aboutsummaryrefslogtreecommitdiff
path: root/R2R/r2r/vecs/collection.py
diff options
context:
space:
mode:
Diffstat (limited to 'R2R/r2r/vecs/collection.py')
-rwxr-xr-xR2R/r2r/vecs/collection.py1132
1 files changed, 1132 insertions, 0 deletions
diff --git a/R2R/r2r/vecs/collection.py b/R2R/r2r/vecs/collection.py
new file mode 100755
index 00000000..2293d49b
--- /dev/null
+++ b/R2R/r2r/vecs/collection.py
@@ -0,0 +1,1132 @@
+"""
+Defines the 'Collection' class
+
+Importing from the `vecs.collection` directly is not supported.
+All public classes, enums, and functions are re-exported by the top level `vecs` module.
+"""
+
+from __future__ import annotations
+
+import math
+import uuid
+import warnings
+from dataclasses import dataclass
+from enum import Enum
+from typing import (
+ TYPE_CHECKING,
+ Any,
+ Dict,
+ Iterable,
+ List,
+ Optional,
+ Tuple,
+ Union,
+)
+
+import psycopg2
+from flupy import flu
+from sqlalchemy import (
+ Column,
+ MetaData,
+ String,
+ Table,
+ alias,
+ and_,
+ cast,
+ delete,
+ distinct,
+ func,
+ or_,
+ select,
+ text,
+)
+from sqlalchemy.dialects import postgresql
+from sqlalchemy.types import Float, UserDefinedType
+
+from .adapter import Adapter, AdapterContext, NoOp
+from .exc import (
+ ArgError,
+ CollectionAlreadyExists,
+ CollectionNotFound,
+ FilterError,
+ MismatchedDimension,
+ Unreachable,
+)
+
+if TYPE_CHECKING:
+ from vecs.client import Client
+
+
+MetadataValues = Union[str, int, float, bool, List[str]]
+Metadata = Dict[str, MetadataValues]
+Numeric = Union[int, float, complex]
+Record = Tuple[str, Iterable[Numeric], Metadata]
+
+
+class IndexMethod(str, Enum):
+ """
+ An enum representing the index methods available.
+
+ This class currently only supports the 'ivfflat' method but may
+ expand in the future.
+
+ Attributes:
+ auto (str): Automatically choose the best available index method.
+ ivfflat (str): The ivfflat index method.
+ hnsw (str): The hnsw index method.
+ """
+
+ auto = "auto"
+ ivfflat = "ivfflat"
+ hnsw = "hnsw"
+
+
+class IndexMeasure(str, Enum):
+ """
+ An enum representing the types of distance measures available for indexing.
+
+ Attributes:
+ cosine_distance (str): The cosine distance measure for indexing.
+ l2_distance (str): The Euclidean (L2) distance measure for indexing.
+ max_inner_product (str): The maximum inner product measure for indexing.
+ """
+
+ cosine_distance = "cosine_distance"
+ l2_distance = "l2_distance"
+ max_inner_product = "max_inner_product"
+
+
+@dataclass
+class IndexArgsIVFFlat:
+ """
+ A class for arguments that can optionally be supplied to the index creation
+ method when building an IVFFlat type index.
+
+ Attributes:
+ nlist (int): The number of IVF centroids that the index should use
+ """
+
+ n_lists: int
+
+
+@dataclass
+class IndexArgsHNSW:
+ """
+ A class for arguments that can optionally be supplied to the index creation
+ method when building an HNSW type index.
