aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/proxy/common_request_processing.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/proxy/common_request_processing.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/proxy/common_request_processing.py358
1 files changed, 358 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/proxy/common_request_processing.py b/.venv/lib/python3.12/site-packages/litellm/proxy/common_request_processing.py
new file mode 100644
index 00000000..fcc13509
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/proxy/common_request_processing.py
@@ -0,0 +1,358 @@
+import asyncio
+import json
+import uuid
+from datetime import datetime
+from typing import TYPE_CHECKING, Any, Callable, Literal, Optional, Union
+
+import httpx
+from fastapi import HTTPException, Request, status
+from fastapi.responses import Response, StreamingResponse
+
+import litellm
+from litellm._logging import verbose_proxy_logger
+from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
+from litellm.proxy._types import ProxyException, UserAPIKeyAuth
+from litellm.proxy.auth.auth_utils import check_response_size_is_safe
+from litellm.proxy.common_utils.callback_utils import (
+ get_logging_caching_headers,
+ get_remaining_tokens_and_requests_from_request_data,
+)
+from litellm.proxy.route_llm_request import route_request
+from litellm.proxy.utils import ProxyLogging
+from litellm.router import Router
+
+if TYPE_CHECKING:
+ from litellm.proxy.proxy_server import ProxyConfig as _ProxyConfig
+
+ ProxyConfig = _ProxyConfig
+else:
+ ProxyConfig = Any
+from litellm.proxy.litellm_pre_call_utils import add_litellm_data_to_request
+
+
+class ProxyBaseLLMRequestProcessing:
+ def __init__(self, data: dict):
+ self.data = data
+
+ @staticmethod
+ def get_custom_headers(
+ *,
+ user_api_key_dict: UserAPIKeyAuth,
+ call_id: Optional[str] = None,
+ model_id: Optional[str] = None,
+ cache_key: Optional[str] = None,
+ api_base: Optional[str] = None,
+ version: Optional[str] = None,
+ model_region: Optional[str] = None,
+ response_cost: Optional[Union[float, str]] = None,
+ hidden_params: Optional[dict] = None,
+ fastest_response_batch_completion: Optional[bool] = None,
+ request_data: Optional[dict] = {},
+ timeout: Optional[Union[float, int, httpx.Timeout]] = None,
+ **kwargs,
+ ) -> dict:
+ exclude_values = {"", None, "None"}
+ hidden_params = hidden_params or {}
+ headers = {
+ "x-litellm-call-id": call_id,
+ "x-litellm-model-id": model_id,
+ "x-litellm-cache-key": cache_key,
+ "x-litellm-model-api-base": (
+ api_base.split("?")[0] if api_base else None
+ ), # don't include query params, risk of leaking sensitive info
+ "x-litellm-version": version,
+ "x-litellm-model-region": model_region,
+ "x-litellm-response-cost": str(response_cost),
+ "x-litellm-key-tpm-limit": str(user_api_key_dict.tpm_limit),
+ "x-litellm-key-rpm-limit": str(user_api_key_dict.rpm_limit),
+ "x-litellm-key-max-budget": str(user_api_key_dict.max_budget),
+ "x-litellm-key-spend": str(user_api_key_dict.spend),
+ "x-litellm-response-duration-ms": str(
+ hidden_params.get("_response_ms", None)
+ ),
+ "x-litellm-overhead-duration-ms": str(
+ hidden_params.get("litellm_overhead_time_ms", None)
+ ),
+ "x-litellm-fastest_response_batch_completion": (
+ str(fastest_response_batch_completion)
+ if fastest_response_batch_completion is not None
+ else None
+ ),
+ "x-litellm-timeout": str(timeout) if timeout is not None else None,
+ **{k: str(v) for k, v in kwargs.items()},
+ }
+ if request_data:
+ remaining_tokens_header = (
+ get_remaining_tokens_and_requests_from_request_data(request_data)
+ )
+ headers.update(remaining_tokens_header)
+
+ logging_caching_headers = get_logging_caching_headers(request_data)
+ if logging_caching_headers:
+ headers.update(logging_caching_headers)
+
+ try:
+ return {
+ key: str(value)
+ for key, value in headers.items()
+ if value not in exclude_values
+ }
+ except Exception as e:
+ verbose_proxy_logger.error(f"Error setting custom headers: {e}")
+ return {}
+
+ async def base_process_llm_request(
