aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_community.py
blob: 2fa107f6dde9f280123796f81b919c99f92ee20c (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import pytest

import networkx as nx


def test_random_partition_graph():
    G = nx.random_partition_graph([3, 3, 3], 1, 0, seed=42)
    C = G.graph["partition"]
    assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
    assert len(G) == 9
    assert len(list(G.edges())) == 9

    G = nx.random_partition_graph([3, 3, 3], 0, 1)
    C = G.graph["partition"]
    assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
    assert len(G) == 9
    assert len(list(G.edges())) == 27

    G = nx.random_partition_graph([3, 3, 3], 1, 0, directed=True)
    C = G.graph["partition"]
    assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
    assert len(G) == 9
    assert len(list(G.edges())) == 18

    G = nx.random_partition_graph([3, 3, 3], 0, 1, directed=True)
    C = G.graph["partition"]
    assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
    assert len(G) == 9
    assert len(list(G.edges())) == 54

    G = nx.random_partition_graph([1, 2, 3, 4, 5], 0.5, 0.1)
    C = G.graph["partition"]
    assert C == [{0}, {1, 2}, {3, 4, 5}, {6, 7, 8, 9}, {10, 11, 12, 13, 14}]
    assert len(G) == 15

    rpg = nx.random_partition_graph
    pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], 1.1, 0.1)
    pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], -0.1, 0.1)
    pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], 0.1, 1.1)
    pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], 0.1, -0.1)


def test_planted_partition_graph():
    G = nx.planted_partition_graph(4, 3, 1, 0, seed=42)
    C = G.graph["partition"]
    assert len(C) == 4
    assert len(G) == 12
    assert len(list(G.edges())) == 12

    G = nx.planted_partition_graph(4, 3, 0, 1)
    C = G.graph["partition"]
    assert len(C) == 4
    assert len(G) == 12
    assert len(list(G.edges())) == 54

    G = nx.planted_partition_graph(10, 4, 0.5, 0.1, seed=42)
    C = G.graph["partition"]
    assert len(C) == 10
    assert len(G) == 40

    G = nx.planted_partition_graph(4, 3, 1, 0, directed=True)
    C = G.graph["partition"]
    assert len(C) == 4
    assert len(G) == 12
    assert len(list(G.edges())) == 24

    G = nx.planted_partition_graph(4, 3, 0, 1, directed=True)
    C = G.graph["partition"]
    assert len(C) == 4
    assert len(G) == 12
    assert len(list(G.edges())) == 108

    G = nx.planted_partition_graph(10, 4, 0.5, 0.1, seed=42, directed=True)
    C = G.graph["partition"]
    assert len(C) == 10
    assert len(G) == 40

    ppg = nx.planted_partition_graph
    pytest.raises(nx.NetworkXError, ppg, 3, 3, 1.1, 0.1)
    pytest.raises(nx.NetworkXError, ppg, 3, 3, -0.1, 0.1)
    pytest.raises(nx.NetworkXError, ppg, 3, 3, 0.1, 1.1)
    pytest.raises(nx.NetworkXError, ppg, 3, 3, 0.1, -0.1)


def test_relaxed_caveman_graph():
    G = nx.relaxed_caveman_graph(4, 3, 0)
    assert len(G) == 12
    G = nx.relaxed_caveman_graph(4, 3, 1)
    assert len(G) == 12
    G = nx.relaxed_caveman_graph(4, 3, 0.5)
    assert len(G) == 12
    G = nx.relaxed_caveman_graph(4, 3, 0.5, seed=42)
    assert len(G) == 12


def test_connected_caveman_graph():
    G = nx.connected_caveman_graph(4, 3)
    assert len(G) == 12

    G = nx.connected_caveman_graph(1, 5)
    K5 = nx.complete_graph(5)
    K5.remove_edge(3, 4)
    assert nx.is_isomorphic(G, K5)

    # need at least 2 nodes in each clique
    pytest.raises(nx.NetworkXError, nx.connected_caveman_graph, 4, 1)


def test_caveman_graph():
    G = nx.caveman_graph(4, 3)
    assert len(G) == 12

    G = nx.caveman_graph(5, 1)
    E5 = nx.empty_graph(5)
    assert nx.is_isomorphic(G, E5)

