aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPeter Carbonetto2017-07-07 10:27:13 -0500
committerPeter Carbonetto2017-07-07 10:27:13 -0500
commit6ea32fec4e8ad39686c430c9e9a1510d3f0e6ae4 (patch)
tree38f86a3f03c62a9f10cc1307ddc003c0bb364369
parentc825a61e4de321d972b67d08733ad6f337828e5e (diff)
parentda685ec43050559c35a2c1eef77ba9e26e0784e2 (diff)
downloadpangemma-6ea32fec4e8ad39686c430c9e9a1510d3f0e6ae4.tar.gz
Merge branch 'master' of github.com:xiangzhou/GEMMA
-rw-r--r--src/io.cpp85
-rw-r--r--src/lapack.cpp185
-rw-r--r--src/logistic.cpp1449
3 files changed, 859 insertions, 860 deletions
diff --git a/src/io.cpp b/src/io.cpp
index 3a4bc3c..3bf6a9e 100644
--- a/src/io.cpp
+++ b/src/io.cpp
@@ -114,7 +114,7 @@ std::istream& safeGetline(std::istream& is, std::string& t) {
sb->sbumpc();
return is;
case EOF:
-
+
// Also handle the case when the last line has no line
// ending.
if(t.empty())
@@ -312,7 +312,7 @@ bool ReadFile_column (const string &file_pheno, vector<int> &indicator_idv,
if (strcmp(ch_ptr, "NA")==0) {
indicator_idv.push_back(0);
pheno.push_back(-9);
- }
+ }
else {
// Pheno is different from pimass2.
@@ -800,7 +800,7 @@ bool ReadFile_bed (const string &file_bed, const set<string> &setSnps,
for (size_t t=0; t<ns_total; ++t) {
// n_bit, and 3 is the number of magic numbers.
- infile.seekg(t*n_bit+3);
+ infile.seekg(t*n_bit+3);
if (setSnps.size()!=0 &&
setSnps.count(snpInfo[t].rs_number) == 0) {
@@ -978,7 +978,7 @@ void Plink_ReadOneSNP (const int pos, const vector<int> &indicator_idv,
else {n_bit=ni_total/4+1;}
// n_bit, and 3 is the number of magic numbers.
- infile.seekg(pos*n_bit+3);
+ infile.seekg(pos*n_bit+3);
// Read genotypes.
char ch[1];
@@ -993,7 +993,7 @@ void Plink_ReadOneSNP (const int pos, const vector<int> &indicator_idv,
b=ch[0];
// Minor allele homozygous: 2.0; major: 0.0.
- for (size_t j=0; j<4; ++j) {
+ for (size_t j=0; j<4; ++j) {
if ((i==(n_bit-1)) && c==ni_total) {break;}
if (indicator_idv[c]==0) {c++; continue;}
c++;
@@ -1406,7 +1406,7 @@ bool PlinkKin (const string &file_bed, vector<int> &indicator_snp,
if (indicator_snp[t]==0) {continue;}
// n_bit, and 3 is the number of magic numbers.
- infile.seekg(t*n_bit+3);
+ infile.seekg(t*n_bit+3);
// Read genotypes.
geno_mean=0.0; n_miss=0; ci_total=0; geno_var=0.0;
@@ -1415,7 +1415,7 @@ bool PlinkKin (const string &file_bed, vector<int> &indicator_snp,
b=ch[0];
// Minor allele homozygous: 2.0; major: 0.0.
- for (size_t j=0; j<4; ++j) {
+ for (size_t j=0; j<4; ++j) {
if ((i==(n_bit-1)) && ci_total==ni_total) {
break;
}
@@ -1734,7 +1734,7 @@ bool ReadFile_bed (const string &file_bed, vector<int> &indicator_idv,
if (indicator_snp[t]==0) {continue;}
// n_bit, and 3 is the number of magic numbers.
- infile.seekg(t*n_bit+3);
+ infile.seekg(t*n_bit+3);
// Read genotypes.
c_idv=0; geno_mean=0.0; n_miss=0; c=0;
@@ -1855,7 +1855,7 @@ bool ReadFile_bed (const string &file_bed, vector<int> &indicator_idv,
if (indicator_snp[t]==0) {continue;}
// n_bit, and 3 is the number of magic numbers.
- infile.seekg(t*n_bit+3);
+ infile.seekg(t*n_bit+3);
// Read genotypes.
c_idv=0; geno_mean=0.0; n_miss=0; c=0;
@@ -1864,7 +1864,7 @@ bool ReadFile_bed (const string &file_bed, vector<int> &indicator_idv,
b=ch[0];
// Minor allele homozygous: 2.0; major: 0.0.
- for (size_t j=0; j<4; ++j) {
+ for (size_t j=0; j<4; ++j) {
if ((i==(n_bit-1)) && c==ni_total) {break;}
if (indicator_idv[c]==0) {c++; continue;}
c++;
@@ -2113,7 +2113,7 @@ bool ReadFile_sample (const string &file_sample,
vector<map<uint32_t, size_t> > cvt_factor_levels;
char col_type[num_cols];
-
+
// Read header line2.
if(!safeGetline(infile, line).eof()) {
ch_ptr=strtok ((char *)line.c_str(), " \t");
@@ -2168,7 +2168,7 @@ bool ReadFile_sample (const string &file_sample,
}
if(col_type[i]=='D')
{
-
+
// NOTE THIS DOES NOT CHECK TO BE SURE LEVEL
// IS INTEGRAL i.e for atoi error.
if (strcmp(ch_ptr, "NA")!=0) {
@@ -2189,7 +2189,7 @@ bool ReadFile_sample (const string &file_sample,
pheno.push_back(pheno_row);
}
-
+
// Close and reopen the file.
infile.close();
infile.clear();
@@ -2202,7 +2202,7 @@ bool ReadFile_sample (const string &file_sample,
file_sample<<endl;
return false;
}
-
+
// Skip header.
safeGetline(infile2, line);
safeGetline(infile2, line);
@@ -2220,16 +2220,16 @@ bool ReadFile_sample (const string &file_sample,
size_t fac_cvt_i=0;
size_t num_fac_levels;
while (i<num_cols) {
-
+
if(col_type[i]=='C') {
if (strcmp(ch_ptr, "NA")==0) {flag_na=1; d=-9;}
else {d=atof(ch_ptr);}
-
+
v_d.push_back(d);
}
-
+
if(col_type[i]=='D') {
-
+
// NOTE THIS DOES NOT CHECK TO BE SURE
// LEVEL IS INTEGRAL i.e for atoi error.
num_fac_levels=cvt_factor_levels[fac_cvt_i].size();
@@ -2251,7 +2251,7 @@ bool ReadFile_sample (const string &file_sample,
}
fac_cvt_i++;
}
-
+
ch_ptr=strtok (NULL, " \t");
i++;
}
@@ -2321,7 +2321,7 @@ bool ReadFile_bgen(const string &file_bgen, const set<string> &setSnps,
int sig;
LUDecomp (WtW, pmt, &sig);
LUInvert (WtW, pmt, WtWi);
-
+
// Read in header.
uint32_t bgen_snp_block_offset;
uint32_t bgen_header_length;
@@ -2373,7 +2373,7 @@ bool ReadFile_bgen(const string &file_bgen, const set<string> &setSnps,
size_t ni_total=indicator_idv.size();
// Number of samples to use in test.
- size_t ni_test=0;
+ size_t ni_test=0;
uint32_t bgen_N;
uint16_t bgen_LS;
@@ -2434,7 +2434,7 @@ bool ReadFile_bgen(const string &file_bgen, const set<string> &setSnps,
if (setSnps.size()!=0 && setSnps.count(rs)==0) {
SNPINFO sInfo={"-9", rs, -9, -9, minor, major,
static_cast<size_t>(-9), -9, (long int) -9};
-
+
snpInfo.push_back(sInfo);
indicator_snp.push_back(0);
if(CompressedSNPBlocks)
@@ -2476,7 +2476,7 @@ bool ReadFile_bgen(const string &file_bgen, const set<string> &setSnps,
c_idv=0;
gsl_vector_set_zero (genotype_miss);
for (size_t i=0; i<bgen_N; ++i) {
-
+
// CHECK this set correctly!
if (indicator_idv[i]==0) {continue;}
@@ -2665,7 +2665,7 @@ bool bgenKin (const string &file_oxford, vector<int> &indicator_snp,
infile.read(reinterpret_cast<char*>(&bgen_LB),4);
bgen_B_allele.resize(bgen_LB);
infile.read(&bgen_B_allele[0], bgen_LB);
-
+
uint16_t unzipped_data[3*bgen_N];
if (indicator_snp[t]==0) {
@@ -2683,11 +2683,11 @@ bool bgenKin (const string &file_oxford, vector<int> &indicator_snp,
{
infile.read(reinterpret_cast<char*>(&bgen_P),4);
uint8_t zipped_data[bgen_P];
-
+
unzipped_data_size=6*bgen_N;
-
+
infile.read(reinterpret_cast<char*>(zipped_data),bgen_P);
-
+
int result=
uncompress(reinterpret_cast<Bytef*>(unzipped_data),
reinterpret_cast<uLongf*>(&unzipped_data_size),
@@ -2698,7 +2698,7 @@ bool bgenKin (const string &file_oxford, vector<int> &indicator_snp,
}
else
{
-
+
bgen_P=6*bgen_N;
infile.read(reinterpret_cast<char*>(unzipped_data),bgen_P);
}
@@ -2708,7 +2708,7 @@ bool bgenKin (const string &file_oxford, vector<int> &indicator_snp,
for (size_t i=0; i<bgen_N; ++i) {
-
+
bgen_geno_prob_AA=
static_cast<double>(unzipped_data[i*3])/32768.0;
bgen_geno_prob_AB=
@@ -2723,13 +2723,13 @@ bool bgenKin (const string &file_oxford, vector<int> &indicator_snp,
n_miss++;
}
else {
-
+
bgen_geno_prob_AA/=bgen_geno_prob_non_miss;
bgen_geno_prob_AB/=bgen_geno_prob_non_miss;
bgen_geno_prob_BB/=bgen_geno_prob_non_miss;
-
+
genotype=2.0*bgen_geno_prob_BB+bgen_geno_prob_AB;
-
+
gsl_vector_set(geno, i, genotype);
gsl_vector_set(geno_miss, i, 1.0);
geno_mean+=genotype;
@@ -2936,8 +2936,7 @@ bool ReadHeader_io (const string &line, HEADER &header)
header.n_col=header.coln+1;
} else {
cout<<"error! more than two n_total columns in the file."<<endl;
- n_
- error++;}
+ n_error++;}
} else if (nmis_set.count(type)!=0) {
if (header.nmis_col==0) {header.nmis_col=header.coln+1;} else {
cout<<"error! more than two n_mis columns in the file."<<endl;
@@ -2988,7 +2987,7 @@ bool ReadHeader_io (const string &line, HEADER &header)
} else {
string str = ch_ptr;
string cat = str.substr(str.size()-2, 2);
-
+
if(cat == "_c" || cat =="_C"){
// continuous
@@ -2999,7 +2998,7 @@ bool ReadHeader_io (const string &line, HEADER &header)
header.catd_col.insert(header.coln+1);
}
}
-
+
ch_ptr=strtok (NULL, " , \t");
header.coln++;
}
@@ -3396,7 +3395,7 @@ bool PlinkKin (const string &file_bed, const int display_pace,
for (size_t j=0; j<4; ++j) {
if ((i==(n_bit-1)) && ci_total==ni_total) {break;}
if (indicator_idv[ci_total]==0) {ci_total++; continue;}
-
+
if (b[2*j]==0) {
if (b[2*j+1]==0) {
gsl_vector_set(geno, ci_test, 2.0);
@@ -3412,7 +3411,7 @@ bool PlinkKin (const string &file_bed, const int display_pace,
if (b[2*j+1]==1) {gsl_vector_set(geno, ci_test, 0.0); }
else {gsl_vector_set(geno, ci_test, -9.0); n_miss++; }
}
-
+
ci_test++;
ci_total++;
}
@@ -3561,7 +3560,7 @@ bool MFILEKin (const size_t mfile_mode, const string &file_mfile,
} else {
BimbamKin (file_name, display_pace, indicator_idv, mindicator_snp[l], mapRS2weight, mapRS2cat, msnpInfo[l], W, kin_tmp, ns_tmp);
}
-
+
// Add ns.