+
+ Ref: https://github.com/pgvector/pgvector#index-options
+
+ Both attributes are Optional in case the user only wants to specify one and
+ leave the other as default
+
+ Attributes:
+ m (int): Maximum number of connections per node per layer (default: 16)
+ ef_construction (int): Size of the dynamic candidate list for
+ constructing the graph (default: 64)
+ """
+
+ m: Optional[int] = 16
+ ef_construction: Optional[int] = 64
+
+
+INDEX_MEASURE_TO_OPS = {
+ # Maps the IndexMeasure enum options to the SQL ops string required by
+ # the pgvector `create index` statement
+ IndexMeasure.cosine_distance: "vector_cosine_ops",
+ IndexMeasure.l2_distance: "vector_l2_ops",
+ IndexMeasure.max_inner_product: "vector_ip_ops",
+}
+
+INDEX_MEASURE_TO_SQLA_ACC = {
+ IndexMeasure.cosine_distance: lambda x: x.cosine_distance,
+ IndexMeasure.l2_distance: lambda x: x.l2_distance,
+ IndexMeasure.max_inner_product: lambda x: x.max_inner_product,
+}
+
+
+class Vector(UserDefinedType):
+ cache_ok = True
+
+ def __init__(self, dim=None):
+ super(UserDefinedType, self).__init__()
+ self.dim = dim
+
+ def get_col_spec(self, **kw):
+ return "VECTOR" if self.dim is None else f"VECTOR({self.dim})"
+
+ def bind_processor(self, dialect):
+ def process(value):
+ if value is None:
+ return value
+ if not isinstance(value, list):
+ raise ValueError("Expected a list")
+ if self.dim is not None and len(value) != self.dim:
+ raise ValueError(
+ f"Expected {self.dim} dimensions, not {len(value)}"
+ )
+ return "[" + ",".join(str(float(v)) for v in value) + "]"
+
+ return process
+
+ def result_processor(self, dialect, coltype):
+ return lambda value: (
+ value
+ if value is None
+ else [float(v) for v in value[1:-1].split(",")]
+ )
+
+ class comparator_factory(UserDefinedType.Comparator):
+ def l2_distance(self, other):
+ return self.op("<->", return_type=Float)(other)
+
+ def max_inner_product(self, other):
+ return self.op("<#>", return_type=Float)(other)
+
+ def cosine_distance(self, other):
+ return self.op("<=>", return_type=Float)(other)
+
+
+class Collection:
+ """
+ The `vecs.Collection` class represents a collection of vectors within a PostgreSQL database with pgvector support.
+ It provides methods to manage (create, delete, fetch, upsert), index, and perform similarity searches on these vector collections.
+
+ The collections are stored in separate tables in the database, with each vector associated with an identifier and optional metadata.
+
+ Example usage:
+
+ with vecs.create_client(DB_CONNECTION) as vx:
+ collection = vx.create_collection(name="docs", dimension=3)
+ collection.upsert([("id1", [1, 1, 1], {"key": "value"})])
+ # Further operations on 'collection'
+
+ Public Attributes:
+ name: The name of the vector collection.
+ dimension: The dimension of vectors in the collection.
+
+ Note: Some methods of this class can raise exceptions from the `vecs.exc` module if errors occur.
+ """
+
+ def __init__(
+ self,
+ name: str,
+ dimension: int,
+ client: Client,
+ adapter: Optional[Adapter] = None,
+ ):
+ """
+ Initializes a new instance of the `Collection` class.
+
+ During expected use, developers initialize instances of `Collection` using the
+ `vecs.Client` with `vecs.Client.create_collection(...)` rather than directly.
+
+ Args:
+ name (str): The name of the collection.
+ dimension (int): The dimension of the vectors in the collection.
+ client (Client): The client to use for interacting with the database.
+ """
+ from r2r.vecs.adapter import Adapter
+
+ self.client = client
+ self.name = name
+ self.dimension = dimension
+ self.table = build_table(name, client.meta, dimension)
+ self._index: Optional[str] = None
+ self.adapter = adapter or Adapter(steps=[NoOp(dimension=dimension)])
+
+ reported_dimensions = set(
+ [
+ x
+ for x in [
+ dimension,
+ adapter.exported_dimension if adapter else None,
+ ]
+ if x is not None
+ ]
+ )
+ if len(reported_dimensions) == 0:
+ raise ArgError(
+ "One of dimension or adapter must provide a dimension"
+ )
+ elif len(reported_dimensions) > 1:
+ raise MismatchedDimension(
+ "Mismatch in the reported dimensions of the selected vector collection and embedding model. Correct the selected embedding model or specify a new vector collection by modifying the `POSTGRES_VECS_COLLECTION` environment variable."
+ )
+
+ def __repr__(self):
+ """
+ Returns a string representation of the `Collection` instance.
+
+ Returns:
+ str: A string representation of the `Collection` instance.
+ """
+ return (
+ f'vecs.Collection(name="{self.name}", dimension={self.dimension})'
+ )
+
+ def __len__(self) -> int:
+ """
+ Returns the number of vectors in the collection.
+
+ Returns:
+ int: The number of vectors in the collection.