    G = nx.caveman_graph(1, 5)
    K5 = nx.complete_graph(5)
    assert nx.is_isomorphic(G, K5)


def test_gaussian_random_partition_graph():
    G = nx.gaussian_random_partition_graph(100, 10, 10, 0.3, 0.01)
    assert len(G) == 100
    G = nx.gaussian_random_partition_graph(100, 10, 10, 0.3, 0.01, directed=True)
    assert len(G) == 100
    G = nx.gaussian_random_partition_graph(
        100, 10, 10, 0.3, 0.01, directed=False, seed=42
    )
    assert len(G) == 100
    assert not isinstance(G, nx.DiGraph)
    G = nx.gaussian_random_partition_graph(
        100, 10, 10, 0.3, 0.01, directed=True, seed=42
    )
    assert len(G) == 100
    assert isinstance(G, nx.DiGraph)
    pytest.raises(
        nx.NetworkXError, nx.gaussian_random_partition_graph, 100, 101, 10, 1, 0
    )
    # Test when clusters are likely less than 1
    G = nx.gaussian_random_partition_graph(10, 0.5, 0.5, 0.5, 0.5, seed=1)
    assert len(G) == 10


def test_ring_of_cliques():
    for i in range(2, 20, 3):
        for j in range(2, 20, 3):
            G = nx.ring_of_cliques(i, j)
            assert G.number_of_nodes() == i * j
            if i != 2 or j != 1:
                expected_num_edges = i * (((j * (j - 1)) // 2) + 1)
            else:
                # the edge that already exists cannot be duplicated
                expected_num_edges = i * (((j * (j - 1)) // 2) + 1) - 1
            assert G.number_of_edges() == expected_num_edges
    with pytest.raises(
        nx.NetworkXError, match="A ring of cliques must have at least two cliques"
    ):
        nx.ring_of_cliques(1, 5)
    with pytest.raises(
        nx.NetworkXError, match="The cliques must have at least two nodes"
    ):
        nx.ring_of_cliques(3, 0)


def test_windmill_graph():
    for n in range(2, 20, 3):
        for k in range(2, 20, 3):
            G = nx.windmill_graph(n, k)
            assert G.number_of_nodes() == (k - 1) * n + 1
            assert G.number_of_edges() == n * k * (k - 1) / 2
            assert G.degree(0) == G.number_of_nodes() - 1
            for i in range(1, G.number_of_nodes()):
                assert G.degree(i) == k - 1
    with pytest.raises(
        nx.NetworkXError, match="A windmill graph must have at least two cliques"
    ):
        nx.windmill_graph(1, 3)
    with pytest.raises(
        nx.NetworkXError, match="The cliques must have at least two nodes"
    ):
        nx.windmill_graph(3, 0)


def test_stochastic_block_model():
    sizes = [75, 75, 300]
    probs = [[0.25, 0.05, 0.02], [0.05, 0.35, 0.07], [0.02, 0.07, 0.40]]
    G = nx.stochastic_block_model(sizes, probs, seed=0)
    C = G.graph["partition"]
    assert len(C) == 3
    assert len(G) == 450
    assert G.size() == 22160

    GG = nx.stochastic_block_model(sizes, probs, range(450), seed=0)
    assert G.nodes == GG.nodes

    # Test Exceptions
    sbm = nx.stochastic_block_model
    badnodelist = list(range(400))  # not enough nodes to match sizes
    badprobs1 = [[0.25, 0.05, 1.02], [0.05, 0.35, 0.07], [0.02, 0.07, 0.40]]
    badprobs2 = [[0.25, 0.05, 0.02], [0.05, -0.35, 0.07], [0.02, 0.07, 0.40]]
    probs_rect1 = [[0.25, 0.05, 0.02], [0.05, -0.35, 0.07]]
    probs_rect2 = [[0.25, 0.05], [0.05, -0.35], [0.02, 0.07]]
    asymprobs = [[0.25, 0.05, 0.01], [0.05, -0.35, 0.07], [0.02, 0.07, 0.40]]
    pytest.raises(nx.NetworkXException, sbm, sizes, badprobs1)
    pytest.raises(nx.NetworkXException, sbm, sizes, badprobs2)
    pytest.raises(nx.NetworkXException, sbm, sizes, probs_rect1, directed=True)
    pytest.raises(nx.NetworkXException, sbm, sizes, probs_rect2, directed=True)
    pytest.raises(nx.NetworkXException, sbm, sizes, asymprobs, directed=False)
    pytest.raises(nx.NetworkXException, sbm, sizes, probs, badnodelist)
    nodelist = [0] + list(range(449))  # repeated node name in nodelist
    pytest.raises(nx.NetworkXException, sbm, sizes, probs, nodelist)