gsl_vector_add(vector_ns, ns_tmp);
@@ -3647,7 +3646,7 @@ bool ReadFile_wsnp (const string &file_wcat, const size_t n_vc,
}
string line, rs, chr, a1, a0, pos, cm;
-
+
// Read header.
HEADER header;
!safeGetline(infile, line).eof();
@@ -3978,7 +3977,7 @@ void Calcq (const size_t n_block, const vector<size_t> &vec_cat,
// Compute q and s.
for (size_t i=0; i<vec_cat.size(); i++) {
-
+
// Extract quantities.
cat=vec_cat[i];
n_total=vec_ni[i];
@@ -4017,7 +4016,7 @@ void Calcq (const size_t n_block, const vector<size_t> &vec_cat,
// Record values.
for (size_t i=0; i<vec_cat.size(); i++) {
-
+
// Extract quantities.
cat=vec_cat[i];
n_total=vec_ni[i];
@@ -4369,7 +4368,7 @@ void ReadFile_mref (const string &file_mref, gsl_matrix *S_mat,
if (i!=j) {gsl_matrix_set(Svar_mat, j, i, d);}
}
}
-
+
// Free matrices.
gsl_matrix_free(S_sub);
gsl_matrix_free(Svar_sub);
diff --git a/src/lapack.cpp b/src/lapack.cpp
index 01d2039..05b85f4 100644
--- a/src/lapack.cpp
+++ b/src/lapack.cpp
@@ -60,20 +60,20 @@ extern "C" double ddot_(int *N, double *DX, int *INCX, double *DY, int *INCY);
void lapack_float_cholesky_decomp (gsl_matrix_float *A) {
int N=A->size1, LDA=A->size1, INFO;
char UPLO='L';
-
+
if (N!=(int)A->size2) {
cout << "Matrix needs to be symmetric and same dimension in " <<
"lapack_cholesky_decomp." << endl;
return;
}
-
+
spotrf_(&UPLO, &N, A->data, &LDA, &INFO);
if (INFO!=0) {
cout << "Cholesky decomposition unsuccessful in " <<
"lapack_cholesky_decomp." << endl;
return;
- }
-
+ }
+
return;
}
@@ -81,19 +81,19 @@ void lapack_float_cholesky_decomp (gsl_matrix_float *A) {
void lapack_cholesky_decomp (gsl_matrix *A) {
int N=A->size1, LDA=A->size1, INFO;
char UPLO='L';
-
+
if (N!=(int)A->size2) {
cout << "Matrix needs to be symmetric and same dimension in " <<
"lapack_cholesky_decomp." << endl;
return;
}
-
+
dpotrf_(&UPLO, &N, A->data, &LDA, &INFO);
if (INFO!=0) {
cout << "Cholesky decomposition unsuccessful in " <<
"lapack_cholesky_decomp."<<endl;
return;
- }
+ }
return;
}
@@ -104,13 +104,14 @@ void lapack_float_cholesky_solve (gsl_matrix_float *A,
gsl_vector_float *x) {
int N=A->size1, NRHS=1, LDA=A->size1, LDB=b->size, INFO;
char UPLO='L';
-
+
+
if (N!=(int)A->size2 || N!=LDB) {
- cout << "Matrix needs to be symmetric and same dimension in " <<cout
+ cout << "Matrix needs to be symmetric and same dimension in " <<
"lapack_cholesky_solve." << endl;
return;
}
-
+
gsl_vector_float_memcpy (x, b);
spotrs_(&UPLO, &N, &NRHS, A->data, &LDA, x->data, &LDB, &INFO);
if (INFO!=0) {
@@ -118,7 +119,7 @@ void lapack_float_cholesky_solve (gsl_matrix_float *A,
endl;
return;
}
-
+
return;
}
@@ -127,13 +128,13 @@ void lapack_cholesky_solve (gsl_matrix *A, const gsl_vector *b,
gsl_vector *x) {
int N=A->size1, NRHS=1, LDA=A->size1, LDB=b->size, INFO;
char UPLO='L';
-
+
if (N!=(int)A->size2 || N!=LDB) {
cout << "Matrix needs to be symmetric and same dimension in " <<
"lapack_cholesky_solve." << endl;
return;
}
-
+
gsl_vector_memcpy (x, b);
dpotrs_(&UPLO, &N, &NRHS, A->data, &LDA, x->data, &LDB, &INFO);
if (INFO!=0) {
@@ -141,7 +142,7 @@ void lapack_cholesky_solve (gsl_matrix *A, const gsl_vector *b,
endl;
return;
}
-
+
return;
}
@@ -149,15 +150,15 @@ void lapack_sgemm (char *TransA, char *TransB, float alpha,
const gsl_matrix_float *A, const gsl_matrix_float *B,
float beta, gsl_matrix_float *C) {
int M, N, K1, K2, LDA=A->size1, LDB=B->size1, LDC=C->size2;
-
+
if (*TransA=='N' || *TransA=='n') {M=A->size1; K1=A->size2;}
else if (*TransA=='T' || *TransA=='t') {M=A->size2; K1=A->size1;}
else {cout<<"need 'N' or 'T' in lapack_sgemm"<<endl; return;}
-
+
if (*TransB=='N' || *TransB=='n') {N=B->size2; K2=B->size1;}
else if (*TransB=='T' || *TransB=='t') {N=B->size1; K2=B->size2;}
else {cout<<"need 'N' or 'T' in lapack_sgemm"<<endl; return;}
-
+
if (K1!=K2) {
cout<<"A and B not compatible in lapack_sgemm"<<endl;
return;
@@ -166,18 +167,18 @@ void lapack_sgemm (char *TransA, char *TransB, float alpha,
cout<<"C not compatible in lapack_sgemm"<<endl;
return;
}
-
+
gsl_matrix_float *A_t=gsl_matrix_float_alloc (A->size2, A->size1);
gsl_matrix_float_transpose_memcpy (A_t, A);
gsl_matrix_float *B_t=gsl_matrix_float_alloc (B->size2, B->size1);
gsl_matrix_float_transpose_memcpy (B_t, B);
gsl_matrix_float *C_t=gsl_matrix_float_alloc (C->size2, C->size1);
gsl_matrix_float_transpose_memcpy (C_t, C);
-
+
sgemm_(TransA, TransB, &M, &N, &K1, &alpha, A_t->data, &LDA,
B_t->data, &LDB, &beta, C_t->data, &LDC);
gsl_matrix_float_transpose_memcpy (C, C_t);
-
+
gsl_matrix_float_free (A_t);
gsl_matrix_float_free (B_t);
gsl_matrix_float_free (C_t);
@@ -190,15 +191,15 @@ void lapack_dgemm (char *TransA, char *TransB, double alpha,
const gsl_matrix *A, const gsl_matrix *B,
double beta, gsl_matrix *C) {
int M, N, K1, K2, LDA=A->size1, LDB=B->size1, LDC=C->size2;
-
+
if (*TransA=='N' || *TransA=='n') {M=A->size1; K1=A->size2;}
else if (*TransA=='T' || *TransA=='t') {M=A->size2; K1=A->size1;}
else {cout<<"need 'N' or 'T' in lapack_dgemm"<<endl; return;}
-
+
if (*TransB=='N' || *TransB=='n') {N=B->size2; K2=B->size1;}
else if (*TransB=='T' || *TransB=='t') {N=B->size1; K2=B->size2;}
else {cout<<"need 'N' or 'T' in lapack_dgemm"<<endl; return;}
-
+
if (K1!=K2) {
cout << "A and B not compatible in lapack_dgemm"<<endl;
return;
@@ -207,7 +208,7 @@ void lapack_dgemm (char *TransA, char *TransB, double alpha,
cout<<"C not compatible in lapack_dgemm"<<endl;
return;
}
-
+
gsl_matrix *A_t=gsl_matrix_alloc (A->size2, A->size1);
gsl_matrix_transpose_memcpy (A_t, A);
gsl_matrix *B_t=gsl_matrix_alloc (B->size2, B->size1);
@@ -219,7 +220,7 @@ void lapack_dgemm (char *TransA, char *TransB, double alpha,
B_t->data, &LDB, &beta, C_t->data, &LDC);
gsl_matrix_transpose_memcpy (C, C_t);
-
+
gsl_matrix_free (A_t);
gsl_matrix_free (B_t);
gsl_matrix_free (C_t);
@@ -234,15 +235,15 @@ void lapack_float_eigen_symmv (gsl_matrix_float *A, gsl_vector_float *eval,
if (flag_largematrix==1) {
int N=A->size1, LDA=A->size1, INFO, LWORK=-1;
char JOBZ='V', UPLO='L';
-
+
if (N!=(int)A->size2 || N!=(int)eval->size) {
cout << "Matrix needs to be symmetric and same " <<
"dimension in lapack_eigen_symmv."<<endl;
return;
}
-
+
LWORK=3*N;
- float *WORK=new float [LWORK];
+ float *WORK=new float [LWORK];
ssyev_(&JOBZ, &UPLO, &N, A->data, &LDA, eval->data, WORK,
&LWORK, &INFO);
if (INFO!=0) {
@@ -250,31 +251,31 @@ void lapack_float_eigen_symmv (gsl_matrix_float *A, gsl_vector_float *eval,
"lapack_eigen_symmv."<<endl;
return;
}
-
+
gsl_matrix_float_view A_sub =
gsl_matrix_float_submatrix(A, 0, 0, N, N);
gsl_matrix_float_memcpy (evec, &A_sub.matrix);
gsl_matrix_float_transpose (evec);
-
+
delete [] WORK;
- } else {
+ } else {
int N=A->size1, LDA=A->size1, LDZ=A->size1, INFO,
LWORK=-1, LIWORK=-1;
char JOBZ='V', UPLO='L', RANGE='A';
float ABSTOL=1.0E-7;
-
+
// VL, VU, IL, IU are not referenced; M equals N if RANGE='A'.
