aboutsummaryrefslogtreecommitdiff
path: root/uploader/phenotypes
diff options
context:
space:
mode:
Diffstat (limited to 'uploader/phenotypes')
-rw-r--r--uploader/phenotypes/misc.py26
-rw-r--r--uploader/phenotypes/models.py164
-rw-r--r--uploader/phenotypes/views.py487
3 files changed, 607 insertions, 70 deletions
diff --git a/uploader/phenotypes/misc.py b/uploader/phenotypes/misc.py
new file mode 100644
index 0000000..cbe3b7f
--- /dev/null
+++ b/uploader/phenotypes/misc.py
@@ -0,0 +1,26 @@
+"""Miscellaneous functions handling phenotypes and phenotypes data."""
+import logging
+
+logger = logging.getLogger(__name__)
+
+
+def phenotypes_data_differences(
+ filedata: tuple[dict, ...], dbdata: tuple[dict, ...]
+) -> tuple[dict, ...]:
+ """Compute differences between file data and db data"""
+ diff = tuple()
+ for filerow, dbrow in zip(
+ sorted(filedata, key=lambda item: (item["phenotype_id"], item["xref_id"])),
+ sorted(dbdata, key=lambda item: (item["PhenotypeId"], item["xref_id"]))):
+ for samplename, value in filerow["data"].items():
+ if value != dbrow["data"].get(samplename, {}).get("value"):
+ diff = diff + ({
+ "PhenotypeId": filerow["phenotype_id"],
+ "xref_id": filerow["xref_id"],
+ "DataId": dbrow["DataId"],
+ "StrainId": dbrow["data"].get(samplename, {}).get("StrainId"),
+ "StrainName": samplename,
+ "value": value
+ },)
+
+ return diff
diff --git a/uploader/phenotypes/models.py b/uploader/phenotypes/models.py
index c9afc22..c2aeebf 100644
--- a/uploader/phenotypes/models.py
+++ b/uploader/phenotypes/models.py
@@ -1,14 +1,30 @@
"""Database and utility functions for phenotypes."""
-from typing import Optional
+import logging
+import tempfile
+from pathlib import Path
from functools import reduce
from datetime import datetime
+from typing import Optional, Iterable
import MySQLdb as mdb
from MySQLdb.cursors import Cursor, DictCursor
-from flask import current_app as app
+from functional_tools import take
from gn_libs.mysqldb import debug_query
+logger = logging.getLogger(__name__)
+
+
+__PHENO_DATA_TABLES__ = {
+ "PublishData": {
+ "table": "PublishData", "valueCol": "value", "DataIdCol": "Id"},
+ "PublishSE": {
+ "table": "PublishSE", "valueCol": "error", "DataIdCol": "DataId"},
+ "NStrain": {
+ "table": "NStrain", "valueCol": "count", "DataIdCol": "DataId"}
+}
+
+
def datasets_by_population(
conn: mdb.Connection,
species_id: int,
@@ -32,10 +48,10 @@ def dataset_by_id(conn: mdb.Connection,
"""Fetch dataset details by identifier"""
with conn.cursor(cursorclass=DictCursor) as cursor:
cursor.execute(
- "SELECT s.SpeciesId, pf.* FROM Species AS s "
- "INNER JOIN InbredSet AS iset ON s.Id=iset.SpeciesId "
- "INNER JOIN PublishFreeze AS pf ON iset.Id=pf.InbredSetId "
- "WHERE s.Id=%s AND iset.Id=%s AND pf.Id=%s",
+ "SELECT Species.SpeciesId, PublishFreeze.* FROM Species "
+ "INNER JOIN InbredSet ON Species.Id=InbredSet.SpeciesId "
+ "INNER JOIN PublishFreeze ON InbredSet.Id=PublishFreeze.InbredSetId "
+ "WHERE Species.Id=%s AND InbredSet.Id=%s AND PublishFreeze.Id=%s",
(species_id, population_id, dataset_id))
return dict(cursor.fetchone())
@@ -75,7 +91,7 @@ def dataset_phenotypes(conn: mdb.Connection,
limit: Optional[int] = None) -> tuple[dict, ...]:
"""Fetch the actual phenotypes."""