    # Extra keyword arguments test
    GG = nx.stochastic_block_model(sizes, probs, seed=0, selfloops=True)
    assert G.nodes == GG.nodes
    GG = nx.stochastic_block_model(sizes, probs, selfloops=True, directed=True)
    assert G.nodes == GG.nodes
    GG = nx.stochastic_block_model(sizes, probs, seed=0, sparse=False)
    assert G.nodes == GG.nodes


def test_generator():
    n = 250
    tau1 = 3
    tau2 = 1.5
    mu = 0.1
    G = nx.LFR_benchmark_graph(
        n, tau1, tau2, mu, average_degree=5, min_community=20, seed=10
    )
    assert len(G) == 250
    C = {frozenset(G.nodes[v]["community"]) for v in G}
    assert nx.community.is_partition(G.nodes(), C)


def test_invalid_tau1():
    with pytest.raises(nx.NetworkXError, match="tau2 must be greater than one"):
        n = 100
        tau1 = 2
        tau2 = 1
        mu = 0.1
        nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)


def test_invalid_tau2():
    with pytest.raises(nx.NetworkXError, match="tau1 must be greater than one"):
        n = 100
        tau1 = 1
        tau2 = 2
        mu = 0.1
        nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)


def test_mu_too_large():
    with pytest.raises(nx.NetworkXError, match="mu must be in the interval \\[0, 1\\]"):
        n = 100
        tau1 = 2
        tau2 = 2
        mu = 1.1
        nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)


def test_mu_too_small():
    with pytest.raises(nx.NetworkXError, match="mu must be in the interval \\[0, 1\\]"):
        n = 100
        tau1 = 2
        tau2 = 2
        mu = -1
        nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)


def test_both_degrees_none():
    with pytest.raises(
        nx.NetworkXError,
        match="Must assign exactly one of min_degree and average_degree",
    ):
        n = 100
        tau1 = 2
        tau2 = 2
        mu = 1
        nx.LFR_benchmark_graph(n, tau1, tau2, mu)


def test_neither_degrees_none():
    with pytest.raises(
        nx.NetworkXError,
        match="Must assign exactly one of min_degree and average_degree",
    ):
        n = 100
        tau1 = 2
        tau2 = 2
        mu = 1
        nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2, average_degree=5)


def test_max_iters_exceeded():
    with pytest.raises(
        nx.ExceededMaxIterations,
        match="Could not assign communities; try increasing min_community",
    ):
        n = 10
        tau1 = 2
        tau2 = 2
        mu = 0.1
        nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2, max_iters=10, seed=1)


def test_max_deg_out_of_range():
    with pytest.raises(
        nx.NetworkXError, match="max_degree must be in the interval \\(0, n\\]"
    ):
        n = 10
        tau1 = 2
        tau2 = 2
        mu = 0.1
        nx.LFR_benchmark_graph(
            n, tau1, tau2, mu, max_degree=n + 1, max_iters=10, seed=1
        )


def test_max_community():
    n = 250
    tau1 = 3
    tau2 = 1.5
    mu = 0.1
    G = nx.LFR_benchmark_graph(
        n,
        tau1,
        tau2,
        mu,
        average_degree=5,
        max_degree=100,
        min_community=50,
        max_community=200,
        seed=10,
    )
    assert len(G) == 250
    C = {frozenset(G.nodes[v]["community"]) for v in G}
    assert nx.community.is_partition(G.nodes(), C)


def test_powerlaw_iterations_exceeded():
    with pytest.raises(
        nx.ExceededMaxIterations, match="Could not create power law sequence"
    ):
        n = 100
        tau1 = 2
        tau2 = 2
        mu = 1
        nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2, max_iters=0)


def test_no_scipy_zeta():
    zeta2 = 1.6449340668482264
    assert abs(zeta2 - nx.generators.community._hurwitz_zeta(2, 1, 0.0001)) < 0.01


def test_generate_min_degree_itr():
    with pytest.raises(
        nx.ExceededMaxIterations, match="Could not match average_degree"
    ):
        nx.generators.community._generate_min_degree(2, 2, 1, 0.01, 0)