float VL=0.0, VU=0.0;
int IL=0, IU=0, M;
-
+
if (N!=(int)A->size2 || N!=(int)eval->size) {
cout << "Matrix needs to be symmetric and same " <<
"dimension in lapack_float_eigen_symmv." << endl;
return;
}
-
+
int *ISUPPZ=new int [2*N];
-
+
float WORK_temp[1];
int IWORK_temp[1];
ssyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL,
@@ -286,11 +287,11 @@ void lapack_float_eigen_symmv (gsl_matrix_float *A, gsl_vector_float *eval,
"lapack_float_eigen_symmv." << endl;
return;
}
- LWORK=(int)WORK_temp[0]; LIWORK=(int)IWORK_temp[0];
-
+ LWORK=(int)WORK_temp[0]; LIWORK=(int)IWORK_temp[0];
+
float *WORK=new float [LWORK];
int *IWORK=new int [LIWORK];
-
+
ssyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL,
&VU, &IL, &IU, &ABSTOL, &M, eval->data, evec->data,
&LDZ, ISUPPZ, WORK, &LWORK, IWORK, &LIWORK, &INFO);
@@ -299,15 +300,15 @@ void lapack_float_eigen_symmv (gsl_matrix_float *A, gsl_vector_float *eval,
"lapack_float_eigen_symmv." << endl;
return;
}
-
+
gsl_matrix_float_transpose (evec);
-
+
delete [] ISUPPZ;
delete [] WORK;
delete [] IWORK;
}
-
-
+
+
return;
}
@@ -318,16 +319,16 @@ void lapack_eigen_symmv (gsl_matrix *A, gsl_vector *eval, gsl_matrix *evec,
const size_t flag_largematrix) {
if (flag_largematrix==1) {
int N=A->size1, LDA=A->size1, INFO, LWORK=-1;
- char JOBZ='V', UPLO='L';
-
+ char JOBZ='V', UPLO='L';
+
if (N!=(int)A->size2 || N!=(int)eval->size) {
cout << "Matrix needs to be symmetric and same " <<
"dimension in lapack_eigen_symmv." << endl;
return;
}
-
+
LWORK=3*N;
- double *WORK=new double [LWORK];
+ double *WORK=new double [LWORK];
dsyev_(&JOBZ, &UPLO, &N, A->data, &LDA, eval->data, WORK,
&LWORK, &INFO);
if (INFO!=0) {
@@ -335,30 +336,30 @@ void lapack_eigen_symmv (gsl_matrix *A, gsl_vector *eval, gsl_matrix *evec,
"lapack_eigen_symmv." << endl;
return;
}
-
+
gsl_matrix_view A_sub=gsl_matrix_submatrix(A, 0, 0, N, N);
gsl_matrix_memcpy (evec, &A_sub.matrix);
gsl_matrix_transpose (evec);
-
+
delete [] WORK;
- } else {
+ } else {
int N=A->size1, LDA=A->size1, LDZ=A->size1, INFO;
int LWORK=-1, LIWORK=-1;
char JOBZ='V', UPLO='L', RANGE='A';
double ABSTOL=1.0E-7;
-
+
// VL, VU, IL, IU are not referenced; M equals N if RANGE='A'.
double VL=0.0, VU=0.0;
int IL=0, IU=0, M;
-
+
if (N!=(int)A->size2 || N!=(int)eval->size) {
cout << "Matrix needs to be symmetric and same " <<
"dimension in lapack_eigen_symmv." << endl;
return;
}
-
+
int *ISUPPZ=new int [2*N];
-
+
double WORK_temp[1];
int IWORK_temp[1];
@@ -370,12 +371,12 @@ void lapack_eigen_symmv (gsl_matrix *A, gsl_vector *eval, gsl_matrix *evec,
cout << "Work space estimate unsuccessful in " <<
"lapack_eigen_symmv." << endl;
return;
- }
- LWORK=(int)WORK_temp[0]; LIWORK=(int)IWORK_temp[0];
+ }
+ LWORK=(int)WORK_temp[0]; LIWORK=(int)IWORK_temp[0];
double *WORK=new double [LWORK];
int *IWORK=new int [LIWORK];
-
+
dsyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU,
&IL, &IU, &ABSTOL, &M, eval->data, evec->data,
&LDZ, ISUPPZ, WORK, &LWORK, IWORK, &LIWORK, &INFO);
@@ -386,12 +387,12 @@ void lapack_eigen_symmv (gsl_matrix *A, gsl_vector *eval, gsl_matrix *evec,
}
gsl_matrix_transpose (evec);
-
+
delete [] ISUPPZ;
delete [] WORK;
delete [] IWORK;
}
-
+
return;
}
@@ -406,7 +407,7 @@ double EigenDecomp (gsl_matrix *G, gsl_matrix *U, gsl_vector *eval,
d+=gsl_vector_get(eval, i);
}
d/=(double)eval->size;
-
+
return d;
}
@@ -422,21 +423,21 @@ double EigenDecomp (gsl_matrix_float *G, gsl_matrix_float *U,
d+=gsl_vector_float_get(eval, i);
}
d/=(double)eval->size;
-
+
return d;
}
double CholeskySolve(gsl_matrix *Omega, gsl_vector *Xty, gsl_vector *OiXty) {
double logdet_O=0.0;
-
+
lapack_cholesky_decomp(Omega);
for (size_t i=0; i<Omega->size1; ++i) {
logdet_O+=log(gsl_matrix_get (Omega, i, i));
- }
- logdet_O*=2.0;
- lapack_cholesky_solve(Omega, Xty, OiXty);
-
+ }
+ logdet_O*=2.0;
+ lapack_cholesky_solve(Omega, Xty, OiXty);
+
return logdet_O;
}
@@ -444,16 +445,16 @@ double CholeskySolve(gsl_matrix *Omega, gsl_vector *Xty, gsl_vector *OiXty) {
double CholeskySolve(gsl_matrix_float *Omega, gsl_vector_float *Xty,
gsl_vector_float *OiXty) {
double logdet_O=0.0;
-
+
lapack_float_cholesky_decomp(Omega);
for (size_t i=0; i<Omega->size1; ++i) {
logdet_O+=log(gsl_matrix_float_get (Omega, i, i));
- }
- logdet_O*=2.0;
- lapack_float_cholesky_solve(Omega, Xty, OiXty);
-
+ }
+ logdet_O*=2.0;
+ lapack_float_cholesky_solve(Omega, Xty, OiXty);
+
return logdet_O;
-}
+}
// LU decomposition.
@@ -464,18 +465,18 @@ void LUDecomp (gsl_matrix *LU, gsl_permutation *p, int *signum) {
void LUDecomp (gsl_matrix_float *LU, gsl_permutation *p, int *signum) {
gsl_matrix *LU_double=gsl_matrix_alloc (LU->size1, LU->size2);
-
- // Copy float matrix to double.
+
+ // Copy float matrix to double.
for (size_t i=0; i<LU->size1; i++) {
for (size_t j=0; j<LU->size2; j++) {
gsl_matrix_set (LU_double, i, j,
gsl_matrix_float_get(LU, i, j));
}
}
-
+
// LU decomposition.
gsl_linalg_LU_decomp (LU_double, p, signum);
-
+
// Copy float matrix to double.
for (size_t i=0; i<LU->size1; i++) {
for (size_t j=0; j<LU->size2; j++) {
@@ -483,7 +484,7 @@ void LUDecomp (gsl_matrix_float *LU, gsl_permutation *p, int *signum) {
gsl_matrix_get(LU_double, i, j));
}
}
-
+
// Free matrix.
gsl_matrix_free (LU_double);
return;
@@ -502,18 +503,18 @@ void LUInvert (const gsl_matrix_float *LU, const gsl_permutation *p,
gsl_matrix *LU_double=gsl_matrix_alloc (LU->size1, LU->size2);
gsl_matrix *inverse_double=gsl_matrix_alloc (inverse->size1,
inverse->size2);
-
- // Copy float matrix to double.
+
+ // Copy float matrix to double.
for (size_t i=0; i<LU->size1; i++) {
for (size_t j=0; j<LU->size2; j++) {
gsl_matrix_set (LU_double, i, j,
gsl_matrix_float_get(LU, i, j));
}
}
-
+
// LU decomposition.
gsl_linalg_LU_invert (LU_double, p, inverse_double);
-
+
// Copy float matrix to double.
for (size_t i=0; i<inverse->size1; i++) {
for (size_t j=0; j<inverse->size2; j++) {
@@ -522,7 +523,7 @@ void LUInvert (const gsl_matrix_float *LU, const gsl_permutation *p,
i, j));
}
}
-
+
// Free matrix.
gsl_matrix_free (LU_double);
gsl_matrix_free (inverse_double);
@@ -539,17 +540,17 @@ double LULndet (gsl_matrix *LU) {
double LULndet (gsl_matrix_float *LU) {
gsl_matrix *LU_double=gsl_matrix_alloc (LU->size1, LU->size2);
double d;
-
- // Copy float matrix to double.
+
+ // Copy float matrix to double.
for (size_t i=0; i<LU->size1; i++) {
for (size_t j=0; j<LU->size2; j++) {
gsl_matrix_set (LU_double, i, j, gsl_matrix_float_get(LU, i, j));
}
}
-
+
// LU decomposition.
d=gsl_linalg_LU_lndet (LU_double);
-
+
// Free matrix
gsl_matrix_free (LU_double);
return d;
@@ -567,8 +568,8 @@ void LUSolve (const gsl_matrix_float *LU, const gsl_permutation *p,
const gsl_vector_float *b, gsl_vector_float *x) {
gsl_matrix *LU_double=gsl_matrix_alloc (LU->size1, LU->size2);
gsl_vector *b_double=gsl_vector_alloc (b->size);
- gsl_vector *x_double=gsl_vector_alloc (x->size);
-
+ gsl_vector *x_double=gsl_vector_alloc (x->size);
+
// Copy float matrix to double.
for (size_t i=0; i<LU->size1; i++) {
for (size_t j=0; j<LU->size2; j++) {
@@ -576,23 +577,23 @@ void LUSolve (const gsl_matrix_float *LU, const gsl_permutation *p,
gsl_matrix_float_get(LU, i, j));
}
}
-
+
for (size_t i=0; i<b->size; i++) {
gsl_vector_set (b_double, i, gsl_vector_float_get(b, i));
}
-
+
for (size_t i=0; i<x->size; i++) {
gsl_vector_set (x_double, i, gsl_vector_float_get(x, i));
}
-
+
// LU decomposition.
gsl_linalg_LU_solve (LU_double, p, b_double, x_double);
-
+
// Copy float matrix to double.
for (size_t i=0; i<x->size; i++) {
gsl_vector_float_set (x, i, gsl_vector_get(x_double, i));
}
-
+
// Free matrix.
gsl_matrix_free (LU_double);
gsl_vector_free (b_double);
diff --git a/src/logistic.cpp b/src/logistic.cpp
index c1ddac1..f9edc68 100644
--- a/src/logistic.cpp
+++ b/src/logistic.cpp
@@ -1,725 +1,724 @@
-#include <stdio.h>
-#include <math.h>
-#include <gsl/gsl_matrix.h>
-#include <gsl/gsl_rng.h>
-#include <gsl/gsl_multimin.h>
-#include <gsl/gsl_sf.h>
-#include <gsl/gsl_linalg.h>
-#include "logistic.h"
-
-// I need to bundle all the data that goes to the function to optimze
-// together.