+ self,
+ request: Request,
+ fastapi_response: Response,
+ user_api_key_dict: UserAPIKeyAuth,
+ route_type: Literal["acompletion", "aresponses"],
+ proxy_logging_obj: ProxyLogging,
+ general_settings: dict,
+ proxy_config: ProxyConfig,
+ select_data_generator: Callable,
+ llm_router: Optional[Router] = None,
+ model: Optional[str] = None,
+ user_model: Optional[str] = None,
+ user_temperature: Optional[float] = None,
+ user_request_timeout: Optional[float] = None,
+ user_max_tokens: Optional[int] = None,
+ user_api_base: Optional[str] = None,
+ version: Optional[str] = None,
+ ) -> Any:
+ """
+ Common request processing logic for both chat completions and responses API endpoints
+ """
+ verbose_proxy_logger.debug(
+ "Request received by LiteLLM:\n{}".format(json.dumps(self.data, indent=4)),
+ )
+
+ self.data = await add_litellm_data_to_request(
+ data=self.data,
+ request=request,
+ general_settings=general_settings,
+ user_api_key_dict=user_api_key_dict,
+ version=version,
+ proxy_config=proxy_config,
+ )
+
+ self.data["model"] = (
+ general_settings.get("completion_model", None) # server default
+ or user_model # model name passed via cli args
+ or model # for azure deployments
+ or self.data.get("model", None) # default passed in http request
+ )
+
+ # override with user settings, these are params passed via cli
+ if user_temperature:
+ self.data["temperature"] = user_temperature
+ if user_request_timeout:
+ self.data["request_timeout"] = user_request_timeout
+ if user_max_tokens:
+ self.data["max_tokens"] = user_max_tokens
+ if user_api_base:
+ self.data["api_base"] = user_api_base
+
+ ### MODEL ALIAS MAPPING ###
+ # check if model name in model alias map
+ # get the actual model name
+ if (
+ isinstance(self.data["model"], str)
+ and self.data["model"] in litellm.model_alias_map
+ ):
+ self.data["model"] = litellm.model_alias_map[self.data["model"]]
+
+ ### CALL HOOKS ### - modify/reject incoming data before calling the model
+ self.data = await proxy_logging_obj.pre_call_hook( # type: ignore
+ user_api_key_dict=user_api_key_dict, data=self.data, call_type="completion"
+ )
+
+ ## LOGGING OBJECT ## - initialize logging object for logging success/failure events for call
+ ## IMPORTANT Note: - initialize this before running pre-call checks. Ensures we log rejected requests to langfuse.
+ self.data["litellm_call_id"] = request.headers.get(
+ "x-litellm-call-id", str(uuid.uuid4())
+ )
+ logging_obj, self.data = litellm.utils.function_setup(
+ original_function=route_type,
+ rules_obj=litellm.utils.Rules(),
+ start_time=datetime.now(),
+ **self.data,
+ )
+
+ self.data["litellm_logging_obj"] = logging_obj
+
+ tasks = []
+ tasks.append(
+ proxy_logging_obj.during_call_hook(
+ data=self.data,
+ user_api_key_dict=user_api_key_dict,
+ call_type=ProxyBaseLLMRequestProcessing._get_pre_call_type(
+ route_type=route_type
+ ),
+ )
+ )
+
+ ### ROUTE THE REQUEST ###
+ # Do not change this - it should be a constant time fetch - ALWAYS
+ llm_call = await route_request(
+ data=self.data,
+ route_type=route_type,
+ llm_router=llm_router,
+ user_model=user_model,
+ )
+ tasks.append(llm_call)
+
+ # wait for call to end
+ llm_responses = asyncio.gather(
+ *tasks
+ ) # run the moderation check in parallel to the actual llm api call
+
+ responses = await llm_responses
+
+ response = responses[1]
+
+ hidden_params = getattr(response, "_hidden_params", {}) or {}
+ model_id = hidden_params.get("model_id", None) or ""
+ cache_key = hidden_params.get("cache_key", None) or ""
+ api_base = hidden_params.get("api_base", None) or ""
+ response_cost = hidden_params.get("response_cost", None) or ""
+ fastest_response_batch_completion = hidden_params.get(
+ "fastest_response_batch_completion", None
+ )
+ additional_headers: dict = hidden_params.get("additional_headers", {}) or {}
+
+ # Post Call Processing
+ if llm_router is not None:
+ self.data["deployment"] = llm_router.get_deployment(model_id=model_id)
+ asyncio.create_task(
+ proxy_logging_obj.update_request_status(