_query = (
- "SELECT pheno.*, pxr.Id, ist.InbredSetCode FROM Phenotype AS pheno "
+ "SELECT pheno.*, pxr.Id AS xref_id, pxr.InbredSetId, ist.InbredSetCode FROM Phenotype AS pheno "
"INNER JOIN PublishXRef AS pxr ON pheno.Id=pxr.PhenotypeId "
"INNER JOIN PublishFreeze AS pf ON pxr.InbredSetId=pf.InbredSetId "
"INNER JOIN InbredSet AS ist ON pf.InbredSetId=ist.Id "
@@ -83,7 +99,7 @@ def dataset_phenotypes(conn: mdb.Connection,
f" LIMIT {limit} OFFSET {offset}" if bool(limit) else "")
with conn.cursor(cursorclass=DictCursor) as cursor:
cursor.execute(_query, (population_id, dataset_id))
- debug_query(cursor, app.logger)
+ debug_query(cursor, logger)
return tuple(dict(row) for row in cursor.fetchall())
@@ -94,7 +110,7 @@ def __phenotype_se__(cursor: Cursor, xref_id, dataids_and_strainids):
cursor.execute("SELECT * FROM PublishSE WHERE (DataId, StrainId) IN "
f"({paramstr})",
flat)
- debug_query(cursor, app.logger)
+ debug_query(cursor, logger)
_se = {
(row["DataId"], row["StrainId"]): {
"DataId": row["DataId"],
@@ -107,7 +123,7 @@ def __phenotype_se__(cursor: Cursor, xref_id, dataids_and_strainids):
cursor.execute("SELECT * FROM NStrain WHERE (DataId, StrainId) IN "
f"({paramstr})",
flat)
- debug_query(cursor, app.logger)
+ debug_query(cursor, logger)
_n = {
(row["DataId"], row["StrainId"]): {
"DataId": row["DataId"],
@@ -137,6 +153,7 @@ def __organise_by_phenotype__(pheno, row):
"Pre_publication_abbreviation": row["Pre_publication_abbreviation"],
"Post_publication_abbreviation": row["Post_publication_abbreviation"],
"xref_id": row["pxr.Id"],
+ "DataId": row["DataId"],
"data": {
**(_pheno["data"] if bool(_pheno) else {}),
(row["DataId"], row["StrainId"]): {
@@ -225,7 +242,7 @@ def phenotypes_data(conn: mdb.Connection,
f" LIMIT {limit} OFFSET {offset}" if bool(limit) else "")
with conn.cursor(cursorclass=DictCursor) as cursor:
cursor.execute(_query, (population_id, dataset_id))
- debug_query(cursor, app.logger)
+ debug_query(cursor, logger)
return tuple(dict(row) for row in cursor.fetchall())
@@ -252,5 +269,128 @@ def save_new_dataset(cursor: Cursor,
"%(created)s, %(public)s, %(population_id)s, %(confidentiality)s, "
"%(users)s)",
params)
- debug_query(cursor, app.logger)
+ debug_query(cursor, logger)
return {**params, "Id": cursor.lastrowid}
+
+
+def phenotypes_data_by_ids(
+ conn: mdb.Connection,
+ inbred_pheno_xref: dict[str, int]
+) -> tuple[dict, ...]:
+ """Fetch all phenotype data, filtered by the `inbred_pheno_xref` mapping."""
+ _paramstr = ",".join(["(%s, %s, %s)"] * len(inbred_pheno_xref))
+ _query = ("SELECT "
+ "pub.PubMed_ID, pheno.*, pxr.*, pd.*, str.*, iset.InbredSetCode "
+ "FROM Publication AS pub "
+ "RIGHT JOIN PublishXRef AS pxr0 ON pub.Id=pxr0.PublicationId "
+ "INNER JOIN Phenotype AS pheno ON pxr0.PhenotypeId=pheno.id "
+ "INNER JOIN PublishXRef AS pxr ON pheno.Id=pxr.PhenotypeId "
+ "INNER JOIN PublishData AS pd ON pxr.DataId=pd.Id "
+ "INNER JOIN Strain AS str ON pd.StrainId=str.Id "
+ "INNER JOIN StrainXRef AS sxr ON str.Id=sxr.StrainId "
+ "INNER JOIN PublishFreeze AS pf ON sxr.InbredSetId=pf.InbredSetId "
+ "INNER JOIN InbredSet AS iset ON pf.InbredSetId=iset.InbredSetId "
+ f"WHERE (pxr.InbredSetId, pheno.Id, pxr.Id) IN ({_paramstr}) "
+ "ORDER BY pheno.Id")
+ with conn.cursor(cursorclass=DictCursor) as cursor:
+ cursor.execute(_query, tuple(item for row in inbred_pheno_xref
+ for item in (row["population_id"],
+ row["phenoid"],
+ row["xref_id"])))
+ debug_query(cursor, logger)
+ return tuple(
+ reduce(__organise_by_phenotype__, cursor.fetchall(), {}).values())
+
+
+def create_new_phenotypes(conn: mdb.Connection,
+ phenotypes: Iterable[dict]) -> tuple[dict, ...]:
+ """Add entirely new phenotypes to the database."""