-typedef struct{
- gsl_matrix_int *X;
- gsl_vector_int *nlev;
- gsl_vector *y;
- gsl_matrix *Xc; // Continuous covariates matrix Nobs x Kc (NULL if not used).
- double lambdaL1;
- double lambdaL2;
-} fix_parm_mixed_T;
-
-double fLogit_mixed(gsl_vector *beta,
- gsl_matrix_int *X,
- gsl_vector_int *nlev,
- gsl_matrix *Xc,
- gsl_vector *y,
- double lambdaL1,
- double lambdaL2) {
- int n = y->size;
- int npar = beta->size;
- double total = 0;
- double aux = 0;
-
- // Changed loop start at 1 instead of 0 to avoid regularization of
- // beta_0*\/
- // #pragma omp parallel for reduction (+:total)
- for(int i = 1; i < npar; ++i)
- total += beta->data[i]*beta->data[i];
- total = (-total*lambdaL2/2);
- // #pragma omp parallel for reduction (+:aux)
- for(int i = 1; i < npar; ++i)
- aux += (beta->data[i]>0 ? beta->data[i] : -beta->data[i]);
- total = total-aux*lambdaL1;
- // #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y)
- // #reduction (+:total)
- for(int i = 0; i < n; ++i) {
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < X->size2; ++k) {
- if(gsl_matrix_int_get(X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
- iParm+=nlev->data[k]-1;
- }
- for(int k = 0; k < (Xc->size2); ++k)
- Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
- total += y->data[i]*Xbetai-gsl_sf_log_1plusx(gsl_sf_exp(Xbetai));
- }
- return -total;
-}
-
-void logistic_mixed_pred(gsl_vector *beta, // Vector of parameters
- // length = 1 + Sum_k(C_k -1)
- gsl_matrix_int *X, // Matrix Nobs x K
- gsl_vector_int *nlev, // Vector with number categories
- gsl_matrix *Xc, // Continuous covariates matrix:
- // obs x Kc (NULL if not used).
- gsl_vector *yhat){ // Vector of prob. predicted by
- // the logistic
- for(int i = 0; i < X->size1; ++i) {
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < X->size2; ++k) {
- if(gsl_matrix_int_get(X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
- iParm+=nlev->data[k]-1;
- }
- // Adding the continuous.
- for(int k = 0; k < (Xc->size2); ++k)
- Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
- yhat->data[i]=1/(1 + gsl_sf_exp(-Xbetai));
- }
-}
-
-
-// The gradient of f, df = (df/dx, df/dy).
-void wgsl_mixed_optim_df (const gsl_vector *beta, void *params,
- gsl_vector *out) {
- fix_parm_mixed_T *p = (fix_parm_mixed_T *)params;
- int n = p->y->size;
- int K = p->X->size2;
- int Kc = p->Xc->size2;
- int npar = beta->size;
-
- // Intitialize gradient out necessary?
- for(int i = 0; i < npar; ++i)
- out->data[i]= 0;
-
- // Changed loop start at 1 instead of 0 to avoid regularization of beta 0.
- for(int i = 1; i < npar; ++i)
- out->data[i]= p->lambdaL2*beta->data[i];
- for(int i = 1; i < npar; ++i)
- out->data[i]+= p->lambdaL1*((beta->data[i]>0)-(beta->data[i]<0));
-
- for(int i = 0; i < n; ++i) {
- double pn=0;
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm];
- iParm+=p->nlev->data[k]-1;
- }
-
- // Adding the continuous.
- for(int k = 0; k < Kc; ++k)
- Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm++];
-
- pn= -( p->y->data[i] - 1/(1 + gsl_sf_exp(-Xbetai)) );
-
- out->data[0]+= pn;
- iParm=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- out->data[gsl_matrix_int_get(p->X,i,k)-1+iParm]+=pn;
- iParm+=p->nlev->data[k]-1;
- }
-
- // Adding the continuous.
- for(int k = 0; k < Kc; ++k) {
- out->data[iParm++] += gsl_matrix_get(p->Xc,i,k)*pn;
- }
- }
-
-}
-
-// The Hessian of f.
-void wgsl_mixed_optim_hessian (const gsl_vector *beta, void *params,
- gsl_matrix *out) {
- fix_parm_mixed_T *p = (fix_parm_mixed_T *)params;
- int n = p->y->size;
- int K = p->X->size2;
- int Kc = p->Xc->size2;
- int npar = beta->size;
- gsl_vector *gn = gsl_vector_alloc(npar); // gn
-
- // Intitialize Hessian out necessary ???
- gsl_matrix_set_zero(out);
-
- /* Changed loop start at 1 instead of 0 to avoid regularization of beta 0*/
- for(int i = 1; i < npar; ++i)
- gsl_matrix_set(out,i,i,(p->lambdaL2)); // Double-check this.
-
- // L1 penalty not working yet, as not differentiable, I may need to
- // do coordinate descent (as in glm_net)
- for(int i = 0; i < n; ++i) {
- double pn=0;
- double aux=0;
- double Xbetai=beta->data[0];
- int iParm1=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm1];
- iParm1+=p->nlev->data[k]-1; //-1?
- }
-
- // Adding the continuous.
- for(int k = 0; k < Kc; ++k)
- Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm1++];
-
- pn= 1/(1 + gsl_sf_exp(-Xbetai));
-
- // Add a protection for pn very close to 0 or 1?
- aux=pn*(1-pn);
-
- // Calculate sub-gradient vector gn.
- gsl_vector_set_zero(gn);
- gn->data[0]= 1;
- iParm1=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- gn->data[gsl_matrix_int_get(p->X,i,k)-1+iParm1]=1;
- iParm1+=p->nlev->data[k]-1;
- }
-
- // Adding the continuous.
- for(int k = 0; k < Kc; ++k) {
- gn->data[iParm1++] = gsl_matrix_get(p->Xc,i,k);
- }
-
- for(int k1=0;k1<npar; ++k1)
- if(gn->data[k1]!=0)
- for(int k2=0;k2<npar; ++k2)
- if(gn->data[k2]!=0)
- *gsl_matrix_ptr(out,k1,k2) += (aux * gn->data[k1] * gn->data[k2]);
- }
- gsl_vector_free(gn);
-}
-
-double wgsl_mixed_optim_f(gsl_vector *v, void *params) {
- double mLogLik=0;
- fix_parm_mixed_T *p = (fix_parm_mixed_T *)params;
- mLogLik = fLogit_mixed(v,p->X,p->nlev,p->Xc,p->y,p->lambdaL1,p->lambdaL2);
- return mLogLik;
-}
-
-// Compute both f and df together.
-void
-wgsl_mixed_optim_fdf (gsl_vector *x, void *params, double *f, gsl_vector *df) {
- *f = wgsl_mixed_optim_f(x, params);
- wgsl_mixed_optim_df(x, params, df);
-}
-
-// Xc is the matrix of continuous covariates, Nobs x Kc (NULL if not used).
-int logistic_mixed_fit(gsl_vector *beta, gsl_matrix_int *X,
- gsl_vector_int *nlev, gsl_matrix *Xc,
- gsl_vector *y, double lambdaL1, double lambdaL2) {
- double mLogLik=0;
- fix_parm_mixed_T p;
- int npar = beta->size;
- int iter=0;
- double maxchange=0;
-
- // Intializing fix parameters.
- p.X=X;
- p.Xc=Xc;
- p.nlev=nlev;
- p.y=y;
- p.lambdaL1=lambdaL1;
- p.lambdaL2=lambdaL2;
-
- // Initial fit.
- mLogLik = wgsl_mixed_optim_f(beta,&p);
-
- gsl_matrix *myH = gsl_matrix_alloc(npar,npar); // Hessian matrix.
- gsl_vector *stBeta = gsl_vector_alloc(npar); // Direction to move.
-
- gsl_vector *myG = gsl_vector_alloc(npar); // Gradient.
- gsl_vector *tau = gsl_vector_alloc(npar); // tau for QR.
-
- for(iter=0;iter<100;iter++){
- wgsl_mixed_optim_hessian(beta,&p,myH); // Calculate Hessian.
- wgsl_mixed_optim_df(beta,&p,myG); // Calculate Gradient.
- gsl_linalg_QR_decomp(myH,tau); // Calculate next beta.
- gsl_linalg_QR_solve(myH,tau,myG,stBeta);
- gsl_vector_sub(beta,stBeta);
-
- // Monitor convergence.
- maxchange=0;
- for(int i=0;i<npar; i++)
- if(maxchange<fabs(stBeta->data[i]))
- maxchange=fabs(stBeta->data[i]);
-
- if(maxchange<1E-4)
- break;
- }
-
- // Final fit.
- mLogLik = wgsl_mixed_optim_f(beta,&p);
-
- gsl_vector_free (tau);
- gsl_vector_free (stBeta);
- gsl_vector_free (myG);
- gsl_matrix_free (myH);
-
- return 0;
-}
-
-/***************/
-/* Categorical */
-/***************/
-
-// I need to bundle all the data that goes to the function to optimze
-// together.
-typedef struct {
- gsl_matrix_int *X;
- gsl_vector_int *nlev;
- gsl_vector *y;
- double lambdaL1;
- double lambdaL2;
-} fix_parm_cat_T;
-
-double fLogit_cat (gsl_vector *beta, gsl_matrix_int *X, gsl_vector_int *nlev,
- gsl_vector *y, double lambdaL1, double lambdaL2) {
- int n = y->size;
- int npar = beta->size;
- double total = 0;
- double aux = 0;
-
- // omp_set_num_threads(ompthr); /\* Changed loop start at 1 instead
- // of 0 to avoid regularization of beta 0*\/ /\*#pragma omp parallel
- // for reduction (+:total)*\/
- for(int i = 1; i < npar; ++i)
- total += beta->data[i]*beta->data[i];
- total = (-total*lambdaL2/2);
-
- // /\*#pragma omp parallel for reduction (+:aux)*\/
- for(int i = 1; i < npar; ++i)
- aux += (beta->data[i]>0 ? beta->data[i] : -beta->data[i]);
- total = total-aux*lambdaL1;
-
- // #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y)
- // #reduction (+:total)
- for(int i = 0; i < n; ++i) {
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < X->size2; ++k) {
- if(gsl_matrix_int_get(X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
- iParm+=nlev->data[k]-1;
- }
- total += y->data[i]*Xbetai-gsl_sf_log_1plusx(gsl_sf_exp(Xbetai));
- }
- return -total;
-}
-
-void logistic_cat_pred (gsl_vector *beta, // Vector of parameters
- // length = 1 + Sum_k(C_k-1).