+ """
+ with self.client.Session() as sess:
+ with sess.begin():
+ stmt = select(func.count()).select_from(self.table)
+ return sess.execute(stmt).scalar() or 0
+
+ def _create_if_not_exists(self):
+ """
+ PRIVATE
+
+ Creates a new collection in the database if it doesn't already exist
+
+ Returns:
+ Collection: The found or created collection.
+ """
+ query = text(
+ f"""
+ select
+ relname as table_name,
+ atttypmod as embedding_dim
+ from
+ pg_class pc
+ join pg_attribute pa
+ on pc.oid = pa.attrelid
+ where
+ pc.relnamespace = 'vecs'::regnamespace
+ and pc.relkind = 'r'
+ and pa.attname = 'vec'
+ and not pc.relname ^@ '_'
+ and pc.relname = :name
+ """
+ ).bindparams(name=self.name)
+ with self.client.Session() as sess:
+ query_result = sess.execute(query).fetchone()
+
+ if query_result:
+ _, collection_dimension = query_result
+ else:
+ collection_dimension = None
+
+ reported_dimensions = set(
+ [
+ x
+ for x in [self.dimension, collection_dimension]
+ if x is not None
+ ]
+ )
+ if len(reported_dimensions) > 1:
+ raise MismatchedDimension(
+ "Dimensions reported by adapter, dimension, and collection do not match. The likely cause of this is a mismatch between the dimensions of the selected vector collection and embedding model. Select the correct embedding model, or specify a new vector collection by modifying your `POSTGRES_VECS_COLLECTION` environment variable. If the selected colelction does not exist then it will be automatically with dimensions that match the selected embedding model."
+ )
+
+ if not collection_dimension:
+ self.table.create(self.client.engine)
+
+ return self
+
+ def _create(self):
+ """
+ PRIVATE
+
+ Creates a new collection in the database. Raises a `vecs.exc.CollectionAlreadyExists`
+ exception if a collection with the specified name already exists.
+
+ Returns:
+ Collection: The newly created collection.
+ """
+
+ collection_exists = self.__class__._does_collection_exist(
+ self.client, self.name
+ )
+ if collection_exists:
+ raise CollectionAlreadyExists(
+ "Collection with requested name already exists"
+ )
+ self.table.create(self.client.engine)
+
+ unique_string = str(uuid.uuid4()).replace("-", "_")[0:7]
+ with self.client.Session() as sess:
+ sess.execute(
+ text(
+ f"""
+ create index ix_meta_{unique_string}
+ on vecs."{self.table.name}"
+ using gin ( metadata jsonb_path_ops )
+ """
+ )
+ )
+ return self
+
+ def _drop(self):
+ """
+ PRIVATE
+
+ Deletes the collection from the database. Raises a `vecs.exc.CollectionNotFound`
+ exception if no collection with the specified name exists.
+
+ Returns:
+ Collection: The deleted collection.
+ """
+ with self.client.Session() as sess:
+ sess.execute(text(f"DROP TABLE IF EXISTS {self.name} CASCADE"))
+ sess.commit()
+
+ return self
+
+ def get_unique_metadata_values(
+ self,
+ field: str,
+ filter_field: Optional[str] = None,
+ filter_value: Optional[MetadataValues] = None,
+ ) -> List[MetadataValues]:
+ """
+ Fetches all unique metadata values of a specific field, optionally filtered by another metadata field.
+ Args:
+ field (str): The metadata field for which to fetch unique values.
+ filter_field (Optional[str], optional): The metadata field to filter on. Defaults to None.
+ filter_value (Optional[MetadataValues], optional): The value to filter the metadata field with. Defaults to None.
+ Returns:
+ List[MetadataValues]: A list of unique metadata values for the specified field.
+ """
+ with self.client.Session() as sess:
+ with sess.begin():
+ stmt = select(
+ distinct(self.table.c.metadata[field].astext)
+ ).where(self.table.c.metadata[field] != None)
+
+ if filter_field is not None and filter_value is not None:
+ stmt = stmt.where(
+ self.table.c.metadata[filter_field].astext
+ == str(filter_value)
+ )
+
+ result = sess.execute(stmt)
+ unique_values = result.scalars().all()
+
+ return unique_values
+
+ def copy(
+ self,
+ records: Iterable[Tuple[str, Any, Metadata]],
+ skip_adapter: bool = False,
+ ) -> None:
+ """
+ Copies records into the collection.
+
+ Args:
+ records (Iterable[Tuple[str, Any, Metadata]]): An iterable of content to copy.
