aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorPjotr Prins2017-10-05 13:01:27 +0000
committerPjotr Prins2017-10-05 13:01:27 +0000
commit4d5cb9ae3847192c98ff585b9ad48f6103b2417b (patch)
tree7f3c089d78686eb32e2efddc1a97f93c3c876b87 /src
parent86323ccaf26ad0a3b706a67a0014dd04b9965823 (diff)
downloadpangemma-4d5cb9ae3847192c98ff585b9ad48f6103b2417b.tar.gz
Removed Oxford format as per https://github.com/genetics-statistics/GEMMA/issues/46
Diffstat (limited to 'src')
-rw-r--r--src/gemma.cpp36
-rw-r--r--src/io.cpp753
-rw-r--r--src/io.h10
-rw-r--r--src/lm.cpp228
-rw-r--r--src/lm.h3
-rw-r--r--src/lmm.cpp281
-rw-r--r--src/lmm.h6
-rw-r--r--src/mvlmm.cpp551
-rw-r--r--src/param.cpp65
-rw-r--r--src/param.h3
10 files changed, 5 insertions, 1931 deletions
diff --git a/src/gemma.cpp b/src/gemma.cpp
index 2af8f8e..5fbd86c 100644
--- a/src/gemma.cpp
+++ b/src/gemma.cpp
@@ -310,11 +310,6 @@ void GEMMA::PrintHelp(size_t option) {
cout << " rs#2, base_position, chr_number" << endl;
cout << " ..." << endl;
- // WJA added.
- cout << " -oxford [prefix] "
- << " specify input Oxford genotype bgen file prefix." << endl;
- cout << " requires: *.bgen, *.sample files" << endl;
-
cout << " -gxe [filename] "
<< " specify input file that contains a column of environmental "
"factor for g by e tests"
@@ -793,18 +788,6 @@ void GEMMA::Assign(int argc, char **argv, PARAM &cPar) {
str.clear();
str.assign(argv[i]);
cPar.file_anno = str;
- }
-
- // WJA added.
- else if (strcmp(argv[i], "-oxford") == 0 ||
- strcmp(argv[i], "--oxford") == 0 || strcmp(argv[i], "-x") == 0) {
- if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
- continue;
- }
- ++i;
- str.clear();
- str.assign(argv[i]);
- cPar.file_oxford = str;
} else if (strcmp(argv[i], "-gxe") == 0) {
if (argv[i + 1] == NULL || argv[i + 1][0] == '-') {
continue;
@@ -2047,8 +2030,6 @@ void GEMMA::BatchRun(PARAM &cPar) {
&Y_col.vector); // y is the predictor, not the phenotype
} else if (!cPar.file_bfile.empty()) {
cLm.AnalyzePlink(W, &Y_col.vector);
- } else if (!cPar.file_oxford.empty()) {
- cLm.Analyzebgen(W, &Y_col.vector);
} else {
cLm.AnalyzeBimbam(W, &Y_col.vector);
}
@@ -2763,17 +2744,12 @@ void GEMMA::BatchRun(PARAM &cPar) {
&Y_col.vector, env);
}
}
- // WJA added
- else if (!cPar.file_oxford.empty()) {
- cLmm.Analyzebgen(U, eval, UtW, &UtY_col.vector, W, &Y_col.vector);
+ if (cPar.file_gxe.empty()) {
+ cLmm.AnalyzeBimbam(U, eval, UtW, &UtY_col.vector, W,
+ &Y_col.vector, cPar.setGWASnps);
} else {
- if (cPar.file_gxe.empty()) {
- cLmm.AnalyzeBimbam(U, eval, UtW, &UtY_col.vector, W,
- &Y_col.vector, cPar.setGWASnps);
- } else {
- cLmm.AnalyzeBimbamGXE(U, eval, UtW, &UtY_col.vector, W,
- &Y_col.vector, env);
- }
+ cLmm.AnalyzeBimbamGXE(U, eval, UtW, &UtY_col.vector, W,
+ &Y_col.vector, env);
}
cLmm.WriteFiles();
@@ -2788,8 +2764,6 @@ void GEMMA::BatchRun(PARAM &cPar) {
} else {
cMvlmm.AnalyzePlinkGXE(U, eval, UtW, UtY, env);
}
- } else if (!cPar.file_oxford.empty()) {
- cMvlmm.Analyzebgen(U, eval, UtW, UtY);
} else {
if (cPar.file_gxe.empty()) {
cMvlmm.AnalyzeBimbam(U, eval, UtW, UtY);
diff --git a/src/io.cpp b/src/io.cpp
index 6be01fd..1d75207 100644
--- a/src/io.cpp
+++ b/src/io.cpp
@@ -2274,759 +2274,6 @@ bool ReadFile_gene(const string &file_gene, vector<double> &vec_read,
return true;
}
-// WJA Added
-// Read Oxford sample file.
-bool ReadFile_sample(const string &file_sample,
- vector<vector<int>> &indicator_pheno,
- vector<vector<double>> &pheno,
- const vector<size_t> &p_column, vector<int> &indicator_cvt,
- vector<vector<double>> &cvt, size_t &n_cvt) {
- debug_msg("entered");
- indicator_pheno.clear();
- pheno.clear();
- indicator_cvt.clear();
-
- igzstream infile(file_sample.c_str(), igzstream::in);
-
- if (!infile) {
- cout << "error! fail to open sample file: " << file_sample << endl;
- return false;
- }
-
- string line;
- char *ch_ptr;
-
- string id;
- double p, d;
-
- vector<double> pheno_row;
- vector<int> ind_pheno_row;
- int flag_na = 0;
-
- size_t num_cols = 0;
- size_t num_p_in_file = 0;
- size_t num_cvt_in_file = 0;
-
- map<size_t, size_t> mapP2c;
- for (size_t i = 0; i < p_column.size(); i++) {
- mapP2c[p_column[i]] = i;
- pheno_row.push_back(-9);
- ind_pheno_row.push_back(0);
- }
-
- // Read header line1.
- if (!safeGetline(infile, line).eof()) {
- ch_ptr = strtok((char *)line.c_str(), " \t");
- if (strcmp(ch_ptr, "ID_1") != 0) {
- return false;
- }
- ch_ptr = strtok(NULL, " \t");
- if (strcmp(ch_ptr, "ID_2") != 0) {
- return false;
- }
- ch_ptr = strtok(NULL, " \t");
- if (strcmp(ch_ptr, "missing") != 0) {
- return false;
- }
- while (ch_ptr != NULL) {
- num_cols++;
- ch_ptr = strtok(NULL, " \t");
- }
- num_cols--;
- }
-
- vector<map<uint32_t, size_t>> cvt_factor_levels;
-
- char col_type[num_cols];
-
- // Read header line2.
- if (!safeGetline(infile, line).eof()) {
- ch_ptr = strtok((char *)line.c_str(), " \t");
- if (strcmp(ch_ptr, "0") != 0) {
- return false;
- }
- ch_ptr = strtok(NULL, " \t");
- if (strcmp(ch_ptr, "0") != 0) {
- return false;
- }
- ch_ptr = strtok(NULL, " \t");
- if (strcmp(ch_ptr, "0") != 0) {
- return false;
- }
- size_t it = 0;
- ch_ptr = strtok(NULL, " \t");
- if (ch_ptr != NULL)
- while (ch_ptr != NULL) {
- col_type[it++] = ch_ptr[0];
- if (ch_ptr[0] == 'D') {
- cvt_factor_levels.push_back(map<uint32_t, size_t>());
- num_cvt_in_file++;
- }
- if (ch_ptr[0] == 'C') {
- num_cvt_in_file++;
- }
- if ((ch_ptr[0] == 'P') || (ch_ptr[0] == 'B')) {
- num_p_in_file++;
- }
- ch_ptr = strtok(NULL, " \t");
- }
- }
-
- while (!safeGetline(infile, line).eof()) {
-
- ch_ptr = strtok((char *)line.c_str(), " \t");
-
- for (int it = 0; it < 3; it++) {
- ch_ptr = strtok(NULL, " \t");
- }
-
- size_t i = 0;
- size_t p_i = 0;
- size_t fac_cvt_i = 0;
-
- while (i < num_cols) {
-
- if ((col_type[i] == 'P') || (col_type[i] == 'B')) {
- if (mapP2c.count(p_i + 1) != 0) {
- if (strcmp(ch_ptr, "NA") == 0) {
- ind_pheno_row[mapP2c[p_i + 1]] = 0;
- pheno_row[mapP2c[p_i + 1]] = -9;
- } else {
- p = atof(ch_ptr);
- ind_pheno_row[mapP2c[p_i + 1]] = 1;
- pheno_row[mapP2c[p_i + 1]] = p;
- }
- }
- p_i++;
- }
- if (col_type[i] == 'D') {
-
- // NOTE THIS DOES NOT CHECK TO BE SURE LEVEL
- // IS INTEGRAL i.e for atoi error.
- if (strcmp(ch_ptr, "NA") != 0) {
- uint32_t level = atoi(ch_ptr);
- if (cvt_factor_levels[fac_cvt_i].count(level) == 0) {
- cvt_factor_levels[fac_cvt_i][level] =
- cvt_factor_levels[fac_cvt_i].size();
- }
- }
- fac_cvt_i++;
- }
-
- ch_ptr = strtok(NULL, " \t");
- i++;
- }
-
- indicator_pheno.push_back(ind_pheno_row);
- pheno.push_back(pheno_row);
- }
-
- // Close and reopen the file.
- infile.close();
- infile.clear();
-
- if (num_cvt_in_file > 0) {
- igzstream infile2(file_sample.c_str(), igzstream::in);
-
- if (!infile2) {
- cout << "error! fail to open sample file: " << file_sample << endl;
- return false;
- }
-
- // Skip header.
- safeGetline(infile2, line);
- safeGetline(infile2, line);
-
- // Pull in the covariates now we now the number of
- // factor levels.
- while (!safeGetline(infile2, line).eof()) {
-
- vector<double> v_d;
- flag_na = 0;
- ch_ptr = strtok((char *)line.c_str(), " \t");
-
- for (int it = 0; it < 3; it++) {
- ch_ptr = strtok(NULL, " \t");
- }
-
- size_t i = 0;
- size_t fac_cvt_i = 0;
- size_t num_fac_levels;
- while (i < num_cols) {
-
- if (col_type[i] == 'C') {
- if (strcmp(ch_ptr, "NA") == 0) {
- flag_na = 1;
- d = -9;
- } else {
- d = atof(ch_ptr);
- }
-
- v_d.push_back(d);
- }
-
- if (col_type[i] == 'D') {
-
- // NOTE THIS DOES NOT CHECK TO BE SURE
- // LEVEL IS INTEGRAL i.e for atoi error.