- gsl_matrix_int *X, // Matrix Nobs x K
- gsl_vector_int *nlev, // Vector with #categories
- gsl_vector *yhat){ // Vector of prob. predicted by
- // the logistic.
- for(int i = 0; i < X->size1; ++i) {
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < X->size2; ++k) {
- if(gsl_matrix_int_get(X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
- iParm+=nlev->data[k]-1;
- }
- yhat->data[i]=1/(1 + gsl_sf_exp(-Xbetai));
- }
-}
-
-// The gradient of f, df = (df/dx, df/dy).
-void wgsl_cat_optim_df (const gsl_vector *beta, void *params,
- gsl_vector *out) {
- fix_parm_cat_T *p = (fix_parm_cat_T *)params;
- int n = p->y->size;
- int K = p->X->size2;
- int npar = beta->size;
-
- // Intitialize gradient out necessary?
- for(int i = 0; i < npar; ++i)
- out->data[i]= 0;
-
- // Changed loop start at 1 instead of 0 to avoid regularization of beta 0.
- for(int i = 1; i < npar; ++i)
- out->data[i]= p->lambdaL2*beta->data[i];
- for(int i = 1; i < npar; ++i)
- out->data[i]+= p->lambdaL1*((beta->data[i]>0)-(beta->data[i]<0));
-
- for(int i = 0; i < n; ++i) {
- double pn=0;
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm];
- iParm+=p->nlev->data[k]-1;
- }
-
- pn= -( p->y->data[i] - 1/(1 + gsl_sf_exp(-Xbetai)) );
-
- out->data[0]+= pn;
- iParm=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- out->data[gsl_matrix_int_get(p->X,i,k)-1+iParm]+=pn;
- iParm+=p->nlev->data[k]-1;
- }
- }
-}
-
-// The Hessian of f.
-void wgsl_cat_optim_hessian (const gsl_vector *beta, void *params,
- gsl_matrix *out) {
- fix_parm_cat_T *p = (fix_parm_cat_T *)params;
- int n = p->y->size;
- int K = p->X->size2;
- int npar = beta->size;
-
- // Intitialize Hessian out necessary.
- gsl_matrix_set_zero(out);
-
- // Changed loop start at 1 instead of 0 to avoid regularization of beta.
- for(int i = 1; i < npar; ++i)
- gsl_matrix_set(out,i,i,(p->lambdaL2)); // Double-check this.
-
- // L1 penalty not working yet, as not differentiable, I may need to
- // do coordinate descent (as in glm_net).
- for(int i = 0; i < n; ++i) {
- double pn=0;
- double aux=0;
- double Xbetai=beta->data[0];
- int iParm2=1;
- int iParm1=1;
- for(int k = 0; k < K; ++k) {
- if(gsl_matrix_int_get(p->X,i,k)>0)
- Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm1];
- iParm1+=p->nlev->data[k]-1; //-1?
- }
-
- pn= 1/(1 + gsl_sf_exp(-Xbetai));
-
- // Add a protection for pn very close to 0 or 1?
- aux=pn*(1-pn);
- *gsl_matrix_ptr(out,0,0)+=aux;
- iParm2=1;
- for(int k2 = 0; k2 < K; ++k2) {
- if(gsl_matrix_int_get(p->X,i,k2)>0)
- *gsl_matrix_ptr(out,0,gsl_matrix_int_get(p->X,i,k2)-1+iParm2)+=aux;
- iParm2+=p->nlev->data[k2]-1; //-1?
- }
- iParm1=1;
- for(int k1 = 0; k1 < K; ++k1) {
- if(gsl_matrix_int_get(p->X,i,k1)>0)
- *gsl_matrix_ptr(out,gsl_matrix_int_get(p->X,i,k1)-1+iParm1,0)+=aux;
- iParm2=1;
- for(int k2 = 0; k2 < K; ++k2) {
- if((gsl_matrix_int_get(p->X,i,k1)>0) &&
- (gsl_matrix_int_get(p->X,i,k2)>0))
- *gsl_matrix_ptr(out
- ,gsl_matrix_int_get(p->X,i,k1)-1+iParm1
- ,gsl_matrix_int_get(p->X,i,k2)-1+iParm2
- )+=aux;
- iParm2+=p->nlev->data[k2]-1; //-1?
- }
- iParm1+=p->nlev->data[k1]-1; //-1?
- }
- }
-}
-
-double wgsl_cat_optim_f(gsl_vector *v, void *params) {
- double mLogLik=0;
- fix_parm_cat_T *p = (fix_parm_cat_T *)params;
- mLogLik = fLogit_cat(v,p->X,p->nlev,p->y,p->lambdaL1,p->lambdaL2);
- return mLogLik;
-}
-
-// Compute both f and df together.
-void wgsl_cat_optim_fdf (gsl_vector *x, void *params, double *f,
- gsl_vector *df) {
- *f = wgsl_cat_optim_f(x, params);
- wgsl_cat_optim_df(x, params, df);
-}
-
-int logistic_cat_fit(gsl_vector *beta,
- gsl_matrix_int *X,
- gsl_vector_int *nlev,
- gsl_vector *y,
- double lambdaL1,
- double lambdaL2) {
- double mLogLik=0;
- fix_parm_cat_T p;
- int npar = beta->size;
- int iter=0;
- double maxchange=0;
-
- // Intializing fix parameters.
- p.X=X;
- p.nlev=nlev;
- p.y=y;
- p.lambdaL1=lambdaL1;
- p.lambdaL2=lambdaL2;
-
- // Initial fit.
- mLogLik = wgsl_cat_optim_f(beta,&p);
-
- gsl_matrix *myH = gsl_matrix_alloc(npar,npar); // Hessian matrix.
- gsl_vector *stBeta = gsl_vector_alloc(npar); // Direction to move.
-
- gsl_vector *myG = gsl_vector_alloc(npar); // Gradient.
- gsl_vector *tau = gsl_vector_alloc(npar); // tau for QR.
-
- for(iter=0;iter<100;iter++){
- wgsl_cat_optim_hessian(beta,&p,myH); // Calculate Hessian.
- wgsl_cat_optim_df(beta,&p,myG); // Calculate Gradient.
- gsl_linalg_QR_decomp(myH,tau); // Calculate next beta.
- gsl_linalg_QR_solve(myH,tau,myG,stBeta);
- gsl_vector_sub(beta,stBeta);
-
- // Monitor convergence.
- maxchange=0;
- for(int i=0;i<npar; i++)
- if(maxchange<fabs(stBeta->data[i]))
- maxchange=fabs(stBeta->data[i]);
-
-#ifdef _RPR_DEBUG_
- mLogLik = wgsl_cat_optim_f(beta,&p);
-#endif
-
- if(maxchange<1E-4)
- break;
- }
-
- // Final fit.
- mLogLik = wgsl_cat_optim_f(beta,&p);
-
- gsl_vector_free (tau);
- gsl_vector_free (stBeta);
- gsl_vector_free (myG);
- gsl_matrix_free (myH);
-
- return 0;
-}
-
-/***************/
-/* Continuous */
-/***************/
-
-// I need to bundle all the data that goes to the function to optimze
-// together.
-typedef struct{
- gsl_matrix *Xc; // continuous covariates; Matrix Nobs x Kc
- gsl_vector *y;
- double lambdaL1;
- double lambdaL2;
-}fix_parm_cont_T;
-
-double fLogit_cont(gsl_vector *beta, gsl_matrix *Xc, gsl_vector *y,
- double lambdaL1, double lambdaL2) {
- int n = y->size;
- int npar = beta->size;
- double total = 0;
- double aux = 0;
-
- // omp_set_num_threads(ompthr); /\* Changed loop start at 1 instead
- // of 0 to avoid regularization of beta_0*\/ /\*#pragma omp parallel
- // for reduction (+:total)*\/
- for(int i = 1; i < npar; ++i)
- total += beta->data[i]*beta->data[i];
- total = (-total*lambdaL2/2);
-
- // /\*#pragma omp parallel for reduction (+:aux)*\/
- for(int i = 1; i < npar; ++i)
- aux += (beta->data[i]>0 ? beta->data[i] : -beta->data[i]);
- total = total-aux*lambdaL1;
-
- // #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y)
- // #reduction (+:total)
- for(int i = 0; i < n; ++i) {
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < (Xc->size2); ++k)
- Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
- total += y->data[i]*Xbetai-gsl_sf_log_1plusx(gsl_sf_exp(Xbetai));
- }
- return -total;
-}
-
-void logistic_cont_pred(gsl_vector *beta, // Vector of parameters
- // length = 1 + Sum_k(C_k-1).
- gsl_matrix *Xc, // Continuous covariates matrix,
- // Nobs x Kc (NULL if not used).
- ,gsl_vector *yhat) { // Vector of prob. predicted by
- // the logistic.
- for(int i = 0; i < Xc->size1; ++i) {
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < (Xc->size2); ++k)
- Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
- yhat->data[i]=1/(1 + gsl_sf_exp(-Xbetai));
- }
-}
-
-// The gradient of f, df = (df/dx, df/dy).
-void wgsl_cont_optim_df (const gsl_vector *beta, void *params,
- gsl_vector *out) {
- fix_parm_cont_T *p = (fix_parm_cont_T *)params;
- int n = p->y->size;
- int Kc = p->Xc->size2;
- int npar = beta->size;
-
- // Intitialize gradient out necessary?
- for(int i = 0; i < npar; ++i)
- out->data[i]= 0;
-
- // Changed loop start at 1 instead of 0 to avoid regularization of beta 0.
- for(int i = 1; i < npar; ++i)
- out->data[i]= p->lambdaL2*beta->data[i];
- for(int i = 1; i < npar; ++i)
- out->data[i]+= p->lambdaL1*((beta->data[i]>0)-(beta->data[i]<0));
-
- for(int i = 0; i < n; ++i) {
- double pn=0;
- double Xbetai=beta->data[0];
- int iParm=1;
- for(int k = 0; k < Kc; ++k)
- Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm++];
-
- pn= -( p->y->data[i] - 1/(1 + gsl_sf_exp(-Xbetai)) );
-
- out->data[0]+= pn;
- iParm=1;
-
- // Adding the continuous.
- for(int k = 0; k < Kc; ++k) {
- out->data[iParm++] += gsl_matrix_get(p->Xc,i,k)*pn;
- }
- }
-}
-
-// The Hessian of f.
-void wgsl_cont_optim_hessian (const gsl_vector *beta, void *params,
- gsl_matrix *out) {
- fix_parm_cont_T *p = (fix_parm_cont_T *)params;
- int n = p->y->size;
- int Kc = p->Xc->size2;
- int npar = beta->size;
- gsl_vector *gn = gsl_vector_alloc(npar); // gn.
-
- // Intitialize Hessian out necessary ???
