diff options
author | Pjotr Prins | 2017-07-07 06:29:47 +0000 |
---|---|---|
committer | Pjotr Prins | 2017-07-07 06:29:47 +0000 |
commit | dd72b87354d1d3f6d3aa42ed0123a23880e9cb15 (patch) | |
tree | e08ca195b8ea77956a062a6843cf614e2d453191 | |
parent | 450341a7969b1da1d036be2dcdfab919e39d6473 (diff) | |
download | pangemma-dd72b87354d1d3f6d3aa42ed0123a23880e9cb15.tar.gz |
Some three compile time fixes for the GNU GCC 7.1.0 compiler on Linux.
This patch is a mess because we use different line endings. I propose
to convert to standard Unix mode (as was the original GEMMA code).
To convert with vim one can use
set fileformat=unix
Do not merge this pull request, we can handle te fixes later.
-rw-r--r-- | src/io.cpp | 85 | ||||
-rw-r--r-- | src/lapack.cpp | 185 | ||||
-rw-r--r-- | src/logistic.cpp | 1449 |
3 files changed, 859 insertions, 860 deletions
@@ -114,7 +114,7 @@ std::istream& safeGetline(std::istream& is, std::string& t) { sb->sbumpc(); return is; case EOF: - + // Also handle the case when the last line has no line // ending. if(t.empty()) @@ -312,7 +312,7 @@ bool ReadFile_column (const string &file_pheno, vector<int> &indicator_idv, if (strcmp(ch_ptr, "NA")==0) { indicator_idv.push_back(0); pheno.push_back(-9); - } + } else { // Pheno is different from pimass2. @@ -800,7 +800,7 @@ bool ReadFile_bed (const string &file_bed, const set<string> &setSnps, for (size_t t=0; t<ns_total; ++t) { // n_bit, and 3 is the number of magic numbers. - infile.seekg(t*n_bit+3); + infile.seekg(t*n_bit+3); if (setSnps.size()!=0 && setSnps.count(snpInfo[t].rs_number) == 0) { @@ -978,7 +978,7 @@ void Plink_ReadOneSNP (const int pos, const vector<int> &indicator_idv, else {n_bit=ni_total/4+1;} // n_bit, and 3 is the number of magic numbers. - infile.seekg(pos*n_bit+3); + infile.seekg(pos*n_bit+3); // Read genotypes. char ch[1]; @@ -993,7 +993,7 @@ void Plink_ReadOneSNP (const int pos, const vector<int> &indicator_idv, b=ch[0]; // Minor allele homozygous: 2.0; major: 0.0. - for (size_t j=0; j<4; ++j) { + for (size_t j=0; j<4; ++j) { if ((i==(n_bit-1)) && c==ni_total) {break;} if (indicator_idv[c]==0) {c++; continue;} c++; @@ -1406,7 +1406,7 @@ bool PlinkKin (const string &file_bed, vector<int> &indicator_snp, if (indicator_snp[t]==0) {continue;} // n_bit, and 3 is the number of magic numbers. - infile.seekg(t*n_bit+3); + infile.seekg(t*n_bit+3); // Read genotypes. geno_mean=0.0; n_miss=0; ci_total=0; geno_var=0.0; @@ -1415,7 +1415,7 @@ bool PlinkKin (const string &file_bed, vector<int> &indicator_snp, b=ch[0]; // Minor allele homozygous: 2.0; major: 0.0. - for (size_t j=0; j<4; ++j) { + for (size_t j=0; j<4; ++j) { if ((i==(n_bit-1)) && ci_total==ni_total) { break; } @@ -1734,7 +1734,7 @@ bool ReadFile_bed (const string &file_bed, vector<int> &indicator_idv, if (indicator_snp[t]==0) {continue;} // n_bit, and 3 is the number of magic numbers. - infile.seekg(t*n_bit+3); + infile.seekg(t*n_bit+3); // Read genotypes. c_idv=0; geno_mean=0.0; n_miss=0; c=0; @@ -1855,7 +1855,7 @@ bool ReadFile_bed (const string &file_bed, vector<int> &indicator_idv, if (indicator_snp[t]==0) {continue;} // n_bit, and 3 is the number of magic numbers. - infile.seekg(t*n_bit+3); + infile.seekg(t*n_bit+3); // Read genotypes. c_idv=0; geno_mean=0.0; n_miss=0; c=0; @@ -1864,7 +1864,7 @@ bool ReadFile_bed (const string &file_bed, vector<int> &indicator_idv, b=ch[0]; // Minor allele homozygous: 2.0; major: 0.0. - for (size_t j=0; j<4; ++j) { + for (size_t j=0; j<4; ++j) { if ((i==(n_bit-1)) && c==ni_total) {break;} if (indicator_idv[c]==0) {c++; continue;} c++; @@ -2113,7 +2113,7 @@ bool ReadFile_sample (const string &file_sample, vector<map<uint32_t, size_t> > cvt_factor_levels; char col_type[num_cols]; - + // Read header line2. if(!safeGetline(infile, line).eof()) { ch_ptr=strtok ((char *)line.c_str(), " \t"); @@ -2168,7 +2168,7 @@ bool ReadFile_sample (const string &file_sample, } if(col_type[i]=='D') { - + // NOTE THIS DOES NOT CHECK TO BE SURE LEVEL // IS INTEGRAL i.e for atoi error. if (strcmp(ch_ptr, "NA")!=0) { @@ -2189,7 +2189,7 @@ bool ReadFile_sample (const string &file_sample, pheno.push_back(pheno_row); } - + // Close and reopen the file. infile.close(); infile.clear(); @@ -2202,7 +2202,7 @@ bool ReadFile_sample (const string &file_sample, file_sample<<endl; return false; } - + // Skip header. safeGetline(infile2, line); safeGetline(infile2, line); @@ -2220,16 +2220,16 @@ bool ReadFile_sample (const string &file_sample, size_t fac_cvt_i=0; size_t num_fac_levels; while (i<num_cols) { - + if(col_type[i]=='C') { if (strcmp(ch_ptr, "NA")==0) {flag_na=1; d=-9;} else {d=atof(ch_ptr);} - + v_d.push_back(d); } - + if(col_type[i]=='D') { - + // NOTE THIS DOES NOT CHECK TO BE SURE // LEVEL IS INTEGRAL i.e for atoi error. num_fac_levels=cvt_factor_levels[fac_cvt_i].size(); @@ -2251,7 +2251,7 @@ bool ReadFile_sample (const string &file_sample, } fac_cvt_i++; } - + ch_ptr=strtok (NULL, " \t"); i++; } @@ -2321,7 +2321,7 @@ bool ReadFile_bgen(const string &file_bgen, const set<string> &setSnps, int sig; LUDecomp (WtW, pmt, &sig); LUInvert (WtW, pmt, WtWi); - + // Read in header. uint32_t bgen_snp_block_offset; uint32_t bgen_header_length; @@ -2373,7 +2373,7 @@ bool ReadFile_bgen(const string &file_bgen, const set<string> &setSnps, size_t ni_total=indicator_idv.size(); // Number of samples to use in test. - size_t ni_test=0; + size_t ni_test=0; uint32_t bgen_N; uint16_t bgen_LS; @@ -2434,7 +2434,7 @@ bool ReadFile_bgen(const string &file_bgen, const set<string> &setSnps, if (setSnps.size()!=0 && setSnps.count(rs)==0) { SNPINFO sInfo={"-9", rs, -9, -9, minor, major, static_cast<size_t>(-9), -9, (long int) -9}; - + snpInfo.push_back(sInfo); indicator_snp.push_back(0); if(CompressedSNPBlocks) @@ -2476,7 +2476,7 @@ bool ReadFile_bgen(const string &file_bgen, const set<string> &setSnps, c_idv=0; gsl_vector_set_zero (genotype_miss); for (size_t i=0; i<bgen_N; ++i) { - + // CHECK this set correctly! if (indicator_idv[i]==0) {continue;} @@ -2665,7 +2665,7 @@ bool bgenKin (const string &file_oxford, vector<int> &indicator_snp, infile.read(reinterpret_cast<char*>(&bgen_LB),4); bgen_B_allele.resize(bgen_LB); infile.read(&bgen_B_allele[0], bgen_LB); - + uint16_t unzipped_data[3*bgen_N]; if (indicator_snp[t]==0) { @@ -2683,11 +2683,11 @@ bool bgenKin (const string &file_oxford, vector<int> &indicator_snp, { infile.read(reinterpret_cast<char*>(&bgen_P),4); uint8_t zipped_data[bgen_P]; - + unzipped_data_size=6*bgen_N; - + infile.read(reinterpret_cast<char*>(zipped_data),bgen_P); - + int result= uncompress(reinterpret_cast<Bytef*>(unzipped_data), reinterpret_cast<uLongf*>(&unzipped_data_size), @@ -2698,7 +2698,7 @@ bool bgenKin (const string &file_oxford, vector<int> &indicator_snp, } else { - + bgen_P=6*bgen_N; infile.read(reinterpret_cast<char*>(unzipped_data),bgen_P); } @@ -2708,7 +2708,7 @@ bool bgenKin (const string &file_oxford, vector<int> &indicator_snp, for (size_t i=0; i<bgen_N; ++i) { - + bgen_geno_prob_AA= static_cast<double>(unzipped_data[i*3])/32768.0; bgen_geno_prob_AB= @@ -2723,13 +2723,13 @@ bool bgenKin (const string &file_oxford, vector<int> &indicator_snp, n_miss++; } else { - + bgen_geno_prob_AA/=bgen_geno_prob_non_miss; bgen_geno_prob_AB/=bgen_geno_prob_non_miss; bgen_geno_prob_BB/=bgen_geno_prob_non_miss; - + genotype=2.0*bgen_geno_prob_BB+bgen_geno_prob_AB; - + gsl_vector_set(geno, i, genotype); gsl_vector_set(geno_miss, i, 1.0); geno_mean+=genotype; @@ -2936,8 +2936,7 @@ bool ReadHeader_io (const string &line, HEADER &header) header.n_col=header.coln+1; } else { cout<<"error! more than two n_total columns in the file."<<endl; - n_ - error++;} + n_error++;} } else if (nmis_set.count(type)!=0) { if (header.nmis_col==0) {header.nmis_col=header.coln+1;} else { cout<<"error! more than two n_mis columns in the file."