+ Each record is a tuple where:
+ - the first element is a unique string identifier
+ - the second element is an iterable of numeric values or relevant input type for the
+ adapter assigned to the collection
+ - the third element is metadata associated with the vector
+
+ skip_adapter (bool): Should the adapter be skipped while copying. i.e. if vectors are being
+ provided, rather than a media type that needs to be transformed
+ """
+ import csv
+ import io
+ import json
+ import os
+
+ pipeline = flu(records)
+ for record in pipeline:
+ with psycopg2.connect(
+ database=os.getenv("POSTGRES_DBNAME"),
+ user=os.getenv("POSTGRES_USER"),
+ password=os.getenv("POSTGRES_PASSWORD"),
+ host=os.getenv("POSTGRES_HOST"),
+ port=os.getenv("POSTGRES_PORT"),
+ ) as conn:
+ with conn.cursor() as cur:
+ f = io.StringIO()
+ id, vec, metadata = record
+
+ writer = csv.writer(f, delimiter=",", quotechar='"')
+ writer.writerow(
+ [
+ str(id),
+ [float(ele) for ele in vec],
+ json.dumps(metadata),
+ ]
+ )
+ f.seek(0)
+ result = f.getvalue()
+
+ writer_name = (
+ f'vecs."{self.table.fullname.split(".")[-1]}"'
+ )
+ g = io.StringIO(result)
+ cur.copy_expert(
+ f"COPY {writer_name}(id, vec, metadata) FROM STDIN WITH (FORMAT csv)",
+ g,
+ )
+ conn.commit()
+ cur.close()
+ conn.close()
+
+ def upsert(
+ self,
+ records: Iterable[Tuple[str, Any, Metadata]],
+ skip_adapter: bool = False,
+ ) -> None:
+ """
+ Inserts or updates *vectors* records in the collection.
+
+ Args:
+ records (Iterable[Tuple[str, Any, Metadata]]): An iterable of content to upsert.
+ Each record is a tuple where:
+ - the first element is a unique string identifier
+ - the second element is an iterable of numeric values or relevant input type for the
+ adapter assigned to the collection
+ - the third element is metadata associated with the vector
+
+ skip_adapter (bool): Should the adapter be skipped while upserting. i.e. if vectors are being
+ provided, rather than a media type that needs to be transformed
+ """
+
+ chunk_size = 512
+
+ if skip_adapter:
+ pipeline = flu(records).chunk(chunk_size)
+ else:
+ # Construct a lazy pipeline of steps to transform and chunk user input
+ pipeline = flu(
+ self.adapter(records, AdapterContext("upsert"))
+ ).chunk(chunk_size)
+
+ with self.client.Session() as sess:
+ with sess.begin():
+ for chunk in pipeline:
+ stmt = postgresql.insert(self.table).values(chunk)
+ stmt = stmt.on_conflict_do_update(
+ index_elements=[self.table.c.id],
+ set_=dict(
+ vec=stmt.excluded.vec,
+ metadata=stmt.excluded.metadata,
+ ),
+ )
+ sess.execute(stmt)
+ return None
+
+ def fetch(self, ids: Iterable[str]) -> List[Record]:
+ """
+ Fetches vectors from the collection by their identifiers.
+
+ Args:
+ ids (Iterable[str]): An iterable of vector identifiers.
+
+ Returns:
+ List[Record]: A list of the fetched vectors.
+ """
+ if isinstance(ids, str):
+ raise ArgError("ids must be a list of strings")
+
+ chunk_size = 12
+ records = []
+ with self.client.Session() as sess:
+ with sess.begin():
+ for id_chunk in flu(ids).chunk(chunk_size):
+ stmt = select(self.table).where(
+ self.table.c.id.in_(id_chunk)
+ )
+ chunk_records = sess.execute(stmt)
+ records.extend(chunk_records)
+ return records
+
+ def delete(
+ self,
+ ids: Optional[Iterable[str]] = None,
+ filters: Optional[Dict[str, Any]] = None,
+ ) -> List[str]:
+ """
+ Deletes vectors from the collection by matching filters or ids.
+
+ Args:
+ ids (Iterable[str], optional): An iterable of vector identifiers.
+ filters (Optional[Dict], optional): Filters to apply to the search. Defaults to None.
+
+ Returns:
+ List[str]: A list of the document IDs of the deleted vectors.