- num_fac_levels = cvt_factor_levels[fac_cvt_i].size();
- if (num_fac_levels > 1) {
- if (strcmp(ch_ptr, "NA") == 0) {
- flag_na = 1;
- for (size_t it = 0; it < num_fac_levels - 1; it++) {
- v_d.push_back(-9);
- }
- } else {
- uint32_t level = atoi(ch_ptr);
- for (size_t it = 0; it < num_fac_levels - 1; it++) {
- cvt_factor_levels[fac_cvt_i][level] == it + 1
- ? v_d.push_back(1.0)
- : v_d.push_back(0.0);
- }
- }
- }
- fac_cvt_i++;
- }
-
- ch_ptr = strtok(NULL, " \t");
- i++;
- }
-
- if (flag_na == 0) {
- indicator_cvt.push_back(1);
- } else {
- indicator_cvt.push_back(0);
- }
- cvt.push_back(v_d);
- }
-
- if (indicator_cvt.empty()) {
- n_cvt = 0;
- } else {
- flag_na = 0;
- for (vector<int>::size_type i = 0; i < indicator_cvt.size(); ++i) {
- if (indicator_cvt[i] == 0) {
- continue;
- }
-
- if (flag_na == 0) {
- flag_na = 1;
- n_cvt = cvt[i].size();
- }
- if (flag_na != 0 && n_cvt != cvt[i].size()) {
- cout << "error! number of covariates in row " << i
- << " do not match other rows." << endl;
- return false;
- }
- }
- }
-
- infile2.close();
- infile2.clear();
- }
- return true;
-}
-
-// WJA Added.
-// Read bgen file, the first time.
-bool ReadFile_bgen(const string &file_bgen, const set<string> &setSnps,
- const gsl_matrix *W, vector<int> &indicator_idv,
- vector<int> &indicator_snp, vector<SNPINFO> &snpInfo,
- const double &maf_level, const double &miss_level,
- const double &hwe_level, const double &r2_level,
- size_t &ns_test) {
-
- debug_msg("entered");
- indicator_snp.clear();
-
- ifstream infile(file_bgen.c_str(), ios::binary);
- if (!infile) {
- cout << "error reading bgen file:" << file_bgen << endl;
- return false;
- }
-
- gsl_vector *genotype = gsl_vector_alloc(W->size1);
- gsl_vector *genotype_miss = gsl_vector_alloc(W->size1);
- gsl_matrix *WtW = gsl_matrix_alloc(W->size2, W->size2);
- gsl_matrix *WtWi = gsl_matrix_alloc(W->size2, W->size2);
- gsl_vector *Wtx = gsl_vector_alloc(W->size2);
- gsl_vector *WtWiWtx = gsl_vector_alloc(W->size2);
- gsl_permutation *pmt = gsl_permutation_alloc(W->size2);
-
- gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, W, W, 0.0, WtW);
- int sig;
- LUDecomp(WtW, pmt, &sig);
- LUInvert(WtW, pmt, WtWi);
-
- // Read in header.
- uint32_t bgen_snp_block_offset;
- uint32_t bgen_header_length;
- uint32_t bgen_nsamples;
- uint32_t bgen_nsnps;
- uint32_t bgen_flags;
- infile.read(reinterpret_cast<char *>(&bgen_snp_block_offset), 4);
- infile.read(reinterpret_cast<char *>(&bgen_header_length), 4);
- bgen_snp_block_offset -= 4;
- infile.read(reinterpret_cast<char *>(&bgen_nsnps), 4);
- bgen_snp_block_offset -= 4;
- infile.read(reinterpret_cast<char *>(&bgen_nsamples), 4);
- bgen_snp_block_offset -= 4;
- infile.ignore(4 + bgen_header_length - 20);
- bgen_snp_block_offset -= 4 + bgen_header_length - 20;
- infile.read(reinterpret_cast<char *>(&bgen_flags), 4);
- bgen_snp_block_offset -= 4;
- bool CompressedSNPBlocks = bgen_flags & 0x1;
- bool LongIds = bgen_flags & 0x4;
-
- if (!LongIds) {
- return false;
- }
-
- infile.ignore(bgen_snp_block_offset);
-
- ns_test = 0;
-
- size_t ns_total = static_cast<size_t>(bgen_nsnps);
-
- snpInfo.clear();
- string rs;
- long int b_pos;
- string chr;
- string major;
- string minor;
- string id;
-
- double v_x, v_w;
- int c_idv = 0;
-
- double maf, geno, geno_old;
- size_t n_miss;
- size_t n_0, n_1, n_2;
- int flag_poly;
-
- double bgen_geno_prob_AA, bgen_geno_prob_AB;
- double bgen_geno_prob_BB, bgen_geno_prob_non_miss;
-
- // Total number of samples in phenotype file.
- size_t ni_total = indicator_idv.size();
-
- // Number of samples to use in test.
- size_t ni_test = 0;
-
- uint32_t bgen_N;
- uint16_t bgen_LS;
- uint16_t bgen_LR;
- uint16_t bgen_LC;
- uint32_t bgen_SNP_pos;
- uint32_t bgen_LA;
- std::string bgen_A_allele;
- uint32_t bgen_LB;
- std::string bgen_B_allele;
- uint32_t bgen_P;
- size_t unzipped_data_size;
-
- for (size_t i = 0; i < ni_total; ++i) {
- ni_test += indicator_idv[i];
- }
-
- for (size_t t = 0; t < ns_total; ++t) {
-
- id.clear();
- rs.clear();
- chr.clear();
- bgen_A_allele.clear();
- bgen_B_allele.clear();
-
- infile.read(reinterpret_cast<char *>(&bgen_N), 4);
- infile.read(reinterpret_cast<char *>(&bgen_LS), 2);
-
- id.resize(bgen_LS);
- infile.read(&id[0], bgen_LS);
-
- infile.read(reinterpret_cast<char *>(&bgen_LR), 2);
- rs.resize(bgen_LR);
- infile.read(&rs[0], bgen_LR);
-
- infile.read(reinterpret_cast<char *>(&bgen_LC), 2);
- chr.resize(bgen_LC);
- infile.read(&chr[0], bgen_LC);
-
- infile.read(reinterpret_cast<char *>(&bgen_SNP_pos), 4);
-
- infile.read(reinterpret_cast<char *>(&bgen_LA), 4);
- bgen_A_allele.resize(bgen_LA);
- infile.read(&bgen_A_allele[0], bgen_LA);
-
- infile.read(reinterpret_cast<char *>(&bgen_LB), 4);
- bgen_B_allele.resize(bgen_LB);
- infile.read(&bgen_B_allele[0], bgen_LB);
-
- // Should we switch according to MAF?
- minor = bgen_B_allele;
- major = bgen_A_allele;
- b_pos = static_cast<long int>(bgen_SNP_pos);
-
- uint16_t unzipped_data[3 * bgen_N];
-
- if (setSnps.size() != 0 && setSnps.count(rs) == 0) {
- SNPINFO sInfo = {
- "-9", rs, -9, -9, minor, major, static_cast<size_t>(-9),
- -9, (long int)-9};
-
- snpInfo.push_back(sInfo);
- indicator_snp.push_back(0);
- if (CompressedSNPBlocks)
- infile.read(reinterpret_cast<char *>(&bgen_P), 4);
- else
- bgen_P = 6 * bgen_N;
-
- infile.ignore(static_cast<size_t>(bgen_P));
-
- continue;
- }
-
- if (CompressedSNPBlocks) {
- infile.read(reinterpret_cast<char *>(&bgen_P), 4);
- uint8_t zipped_data[bgen_P];
-
- unzipped_data_size = 6 * bgen_N;
-
- infile.read(reinterpret_cast<char *>(zipped_data), bgen_P);
- int result = uncompress(reinterpret_cast<Bytef *>(unzipped_data),
- reinterpret_cast<uLongf *>(&unzipped_data_size),
- reinterpret_cast<Bytef *>(zipped_data),
- static_cast<uLong>(bgen_P));
- assert(result == Z_OK);
-
- } else {
- bgen_P = 6 * bgen_N;
- infile.read(reinterpret_cast<char *>(unzipped_data), bgen_P);
- }
-
- maf = 0;
- n_miss = 0;
- flag_poly = 0;
- geno_old = -9;
- n_0 = 0;
- n_1 = 0;
- n_2 = 0;
- c_idv = 0;
- gsl_vector_set_zero(genotype_miss);
- for (size_t i = 0; i < bgen_N; ++i) {
-
- // CHECK this set correctly!
- if (indicator_idv[i] == 0) {
- continue;
- }
-
- bgen_geno_prob_AA = static_cast<double>(unzipped_data[i * 3]) / 32768.0;
- bgen_geno_prob_AB =
- static_cast<double>(unzipped_data[i * 3 + 1]) / 32768.0;
- bgen_geno_prob_BB =
- static_cast<double>(unzipped_data[i * 3 + 2]) / 32768.0;
- bgen_geno_prob_non_miss =
- bgen_geno_prob_AA + bgen_geno_prob_AB + bgen_geno_prob_BB;
-
- // CHECK 0.1 OK.
- if (bgen_geno_prob_non_miss < 0.9) {
- gsl_vector_set(genotype_miss, c_idv, 1);
- n_miss++;
- c_idv++;
- continue;
- }
-
- bgen_geno_prob_AA /= bgen_geno_prob_non_miss;
- bgen_geno_prob_AB /= bgen_geno_prob_non_miss;
- bgen_geno_prob_BB /= bgen_geno_prob_non_miss;
-
- geno = 2.0 * bgen_geno_prob_BB + bgen_geno_prob_AB;
- if (geno >= 0 && geno <= 0.5) {
- n_0++;
- }
- if (geno > 0.5 && geno < 1.5) {
- n_1++;
- }
- if (geno >= 1.5 && geno <= 2.0) {
- n_2++;
- }
-
- gsl_vector_set(genotype, c_idv, geno);
-
- // CHECK WHAT THIS DOES.