+ _phenos = tuple()
+ with conn.cursor(cursorclass=DictCursor) as cursor:
+ while True:
+ batch = take(phenotypes, 1000)
+ if len(batch) == 0:
+ break
+
+ cursor.executemany(
+ ("INSERT INTO "
+ "Phenotype(Pre_publication_description, Original_description, Units, Authorized_Users) "
+ "VALUES (%s, %s, %s, 'robwilliams')"),
+ tuple((row["id"], row["description"], row["units"])
+ for row in batch))
+ paramstr = ", ".join(["%s"] * len(batch))
+ cursor.execute(
+ "SELECT * FROM Phenotype WHERE Pre_publication_description IN "
+ f"({paramstr})",
+ tuple(item["id"] for item in batch))
+ _phenos = _phenos + tuple({
+ "phenotype_id": row["Id"],
+ "id": row["Pre_publication_description"],
+ "description": row["Original_description"],
+ "units": row["Units"]
+ } for row in cursor.fetchall())
+
+ return _phenos
+
+
+def save_phenotypes_data(
+ conn: mdb.Connection,
+ table: str,
+ data: Iterable[dict]
+) -> int:
+ """Save new phenotypes data into the database."""
+ _table_details = __PHENO_DATA_TABLES__[table]
+ with conn.cursor(cursorclass=DictCursor) as cursor:
+ _count = 0
+ while True:
+ batch = take(data, 100000)
+ if len(batch) == 0:
+ logger.warning("Got an empty batch. This needs investigation.")
+ break
+
+ logger.debug("Saving batch of %s items.", len(batch))
+ cursor.executemany(
+ (f"INSERT INTO {_table_details['table']}"
+ f"({_table_details['DataIdCol']}, StrainId, {_table_details['valueCol']}) "
+ "VALUES "
+ f"(%(data_id)s, %(sample_id)s, %(value)s) "),
+ tuple(batch))
+ debug_query(cursor, logger)
+ _count = _count + len(batch)
+
+
+ logger.debug("Saved a total of %s data rows", _count)
+ return _count
+
+
+def quick_save_phenotypes_data(
+ conn: mdb.Connection,
+ table: str,
+ dataitems: Iterable[dict],
+ tmpdir: Path
+) -> int:
+ """Save data items to the database, but using """
+ _table_details = __PHENO_DATA_TABLES__[table]
+ with (tempfile.NamedTemporaryFile(
+ prefix=f"{table}_data", mode="wt", dir=tmpdir) as tmpfile,
+ conn.cursor(cursorclass=DictCursor) as cursor):
+ _count = 0
+ logger.debug("Write data rows to text file.")
+ for row in dataitems:
+ tmpfile.write(
+ f'{row["data_id"]}\t{row["sample_id"]}\t{row["value"]}\n')
+ _count = _count + 1
+ tmpfile.flush()
+
+ logger.debug("Load text file into database (table: %s)",
+ _table_details["table"])
+ cursor.execute(
+ f"LOAD DATA LOCAL INFILE '{tmpfile.name}' "
+ f"INTO TABLE {_table_details['table']} "
+ "("
+ f"{_table_details['DataIdCol']}, "
+ "StrainId, "
+ f"{_table_details['valueCol']}"
+ ")")
+ debug_query(cursor, logger)
+ return _count
diff --git a/uploader/phenotypes/views.py b/uploader/phenotypes/views.py
index d283e47..bc15f2d 100644
--- a/uploader/phenotypes/views.py
+++ b/uploader/phenotypes/views.py
@@ -1,40 +1,61 @@
"""Views handling ('classical') phenotypes."""
import sys
+import csv
import uuid
import json
-import datetime
+import logging
+import tempfile
+from typing import Any
from pathlib import Path
from zipfile import ZipFile
from functools import wraps, reduce
from logging import INFO, ERROR, DEBUG, FATAL, CRITICAL, WARNING
+from urllib.parse import urljoin, urlparse, ParseResult, urlunparse, urlencode
+
+import datetime
+from datetime import timedelta
from redis import Redis
+from pymonad.either import Left
from requests.models import Response
from MySQLdb.cursors import DictCursor
+from werkzeug.utils import secure_filename
+
+from gn_libs import sqlite3
+from gn_libs import jobs as gnlibs_jobs
+from gn_libs.jobs.jobs import JobNotFound
from gn_libs.mysqldb import database_connection
+from gn_libs import monadic_requests as mrequests
+
+from authlib.jose import jwt
from flask import (flash,
request,
url_for,
jsonify,
redirect,
Blueprint,
+ send_file,
current_app as app)
# from r_qtl import r_qtl2 as rqtl2
from r_qtl import r_qtl2_qc as rqc
from r_qtl import exceptions as rqe
+
from uploader import jobs
+from uploader import session
from uploader.files import save_file#, fullpath
from uploader.ui import make_template_renderer
from uploader.oauth2.client import oauth2_post
from uploader.authorisation import require_login
+from uploader.oauth2 import jwks, client as oauth2client
+from uploader.route_utils import generic_select_population
