diff options
author | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
---|---|---|
committer | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
commit | 4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch) | |
tree | ee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/generators/tests/test_community.py | |
parent | cc961e04ba734dd72309fb548a2f97d67d578813 (diff) | |
download | gn-ai-master.tar.gz |
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/generators/tests/test_community.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/generators/tests/test_community.py | 362 |
1 files changed, 362 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_community.py b/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_community.py new file mode 100644 index 00000000..2fa107f6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_community.py @@ -0,0 +1,362 @@ +import pytest + +import networkx as nx + + +def test_random_partition_graph(): + G = nx.random_partition_graph([3, 3, 3], 1, 0, seed=42) + C = G.graph["partition"] + assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}] + assert len(G) == 9 + assert len(list(G.edges())) == 9 + + G = nx.random_partition_graph([3, 3, 3], 0, 1) + C = G.graph["partition"] + assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}] + assert len(G) == 9 + assert len(list(G.edges())) == 27 + + G = nx.random_partition_graph([3, 3, 3], 1, 0, directed=True) + C = G.graph["partition"] + assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}] + assert len(G) == 9 + assert len(list(G.edges())) == 18 + + G = nx.random_partition_graph([3, 3, 3], 0, 1, directed=True) + C = G.graph["partition"] + assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}] + assert len(G) == 9 + assert len(list(G.edges())) == 54 + + G = nx.random_partition_graph([1, 2, 3, 4, 5], 0.5, 0.1) + C = G.graph["partition"] + assert C == [{0}, {1, 2}, {3, 4, 5}, {6, 7, 8, 9}, {10, 11, 12, 13, 14}] + assert len(G) == 15 + + rpg = nx.random_partition_graph + pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], 1.1, 0.1) + pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], -0.1, 0.1) + pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], 0.1, 1.1) + pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], 0.1, -0.1) + + +def test_planted_partition_graph(): + G = nx.planted_partition_graph(4, 3, 1, 0, seed=42) + C = G.graph["partition"] + assert len(C) == 4 + assert len(G) == 12 + assert len(list(G.edges())) == 12 + + G = nx.planted_partition_graph(4, 3, 0, 1) + C = G.graph["partition"] + assert len(C) == 4 + assert len(G) == 12 + assert len(list(G.edges())) == 54 + + G = nx.planted_partition_graph(10, 4, 0.5, 0.1, seed=42) + C = G.graph["partition"] + assert len(C) == 10 + assert len(G) == 40 + + G = nx.planted_partition_graph(4, 3, 1, 0, directed=True) + C = G.graph["partition"] + assert len(C) == 4 + assert len(G) == 12 + assert len(list(G.edges())) == 24 + + G = nx.planted_partition_graph(4, 3, 0, 1, directed=True) + C = G.graph["partition"] + assert len(C) == 4 + assert len(G) == 12 + assert len(list(G.edges())) == 108 + + G = nx.planted_partition_graph(10, 4, 0.5, 0.1, seed=42, directed=True) + C = G.graph["partition"] + assert len(C) == 10 + assert len(G) == 40 + + ppg = nx.planted_partition_graph + pytest.raises(nx.NetworkXError, ppg, 3, 3, 1.1, 0.1) + pytest.raises(nx.NetworkXError, ppg, 3, 3, -0.1, 0.1) + pytest.raises(nx.NetworkXError, ppg, 3, 3, 0.1, 1.1) + pytest.raises(nx.NetworkXError, ppg, 3, 3, 0.1, -0.1) + + +def test_relaxed_caveman_graph(): + G = nx.relaxed_caveman_graph(4, 3, 0) + assert len(G) == 12 + G = nx.relaxed_caveman_graph(4, 3, 1) + assert len(G) == 12 + G = nx.relaxed_caveman_graph(4, 3, 0.5) + assert len(G) == 12 + G = nx.relaxed_caveman_graph(4, 3, 