1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
|
import asyncio
import json
import uuid
from datetime import datetime
from typing import TYPE_CHECKING, Any, Callable, Literal, Optional, Union
import httpx
from fastapi import HTTPException, Request, status
from fastapi.responses import Response, StreamingResponse
import litellm
from litellm._logging import verbose_proxy_logger
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.proxy._types import ProxyException, UserAPIKeyAuth
from litellm.proxy.auth.auth_utils import check_response_size_is_safe
from litellm.proxy.common_utils.callback_utils import (
get_logging_caching_headers,
get_remaining_tokens_and_requests_from_request_data,
)
from litellm.proxy.route_llm_request import route_request
from litellm.proxy.utils import ProxyLogging
from litellm.router import Router
if TYPE_CHECKING:
from litellm.proxy.proxy_server import ProxyConfig as _ProxyConfig
ProxyConfig = _ProxyConfig
else:
ProxyConfig = Any
from litellm.proxy.litellm_pre_call_utils import add_litellm_data_to_request
class ProxyBaseLLMRequestProcessing:
def __init__(self, data: dict):
self.data = data
@staticmethod
def get_custom_headers(
*,
user_api_key_dict: UserAPIKeyAuth,
call_id: Optional[str] = None,
model_id: Optional[str] = None,
cache_key: Optional[str] = None,
api_base: Optional[str] = None,
version: Optional[str] = None,
model_region: Optional[str] = None,
response_cost: Optional[Union[float, str]] = None,
hidden_params: Optional[dict] = None,
fastest_response_batch_completion: Optional[bool] = None,
request_data: Optional[dict] = {},
timeout: Optional[Union[float, int, httpx.Timeout]] = None,
**kwargs,
) -> dict:
exclude_values = {"", None, "None"}
hidden_params = hidden_params or {}
headers = {
"x-litellm-call-id": call_id,
"x-litellm-model-id": model_id,
"x-litellm-cache-key": cache_key,
"x-litellm-model-api-base": (
api_base.split("?")[0] if api_base else None
), # don't include query params, risk of leaking sensitive info
"x-litellm-version": version,
"x-litellm-model-region": model_region,
"x-litellm-response-cost": str(response_cost),
"x-litellm-key-tpm-limit": str(user_api_key_dict.tpm_limit),
"x-litellm-key-rpm-limit": str(user_api_key_dict.rpm_limit),
"x-litellm-key-max-budget": str(user_api_key_dict.max_budget),
"x-litellm-key-spend": str(user_api_key_dict.spend),
"x-litellm-response-duration-ms": str(
hidden_params.get("_response_ms", None)
),
"x-litellm-overhead-duration-ms": str(
hidden_params.get("litellm_overhead_time_ms", None)
),
"x-litellm-fastest_response_batch_completion": (
str(fastest_response_batch_completion)
if fastest_response_batch_completion is not None
else None
),
"x-litellm-timeout": str(timeout) if timeout is not None else None,
**{k: str(v) for k, v in kwargs.items()},
}
if request_data:
remaining_tokens_header = (
get_remaining_tokens_and_requests_from_request_data(request_data)
)
headers.update(remaining_tokens_header)
logging_caching_headers = get_logging_caching_headers(request_data)
if logging_caching_headers:
headers.update(logging_caching_headers)
try:
return {
key: str(value)
for key, value in headers.items()
if value not in exclude_values
}
except Exception as e:
verbose_proxy_logger.error(f"Error setting custom headers: {e}")
return {}
async def base_process_llm_request(
self,
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth,
route_type: Literal["acompletion", "aresponses"],
proxy_logging_obj: ProxyLogging,
general_settings: dict,
proxy_config: ProxyConfig,
select_data_generator: Callable,
llm_router: Optional[Router] = None,
model: Optional[str] = None,
user_model: Optional[str] = None,
user_temperature: Optional[float] = None,
user_request_timeout: Optional[float] = None,
user_max_tokens: Optional[int] = None,
user_api_base: Optional[str] = None,
version: Optional[str] = None,
) -> Any:
"""
Common request processing logic for both chat completions and responses API endpoints
"""
verbose_proxy_logger.debug(
"Request received by LiteLLM:\n{}".format(json.dumps(self.data, indent=4)),
)
self.data = await add_litellm_data_to_request(
data=self.data,
request=request,
general_settings=general_settings,
user_api_key_dict=user_api_key_dict,
version=version,
proxy_config=proxy_config,
)
self.data["model"] = (
general_settings.get("completion_model", None) # server default
or user_model # model name passed via cli args
or model # for azure deployments
or self.data.get("model", None) # default passed in http request
)
# override with user settings, these are params passed via cli
if user_temperature:
self.data["temperature"] = user_temperature
if user_request_timeout:
self.data["request_timeout"] = user_request_timeout
if user_max_tokens:
self.data["max_tokens"] = user_max_tokens
if user_api_base:
self.data["api_base"] = user_api_base
### MODEL ALIAS MAPPING ###
# check if model name in model alias map
# get the actual model name
if (
isinstance(self.data["model"], str)
and self.data["model"] in litellm.model_alias_map
):
self.data["model"] = litellm.model_alias_map[self.data["model"]]
### CALL HOOKS ### - modify/reject incoming data before calling the model
self.data = await proxy_logging_obj.pre_call_hook( # type: ignore
user_api_key_dict=user_api_key_dict, data=self.data, call_type="completion"
)
