl_vector *beta,
+ gsl_matrix_int *X,
+ gsl_vector_int *nlev,
+ gsl_vector *y,
+ double lambdaL1,
+ double lambdaL2) {
+ double mLogLik=0;
+ fix_parm_cat_T p;
+ int npar = beta->size;
+ int iter=0;
+ double maxchange=0;
+
+ // Intializing fix parameters.
+ p.X=X;
+ p.nlev=nlev;
+ p.y=y;
+ p.lambdaL1=lambdaL1;
+ p.lambdaL2=lambdaL2;
+
+ // Initial fit.
+ mLogLik = wgsl_cat_optim_f(beta,&p);
+
+ gsl_matrix *myH = gsl_matrix_alloc(npar,npar); // Hessian matrix.
+ gsl_vector *stBeta = gsl_vector_alloc(npar); // Direction to move.
+
+ gsl_vector *myG = gsl_vector_alloc(npar); // Gradient.
+ gsl_vector *tau = gsl_vector_alloc(npar); // tau for QR.
+
+ for(iter=0;iter<100;iter++){
+ wgsl_cat_optim_hessian(beta,&p,myH); // Calculate Hessian.
+ wgsl_cat_optim_df(beta,&p,myG); // Calculate Gradient.
+ gsl_linalg_QR_decomp(myH,tau); // Calculate next beta.
+ gsl_linalg_QR_solve(myH,tau,myG,stBeta);
+ gsl_vector_sub(beta,stBeta);
+
+ // Monitor convergence.
+ maxchange=0;
+ for(int i=0;i<npar; i++)
+ if(maxchange<fabs(stBeta->data[i]))
+ maxchange=fabs(stBeta->data[i]);
+
+#ifdef _RPR_DEBUG_
+ mLogLik = wgsl_cat_optim_f(beta,&p);
+#endif
+
+ if(maxchange<1E-4)
+ break;
+ }
+
+ // Final fit.
+ mLogLik = wgsl_cat_optim_f(beta,&p);
+
+ gsl_vector_free (tau);
+ gsl_vector_free (stBeta);
+ gsl_vector_free (myG);
+ gsl_matrix_free (myH);
+
+ return 0;
+}
+
+/***************/
+/* Continuous */
+/***************/
+
+// I need to bundle all the data that goes to the function to optimze
+// together.
+typedef struct{
+ gsl_matrix *Xc; // continuous covariates; Matrix Nobs x Kc
+ gsl_vector *y;
+ double lambdaL1;
+ double lambdaL2;
+}fix_parm_cont_T;
+
+double fLogit_cont(gsl_vector *beta, gsl_matrix *Xc, gsl_vector *y,
+ double lambdaL1, double lambdaL2) {
+ int n = y->size;
+ int npar = beta->size;
+ double total = 0;
+ double aux = 0;
+
+ // omp_set_num_threads(ompthr); /\* Changed loop start at 1 instead
+ // of 0 to avoid regularization of beta_0*\/ /\*#pragma omp parallel
+ // for reduction (+:total)*\/
+ for(int i = 1; i < npar; ++i)
+ total += beta->data[i]*beta->data[i];
+ total = (-total*lambdaL2/2);
+
+ // /\*#pragma omp parallel for reduction (+:aux)*\/
+ for(int i = 1; i < npar; ++i)
+ aux += (beta->data[i]>0 ? beta->data[i] : -beta->data[i]);
+ total = total-aux*lambdaL1;
+
+ // #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y)
+ // #reduction (+:total)
+ for(int i = 0; i < n; ++i) {
+ double Xbetai=beta->data[0];
+ int iParm=1;
+ for(int k = 0; k < (Xc->size2); ++k)
+ Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
+ total += y->data[i]*Xbetai-gsl_sf_log_1plusx(gsl_sf_exp(Xbetai));
+ }
+ return -total;
+}
+
+void logistic_cont_pred(gsl_vector *beta, // Vector of parameters
+ // length = 1 + Sum_k(C_k-1).
+ gsl_matrix *Xc, // Continuous covariates matrix,
+ // Nobs x Kc (NULL if not used).
+ gsl_vector *yhat) { // Vector of prob. predicted by
+ // the logistic.
+ for(int i = 0; i < Xc->size1; ++i) {
+ double Xbetai=beta->data[0];
+ int iParm=1;
+ for(int k = 0; k < (Xc->size2); ++k)
+ Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
+ yhat->data[i]=1/(1 + gsl_sf_exp(-Xbetai));
+ }
+}
+
+// The gradient of f, df = (df/dx, df/dy).
+void wgsl_cont_optim_df (const gsl_vector *beta, void *params,
+ gsl_vector *out) {
+ fix_parm_cont_T *p = (fix_parm_cont_T *)params;
+ int n = p->y->size;
+ int Kc = p->Xc->size2;
+ int npar = beta->size;
+
+ // Intitialize gradient out necessary?
+ for(int i = 0; i < npar; ++i)
+ out->data[i]= 0;
+
+ // Changed loop start at 1 instead of 0 to avoid regularization of beta 0.