+from uploader.datautils import safe_int, enumerate_sequence
from uploader.species.models import all_species, species_by_id
from uploader.monadic_requests import make_either_error_handler
+from uploader.publications.models import fetch_publication_by_id
from uploader.request_checks import with_species, with_population
-from uploader.datautils import safe_int, order_by_family, enumerate_sequence
-from uploader.population.models import (populations_by_species,
- population_by_species_and_id)
+from uploader.samples.models import samples_by_species_and_population
from uploader.input_validation import (encode_errors,
decode_errors,
is_valid_representative_name)
@@ -45,6 +66,7 @@ from .models import (dataset_by_id,
save_new_dataset,
dataset_phenotypes,
datasets_by_population,
+ phenotypes_data_by_ids,
phenotype_publication_data)
phenotypesbp = Blueprint("phenotypes", __name__)
@@ -60,10 +82,16 @@ def index():
with database_connection(app.config["SQL_URI"]) as conn:
if not bool(request.args.get("species_id")):
return render_template("phenotypes/index.html",
- species=order_by_family(all_species(conn)),
+ species=all_species(conn),
activelink="phenotypes")
- species = species_by_id(conn, request.args.get("species_id"))
+ species_id = request.args.get("species_id")
+ if species_id == "CREATE-SPECIES":
+ return redirect(url_for(
+ "species.create_species",
+ return_to="species.populations.phenotypes.select_population"))
+
+ species = species_by_id(conn, species_id)
if not bool(species):
flash("No such species!", "alert-danger")
return redirect(url_for("species.populations.phenotypes.index"))
@@ -77,27 +105,14 @@ def index():
@with_species(redirect_uri="species.populations.phenotypes.index")
def select_population(species: dict, **kwargs):# pylint: disable=[unused-argument]
"""Select the population for your phenotypes."""
- with database_connection(app.config["SQL_URI"]) as conn:
- if not bool(request.args.get("population_id")):
- return render_template("phenotypes/select-population.html",
- species=species,
- populations=order_by_family(
- populations_by_species(
- conn, species["SpeciesId"]),
- order_key="FamilyOrder"),
- activelink="phenotypes")
-
- population = population_by_species_and_id(
- conn, species["SpeciesId"], int(request.args["population_id"]))
- if not bool(population):
- flash("No such population found!", "alert-danger")
- return redirect(url_for(
- "species.populations.phenotypes.select_population",
- species_id=species["SpeciesId"]))
-
- return redirect(url_for("species.populations.phenotypes.list_datasets",
- species_id=species["SpeciesId"],
- population_id=population["Id"]))
+ return generic_select_population(
+ species,
+ "phenotypes/select-population.html",
+ request.args.get("population_id") or "",
+ "species.populations.phenotypes.select_population",
+ "species.populations.phenotypes.list_datasets",
+ "phenotypes",
+ "No such population found!")
@@ -195,12 +210,10 @@ def view_dataset(# pylint: disable=[unused-argument]
phenotype_count=phenotypes_count(
conn, population["Id"], dataset["Id"]),
phenotypes=enumerate_sequence(
- dataset_phenotypes(conn,
- population["Id"],
- dataset["Id"],
- offset=start_at,
- limit=count),
- start=start_at+1),
+ dataset_phenotypes(
+ conn,
+ population["Id"],
+ dataset["Id"])),
start_from=start_at,
count=count,
activelink="view-dataset")
@@ -229,6 +242,11 @@ def view_phenotype(# pylint: disable=[unused-argument]
population["Id"],
dataset["Id"],
xref_id)
+ def __non_empty__(value) -> bool:
+ if isinstance(value, str):
+ return value.strip() != ""
+ return bool(value)
+
return render_template(
"phenotypes/view-phenotype.html",
species=species,
@@ -236,14 +254,13 @@ def view_phenotype(# pylint: disable=[unused-argument]
dataset=dataset,
xref_id=xref_id,
phenotype=phenotype,
- has_se=all(bool(item.get("error")) for item in phenotype["data"]),
+ has_se=any(bool(item.get("error")) for item in phenotype["data"]),
publish_data={
key.replace("_", " "): val
for key,val in
(phenotype_publication_data(conn, phenotype["Id"]) or {}).items()
if (key in ("PubMed_ID", "Authors", "Title", "Journal")
- and val is not None
- and val.strip() != "")
+ and __non_empty__(val))
},