-
- gsl_matrix_set_zero(out);
-
- // Changed loop start at 1 instead of 0 to avoid regularization of
- // beta 0.
- for(int i = 1; i < npar; ++i)
- gsl_matrix_set(out,i,i,(p->lambdaL2)); // Double-check this.
-
- // L1 penalty not working yet, as not differentiable, I may need to
- // do coordinate descent (as in glm_net).
- for(int i = 0; i < n; ++i) {
- double pn=0;
- double aux=0;
- double Xbetai=beta->data[0];
- int iParm1=1;
- for(int k = 0; k < Kc; ++k)
- Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm1++];
-
- pn= 1/(1 + gsl_sf_exp(-Xbetai));
-
- // Add a protection for pn very close to 0 or 1?
- aux=pn*(1-pn);
-
- // Calculate sub-gradient vector gn.
- gsl_vector_set_zero(gn);
- gn->data[0]= 1;
- iParm1=1;
- for(int k = 0; k < Kc; ++k) {
- gn->data[iParm1++] = gsl_matrix_get(p->Xc,i,k);
- }
-
- for(int k1=0;k1<npar; ++k1)
- if(gn->data[k1]!=0)
- for(int k2=0;k2<npar; ++k2)
- if(gn->data[k2]!=0)
- *gsl_matrix_ptr(out,k1,k2) += (aux * gn->data[k1] * gn->data[k2]);
- }
- gsl_vector_free(gn);
-}
-
-double wgsl_cont_optim_f(gsl_vector *v, void *params) {
- double mLogLik=0;
- fix_parm_cont_T *p = (fix_parm_cont_T *)params;
- mLogLik = fLogit_cont(v,p->Xc,p->y,p->lambdaL1,p->lambdaL2);
- return mLogLik;
-}
-
-// Compute both f and df together.
-void wgsl_cont_optim_fdf (gsl_vector *x, void *params,
- double *f, gsl_vector *df) {
- *f = wgsl_cont_optim_f(x, params);
- wgsl_cont_optim_df(x, params, df);
-}
-
-int logistic_cont_fit (gsl_vector *beta,
- gsl_matrix *Xc, // Continuous covariates matrix,
- // Nobs x Kc (NULL if not used).
- gsl_vector *y,
- double lambdaL1,
- double lambdaL2) {
-
- double mLogLik=0;
- fix_parm_cont_T p;
- int npar = beta->size;
- int iter=0;
- double maxchange=0;
-
- // Initializing fix parameters.
- p.Xc=Xc;
- p.y=y;
- p.lambdaL1=lambdaL1;
- p.lambdaL2=lambdaL2;
-
- // Initial fit.
- mLogLik = wgsl_cont_optim_f(beta,&p);
-
- gsl_matrix *myH = gsl_matrix_alloc(npar,npar); // Hessian matrix.
- gsl_vector *stBeta = gsl_vector_alloc(npar); // Direction to move.
-
- gsl_vector *myG = gsl_vector_alloc(npar); // Gradient.
- gsl_vector *tau = gsl_vector_alloc(npar); // tau for QR.
-
- for(iter=0;iter<100;iter++){
- wgsl_cont_optim_hessian(beta,&p,myH); // Calculate Hessian.
- wgsl_cont_optim_df(beta,&p,myG); // Calculate Gradient.
- gsl_linalg_QR_decomp(myH,tau); // Calculate next beta.
- gsl_linalg_QR_solve(myH,tau,myG,stBeta);
- gsl_vector_sub(beta,stBeta);
-
- // Monitor convergence.
- maxchange=0;
- for(int i=0;i<npar; i++)
- if(maxchange<fabs(stBeta->data[i]))
- maxchange=fabs(stBeta->data[i]);
-
-#ifdef _RPR_DEBUG_
- mLogLik = wgsl_cont_optim_f(beta,&p);
-#endif
-
- if(maxchange<1E-4)
- break;
- }
-
- // Final fit.
- mLogLik = wgsl_cont_optim_f(beta,&p);
-
- gsl_vector_free (tau);
- gsl_vector_free (stBeta);
- gsl_vector_free (myG);
- gsl_matrix_free (myH);
-
- return 0;
-}
-
+#include <stdio.h>
+#include <math.h>
+#include <gsl/gsl_matrix.h>
+#include <gsl/gsl_rng.h>
+#include <gsl/gsl_multimin.h>
+#include <gsl/gsl_sf.h>
+#include <gsl/gsl_linalg.h>
+#include "logistic.h"
+
+// I need to bundle all the data that goes to the function to optimze
+// together.
+typedef struct{
+ gsl_matrix_int *X;
+ gsl_vector_int *nlev;
+ gsl_vector *y;
+ gsl_matrix *Xc; // Continuous covariates matrix Nobs x Kc (NULL if not used).
+ double lambdaL1;
+ double lambdaL2;
+} fix_parm_mixed_T;
+
+double fLogit_mixed(gsl_vector *beta,
+ gsl_matrix_int *X,
+ gsl_vector_int *nlev,
+ gsl_matrix *Xc,
+ gsl_vector *y,
+ double lambdaL1,
+ double lambdaL2) {
+ int n = y->size;
+ int npar = beta->size;
+ double total = 0;
+ double aux = 0;
+
+ // Changed loop start at 1 instead of 0 to avoid regularization of
+ // beta_0*\/
+ // #pragma omp parallel for reduction (+:total)
+ for(int i = 1; i < npar; ++i)
+ total += beta->data[i]*beta->data[i];
+ total = (-total*lambdaL2/2);
+ // #pragma omp parallel for reduction (+:aux)
+ for(int i = 1; i < npar; ++i)
+ aux += (beta->data[i]>0 ? beta->data[i] : -beta->data[i]);
+ total = total-aux*lambdaL1;
+ // #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y)
+ // #reduction (+:total)
+ for(int i = 0; i < n; ++i) {
+ double Xbetai=beta->data[0];
+ int iParm=1;
+ for(int k = 0; k < X->size2; ++k) {
+ if(gsl_matrix_int_get(X,i,k)>0)
+ Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
+ iParm+=nlev->data[k]-1;
+ }
+ for(int k = 0; k < (Xc->size2); ++k)
+ Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
+ total += y->data[i]*Xbetai-gsl_sf_log_1plusx(gsl_sf_exp(Xbetai));
+ }
+ return -total;
+}
+
+void logistic_mixed_pred(gsl_vector *beta, // Vector of parameters
+ // length = 1 + Sum_k(C_k -1)
+ gsl_matrix_int *X, // Matrix Nobs x K
+ gsl_vector_int *nlev, // Vector with number categories
+ gsl_matrix *Xc, // Continuous covariates matrix:
+ // obs x Kc (NULL if not used).
+ gsl_vector *yhat){ // Vector of prob. predicted by
+ // the logistic
+ for(int i = 0; i < X->size1; ++i) {
+ double Xbetai=beta->data[0];
+ int iParm=1;
+ for(int k = 0; k < X->size2; ++k) {
+ if(gsl_matrix_int_get(X,i,k)>0)
+ Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
+ iParm+=nlev->data[k]-1;
+ }
+ // Adding the continuous.
+ for(int k = 0; k < (Xc->size2); ++k)
+ Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
+ yhat->data[i]=1/(1 + gsl_sf_exp(-Xbetai));
+ }
+}
+
+
+// The gradient of f, df = (df/dx, df/dy).
+void wgsl_mixed_optim_df (const gsl_vector *beta, void *params,
+ gsl_vector *out) {
+ fix_parm_mixed_T *p = (fix_parm_mixed_T *)params;
+ int n = p->y->size;
+ int K = p->X->size2;
+ int Kc = p->Xc->size2;
+ int npar = beta->size;
+
+ // Intitialize gradient out necessary?
+ for(int i = 0; i < npar; ++i)
+ out->data[i]= 0;
+
+ // Changed loop start at 1 instead of 0 to avoid regularization of beta 0.
+ for(int i = 1; i < npar; ++i)
+ out->data[i]= p->lambdaL2*beta->data[i];
+ for(int i = 1; i < npar; ++i)
+ out->data[i]+= p->lambdaL1*((beta->data[i]>0)-(beta->data[i]<0));
+
+ for(int i = 0; i < n; ++i) {
+ double pn=0;
+ double Xbetai=beta->data[0];
+ int iParm=1;
+ for(int k = 0; k < K; ++k) {
+ if(gsl_matrix_int_get(p->X,i,k)>0)
+ Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm];
+ iParm+=p->nlev->data[k]-1;
+ }
+
+ // Adding the continuous.
+ for(int k = 0; k < Kc; ++k)
+ Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm++];
+
+ pn= -( p->y->data[i] - 1/(1 + gsl_sf_exp(-Xbetai)) );
+
+ out->data[0]+= pn;
+ iParm=1;
+ for(int k = 0; k < K; ++k) {
+ if(gsl_matrix_int_get(p->X,i,k)>0)
+ out->data[gsl_matrix_int_get(p->X,i,k)-1+iParm]+=pn;
+ iParm+=p->nlev->data[k]-1;
+ }
+
+ // Adding the continuous.
+ for(int k = 0; k < Kc; ++k) {
+ out->data[iParm++] += gsl_matrix_get(p->Xc,i,k)*pn;
+ }
+ }
+
+}
+
+// The Hessian of f.
+void wgsl_mixed_optim_hessian (const gsl_vector *beta, void *params,
+ gsl_matrix *out) {
+ fix_parm_mixed_T *p = (fix_parm_mixed_T *)params;
+ int n = p->y->size;
+ int K = p->X->size2;
+ int Kc = p->Xc->size2;
+ int npar = beta->size;
+ gsl_vector *gn = gsl_vector_alloc(npar); // gn
+
+ // Intitialize Hessian out necessary ???
+ gsl_matrix_set_zero(out);
+
+ /* Changed loop start at 1 instead of 0 to avoid regularization of beta 0*/
+ for(int i = 1; i < npar; ++i)
+ gsl_matrix_set(out,i,i,(p->lambdaL2)); // Double-check this.
+
+ // L1 penalty not working yet, as not differentiable, I may need to
+ // do coordinate descent (as in glm_net)
+ for(int i = 0; i < n; ++i) {
+ double pn=0;
+ double aux=0;
+ double Xbetai=beta->data[0];
+ int iParm1=1;
+ for(int k = 0; k < K; ++k) {
+ if(gsl_matrix_int_get(p->X,i,k)>0)
+ Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm1];
+ iParm1+=p->nlev->data[k]-1; //-1?
+ }
+
+ // Adding the continuous.
+ for(int k = 0; k < Kc; ++k)
+ Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm1++];
+
+ pn= 1/(1 + gsl_sf_exp(-Xbetai));
+
+ // Add a protection for pn very close to 0 or 1?
+ aux=pn*(1-pn);
+
+ // Calculate sub-gradient vector gn.