<<endl; @@ -2988,7 +2987,7 @@ bool ReadHeader_io (const string &line, HEADER &header) } else { string str = ch_ptr; string cat = str.substr(str.size()-2, 2); - + if(cat == "_c" || cat =="_C"){ // continuous @@ -2999,7 +2998,7 @@ bool ReadHeader_io (const string &line, HEADER &header) header.catd_col.insert(header.coln+1); } } - + ch_ptr=strtok (NULL, " , \t"); header.coln++; } @@ -3396,7 +3395,7 @@ bool PlinkKin (const string &file_bed, const int display_pace, for (size_t j=0; j<4; ++j) { if ((i==(n_bit-1)) && ci_total==ni_total) {break;} if (indicator_idv[ci_total]==0) {ci_total++; continue;} - + if (b[2*j]==0) { if (b[2*j+1]==0) { gsl_vector_set(geno, ci_test, 2.0); @@ -3412,7 +3411,7 @@ bool PlinkKin (const string &file_bed, const int display_pace, if (b[2*j+1]==1) {gsl_vector_set(geno, ci_test, 0.0); } else {gsl_vector_set(geno, ci_test, -9.0); n_miss++; } } - + ci_test++; ci_total++; } @@ -3561,7 +3560,7 @@ bool MFILEKin (const size_t mfile_mode, const string &file_mfile, } else { BimbamKin (file_name, display_pace, indicator_idv, mindicator_snp[l], mapRS2weight, mapRS2cat, msnpInfo[l], W, kin_tmp, ns_tmp); } - + // Add ns. gsl_vector_add(vector_ns, ns_tmp); @@ -3647,7 +3646,7 @@ bool ReadFile_wsnp (const string &file_wcat, const size_t n_vc, } string line, rs, chr, a1, a0, pos, cm; - + // Read header. HEADER header; !safeGetline(infile, line).eof(); @@ -3978,7 +3977,7 @@ void Calcq (const size_t n_block, const vector<size_t> &vec_cat, // Compute q and s. for (size_t i=0; i<vec_cat.size(); i++) { - + // Extract quantities. cat=vec_cat[i]; n_total=vec_ni[i]; @@ -4017,7 +4016,7 @@ void Calcq (const size_t n_block, const vector<size_t> &vec_cat, // Record values. for (size_t i=0; i<vec_cat.size(); i++) { - + // Extract quantities. cat=vec_cat[i]; n_total=vec_ni[i]; @@ -4369,7 +4368,7 @@ void ReadFile_mref (const string &file_mref, gsl_matrix *S_mat, if (i!=j) {gsl_matrix_set(Svar_mat, j, i, d);} } } - + // Free matrices. gsl_matrix_free(S_sub); gsl_matrix_free(Svar_sub); diff --git a/src/lapack.cpp b/src/lapack.cpp index 01d2039..05b85f4 100644 --- a/src/lapack.cpp +++ b/src/lapack.cpp @@ -60,20 +60,20 @@ extern "C" double ddot_(int *N, double *DX, int *INCX, double *DY, int *INCY); void lapack_float_cholesky_decomp (gsl_matrix_float *A) { int N=A->size1, LDA=A->size1, INFO; char UPLO='L'; - + if (N!=(int)A->size2) { cout << "Matrix needs to be symmetric and same dimension in " << "lapack_cholesky_decomp." << endl; return; } - + spotrf_(&UPLO, &N, A->data, &LDA, &INFO); if (INFO!=0) { cout << "Cholesky decomposition unsuccessful in " << "lapack_cholesky_decomp." << endl; return; - } - + } + return; } @@ -81,19 +81,19 @@ void lapack_float_cholesky_decomp (gsl_matrix_float *A) { void lapack_cholesky_decomp (gsl_matrix *A) { int N=A->size1, LDA=A->size1, INFO; char UPLO='L'; - + if (N!=(int)A->size2) { cout << "Matrix needs to be symmetric and same dimension in " << "lapack_cholesky_decomp." << endl; return; } - + dpotrf_(&UPLO, &N, A->data, &LDA, &INFO); if (INFO!=0) { cout << "Cholesky decomposition unsuccessful in " << "lapack_cholesky_decomp."<<endl; return; - } + } return; } @@ -104,13 +104,14 @@ void lapack_float_cholesky_solve (gsl_matrix_float *A, gsl_vector_float *x) { int N=A->size1, NRHS=1, LDA=A->size1, LDB=b->size, INFO; char UPLO='L'; - + + if (N!=(int)A->size2 || N!=LDB) { - cout << "Matrix needs to be symmetric and same dimension in " <<cout + cout << "Matrix needs to be symmetric and same dimension in " << "lapack_cholesky_solve." << endl; return; } - + gsl_vector_float_memcpy (x, b); spotrs_(&UPLO, &N, &NRHS, A->data, &LDA, x->data, &LDB, &INFO); if (INFO!=0) { @@ -118,7 +119,7 @@ void lapack_float_cholesky_solve (gsl_matrix_float *A, endl; return; } - + return; } @@ -127,13 +128,13 @@ void lapack_cholesky_solve (gsl_matrix *A, const gsl_vector *b, gsl_vector *x) { int N=A->size1, NRHS=1, LDA=A->size1, LDB=b->size, INFO; char UPLO='L'; - + if (N!=(int)A->size2 || N!=LDB) { cout << "Matrix needs to be symmetric and same dimension in " << "lapack_cholesky_solve." << endl; return; } - + gsl_vector_memcpy (x, b); dpotrs_(&UPLO, &N, &NRHS, A->data, &LDA, x->data, &LDB, &INFO); if (INFO!=0) { @@ -141,7 +142,7 @@ void lapack_cholesky_solve (gsl_matrix *A, const gsl_vector *b, endl; return; } - + return; } @@ -149,15 +150,15 @@ void lapack_sgemm (char *TransA, char *TransB, float alpha, const gsl_matrix_float *A, const gsl_matrix_float *B, float beta, gsl_matrix_float *C) { int M, N, K1, K2, LDA=A->size1, LDB=B->size1, LDC=C->size2; - + if (*TransA=='N' || *TransA=='n') {M=A->size1; K1=A->size2;} else if (*TransA=='T' || *TransA=='t') {M=A->size2; K1=A->size1;} else {cout<<"need 'N' or 'T' in lapack_sgemm"<<endl; return;} - + if (*TransB=='N' || *TransB=='n') {N=B->size2; K2=B->size1;} else if (*TransB=='T' || *TransB=='t') {N=B->size1; K2=B->size2;} else {cout<<"need 'N' or 'T' in lapack_sgemm"<<endl; return;} - + if (K1!=K2) { cout<<"A and B not compatible in lapack_sgemm"<<endl; return; @@ -166,18 +167,18 @@ void lapack_sgemm (char *TransA, char *TransB, float alpha, cout<<"C not compatible in lapack_sgemm"<<endl; return; } - + gsl_matrix_float *A_t=gsl_matrix_float_alloc (A->size2, A->size1); gsl_matrix_float_transpose_memcpy (A_t, A); gsl_matrix_float *B_t=gsl_matrix_float_alloc (B->size2, B->size1); gsl_matrix_float_transpose_memcpy (B_t, B); gsl_matrix_float *C_t=gsl_matrix_float_alloc (C->size2, C->size1); gsl_matrix_float_transpose_memcpy (C_t, C); - + sgemm_(TransA, TransB, &M, &N, &K1, &alpha, A_t->data, &LDA, B_t->data, &LDB, &beta, C_t->data, &LDC); gsl_matrix_float_transpose_memcpy (C, C_t); - + gsl_matrix_float_free (A_t); gsl_matrix_float_free (B_t); gsl_matrix_float_free (C_t); @@ -190,15 +191,15 @@ void lapack_dgemm (char *TransA, char *TransB, double alpha, const gsl_matrix *A, const gsl_matrix *B, double beta, gsl_matrix *C) { int M, N, K1, K2, LDA=A->size1, LDB=B->size1, LDC=C->size2; - + if (*TransA=='N' || *TransA=='n') {M=A->size1; K1=A->size2;} else if (*TransA=='T' || *TransA=='t') {M=A->size2; K1=A->size1;} else {cout<<"need 'N' or 'T' in lapack_dgemm"<<endl; return;} - + if (*TransB=='N' || *TransB=='n') {N=B->size2; K2=B->size1;} else if (*TransB=='T' || *TransB=='t') {N=B->size1; K2=B->size2;} else {cout<<"need 'N' or 'T' in lapack_dgemm"<<endl; return;} - + if (K1!=K2) { cout << "A and B not compatible in lapack_dgemm"<<endl; return; @@ -207,7 +208,7 @@ void lapack_dgemm (char *TransA, char *TransB, double alpha, cout<<"C not compatible in lapack_dgemm"<<endl; return; } - + gsl_matrix *A_t=gsl_matrix_alloc (A->size2, A->size1); gsl_matrix_transpose_memcpy (A_t, A); gsl_matrix *B_t=gsl_matrix_alloc (B->size2, B->size1); @@ -219,7 +220,7 @@ void lapack_dgemm (char *TransA, char *TransB, double alpha, B_t->data, &LDB, &beta, C_t->data, &LDC); gsl_matrix_transpose_memcpy (C, C_t); - + gsl_matrix_free (A_t); gsl_matrix_free (B_t); gsl_matrix_free (C_t); @@ -234,15 +235,15 @@ void lapack_float_eigen_symmv (gsl_matrix_float *A, gsl_vector_float *eval, if (flag_largematrix==1) { int N=A->size1, LDA=A->size1, INFO, LWORK=-1; char JOBZ='V', UPLO='L'; - + if (N!=(int)A->size2 || N!=(int)eval->size) { cout << "Matrix needs to be symmetric and same " << "dimension in lapack_eigen_symmv."<<endl; return; } - + LWORK=3*N; - float *WORK=new float [LWORK]; + float *WORK=new float [LWORK]; ssyev_(&JOBZ, &UPLO, &N, A->data, &LDA, eval->data, WORK, &LWORK, &INFO); if (INFO!=0) { @@ -250,31 +251,31 @@ void lapack_float_eigen_symmv (gsl_matrix_float *A, gsl_vector_float *eval, "lapack_eigen_symmv."<<endl; return; } - + gsl_matrix_float_view A_sub = gsl_matrix_float_submatrix(A, 0, 0, N, N); gsl_matrix_float_memcpy (evec, &A_sub.matrix); gsl_matrix_float_transpose (evec); - + delete [] WORK; - } else { + } else { int N=A->size1, LDA=A->size1, LDZ=A->size1, INFO, LWORK=-1, LIWORK=-1; char JOBZ='V', UPLO='L', RANGE='A'; float ABSTOL=1.0E-7; - + // VL, VU, IL, IU are not referenced; M equals N if RANGE='A'. float VL=0.0, VU=0.0; int IL=0, IU=0, M; - + if (N!=(int)A->size2 || N!