diff options
author | Pjotr Prins | 2017-10-05 13:01:27 +0000 |
---|---|---|
committer | Pjotr Prins | 2017-10-05 13:01:27 +0000 |
commit | 4d5cb9ae3847192c98ff585b9ad48f6103b2417b (patch) | |
tree | 7f3c089d78686eb32e2efddc1a97f93c3c876b87 /src/lmm.cpp | |
parent | 86323ccaf26ad0a3b706a67a0014dd04b9965823 (diff) | |
download | pangemma-4d5cb9ae3847192c98ff585b9ad48f6103b2417b.tar.gz |
Removed Oxford format as per https://github.com/genetics-statistics/GEMMA/issues/46
Diffstat (limited to 'src/lmm.cpp')
-rw-r--r-- | src/lmm.cpp | 281 |
1 files changed, 0 insertions, 281 deletions
diff --git a/src/lmm.cpp b/src/lmm.cpp index 1193700..50fb64c 100644 --- a/src/lmm.cpp +++ b/src/lmm.cpp @@ -56,9 +56,6 @@ void LMM::CopyFromParam(PARAM &cPar) { path_out = cPar.path_out; file_gene = cPar.file_gene; - // WJA added. - file_oxford = cPar.file_oxford; - l_min = cPar.l_min; l_max = cPar.l_max; n_region = cPar.n_region; @@ -1630,284 +1627,6 @@ void LMM::AnalyzePlink(const gsl_matrix *U, const gsl_vector *eval, return; } -// WJA added. -void LMM::Analyzebgen(const gsl_matrix *U, const gsl_vector *eval, - const gsl_matrix *UtW, const gsl_vector *Uty, - const gsl_matrix *W, const gsl_vector *y) { - debug_msg("entering"); - string file_bgen = file_oxford + ".bgen"; - ifstream infile(file_bgen.c_str(), ios::binary); - if (!infile) { - cout << "error reading bgen file:" << file_bgen << endl; - return; - } - - clock_t time_start = clock(); - double lambda_mle = 0, lambda_remle = 0, beta = 0, se = 0, p_wald = 0; - double p_lrt = 0, p_score = 0; - double logl_H1 = 0.0; - int n_miss, c_phen; - double geno, x_mean; - - // Calculate basic quantities. - size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2; - - gsl_vector *x = gsl_vector_alloc(U->size1); - gsl_vector *x_miss = gsl_vector_alloc(U->size1); - gsl_vector *Utx = gsl_vector_alloc(U->size2); - gsl_matrix *Uab = gsl_matrix_alloc(U->size2, n_index); - gsl_vector *ab = gsl_vector_alloc(n_index); - - // Create a large matrix. - size_t msize = LMM_BATCH_SIZE; - gsl_matrix *Xlarge = gsl_matrix_alloc(U->size1, msize); - gsl_matrix *UtXlarge = gsl_matrix_alloc(U->size1, msize); - gsl_matrix_set_zero(Xlarge); - - gsl_matrix_set_zero(Uab); - CalcUab(UtW, Uty, Uab); - - // Read in header. - uint32_t bgen_snp_block_offset; - uint32_t bgen_header_length; - uint32_t bgen_nsamples; - uint32_t bgen_nsnps; - uint32_t bgen_flags; - infile.read(reinterpret_cast<char *>(&bgen_snp_block_offset), 4); - infile.read(reinterpret_cast<char *>(&bgen_header_length), 4); - bgen_snp_block_offset -= 4; - infile.read(reinterpret_cast<char *>(&bgen_nsnps), 4); - bgen_snp_block_offset -= 4; - infile.read(reinterpret_cast<char *>(&bgen_nsamples), 4); - bgen_snp_block_offset -= 4; - infile.ignore(4 + bgen_header_length - 20); - bgen_snp_block_offset -= 4 + bgen_header_length - 20; - infile.read(reinterpret_cast<char *>(&bgen_flags), 