1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
|
"""
Defines the 'Collection' class
Importing from the `vecs.collection` directly is not supported.
All public classes, enums, and functions are re-exported by the top level `vecs` module.
"""
from __future__ import annotations
import math
import uuid
import warnings
from dataclasses import dataclass
from enum import Enum
from typing import (
TYPE_CHECKING,
Any,
Dict,
Iterable,
List,
Optional,
Tuple,
Union,
)
import psycopg2
from flupy import flu
from sqlalchemy import (
Column,
MetaData,
String,
Table,
alias,
and_,
cast,
delete,
distinct,
func,
or_,
select,
text,
)
from sqlalchemy.dialects import postgresql
from sqlalchemy.types import Float, UserDefinedType
from .adapter import Adapter, AdapterContext, NoOp
from .exc import (
ArgError,
CollectionAlreadyExists,
CollectionNotFound,
FilterError,
MismatchedDimension,
Unreachable,
)
if TYPE_CHECKING:
from vecs.client import Client
MetadataValues = Union[str, int, float, bool, List[str]]
Metadata = Dict[str, MetadataValues]
Numeric = Union[int, float, complex]
Record = Tuple[str, Iterable[Numeric], Metadata]
class IndexMethod(str, Enum):
"""
An enum representing the index methods available.
This class currently only supports the 'ivfflat' method but may
expand in the future.
Attributes:
auto (str): Automatically choose the best available index method.
ivfflat (str): The ivfflat index method.
hnsw (str): The hnsw index method.
"""
auto = "auto"
ivfflat = "ivfflat"
hnsw = "hnsw"
class IndexMeasure(str, Enum):
"""
An enum representing the types of distance measures available for indexing.
Attributes:
cosine_distance (str): The cosine distance measure for indexing.
l2_distance (str): The Euclidean (L2) distance measure for indexing.
max_inner_product (str): The maximum inner product measure for indexing.
"""
cosine_distance = "cosine_distance"
l2_distance = "l2_distance"
max_inner_product = "max_inner_product"
@dataclass
class IndexArgsIVFFlat:
"""
A class for arguments that can optionally be supplied to the index creation
method when building an IVFFlat type index.
Attributes:
nlist (int): The number of IVF centroids that the index should use
"""
n_lists: int
@dataclass
class IndexArgsHNSW:
"""
A class for arguments that can optionally be supplied to the index creation
method when building an HNSW type index.
Ref: https://github.com/pgvector/pgvector#index-options
Both attributes are Optional in case the user only wants to specify one and
leave the other as default
Attributes:
m (int): Maximum number of connections per node per layer (default: 16)
ef_construction (int): Size of the dynamic candidate list for
constructing the graph (default: 64)
"""
m: Optional[int] = 16
ef_construction: Optional[int] = 64
INDEX_MEASURE_TO_OPS = {
# Maps the IndexMeasure enum options to the SQL ops string required by
# the pgvector `create index` statement
IndexMeasure.cosine_distance: "vector_cosine_ops",
IndexMeasure.l2_distance: "vector_l2_ops",
IndexMeasure.max_inner_product: "vector_ip_ops",
}
INDEX_MEASURE_TO_SQLA_ACC = {
IndexMeasure.cosine_distance: lambda x: x.cosine_distance,
IndexMeasure.l2_distance: lambda x: x.l2_distance,
IndexMeasure.max_inner_product: lambda x: x.max_inner_product,
}
class Vector(UserDefinedType):
cache_ok = True
def __init__(self, dim=None):
super(UserDefinedType, self).__init__()
self.dim = dim
def get_col_spec(self, **kw):
return "VECTOR" if self.dim is None else f"VECTOR({self.dim})"
def bind_processor(self, dialect):
def process(value):
if value is None:
return value
if not isinstance(value, list):
raise ValueError("Expected a list")
if self.dim is not None and len(value) != self.dim:
raise ValueError(
f"Expected {self.dim} dimensions, not {len(value)}"
)
return "[" + ",".join(str(float(v)) for v in value) + "]"
return process
def result_processor(self, dialect, coltype):
return lambda value: (
value
if value is None
else [float(v) for v in value[1:-1].split(",")]
)
class comparator_factory(UserDefinedType.Comparator):
def l2_distance(self, other):
return self.op("<->", return_type=Float)(other)
def max_inner_product(self, other):
return self.op("<#>", return_type=Float)(other)
def cosine_distance(self, other):
return self.op("<=>", return_type=Float)(other)
class Collection:
"""
The `vecs.Collection` class represents a collection of vectors within a PostgreSQL database with pgvector support.