+ """
+ if ids is None and filters is None:
+ raise ArgError("Either ids or filters must be provided.")
+
+ if ids is not None and filters is not None:
+ raise ArgError("Either ids or filters must be provided, not both.")
+
+ if isinstance(ids, str):
+ raise ArgError("ids must be a list of strings")
+
+ ids = ids or []
+ filters = filters or {}
+ del_document_ids = set([])
+
+ with self.client.Session() as sess:
+ with sess.begin():
+ if ids:
+ for id_chunk in flu(ids).chunk(12):
+ stmt = select(self.table.c.metadata).where(
+ self.table.c.id.in_(id_chunk)
+ )
+ results = sess.execute(stmt).fetchall()
+ for result in results:
+ metadata_json = result[0]
+ document_id = metadata_json.get("document_id")
+ if document_id:
+ del_document_ids.add(document_id)
+
+ delete_stmt = (
+ delete(self.table)
+ .where(self.table.c.id.in_(id_chunk))
+ .returning(self.table.c.id)
+ )
+ sess.execute(delete_stmt)
+
+ if filters:
+ meta_filter = build_filters(self.table.c.metadata, filters)
+ stmt = select(self.table.c.metadata).where(meta_filter)
+ results = sess.execute(stmt).fetchall()
+ for result in results:
+ metadata_json = result[0]
+ document_id = metadata_json.get("document_id")
+ if document_id:
+ del_document_ids.add(document_id)
+
+ delete_stmt = (
+ delete(self.table)
+ .where(meta_filter)
+ .returning(self.table.c.id)
+ )
+ sess.execute(delete_stmt)
+
+ return list(del_document_ids)
+
+ def __getitem__(self, items):
+ """
+ Fetches a vector from the collection by its identifier.
+
+ Args:
+ items (str): The identifier of the vector.
+
+ Returns:
+ Record: The fetched vector.
+ """
+ if not isinstance(items, str):
+ raise ArgError("items must be a string id")
+
+ row = self.fetch([items])
+
+ if row == []:
+ raise KeyError("no item found with requested id")
+ return row[0]
+
+ def query(
+ self,
+ data: Union[Iterable[Numeric], Any],
+ limit: int = 10,
+ filters: Optional[Dict] = None,
+ measure: Union[IndexMeasure, str] = IndexMeasure.cosine_distance,
+ include_value: bool = False,
+ include_metadata: bool = False,
+ *,
+ probes: Optional[int] = None,
+ ef_search: Optional[int] = None,
+ skip_adapter: bool = False,
+ ) -> Union[List[Record], List[str]]:
+ """
+ Executes a similarity search in the collection.
+
+ The return type is dependent on arguments *include_value* and *include_metadata*
+
+ Args:
+ data (Any): The vector to use as the query.
+ limit (int, optional): The maximum number of results to return. Defaults to 10.
+ filters (Optional[Dict], optional): Filters to apply to the search. Defaults to None.
+ measure (Union[IndexMeasure, str], optional): The distance measure to use for the search. Defaults to 'cosine_distance'.
+ include_value (bool, optional): Whether to include the distance value in the results. Defaults to False.
+ include_metadata (bool, optional): Whether to include the metadata in the results. Defaults to False.
+ probes (Optional[Int], optional): Number of ivfflat index lists to query. Higher increases accuracy but decreases speed
+ ef_search (Optional[Int], optional): Size of the dynamic candidate list for HNSW index search. Higher increases accuracy but decreases speed
+ skip_adapter (bool, optional): When True, skips any associated adapter and queries using a literal vector provided to *data*
+
+ Returns:
+ Union[List[Record], List[str]]: The result of the similarity search.