+ gsl_vector_set_zero(gn);
+ gn->data[0]= 1;
+ iParm1=1;
+ for(int k = 0; k < K; ++k) {
+ if(gsl_matrix_int_get(p->X,i,k)>0)
+ gn->data[gsl_matrix_int_get(p->X,i,k)-1+iParm1]=1;
+ iParm1+=p->nlev->data[k]-1;
+ }
+
+ // Adding the continuous.
+ for(int k = 0; k < Kc; ++k) {
+ gn->data[iParm1++] = gsl_matrix_get(p->Xc,i,k);
+ }
+
+ for(int k1=0;k1<npar; ++k1)
+ if(gn->data[k1]!=0)
+ for(int k2=0;k2<npar; ++k2)
+ if(gn->data[k2]!=0)
+ *gsl_matrix_ptr(out,k1,k2) += (aux * gn->data[k1] * gn->data[k2]);
+ }
+ gsl_vector_free(gn);
+}
+
+double wgsl_mixed_optim_f(gsl_vector *v, void *params) {
+ double mLogLik=0;
+ fix_parm_mixed_T *p = (fix_parm_mixed_T *)params;
+ mLogLik = fLogit_mixed(v,p->X,p->nlev,p->Xc,p->y,p->lambdaL1,p->lambdaL2);
+ return mLogLik;
+}
+
+// Compute both f and df together.
+void
+wgsl_mixed_optim_fdf (gsl_vector *x, void *params, double *f, gsl_vector *df) {
+ *f = wgsl_mixed_optim_f(x, params);
+ wgsl_mixed_optim_df(x, params, df);
+}
+
+// Xc is the matrix of continuous covariates, Nobs x Kc (NULL if not used).
+int logistic_mixed_fit(gsl_vector *beta, gsl_matrix_int *X,
+ gsl_vector_int *nlev, gsl_matrix *Xc,
+ gsl_vector *y, double lambdaL1, double lambdaL2) {
+ double mLogLik=0;
+ fix_parm_mixed_T p;
+ int npar = beta->size;
+ int iter=0;
+ double maxchange=0;
+
+ // Intializing fix parameters.
+ p.X=X;
+ p.Xc=Xc;
+ p.nlev=nlev;
+ p.y=y;
+ p.lambdaL1=lambdaL1;
+ p.lambdaL2=lambdaL2;
+
+ // Initial fit.
+ mLogLik = wgsl_mixed_optim_f(beta,&p);
+
+ gsl_matrix *myH = gsl_matrix_alloc(npar,npar); // Hessian matrix.
+ gsl_vector *stBeta = gsl_vector_alloc(npar); // Direction to move.
+
+ gsl_vector *myG = gsl_vector_alloc(npar); // Gradient.
+ gsl_vector *tau = gsl_vector_alloc(npar); // tau for QR.
+
+ for(iter=0;iter<100;iter++){
+ wgsl_mixed_optim_hessian(beta,&p,myH); // Calculate Hessian.
+ wgsl_mixed_optim_df(beta,&p,myG); // Calculate Gradient.
+ gsl_linalg_QR_decomp(myH,tau); // Calculate next beta.
+ gsl_linalg_QR_solve(myH,tau,myG,stBeta);
+ gsl_vector_sub(beta,stBeta);
+
+ // Monitor convergence.
+ maxchange=0;
+ for(int i=0;i<npar; i++)
+ if(maxchange<fabs(stBeta->data[i]))
+ maxchange=fabs(stBeta->data[i]);
+
+ if(maxchange<1E-4)
+ break;
+ }
+
+ // Final fit.
+ mLogLik = wgsl_mixed_optim_f(beta,&p);
+
+ gsl_vector_free (tau);
+ gsl_vector_free (stBeta);
+ gsl_vector_free (myG);
+ gsl_matrix_free (myH);
+
+ return 0;
+}
+
+/***************/
+/* Categorical */
+/***************/
+
+// I need to bundle all the data that goes to the function to optimze
+// together.
+typedef struct {
+ gsl_matrix_int *X;
+ gsl_vector_int *nlev;
+ gsl_vector *y;
+ double lambdaL1;
+ double lambdaL2;
+} fix_parm_cat_T;
+
+double fLogit_cat (gsl_vector *beta, gsl_matrix_int *X, gsl_vector_int *nlev,
+ gsl_vector *y, double lambdaL1, double lambdaL2) {
+ int n = y->size;
+ int npar = beta->size;
+ double total = 0;
+ double aux = 0;
+
+ // omp_set_num_threads(ompthr); /\* Changed loop start at 1 instead
+ // of 0 to avoid regularization of beta 0*\/ /\*#pragma omp parallel
+ // for reduction (+:total)*\/
+ for(int i = 1; i < npar; ++i)
+ total += beta->data[i]*beta->data[i];
+ total = (-total*lambdaL2/2);
+
+ // /\*#pragma omp parallel for reduction (+:aux)*\/
+ for(int i = 1; i < npar; ++i)
+ aux += (beta->data[i]>0 ? beta->data[i] : -beta->data[i]);
+ total = total-aux*lambdaL1;
+
+ // #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y)
+ // #reduction (+:total)
+ for(int i = 0; i < n; ++i) {
+ double Xbetai=beta->data[0];
+ int iParm=1;
+ for(int k = 0; k < X->size2; ++k) {
+ if(gsl_matrix_int_get(X,i,k)>0)
+ Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
+ iParm+=nlev->data[k]-1;
+ }
+ total += y->data[i]*Xbetai-gsl_sf_log_1plusx(gsl_sf_exp(Xbetai));
+ }
+ return -total;
+}
+
+void logistic_cat_pred (gsl_vector *beta, // Vector of parameters
+ // length = 1 + Sum_k(C_k-1).
+ gsl_matrix_int *X, // Matrix Nobs x K
+ gsl_vector_int *nlev, // Vector with #categories
+ gsl_vector *yhat){ // Vector of prob. predicted by
+ // the logistic.
+ for(int i = 0; i < X->size1; ++i) {
+ double Xbetai=beta->data[0];
+ int iParm=1;
+ for(int k = 0; k < X->size2; ++k) {
+ if(gsl_matrix_int_get(X,i,k)>0)
+ Xbetai+=beta->data[gsl_matrix_int_get(X,i,k)-1+iParm];
+ iParm+=nlev->data[k]-1;
+ }
+ yhat->data[i]=1/(1 + gsl_sf_exp(-Xbetai));
+ }
+}
+
+// The gradient of f, df = (df/dx, df/dy).
+void wgsl_cat_optim_df (const gsl_vector *beta, void *params,
+ gsl_vector *out) {
+ fix_parm_cat_T *p = (fix_parm_cat_T *)params;
+ int n = p->y->size;
+ int K = p->X->size2;
+ int npar = beta->size;
+
+ // Intitialize gradient out necessary?
+ for(int i = 0; i < npar; ++i)
+ out->data[i]= 0;
+
+ // Changed loop start at 1 instead of 0 to avoid regularization of beta 0.
+ for(int i = 1; i < npar; ++i)
+ out->data[i]= p->lambdaL2*beta->data[i];
+ for(int i = 1; i < npar; ++i)
+ out->data[i]+= p->lambdaL1*((beta->data[i]>0)-(beta->data[i]<0));
+
+ for(int i = 0; i < n; ++i) {
+ double pn=0;
+ double Xbetai=beta->data[0];
+ int iParm=1;
+ for(int k = 0; k < K; ++k) {
+ if(gsl_matrix_int_get(p->X,i,k)>0)
+ Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm];
+ iParm+=p->nlev->data[k]-1;
+ }
+
+ pn= -( p->y->data[i] - 1/(1 + gsl_sf_exp(-Xbetai)) );
+
+ out->data[0]+= pn;
+ iParm=1;
+ for(int k = 0; k < K; ++k) {
+ if(gsl_matrix_int_get(p->X,i,k)>0)
+ out->data[gsl_matrix_int_get(p->X,i,k)-1+iParm]+=pn;
+ iParm+=p->nlev->data[k]-1;
+ }
+ }
+}
+
+// The Hessian of f.
+void wgsl_cat_optim_hessian (const gsl_vector *beta, void *params,
+ gsl_matrix *out) {
+ fix_parm_cat_T *p = (fix_parm_cat_T *)params;
+ int n = p->y->size;
+ int K = p->X->size2;
+ int npar = beta->size;
+
+ // Intitialize Hessian out necessary.
+ gsl_matrix_set_zero(out);
+
+ // Changed loop start at 1 instead of 0 to avoid regularization of beta.
+ for(int i = 1; i < npar; ++i)
+ gsl_matrix_set(out,i,i,(p->lambdaL2)); // Double-check this.
+
+ // L1 penalty not working yet, as not differentiable, I may need to
+ // do coordinate descent (as in glm_net).
+ for(int i = 0; i < n; ++i) {
+ double pn=0;
+ double aux=0;
+ double Xbetai=beta->data[0];
+ int iParm2=1;
+ int iParm1=1;
+ for(int k = 0; k < K; ++k) {
+ if(gsl_matrix_int_get(p->X,i,k)>0)
+ Xbetai+=beta->data[gsl_matrix_int_get(p->X,i,k)-1+iParm1];
+ iParm1+=p->nlev->data[k]-1; //-1?
+ }
+
+ pn= 1/(1 + gsl_sf_exp(-Xbetai));
+
+ // Add a protection for pn very close to 0 or 1?
+ aux=pn*(1-pn);
+ *gsl_matrix_ptr(out,0,0)+=aux;
+ iParm2=1;
+ for(int k2 = 0; k2 < K; ++k2) {
+ if(gsl_matrix_int_get(p->X,i,k2)>0)
+ *gsl_matrix_ptr(out,0,gsl_matrix_int_get(p->X,i,k2)-1+iParm2)+=aux;
+ iParm2+=p->nlev->data[k2]-1; //-1?
+ }
+ iParm1=1;
+ for(int k1 = 0; k1 < K; ++k1) {
+ if(gsl_matrix_int_get(p->X,i,k1)>0)
+ *gsl_matrix_ptr(out,gsl_matrix_int_get(p->X,i,k1)-1+iParm1,0)+=aux;
+ iParm2=1;
+ for(int k2 = 0; k2 < K; ++k2) {
+ if((gsl_matrix_int_get(p->X,i,k1)>0) &&
+ (gsl_matrix_int_get(p->X,i,k2)>0))
+ *gsl_matrix_ptr(out
+ ,gsl_matrix_int_get(p->X,i,k1)-1+iParm1
+ ,gsl_matrix_int_get(p->X,i,k2)-1+iParm2
+ )+=aux;
+ iParm2+=p->nlev->data[k2]-1; //-1?
+ }
+ iParm1+=p->nlev->data[k1]-1; //-1?
+ }
+ }
+}
+
+double wgsl_cat_optim_f(gsl_vector *v, void *params) {
+ double mLogLik=0;
+ fix_parm_cat_T *p = (fix_parm_cat_T *)params;
+ mLogLik = fLogit_cat(v,p->X,p->nlev,p->y,p->lambdaL1,p->lambdaL2);
+ return mLogLik;
+}
+
+// Compute both f and df together.