It provides methods to manage (create, delete, fetch, upsert), index, and perform similarity searches on these vector collections.
The collections are stored in separate tables in the database, with each vector associated with an identifier and optional metadata.
Example usage:
with vecs.create_client(DB_CONNECTION) as vx:
collection = vx.create_collection(name="docs", dimension=3)
collection.upsert([("id1", [1, 1, 1], {"key": "value"})])
# Further operations on 'collection'
Public Attributes:
name: The name of the vector collection.
dimension: The dimension of vectors in the collection.
Note: Some methods of this class can raise exceptions from the `vecs.exc` module if errors occur.
"""
def __init__(
self,
name: str,
dimension: int,
client: Client,
adapter: Optional[Adapter] = None,
):
"""
Initializes a new instance of the `Collection` class.
During expected use, developers initialize instances of `Collection` using the
`vecs.Client` with `vecs.Client.create_collection(...)` rather than directly.
Args:
name (str): The name of the collection.
dimension (int): The dimension of the vectors in the collection.
client (Client): The client to use for interacting with the database.
"""
from r2r.vecs.adapter import Adapter
self.client = client
self.name = name
self.dimension = dimension
self.table = build_table(name, client.meta, dimension)
self._index: Optional[str] = None
self.adapter = adapter or Adapter(steps=[NoOp(dimension=dimension)])
reported_dimensions = set(
[
x
for x in [
dimension,
adapter.exported_dimension if adapter else None,
]
if x is not None
]
)
if len(reported_dimensions) == 0:
raise ArgError(
"One of dimension or adapter must provide a dimension"
)
elif len(reported_dimensions) > 1:
raise MismatchedDimension(
"Mismatch in the reported dimensions of the selected vector collection and embedding model. Correct the selected embedding model or specify a new vector collection by modifying the `POSTGRES_VECS_COLLECTION` environment variable."
)
def __repr__(self):
"""
Returns a string representation of the `Collection` instance.
Returns:
str: A string representation of the `Collection` instance.
"""
return (
f'vecs.Collection(name="{self.name}", dimension={self.dimension})'
)
def __len__(self) -> int:
"""
Returns the number of vectors in the collection.
Returns:
int: The number of vectors in the collection.
"""
with self.client.Session() as sess:
with sess.begin():
stmt = select(func.count()).select_from(self.table)
return sess.execute(stmt).scalar() or 0
def _create_if_not_exists(self):
"""
PRIVATE
Creates a new collection in the database if it doesn't already exist
Returns:
Collection: The found or created collection.
"""
query = text(
f"""
select
relname as table_name,
atttypmod as embedding_dim
from
pg_class pc
join pg_attribute pa
on pc.oid = pa.attrelid
where
pc.relnamespace = 'vecs'::regnamespace
and pc.relkind = 'r'
and pa.attname = 'vec'
and not pc.relname ^@ '_'
and pc.relname = :name
"""
).bindparams(name=self.name)
with self.client.Session() as sess:
query_result = sess.execute(query).fetchone()
if query_result:
_, collection_dimension = query_result
else:
collection_dimension = None
reported_dimensions = set(
[
x
for x in [self.dimension, collection_dimension]
if x is not None
]
)
if len(reported_dimensions) > 1:
raise MismatchedDimension(
"Dimensions reported by adapter, dimension, and collection do not match. The likely cause of this is a mismatch between the dimensions of the selected vector collection and embedding model. Select the correct embedding model, or specify a new vector collection by modifying your `POSTGRES_VECS_COLLECTION` environment variable. If the selected colelction does not exist then it will be automatically with dimensions that match the selected embedding model."