- if (flag_poly == 0) {
- geno_old = geno;
- flag_poly = 2;
- }
- if (flag_poly == 2 && geno != geno_old) {
- flag_poly = 1;
- }
-
- maf += geno;
-
- c_idv++;
- }
-
- maf /= 2.0 * static_cast<double>(ni_test - n_miss);
-
- SNPINFO sInfo = {chr, rs, -9, b_pos,
- minor, major, n_miss, (double)n_miss / (double)ni_test,
- maf};
- snpInfo.push_back(sInfo);
-
- if ((double)n_miss / (double)ni_test > miss_level) {
- indicator_snp.push_back(0);
- continue;
- }
-
- if ((maf < maf_level || maf > (1.0 - maf_level)) && maf_level != -1) {
- indicator_snp.push_back(0);
- continue;
- }
-
- if (flag_poly != 1) {
- indicator_snp.push_back(0);
- continue;
- }
-
- if (hwe_level != 0 && maf_level != -1) {
- if (CalcHWE(n_0, n_2, n_1) < hwe_level) {
- indicator_snp.push_back(0);
- continue;
- }
- }
-
- // Filter SNP if it is correlated with W
- // unless W has only one column, of 1s.
- for (size_t i = 0; i < genotype->size; ++i) {
- if (gsl_vector_get(genotype_miss, i) == 1) {
- geno = maf * 2.0;
- gsl_vector_set(genotype, i, geno);
- }
- }
-
- gsl_blas_dgemv(CblasTrans, 1.0, W, genotype, 0.0, Wtx);
- gsl_blas_dgemv(CblasNoTrans, 1.0, WtWi, Wtx, 0.0, WtWiWtx);
- gsl_blas_ddot(genotype, genotype, &v_x);
- gsl_blas_ddot(Wtx, WtWiWtx, &v_w);
-
- if (W->size2 != 1 && v_w / v_x >= r2_level) {
- indicator_snp.push_back(0);
- continue;
- }
-
- indicator_snp.push_back(1);
- ns_test++;
- }
-
- return true;
-}
-
-// Read oxford genotype file and calculate kinship matrix.
-bool bgenKin(const string &file_oxford, vector<int> &indicator_snp,
- const int k_mode, const int display_pace, gsl_matrix *matrix_kin) {
- debug_msg("entered");
- string file_bgen = file_oxford;
- ifstream infile(file_bgen.c_str(), ios::binary);
- if (!infile) {
- cout << "error reading bgen file:" << file_bgen << endl;
- return false;
- }
-
- // Read in header.
- uint32_t bgen_snp_block_offset;
- uint32_t bgen_header_length;
- uint32_t bgen_nsamples;
- uint32_t bgen_nsnps;
- uint32_t bgen_flags;
- infile.read(reinterpret_cast<char *>(&bgen_snp_block_offset), 4);
- infile.read(reinterpret_cast<char *>(&bgen_header_length), 4);
- bgen_snp_block_offset -= 4;
- infile.read(reinterpret_cast<char *>(&bgen_nsnps), 4);
- bgen_snp_block_offset -= 4;
- infile.read(reinterpret_cast<char *>(&bgen_nsamples), 4);
- bgen_snp_block_offset -= 4;
- infile.ignore(4 + bgen_header_length - 20);
- bgen_snp_block_offset -= 4 + bgen_header_length - 20;
- infile.read(reinterpret_cast<char *>(&bgen_flags), 4);
- bgen_snp_block_offset -= 4;
- bool CompressedSNPBlocks = bgen_flags & 0x1;
-
- infile.ignore(bgen_snp_block_offset);
-
- double bgen_geno_prob_AA, bgen_geno_prob_AB;
- double bgen_geno_prob_BB, bgen_geno_prob_non_miss;
-
- uint32_t bgen_N;
- uint16_t bgen_LS;
- uint16_t bgen_LR;
- uint16_t bgen_LC;
- uint32_t bgen_SNP_pos;
- uint32_t bgen_LA;
- std::string bgen_A_allele;
- uint32_t bgen_LB;
- std::string bgen_B_allele;
- uint32_t bgen_P;
- size_t unzipped_data_size;
- string id;
- string rs;
- string chr;
- double genotype;
-
- size_t n_miss;
- double d, geno_mean, geno_var;
-
- size_t ni_total = matrix_kin->size1;
- gsl_vector *geno = gsl_vector_alloc(ni_total);
- gsl_vector *geno_miss = gsl_vector_alloc(ni_total);
-
- size_t ns_test = 0;
- for (size_t t = 0; t < indicator_snp.size(); ++t) {
-
- if (t % display_pace == 0 || t == (indicator_snp.size() - 1)) {
- ProgressBar("Reading bgen SNPs ", t, indicator_snp.size() - 1);
- }
-
- id.clear();
- rs.clear();
- chr.clear();
- bgen_A_allele.clear();
- bgen_B_allele.clear();
-
- infile.read(reinterpret_cast<char *>(&bgen_N), 4);
- infile.read(reinterpret_cast<char *>(&bgen_LS), 2);
-
- id.resize(bgen_LS);
- infile.read(&id[0], bgen_LS);
-
- infile.read(reinterpret_cast<char *>(&bgen_LR), 2);
- rs.resize(bgen_LR);
- infile.read(&rs[0], bgen_LR);
-
- infile.read(reinterpret_cast<char *>(&bgen_LC), 2);
- chr.resize(bgen_LC);
- infile.read(&chr[0], bgen_LC);
-
- infile.read(reinterpret_cast<char *>(&bgen_SNP_pos), 4);
-
- infile.read(reinterpret_cast<char *>(&bgen_LA), 4);
- bgen_A_allele.resize(bgen_LA);
- infile.read(&bgen_A_allele[0], bgen_LA);
-
- infile.read(reinterpret_cast<char *>(&bgen_LB), 4);
- bgen_B_allele.resize(bgen_LB);
- infile.read(&bgen_B_allele[0], bgen_LB);
-
- uint16_t unzipped_data[3 * bgen_N];
-
- if (indicator_snp[t] == 0) {
- if (CompressedSNPBlocks)
- infile.read(reinterpret_cast<char *>(&bgen_P), 4);
- else
- bgen_P = 6 * bgen_N;
-
- infile.ignore(static_cast<size_t>(bgen_P));
-
- continue;
- }
-
- if (CompressedSNPBlocks) {
- infile.read(reinterpret_cast<char *>(&bgen_P), 4);
- uint8_t zipped_data[bgen_P];
-
- unzipped_data_size = 6 * bgen_N;
-
- infile.read(reinterpret_cast<char *>(zipped_data), bgen_P);
-
- int result = uncompress(reinterpret_cast<Bytef *>(unzipped_data),
- reinterpret_cast<uLongf *>(&unzipped_data_size),
- reinterpret_cast<Bytef *>(zipped_data),
- static_cast<uLong>(bgen_P));
- assert(result == Z_OK);
-
- } else {
-
- bgen_P = 6 * bgen_N;
- infile.read(reinterpret_cast<char *>(unzipped_data), bgen_P);
- }
-
- geno_mean = 0.0;
- n_miss = 0;
- geno_var = 0.0;
- gsl_vector_set_all(geno_miss, 0);
-
- for (size_t i = 0; i < bgen_N; ++i) {
-
- bgen_geno_prob_AA = static_cast<double>(unzipped_data[i * 3]) / 32768.0;
- bgen_geno_prob_AB =
- static_cast<double>(unzipped_data[i * 3 + 1]) / 32768.0;
- bgen_geno_prob_BB =
- static_cast<double>(unzipped_data[i * 3 + 2]) / 32768.0;
- // WJA
- bgen_geno_prob_non_miss =
- bgen_geno_prob_AA + bgen_geno_prob_AB + bgen_geno_prob_BB;
- if (bgen_geno_prob_non_miss < 0.9) {
- gsl_vector_set(geno_miss, i, 0.0);
- n_miss++;
- } else {
-
- bgen_geno_prob_AA /= bgen_geno_prob_non_miss;
- bgen_geno_prob_AB /= bgen_geno_prob_non_miss;
- bgen_geno_prob_BB /= bgen_geno_prob_non_miss;
-
- genotype = 2.0 * bgen_geno_prob_BB + bgen_geno_prob_AB;
-
- gsl_vector_set(geno, i, genotype);
- gsl_vector_set(geno_miss, i, 1.0);
- geno_mean += genotype;
- geno_var += genotype * genotype;
- }
- }
-
- geno_mean /= (double)(ni_total - n_miss);
- geno_var += geno_mean * geno_mean * (double)n_miss;
- geno_var /= (double)ni_total;
- geno_var -= geno_mean * geno_mean;
-
- for (size_t i = 0; i < ni_total; ++i) {
- if (gsl_vector_get(geno_miss, i) == 0) {
- gsl_vector_set(geno, i, geno_mean);
- }
- }
-
- gsl_vector_add_constant(geno, -1.0 * geno_mean);
-
- if (geno_var != 0) {
- if (k_mode == 1) {
- gsl_blas_dsyr(CblasUpper, 1.0, geno, matrix_kin);
- } else if (k_mode == 2) {
- gsl_blas_dsyr(CblasUpper, 1.0 / geno_var, geno, matrix_kin);
- } else {
- cout << "Unknown kinship mode." << endl;
- }
- }
-
- ns_test++;
- }
- cout << endl;
-
- gsl_matrix_scale(matrix_kin, 1.0 / (double)ns_test);
-
- for (size_t i = 0; i < ni_total; ++i) {
- for (size_t j = 0; j < i; ++j) {
- d = gsl_matrix_get(matrix_kin, j, i);
- gsl_matrix_set(matrix_kin, i, j, d);
- }
- }
-
- gsl_vector_free(geno);
- gsl_vector_free(geno_miss);
-
- infile.close();
- infile.clear();
-
- return true;
-}
-
// Read header to determine which column contains which item.
bool ReadHeader_io(const string &line, HEADER &header) {
debug_msg("entered");
diff --git a/src/io.h b/src/io.h
index d9253e3..1c187b8 100644
--- a/src/io.h
+++ b/src/io.h
@@ -176,16 +176,6 @@ void ReadFile_mstudy(const string &file_mstudy, gsl_matrix *Vq,
gsl_vector *q_vec, gsl_vector *s_vec, size_t &ni);
void ReadFile_mref(const string &file_mref, gsl_matrix *S_mat,
gsl_matrix *Svar_mat, gsl_vector *s_vec, size_t &ni);
-
-// WJA added.