privileges=(privileges
### For demo! Do not commit this part
@@ -361,6 +378,9 @@ def process_phenotypes_individual_files(error_uri):
("pheno", "phenotype-data"),
("phenose", "phenotype-se"),
("phenonum", "phenotype-n")):
+ cdata[f"{rqtlkey}_transposed"] = (
+ (form.get(f"{formkey}-transposed") or "off") == "on")
+
if form.get("resumable-upload", False):
# Chunked upload of large files was used
filedata = json.loads(form[formkey])
@@ -383,6 +403,7 @@ def process_phenotypes_individual_files(error_uri):
arcname=filepath.name)
cdata[rqtlkey] = cdata.get(rqtlkey, []) + [filepath.name]
+
zfile.writestr("control_data.json", data=json.dumps(cdata, indent=2))
return bundlepath
@@ -448,21 +469,18 @@ def add_phenotypes(species: dict, population: dict, dataset: dict, **kwargs):# p
# str(dataset["Id"]),
str(phenobundle),
"--loglevel",
- {
- INFO: "INFO",
- ERROR: "ERROR",
- DEBUG: "DEBUG",
- FATAL: "FATAL",
- CRITICAL: "CRITICAL",
- WARNING: "WARNING"
- }[app.logger.getEffectiveLevel()],
+ logging.getLevelName(
+ app.logger.getEffectiveLevel()
+ ).lower(),
"--redisexpiry",
str(_ttl_seconds)], "phenotype_qc", _ttl_seconds,
{"job-metadata": json.dumps({
"speciesid": species["SpeciesId"],
"populationid": population["Id"],
"datasetid": dataset["Id"],
- "bundle": str(phenobundle.absolute())})}),
+ "bundle": str(phenobundle.absolute()),
+ **({"publicationid": request.form["publication-id"]}
+ if request.form.get("publication-id") else {})})}),
_redisuri,
f"{app.config['UPLOAD_FOLDER']}/job_errors")
@@ -520,7 +538,7 @@ def job_status(
@phenotypesbp.route(
"<int:species_id>/populations/<int:population_id>/phenotypes/datasets"
- "/<int:dataset_id>/review-job/<uuid:job_id>",
+ "/<int:dataset_id>/job/<uuid:job_id>/review",
methods=["GET"])
@require_login
@with_dataset(
@@ -535,7 +553,8 @@ def review_job_data(
**kwargs
):# pylint: disable=[unused-argument]
"""Review data one more time before entering it into the database."""
- with Redis.from_url(app.config["REDIS_URL"], decode_responses=True) as rconn:
+ with (Redis.from_url(app.config["REDIS_URL"], decode_responses=True) as rconn,
+ database_connection(app.config["SQL_URI"]) as conn):
try:
job = jobs.job(rconn, jobs.jobsnamespace(), str(job_id))
except jobs.JobNotFound as _jnf:
@@ -548,11 +567,12 @@ def review_job_data(
filetype: (by_type.get(filetype, tuple())
+ ({"filename": item[0], **item[1]},))
}
- metadata = reduce(__metadata_by_type__,
- (jobs.job_files_metadata(
- rconn, jobs.jobsnamespace(), job['jobid'])
- if job else {}).items(),
- {})
+ metadata: dict[str, Any] = reduce(
+ __metadata_by_type__,
+ (jobs.job_files_metadata(
+ rconn, jobs.jobsnamespace(), job['jobid'])
+ if job else {}).items(),
+ {})
def __desc__(filetype):
match filetype:
@@ -582,6 +602,7 @@ def review_job_data(
filetype: __summarise__(filetype, meta)
for filetype,meta in metadata.items()
}
+ _job_metadata = json.loads(job["job-metadata"])
return render_template("phenotypes/review-job-data.html",
species=species,
population=population,
@@ -589,10 +610,128 @@ def review_job_data(
job_id=job_id,
job=job,
summary=summary,
+ publication=(
+ fetch_publication_by_id(
+ conn, int(_job_metadata["publicationid"]))
+ if _job_metadata.get("publicationid")
+ else None),
activelink="add-phenotypes")
+def load_phenotypes_success_handler(job):
+ """Handle loading new phenotypes into the database successfully."""
+ return redirect(url_for(
+ "species.populations.phenotypes.load_data_success",
+ species_id=job["metadata"]["species_id"],
+ population_id=job["metadata"]["population_id"],
+ dataset_id=job["metadata"]["dataset_id"],
+ job_id=job["job_id"]))
+
+
+@phenotypesbp.route(
+ "<int:species_id>/populations/<int:population_id>/phenotypes/datasets"
+ "/<int:dataset_id>/load-data-to-database",
+ methods=["POST"])
+@require_login
+@with_dataset(
+ species_redirect_uri="species.populations.phenotypes.index",
+ population_redirect_uri="species.populations.phenotypes.select_population",
+ redirect_uri="species.populations.phenotypes.list_datasets")
+def load_data_to_database(
+ species: dict,
+ population: dict,
+ dataset: dict,
+ **kwargs
+):# pylint: disable=[unused-argument]
+ """Load the data from the given QC job into the database."""