)
if not collection_dimension:
self.table.create(self.client.engine)
return self
def _create(self):
"""
PRIVATE
Creates a new collection in the database. Raises a `vecs.exc.CollectionAlreadyExists`
exception if a collection with the specified name already exists.
Returns:
Collection: The newly created collection.
"""
collection_exists = self.__class__._does_collection_exist(
self.client, self.name
)
if collection_exists:
raise CollectionAlreadyExists(
"Collection with requested name already exists"
)
self.table.create(self.client.engine)
unique_string = str(uuid.uuid4()).replace("-", "_")[0:7]
with self.client.Session() as sess:
sess.execute(
text(
f"""
create index ix_meta_{unique_string}
on vecs."{self.table.name}"
using gin ( metadata jsonb_path_ops )
"""
)
)
return self
def _drop(self):
"""
PRIVATE
Deletes the collection from the database. Raises a `vecs.exc.CollectionNotFound`
exception if no collection with the specified name exists.
Returns:
Collection: The deleted collection.
"""
with self.client.Session() as sess:
sess.execute(text(f"DROP TABLE IF EXISTS {self.name} CASCADE"))
sess.commit()
return self
def get_unique_metadata_values(
self,
field: str,
filter_field: Optional[str] = None,
filter_value: Optional[MetadataValues] = None,
) -> List[MetadataValues]:
"""
Fetches all unique metadata values of a specific field, optionally filtered by another metadata field.
Args:
field (str): The metadata field for which to fetch unique values.
filter_field (Optional[str], optional): The metadata field to filter on. Defaults to None.
filter_value (Optional[MetadataValues], optional): The value to filter the metadata field with. Defaults to None.
Returns:
List[MetadataValues]: A list of unique metadata values for the specified field.
"""
with self.client.Session() as sess:
with sess.begin():
stmt = select(
distinct(self.table.c.metadata[field].astext)
).where(self.table.c.metadata[field] != None)
if filter_field is not None and filter_value is not None:
stmt = stmt.where(
self.table.c.metadata[filter_field].astext
== str(filter_value)
)
result = sess.execute(stmt)
unique_values = result.scalars().all()
return unique_values
def copy(
self,
records: Iterable[Tuple[str, Any, Metadata]],
skip_adapter: bool = False,
) -> None:
"""
Copies records into the collection.
Args:
records (Iterable[Tuple[str, Any, Metadata]]): An iterable of content to copy.
Each record is a tuple where:
- the first element is a unique string identifier
- the second element is an iterable of numeric values or relevant input type for the
adapter assigned to the collection
- the third element is metadata associated with the vector
skip_adapter (bool): Should the adapter be skipped while copying. i.e. if vectors are being
provided, rather than a media type that needs to be transformed
"""
import csv
import io
import json
import os
pipeline = flu(records)
for record in pipeline:
with psycopg2.connect(
database=os.getenv("POSTGRES_DBNAME"),
user=os.getenv("POSTGRES_USER"),
password=os.getenv("POSTGRES_PASSWORD"),
host=os.getenv("POSTGRES_HOST"),
port=os.getenv("POSTGRES_PORT"),
) as conn:
with conn.cursor() as cur:
f = io.StringIO()
id, vec, metadata = record
writer = csv.writer(f, delimiter=",", quotechar='"')
writer.writerow(
[
str(id),
[float(ele) for ele in vec],
json.dumps(metadata),
]
)
f.seek(0)
result = f.getvalue()
writer_name = (
f'vecs."{self.table.fullname.split(".")[-1]}"'
)
g = io.StringIO(result)
cur.copy_expert(
f"COPY {writer_name}(id, vec, metadata) FROM STDIN WITH (FORMAT csv)",
g,
)
conn.commit()
cur.close()
conn.close()
def upsert(
self,
records: Iterable[Tuple[str, Any, Metadata]],
skip_adapter: bool = False,
) -> None:
"""
Inserts or updates *vectors* records in the collection.