=(int)eval->size) { cout << "Matrix needs to be symmetric and same " << "dimension in lapack_float_eigen_symmv." << endl; return; } - + int *ISUPPZ=new int [2*N]; - + float WORK_temp[1]; int IWORK_temp[1]; ssyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, @@ -286,11 +287,11 @@ void lapack_float_eigen_symmv (gsl_matrix_float *A, gsl_vector_float *eval, "lapack_float_eigen_symmv." << endl; return; } - LWORK=(int)WORK_temp[0]; LIWORK=(int)IWORK_temp[0]; - + LWORK=(int)WORK_temp[0]; LIWORK=(int)IWORK_temp[0]; + float *WORK=new float [LWORK]; int *IWORK=new int [LIWORK]; - + ssyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU, &ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK, &LWORK, IWORK, &LIWORK, &INFO); @@ -299,15 +300,15 @@ void lapack_float_eigen_symmv (gsl_matrix_float *A, gsl_vector_float *eval, "lapack_float_eigen_symmv." << endl; return; } - + gsl_matrix_float_transpose (evec); - + delete [] ISUPPZ; delete [] WORK; delete [] IWORK; } - - + + return; } @@ -318,16 +319,16 @@ void lapack_eigen_symmv (gsl_matrix *A, gsl_vector *eval, gsl_matrix *evec, const size_t flag_largematrix) { if (flag_largematrix==1) { int N=A->size1, LDA=A->size1, INFO, LWORK=-1; - char JOBZ='V', UPLO='L'; - + char JOBZ='V', UPLO='L'; + if (N!=(int)A->size2 || N!=(int)eval->size) { cout << "Matrix needs to be symmetric and same " << "dimension in lapack_eigen_symmv." << endl; return; } - + LWORK=3*N; - double *WORK=new double [LWORK]; + double *WORK=new double [LWORK]; dsyev_(&JOBZ, &UPLO, &N, A->data, &LDA, eval->data, WORK, &LWORK, &INFO); if (INFO!=0) { @@ -335,30 +336,30 @@ void lapack_eigen_symmv (gsl_matrix *A, gsl_vector *eval, gsl_matrix *evec, "lapack_eigen_symmv." << endl; return; } - + gsl_matrix_view A_sub=gsl_matrix_submatrix(A, 0, 0, N, N); gsl_matrix_memcpy (evec, &A_sub.matrix); gsl_matrix_transpose (evec); - + delete [] WORK; - } else { + } else { int N=A->size1, LDA=A->size1, LDZ=A->size1, INFO; int LWORK=-1, LIWORK=-1; char JOBZ='V', UPLO='L', RANGE='A'; double ABSTOL=1.0E-7; - + // VL, VU, IL, IU are not referenced; M equals N if RANGE='A'. double VL=0.0, VU=0.0; int IL=0, IU=0, M; - + if (N!=(int)A->size2 || N!=(int)eval->size) { cout << "Matrix needs to be symmetric and same " << "dimension in lapack_eigen_symmv." << endl; return; } - + int *ISUPPZ=new int [2*N]; - + double WORK_temp[1]; int IWORK_temp[1]; @@ -370,12 +371,12 @@ void lapack_eigen_symmv (gsl_matrix *A, gsl_vector *eval, gsl_matrix *evec, cout << "Work space estimate unsuccessful in " << "lapack_eigen_symmv." << endl; return; - } - LWORK=(int)WORK_temp[0]; LIWORK=(int)IWORK_temp[0]; + } + LWORK=(int)WORK_temp[0]; LIWORK=(int)IWORK_temp[0]; double *WORK=new double [LWORK]; int *IWORK=new int [LIWORK]; - + dsyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU, &ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK, &LWORK, IWORK, &LIWORK, &INFO); @@ -386,12 +387,12 @@ void lapack_eigen_symmv (gsl_matrix *A, gsl_vector *eval, gsl_matrix *evec, } gsl_matrix_transpose (evec); - + delete [] ISUPPZ; delete [] WORK; delete [] IWORK; } - + return; } @@ -406,7 +407,7 @@ double EigenDecomp (gsl_matrix *G, gsl_matrix *U, gsl_vector *eval, d+=gsl_vector_get(eval, i); } d/=(double)eval->size; - + return d; } @@ -422,21 +423,21 @@ double EigenDecomp (gsl_matrix_float *G, gsl_matrix_float *U, d+=gsl_vector_float_get(eval, i); } d/=(double)eval->size; - + return d; } double CholeskySolve(gsl_matrix *Omega, gsl_vector *Xty, gsl_vector *OiXty) { double logdet_O=0.0; - + lapack_cholesky_decomp(Omega); for (size_t i=0; i<Omega->size1; ++i) { logdet_O+=log(gsl_matrix_get (Omega, i, i)); - } - logdet_O*=2.0; - lapack_cholesky_solve(Omega, Xty, OiXty); - + } + logdet_O*=2.0; + lapack_cholesky_solve(Omega, Xty, OiXty); + return logdet_O; } @@ -444,16 +445,16 @@ double CholeskySolve(gsl_matrix *Omega, gsl_vector *Xty, gsl_vector *OiXty) { double CholeskySolve(gsl_matrix_float *Omega, gsl_vector_float *Xty, gsl_vector_float *OiXty) { double logdet_O=0.0; - + lapack_float_cholesky_decomp(Omega); for (size_t i=0; i<Omega->size1; ++i) { logdet_O+=log(gsl_matrix_float_get (Omega, i, i)); - } - logdet_O*=2.0; - lapack_float_cholesky_solve(Omega, Xty, OiXty); - + } + logdet_O*=2.0; + lapack_float_cholesky_solve(Omega, Xty, OiXty); + return logdet_O; -} +} // LU decomposition. @@ -464,18 +465,18 @@ void LUDecomp (gsl_matrix *LU, gsl_permutation *p, int *signum) { void LUDecomp (gsl_matrix_float *LU, gsl_permutation *p, int *signum) { gsl_matrix *LU_double=gsl_matrix_alloc (LU->size1, LU->size2); - - // Copy float matrix to double. + + // Copy float matrix to double. for (size_t i=0; i<LU->size1; i++) { for (size_t j=0; j<LU->size2; j++) { gsl_matrix_set (LU_double, i, j, gsl_matrix_float_get(LU, i, j)); } } - + // LU decomposition. gsl_linalg_LU_decomp (LU_double, p, signum); - + // Copy float matrix to double. for (size_t i=0; i<LU->size1; i++) { for (size_t j=0; j<LU->size2; j++) { @@ -483,7 +484,7 @@ void LUDecomp (gsl_matrix_float *LU, gsl_permutation *p, int *signum) { gsl_matrix_get(LU_double, i, j)); } } - + // Free matrix. gsl_matrix_free (LU_double); return; @@ -502,18 +503,18 @@ void LUInvert (const gsl_matrix_float *LU, const gsl_permutation *p, gsl_matrix *LU_double=gsl_matrix_alloc (LU->size1, LU->size2); gsl_matrix *inverse_double=gsl_matrix_alloc (inverse->size1, inverse->size2); - - // Copy float matrix to double. + + // Copy float matrix to double. for (size_t i=0; i<LU->size1; i++) { for (size_t j=0; j<LU->size2; j++) { gsl_matrix_set (LU_double, i, j, gsl_matrix_float_get(LU, i, j)); } } - + // LU decomposition. gsl_linalg_LU_invert (LU_double, p, inverse_double); - + // Copy float matrix to double. for (size_t i=0; i<inverse->size1; i++) { for (size_t j=0; j<inverse->size2; j++) { @@ -522,7 +523,7 @@ void LUInvert (const gsl_matrix_float *LU, const gsl_permutation *p, i, j)); } } - + // Free matrix. gsl_matrix_free (LU_double); gsl_matrix_free (inverse_double); @@ -539,17 +540,17 @@ double LULndet (gsl_matrix *LU) { double LULndet (gsl_matrix_float *LU) { gsl_matrix *LU_double=gsl_matrix_alloc (LU->size1, LU->size2); double d; - - // Copy float matrix to double. + + // Copy float matrix to double. for (size_t i=0; i<LU->size1; i++) { for (size_t j=0; j<LU->size2; j++) { gsl_matrix_set (LU_double, i, j, gsl_matrix_float_get(LU, i, j)); } } - + // LU decomposition. d=gsl_linalg_LU_lndet (LU_double); - + // Free matrix gsl_matrix_free (LU_double); return d; @@ -567,8 +568,8 @@ void LUSolve (const gsl_matrix_float *LU, const gsl_permutation *p, const gsl_vector_float *b, gsl_vector_float *x) { gsl_matrix *LU_double=gsl_matrix_alloc (LU->size1, LU->size2); gsl_vector *b_double=gsl_vector_alloc (b->size); - gsl_vector *x_double=gsl_vector_alloc (x->size); - + gsl_vector *x_double=gsl_vector_alloc (x->size); + // Copy float matrix to double. for (size_t i=0; i<LU->size1; i++) { for (size_t j=0; j<LU->size2; j++) { @@ -576,23 +577,23 @@ void LUSolve (const gsl_matrix_float *LU, const gsl_permutation *p, gsl_matrix_float_get(LU, i, j)); } } - + for (size_t i=0; i<b->size; i++) { gsl_vector_set (b_double, i, gsl_vector_float_get(b, i)); } - + for (size_t i=0; i<x->size; i++) { gsl_vector_set (x_double, i, gsl_vector_float_get(x, i)); } - + // LU decomposition. gsl_linalg_LU_solve (LU_double, p, b_double, x_double); - + // Copy float matrix to double. for (size_t i=0; i<x->size; i++) { gsl_vector_float_set (x, i, gsl_vector_get(x_double, i)); } - + // Free matrix. gsl_matrix_free (LU_double); gsl_vector_free (b_double); diff --git a/src/logistic.cpp b/src/logistic.cpp index c1ddac1..f9edc68 100644 --- a/src/logistic.cpp +++ b/src/logistic.cpp @@ -1,725 +1,724 @@ -#include <stdio.h>
-#include <math.h>
-#include <gsl/gsl_matrix.h>
-#include <gsl/gsl_rng.h>
-#include <gsl/gsl_multimin.h>
-#include <gsl/gsl_sf.h>
-#include <gsl/gsl_linalg.h>
-#include "logistic.h"
-
-// I need to bundle all the data that goes to the function to optimze
-// together.