+void wgsl_cat_optim_fdf (gsl_vector *x, void *params, double *f,
+ gsl_vector *df) {
+ *f = wgsl_cat_optim_f(x, params);
+ wgsl_cat_optim_df(x, params, df);
+}
+
+int logistic_cat_fit(gsl_vector *beta,
+ gsl_matrix_int *X,
+ gsl_vector_int *nlev,
+ gsl_vector *y,
+ double lambdaL1,
+ double lambdaL2) {
+ double mLogLik=0;
+ fix_parm_cat_T p;
+ int npar = beta->size;
+ int iter=0;
+ double maxchange=0;
+
+ // Intializing fix parameters.
+ p.X=X;
+ p.nlev=nlev;
+ p.y=y;
+ p.lambdaL1=lambdaL1;
+ p.lambdaL2=lambdaL2;
+
+ // Initial fit.
+ mLogLik = wgsl_cat_optim_f(beta,&p);
+
+ gsl_matrix *myH = gsl_matrix_alloc(npar,npar); // Hessian matrix.
+ gsl_vector *stBeta = gsl_vector_alloc(npar); // Direction to move.
+
+ gsl_vector *myG = gsl_vector_alloc(npar); // Gradient.
+ gsl_vector *tau = gsl_vector_alloc(npar); // tau for QR.
+
+ for(iter=0;iter<100;iter++){
+ wgsl_cat_optim_hessian(beta,&p,myH); // Calculate Hessian.
+ wgsl_cat_optim_df(beta,&p,myG); // Calculate Gradient.
+ gsl_linalg_QR_decomp(myH,tau); // Calculate next beta.
+ gsl_linalg_QR_solve(myH,tau,myG,stBeta);
+ gsl_vector_sub(beta,stBeta);
+
+ // Monitor convergence.
+ maxchange=0;
+ for(int i=0;i<npar; i++)
+ if(maxchange<fabs(stBeta->data[i]))
+ maxchange=fabs(stBeta->data[i]);
+
+#ifdef _RPR_DEBUG_
+ mLogLik = wgsl_cat_optim_f(beta,&p);
+#endif
+
+ if(maxchange<1E-4)
+ break;
+ }
+
+ // Final fit.
+ mLogLik = wgsl_cat_optim_f(beta,&p);
+
+ gsl_vector_free (tau);
+ gsl_vector_free (stBeta);
+ gsl_vector_free (myG);
+ gsl_matrix_free (myH);
+
+ return 0;
+}
+
+/***************/
+/* Continuous */
+/***************/
+
+// I need to bundle all the data that goes to the function to optimze
+// together.
+typedef struct{
+ gsl_matrix *Xc; // continuous covariates; Matrix Nobs x Kc
+ gsl_vector *y;
+ double lambdaL1;
+ double lambdaL2;
+}fix_parm_cont_T;
+
+double fLogit_cont(gsl_vector *beta, gsl_matrix *Xc, gsl_vector *y,
+ double lambdaL1, double lambdaL2) {
+ int n = y->size;
+ int npar = beta->size;
+ double total = 0;
+ double aux = 0;
+
+ // omp_set_num_threads(ompthr); /\* Changed loop start at 1 instead
+ // of 0 to avoid regularization of beta_0*\/ /\*#pragma omp parallel
+ // for reduction (+:total)*\/
+ for(int i = 1; i < npar; ++i)
+ total += beta->data[i]*beta->data[i];
+ total = (-total*lambdaL2/2);
+
+ // /\*#pragma omp parallel for reduction (+:aux)*\/
+ for(int i = 1; i < npar; ++i)
+ aux += (beta->data[i]>0 ? beta->data[i] : -beta->data[i]);
+ total = total-aux*lambdaL1;
+
+ // #pragma omp parallel for schedule(static) shared(n,beta,X,nlev,y)
+ // #reduction (+:total)
+ for(int i = 0; i < n; ++i) {
+ double Xbetai=beta->data[0];
+ int iParm=1;
+ for(int k = 0; k < (Xc->size2); ++k)
+ Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
+ total += y->data[i]*Xbetai-gsl_sf_log_1plusx(gsl_sf_exp(Xbetai));
+ }
+ return -total;
+}
+
+void logistic_cont_pred(gsl_vector *beta, // Vector of parameters
+ // length = 1 + Sum_k(C_k-1).
+ gsl_matrix *Xc, // Continuous covariates matrix,
+ // Nobs x Kc (NULL if not used).
+ gsl_vector *yhat) { // Vector of prob. predicted by
+ // the logistic.
+ for(int i = 0; i < Xc->size1; ++i) {
+ double Xbetai=beta->data[0];
+ int iParm=1;
+ for(int k = 0; k < (Xc->size2); ++k)
+ Xbetai+= gsl_matrix_get(Xc,i,k)*beta->data[iParm++];
+ yhat->data[i]=1/(1 + gsl_sf_exp(-Xbetai));
+ }
+}
+
+// The gradient of f, df = (df/dx, df/dy).
+void wgsl_cont_optim_df (const gsl_vector *beta, void *params,
+ gsl_vector *out) {
+ fix_parm_cont_T *p = (fix_parm_cont_T *)params;
+ int n = p->y->size;
+ int Kc = p->Xc->size2;
+ int npar = beta->size;
+
+ // Intitialize gradient out necessary?
+ for(int i = 0; i < npar; ++i)
+ out->data[i]= 0;
+
+ // Changed loop start at 1 instead of 0 to avoid regularization of beta 0.
+ for(int i = 1; i < npar; ++i)
+ out->data[i]= p->lambdaL2*beta->data[i];
+ for(int i = 1; i < npar; ++i)
+ out->data[i]+= p->lambdaL1*((beta->data[i]>0)-(beta->data[i]<0));
+
+ for(int i = 0; i < n; ++i) {
+ double pn=0;
+ double Xbetai=beta->data[0];
+ int iParm=1;
+ for(int k = 0; k < Kc; ++k)
+ Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm++];
+
+ pn= -( p->y->data[i] - 1/(1 + gsl_sf_exp(-Xbetai)) );
+
+ out->data[0]+= pn;
+ iParm=1;
+
+ // Adding the continuous.
+ for(int k = 0; k < Kc; ++k) {
+ out->data[iParm++] += gsl_matrix_get(p->Xc,i,k)*pn;
+ }
+ }
+}
+
+// The Hessian of f.
+void wgsl_cont_optim_hessian (const gsl_vector *beta, void *params,
+ gsl_matrix *out) {
+ fix_parm_cont_T *p = (fix_parm_cont_T *)params;
+ int n = p->y->size;
+ int Kc = p->Xc->size2;
+ int npar = beta->size;
+ gsl_vector *gn = gsl_vector_alloc(npar); // gn.
+
+ // Intitialize Hessian out necessary ???
+
+ gsl_matrix_set_zero(out);
+
+ // Changed loop start at 1 instead of 0 to avoid regularization of
+ // beta 0.
+ for(int i = 1; i < npar; ++i)
+ gsl_matrix_set(out,i,i,(p->lambdaL2)); // Double-check this.
+
+ // L1 penalty not working yet, as not differentiable, I may need to
+ // do coordinate descent (as in glm_net).
+ for(int i = 0; i < n; ++i) {
+ double pn=0;
+ double aux=0;
+ double Xbetai=beta->data[0];
+ int iParm1=1;
+ for(int k = 0; k < Kc; ++k)
+ Xbetai+= gsl_matrix_get(p->Xc,i,k)*beta->data[iParm1++];
+
+ pn= 1/(1 + gsl_sf_exp(-Xbetai));
+
+ // Add a protection for pn very close to 0 or 1?
+ aux=pn*(1-pn);
+
+ // Calculate sub-gradient vector gn.
+ gsl_vector_set_zero(gn);
+ gn->data[0]= 1;
+ iParm1=1;
+ for(int k = 0; k < Kc; ++k) {
+ gn->data[iParm1++] = gsl_matrix_get(p->Xc,i,k);
+ }
+
+ for(int k1=0;k1<npar; ++k1)
+ if(gn->data[k1]!=0)
+ for(int k2=0;k2<npar; ++k2)
+ if(gn->data[k2]!=0)
+ *gsl_matrix_ptr(out,k1,k2) += (aux * gn->data[k1] * gn->data[k2]);
+ }
+ gsl_vector_free(gn);
+}
+
+double wgsl_cont_optim_f(gsl_vector *v, void *params) {
+ double mLogLik=0;
+ fix_parm_cont_T *p = (fix_parm_cont_T *)params;
+ mLogLik = fLogit_cont(v,p->Xc,p->y,p->lambdaL1,p->lambdaL2);
+ return mLogLik;
+}
+
+// Compute both f and df together.
+void wgsl_cont_optim_fdf (gsl_vector *x, void *params,
+ double *f, gsl_vector *df) {
+ *f = wgsl_cont_optim_f(x, params);
+ wgsl_cont_optim_df(x, params, df);
+}
+
+int logistic_cont_fit (gsl_vector *beta,
+ gsl_matrix *Xc, // Continuous covariates matrix,
+ // Nobs x Kc (NULL if not used).
+ gsl_vector *y,
+ double lambdaL1,
+ double lambdaL2) {
+
+ double mLogLik=0;
+ fix_parm_cont_T p;
+ int npar = beta->size;
+ int iter=0;
+ double maxchange=0;
+
+ // Initializing fix parameters.
+ p.Xc=Xc;
+ p.y=y;
+ p.lambdaL1=lambdaL1;
+ p.lambdaL2=lambdaL2;
+
+ // Initial fit.
+ mLogLik = wgsl_cont_optim_f(beta,&p);
+
+ gsl_matrix *myH = gsl_matrix_alloc(npar,npar); // Hessian matrix.
+ gsl_vector *stBeta = gsl_vector_alloc(npar); // Direction to move.
+
+ gsl_vector *myG = gsl_vector_alloc(npar); // Gradient.
+ gsl_vector *tau = gsl_vector_alloc(npar); // tau for QR.
+
+ for(iter=0;iter<100;iter++){
+ wgsl_cont_optim_hessian(beta,&p,myH); // Calculate Hessian.
+ wgsl_cont_optim_df(beta,&p,myG); // Calculate Gradient.
+ gsl_linalg_QR_decomp(myH,tau); // Calculate next beta.
+ gsl_linalg_QR_solve(myH,tau,myG,stBeta);
+ gsl_vector_sub(beta,stBeta);
+
+ // Monitor convergence.
+ maxchange=0;
+ for(int i=0;i<npar; i++)
+ if(maxchange<fabs(stBeta->data[i]))
+ maxchange=fabs(stBeta->data[i]);
+
+#ifdef _RPR_DEBUG_
+ mLogLik = wgsl_cont_optim_f(beta,&p);
+#endif
+
+ if(maxchange<1E-4)
+ break;
+ }
+
+ // Final fit.
+ mLogLik = wgsl_cont_optim_f(beta,&p);
+
+ gsl_vector_free (tau);
+ gsl_vector_free (stBeta);
+ gsl_vector_free (myG);
+ gsl_matrix_free (myH);
+
+ return 0;
+}