Args:
records (Iterable[Tuple[str, Any, Metadata]]): An iterable of content to upsert.
Each record is a tuple where:
- the first element is a unique string identifier
- the second element is an iterable of numeric values or relevant input type for the
adapter assigned to the collection
- the third element is metadata associated with the vector
skip_adapter (bool): Should the adapter be skipped while upserting. i.e. if vectors are being
provided, rather than a media type that needs to be transformed
"""
chunk_size = 512
if skip_adapter:
pipeline = flu(records).chunk(chunk_size)
else:
# Construct a lazy pipeline of steps to transform and chunk user input
pipeline = flu(
self.adapter(records, AdapterContext("upsert"))
).chunk(chunk_size)
with self.client.Session() as sess:
with sess.begin():
for chunk in pipeline:
stmt = postgresql.insert(self.table).values(chunk)
stmt = stmt.on_conflict_do_update(
index_elements=[self.table.c.id],
set_=dict(
vec=stmt.excluded.vec,
metadata=stmt.excluded.metadata,
),
)
sess.execute(stmt)
return None
def fetch(self, ids: Iterable[str]) -> List[Record]:
"""
Fetches vectors from the collection by their identifiers.
Args:
ids (Iterable[str]): An iterable of vector identifiers.
Returns:
List[Record]: A list of the fetched vectors.
"""
if isinstance(ids, str):
raise ArgError("ids must be a list of strings")
chunk_size = 12
records = []
with self.client.Session() as sess:
with sess.begin():
for id_chunk in flu(ids).chunk(chunk_size):
stmt = select(self.table).where(
self.table.c.id.in_(id_chunk)
)
chunk_records = sess.execute(stmt)
records.extend(chunk_records)
return records
def delete(
self,
ids: Optional[Iterable[str]] = None,
filters: Optional[Dict[str, Any]] = None,
) -> List[str]:
"""
Deletes vectors from the collection by matching filters or ids.
Args:
ids (Iterable[str], optional): An iterable of vector identifiers.
filters (Optional[Dict], optional): Filters to apply to the search. Defaults to None.
Returns:
List[str]: A list of the document IDs of the deleted vectors.
"""
if ids is None and filters is None:
raise ArgError("Either ids or filters must be provided.")
if ids is not None and filters is not None:
raise ArgError("Either ids or filters must be provided, not both.")
if isinstance(ids, str):
raise ArgError("ids must be a list of strings")
ids = ids or []
filters = filters or {}
del_document_ids = set([])
with self.client.Session() as sess:
with sess.begin():
if ids:
for id_chunk in flu(ids).chunk(12):
stmt = select(self.table.c.metadata).where(
self.table.c.id.in_(id_chunk)
)
results = sess.execute(stmt).fetchall()
for result in results:
metadata_json = result[0]
document_id = metadata_json.get("document_id")
if document_id:
del_document_ids.add(document_id)
delete_stmt = (
delete(self.table)
.where(self.table.c.id.in_(id_chunk))
.returning(self.table.c.id)
)
sess.execute(delete_stmt)
if filters:
meta_filter = build_filters(self.table.c.metadata, filters)
stmt = select(self.table.c.metadata).where(meta_filter)
results = sess.execute(stmt).fetchall()
for result in results:
metadata_json = result[0]
document_id = metadata_json.get("document_id")
if document_id:
del_document_ids.add(document_id)
delete_stmt = (
delete(self.table)
.where(meta_filter)
.returning(self.table.c.id)
)
sess.execute(delete_stmt)
return list(del_document_ids)
def __getitem__(self, items):
"""
Fetches a vector from the collection by its identifier.
Args:
items (str): The identifier of the vector.
Returns:
Record: The fetched vector.