-typedef struct{
- gsl_matrix_int *X;
- gsl_vector_int *nlev;
- gsl_vector *y;
- gsl_matrix *Xc; // Continuous covariates matrix Nobs x Kc (NULL if not used).
- double lambdaL1;
- double lambdaL2;
-} fix_parm_mixed_T;
-
-double fLogit_mixed(gsl_vector *beta,
- gsl_matrix_int *X,
- gsl_vector_int *nlev,
- gsl_matrix *Xc,
- gsl_vector *y,
- double lambdaL1,
- double lambdaL2) {
- int n = y->size;
- int npar = beta->size;
- double total = 0;
- double aux = 0;
-
- // Changed loop start at 1 instead of 0 to avoid regularization of
- // beta_0*\/
- // #pragma omp parallel for reduction (+:total)
- for(int i = 1; i < npar; ++i)
- total += beta->data[i]*beta->data[i];
- total = (-total*lambdaL2/2);
- // #pragma omp parallel for reduction (+:aux)
- for(int i = 1; i < npar; ++i)
- aux += (beta->data[i]>0 ? beta->data[i] : -beta->data[i]);
- total = total-aux*lambdaL1;
- // #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y)
- // #reduction (+:total)
- for(int i = 0; i < n; ++i) {
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < X->size2; ++k) {
- if(gsl_matrix_int_get(X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
- iParm+=nlev->data[k]-1;
- }
- for(int k = 0; k < (Xc->size2); ++k)
- Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
- total += y->data[i]*Xbetai-gsl_sf_log_1plusx(gsl_sf_exp(Xbetai));
- }
- return -total;
-}
-
-void logistic_mixed_pred(gsl_vector *beta, // Vector of parameters
- // length = 1 + Sum_k(C_k -1)
- gsl_matrix_int *X, // Matrix Nobs x K
- gsl_vector_int *nlev, // Vector with number categories
- gsl_matrix *Xc, // Continuous covariates matrix:
- // obs x Kc (NULL if not used).
- gsl_vector *yhat){ // Vector of prob. predicted by
- // the logistic
- for(int i = 0; i < X->size1; ++i) {
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < X->size2; ++k) {
- if(gsl_matrix_int_get(X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
- iParm+=nlev->data[k]-1;
- }
- // Adding the continuous.
- for(int k = 0; k < (Xc->size2); ++k)
- Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
- yhat->data[i]=1/(1 + gsl_sf_exp(-Xbetai));
- }
-}
-
-
-// The gradient of f, df = (df/dx, df/dy).
-void wgsl_mixed_optim_df (const gsl_vector *beta, void *params,
- gsl_vector *out) {
- fix_parm_mixed_T *p = (fix_parm_mixed_T *)params;
- int n = p->y->size;
- int K = p->X->size2;
- int Kc = p->Xc->size2;
- int npar = beta->size;
-
- // Intitialize gradient out necessary?
- for(int i = 0; i < npar; ++i)
- out->data[i]= 0;
-
- // Changed loop start at 1 instead of 0 to avoid regularization of beta 0.
- for(int i = 1; i < npar; ++i)
- out->data[i]= p->lambdaL2*beta->data[i];
- for(int i = 1; i < npar; ++i)
- out->data[i]+= p->lambdaL1*((beta->data[i]>0)-(beta->data[i]<0));
-
- for(int i = 0; i < n; ++i) {
- double pn=0;
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm];
- iParm+=p->nlev->data[k]-1;
- }
-
- // Adding the continuous.
- for(int k = 0; k < Kc; ++k)
- Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm++];
-
- pn= -( p->y->data[i] - 1/(1 + gsl_sf_exp(-Xbetai)) );
-
- out->data[0]+= pn;
- iParm=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- out->data[gsl_matrix_int_get(p->X,i,k)-1+iParm]+=pn;
- iParm+=p->nlev->data[k]-1;
- }
-
- // Adding the continuous.
- for(int k = 0; k < Kc; ++k) {
- out->data[iParm++] += gsl_matrix_get(p->Xc,i,k)*pn;
- }
- }
-
-}
-
-// The Hessian of f.
-void wgsl_mixed_optim_hessian (const gsl_vector *beta, void *params,
- gsl_matrix *out) {
- fix_parm_mixed_T *p = (fix_parm_mixed_T *)params;
- int n = p->y->size;
- int K = p->X->size2;
- int Kc = p->Xc->size2;
- int npar = beta->size;
- gsl_vector *gn = gsl_vector_alloc(npar); // gn
-
- // Intitialize Hessian out necessary ???
- gsl_matrix_set_zero(out);
-
- /* Changed loop start at 1 instead of 0 to avoid regularization of beta 0*/
- for(int i = 1; i < npar; ++i)
- gsl_matrix_set(out,i,i,(p->lambdaL2)); // Double-check this.
-
- // L1 penalty not working yet, as not differentiable, I may need to
- // do coordinate descent (as in glm_net)
- for(int i = 0; i < n; ++i) {
- double pn=0;
- double aux=0;
- double Xbetai=beta->data[0];
- int iParm1=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm1];
- iParm1+=p->nlev->data[k]-1; //-1?
- }
-
- // Adding the continuous.
- for(int k = 0; k < Kc; ++k)
- Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm1++];
-
- pn= 1/(1 + gsl_sf_exp(-Xbetai));
-
- // Add a protection for pn very close to 0 or 1?
- aux=pn*(1-pn);
-
- // Calculate sub-gradient vector gn.
- gsl_vector_set_zero(gn);
- gn->data[0]= 1;
- iParm1=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- gn->data[gsl_matrix_int_get(p->X,i,k)-1+iParm1]=1;
- iParm1+=p->nlev->data[k]-1;
- }
-
- // Adding the continuous.
- for(int k = 0; k < Kc; ++k) {
- gn->data[iParm1++] = gsl_matrix_get(p->Xc,i,k);
- }
-
- for(int k1=0;k1<npar; ++k1)
- if(gn->data[k1]!=0)
- for(int k2=0;k2<npar; ++k2)
- if(gn->data[k2]!=0)
- *gsl_matrix_ptr(out,k1,k2) += (aux * gn->data[k1] * gn->data[k2]);
- }
- gsl_vector_free(gn);
-}
-
-double wgsl_mixed_optim_f(gsl_vector *v, void *params) {
- double mLogLik=0;
- fix_parm_mixed_T *p = (fix_parm_mixed_T *)params;
- mLogLik = fLogit_mixed(v,p->X,p->nlev,p->Xc,p->y,p->lambdaL1,p->lambdaL2);
- return mLogLik;
-}
-
-// Compute both f and df together.
-void
-wgsl_mixed_optim_fdf (gsl_vector *x, void *params, double *f, gsl_vector *df) {
- *f = wgsl_mixed_optim_f(x, params);
- wgsl_mixed_optim_df(x, params, df);
-}
-
-// Xc is the matrix of continuous covariates, Nobs x Kc (NULL if not used).
-int logistic_mixed_fit(gsl_vector *beta, gsl_matrix_int *X,
- gsl_vector_int *nlev, gsl_matrix *Xc,
- gsl_vector *y, double lambdaL1, double lambdaL2) {
- double mLogLik=0;
- fix_parm_mixed_T p;
- int npar = beta->size;
- int iter=0;
- double maxchange=0;
-
- // Intializing fix parameters.
- p.X=X;
- p.Xc=Xc;
- p.nlev=nlev;
- p.y=y;
- p.lambdaL1=lambdaL1;
- p.lambdaL2=lambdaL2;
-
- // Initial fit.
- mLogLik = wgsl_mixed_optim_f(beta,&p);
-
- gsl_matrix *myH = gsl_matrix_alloc(npar,npar); // Hessian matrix.
- gsl_vector *stBeta = gsl_vector_alloc(npar); // Direction to move.
-
- gsl_vector *myG = gsl_vector_alloc(npar); // Gradient.
- gsl_vector *tau = gsl_vector_alloc(npar); // tau for QR.
-
- for(iter=0;iter<100;iter++){
- wgsl_mixed_optim_hessian(beta,&p,myH); // Calculate Hessian.
- wgsl_mixed_optim_df(beta,&p,myG); // Calculate Gradient.
- gsl_linalg_QR_decomp(myH,tau); // Calculate next beta.
- gsl_linalg_QR_solve(myH,tau,myG,stBeta);
- gsl_vector_sub(beta,stBeta);
-
- // Monitor convergence.
- maxchange=0;
- for(int i=0;i<npar; i++)
- if(maxchange<fabs(stBeta->data[i]))
- maxchange=fabs(stBeta->data[i]);
-
- if(maxchange<1E-4)
- break;
- }
-
- // Final fit.
- mLogLik = wgsl_mixed_optim_f(beta,&p);
-
- gsl_vector_free (tau);
- gsl_vector_free (stBeta);
- gsl_vector_free (myG);
- gsl_matrix_free (myH);
-
- return 0;
-}
-
-/***************/
-/* Categorical */
-/***************/
-
-// I need to bundle all the data that goes to the function to optimze
-// together.