-bool bgenKin(const string &file_geno, vector<int> &indicator_snp,
- const int k_mode, const int display_pace, gsl_matrix *matrix_kin);
-bool ReadFile_bgen(const string &file_bgen, const set<string> &setSnps,
- const gsl_matrix *W, vector<int> &indicator_idv,
- vector<int> &indicator_snp, vector<SNPINFO> &snpInfo,
- const double &maf_level, const double &miss_level,
- const double &hwe_level, const double &r2_level,
- size_t &ns_test);
bool ReadFile_sample(const string &file_sample,
vector<vector<int>> &indicator_pheno,
vector<vector<double>> &pheno,
diff --git a/src/lm.cpp b/src/lm.cpp
index 0c2a2bb..a44bceb 100644
--- a/src/lm.cpp
+++ b/src/lm.cpp
@@ -55,8 +55,6 @@ void LM::CopyFromParam(PARAM &cPar) {
file_out = cPar.file_out;
path_out = cPar.path_out;
file_gene = cPar.file_gene;
- // WJA added
- file_oxford = cPar.file_oxford;
time_opt = 0.0;
@@ -381,232 +379,6 @@ void LM::AnalyzeGene(const gsl_matrix *W, const gsl_vector *x) {
return;
}
-// WJA added
-void LM::Analyzebgen(const gsl_matrix *W, const gsl_vector *y) {
- debug_msg("entering");
- string file_bgen = file_oxford + ".bgen";
- ifstream infile(file_bgen.c_str(), ios::binary);
- if (!infile) {
- cout << "error reading bgen file:" << file_bgen << endl;
- return;
- }
-
- clock_t time_start = clock();
-
- string line;
- char *ch_ptr;
-
- double beta = 0, se = 0, p_wald = 0, p_lrt = 0, p_score = 0;
- int n_miss, c_phen;
- double geno, x_mean;
-
- // Calculate some basic quantities.
- double yPwy, xPwy, xPwx;
- double df = (double)W->size1 - (double)W->size2 - 1.0;
-
- gsl_vector *x = gsl_vector_alloc(W->size1);
- gsl_vector *x_miss = gsl_vector_alloc(W->size1);
-
- gsl_matrix *WtW = gsl_matrix_alloc(W->size2, W->size2);
- gsl_matrix *WtWi = gsl_matrix_alloc(W->size2, W->size2);
- gsl_vector *Wty = gsl_vector_alloc(W->size2);
- gsl_vector *Wtx = gsl_vector_alloc(W->size2);
- gsl_permutation *pmt = gsl_permutation_alloc(W->size2);
-
- gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, W, W, 0.0, WtW);
- int sig;
- LUDecomp(WtW, pmt, &sig);
- LUInvert(WtW, pmt, WtWi);
-
- gsl_blas_dgemv(CblasTrans, 1.0, W, y, 0.0, Wty);
- CalcvPv(WtWi, Wty, y, yPwy);
-
- // Read in header.
- uint32_t bgen_snp_block_offset;
- uint32_t bgen_header_length;
- uint32_t bgen_nsamples;
- uint32_t bgen_nsnps;
- uint32_t bgen_flags;
- infile.read(reinterpret_cast<char *>(&bgen_snp_block_offset), 4);
- infile.read(reinterpret_cast<char *>(&bgen_header_length), 4);
- bgen_snp_block_offset -= 4;
- infile.read(reinterpret_cast<char *>(&bgen_nsnps), 4);
- bgen_snp_block_offset -= 4;
- infile.read(reinterpret_cast<char *>(&bgen_nsamples), 4);
- bgen_snp_block_offset -= 4;
- infile.ignore(4 + bgen_header_length - 20);
- bgen_snp_block_offset -= 4 + bgen_header_length - 20;
- infile.read(reinterpret_cast<char *>(&bgen_flags), 4);
- bgen_snp_block_offset -= 4;
- bool CompressedSNPBlocks = bgen_flags & 0x1;
-
- infile.ignore(bgen_snp_block_offset);
-
- double bgen_geno_prob_AA, bgen_geno_prob_AB;
- double bgen_geno_prob_BB, bgen_geno_prob_non_miss;
-
- uint32_t bgen_N;
- uint16_t bgen_LS;
- uint16_t bgen_LR;
- uint16_t bgen_LC;
- uint32_t bgen_SNP_pos;
- uint32_t bgen_LA;
- std::string bgen_A_allele;
- uint32_t bgen_LB;
- std::string bgen_B_allele;
- uint32_t bgen_P;
- size_t unzipped_data_size;
- string id;
- string rs;
- string chr;
- std::cout << "Warning: WJA hard coded SNP missingness "
- << "threshold of 10%" << std::endl;
-
- // Start reading genotypes and analyze.
- for (size_t t = 0; t < indicator_snp.size(); ++t) {
- if (t % d_pace == 0 || t == (ns_total - 1)) {
- ProgressBar("Reading SNPs ", t, ns_total - 1);
- }
-
- // Read SNP header.
- id.clear();
- rs.clear();
- chr.clear();
- bgen_A_allele.clear();
- bgen_B_allele.clear();
-
- infile.read(reinterpret_cast<char *>(&bgen_N), 4);
- infile.read(reinterpret_cast<char *>(&bgen_LS), 2);
-
- id.resize(bgen_LS);
- infile.read(&id[0], bgen_LS);
-
- infile.read(reinterpret_cast<char *>(&bgen_LR), 2);
- rs.resize(bgen_LR);
- infile.read(&rs[0], bgen_LR);
-
- infile.read(reinterpret_cast<char *>(&bgen_LC), 2);
- chr.resize(bgen_LC);
- infile.read(&chr[0], bgen_LC);
-
- infile.read(reinterpret_cast<char *>(&bgen_SNP_pos), 4);
-
- infile.read(reinterpret_cast<char *>(&bgen_LA), 4);
- bgen_A_allele.resize(bgen_LA);
- infile.read(&bgen_A_allele[0], bgen_LA);
-
- infile.read(reinterpret_cast<char *>(&bgen_LB), 4);
- bgen_B_allele.resize(bgen_LB);
- infile.read(&bgen_B_allele[0], bgen_LB);
-
- uint16_t unzipped_data[3 * bgen_N];
-
- if (indicator_snp[t] == 0) {
- if (CompressedSNPBlocks)
- infile.read(reinterpret_cast<char *>(&bgen_P), 4);
- else
- bgen_P = 6 * bgen_N;
-
- infile.ignore(static_cast<size_t>(bgen_P));
-
- continue;
- }
-
- if (CompressedSNPBlocks) {
- infile.read(reinterpret_cast<char *>(&bgen_P), 4);
- uint8_t zipped_data[bgen_P];
-
- unzipped_data_size = 6 * bgen_N;
-
- infile.read(reinterpret_cast<char *>(zipped_data), bgen_P);
-
- int result = uncompress(reinterpret_cast<Bytef *>(unzipped_data),
- reinterpret_cast<uLongf *>(&unzipped_data_size),
- reinterpret_cast<Bytef *>(zipped_data),
- static_cast<uLong>(bgen_P));
- assert(result == Z_OK);
-
- } else {
-
- bgen_P = 6 * bgen_N;
- infile.read(reinterpret_cast<char *>(unzipped_data), bgen_P);
- }
-
- x_mean = 0.0;
- c_phen = 0;
- n_miss = 0;
- gsl_vector_set_zero(x_miss);
- for (size_t i = 0; i < bgen_N; ++i) {
- if (indicator_idv[i] == 0) {
- continue;
- }
-
- bgen_geno_prob_AA = static_cast<double>(unzipped_data[i * 3]) / 32768.0;
- bgen_geno_prob_AB =
- static_cast<double>(unzipped_data[i * 3 + 1]) / 32768.0;
- bgen_geno_prob_BB =
- static_cast<double>(unzipped_data[i * 3 + 2]) / 32768.0;
-
- // WJA
- bgen_geno_prob_non_miss =
- bgen_geno_prob_AA + bgen_geno_prob_AB + bgen_geno_prob_BB;
- if (bgen_geno_prob_non_miss < 0.9) {
- gsl_vector_set(x_miss, c_phen, 0.0);
- n_miss++;
- } else {
- bgen_geno_prob_AA /= bgen_geno_prob_non_miss;
- bgen_geno_prob_AB /= bgen_geno_prob_non_miss;
- bgen_geno_prob_BB /= bgen_geno_prob_non_miss;
-
- geno = 2.0 * bgen_geno_prob_BB + bgen_geno_prob_AB;
-
- gsl_vector_set(x, c_phen, geno);
- gsl_vector_set(x_miss, c_phen, 1.0);
- x_mean += geno;
- }
- c_phen++;
- }
-
- x_mean /= static_cast<double>(ni_test - n_miss);
-
- for (size_t i = 0; i < ni_test; ++i) {
- if (gsl_vector_get(x_miss, i) == 0) {
- gsl_vector_set(x, i, x_mean);
- }
- geno = gsl_vector_get(x, i);
- }
-
- // Calculate statistics.
- time_start = clock();
-
- gsl_blas_dgemv(CblasTrans, 1.0, W, x, 0.0, Wtx);
- CalcvPv(WtWi, Wty, Wtx, y, x, xPwy, xPwx);
- LmCalcP(a_mode - 50, yPwy, xPwy, xPwx, df, W->size1, beta, se, p_wald,
- p_lrt, p_score);
-
- time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
-
- // Store summary data.
- SUMSTAT SNPs = {beta, se, 0.0, 0.0, p_wald, p_lrt, p_score, -0.0};
- sumStat.push_back(SNPs);
- }
- cout << endl;
-
- gsl_vector_free(x);
- gsl_vector_free(x_miss);
-
- gsl_matrix_free(WtW);
- gsl_matrix_free(WtWi);
- gsl_vector_free(Wty);
- gsl_vector_free(Wtx);
- gsl_permutation_free(pmt);
-
- infile.close();
- infile.clear();
-
- return;
-}
-
void LM::AnalyzeBimbam(const gsl_matrix *W, const gsl_vector *y) {
debug_msg("entering");
igzstream infile(file_geno.c_str(), igzstream::in);
diff --git a/src/lm.h b/src/lm.h
index cb22d3b..030e6f9 100644
--- a/src/lm.h
+++ b/src/lm.h
@@ -67,9 +67,6 @@ public:
void AnalyzeGene(const gsl_matrix *W, const gsl_vector *x);
void AnalyzePlink(const gsl_matrix *W, const gsl_vector *y);
void AnalyzeBimbam(const gsl_matrix *W, const gsl_vector *y);
- // WJA added.