+ """
+
+ if probes is None:
+ probes = 10
+
+ if ef_search is None:
+ ef_search = 40
+
+ if not isinstance(probes, int):
+ raise ArgError("probes must be an integer")
+
+ if probes < 1:
+ raise ArgError("probes must be >= 1")
+
+ if limit > 1000:
+ raise ArgError("limit must be <= 1000")
+
+ # ValueError on bad input
+ try:
+ imeasure = IndexMeasure(measure)
+ except ValueError:
+ raise ArgError("Invalid index measure")
+
+ if not self.is_indexed_for_measure(imeasure):
+ warnings.warn(
+ UserWarning(
+ f"Query does not have a covering index for {imeasure}. See Collection.create_index"
+ )
+ )
+
+ if skip_adapter:
+ adapted_query = [("", data, {})]
+ else:
+ # Adapt the query using the pipeline
+ adapted_query = [
+ x
+ for x in self.adapter(
+ records=[("", data, {})],
+ adapter_context=AdapterContext("query"),
+ )
+ ]
+
+ if len(adapted_query) != 1:
+ raise ArgError(
+ "Failed to produce exactly one query vector from input"
+ )
+
+ _, vec, _ = adapted_query[0]
+
+ distance_lambda = INDEX_MEASURE_TO_SQLA_ACC.get(imeasure)
+ if distance_lambda is None:
+ # unreachable
+ raise ArgError("invalid distance_measure") # pragma: no cover
+
+ distance_clause = distance_lambda(self.table.c.vec)(vec)
+
+ cols = [self.table.c.id]
+
+ if include_value:
+ cols.append(distance_clause)
+
+ if include_metadata:
+ cols.append(self.table.c.metadata)
+
+ stmt = select(*cols)
+ if filters:
+ stmt = stmt.filter(
+ build_filters(self.table.c.metadata, filters) # type: ignore
+ )
+
+ stmt = stmt.order_by(distance_clause)
+ stmt = stmt.limit(limit)
+
+ with self.client.Session() as sess:
+ with sess.begin():
+ # index ignored if greater than n_lists
+ sess.execute(
+ text("set local ivfflat.probes = :probes").bindparams(
+ probes=probes
+ )
+ )
+ if self.client._supports_hnsw():
+ sess.execute(
+ text(
+ "set local hnsw.ef_search = :ef_search"
+ ).bindparams(ef_search=ef_search)
+ )
+ if len(cols) == 1:
+ return [str(x) for x in sess.scalars(stmt).fetchall()]
+ return sess.execute(stmt).fetchall() or []
+
+ @classmethod
+ def _list_collections(cls, client: "Client") -> List["Collection"]:
+ """
+ PRIVATE
+
+ Retrieves all collections from the database.
+
+ Args:
+ client (Client): The database client.
+
+ Returns:
+ List[Collection]: A list of all existing collections.
+ """
+
+ query = text(
+ """
+ select
+ relname as table_name,
+ atttypmod as embedding_dim
+ from
+ pg_class pc
+ join pg_attribute pa
+ on pc.oid = pa.attrelid
+ where
+ pc.relnamespace = 'vecs'::regnamespace
+ and pc.relkind = 'r'
+ and pa.attname = 'vec'
+ and not pc.relname ^@ '_'
+ """
+ )
+ xc = []
+ with client.Session() as sess:
+ for name, dimension in sess.execute(query):
+ existing_collection = cls(name, dimension, client)
+ xc.append(existing_collection)
+ return xc
+
+ @classmethod
+ def _does_collection_exist(cls, client: "Client", name: str) -> bool:
+ """
+ PRIVATE
+
+ Checks if a collection with a given name exists within the database
+
+ Args:
+ client (Client): The database client.
+ name (str): The name of the collection
+
+ Returns:
+ Exists: Whether the collection exists or not
+ """
+
+ try:
+ client.get_collection(name)
+ return True
+ except CollectionNotFound:
+ return False
+
+ @property
+ def index(self) -> Optional[str]:
+ """
+ PRIVATE
+
+ Note:
+ The `index` property is private and expected to undergo refactoring.
+ Do not rely on it's output.
+
+ Retrieves the SQL name of the collection's vector index, if it exists.
+
+ Returns:
+ Optional[str]: The name of the index, or None if no index exists.
+ """
+
+ if self._index is None:
+ query = text(
+ """
+ select
+ relname as table_name
+ from
+ pg_class pc
+ where
+ pc.relnamespace = 'vecs'::regnamespace
+ and relname ilike 'ix_vector%'
+ and pc.relkind = 'i'
+ """
+ )
+ with self.client.Session() as sess:
+ ix_name = sess.execute(query).scalar()
+ self._index = ix_name
+ return self._index
+
+ def is_indexed_for_measure(self, measure: IndexMeasure):
+ """
+ Checks if the collection is indexed for a specific measure.
+
+ Args:
+ measure (IndexMeasure): The measure to check for.
+
+ Returns:
+ bool: True if the collection is indexed for the measure, False otherwise.