+ jobs_db = app.config["ASYNCHRONOUS_JOBS_SQLITE_DB"]
+ with (Redis.from_url(app.config["REDIS_URL"], decode_responses=True) as rconn,
+ sqlite3.connection(jobs_db) as conn):
+ qc_job = jobs.job(rconn, jobs.jobsnamespace(), request.form["data-qc-job-id"])
+ _meta = json.loads(qc_job["job-metadata"])
+ load_job_id = uuid.uuid4()
+ _loglevel = logging.getLevelName(app.logger.getEffectiveLevel()).lower()
+ command = [
+ sys.executable,
+ "-u",
+ "-m",
+ "scripts.load_phenotypes_to_db",
+ app.config["SQL_URI"],
+ jobs_db,
+ str(load_job_id),
+ "--log-level",
+ _loglevel
+ ]
+
+ def __handle_error__(resp):
+ return render_template("http-error.html", *resp.json())
+
+ def __handle_success__(load_job):
+ app.logger.debug("The phenotypes loading job: %s", load_job)
+ return redirect(url_for(
+ "background-jobs.job_status", job_id=load_job["job_id"]))
+
+ issued = datetime.datetime.now()
+ jwtkey = jwks.newest_jwk_with_rotation(
+ jwks.jwks_directory(app, "UPLOADER_SECRETS"),
+ int(app.config["JWKS_ROTATION_AGE_DAYS"]))
+
+ return mrequests.post(
+ urljoin(oauth2client.authserver_uri(), "auth/token"),
+ json={
+ "grant_type": "urn:ietf:params:oauth:grant-type:jwt-bearer",
+ "scope": oauth2client.SCOPE,
+ "assertion": jwt.encode(
+ header={
+ "alg": "RS256",
+ "typ": "JWT",
+ "kid": jwtkey.as_dict()["kid"]
+ },
+ payload={
+ "iss": str(oauth2client.oauth2_clientid()),
+ "sub": str(session.user_details()["user_id"]),
+ "aud": urljoin(oauth2client.authserver_uri(),
+ "auth/token"),
+ # TODO: Update expiry time once fix is implemented in
+ # auth server.
+ "exp": (issued + timedelta(minutes=5)).timestamp(),
+ "nbf": int(issued.timestamp()),
+ "iat": int(issued.timestamp()),
+ "jti": str(uuid.uuid4())
+ },
+ key=jwtkey).decode("utf8"),
+ "client_id": oauth2client.oauth2_clientid()
+ }
+ ).then(
+ lambda token: gnlibs_jobs.initialise_job(
+ conn,
+ load_job_id,
+ command,
+ "load-new-phenotypes-data",
+ extra_meta={
+ "species_id": species["SpeciesId"],
+ "population_id": population["Id"],
+ "dataset_id": dataset["Id"],
+ "bundle_file": _meta["bundle"],
+ "publication_id": _meta["publicationid"],
+ "authserver": oauth2client.authserver_uri(),
+ "token": token["access_token"],
+ "success_handler": (
+ "uploader.phenotypes.views"
+ ".load_phenotypes_success_handler")
+ })
+ ).then(
+ lambda job: gnlibs_jobs.launch_job(
+ job,
+ jobs_db,
+ Path(f"{app.config['UPLOAD_FOLDER']}/job_errors"),
+ worker_manager="gn_libs.jobs.launcher",
+ loglevel=_loglevel)
+ ).either(__handle_error__, __handle_success__)
+
+
def update_phenotype_metadata(conn, metadata: dict):
+ """Update a phenotype's basic metadata values."""
with conn.cursor(cursorclass=DictCursor) as cursor:
cursor.execute("SELECT * FROM Phenotype WHERE Id=%(phenotype-id)s",
metadata)
@@ -623,6 +762,7 @@ def update_phenotype_metadata(conn, metadata: dict):
def update_phenotype_values(conn, values):
+ """Update a phenotype's data values."""
with conn.cursor() as cursor:
cursor.executemany(
"UPDATE PublishData SET value=%(new)s "
@@ -637,6 +777,7 @@ def update_phenotype_values(conn, values):
def update_phenotype_se(conn, serrs):
+ """Update a phenotype's standard-error values."""
with conn.cursor() as cursor:
cursor.executemany(
"INSERT INTO PublishSE(DataId, StrainId, error) "
@@ -652,6 +793,7 @@ def update_phenotype_se(conn, serrs):
def update_phenotype_n(conn, counts):
+ """Update a phenotype's strain counts."""