- void Analyzebgen(const gsl_matrix *W, const gsl_vector *y);
-
void WriteFiles();
};
diff --git a/src/lmm.cpp b/src/lmm.cpp
index 1193700..50fb64c 100644
--- a/src/lmm.cpp
+++ b/src/lmm.cpp
@@ -56,9 +56,6 @@ void LMM::CopyFromParam(PARAM &cPar) {
path_out = cPar.path_out;
file_gene = cPar.file_gene;
- // WJA added.
- file_oxford = cPar.file_oxford;
-
l_min = cPar.l_min;
l_max = cPar.l_max;
n_region = cPar.n_region;
@@ -1630,284 +1627,6 @@ void LMM::AnalyzePlink(const gsl_matrix *U, const gsl_vector *eval,
return;
}
-// WJA added.
-void LMM::Analyzebgen(const gsl_matrix *U, const gsl_vector *eval,
- const gsl_matrix *UtW, const gsl_vector *Uty,
- const gsl_matrix *W, const gsl_vector *y) {
- debug_msg("entering");
- string file_bgen = file_oxford + ".bgen";
- ifstream infile(file_bgen.c_str(), ios::binary);
- if (!infile) {
- cout << "error reading bgen file:" << file_bgen << endl;
- return;
- }
-
- clock_t time_start = clock();
- double lambda_mle = 0, lambda_remle = 0, beta = 0, se = 0, p_wald = 0;
- double p_lrt = 0, p_score = 0;
- double logl_H1 = 0.0;
- int n_miss, c_phen;
- double geno, x_mean;
-
- // Calculate basic quantities.
- size_t n_index = (n_cvt + 2 + 1) * (n_cvt + 2) / 2;
-
- gsl_vector *x = gsl_vector_alloc(U->size1);
- gsl_vector *x_miss = gsl_vector_alloc(U->size1);
- gsl_vector *Utx = gsl_vector_alloc(U->size2);
- gsl_matrix *Uab = gsl_matrix_alloc(U->size2, n_index);
- gsl_vector *ab = gsl_vector_alloc(n_index);
-
- // Create a large matrix.
- size_t msize = LMM_BATCH_SIZE;
- gsl_matrix *Xlarge = gsl_matrix_alloc(U->size1, msize);
- gsl_matrix *UtXlarge = gsl_matrix_alloc(U->size1, msize);
- gsl_matrix_set_zero(Xlarge);
-
- gsl_matrix_set_zero(Uab);
- CalcUab(UtW, Uty, Uab);
-
- // Read in header.
- uint32_t bgen_snp_block_offset;
- uint32_t bgen_header_length;
- uint32_t bgen_nsamples;
- uint32_t bgen_nsnps;
- uint32_t bgen_flags;
- infile.read(reinterpret_cast<char *>(&bgen_snp_block_offset), 4);
- infile.read(reinterpret_cast<char *>(&bgen_header_length), 4);
- bgen_snp_block_offset -= 4;
- infile.read(reinterpret_cast<char *>(&bgen_nsnps), 4);
- bgen_snp_block_offset -= 4;
- infile.read(reinterpret_cast<char *>(&bgen_nsamples), 4);
- bgen_snp_block_offset -= 4;
- infile.ignore(4 + bgen_header_length - 20);
- bgen_snp_block_offset -= 4 + bgen_header_length - 20;
- infile.read(reinterpret_cast<char *>(&bgen_flags), 4);
- bgen_snp_block_offset -= 4;
- bool CompressedSNPBlocks = bgen_flags & 0x1;
-
- infile.ignore(bgen_snp_block_offset);
-
- double bgen_geno_prob_AA, bgen_geno_prob_AB, bgen_geno_prob_BB;
- double bgen_geno_prob_non_miss;
-
- uint32_t bgen_N;
- uint16_t bgen_LS;
- uint16_t bgen_LR;
- uint16_t bgen_LC;
- uint32_t bgen_SNP_pos;
- uint32_t bgen_LA;
- std::string bgen_A_allele;
- uint32_t bgen_LB;
- std::string bgen_B_allele;
- uint32_t bgen_P;
- size_t unzipped_data_size;
- string id;
- string rs;
- string chr;
- std::cout << "Warning: WJA hard coded SNP missingness "
- << "threshold of 10%" << std::endl;
-
- // Start reading genotypes and analyze.
- size_t c = 0, t_last = 0;
- for (size_t t = 0; t < indicator_snp.size(); ++t) {
- if (indicator_snp[t] == 0) {
- continue;
- }
- t_last++;
- }
- for (size_t t = 0; t < indicator_snp.size(); ++t) {
- if (t % d_pace == 0 || t == (ns_total - 1)) {
- ProgressBar("Reading SNPs ", t, ns_total - 1);
- }
- if (indicator_snp[t] == 0) {
- continue;
- }
-
- // Read SNP header.
- id.clear();
- rs.clear();
- chr.clear();
- bgen_A_allele.clear();
- bgen_B_allele.clear();
-
- infile.read(reinterpret_cast<char *>(&bgen_N), 4);
- infile.read(reinterpret_cast<char *>(&bgen_LS), 2);
-
- id.resize(bgen_LS);
- infile.read(&id[0], bgen_LS);
-
- infile.read(reinterpret_cast<char *>(&bgen_LR), 2);
- rs.resize(bgen_LR);
- infile.read(&rs[0], bgen_LR);
-
- infile.read(reinterpret_cast<char *>(&bgen_LC), 2);
- chr.resize(bgen_LC);
- infile.read(&chr[0], bgen_LC);
-
- infile.read(reinterpret_cast<char *>(&bgen_SNP_pos), 4);
-
- infile.read(reinterpret_cast<char *>(&bgen_LA), 4);
- bgen_A_allele.resize(bgen_LA);
- infile.read(&bgen_A_allele[0], bgen_LA);
-
- infile.read(reinterpret_cast<char *>(&bgen_LB), 4);
- bgen_B_allele.resize(bgen_LB);
- infile.read(&bgen_B_allele[0], bgen_LB);
-
- uint16_t unzipped_data[3 * bgen_N];
-
- if (indicator_snp[t] == 0) {
- if (CompressedSNPBlocks)
- infile.read(reinterpret_cast<char *>(&bgen_P), 4);
- else
- bgen_P = 6 * bgen_N;
-
- infile.ignore(static_cast<size_t>(bgen_P));
-
- continue;
- }
-
- if (CompressedSNPBlocks) {
- infile.read(reinterpret_cast<char *>(&bgen_P), 4);
- uint8_t zipped_data[bgen_P];
-
- unzipped_data_size = 6 * bgen_N;
-
- infile.read(reinterpret_cast<char *>(zipped_data), bgen_P);
-
- int result = uncompress(reinterpret_cast<Bytef *>(unzipped_data),
- reinterpret_cast<uLongf *>(&unzipped_data_size),
- reinterpret_cast<Bytef *>(zipped_data),
- static_cast<uLong>(bgen_P));
- assert(result == Z_OK);
-
- } else {
-
- bgen_P = 6 * bgen_N;
- infile.read(reinterpret_cast<char *>(unzipped_data), bgen_P);
- }
-
- x_mean = 0.0;
- c_phen = 0;
- n_miss = 0;
- gsl_vector_set_zero(x_miss);
- for (size_t i = 0; i < bgen_N; ++i) {
- if (indicator_idv[i] == 0) {
- continue;
- }
-
- bgen_geno_prob_AA = static_cast<double>(unzipped_data[i * 3]) / 32768.0;
- bgen_geno_prob_AB =
- static_cast<double>(unzipped_data[i * 3 + 1]) / 32768.0;
- bgen_geno_prob_BB =
- static_cast<double>(unzipped_data[i * 3 + 2]) / 32768.0;
-
- // WJA.
- bgen_geno_prob_non_miss =
- bgen_geno_prob_AA + bgen_geno_prob_AB + bgen_geno_prob_BB;
- if (bgen_geno_prob_non_miss < 0.9) {
- gsl_vector_set(x_miss, c_phen, 0.0);
- n_miss++;
- } else {
-
- bgen_geno_prob_AA /= bgen_geno_prob_non_miss;
- bgen_geno_prob_AB /= bgen_geno_prob_non_miss;
- bgen_geno_prob_BB /= bgen_geno_prob_non_miss;
-
- geno = 2.0 * bgen_geno_prob_BB + bgen_geno_prob_AB;
-
- gsl_vector_set(x, c_phen, geno);
- gsl_vector_set(x_miss, c_phen, 1.0);
- x_mean += geno;
- }
- c_phen++;
- }
-
- x_mean /= static_cast<double>(ni_test - n_miss);
-
- for (size_t i = 0; i < ni_test; ++i) {
- if (gsl_vector_get(x_miss, i) == 0) {
- gsl_vector_set(x, i, x_mean);
- }
- geno = gsl_vector_get(x, i);
- }
-
- gsl_vector_view Xlarge_col = gsl_matrix_column(Xlarge, c % msize);
- gsl_vector_memcpy(&Xlarge_col.vector, x);
- c++;
-
- if (c % msize == 0 || c == t_last) {
- size_t l = 0;
- if (c % msize == 0) {
- l = msize;
- } else {
- l = c % msize;
- }
-
- gsl_matrix_view Xlarge_sub =
- gsl_matrix_submatrix(Xlarge, 0, 0, Xlarge->size1, l);
- gsl_matrix_view UtXlarge_sub =
- gsl_matrix_submatrix(UtXlarge, 0, 0, UtXlarge->size1, l);
-
- time_start = clock();
- eigenlib_dgemm("T", "N", 1.0, U, &Xlarge_sub.matrix, 0.0,
- &UtXlarge_sub.matrix);
- time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
-
- gsl_matrix_set_zero(Xlarge);
-
- for (size_t i = 0; i < l; i++) {
- gsl_vector_view UtXlarge_col = gsl_matrix_column(UtXlarge, i);
- gsl_vector_memcpy(Utx, &UtXlarge_col.vector);
-
- CalcUab(UtW, Uty, Utx, Uab);
-
- time_start = clock();
- FUNC_PARAM param1 = {false, ni_test, n_cvt, eval, Uab, ab, 0};
-
- // 3 is before 1.