+ litellm_call_id=self.data.get("litellm_call_id", ""), status="success"
+ )
+ )
+ if (
+ "stream" in self.data and self.data["stream"] is True
+ ): # use generate_responses to stream responses
+ custom_headers = ProxyBaseLLMRequestProcessing.get_custom_headers(
+ user_api_key_dict=user_api_key_dict,
+ call_id=logging_obj.litellm_call_id,
+ model_id=model_id,
+ cache_key=cache_key,
+ api_base=api_base,
+ version=version,
+ response_cost=response_cost,
+ model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
+ fastest_response_batch_completion=fastest_response_batch_completion,
+ request_data=self.data,
+ hidden_params=hidden_params,
+ **additional_headers,
+ )
+ selected_data_generator = select_data_generator(
+ response=response,
+ user_api_key_dict=user_api_key_dict,
+ request_data=self.data,
+ )
+ return StreamingResponse(
+ selected_data_generator,
+ media_type="text/event-stream",
+ headers=custom_headers,
+ )
+
+ ### CALL HOOKS ### - modify outgoing data
+ response = await proxy_logging_obj.post_call_success_hook(
+ data=self.data, user_api_key_dict=user_api_key_dict, response=response
+ )
+
+ hidden_params = (
+ getattr(response, "_hidden_params", {}) or {}
+ ) # get any updated response headers
+ additional_headers = hidden_params.get("additional_headers", {}) or {}
+
+ fastapi_response.headers.update(
+ ProxyBaseLLMRequestProcessing.get_custom_headers(
+ user_api_key_dict=user_api_key_dict,
+ call_id=logging_obj.litellm_call_id,
+ model_id=model_id,
+ cache_key=cache_key,
+ api_base=api_base,
+ version=version,
+ response_cost=response_cost,
+ model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
+ fastest_response_batch_completion=fastest_response_batch_completion,
+ request_data=self.data,
+ hidden_params=hidden_params,
+ **additional_headers,
+ )
+ )
+ await check_response_size_is_safe(response=response)
+
+ return response
+
+ async def _handle_llm_api_exception(
+ self,
+ e: Exception,
+ user_api_key_dict: UserAPIKeyAuth,
+ proxy_logging_obj: ProxyLogging,
+ version: Optional[str] = None,
+ ):
+ """Raises ProxyException (OpenAI API compatible) if an exception is raised"""
+ verbose_proxy_logger.exception(
+ f"litellm.proxy.proxy_server._handle_llm_api_exception(): Exception occured - {str(e)}"
+ )
+ await proxy_logging_obj.post_call_failure_hook(
+ user_api_key_dict=user_api_key_dict,
+ original_exception=e,
+ request_data=self.data,
+ )
+ litellm_debug_info = getattr(e, "litellm_debug_info", "")
+ verbose_proxy_logger.debug(
+ "\033[1;31mAn error occurred: %s %s\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`",
+ e,
+ litellm_debug_info,
+ )
+
+ timeout = getattr(
+ e, "timeout", None
+ ) # returns the timeout set by the wrapper. Used for testing if model-specific timeout are set correctly
+ _litellm_logging_obj: Optional[LiteLLMLoggingObj] = self.data.get(
+ "litellm_logging_obj", None
+ )
+ custom_headers = ProxyBaseLLMRequestProcessing.get_custom_headers(
+ user_api_key_dict=user_api_key_dict,
+ call_id=(
+ _litellm_logging_obj.litellm_call_id if _litellm_logging_obj else None
+ ),
+ version=version,
+ response_cost=0,
+ model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
+ request_data=self.data,
+ timeout=timeout,
+ )
+ headers = getattr(e, "headers", {}) or {}
+ headers.update(custom_headers)
+
+ if isinstance(e, HTTPException):
+ raise ProxyException(
+ message=getattr(e, "detail", str(e)),
+ type=getattr(e, "type", "None"),
+ param=getattr(e, "param", "None"),
+ code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
+ headers=headers,
+ )
+ error_msg = f"{str(e)}"
+ raise ProxyException(
+ message=getattr(e, "message", error_msg),
+ type=getattr(e, "type", "None"),
+ param=getattr(e, "param", "None"),
+ openai_code=getattr(e, "code", None),
+ code=getattr(e, "status_code", 500),
+ headers=headers,
+ )
+
+ @staticmethod
+ def _get_pre_call_type(
+ route_type: Literal["acompletion", "aresponses"]
+ ) -> Literal["completion", "responses"]:
+ if route_type == "acompletion":
+ return "completion"
+ elif route_type == "aresponses":
+ return "responses"