0.5, seed=42) + assert len(G) == 12 + + +def test_connected_caveman_graph(): + G = nx.connected_caveman_graph(4, 3) + assert len(G) == 12 + + G = nx.connected_caveman_graph(1, 5) + K5 = nx.complete_graph(5) + K5.remove_edge(3, 4) + assert nx.is_isomorphic(G, K5) + + # need at least 2 nodes in each clique + pytest.raises(nx.NetworkXError, nx.connected_caveman_graph, 4, 1) + + +def test_caveman_graph(): + G = nx.caveman_graph(4, 3) + assert len(G) == 12 + + G = nx.caveman_graph(5, 1) + E5 = nx.empty_graph(5) + assert nx.is_isomorphic(G, E5) + + G = nx.caveman_graph(1, 5) + K5 = nx.complete_graph(5) + assert nx.is_isomorphic(G, K5) + + +def test_gaussian_random_partition_graph(): + G = nx.gaussian_random_partition_graph(100, 10, 10, 0.3, 0.01) + assert len(G) == 100 + G = nx.gaussian_random_partition_graph(100, 10, 10, 0.3, 0.01, directed=True) + assert len(G) == 100 + G = nx.gaussian_random_partition_graph( + 100, 10, 10, 0.3, 0.01, directed=False, seed=42 + ) + assert len(G) == 100 + assert not isinstance(G, nx.DiGraph) + G = nx.gaussian_random_partition_graph( + 100, 10, 10, 0.3, 0.01, directed=True, seed=42 + ) + assert len(G) == 100 + assert isinstance(G, nx.DiGraph) + pytest.raises( + nx.NetworkXError, nx.gaussian_random_partition_graph, 100, 101, 10, 1, 0 + ) + # Test when clusters are likely less than 1 + G = nx.gaussian_random_partition_graph(10, 0.5, 0.5, 0.5, 0.5, seed=1) + assert len(G) == 10 + + +def test_ring_of_cliques(): + for i in range(2, 20, 3): + for j in range(2, 20, 3): + G = nx.ring_of_cliques(i, j) + assert G.number_of_nodes() == i * j + if i != 2 or j != 1: + expected_num_edges = i * (((j * (j - 1)) // 2) + 1) + else: + # the edge that already exists cannot be duplicated + expected_num_edges = i * (((j * (j - 1)) // 2) + 1) - 1 + assert G.number_of_edges() == expected_num_edges + with pytest.raises( + nx.NetworkXError, match="A ring of cliques must have at least two cliques" + ): + nx.ring_of_cliques(1, 5) + with pytest.raises( + nx.NetworkXError, match="The cliques must have at least two nodes" + ): + nx.ring_of_cliques(3, 0) + + +def test_windmill_graph(): + for n in range(2, 20, 3): + for k in range(2, 20, 3): + G = nx.windmill_graph(n, k) + assert G.number_of_nodes() == (k - 1) * n + 1 + assert G.number_of_edges() == n * k * (k - 1) / 2 + assert G.degree(0) == G.number_of_nodes() - 1 + for i in range(1, G.number_of_nodes()): + assert G.degree(i) == k - 1 + with pytest.raises( + nx.NetworkXError, match="A windmill graph must have at least two cliques" + ): + nx.windmill_graph(1, 3) + with pytest.raises( + nx.NetworkXError, match="The cliques must have at least two nodes" + ): + nx.windmill_graph(3, 0) + + +def test_stochastic_block_model(): + sizes = [75, 75, 300] + probs = [[0.25, 0.05, 0.02], [0.05, 0.35, 0.07], [0.02, 0.07, 0.40]] + G = nx.stochastic_block_model(sizes, probs, seed=0) + C = G.graph["partition"] + assert len(C) == 3 + assert len(G) == 450 + assert G.size() == 22160 + + GG = nx.stochastic_block_model(sizes, probs, range(450), seed=0) + assert G.nodes == GG.nodes + + # Test Exceptions + sbm = nx.stochastic_block_model + badnodelist = list(range(400)) # not enough nodes to match sizes + badprobs1 = [[0.25, 0.05, 1.02], [0.05, 0.35, 0.07], [0.02, 0.07, 0.40]] + badprobs2 = [[0.25, 0.05, 0.02], [0.05, -0.35, 0.07], [0.02, 0.07, 0.40]] + probs_rect1 = [[0.25, 0.05, 0.02], [0.05, -0.35, 0.07]] + probs_rect2 = [[0.25, 0.05], [0.05, -0.35], [0.02, 0.07]] + asymprobs = [[0.25, 0.05, 0.01], [0.05, -0.35, 0.07], [0.02, 0.07, 0.40]] + pytest.raises(nx.NetworkXException, sbm, sizes, badprobs1) + pytest.raises(nx.NetworkXException, sbm, sizes, badprobs2) + pytest.raises(nx.NetworkXException, sbm, sizes, probs_rect1, directed=True) + pytest.raises(nx.NetworkXException, sbm, sizes, probs_rect2, directed=True) + pytest.raises(nx.NetworkXException, sbm, sizes, asymprobs, directed=False) + pytest.raises(nx.NetworkXException, sbm, sizes, probs, badnodelist) + nodelist = [0] + list(range(449)) # repeated node name in nodelist + pytest.raises(nx.NetworkXException, sbm, sizes, probs, nodelist) + + # Extra keyword arguments test + GG = nx.stochastic_block_model(sizes, probs, seed=0, selfloops=True) + assert G.nodes == GG.nodes + GG = nx.stochastic_block_model(sizes, probs, selfloops=True, directed=True) + assert G.nodes == GG.nodes + GG = nx.stochastic_block_model(sizes, probs, seed=0, sparse=False) + assert G.nodes == GG.nodes + + +def test_generator(): + n = 250 + tau1 = 3 + tau2 = 1.5 + mu = 0.1 + G = nx.LFR_benchmark_graph( + n, tau1, tau2, mu, average_degree=5, min_community=20, seed=10 + ) + assert len(G) == 250 + C = {frozenset(G.nodes[v]["community"]) for v in G} + assert nx.community.is_partition(G.nodes(), C) + + +def test_invalid_tau1(): + with pytest.raises(nx.NetworkXError, match="tau2 must be greater than one"): + n = 100 + tau1 = 2 + tau2 = 1 + mu = 0.1 + nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2) + + +def test_invalid_tau2(): + with pytest.raises(nx.NetworkXError, match="tau1 must be greater than one"): + n = 100 + tau1 = 1 + tau2 = 2 + mu = 0.1 + nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2) + + +def test_mu_too_large(): + with pytest.raises(nx.NetworkXError, match="mu must be in the interval \\[0, 1\\]"): + n = 100 + tau1 = 2 + tau2 = 2 + mu = 1.1 + nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2) + + +def test_mu_too_small(): + with pytest.raises(nx.NetworkXError, match="mu must be in the interval \\[0, 1\\]"): + n = 100 + tau1 = 2 + tau2 = 2 + mu = -1 + nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2) + + +def test_both_degrees_none(): + with pytest.raises( + nx.NetworkXError, + match="Must assign exactly one of min_degree and average_degree", + ): + n = 100 + tau1 = 2 + tau2 = 2 + mu = 1 + nx.LFR_benchmark_graph(n, tau1, tau2, mu) + + +def test_neither_degrees_none(): + with pytest.raises( + nx.NetworkXError, + match="Must assign exactly one of min_degree and average_degree", + ): + n = 100 + tau1 = 2 + tau2 = 2 + mu = 1 + nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2, average_degree=5) + + +def test_max_iters_exceeded(): + with pytest.raises( + nx.ExceededMaxIterations, + match="Could not assign communities; try increasing min_community", + ): + n = 10 + tau1 = 2 + tau2 = 2 + mu = 0.1 + nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2, max_iters=10, seed=1) + + +def test_max_deg_out_of_range(): + with pytest.raises( + nx.NetworkXError, match="max_degree must be in the interval \\(0, n\\]" + ): + n = 10 + tau1 = 2 + tau2 = 2 + mu = 0.1 + nx.LFR_benchmark_graph( + n, tau1, tau2, mu, max_degree=n + 1, max_iters=10, seed=1 + ) + + +def test_max_community(): + n = 250 + tau1 = 3 + tau2 = 1.5 + mu = 0.1 + G = nx.LFR_benchmark_graph( + n, + tau1, + tau2, + mu, + average_degree=5, + max_degree=100, + min_community=50, + max_community=200, + seed=10, + ) + assert len(G) == 250 + C = {frozenset(G.nodes[v]["community"]) for v in G} + assert nx.community.is_partition(G.nodes(), C) + + +def test_powerlaw_iterations_exceeded(): + with pytest.raises( + nx.ExceededMaxIterations, match="Could not create power law sequence" + ): + n = 100 + tau1 = 2 + tau2 = 2 + mu = 1 + nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2, max_iters=0) + + +def test_no_scipy_zeta(): + zeta2 = 1.6449340668482264 + assert abs(zeta2 - nx.generators.community._hurwitz_zeta(2, 1, 0.0001)) < 0.01 + + +def test_generate_min_degree_itr(): + with pytest.raises( + nx.ExceededMaxIterations, match="Could not match average_degree" + ): + nx.generators.community._generate_min_degree(2, 2, 1, 0.01, 0) |