diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/proxy/common_request_processing.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/litellm/proxy/common_request_processing.py | 358 |
1 files changed, 358 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/proxy/common_request_processing.py b/.venv/lib/python3.12/site-packages/litellm/proxy/common_request_processing.py new file mode 100644 index 00000000..fcc13509 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/litellm/proxy/common_request_processing.py @@ -0,0 +1,358 @@ +import asyncio +import json +import uuid +from datetime import datetime +from typing import TYPE_CHECKING, Any, Callable, Literal, Optional, Union + +import httpx +from fastapi import HTTPException, Request, status +from fastapi.responses import Response, StreamingResponse + +import litellm +from litellm._logging import verbose_proxy_logger +from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj +from litellm.proxy._types import ProxyException, UserAPIKeyAuth +from litellm.proxy.auth.auth_utils import check_response_size_is_safe +from litellm.proxy.common_utils.callback_utils import ( + get_logging_caching_headers, + get_remaining_tokens_and_requests_from_request_data, +) +from litellm.proxy.route_llm_request import route_request +from litellm.proxy.utils import ProxyLogging +from litellm.router import Router + +if TYPE_CHECKING: + from litellm.proxy.proxy_server import ProxyConfig as _ProxyConfig + + ProxyConfig = _ProxyConfig +else: + ProxyConfig = Any +from litellm.proxy.litellm_pre_call_utils import add_litellm_data_to_request + + +class ProxyBaseLLMRequestProcessing: + def __init__(self, data: dict): + self.data = data + + @staticmethod + def get_custom_headers( + *, + user_api_key_dict: UserAPIKeyAuth, + call_id: Optional[str] = None, + model_id: Optional[str] = None, + cache_key: Optional[str] = None, + api_base: Optional[str] = None, + version: Optional[str] = None, + model_region: Optional[str] = None, + response_cost: Optional[Union[float, str]] = None, + hidden_params: Optional[dict] = None, + fastest_response_batch_completion: Optional[bool] = None, + request_data: Optional[dict] = {}, + timeout: Optional[Union[float, int, httpx.Timeout]] = None, + **kwargs, + ) -> dict: + exclude_values = {"", None, "None"} + hidden_params = hidden_params or {} + headers = { + "x-litellm-call-id": call_id, + "x-litellm-model-id": model_id, + "x-litellm-cache-key": cache_key, + "x-litellm-model-api-base": ( + api_base.split("?")[0] if api_base else None + ), # don't include query params, risk of leaking sensitive info + "x-litellm-version": version, + "x-litellm-model-region": model_region, + "x-litellm-response-cost": str(response_cost), + "x-litellm-key-tpm-limit": str(user_api_key_dict.tpm_limit), + "x-litellm-key-rpm-limit": str(user_api_key_dict.rpm_limit), + "x-litellm-key-max-budget": str(user_api_key_dict.max_budget), + "x-litellm-key-spend": str(user_api_key_dict.spend), + "x-litellm-response-duration-ms": str( + hidden_params.get("_response_ms", None) + ), + "x-litellm-overhead-duration-ms": str( + hidden_params.get("litellm_overhead_time_ms", None) + ), + "x-litellm-fastest_response_batch_completion": ( + str(fastest_response_batch_completion) + if fastest_response_batch_completion is not None + else None + ), + "x-litellm-timeout": str(timeout) if timeout is not None else None, + **{k: str(v) for k, v in kwargs.items()}, + } + if request_data: + remaining_tokens_header = ( + get_remaining_tokens_and_requests_from_request_data(request_data) + ) + headers.update(remaining_tokens_header) + + logging_caching_headers = get_logging_caching_headers(request_data) + if logging_caching_headers: + headers.update(logging_caching_headers) + + try: + return { + key: str(value) + for key, value in headers.items() + if value not in exclude_values + } + except Exception as e: + verbose_proxy_logger.error(f"Error setting custom headers: {e}") + return {} + + async def base_process_llm_request( + self, + request: Request, + fastapi_response: Response, + user_api_key_dict: UserAPIKeyAuth, + route_type: Literal["acompletion", "aresponses"], + proxy_logging_obj: ProxyLogging, + general_settings: dict, + proxy_config: ProxyConfig, + select_data_generator: Callable, + llm_router: Optional[Router] = None, + model: Optional[str] = None, + user_model: Optional[str] = None, + user_temperature: Optional[float] = None, + user_request_timeout: Optional[float] = None, + user_max_tokens: Optional[int] = None, + user_api_base: Optional[str] = None, + version: Optional[str] = None, + ) -> Any: + """ + Common request processing logic for both chat completions and responses API endpoints + """ + verbose_proxy_logger.debug( + "Request received by LiteLLM:\n{}".format(json.dumps(self.data, indent=4)), + ) + + self.data = await add_litellm_data_to_request( + data=self.data, + request=request, + general_settings=general_settings, + user_api_key_dict=user_api_key_dict, + version=version, + proxy_config=proxy_config, + ) + + self.data["model"] = ( + general_settings.get("completion_model", None) # server default + or user_model # model name passed via cli args + or model # for azure deployments + or self.data.get("model", None) # default passed in http request + ) + + # override with user settings, these are params passed via cli + if user_temperature: + self.data["temperature"] = user_temperature + if user_request_timeout: + self.data["request_timeout"] = user_request_timeout + if user_max_tokens: + self.data["max_tokens"] = user_max_tokens + if user_api_base: + self.data["api_base"] = user_api_base + + ### MODEL ALIAS MAPPING ### + # check if model name in model alias map + # get the actual model name + if ( + isinstance(self.data["model"], str) + and self.data["model"] in litellm.model_alias_map + ): + self.data["model"] = litellm.model_alias_map[self.data["model"]] + + ### CALL HOOKS ### - modify/reject incoming data before calling the model + self.data = await proxy_logging_obj.pre_call_hook( # type: ignore + user_api_key_dict=user_api_key_dict, data=self.data, call_type="completion" + ) + + ## LOGGING OBJECT ## - initialize logging object for logging success/failure events for call + ## IMPORTANT Note: - initialize this before running pre-call checks. Ensures we log rejected requests to langfuse. + self.data["litellm_call_id"] = request.headers.get( + "x-litellm-call-id", str(uuid.uuid4()) + ) + logging_obj, self.data = litellm.utils.function_setup( + original_function=route_type, + rules_obj=litellm.utils.Rules(), + start_time=datetime.now(), + **self.data, + ) + + self.data["litellm_logging_obj"] = logging_obj + + tasks = [] + tasks.append( + proxy_logging_obj.during_call_hook( + data=self.data, + user_api_key_dict=user_api_key_dict, + call_type=ProxyBaseLLMRequestProcessing._get_pre_call_type( + route_type=route_type + ), + ) + ) + + ### ROUTE THE REQUEST ### + # Do not change this - it should be a constant time fetch - ALWAYS + llm_call = await route_request( + data=self.data, + route_type=route_type, + llm_router=llm_router, + user_model=user_model, + ) + tasks.append(llm_call) + + # wait for call to end + llm_responses = asyncio.gather( + *tasks + ) # run the moderation check in parallel to the actual llm api call + + responses = await llm_responses + + response = responses[1] + + hidden_params = getattr(response, "_hidden_params", {}) or {} + model_id = hidden_params.get("model_id", None) or "" + cache_key = hidden_params.get("cache_key", None) or "" + api_base = hidden_params.get("api_base", None) or "" + response_cost = hidden_params.get("response_cost", None) or "" + fastest_response_batch_completion = hidden_params.get( + "fastest_response_batch_completion", None + ) + additional_headers: dict = hidden_params.get("additional_headers", {}) or {} + + # Post Call Processing + if llm_router is not None: + self.data["deployment"] = llm_router.get_deployment(model_id=model_id) + asyncio.create_task( + proxy_logging_obj.update_request_status( + litellm_call_id=self.data.get("litellm_call_id", ""), status="success" + ) + ) + if ( + "stream" in self.data and self.data["stream"] is True + ): # use generate_responses to stream responses + custom_headers = ProxyBaseLLMRequestProcessing.get_custom_headers( + user_api_key_dict=user_api_key_dict, + call_id=logging_obj.litellm_call_id, + model_id=model_id, + cache_key=cache_key, + api_base=api_base, + version=version, + response_cost=response_cost, + model_region=getattr(user_api_key_dict, "allowed_model_region", ""), + fastest_response_batch_completion=fastest_response_batch_completion, + request_data=self.data, + hidden_params=hidden_params, + **additional_headers, + ) + selected_data_generator = select_data_generator( + response=response, + user_api_key_dict=user_api_key_dict, + request_data=self.data, + ) + return StreamingResponse( + selected_data_generator, + media_type="text/event-stream", + headers=custom_headers, + ) + + ### CALL HOOKS ### - modify outgoing data + response = await proxy_logging_obj.post_call_success_hook( + data=self.data, user_api_key_dict=user_api_key_dict, response=response + ) + + hidden_params = ( + getattr(response, "_hidden_params", {}) or {} + ) # get any updated response headers + additional_headers = hidden_params.get("additional_headers", {}) or {} + + fastapi_response.headers.update( + ProxyBaseLLMRequestProcessing.get_custom_headers( + user_api_key_dict=user_api_key_dict, + call_id=logging_obj.litellm_call_id, + model_id=model_id, + cache_key=cache_key, + api_base=api_base, + version=version, + response_cost=response_cost, + model_region=getattr(user_api_key_dict, "allowed_model_region", ""), + fastest_response_batch_completion=fastest_response_batch_completion, + request_data=self.data, + hidden_params=hidden_params, + **additional_headers, + ) + ) + await check_response_size_is_safe(response=response) + + return response + + async def _handle_llm_api_exception( + self, + e: Exception, + user_api_key_dict: UserAPIKeyAuth, + proxy_logging_obj: ProxyLogging, + version: Optional[str] = None, + ): + """Raises ProxyException (OpenAI API compatible) if an exception is raised""" + verbose_proxy_logger.exception( + f"litellm.proxy.proxy_server._handle_llm_api_exception(): Exception occured - {str(e)}" + ) + await proxy_logging_obj.post_call_failure_hook( + user_api_key_dict=user_api_key_dict, + original_exception=e, + request_data=self.data, + ) + litellm_debug_info = getattr(e, "litellm_debug_info", "") + verbose_proxy_logger.debug( + "\033[1;31mAn error occurred: %s %s\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`", + e, + litellm_debug_info, + ) + + timeout = getattr( + e, "timeout", None + ) # returns the timeout set by the wrapper. Used for testing if model-specific timeout are set correctly + _litellm_logging_obj: Optional[LiteLLMLoggingObj] = self.data.get( + "litellm_logging_obj", None + ) + custom_headers = ProxyBaseLLMRequestProcessing.get_custom_headers( + user_api_key_dict=user_api_key_dict, + call_id=( + _litellm_logging_obj.litellm_call_id if _litellm_logging_obj else None + ), + version=version, + response_cost=0, + model_region=getattr(user_api_key_dict, "allowed_model_region", ""), + request_data=self.data, + timeout=timeout, + ) + headers = getattr(e, "headers", {}) or {} + headers.update(custom_headers) + + if isinstance(e, HTTPException): + raise ProxyException( + message=getattr(e, "detail", str(e)), + type=getattr(e, "type", "None"), + param=getattr(e, "param", "None"), + code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), + headers=headers, + ) + error_msg = f"{str(e)}" + raise ProxyException( + message=getattr(e, "message", error_msg), + type=getattr(e, "type", "None"), + param=getattr(e, "param", "None"), + openai_code=getattr(e, "code", None), + code=getattr(e, "status_code", 500), + headers=headers, + ) + + @staticmethod + def _get_pre_call_type( + route_type: Literal["acompletion", "aresponses"] + ) -> Literal["completion", "responses"]: + if route_type == "acompletion": + return "completion" + elif route_type == "aresponses": + return "responses" |