## LOGGING OBJECT ## - initialize logging object for logging success/failure events for call
## IMPORTANT Note: - initialize this before running pre-call checks. Ensures we log rejected requests to langfuse.
self.data["litellm_call_id"] = request.headers.get(
"x-litellm-call-id", str(uuid.uuid4())
)
logging_obj, self.data = litellm.utils.function_setup(
original_function=route_type,
rules_obj=litellm.utils.Rules(),
start_time=datetime.now(),
**self.data,
)
self.data["litellm_logging_obj"] = logging_obj
tasks = []
tasks.append(
proxy_logging_obj.during_call_hook(
data=self.data,
user_api_key_dict=user_api_key_dict,
call_type=ProxyBaseLLMRequestProcessing._get_pre_call_type(
route_type=route_type
),
)
)
### ROUTE THE REQUEST ###
# Do not change this - it should be a constant time fetch - ALWAYS
llm_call = await route_request(
data=self.data,
route_type=route_type,
llm_router=llm_router,
user_model=user_model,
)
tasks.append(llm_call)
# wait for call to end
llm_responses = asyncio.gather(
*tasks
) # run the moderation check in parallel to the actual llm api call
responses = await llm_responses
response = responses[1]
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
response_cost = hidden_params.get("response_cost", None) or ""
fastest_response_batch_completion = hidden_params.get(
"fastest_response_batch_completion", None
)
additional_headers: dict = hidden_params.get("additional_headers", {}) or {}
# Post Call Processing
if llm_router is not None:
self.data["deployment"] = llm_router.get_deployment(model_id=model_id)
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=self.data.get("litellm_call_id", ""), status="success"
)
)
if (
"stream" in self.data and self.data["stream"] is True
): # use generate_responses to stream responses
custom_headers = ProxyBaseLLMRequestProcessing.get_custom_headers(
user_api_key_dict=user_api_key_dict,
call_id=logging_obj.litellm_call_id,
model_id=model_id,
cache_key=cache_key,
api_base=api_base,
version=version,
response_cost=response_cost,
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
fastest_response_batch_completion=fastest_response_batch_completion,
request_data=self.data,
hidden_params=hidden_params,
**additional_headers,
)
selected_data_generator = select_data_generator(
response=response,
user_api_key_dict=user_api_key_dict,
request_data=self.data,
)
return StreamingResponse(
selected_data_generator,
media_type="text/event-stream",
headers=custom_headers,
)
### CALL HOOKS ### - modify outgoing data
response = await proxy_logging_obj.post_call_success_hook(
data=self.data, user_api_key_dict=user_api_key_dict, response=response
)
hidden_params = (
getattr(response, "_hidden_params", {}) or {}
) # get any updated response headers
additional_headers = hidden_params.get("additional_headers", {}) or {}
fastapi_response.headers.update(
ProxyBaseLLMRequestProcessing.get_custom_headers(
user_api_key_dict=user_api_key_dict,
call_id=logging_obj.litellm_call_id,
model_id=model_id,
cache_key=cache_key,
api_base=api_base,
version=version,
response_cost=response_cost,
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
fastest_response_batch_completion=fastest_response_batch_completion,
request_data=self.data,
hidden_params=hidden_params,
**additional_headers,
)
)
await check_response_size_is_safe(response=response)
return response
async def _handle_llm_api_exception(
self,
e: Exception,
user_api_key_dict: UserAPIKeyAuth,
proxy_logging_obj: ProxyLogging,
version: Optional[str] = None,
):
"""Raises ProxyException (OpenAI API compatible) if an exception is raised"""
verbose_proxy_logger.exception(
f"litellm.proxy.proxy_server._handle_llm_api_exception(): Exception occured - {str(e)}"
)
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict,
original_exception=e,
request_data=self.data,
)
litellm_debug_info = getattr(e, "litellm_debug_info", "")
verbose_proxy_logger.debug(
"\033[1;31mAn error occurred: %s %s\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`",
e,
litellm_debug_info,
)
timeout = getattr(
e, "timeout", None
) # returns the timeout set by the wrapper. Used for testing if model-specific timeout are set correctly
_litellm_logging_obj: Optional[LiteLLMLoggingObj] = self.data.get(
"litellm_logging_obj", None
)
custom_headers = ProxyBaseLLMRequestProcessing.get_custom_headers(
user_api_key_dict=user_api_key_dict,
call_id=(
_litellm_logging_obj.litellm_call_id if _litellm_logging_obj else None
),
version=version,
response_cost=0,
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
request_data=self.data,
timeout=timeout,
)
headers = getattr(e, "headers", {}) or {}
headers.update(custom_headers)
if isinstance(e, HTTPException):
raise ProxyException(
message=getattr(e, "detail", str(e)),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
headers=headers,
)
error_msg = f"{str(e)}"
raise ProxyException(
message=getattr(e, "message", error_msg),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
openai_code=getattr(e, "code", None),
code=getattr(e, "status_code", 500),
headers=headers,
)
@staticmethod
def _get_pre_call_type(
route_type: Literal["acompletion", "aresponses"]
) -> Literal["completion", "responses"]:
if route_type == "acompletion":
return "completion"
elif route_type == "aresponses":
return "responses"
|