+ """
+
+ index_name = self.index
+ if index_name is None:
+ return False
+
+ ops = INDEX_MEASURE_TO_OPS.get(measure)
+ if ops is None:
+ return False
+
+ if ops in index_name:
+ return True
+
+ return False
+
+ def create_index(
+ self,
+ measure: IndexMeasure = IndexMeasure.cosine_distance,
+ method: IndexMethod = IndexMethod.auto,
+ index_arguments: Optional[
+ Union[IndexArgsIVFFlat, IndexArgsHNSW]
+ ] = None,
+ replace=True,
+ ) -> None:
+ """
+ Creates an index for the collection.
+
+ Note:
+ When `vecs` creates an index on a pgvector column in PostgreSQL, it uses a multi-step
+ process that enables performant indexes to be built for large collections with low end
+ database hardware.
+
+ Those steps are:
+
+ - Creates a new table with a different name
+ - Randomly selects records from the existing table
+ - Inserts the random records from the existing table into the new table
+ - Creates the requested vector index on the new table
+ - Upserts all data from the existing table into the new table
+ - Drops the existing table
+ - Renames the new table to the existing tables name
+
+ If you create dependencies (like views) on the table that underpins
+ a `vecs.Collection` the `create_index` step may require you to drop those dependencies before
+ it will succeed.
+
+ Args:
+ measure (IndexMeasure, optional): The measure to index for. Defaults to 'cosine_distance'.
+ method (IndexMethod, optional): The indexing method to use. Defaults to 'auto'.
+ index_arguments: (IndexArgsIVFFlat | IndexArgsHNSW, optional): Index type specific arguments
+ replace (bool, optional): Whether to replace the existing index. Defaults to True.
+
+ Raises:
+ ArgError: If an invalid index method is used, or if *replace* is False and an index already exists.
+ """
+
+ if method not in (
+ IndexMethod.ivfflat,
+ IndexMethod.hnsw,
+ IndexMethod.auto,
+ ):
+ raise ArgError("invalid index method")
+
+ if index_arguments:
+ # Disallow case where user submits index arguments but uses the
+ # IndexMethod.auto index (index build arguments should only be
+ # used with a specific index)
+ if method == IndexMethod.auto:
+ raise ArgError(
+ "Index build parameters are not allowed when using the IndexMethod.auto index."
+ )
+ # Disallow case where user specifies one index type but submits
+ # index build arguments for the other index type
+ if (
+ isinstance(index_arguments, IndexArgsHNSW)
+ and method != IndexMethod.hnsw
+ ) or (
+ isinstance(index_arguments, IndexArgsIVFFlat)
+ and method != IndexMethod.ivfflat
+ ):
+ raise ArgError(
+ f"{index_arguments.__class__.__name__} build parameters were supplied but {method} index was specified."
+ )
+
+ if method == IndexMethod.auto:
+ if self.client._supports_hnsw():
+ method = IndexMethod.hnsw
+ else:
+ method = IndexMethod.ivfflat
+
+ if method == IndexMethod.hnsw and not self.client._supports_hnsw():
+ raise ArgError(
+ "HNSW Unavailable. Upgrade your pgvector installation to > 0.5.0 to enable HNSW support"
+ )
+
+ ops = INDEX_MEASURE_TO_OPS.get(measure)
+ if ops is None:
+ raise ArgError("Unknown index measure")
+
+ unique_string = str(uuid.uuid4()).replace("-", "_")[0:7]
+
+ with self.client.Session() as sess:
+ with sess.begin():
+ if self.index is not None:
+ if replace:
+ sess.execute(text(f'drop index vecs."{self.index}";'))
+ self._index = None
+ else:
+ raise ArgError(
+ "replace is set to False but an index exists"
+ )
+
+ if method == IndexMethod.ivfflat:
+ if not index_arguments:
+ n_records: int = sess.execute(func.count(self.table.c.id)).scalar() # type: ignore
+
+ n_lists = (
+ int(max(n_records / 1000, 30))
+ if n_records < 1_000_000
+ else int(math.sqrt(n_records))
+ )
+ else:
+ # The following mypy error is ignored because mypy
+ # complains that `index_arguments` is typed as a union
+ # of IndexArgsIVFFlat and IndexArgsHNSW types,
+ # which both don't necessarily contain the `n_lists`
+ # parameter, however we have validated that the
+ # correct type is being used above.