4); - bgen_snp_block_offset -= 4; - bool CompressedSNPBlocks = bgen_flags & 0x1; - - infile.ignore(bgen_snp_block_offset); - - double bgen_geno_prob_AA, bgen_geno_prob_AB, bgen_geno_prob_BB; - double bgen_geno_prob_non_miss; - - uint32_t bgen_N; - uint16_t bgen_LS; - uint16_t bgen_LR; - uint16_t bgen_LC; - uint32_t bgen_SNP_pos; - uint32_t bgen_LA; - std::string bgen_A_allele; - uint32_t bgen_LB; - std::string bgen_B_allele; - uint32_t bgen_P; - size_t unzipped_data_size; - string id; - string rs; - string chr; - std::cout << "Warning: WJA hard coded SNP missingness " - << "threshold of 10%" << std::endl; - - // Start reading genotypes and analyze. - size_t c = 0, t_last = 0; - for (size_t t = 0; t < indicator_snp.size(); ++t) { - if (indicator_snp[t] == 0) { - continue; - } - t_last++; - } - for (size_t t = 0; t < indicator_snp.size(); ++t) { - if (t % d_pace == 0 || t == (ns_total - 1)) { - ProgressBar("Reading SNPs ", t, ns_total - 1); - } - if (indicator_snp[t] == 0) { - continue; - } - - // Read SNP header. - id.clear(); - rs.clear(); - chr.clear(); - bgen_A_allele.clear(); - bgen_B_allele.clear(); - - infile.read(reinterpret_cast<char *>(&bgen_N), 4); - infile.read(reinterpret_cast<char *>(&bgen_LS), 2); - - id.resize(bgen_LS); - infile.read(&id[0], bgen_LS); - - infile.read(reinterpret_cast<char *>(&bgen_LR), 2); - rs.resize(bgen_LR); - infile.read(&rs[0], bgen_LR); - - infile.read(reinterpret_cast<char *>(&bgen_LC), 2); - chr.resize(bgen_LC); - infile.read(&chr[0], bgen_LC); - - infile.read(reinterpret_cast<char *>(&bgen_SNP_pos), 4); - - infile.read(reinterpret_cast<char *>(&bgen_LA), 4); - bgen_A_allele.resize(bgen_LA); - infile.read(&bgen_A_allele[0], bgen_LA); - - infile.read(reinterpret_cast<char *>(&bgen_LB), 4); - bgen_B_allele.resize(bgen_LB); - infile.read(&bgen_B_allele[0], bgen_LB); - - uint16_t unzipped_data[3 * bgen_N]; - - if (indicator_snp[t] == 0) { - if (CompressedSNPBlocks) - infile.read(reinterpret_cast<char *>(&bgen_P), 4); - else - bgen_P = 6 * bgen_N; - - infile.ignore(static_cast<size_t>(bgen_P)); - - continue; - } - - if (CompressedSNPBlocks) { - infile.read(reinterpret_cast<char *>(&bgen_P), 4); - uint8_t zipped_data[bgen_P]; - - unzipped_data_size = 6 * bgen_N; - - infile.read(reinterpret_cast<char *>(zipped_data), bgen_P); - - int result = uncompress(reinterpret_cast<Bytef *>(unzipped_data), - reinterpret_cast<uLongf *>(&unzipped_data_size), - reinterpret_cast<Bytef *>(zipped_data), - static_cast<uLong>(bgen_P)); - assert(result == Z_OK); - - } else { - - bgen_P = 6 * bgen_N; - infile.read(reinterpret_cast<char *>(unzipped_data), bgen_P); - } - - x_mean = 0.0; - c_phen = 0; - n_miss = 0; - gsl_vector_set_zero(x_miss); - for (size_t i = 0; i < bgen_N; ++i) { - if (indicator_idv[i] == 0) { - continue; - } - - bgen_geno_prob_AA = static_cast<double>(unzipped_data[i * 3]) / 32768.0; - bgen_geno_prob_AB = - static_cast<double>(unzipped_data[i * 3 + 1]) / 32768.0; - bgen_geno_prob_BB = - static_cast<double>(unzipped_data[i * 3 + 2]) / 32768.0; - - // WJA. - bgen_geno_prob_non_miss = - bgen_geno_prob_AA + bgen_geno_prob_AB + bgen_geno_prob_BB; - if (bgen_geno_prob_non_miss < 0.9) { - gsl_vector_set(x_miss, c_phen, 0.0); - n_miss++; - } else { - - bgen_geno_prob_AA /= bgen_geno_prob_non_miss; - bgen_geno_prob_AB /= bgen_geno_prob_non_miss; - bgen_geno_prob_BB /= bgen_geno_prob_non_miss; - - geno = 2.0 * bgen_geno_prob_BB + bgen_geno_prob_AB; - - gsl_vector_set(x, c_phen, geno); - gsl_vector_set(x_miss, c_phen, 1.0); - x_mean += geno; - } - c_phen++; - } - - x_mean /= static_cast<double>(ni_test - n_miss); - - for (size_t i = 0; i < ni_test; ++i) { - if (gsl_vector_get(x_miss, i) == 0) { - gsl_vector_set(x, i, x_mean); - } - geno = gsl_vector_get(x, i); - } - - gsl_vector_view Xlarge_col = gsl_matrix_column(Xlarge, c % msize); - gsl_vector_memcpy(&Xlarge_col.vector, x); - c++; - - if (c % msize == 0 || c == t_last) { - size_t l = 0; - if (c % msize == 0) { - l = msize; - } else { - l = c % msize; - } - - gsl_matrix_view Xlarge_sub = - gsl_matrix_submatrix(Xlarge, 0, 0, Xlarge->size1, l); - gsl_matrix_view UtXlarge_sub = - gsl_matrix_submatrix(UtXlarge, 0, 0, UtXlarge->size1, l); - - time_start = clock(); - eigenlib_dgemm("T", "N", 1.0, U, &Xlarge_sub.matrix, 0.0, - &UtXlarge_sub.matrix); - time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0); - - gsl_matrix_set_zero(Xlarge); - - for (size_t i = 0; i < l; i++) { - gsl_vector_view UtXlarge_col = gsl_matrix_column(UtXlarge, i); - gsl_vector_memcpy(Utx, &UtXlarge_col.vector); - - CalcUab(UtW, Uty, Utx, Uab); - - time_start = clock(); - FUNC_PARAM param1 = {false, ni_test, n_cvt, eval, Uab, ab, 0}; - - // 3 is before 1. - if (a_mode == 3 || a_mode == 4) { - CalcRLScore(l_mle_null, param1, beta, se, p_score); - } - - if (a_mode == 1 || a_mode == 4) { - CalcLambda('R', param1, l_min, l_max, n_region, lambda_remle, - logl_H1); - CalcRLWald(lambda_remle, param1, beta, se, p_wald); - } - - if (a_mode == 2 || a_mode == 4) { - CalcLambda('L', param1, l_min, l_max, n_region, lambda_mle, logl_H1); - p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_mle_H0), 1); - } - - time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0); - - // Store summary data. - SUMSTAT SNPs = {beta, se, lambda_remle, lambda_mle, - p_wald, p_lrt, p_score, logl_H1}; - sumStat.push_back(SNPs); - } - } - } - cout << endl; - - gsl_vector_free(x); - gsl_vector_free(x_miss); - gsl_vector_free(Utx); - gsl_matrix_free(Uab); - gsl_vector_free(ab); - - gsl_matrix_free(Xlarge); - gsl_matrix_free(UtXlarge); - - infile.close(); - infile.clear(); - - return; -} - void MatrixCalcLR(const gsl_matrix *U, const gsl_matrix *UtX, const gsl_vector *Uty, const gsl_vector *K_eval, const double l_min, const double l_max, const size_t n_region, |