"""
if not isinstance(items, str):
raise ArgError("items must be a string id")
row = self.fetch([items])
if row == []:
raise KeyError("no item found with requested id")
return row[0]
def query(
self,
data: Union[Iterable[Numeric], Any],
limit: int = 10,
filters: Optional[Dict] = None,
measure: Union[IndexMeasure, str] = IndexMeasure.cosine_distance,
include_value: bool = False,
include_metadata: bool = False,
*,
probes: Optional[int] = None,
ef_search: Optional[int] = None,
skip_adapter: bool = False,
) -> Union[List[Record], List[str]]:
"""
Executes a similarity search in the collection.
The return type is dependent on arguments *include_value* and *include_metadata*
Args:
data (Any): The vector to use as the query.
limit (int, optional): The maximum number of results to return. Defaults to 10.
filters (Optional[Dict], optional): Filters to apply to the search. Defaults to None.
measure (Union[IndexMeasure, str], optional): The distance measure to use for the search. Defaults to 'cosine_distance'.
include_value (bool, optional): Whether to include the distance value in the results. Defaults to False.
include_metadata (bool, optional): Whether to include the metadata in the results. Defaults to False.
probes (Optional[Int], optional): Number of ivfflat index lists to query. Higher increases accuracy but decreases speed
ef_search (Optional[Int], optional): Size of the dynamic candidate list for HNSW index search. Higher increases accuracy but decreases speed
skip_adapter (bool, optional): When True, skips any associated adapter and queries using a literal vector provided to *data*
Returns:
Union[List[Record], List[str]]: The result of the similarity search.
"""
if probes is None:
probes = 10
if ef_search is None:
ef_search = 40
if not isinstance(probes, int):
raise ArgError("probes must be an integer")
if probes < 1:
raise ArgError("probes must be >= 1")
if limit > 1000:
raise ArgError("limit must be <= 1000")
# ValueError on bad input
try:
imeasure = IndexMeasure(measure)
except ValueError:
raise ArgError("Invalid index measure")
if not self.is_indexed_for_measure(imeasure):
warnings.warn(
UserWarning(
f"Query does not have a covering index for {imeasure}. See Collection.create_index"
)
)
if skip_adapter:
adapted_query = [("", data, {})]
else:
# Adapt the query using the pipeline
adapted_query = [
x
for x in self.adapter(
records=[("", data, {})],
adapter_context=AdapterContext("query"),
)
]
if len(adapted_query) != 1:
raise ArgError(
"Failed to produce exactly one query vector from input"
)
_, vec, _ = adapted_query[0]
distance_lambda = INDEX_MEASURE_TO_SQLA_ACC.get(imeasure)
if distance_lambda is None:
# unreachable
raise ArgError("invalid distance_measure") # pragma: no cover
distance_clause = distance_lambda(self.table.c.vec)(vec)
cols = [self.table.c.id]
if include_value:
cols.append(distance_clause)
if include_metadata:
cols.append(self.table.c.metadata)
stmt = select(*cols)
if filters:
stmt = stmt.filter(
build_filters(self.table.c.metadata, filters) # type: ignore
)
stmt = stmt.order_by(distance_clause)
stmt = stmt.limit(limit)
with self.client.Session() as sess:
with sess.begin():
# index ignored if greater than n_lists
sess.execute(
text("set local ivfflat.probes = :probes").bindparams(
probes=probes
)
)
if self.client._supports_hnsw():
sess.execute(
text(
"set local hnsw.ef_search = :ef_search"
).bindparams(ef_search=ef_search)
)
if len(cols) == 1:
return [str(x) for x in sess.scalars(stmt).fetchall()]
return sess.execute(stmt).fetchall() or []
@classmethod
def _list_collections(cls, client: "Client") -> List["Collection"]:
"""
PRIVATE
Retrieves all collections from the database.
Args:
client (Client): The database client.
Returns:
List[Collection]: A list of all existing collections.