+ n_lists = index_arguments.n_lists # type: ignore
+
+ sess.execute(
+ text(
+ f"""
+ create index ix_{ops}_ivfflat_nl{n_lists}_{unique_string}
+ on vecs."{self.table.name}"
+ using ivfflat (vec {ops}) with (lists={n_lists})
+ """
+ )
+ )
+
+ if method == IndexMethod.hnsw:
+ if not index_arguments:
+ index_arguments = IndexArgsHNSW()
+
+ # See above for explanation of why the following lines
+ # are ignored
+ m = index_arguments.m # type: ignore
+ ef_construction = index_arguments.ef_construction # type: ignore
+
+ sess.execute(
+ text(
+ f"""
+ create index ix_{ops}_hnsw_m{m}_efc{ef_construction}_{unique_string}
+ on vecs."{self.table.name}"
+ using hnsw (vec {ops}) WITH (m={m}, ef_construction={ef_construction});
+ """
+ )
+ )
+
+ return None
+
+
+def build_filters(json_col: Column, filters: Dict):
+ """
+ Builds filters for SQL query based on provided dictionary.
+
+ Args:
+ json_col (Column): The column in the database table.
+ filters (Dict): The dictionary specifying filter conditions.
+
+ Raises:
+ FilterError: If filter conditions are not correctly formatted.
+
+ Returns:
+ The filter clause for the SQL query.
+ """
+ if not isinstance(filters, dict):
+ raise FilterError("filters must be a dict")
+
+ filter_clauses = []
+
+ for key, value in filters.items():
+ if not isinstance(key, str):
+ raise FilterError("*filters* keys must be strings")
+
+ if isinstance(value, dict):
+ if len(value) > 1:
+ raise FilterError("only one operator permitted per key")
+ for operator, clause in value.items():
+ if operator not in (
+ "$eq",
+ "$ne",
+ "$lt",
+ "$lte",
+ "$gt",
+ "$gte",
+ "$in",
+ ):
+ raise FilterError("unknown operator")
+
+ if operator == "$eq" and not hasattr(clause, "__len__"):
+ contains_value = cast({key: clause}, postgresql.JSONB)
+ filter_clauses.append(json_col.op("@>")(contains_value))
+ elif operator == "$in":
+ if not isinstance(clause, list):
+ raise FilterError(
+ "argument to $in filter must be a list"
+ )
+ for elem in clause:
+ if not isinstance(elem, (int, str, float)):
+ raise FilterError(
+ "argument to $in filter must be a list of scalars"
+ )
+ contains_value = [
+ cast(elem, postgresql.JSONB) for elem in clause
+ ]
+ filter_clauses.append(
+ json_col.op("->")(key).in_(contains_value)
+ )
+ else:
+ matches_value = cast(clause, postgresql.JSONB)
+ if operator == "$eq":
+ filter_clauses.append(
+ json_col.op("->")(key) == matches_value
+ )
+ elif operator == "$ne":
+ filter_clauses.append(
+ json_col.op("->")(key) != matches_value
+ )
+ elif operator == "$lt":
+ filter_clauses.append(
+ json_col.op("->")(key) < matches_value
+ )
+ elif operator == "$lte":
+ filter_clauses.append(
+ json_col.op("->")(key) <= matches_value
+ )
+ elif operator == "$gt":
+ filter_clauses.append(
+ json_col.op("->")(key) > matches_value
+ )
+ elif operator == "$gte":
+ filter_clauses.append(
+ json_col.op("->")(key) >= matches_value
+ )
+ else:
+ raise Unreachable()
+ else:
+ raise FilterError("Filter value must be a dict with an operator")
+
+ if len(filter_clauses) == 1:
+ return filter_clauses[0]
+ else:
+ return and_(*filter_clauses)
+
+
+def build_table(name: str, meta: MetaData, dimension: int) -> Table:
+ """
+ PRIVATE
+
+ Builds a SQLAlchemy model underpinning a `vecs.Collection`.
+
+ Args:
+ name (str): The name of the table.
+ meta (MetaData): MetaData instance associated with the SQL database.
+ dimension: The dimension of the vectors in the collection.
+
+ Returns:
+ Table: The constructed SQL table.
+ """
+ return Table(
+ name,
+ meta,
+ Column("id", String, primary_key=True),
+ Column("vec", Vector(dimension), nullable=False),
+ Column(
+ "metadata",
+ postgresql.JSONB,
+ server_default=text("'{}'::jsonb"),
+ nullable=False,
+ ),
+ extend_existing=True,
+ )