-typedef struct {
- gsl_matrix_int *X;
- gsl_vector_int *nlev;
- gsl_vector *y;
- double lambdaL1;
- double lambdaL2;
-} fix_parm_cat_T;
-
-double fLogit_cat (gsl_vector *beta, gsl_matrix_int *X, gsl_vector_int *nlev,
- gsl_vector *y, double lambdaL1, double lambdaL2) {
- int n = y->size;
- int npar = beta->size;
- double total = 0;
- double aux = 0;
-
- // omp_set_num_threads(ompthr); /\* Changed loop start at 1 instead
- // of 0 to avoid regularization of beta 0*\/ /\*#pragma omp parallel
- // for reduction (+:total)*\/
- for(int i = 1; i < npar; ++i)
- total += beta->data[i]*beta->data[i];
- total = (-total*lambdaL2/2);
-
- // /\*#pragma omp parallel for reduction (+:aux)*\/
- for(int i = 1; i < npar; ++i)
- aux += (beta->data[i]>0 ? beta->data[i] : -beta->data[i]);
- total = total-aux*lambdaL1;
-
- // #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y)
- // #reduction (+:total)
- for(int i = 0; i < n; ++i) {
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < X->size2; ++k) {
- if(gsl_matrix_int_get(X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
- iParm+=nlev->data[k]-1;
- }
- total += y->data[i]*Xbetai-gsl_sf_log_1plusx(gsl_sf_exp(Xbetai));
- }
- return -total;
-}
-
-void logistic_cat_pred (gsl_vector *beta, // Vector of parameters
- // length = 1 + Sum_k(C_k-1).
- gsl_matrix_int *X, // Matrix Nobs x K
- gsl_vector_int *nlev, // Vector with #categories
- gsl_vector *yhat){ // Vector of prob. predicted by
- // the logistic.
- for(int i = 0; i < X->size1; ++i) {
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < X->size2; ++k) {
- if(gsl_matrix_int_get(X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
- iParm+=nlev->data[k]-1;
- }
- yhat->data[i]=1/(1 + gsl_sf_exp(-Xbetai));
- }
-}
-
-// The gradient of f, df = (df/dx, df/dy).
-void wgsl_cat_optim_df (const gsl_vector *beta, void *params,
- gsl_vector *out) {
- fix_parm_cat_T *p = (fix_parm_cat_T *)params;
- int n = p->y->size;
- int K = p->X->size2;
- int npar = beta->size;
-
- // Intitialize gradient out necessary?
- for(int i = 0; i < npar; ++i)
- out->data[i]= 0;
-
- // Changed loop start at 1 instead of 0 to avoid regularization of beta 0.
- for(int i = 1; i < npar; ++i)
- out->data[i]= p->lambdaL2*beta->data[i];
- for(int i = 1; i < npar; ++i)
- out->data[i]+= p->lambdaL1*((beta->data[i]>0)-(beta->data[i]<0));
-
- for(int i = 0; i < n; ++i) {
- double pn=0;
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm];
- iParm+=p->nlev->data[k]-1;
- }
-
- pn= -( p->y->data[i] - 1/(1 + gsl_sf_exp(-Xbetai)) );
-
- out->data[0]+= pn;
- iParm=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- out->data[gsl_matrix_int_get(p->X,i,k)-1+iParm]+=pn;
- iParm+=p->nlev->data[k]-1;
- }
- }
-}
-
-// The Hessian of f.
-void wgsl_cat_optim_hessian (const gsl_vector *beta, void *params,
- gsl_matrix *out) {
- fix_parm_cat_T *p = (fix_parm_cat_T *)params;
- int n = p->y->size;
- int K = p->X->size2;
- int npar = beta->size;
-
- // Intitialize Hessian out necessary.
- gsl_matrix_set_zero(out);
-
- // Changed loop start at 1 instead of 0 to avoid regularization of beta.
- for(int i = 1; i < npar; ++i)
- gsl_matrix_set(out,i,i,(p->lambdaL2)); // Double-check this.
-
- // L1 penalty not working yet, as not differentiable, I may need to
- // do coordinate descent (as in glm_net).
- for(int i = 0; i < n; ++i) {
- double pn=0;
- double aux=0;
- double Xbetai=beta->data[0];
- int iParm2=1;
- int iParm1=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm1];
- iParm1+=p->nlev->data[k]-1; //-1?
- }
-
- pn= 1/(1 + gsl_sf_exp(-Xbetai));
-
- // Add a protection for pn very close to 0 or 1?
- aux=pn*(1-pn);
- *gsl_matrix_ptr(out,0,0)+=aux;
- iParm2=1;
- for(int k2 = 0; k2 < K; ++k2) {
- if(gsl_matrix_int_get(p->X,i,k2)>0)
- *gsl_matrix_ptr(out,0,gsl_matrix_int_get(p->X,i,k2)-1+iParm2)+=aux;
- iParm2+=p->nlev->data[k2]-1; //-1?
- }
- iParm1=1;
- for(int k1 = 0; k1 < K; ++k1) {
- if(gsl_matrix_int_get(p->X,i,k1)>0)
- *gsl_matrix_ptr(out,gsl_matrix_int_get(p->X,i,k1)-1+iParm1,0)+=aux;
- iParm2=1;
- for(int k2 = 0; k2 < K; ++k2) {
- if((gsl_matrix_int_get(p->X,i,k1)>0) &&
- (gsl_matrix_int_get(p->X,i,k2)>0))
- *gsl_matrix_ptr(out
- ,gsl_matrix_int_get(p->X,i,k1)-1+iParm1
- ,gsl_matrix_int_get(p->X,i,k2)-1+iParm2
- )+=aux;
- iParm2+=p->nlev->data[k2]-1; //-1?
- }
- iParm1+=p->nlev->data[k1]-1; //-1?
- }
- }
-}
-
-double wgsl_cat_optim_f(gsl_vector *v, void *params) {
- double mLogLik=0;
- fix_parm_cat_T *p = (fix_parm_cat_T *)params;
- mLogLik = fLogit_cat(v,p->X,p->nlev,p->y,p->lambdaL1,p->lambdaL2);
- return mLogLik;
-}
-
-// Compute both f and df together.
-void wgsl_cat_optim_fdf (gsl_vector *x, void *params, double *f,
- gsl_vector *df) {
- *f = wgsl_cat_optim_f(x, params);
- wgsl_cat_optim_df(x, params, df);
-}
-
-int logistic_cat_fit(gsl_vector *beta,
- gsl_matrix_int *X,
- gsl_vector_int *nlev,
- gsl_vector *y,
- double lambdaL1,
- double lambdaL2) {
- double mLogLik=0;
- fix_parm_cat_T p;
- int npar = beta->size;
- int iter=0;
- double maxchange=0;
-
- // Intializing fix parameters.
- p.X=X;
- p.nlev=nlev;
- p.y=y;
- p.lambdaL1=lambdaL1;
- p.lambdaL2=lambdaL2;
-
- // Initial fit.
- mLogLik = wgsl_cat_optim_f(beta,&p);
-
- gsl_matrix *myH = gsl_matrix_alloc(npar,npar); // Hessian matrix.
- gsl_vector *stBeta = gsl_vector_alloc(npar); // Direction to move.
-
- gsl_vector *myG = gsl_vector_alloc(npar); // Gradient.
- gsl_vector *tau = gsl_vector_alloc(npar); // tau for QR.
-
- for(iter=0;iter<100;iter++){
- wgsl_cat_optim_hessian(beta,&p,myH); // Calculate Hessian.
- wgsl_cat_optim_df(beta,&p,myG); // Calculate Gradient.
- gsl_linalg_QR_decomp(myH,tau); // Calculate next beta.
- gsl_linalg_QR_solve(myH,tau,myG,stBeta);
- gsl_vector_sub(beta,stBeta);
-
- // Monitor convergence.
- maxchange=0;
- for(int i=0;i<npar; i++)
- if(maxchange<fabs(stBeta->data[i]))
- maxchange=fabs(stBeta->data[i]);
-
-#ifdef _RPR_DEBUG_
- mLogLik = wgsl_cat_optim_f(beta,&p);
-#endif
-
- if(maxchange<1E-4)
- break;
- }
-
- // Final fit.
- mLogLik = wgsl_cat_optim_f(beta,&p);
-
- gsl_vector_free (tau);
- gsl_vector_free (stBeta);
- gsl_vector_free (myG);
- gsl_matrix_free (myH);
-
- return 0;
-}
-
-/***************/
-/* Continuous */
-/***************/
-
-// I need to bundle all the data that goes to the function to optimze
-// together.
-typedef struct{
- gsl_matrix *Xc; // continuous covariates; Matrix Nobs x Kc
- gsl_vector *y;
- double lambdaL1;
- double lambdaL2;
-}fix_parm_cont_T;
-
-double fLogit_cont(gsl_vector *beta, gsl_matrix *Xc, gsl_vector *y,
- double lambdaL1, double lambdaL2) {
- int n = y->size;
- int npar = beta->size;
- double total = 0;
- double aux = 0;
-
- // omp_set_num_threads(ompthr); /\* Changed loop start at 1 instead
- // of 0 to avoid regularization of beta_0*\/ /\*#pragma omp parallel
- // for reduction (+:total)*\/
- for(int i = 1; i < npar; ++i)
- total += beta->data[i]*beta->data[i];
- total = (-total*lambdaL2/2);
-
- // /\*#pragma omp parallel for reduction (+:aux)*\/
- for(int i = 1; i < npar; ++i)
- aux += (beta->data[i]>0 ? beta->data[i] : -beta->data[i]);
- total = total-aux*lambdaL1;
-
- // #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y)
- // #reduction (+:total)
- for(int i = 0; i < n; ++i) {
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < (Xc->size2); ++k)
- Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
- total += y->data[i]*Xbetai-gsl_sf_log_1plusx(gsl_sf_exp(Xbetai));
- }
- return -total;
-}
-
-void logistic_cont_pred(gsl_vector *beta, // Vector of parameters
- // length = 1 + Sum_k(C_k-1).
- gsl_matrix *Xc, // Continuous covariates matrix,
- // Nobs x Kc (NULL if not used).
- ,gsl_vector *yhat) { // Vector of prob. predicted by
- // the logistic.
- for(int i = 0; i < Xc->size1; ++i) {
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < (Xc->size2); ++k)
- Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
- yhat->data[i]=1/(1 + gsl_sf_exp(-Xbetai));
- }
-}
-
-// The gradient of f, df = (df/dx, df/dy).
-void wgsl_cont_optim_df (const gsl_vector *beta, void *params,
- gsl_vector *out) {
- fix_parm_cont_T *p = (fix_parm_cont_T *)params;
- int n = p->y->size;
- int Kc = p->Xc->size2;
- int npar = beta->size;
-
- // Intitialize gradient out necessary?
- for(int i = 0; i < npar; ++i)
- out->data[i]= 0;
-
- // Changed loop start at 1 instead of 0 to avoid regularization of beta 0.