- if (a_mode == 3 || a_mode == 4) {
- CalcRLScore(l_mle_null, param1, beta, se, p_score);
- }
-
- if (a_mode == 1 || a_mode == 4) {
- CalcLambda('R', param1, l_min, l_max, n_region, lambda_remle,
- logl_H1);
- CalcRLWald(lambda_remle, param1, beta, se, p_wald);
- }
-
- if (a_mode == 2 || a_mode == 4) {
- CalcLambda('L', param1, l_min, l_max, n_region, lambda_mle, logl_H1);
- p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_mle_H0), 1);
- }
-
- time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
-
- // Store summary data.
- SUMSTAT SNPs = {beta, se, lambda_remle, lambda_mle,
- p_wald, p_lrt, p_score, logl_H1};
- sumStat.push_back(SNPs);
- }
- }
- }
- cout << endl;
-
- gsl_vector_free(x);
- gsl_vector_free(x_miss);
- gsl_vector_free(Utx);
- gsl_matrix_free(Uab);
- gsl_vector_free(ab);
-
- gsl_matrix_free(Xlarge);
- gsl_matrix_free(UtXlarge);
-
- infile.close();
- infile.clear();
-
- return;
-}
-
void MatrixCalcLR(const gsl_matrix *U, const gsl_matrix *UtX,
const gsl_vector *Uty, const gsl_vector *K_eval,
const double l_min, const double l_max, const size_t n_region,
diff --git a/src/lmm.h b/src/lmm.h
index 4d57ab1..72ce523 100644
--- a/src/lmm.h
+++ b/src/lmm.h
@@ -53,8 +53,6 @@ public:
string path_out;
string file_gene;
- // WJA added
- string file_oxford;
// LMM related parameters
double l_min;
@@ -94,10 +92,6 @@ public:
void AnalyzePlink(const gsl_matrix *U, const gsl_vector *eval,
const gsl_matrix *UtW, const gsl_vector *Uty,
const gsl_matrix *W, const gsl_vector *y);
- // WJA added.
- void Analyzebgen(const gsl_matrix *U, const gsl_vector *eval,
- const gsl_matrix *UtW, const gsl_vector *Uty,
- const gsl_matrix *W, const gsl_vector *y);
void AnalyzeBimbam(const gsl_matrix *U, const gsl_vector *eval,
const gsl_matrix *UtW, const gsl_vector *Uty,
const gsl_matrix *W, const gsl_vector *y,
diff --git a/src/mvlmm.cpp b/src/mvlmm.cpp
index c5efb6e..88df111 100644
--- a/src/mvlmm.cpp
+++ b/src/mvlmm.cpp
@@ -54,7 +54,6 @@ void MVLMM::CopyFromParam(PARAM &cPar) {
file_bfile = cPar.file_bfile;
file_geno = cPar.file_geno;
- file_oxford = cPar.file_oxford;
file_out = cPar.file_out;
path_out = cPar.path_out;
@@ -2950,556 +2949,6 @@ double PCRT(const size_t mode, const size_t d_size, const double p_value,
return p_crt;
}
-// WJA added.
-void MVLMM::Analyzebgen(const gsl_matrix *U, const gsl_vector *eval,
- const gsl_matrix *UtW, const gsl_matrix *UtY) {
- debug_msg("entering");
- string file_bgen = file_oxford + ".bgen";
- ifstream infile(file_bgen.c_str(), ios::binary);
- if (!infile) {
- cout << "error reading bgen file:" << file_bgen << endl;
- return;
- }
-
- clock_t time_start = clock();
- time_UtX = 0;
- time_opt = 0;
-
- string line;
-
- // Create a large matrix.
- size_t msize = LMM_BATCH_SIZE;
- gsl_matrix *Xlarge = gsl_matrix_alloc(U->size1, msize);
- gsl_matrix *UtXlarge = gsl_matrix_alloc(U->size1, msize);
- gsl_matrix_set_zero(Xlarge);
-
- double logl_H0 = 0.0, logl_H1 = 0.0, p_wald = 0, p_lrt = 0, p_score = 0;
- double crt_a, crt_b, crt_c;
- int n_miss, c_phen;
- double geno, x_mean;
- size_t c = 0;
- size_t n_size = UtY->size1, d_size = UtY->size2, c_size = UtW->size2;
-
- size_t dc_size = d_size * (c_size + 1), v_size = d_size * (d_size + 1) / 2;
-
- // Large matrices for EM.
- gsl_matrix *U_hat = gsl_matrix_alloc(d_size, n_size);
- gsl_matrix *E_hat = gsl_matrix_alloc(d_size, n_size);
- gsl_matrix *OmegaU = gsl_matrix_alloc(d_size, n_size);
- gsl_matrix *OmegaE = gsl_matrix_alloc(d_size, n_size);
- gsl_matrix *UltVehiY = gsl_matrix_alloc(d_size, n_size);
- gsl_matrix *UltVehiBX = gsl_matrix_alloc(d_size, n_size);
- gsl_matrix *UltVehiU = gsl_matrix_alloc(d_size, n_size);
- gsl_matrix *UltVehiE = gsl_matrix_alloc(d_size, n_size);
-
- // Large matrices for NR. Each dxd block is H_k^{-1}.
- gsl_matrix *Hi_all = gsl_matrix_alloc(d_size, d_size * n_size);
-
- // Each column is H_k^{-1}y_k.
- gsl_matrix *Hiy_all = gsl_matrix_alloc(d_size, n_size);
-
- // Each dcxdc block is x_k\otimes H_k^{-1}.
- gsl_matrix *xHi_all = gsl_matrix_alloc(dc_size, d_size * n_size);
- gsl_matrix *Hessian = gsl_matrix_alloc(v_size * 2, v_size * 2);
- gsl_vector *x = gsl_vector_alloc(n_size);
- gsl_vector *x_miss = gsl_vector_alloc(n_size);
-
- gsl_matrix *Y = gsl_matrix_alloc(d_size, n_size);
- gsl_matrix *X = gsl_matrix_alloc(c_size + 1, n_size);
- gsl_matrix *V_g = gsl_matrix_alloc(d_size, d_size);
- gsl_matrix *V_e = gsl_matrix_alloc(d_size, d_size);
- gsl_matrix *B = gsl_matrix_alloc(d_size, c_size + 1);
- gsl_vector *beta = gsl_vector_alloc(d_size);
- gsl_matrix *Vbeta = gsl_matrix_alloc(d_size, d_size);
-
- // Null estimates for initial values.
- gsl_matrix *V_g_null = gsl_matrix_alloc(d_size, d_size);
- gsl_matrix *V_e_null = gsl_matrix_alloc(d_size, d_size);
- gsl_matrix *B_null = gsl_matrix_alloc(d_size, c_size + 1);
- gsl_matrix *se_B_null = gsl_matrix_alloc(d_size, c_size);
-
- gsl_matrix_view X_sub = gsl_matrix_submatrix(X, 0, 0, c_size, n_size);
- gsl_matrix_view B_sub = gsl_matrix_submatrix(B, 0, 0, d_size, c_size);
- gsl_matrix_view xHi_all_sub =
- gsl_matrix_submatrix(xHi_all, 0, 0, d_size * c_size, d_size * n_size);
-
- gsl_matrix_transpose_memcpy(Y, UtY);
-
- gsl_matrix_transpose_memcpy(&X_sub.matrix, UtW);
-
- gsl_vector_view X_row = gsl_matrix_row(X, c_size);
- gsl_vector_set_zero(&X_row.vector);
- gsl_vector_view B_col = gsl_matrix_column(B, c_size);
- gsl_vector_set_zero(&B_col.vector);
-
- MphInitial(em_iter, em_prec, nr_iter, nr_prec, eval, &X_sub.matrix, Y, l_min,
- l_max, n_region, V_g, V_e, &B_sub.matrix);
- logl_H0 = MphEM('R', em_iter, em_prec, eval, &X_sub.matrix, Y, U_hat, E_hat,
- OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g,
- V_e, &B_sub.matrix);
- logl_H0 = MphNR('R', nr_iter, nr_prec, eval, &X_sub.matrix, Y, Hi_all,
- &xHi_all_sub.matrix, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b,
- crt_c);
- MphCalcBeta(eval, &X_sub.matrix, Y, V_g, V_e, UltVehiY, &B_sub.matrix,
- se_B_null);
-
- c = 0;
- Vg_remle_null.clear();
- Ve_remle_null.clear();
- for (size_t i = 0; i < d_size; i++) {
- for (size_t j = i; j < d_size; j++) {
- Vg_remle_null.push_back(gsl_matrix_get(V_g, i, j));
- Ve_remle_null.push_back(gsl_matrix_get(V_e, i, j));
- VVg_remle_null.push_back(gsl_matrix_get(Hessian, c, c));
- VVe_remle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size));
- c++;
- }
- }
- beta_remle_null.clear();
- se_beta_remle_null.clear();
- for (size_t i = 0; i < se_B_null->size1; i++) {
- for (size_t j = 0; j < se_B_null->size2; j++) {
- beta_remle_null.push_back(gsl_matrix_get(B, i, j));
- se_beta_remle_null.push_back(gsl_matrix_get(se_B_null, i, j));
- }
- }
- logl_remle_H0 = logl_H0;
-
- cout.setf(std::ios_base::fixed, std::ios_base::floatfield);
- cout.precision(4);
-
- cout << "REMLE estimate for Vg in the null model: " << endl;
- for (size_t i = 0; i < d_size; i++) {
- for (size_t j = 0; j <= i; j++) {
- cout << gsl_matrix_get(V_g, i, j) << "\t";
- }
- cout << endl;
- }
- cout << "se(Vg): " << endl;
- for (size_t i = 0; i < d_size; i++) {
- for (size_t j = 0; j <= i; j++) {
- c = GetIndex(i, j, d_size);
- cout << sqrt(gsl_matrix_get(Hessian, c, c)) << "\t";
- }
- cout << endl;
- }
- cout << "REMLE estimate for Ve in the null model: " << endl;
- for (size_t i = 0; i < d_size; i++) {
- for (size_t j = 0; j <= i; j++) {
- cout << gsl_matrix_get(V_e, i, j) << "\t";
- }
- cout << endl;
- }
- cout << "se(Ve): " << endl;
- for (size_t i = 0; i < d_size; i++) {
- for (size_t j = 0; j <= i; j++) {
- c = GetIndex(i, j, d_size);
- cout << sqrt(gsl_matrix_get(Hessian, c + v_size, c + v_size)) << "\t";
- }
- cout << endl;
- }
- cout << "REMLE likelihood = " << logl_H0 << endl;