with conn.cursor() as cursor:
cursor.executemany(
"INSERT INTO NStrain(DataId, StrainId, count) "
@@ -680,9 +822,25 @@ def update_phenotype_data(conn, data: dict):
def __separate_items__(acc, row):
key, val = row
- return ({**acc[0], key: {**val["value"], "changed?": (not val["value"]["new"] == val["value"]["original"])}},
- {**acc[1], key: {**val["se"] , "changed?": (not val["se"]["new"] == val["se"]["original"])}},
- {**acc[2], key: {**val["n"] , "changed?": (not val["n"]["new"] == val["n"]["original"])}})
+ return ({
+ **acc[0],
+ key: {
+ **val["value"],
+ "changed?": (not val["value"]["new"] == val["value"]["original"])
+ }
+ }, {
+ **acc[1],
+ key: {
+ **val["se"],
+ "changed?": (not val["se"]["new"] == val["se"]["original"])
+ }
+ },{
+ **acc[2],
+ key: {
+ **val["n"],
+ "changed?": (not val["n"]["new"] == val["n"]["original"])
+ }
+ })
values, serrs, counts = tuple(
tuple({
@@ -691,8 +849,8 @@ def update_phenotype_data(conn, data: dict):
"new": row[1]["new"]
} for row in item)
for item in (
- filter(lambda val: val[1]["changed?"], item.items())
- for item in reduce(
+ filter(lambda val: val[1]["changed?"], item.items())# type: ignore[arg-type]
+ for item in reduce(# type: ignore[var-annotated]
__separate_items__,
reduce(__organise_by_dataid_and_strainid__,
data.items(),
@@ -713,7 +871,7 @@ def update_phenotype_data(conn, data: dict):
species_redirect_uri="species.populations.phenotypes.index",
population_redirect_uri="species.populations.phenotypes.select_population",
redirect_uri="species.populations.phenotypes.list_datasets")
-def edit_phenotype_data(
+def edit_phenotype_data(# pylint: disable=[unused-argument]
species: dict,
population: dict,
dataset: dict,
@@ -827,3 +985,216 @@ def edit_phenotype_data(
population_id=population["Id"],
dataset_id=dataset["Id"],
xref_id=xref_id))
+
+
+def process_phenotype_data_for_download(pheno: dict) -> dict:
+ """Sanitise data for download."""
+ return {
+ "UniqueIdentifier": f"phId:{pheno['Id']}::xrId:{pheno['xref_id']}",
+ **{
+ key: val for key, val in pheno.items()
+ if key not in ("Id", "xref_id", "data", "Units")
+ },
+ **{
+ data_item["StrainName"]: data_item["value"]
+ for data_item in pheno.get("data", {}).values()
+ }
+ }
+
+
+BULK_EDIT_COMMON_FIELDNAMES = [
+ "UniqueIdentifier",
+ "Post_publication_description",
+ "Pre_publication_abbreviation",
+ "Pre_publication_description",
+ "Original_description",
+ "Post_publication_abbreviation",
+ "PubMed_ID"
+]
+
+
+@phenotypesbp.route(
+ "<int:species_id>/populations/<int:population_id>/phenotypes/datasets"
+ "/<int:dataset_id>/edit-download",
+ methods=["POST"])
+@require_login
+@with_dataset(
+ species_redirect_uri="species.populations.phenotypes.index",
+ population_redirect_uri="species.populations.phenotypes.select_population",
+ redirect_uri="species.populations.phenotypes.list_datasets")
+def edit_download_phenotype_data(# pylint: disable=[unused-argument]
+ species: dict,
+ population: dict,
+ dataset: dict,
+ **kwargs
+):
+ formdata = request.json
+ with database_connection(app.config["SQL_URI"]) as conn:
+ samples_list = [
+ sample["Name"] for sample in samples_by_species_and_population(
+ conn, species["SpeciesId"], population["Id"])]
+ data = (
+ process_phenotype_data_for_download(pheno)
+ for pheno in phenotypes_data_by_ids(conn, tuple({
+ "population_id": population["Id"],
+ "phenoid": row["phenotype_id"],
+ "xref_id": row["xref_id"]
+ } for row in formdata)))
+
+ with (tempfile.TemporaryDirectory(
+ prefix=app.config["TEMPORARY_DIRECTORY"]) as tmpdir):
+ filename = Path(tmpdir).joinpath("tempfile.tsv")
+ with open(filename, mode="w") as outfile:
+ outfile.write(
+ "# **DO NOT** delete the 'UniqueIdentifier' row. It is used "
+ "by the system to identify and edit the correct rows and "
+ "columns in the database.\n")
+ outfile.write(
+ "# The '…_description' fields are useful for you to figure out "
+ "what row you are working on. Changing any of this fields will "
+ "also update the database, so do be careful.\n")
+ outfile.write(
+ "# Leave a field empty to delete the value in the database.\n")
+ outfile.write(
+ "# Any line beginning with a '#' character is considered a "