+ for(int i = 1; i < npar; ++i)
+ out->data[i]= p->lambdaL2*beta->data[i];
+ for(int i = 1; i < npar; ++i)
+ out->data[i]+= p->lambdaL1*((beta->data[i]>0)-(beta->data[i]<0));
+
+ for(int i = 0; i < n; ++i) {
+ double pn=0;
+ double Xbetai=beta->data[0];
+ int iParm=1;
+ for(int k = 0; k < Kc; ++k)
+ Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm++];
+
+ pn= -( p->y->data[i] - 1/(1 + gsl_sf_exp(-Xbetai)) );
+
+ out->data[0]+= pn;
+ iParm=1;
+
+ // Adding the continuous.
+ for(int k = 0; k < Kc; ++k) {
+ out->data[iParm++] += gsl_matrix_get(p->Xc,i,k)*pn;
+ }
+ }
+}
+
+// The Hessian of f.
+void wgsl_cont_optim_hessian (const gsl_vector *beta, void *params,
+ gsl_matrix *out) {
+ fix_parm_cont_T *p = (fix_parm_cont_T *)params;
+ int n = p->y->size;
+ int Kc = p->Xc->size2;
+ int npar = beta->size;
+ gsl_vector *gn = gsl_vector_alloc(npar); // gn.
+
+ // Intitialize Hessian out necessary ???
+
+ gsl_matrix_set_zero(out);
+
+ // Changed loop start at 1 instead of 0 to avoid regularization of
+ // beta 0.
+ for(int i = 1; i < npar; ++i)
+ gsl_matrix_set(out,i,i,(p->lambdaL2)); // Double-check this.
+
+ // L1 penalty not working yet, as not differentiable, I may need to
+ // do coordinate descent (as in glm_net).
+ for(int i = 0; i < n; ++i) {
+ double pn=0;
+ double aux=0;
+ double Xbetai=beta->data[0];
+ int iParm1=1;
+ for(int k = 0; k < Kc; ++k)
+ Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm1++];
+
+ pn= 1/(1 + gsl_sf_exp(-Xbetai));
+
+ // Add a protection for pn very close to 0 or 1?
+ aux=pn*(1-pn);
+
+ // Calculate sub-gradient vector gn.
+ gsl_vector_set_zero(gn);
+ gn->data[0]= 1;
+ iParm1=1;
+ for(int k = 0; k < Kc; ++k) {
+ gn->data[iParm1++] = gsl_matrix_get(p->Xc,i,k);
+ }
+
+ for(int k1=0;k1<npar; ++k1)
+ if(gn->data[k1]!=0)
+ for(int k2=0;k2<npar; ++k2)
+ if(gn->data[k2]!=0)
+ *gsl_matrix_ptr(out,k1,k2) += (aux * gn->data[k1] * gn->data[k2]);
+ }
+ gsl_vector_free(gn);
+}
+
+double wgsl_cont_optim_f(gsl_vector *v, void *params) {
+ double mLogLik=0;
+ fix_parm_cont_T *p = (fix_parm_cont_T *)params;
+ mLogLik = fLogit_cont(v,p->Xc,p->y,p->lambdaL1,p->lambdaL2);
+ return mLogLik;
+}
+
+// Compute both f and df together.
+void wgsl_cont_optim_fdf (gsl_vector *x, void *params,
+ double *f, gsl_vector *df) {
+ *f = wgsl_cont_optim_f(x, params);
+ wgsl_cont_optim_df(x, params, df);
+}
+
+int logistic_cont_fit (gsl_vector *beta,
+ gsl_matrix *Xc, // Continuous covariates matrix,
+ // Nobs x Kc (NULL if not used).
+ gsl_vector *y,
+ double lambdaL1,
+ double lambdaL2) {
+
+ double mLogLik=0;
+ fix_parm_cont_T p;
+ int npar = beta->size;
+ int iter=0;
+ double maxchange=0;
+
+ // Initializing fix parameters.
+ p.Xc=Xc;
+ p.y=y;
+ p.lambdaL1=lambdaL1;
+ p.lambdaL2=lambdaL2;
+
+ // Initial fit.
+ mLogLik = wgsl_cont_optim_f(beta,&p);
+
+ gsl_matrix *myH = gsl_matrix_alloc(npar,npar); // Hessian matrix.
+ gsl_vector *stBeta = gsl_vector_alloc(npar); // Direction to move.
+
+ gsl_vector *myG = gsl_vector_alloc(npar); // Gradient.
+ gsl_vector *tau = gsl_vector_alloc(npar); // tau for QR.
+
+ for(iter=0;iter<100;iter++){
+ wgsl_cont_optim_hessian(beta,&p,myH); // Calculate Hessian.
+ wgsl_cont_optim_df(beta,&p,myG); // Calculate Gradient.
+ gsl_linalg_QR_decomp(myH,tau); // Calculate next beta.
+ gsl_linalg_QR_solve(myH,tau,myG,stBeta);
+ gsl_vector_sub(beta,stBeta);
+
+ // Monitor convergence.
+ maxchange=0;
+ for(int i=0;i<npar; i++)
+ if(maxchange<fabs(stBeta->data[i]))
+ maxchange=fabs(stBeta->data[i]);
+
+#ifdef _RPR_DEBUG_
+ mLogLik = wgsl_cont_optim_f(beta,&p);
+#endif
+
+ if(maxchange<1E-4)
+ break;
+ }
+
+ // Final fit.
+ mLogLik = wgsl_cont_optim_f(beta,&p);
+
+ gsl_vector_free (tau);
+ gsl_vector_free (stBeta);
+ gsl_vector_free (myG);
+ gsl_matrix_free (myH);
+
+ return 0;
+}