- for(int i = 1; i < npar; ++i)
- out->data[i]= p->lambdaL2*beta->data[i];
- for(int i = 1; i < npar; ++i)
- out->data[i]+= p->lambdaL1*((beta->data[i]>0)-(beta->data[i]<0));
-
- for(int i = 0; i < n; ++i) {
- double pn=0;
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < Kc; ++k)
- Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm++];
-
- pn= -( p->y->data[i] - 1/(1 + gsl_sf_exp(-Xbetai)) );
-
- out->data[0]+= pn;
- iParm=1;
-
- // Adding the continuous.
- for(int k = 0; k < Kc; ++k) {
- out->data[iParm++] += gsl_matrix_get(p->Xc,i,k)*pn;
- }
- }
-}
-
-// The Hessian of f.
-void wgsl_cont_optim_hessian (const gsl_vector *beta, void *params,
- gsl_matrix *out) {
- fix_parm_cont_T *p = (fix_parm_cont_T *)params;
- int n = p->y->size;
- int Kc = p->Xc->size2;
- int npar = beta->size;
- gsl_vector *gn = gsl_vector_alloc(npar); // gn.
-
- // Intitialize Hessian out necessary ???
-
- gsl_matrix_set_zero(out);
-
- // Changed loop start at 1 instead of 0 to avoid regularization of
- // beta 0.
- for(int i = 1; i < npar; ++i)
- gsl_matrix_set(out,i,i,(p->lambdaL2)); // Double-check this.
-
- // L1 penalty not working yet, as not differentiable, I may need to
- // do coordinate descent (as in glm_net).
- for(int i = 0; i < n; ++i) {
- double pn=0;
- double aux=0;
- double Xbetai=beta->data[0];
- int iParm1=1;
- for(int k = 0; k < Kc; ++k)
- Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm1++];
-
- pn= 1/(1 + gsl_sf_exp(-Xbetai));
-
- // Add a protection for pn very close to 0 or 1?
- aux=pn*(1-pn);
-
- // Calculate sub-gradient vector gn.
- gsl_vector_set_zero(gn);
- gn->data[0]= 1;
- iParm1=1;
- for(int k = 0; k < Kc; ++k) {
- gn->data[iParm1++] = gsl_matrix_get(p->Xc,i,k);
- }
-
- for(int k1=0;k1<npar; ++k1)
- if(gn->data[k1]!=0)
- for(int k2=0;k2<npar; ++k2)
- if(gn->data[k2]!=0)
- *gsl_matrix_ptr(out,k1,k2) += (aux * gn->data[k1] * gn->data[k2]);
- }
- gsl_vector_free(gn);
-}
-
-double wgsl_cont_optim_f(gsl_vector *v, void *params) {
- double mLogLik=0;
- fix_parm_cont_T *p = (fix_parm_cont_T *)params;
- mLogLik = fLogit_cont(v,p->Xc,p->y,p->lambdaL1,p->lambdaL2);
- return mLogLik;
-}
-
-// Compute both f and df together.
-void wgsl_cont_optim_fdf (gsl_vector *x, void *params,
- double *f, gsl_vector *df) {
- *f = wgsl_cont_optim_f(x, params);
- wgsl_cont_optim_df(x, params, df);
-}
-
-int logistic_cont_fit (gsl_vector *beta,
- gsl_matrix *Xc, // Continuous covariates matrix,
- // Nobs x Kc (NULL if not used).
- gsl_vector *y,
- double lambdaL1,
- double lambdaL2) {
-
- double mLogLik=0;
- fix_parm_cont_T p;
- int npar = beta->size;
- int iter=0;
- double maxchange=0;
-
- // Initializing fix parameters.
- p.Xc=Xc;
- p.y=y;
- p.lambdaL1=lambdaL1;
- p.lambdaL2=lambdaL2;
-
- // Initial fit.
- mLogLik = wgsl_cont_optim_f(beta,&p);
-
- gsl_matrix *myH = gsl_matrix_alloc(npar,npar); // Hessian matrix.
- gsl_vector *stBeta = gsl_vector_alloc(npar); // Direction to move.
-
- gsl_vector *myG = gsl_vector_alloc(npar); // Gradient.
- gsl_vector *tau = gsl_vector_alloc(npar); // tau for QR.
-
- for(iter=0;iter<100;iter++){
- wgsl_cont_optim_hessian(beta,&p,myH); // Calculate Hessian.
- wgsl_cont_optim_df(beta,&p,myG); // Calculate Gradient.
- gsl_linalg_QR_decomp(myH,tau); // Calculate next beta.
- gsl_linalg_QR_solve(myH,tau,myG,stBeta);
- gsl_vector_sub(beta,stBeta);
-
- // Monitor convergence.
- maxchange=0;
- for(int i=0;i<npar; i++)
- if(maxchange<fabs(stBeta->data[i]))
- maxchange=fabs(stBeta->data[i]);
-
-#ifdef _RPR_DEBUG_
- mLogLik = wgsl_cont_optim_f(beta,&p);
-#endif
-
- if(maxchange<1E-4)
- break;
- }
-
- // Final fit.
- mLogLik = wgsl_cont_optim_f(beta,&p);
-
- gsl_vector_free (tau);
- gsl_vector_free (stBeta);
- gsl_vector_free (myG);
- gsl_matrix_free (myH);
-
- return 0;
-}
-
+#include <stdio.h> +#include <math.h> +#include <gsl/gsl_matrix.h> +#include <gsl/gsl_rng.h> +#include <gsl/gsl_multimin.h> +#include <gsl/gsl_sf.h> +#include <gsl/gsl_linalg.h> +#include "logistic.h" + +// I need to bundle all the data that goes to the function to optimze +// together. +typedef struct{ + gsl_matrix_int *X; + gsl_vector_int *nlev; + gsl_vector *y; + gsl_matrix *Xc; // Continuous covariates matrix Nobs x Kc (NULL if not used). + double lambdaL1; + double lambdaL2; +} fix_parm_mixed_T; + +double fLogit_mixed(gsl_vector *beta, + gsl_matrix_int *X, + gsl_vector_int *nlev, + gsl_matrix *Xc, + gsl_vector *y, + double lambdaL1, + double lambdaL2) { + int n = y->size; + int npar = beta->size; + double total = 0; + double aux = 0; + + // Changed loop start at 1 instead of 0 to avoid regularization of + // beta_0*\/ + // #pragma omp parallel for reduction (+:total) + for(int i = 1; i < npar; ++i) + total += beta->data[i]*beta->data[i]; + total = (-total*lambdaL2/2); + // #pragma omp parallel for reduction (+:aux) + for(int i = 1; i < npar; ++i) + aux += (beta->data[i]>0 ? beta->data[i] : -beta->data[i]); + total = total-aux*lambdaL1; + // #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y) + // #reduction (+:total) + for(int i = 0; i < n; ++i) { + double Xbetai=beta->data[0]; + int iParm=1; + for(int k = 0; k < X->size2; ++k) { + if(gsl_matrix_int_get(X,i,k)>0) + Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm]; + iParm+=nlev->data[k]-1; + } + for(int k = 0; k < (Xc->size2); ++k) + Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++]; + total += y->data[i]*Xbetai-gsl_sf_log_1plusx(gsl_sf_exp(Xbetai)); + } + return -total; +} + +void logistic_mixed_pred(gsl_vector *beta, // Vector of parameters + // length = 1 + Sum_k(C_k -1) + gsl_matrix_int *X, // Matrix Nobs x K + gsl_vector_int *nlev, // Vector with number categories + gsl_matrix *Xc, // Continuous covariates matrix: + // obs x Kc (NULL if not used). + gsl_vector *yhat){ // Vector of prob. predicted by + // the logistic + for(int i = 0; i < X->size1; ++i) { + double Xbetai=beta->data[0]; + int iParm=1; + for(int k = 0; k < X->size2; ++k) { + if(gsl_matrix_int_get(X,i,k)>0) + Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm]; + iParm+=nlev->data[k]-1; + } + // Adding the continuous. + for(int k = 0; k < (Xc->size2); ++k) + Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++]; + yhat->data[i]=1/(1 + gsl_sf_exp(-Xbetai)); + } +} + + +// The gradient of f, df = (df/dx, df/dy). +void wgsl_mixed_optim_df (const gsl_vector *beta, void *params, + gsl_vector *out) { + fix_parm_mixed_T *p = (fix_parm_mixed_T *)params; + int n = p->y->size; + int K = p->X->size2; + int Kc = p->Xc->size2; + int npar = beta->size; + + // Intitialize gradient out necessary? + for(int i = 0; i < npar; ++i) + out->data[i]= 0; + + // Changed loop start at 1 instead of 0 to avoid regularization of beta 0. + for(int i = 1; i < npar; ++i) + out->data[i]= p->lambdaL2*beta->data[i]; + for(int i = 1; i < npar; ++i) + out->data[i]+= p->lambdaL1*((beta->data[i]>0)-(beta->data[i]<0)); + + for(int i = 0; i < n; ++i) { + double pn=0; + double Xbetai=beta->data[0]; + int iParm=1; + for(int k = 0; k < K; ++k) { + if(gsl_matrix_int_get(p->X,i,k)>0) + Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm]; + iParm+=p->nlev->data[k]-1; + } + + // Adding the continuous. + for(int k = 0; k < Kc; ++k) + Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm++]; + + pn= -( p->y->data[i] - 1/(1 + gsl_sf_exp(-Xbetai)) ); + + out->data[0]+= pn; + iParm=1; + for(int k = 0; k < K; ++k) { + if(gsl_matrix_int_get(p->X,i,k)>0) + out->data[gsl_matrix_int_get(p->X,i,k)-1+iParm]+=pn; + iParm+=p->nlev->data[k]-1; + } + + // Adding the continuous. + for(int k = 0; k < Kc; ++k) { + out->data[iParm++] += gsl_matrix_get(p->Xc,i,k)*pn; + } + } + +} + +// The Hessian of f. +void wgsl_mixed_optim_hessian (const gsl_vector *beta, void *params, + gsl_matrix *out) { + fix_parm_mixed_T *p = (fix_parm_mixed_T *)params; + int n = p->y->size; + int K = p->X->size2; + int Kc = p->Xc->size2; + int npar = beta->size; + gsl_vector *gn = gsl_vector_alloc(npar); // gn + + // Intitialize