-
- logl_H0 = MphEM('L', em_iter, em_prec, eval, &X_sub.matrix, Y, U_hat, E_hat,
- OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU, UltVehiE, V_g,
- V_e, &B_sub.matrix);
- logl_H0 = MphNR('L', nr_iter, nr_prec, eval, &X_sub.matrix, Y, Hi_all,
- &xHi_all_sub.matrix, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b,
- crt_c);
- MphCalcBeta(eval, &X_sub.matrix, Y, V_g, V_e, UltVehiY, &B_sub.matrix,
- se_B_null);
-
- c = 0;
- Vg_mle_null.clear();
- Ve_mle_null.clear();
- for (size_t i = 0; i < d_size; i++) {
- for (size_t j = i; j < d_size; j++) {
- Vg_mle_null.push_back(gsl_matrix_get(V_g, i, j));
- Ve_mle_null.push_back(gsl_matrix_get(V_e, i, j));
- VVg_mle_null.push_back(gsl_matrix_get(Hessian, c, c));
- VVe_mle_null.push_back(gsl_matrix_get(Hessian, c + v_size, c + v_size));
- c++;
- }
- }
- beta_mle_null.clear();
- se_beta_mle_null.clear();
- for (size_t i = 0; i < se_B_null->size1; i++) {
- for (size_t j = 0; j < se_B_null->size2; j++) {
- beta_mle_null.push_back(gsl_matrix_get(B, i, j));
- se_beta_mle_null.push_back(gsl_matrix_get(se_B_null, i, j));
- }
- }
- logl_mle_H0 = logl_H0;
-
- cout << "MLE estimate for Vg in the null model: " << endl;
- for (size_t i = 0; i < d_size; i++) {
- for (size_t j = 0; j <= i; j++) {
- cout << gsl_matrix_get(V_g, i, j) << "\t";
- }
- cout << endl;
- }
- cout << "se(Vg): " << endl;
- for (size_t i = 0; i < d_size; i++) {
- for (size_t j = 0; j <= i; j++) {
- c = GetIndex(i, j, d_size);
- cout << sqrt(gsl_matrix_get(Hessian, c, c)) << "\t";
- }
- cout << endl;
- }
- cout << "MLE estimate for Ve in the null model: " << endl;
- for (size_t i = 0; i < d_size; i++) {
- for (size_t j = 0; j <= i; j++) {
- cout << gsl_matrix_get(V_e, i, j) << "\t";
- }
- cout << endl;
- }
- cout << "se(Ve): " << endl;
- for (size_t i = 0; i < d_size; i++) {
- for (size_t j = 0; j <= i; j++) {
- c = GetIndex(i, j, d_size);
- cout << sqrt(gsl_matrix_get(Hessian, c + v_size, c + v_size)) << "\t";
- }
- cout << endl;
- }
- cout << "MLE likelihood = " << logl_H0 << endl;
-
- vector<double> v_beta, v_Vg, v_Ve, v_Vbeta;
- for (size_t i = 0; i < d_size; i++) {
- v_beta.push_back(0.0);
- }
- for (size_t i = 0; i < d_size; i++) {
- for (size_t j = i; j < d_size; j++) {
- v_Vg.push_back(0.0);
- v_Ve.push_back(0.0);
- v_Vbeta.push_back(0.0);
- }
- }
-
- gsl_matrix_memcpy(V_g_null, V_g);
- gsl_matrix_memcpy(V_e_null, V_e);
- gsl_matrix_memcpy(B_null, B);
-
- // Read in header.
- uint32_t bgen_snp_block_offset;
- uint32_t bgen_header_length;
- uint32_t bgen_nsamples;
- uint32_t bgen_nsnps;
- uint32_t bgen_flags;
- infile.read(reinterpret_cast<char *>(&bgen_snp_block_offset), 4);
- infile.read(reinterpret_cast<char *>(&bgen_header_length), 4);
- bgen_snp_block_offset -= 4;
- infile.read(reinterpret_cast<char *>(&bgen_nsnps), 4);
- bgen_snp_block_offset -= 4;
- infile.read(reinterpret_cast<char *>(&bgen_nsamples), 4);
- bgen_snp_block_offset -= 4;
- infile.ignore(4 + bgen_header_length - 20);
- bgen_snp_block_offset -= 4 + bgen_header_length - 20;
- infile.read(reinterpret_cast<char *>(&bgen_flags), 4);
- bgen_snp_block_offset -= 4;
- bool CompressedSNPBlocks = bgen_flags & 0x1;
-
- infile.ignore(bgen_snp_block_offset);
-
- double bgen_geno_prob_AA, bgen_geno_prob_AB, bgen_geno_prob_BB;
- double bgen_geno_prob_non_miss;
-
- uint32_t bgen_N;
- uint16_t bgen_LS;
- uint16_t bgen_LR;
- uint16_t bgen_LC;
- uint32_t bgen_SNP_pos;
- uint32_t bgen_LA;
- std::string bgen_A_allele;
- uint32_t bgen_LB;
- std::string bgen_B_allele;
- uint32_t bgen_P;
- size_t unzipped_data_size;
- string id;
- string rs;
- string chr;
- std::cout << "Warning: WJA hard coded SNP missingness threshold "
- << "of 10%" << std::endl;
-
- // Start reading genotypes and analyze.
- size_t csnp = 0, t_last = 0;
- for (size_t t = 0; t < indicator_snp.size(); ++t) {
- if (indicator_snp[t] == 0) {
- continue;
- }
- t_last++;
- }
- for (size_t t = 0; t < indicator_snp.size(); ++t) {
- if (t % d_pace == 0 || t == (ns_total - 1)) {
- ProgressBar("Reading SNPs ", t, ns_total - 1);
- }
- if (indicator_snp[t] == 0) {
- continue;
- }
-
- // Read SNP header.
- id.clear();
- rs.clear();
- chr.clear();
- bgen_A_allele.clear();
- bgen_B_allele.clear();
-
- infile.read(reinterpret_cast<char *>(&bgen_N), 4);
- infile.read(reinterpret_cast<char *>(&bgen_LS), 2);
-
- id.resize(bgen_LS);
- infile.read(&id[0], bgen_LS);
-
- infile.read(reinterpret_cast<char *>(&bgen_LR), 2);
- rs.resize(bgen_LR);
- infile.read(&rs[0], bgen_LR);
-
- infile.read(reinterpret_cast<char *>(&bgen_LC), 2);
- chr.resize(bgen_LC);
- infile.read(&chr[0], bgen_LC);
-
- infile.read(reinterpret_cast<char *>(&bgen_SNP_pos), 4);
-
- infile.read(reinterpret_cast<char *>(&bgen_LA), 4);
- bgen_A_allele.resize(bgen_LA);
- infile.read(&bgen_A_allele[0], bgen_LA);
-
- infile.read(reinterpret_cast<char *>(&bgen_LB), 4);
- bgen_B_allele.resize(bgen_LB);
- infile.read(&bgen_B_allele[0], bgen_LB);
-
- uint16_t unzipped_data[3 * bgen_N];
-
- if (indicator_snp[t] == 0) {
- if (CompressedSNPBlocks)
- infile.read(reinterpret_cast<char *>(&bgen_P), 4);
- else
- bgen_P = 6 * bgen_N;
-
- infile.ignore(static_cast<size_t>(bgen_P));
-
- continue;
- }
-
- if (CompressedSNPBlocks) {
-
- infile.read(reinterpret_cast<char *>(&bgen_P), 4);
- uint8_t zipped_data[bgen_P];
-
- unzipped_data_size = 6 * bgen_N;
-
- infile.read(reinterpret_cast<char *>(zipped_data), bgen_P);
-
- int result = uncompress(reinterpret_cast<Bytef *>(unzipped_data),
- reinterpret_cast<uLongf *>(&unzipped_data_size),
- reinterpret_cast<Bytef *>(zipped_data),
- static_cast<uLong>(bgen_P));
- assert(result == Z_OK);
-
- } else {
-
- bgen_P = 6 * bgen_N;
- infile.read(reinterpret_cast<char *>(unzipped_data), bgen_P);
- }
-
- x_mean = 0.0;
- c_phen = 0;
- n_miss = 0;
- gsl_vector_set_zero(x_miss);
- for (size_t i = 0; i < bgen_N; ++i) {
- if (indicator_idv[i] == 0) {
- continue;
- }
-
- bgen_geno_prob_AA = static_cast<double>(unzipped_data[i * 3]) / 32768.0;
- bgen_geno_prob_AB =
- static_cast<double>(unzipped_data[i * 3 + 1]) / 32768.0;
- bgen_geno_prob_BB =
- static_cast<double>(unzipped_data[i * 3 + 2]) / 32768.0;
-
- // WJA.
- bgen_geno_prob_non_miss =
- bgen_geno_prob_AA + bgen_geno_prob_AB + bgen_geno_prob_BB;
- if (bgen_geno_prob_non_miss < 0.9) {
- gsl_vector_set(x_miss, c_phen, 0.0);
- n_miss++;
- } else {
-
- bgen_geno_prob_AA /= bgen_geno_prob_non_miss;
- bgen_geno_prob_AB /= bgen_geno_prob_non_miss;
- bgen_geno_prob_BB /= bgen_geno_prob_non_miss;
-
- geno = 2.0 * bgen_geno_prob_BB + bgen_geno_prob_AB;
-
- gsl_vector_set(x, c_phen, geno);
- gsl_vector_set(x_miss, c_phen, 1.0);
- x_mean += geno;
- }
- c_phen++;
- }
-
- x_mean /= static_cast<double>(ni_test - n_miss);
-
- for (size_t i = 0; i < ni_test; ++i) {
- if (gsl_vector_get(x_miss, i) == 0) {
- gsl_vector_set(x, i, x_mean);
- }
- }
-
- gsl_vector_view Xlarge_col = gsl_matrix_column(Xlarge, csnp % msize);
- gsl_vector_memcpy(&Xlarge_col.vector, x);
- csnp++;
-
- if (csnp % msize == 0 || csnp == t_last) {
- size_t l = 0;
- if (csnp % msize == 0) {
- l = msize;
- } else {
- l = csnp % msize;
- }
-
- gsl_matrix_view Xlarge_sub =
- gsl_matrix_submatrix(Xlarge, 0, 0, Xlarge->size1, l);
- gsl_matrix_view UtXlarge_sub =
- gsl_matrix_submatrix(UtXlarge, 0, 0, UtXlarge->size1, l);
-
- time_start = clock();
- eigenlib_dgemm("T", "N", 1.0, U, &Xlarge_sub.matrix, 0.0,
- &UtXlarge_sub.matrix);
- time_UtX += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
-
- gsl_matrix_set_zero(Xlarge);
-
- for (size_t i = 0; i < l; i++) {
- gsl_vector_view UtXlarge_col = gsl_matrix_column(UtXlarge, i);
- gsl_vector_memcpy(&X_row.vector, &UtXlarge_col.vector);
-
- // Initial values.