+ "comment line. This line, and all the lines above it, are "
+ "all comment lines. Comment lines will be ignored.\n")
+ writer = csv.DictWriter(outfile,
+ fieldnames= (
+ BULK_EDIT_COMMON_FIELDNAMES +
+ samples_list),
+ dialect="excel-tab")
+ writer.writeheader()
+ writer.writerows(data)
+ outfile.flush()
+
+ return send_file(
+ filename,
+ mimetype="text/csv",
+ as_attachment=True,
+ download_name=secure_filename(f"{dataset['Name']}_data"))
+
+
+@phenotypesbp.route(
+ "<int:species_id>/populations/<int:population_id>/phenotypes/datasets"
+ "/<int:dataset_id>/edit-upload",
+ methods=["GET", "POST"])
+@require_login
+@with_dataset(
+ species_redirect_uri="species.populations.phenotypes.index",
+ population_redirect_uri="species.populations.phenotypes.select_population",
+ redirect_uri="species.populations.phenotypes.list_datasets")
+def edit_upload_phenotype_data(# pylint: disable=[unused-argument]
+ species: dict,
+ population: dict,
+ dataset: dict,
+ **kwargs
+):
+ if request.method == "GET":
+ return render_template(
+ "phenotypes/bulk-edit-upload.html",
+ species=species,
+ population=population,
+ dataset=dataset,
+ activelink="edit-phenotype")
+
+ edit_file = save_file(request.files["file-upload-bulk-edit-upload"],
+ Path(app.config["UPLOAD_FOLDER"]))
+
+ jobs_db = app.config["ASYNCHRONOUS_JOBS_SQLITE_DB"]
+ with sqlite3.connection(jobs_db) as conn:
+ job_id = uuid.uuid4()
+ job_cmd = [
+ sys.executable, "-u",
+ "-m", "scripts.phenotypes_bulk_edit",
+ app.config["SQL_URI"],
+ jobs_db,
+ str(job_id),
+ "--log-level",
+ logging.getLevelName(
+ app.logger.getEffectiveLevel()
+ ).lower()
+ ]
+ app.logger.debug("Phenotype-edit, bulk-upload command: %s", job_cmd)
+ _job = gnlibs_jobs.launch_job(
+ gnlibs_jobs.initialise_job(conn,
+ job_id,
+ job_cmd,
+ "phenotype-bulk-edit",
+ extra_meta = {
+ "edit-file": str(edit_file),
+ "species-id": species["SpeciesId"],
+ "population-id": population["Id"],
+ "dataset-id": dataset["Id"]
+ }),
+ jobs_db,
+ f"{app.config['UPLOAD_FOLDER']}/job_errors",
+ worker_manager="gn_libs.jobs.launcher")
+
+
+ return redirect(url_for("background-jobs.job_status",
+ job_id=job_id,
+ job_type="phenotype-bulk-edit"))
+
+
+@phenotypesbp.route(
+ "<int:species_id>/populations/<int:population_id>/phenotypes/datasets"
+ "/<int:dataset_id>/load-data-success/<uuid:job_id>",
+ methods=["GET"])
+@require_login
+@with_dataset(
+ species_redirect_uri="species.populations.phenotypes.index",
+ population_redirect_uri="species.populations.phenotypes.select_population",
+ redirect_uri="species.populations.phenotypes.list_datasets")
+def load_data_success(
+ species: dict,
+ population: dict,
+ dataset: dict,
+ job_id: uuid.UUID,
+ **kwargs
+):# pylint: disable=[unused-argument]
+ with (database_connection(app.config["SQL_URI"]) as conn,
+ sqlite3.connection(app.config["ASYNCHRONOUS_JOBS_SQLITE_DB"])
+ as jobsconn):
+ try:
+ gn2_uri = urlparse(app.config["GN2_SERVER_URL"])
+ job = gnlibs_jobs.job(jobsconn, job_id, fulldetails=True)
+ app.logger.debug("THE JOB: %s", job)
+ _xref_ids = (str(item) for item
+ in json.loads(job["metadata"].get("xref_ids", "[]")))
+ _publication = fetch_publication_by_id(
+ conn, int(job["metadata"].get("publication_id", "0")))
+ _search_terms = (item for item in
+ (str(_publication["PubMed_ID"] or ""),
+ _publication["Authors"],
+ (_publication["Title"] or ""))
+ if item != "")
+ return render_template("phenotypes/load-phenotypes-success.html",
+ species=species,
+ population=population,
+ dataset=dataset,
+ job=job,
+ search_page_uri=urlunparse(ParseResult(
+ scheme=gn2_uri.scheme,
+ netloc=gn2_uri.netloc,
+ path="/search",
+ params="",
+ query=urlencode({
+ "species": species["Name"],
+ "group": population["Name"],
+ "type": "Phenotypes",
+ "dataset": dataset["Name"],
+ "search_terms_or": (
+ # Very long URLs will cause
+ # errors.
+ " ".join(_xref_ids)
+ if len(_xref_ids) <= 100
+ else ""),
+ "search_terms_and": " ".join(
+ _search_terms).strip(),
+ "accession_id": "None",
+ "FormID": "searchResult"
+ }),
+ fragment="")))
+ except JobNotFound as jnf:
+ return render_template("jobs/job-not-found.html", job_id=job_id)