Hessian out necessary ??? + gsl_matrix_set_zero(out); + + /* Changed loop start at 1 instead of 0 to avoid regularization of beta 0*/ + for(int i = 1; i < npar; ++i) + gsl_matrix_set(out,i,i,(p->lambdaL2)); // Double-check this. + + // L1 penalty not working yet, as not differentiable, I may need to + // do coordinate descent (as in glm_net) + for(int i = 0; i < n; ++i) { + double pn=0; + double aux=0; + double Xbetai=beta->data[0]; + int iParm1=1; + for(int k = 0; k < K; ++k) { + if(gsl_matrix_int_get(p->X,i,k)>0) + Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm1]; + iParm1+=p->nlev->data[k]-1; //-1? + } + + // Adding the continuous. + for(int k = 0; k < Kc; ++k) + Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm1++]; + + pn= 1/(1 + gsl_sf_exp(-Xbetai)); + + // Add a protection for pn very close to 0 or 1? + aux=pn*(1-pn); + + // Calculate sub-gradient vector gn. + gsl_vector_set_zero(gn); + gn->data[0]= 1; + iParm1=1; + for(int k = 0; k < K; ++k) { + if(gsl_matrix_int_get(p->X,i,k)>0) + gn->data[gsl_matrix_int_get(p->X,i,k)-1+iParm1]=1; + iParm1+=p->nlev->data[k]-1; + } + + // Adding the continuous. + for(int k = 0; k < Kc; ++k) { + gn->data[iParm1++] = gsl_matrix_get(p->Xc,i,k); + } + + for(int k1=0;k1<npar; ++k1) + if(gn->data[k1]!=0) + for(int k2=0;k2<npar; ++k2) + if(gn->data[k2]!=0) + *gsl_matrix_ptr(out,k1,k2) += (aux * gn->data[k1] * gn->data[k2]); + } + gsl_vector_free(gn); +} + +double wgsl_mixed_optim_f(gsl_vector *v, void *params) { + double mLogLik=0; + fix_parm_mixed_T *p = (fix_parm_mixed_T *)params; + mLogLik = fLogit_mixed(v,p->X,p->nlev,p->Xc,p->y,p->lambdaL1,p->lambdaL2); + return mLogLik; +} + +// Compute both f and df together. +void +wgsl_mixed_optim_fdf (gsl_vector *x, void *params, double *f, gsl_vector *df) { + *f = wgsl_mixed_optim_f(x, params); + wgsl_mixed_optim_df(x, params, df); +} + +// Xc is the matrix of continuous covariates, Nobs x Kc (NULL if not used). +int logistic_mixed_fit(gsl_vector *beta, gsl_matrix_int *X, + gsl_vector_int *nlev, gsl_matrix *Xc, + gsl_vector *y, double lambdaL1, double lambdaL2) { + double mLogLik=0; + fix_parm_mixed_T p; + int npar = beta->size; + int iter=0; + double maxchange=0; + + // Intializing fix parameters. + p.X=X; + p.Xc=Xc; + p.nlev=nlev; + p.y=y; + p.lambdaL1=lambdaL1; + p.lambdaL2=lambdaL2; + + // Initial fit. + mLogLik = wgsl_mixed_optim_f(beta,&p); + + gsl_matrix *myH = gsl_matrix_alloc(npar,npar); // Hessian matrix. + gsl_vector *stBeta = gsl_vector_alloc(npar); // Direction to move. + + gsl_vector *myG = gsl_vector_alloc(npar); // Gradient. + gsl_vector *tau = gsl_vector_alloc(npar); // tau for QR. + + for(iter=0;iter<100;iter++){ + wgsl_mixed_optim_hessian(beta,&p,myH); // Calculate Hessian. + wgsl_mixed_optim_df(beta,&p,myG); // Calculate Gradient. + gsl_linalg_QR_decomp(myH,tau); // Calculate next beta. + gsl_linalg_QR_solve(myH,tau,myG,stBeta); + gsl_vector_sub(beta,stBeta); + + // Monitor convergence. + maxchange=0; + for(int i=0;i<npar; i++) + if(maxchange<fabs(stBeta->data[i])) + maxchange=fabs(stBeta->data[i]); + + if(maxchange<1E-4) + break; + } + + // Final fit. + mLogLik = wgsl_mixed_optim_f(beta,&p); + + gsl_vector_free (tau); + gsl_vector_free (stBeta); + gsl_vector_free (myG); + gsl_matrix_free (myH); + + return 0; +} + +/***************/ +/* Categorical */ +/***************/ + +// I need to bundle all the data that goes to the function to optimze +// together. +typedef struct { + gsl_matrix_int *X; + gsl_vector_int *nlev; + gsl_vector *y; + double lambdaL1; + double lambdaL2; +} fix_parm_cat_T; + +double fLogit_cat (gsl_vector *beta, gsl_matrix_int *X, gsl_vector_int *nlev, + gsl_vector *y, double lambdaL1, double lambdaL2) { + int n = y->size; + int npar = beta->size; + double total = 0; + double aux = 0; + + // omp_set_num_threads(ompthr); /\* Changed loop start at 1 instead + // of 0 to avoid regularization of beta 0*\/ /\*#pragma omp parallel + // for reduction (+:total)*\/ + for(int i = 1; i < npar; ++i) + total += beta->data[i]*beta->data[i]; + total = (-total*lambdaL2/2); + + // /\*#pragma omp parallel for reduction (+:aux)*\/ + for(int i = 1; i < npar; ++i) + aux += (beta->data[i]>0 ? beta->data[i] : -beta->data[i]); + total = total-aux*lambdaL1; + + // #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y) + // #reduction (+:total) + for(int i = 0; i < n; ++i) { + double Xbetai=beta->data[0]; + int iParm=1; + for(int k = 0; k < X->size2; ++k) { + if(gsl_matrix_int_get(X,i,k)>0) + Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm]; + iParm+=nlev->data[k]-1; + } + total += y->data[i]*Xbetai-gsl_sf_log_1plusx(gsl_sf_exp(Xbetai)); + } + return -total; +} + +void logistic_cat_pred (gsl_vector *beta, // Vector of parameters + // length = 1 + Sum_k(C_k-1). + gsl_matrix_int *X, // Matrix Nobs x K + gsl_vector_int *nlev, // Vector with #categories + gsl_vector *yhat){ // Vector of prob. predicted by + // the logistic. + for(int i = 0; i < X->size1; ++i) { + double Xbetai=beta->data[0]; + int iParm=1; + for(int k = 0; k < X->size2; ++k) { + if(gsl_matrix_int_get(X,i,k)>0) + Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm]; + iParm+=nlev->data[k]-1; + } + yhat->data[i]=1/(1 + gsl_sf_exp(-Xbetai)); + } +} + +// The gradient of f, df = (df/dx, df/dy). +void wgsl_cat_optim_df (const gsl_vector *beta, void *params, + gsl_vector *out) { + fix_parm_cat_T *p = (fix_parm_cat_T *)params; + int n = p->y->size; + int K = p->X->size2; + int npar = beta->size; + + // Intitialize gradient out necessary? + for(int i = 0; i < npar; ++i) + out->data[i]= 0; + + // Changed loop start at 1 instead of 0 to avoid regularization of beta 0. + for(int i = 1; i < npar; ++i) + out->data[i]= p->lambdaL2*beta->data[i]; + for(int i = 1; i < npar; ++i) + out->data[i]+= p->lambdaL1*((beta->data[i]>0)-(beta->data[i]<0)); + + for(int i = 0; i < n; ++i) { + double pn=0; + double Xbetai=beta->data[0]; + int iParm=1; + for(int k = 0; k < K; ++k) { + if(gsl_matrix_int_get(p->X,i,k)>0) + Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm]; + iParm+=p->nlev->data[k]-1; + } + + pn= -( p->y->data[i] - 1/(1 + gsl_sf_exp(-Xbetai)) ); + + out->data[0]+= pn; + iParm=1; + for(int k = 0; k < K; ++k) { + if(gsl_matrix_int_get(p->X,i,k)>0) + out->data[gsl_matrix_int_get(p->X,i,k)-1+iParm]+=pn; + iParm+=p->nlev->data[k]-1; + } + } +} + +// The Hessian of f. +void wgsl_cat_optim_hessian (const gsl_vector *beta, void *params, + gsl_matrix *out) { + fix_parm_cat_T *p = (fix_parm_cat_T *)params; + int n = p->y->size; + int K = p->X->size2; + int npar = beta->size; + + // Intitialize Hessian out necessary. + gsl_matrix_set_zero(out); + + // Changed loop start at 1 instead of 0 to avoid regularization of beta. + for(int i = 1; i < npar; ++i) + gsl_matrix_set(out,i,i,(p->lambdaL2)); // Double-check this. + + // L1 penalty not working yet, as not differentiable, I may need to + // do coordinate descent (as in glm_net). + for(int i = 0; i < n; ++i) { + double pn=0; + double aux=0; + double Xbetai=beta->data[0]; + int iParm2=1; + int iParm1=1; + for(int k = 0; k < K; ++k) { + if(gsl_matrix_int_get(p->X,i,k)>0) + Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm1]; + iParm1+=p->nlev->data[k]-1; //-1? + } + + pn= 1/(1 + gsl_sf_exp(-Xbetai)); + + // Add a protection for pn very close to 0 or 1? + aux=pn*(1-pn); + *gsl_matrix_ptr(out,0,0)+=aux; + iParm2=1; + for(int k2 = 0; k2 < K; ++k2) { + if(gsl_matrix_int_get(p->X,i,k2)>0) + *gsl_matrix_ptr(out,0,gsl_matrix_int_get(p->X,i,k2)-1+iParm2)+=aux; + iParm2+=p->nlev->data[k2]-1; //-1? + } + iParm1=1; + for(int k1 = 0; k1 < K; ++k1) { + if(gsl_matrix_int_get(p->X,i,k1)>0) + *gsl_matrix_ptr(out,gsl_matrix_int_get(p->X,i,k1)-1+iParm1,0)+=aux; + iParm2=1; + for(int k2 = 0; k2 < K; ++k2) { + if((gsl_matrix_int_get(p->X,i,k1)>0) && + (gsl_matrix_int_get(p->X,i,k2)>0)) + *gsl_matrix_ptr(out + ,gsl_matrix_int_get(p->X,i,k1)-1+iParm1 + ,gsl_matrix_int_get(p->X,i,k2)-1+iParm2 + )+=aux; + iParm2+=p->nlev->data[k2]-1; //-1? + } + iParm1+=p->nlev->data[k1]-1; //-1? + } + } +} + +double wgsl_cat_optim_f(gsl_vector *v, void *params) { + double mLogLik=0; + fix_parm_cat_T *p = (fix_parm_cat_T *)params; + mLogLik = fLogit_cat(v,p->X,p->nlev,p->y,p->lambdaL1,p->lambdaL2); + return mLogLik; +} + +// Compute both f and df together. +void wgsl_cat_optim_fdf (gsl_vector *x, void *params, double *f, + gsl_vector *df) { + *f = wgsl_cat_optim_f(x, params); + wgsl_cat_optim_df(x, params, df); +} + +int logistic_cat_fit(gsl_vector *beta, + gsl_matrix_int *X, + gsl_vector_int *nlev, + gsl_vector *y, + double lambdaL1, + double lambdaL2) { + double mLogLik=0; + fix_parm_cat_T p; + int npar = beta->size; + int iter=0; + double maxchange=0; + + // Intializing fix parameters. + p.X=X; + p.nlev=nlev; + p.y=y; + p.lambdaL1=lambdaL1; + p.lambdaL2=lambdaL2; + + // Initial fit. + mLogLik = wgsl_cat_optim_f(beta,&p); + + gsl_matrix *myH = gsl_matrix_alloc(npar,npar); // Hessian matrix. + gsl_vector *stBeta = gsl_vector_alloc(npar); // Direction to move. + + gsl_vector *myG = gsl_vector_alloc(npar); // Gradient. + gsl_vector *tau = gsl_vector_alloc(npar); // tau for QR. + + for(iter=0;iter<100;iter++){ + wgsl_cat_optim_hessian(beta,&p,myH); // Calculate Hessian. + wgsl_cat_optim_df(beta,&p,myG); // Calculate Gradient. + gsl_linalg_QR_decomp(myH,tau); // Calculate next beta. + gsl_linalg_QR_solve(myH,tau,myG,stBeta); + gsl_vector_sub(beta,stBeta); + + // Monitor convergence. + maxchange=0; + for(int i=0;i<npar; i++) + if(maxchange<fabs(stBeta->data[i])) + maxchange=fabs(stBeta->data[i]); + +#ifdef _RPR_DEBUG_ + mLogLik = wgsl_cat_optim_f(beta,&p); +#endif + + if(maxchange<1E-4) + break; + } + + // Final fit. + mLogLik = wgsl_cat_optim_f(beta,&p); + + gsl_vector_free (tau); + gsl_vector_free (stBeta); + gsl_vector_free (myG); + gsl_matrix_free (myH); + + return 0; +} + +/***************/ +/* Continuous */ +/***************/ + +// I need to bundle all the data that goes to the function to optimze +// together. +typedef struct{ + gsl_matrix *Xc; // continuous covariates; Matrix Nobs x Kc + gsl_vector *y; + double lambdaL1; + double lambdaL2; +}fix_parm_cont_T; + +double fLogit_cont(gsl_vector *beta, gsl_matrix *Xc, gsl_vector *y, + double lambdaL1, double lambdaL2) { + int n = y->size; + int npar = beta->size; + double total = 0; + double aux = 0; + + // omp_set_num_threads(ompthr); /\* Changed loop start at 1 instead + // of 0 to avoid regularization of beta_0*\/ /\*#pragma omp parallel + // for reduction (+:total)*\/ + for(int i = 1; i < npar; ++i) + total += beta->data[i]*beta->data[i]; + total = (-total*lambdaL2/2); + + // /\*#pragma omp parallel for reduction (+:aux)*\/ + for(int i = 1; i < npar; ++i) + aux += (beta->data[i]>0 ? beta->data[i] : -beta->data[i]); + total = total-aux*lambdaL1; + + // #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y) + // #reduction (+:total) + for(int i = 0; i < n; ++i) { + double Xbetai=beta->data[0]; + int iParm=1; + for(int k = 0; k < (Xc->size2); ++k) + Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++]; + total += y->data[i]*Xbetai-gsl_sf_log_1plusx(gsl_sf_exp(Xbetai)); + } + return -total; +} + +void logistic_cont_pred(gsl_vector *beta, // Vector of parameters + // length = 1 + Sum_k(C_k-1). + gsl_matrix *Xc, // Continuous covariates matrix, + // Nobs x Kc (NULL if not used). + gsl_vector *yhat) { // Vector of prob. predicted by + // the logistic. + for(int i = 0; i < Xc->size1; ++i) { + double Xbetai=beta->data[0]; + int iParm=1; + for(int k = 0; k < (Xc->size2); ++k) + Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++]; + yhat->data[i]=1/(1 + gsl_sf_exp(-Xbetai)); + } +} + +// The gradient of f, df = (df/dx, df/dy). +void wgsl_cont_optim_df (const gsl_vector *beta, void *params, + gsl_vector *out) { + fix_parm_cont_T *p = (fix_parm_cont_T *)params; + int n = p->y->size; + int Kc = p->Xc->size2; + int npar = beta->size; + + // Intitialize gradient out necessary? + for(int i = 0; i < npar; ++i) + out->data[i]= 0; + + // Changed loop start at 1 instead of 0 to avoid regularization of beta 0. + for(int i = 1; i < npar; ++i) + out->data[i]= p->lambdaL2*beta->data[i]; + for(int i = 1; i < npar; ++i) + out->data[i]+= p->lambdaL1*((beta->data[i]>0)-(beta->data[i]<0)); + + for(int i = 0; i < n; ++i) { + double pn=0; + double Xbetai=beta->data[0]; + int iParm=1; + for(int k = 0; k < Kc; ++k) + Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm++]; + + pn= -( p->y->data[i] - 1/(1 + gsl_sf_exp(-Xbetai)) ); + + out->data[0]+= pn; + iParm=1; + + // Adding the continuous. + for(int k = 0; k < Kc; ++k) { + out->data[iParm++] += gsl_matrix_get(p->Xc,i,k)*pn; + } + } +} + +// The Hessian of f. +void wgsl_cont_optim_hessian (const gsl_vector *beta, void *params, + gsl_matrix *out) { + fix_parm_cont_T *p = (fix_parm_cont_T *)params; + int n = p->y->size; + int Kc = p->Xc->size2; + int npar = beta->size; + gsl_vector *gn = gsl_vector_alloc(npar); // gn. + + // Intitialize Hessian out necessary ??? + + gsl_matrix_set_zero(out); + + // Changed loop start at 1 instead of 0 to avoid regularization of + // beta 0. + for(int i = 1; i < npar; ++i) + gsl_matrix_set(out,i,i,(p->lambdaL2)); // Double-check this. + + // L1 penalty not working yet, as not differentiable, I may need to + // do coordinate descent (as in glm_net). + for(int i = 0; i < n; ++i) { + double pn=0; + double aux=0; + double Xbetai=beta->data[0]; + int iParm1=1; + for(int k = 0; k < Kc; ++k) + Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm1++]; + + pn= 1/(1 + gsl_sf_exp(-Xbetai)); + + // Add a protection for pn very close to 0 or 1? + aux=pn*(1-pn); + + // Calculate sub-gradient vector gn. + gsl_vector_set_zero(gn); + gn->data[0]= 1; + iParm1=1; + for(int k = 0; k < Kc; ++k) { + gn->data[iParm1++] = gsl_matrix_get(p->Xc,i,k); + } + + for(int k1=0;k1<npar; ++k1) + if(gn->data[k1]!=0) + for(int k2=0;k2<npar; ++k2) + if(gn->data[k2]!=0) + *gsl_matrix_ptr(out,k1,k2) += (aux * gn->data[k1] * gn->data[k2]); + } + gsl_vector_free(gn); +} + +double wgsl_cont_optim_f(gsl_vector *v, void *params) { + double mLogLik=0; + fix_parm_cont_T *p = (fix_parm_cont_T *)params; + mLogLik = fLogit_cont(v,p->Xc,p->y,p->lambdaL1,p->lambdaL2); + return mLogLik; +} + +// Compute both f and df together. +void wgsl_cont_optim_fdf (gsl_vector *x, void *params, + double *f, gsl_vector *df) { + *f = wgsl_cont_optim_f(x, params); + wgsl_cont_optim_df(x, params, df); +} + +int logistic_cont_fit (gsl_vector *beta, + gsl_matrix *Xc, // Continuous covariates matrix, + // Nobs x Kc (NULL if not used). + gsl_vector *y, + double lambdaL1, + double lambdaL2) { + + double mLogLik=0; + fix_parm_cont_T p; + int npar = beta->size; + int iter=0; + double maxchange=0; + + // Initializing fix parameters. + p.Xc=Xc; + p.y=y; + p.lambdaL1=lambdaL1; + p.lambdaL2=lambdaL2; + + // Initial fit. + mLogLik = wgsl_cont_optim_f(beta,&p); + + gsl_matrix *myH = gsl_matrix_alloc(npar,npar); // Hessian matrix. + gsl_vector *stBeta = gsl_vector_alloc(npar); // Direction to move. + + gsl_vector *myG = gsl_vector_alloc(npar); // Gradient. + gsl_vector *tau = gsl_vector_alloc(npar); // tau for QR. + + for(iter=0;iter<100;iter++){ + wgsl_cont_optim_hessian(beta,&p,myH); // Calculate Hessian. + wgsl_cont_optim_df(beta,&p,myG); // Calculate Gradient. + gsl_linalg_QR_decomp(myH,tau); // Calculate next beta. + gsl_linalg_QR_solve(myH,tau,myG,stBeta); + gsl_vector_sub(beta,stBeta); + + // Monitor convergence. + maxchange=0; + for(int i=0;i<npar; i++) + if(maxchange<fabs(stBeta->data[i])) + maxchange=fabs(stBeta->data[i]); + +#ifdef _RPR_DEBUG_ + mLogLik = wgsl_cont_optim_f(beta,&p); +#endif + + if(maxchange<1E-4) + break; + } + + // Final fit. + mLogLik = wgsl_cont_optim_f(beta,&p); + + gsl_vector_free (tau); + gsl_vector_free (stBeta); + gsl_vector_free (myG); + gsl_matrix_free (myH); + + return 0; +} |