- gsl_matrix_memcpy(V_g, V_g_null);
- gsl_matrix_memcpy(V_e, V_e_null);
- gsl_matrix_memcpy(B, B_null);
-
- time_start = clock();
-
- // 3 is before 1.
- if (a_mode == 3 || a_mode == 4) {
- p_score = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g_null,
- V_e_null, UltVehiY, beta, Vbeta);
- if (p_score < p_nr && crt == 1) {
- logl_H1 = MphNR('R', 1, nr_prec * 10, eval, X, Y, Hi_all, xHi_all,
- Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
- p_score = PCRT(3, d_size, p_score, crt_a, crt_b, crt_c);
- }
- }
-
- if (a_mode == 2 || a_mode == 4) {
- logl_H1 = MphEM('L', em_iter / 10, em_prec * 10, eval, X, Y, U_hat,
- E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU,
- UltVehiE, V_g, V_e, B);
-
- // Calculate beta and Vbeta.
- p_lrt = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e,
- UltVehiY, beta, Vbeta);
- p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size);
-
- if (p_lrt < p_nr) {
- logl_H1 =
- MphNR('L', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all,
- xHi_all, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
-
- // Calculate beta and Vbeta.
- p_lrt = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e,
- UltVehiY, beta, Vbeta);
- p_lrt = gsl_cdf_chisq_Q(2.0 * (logl_H1 - logl_H0), (double)d_size);
-
- if (crt == 1) {
- p_lrt = PCRT(2, d_size, p_lrt, crt_a, crt_b, crt_c);
- }
- }
- }
-
- if (a_mode == 1 || a_mode == 4) {
- logl_H1 = MphEM('R', em_iter / 10, em_prec * 10, eval, X, Y, U_hat,
- E_hat, OmegaU, OmegaE, UltVehiY, UltVehiBX, UltVehiU,
- UltVehiE, V_g, V_e, B);
- p_wald = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e,
- UltVehiY, beta, Vbeta);
-
- if (p_wald < p_nr) {
- logl_H1 =
- MphNR('R', nr_iter / 10, nr_prec * 10, eval, X, Y, Hi_all,
- xHi_all, Hiy_all, V_g, V_e, Hessian, crt_a, crt_b, crt_c);
- p_wald = MphCalcP(eval, &X_row.vector, &X_sub.matrix, Y, V_g, V_e,
- UltVehiY, beta, Vbeta);
-
- if (crt == 1) {
- p_wald = PCRT(1, d_size, p_wald, crt_a, crt_b, crt_c);
- }
- }
- }
-
- time_opt += (clock() - time_start) / (double(CLOCKS_PER_SEC) * 60.0);
-
- // Store summary data.
- for (size_t i = 0; i < d_size; i++) {
- v_beta[i] = gsl_vector_get(beta, i);
- }
-
- c = 0;
- for (size_t i = 0; i < d_size; i++) {
- for (size_t j = i; j < d_size; j++) {
- v_Vg[c] = gsl_matrix_get(V_g, i, j);
- v_Ve[c] = gsl_matrix_get(V_e, i, j);
- v_Vbeta[c] = gsl_matrix_get(Vbeta, i, j);
- c++;
- }
- }
-
- MPHSUMSTAT SNPs = {v_beta, p_wald, p_lrt, p_score, v_Vg, v_Ve, v_Vbeta};
- sumStat.push_back(SNPs);
- }
- }
- }
- cout << endl;
-
- infile.close();
- infile.clear();
-
- gsl_matrix_free(U_hat);
- gsl_matrix_free(E_hat);
- gsl_matrix_free(OmegaU);
- gsl_matrix_free(OmegaE);
- gsl_matrix_free(UltVehiY);
- gsl_matrix_free(UltVehiBX);
- gsl_matrix_free(UltVehiU);
- gsl_matrix_free(UltVehiE);
-
- gsl_matrix_free(Hi_all);
- gsl_matrix_free(Hiy_all);
- gsl_matrix_free(xHi_all);
- gsl_matrix_free(Hessian);
-
- gsl_vector_free(x);
- gsl_vector_free(x_miss);
-
- gsl_matrix_free(Y);
- gsl_matrix_free(X);
- gsl_matrix_free(V_g);
- gsl_matrix_free(V_e);
- gsl_matrix_free(B);
- gsl_vector_free(beta);
- gsl_matrix_free(Vbeta);
-
- gsl_matrix_free(V_g_null);
- gsl_matrix_free(V_e_null);
- gsl_matrix_free(B_null);
- gsl_matrix_free(se_B_null);
-
- gsl_matrix_free(Xlarge);
- gsl_matrix_free(UtXlarge);
-
- return;
-}
-
void MVLMM::AnalyzeBimbam(const gsl_matrix *U, const gsl_vector *eval,
const gsl_matrix *UtW, const gsl_matrix *UtY) {
debug_msg("entering");
diff --git a/src/param.cpp b/src/param.cpp
index 3b319e9..8452fb8 100644
--- a/src/param.cpp
+++ b/src/param.cpp
@@ -236,37 +236,6 @@ void PARAM::ReadFiles(void) {
trim_individuals(indicator_idv, ni_max, mode_debug);
- // WJA added.
- // Read genotype and phenotype file for bgen format.
- if (!file_oxford.empty()) {
- file_str = file_oxford + ".sample";
- if (ReadFile_sample(file_str, indicator_pheno, pheno, p_column,
- indicator_cvt, cvt, n_cvt) == false) {
- error = true;
- }
- if ((indicator_cvt).size() == 0) {
- n_cvt = 1;
- }
-
- // Post-process covariates and phenotypes, obtain
- // ni_test, save all useful covariates.
- ProcessCvtPhen();
-
- // Obtain covariate matrix.
- gsl_matrix *W = gsl_matrix_alloc(ni_test, n_cvt);
- CopyCvt(W);
-
- file_str = file_oxford + ".bgen";
- if (ReadFile_bgen(file_str, setSnps, W, indicator_idv, indicator_snp,
- snpInfo, maf_level, miss_level, hwe_level, r2_level,
- ns_test) == false) {
- error = true;
- }
- gsl_matrix_free(W);
-
- ns_total = indicator_snp.size();
- }
-
// Read genotype and phenotype file for PLINK format.
if (!file_bfile.empty()) {
file_str = file_bfile + ".bim";
@@ -741,19 +710,6 @@ void PARAM::CheckParam(void) {
}
}
- if (!file_oxford.empty()) {
- str = file_oxford + ".bgen";
- if (stat(str.c_str(), &fileInfo) == -1) {
- cout << "error! fail to open .bgen file: " << str << endl;
- error = true;
- }
- str = file_oxford + ".sample";
- if (stat(str.c_str(), &fileInfo) == -1) {
- cout << "error! fail to open .sample file: " << str << endl;
- error = true;
- }
- }
-
if ((!file_geno.empty() || !file_gene.empty())) {
str = file_pheno;
if (stat(str.c_str(), &fileInfo) == -1) {
@@ -864,11 +820,6 @@ void PARAM::CheckParam(void) {
flag++;
}
- // WJA added.
- if (!file_oxford.empty()) {
- flag++;
- }
-
if (flag != 1 && a_mode != 15 && a_mode != 27 && a_mode != 28 &&
a_mode != 43 && a_mode != 5 && a_mode != 61 && a_mode != 62 &&
a_mode != 63 && a_mode != 66 && a_mode != 67) {
@@ -949,7 +900,6 @@ void PARAM::CheckParam(void) {
enforce_msg((a_mode >= 1 && a_mode <= 4) || a_mode == 21 || a_mode == 22,
"LOCO only works with LMM and K");
enforce_msg(file_bfile.empty(), "LOCO does not work with PLink (yet)");
- enforce_msg(file_oxford.empty(), "LOCO does not work with Oxford (yet)");
enforce_msg(file_gxe.empty(), "LOCO does not support GXE (yet)");
enforce_msg(!file_anno.empty(),
"LOCO requires annotation file (-a switch)");
@@ -1056,14 +1006,6 @@ void PARAM::CheckParam(void) {
void PARAM::CheckData(void) {
- // WJA NOTE: I added this condition so that covariates can be added
- // through sample, probably not exactly what is wanted.
- if (file_oxford.empty()) {
- if ((file_cvt).empty() || (indicator_cvt).size() == 0) {
- n_cvt = 1;
- }
- }
-
if ((a_mode == 66 || a_mode == 67) && (v_pve.size() != n_vc)) {
cout << "error! the number of pve estimates does not equal to "
<< "the number of categories in the cat file:" << v_pve.size() << " "
@@ -1380,13 +1322,6 @@ void PARAM::CalcKin(gsl_matrix *matrix_kin) {
false) {
error = true;
}
- } else if (!file_oxford.empty()) {
- file_str = file_oxford + ".bgen";
- enforce_msg(loco.empty(), "FIXME: LOCO nyi");
- if (bgenKin(file_str, indicator_snp, a_mode - 20, d_pace, matrix_kin) ==
- false) {
- error = true;
- }
} else {
file_str = file_geno;
if (BimbamKin(file_str, setKSnps, indicator_snp, a_mode - 20, d_pace,
diff --git a/src/param.h b/src/param.h
index ff279bd..3976440 100644
--- a/src/param.h
+++ b/src/param.h
@@ -155,9 +155,6 @@ public:
string file_ksnps; // File SNPs for computing K
string file_gwasnps; // File SNPs for computing GWAS
- // WJA added.
- string file_oxford;
-
// QC-related parameters.
double miss_level;
double maf_level;