"""
query = text(
"""
select
relname as table_name,
atttypmod as embedding_dim
from
pg_class pc
join pg_attribute pa
on pc.oid = pa.attrelid
where
pc.relnamespace = 'vecs'::regnamespace
and pc.relkind = 'r'
and pa.attname = 'vec'
and not pc.relname ^@ '_'
"""
)
xc = []
with client.Session() as sess:
for name, dimension in sess.execute(query):
existing_collection = cls(name, dimension, client)
xc.append(existing_collection)
return xc
@classmethod
def _does_collection_exist(cls, client: "Client", name: str) -> bool:
"""
PRIVATE
Checks if a collection with a given name exists within the database
Args:
client (Client): The database client.
name (str): The name of the collection
Returns:
Exists: Whether the collection exists or not
"""
try:
client.get_collection(name)
return True
except CollectionNotFound:
return False
@property
def index(self) -> Optional[str]:
"""
PRIVATE
Note:
The `index` property is private and expected to undergo refactoring.
Do not rely on it's output.
Retrieves the SQL name of the collection's vector index, if it exists.
Returns:
Optional[str]: The name of the index, or None if no index exists.
"""
if self._index is None:
query = text(
"""
select
relname as table_name
from
pg_class pc
where
pc.relnamespace = 'vecs'::regnamespace
and relname ilike 'ix_vector%'
and pc.relkind = 'i'
"""
)
with self.client.Session() as sess:
ix_name = sess.execute(query).scalar()
self._index = ix_name
return self._index
def is_indexed_for_measure(self, measure: IndexMeasure):
"""
Checks if the collection is indexed for a specific measure.
Args:
measure (IndexMeasure): The measure to check for.
Returns:
bool: True if the collection is indexed for the measure, False otherwise.
"""
index_name = self.index
if index_name is None:
return False
ops = INDEX_MEASURE_TO_OPS.get(measure)
if ops is None:
return False
if ops in index_name:
return True
return False
def create_index(
self,
measure: IndexMeasure = IndexMeasure.cosine_distance,
method: IndexMethod = IndexMethod.auto,
index_arguments: Optional[
Union[IndexArgsIVFFlat, IndexArgsHNSW]
] = None,
replace=True,
) -> None:
"""
Creates an index for the collection.
Note:
When `vecs` creates an index on a pgvector column in PostgreSQL, it uses a multi-step
process that enables performant indexes to be built for large collections with low end
database hardware.
Those steps are:
- Creates a new table with a different name
- Randomly selects records from the existing table
- Inserts the random records from the existing table into the new table
- Creates the requested vector index on the new table
- Upserts all data from the existing table into the new table
- Drops the existing table
- Renames the new table to the existing tables name
If you create dependencies (like views) on the table that underpins
a `vecs.Collection` the `create_index` step may require you to drop those dependencies before
it will succeed.
Args:
measure (IndexMeasure, optional): The measure to index for. Defaults to 'cosine_distance'.
method (IndexMethod, optional): The indexing method to use. Defaults to 'auto'.
index_arguments: (IndexArgsIVFFlat | IndexArgsHNSW, optional): Index type specific arguments
replace (bool, optional): Whether to replace the existing index. Defaults to True.
Raises:
ArgError: If an invalid index method is used, or if *replace* is False and an index already exists.
"""
if method not in (
IndexMethod.ivfflat,
IndexMethod.hnsw,
IndexMethod.auto,
):
raise ArgError("invalid index method")
if index_arguments:
# Disallow case where user submits index arguments but uses the
# IndexMethod.auto index (index build arguments should only be
# used with a specific index)
if method == IndexMethod.auto:
raise ArgError(
"Index build parameters are not allowed when using the IndexMethod.auto index."
)
# Disallow case where user specifies one index type but submits
# index build arguments for the other index type
if (
isinstance(index_arguments, IndexArgsHNSW)
and method != IndexMethod.hnsw
) or (
isinstance(index_arguments, IndexArgsIVFFlat)
and method != IndexMethod.ivfflat
):
raise ArgError(
f"{index_arguments.__class__.__name__} build parameters were supplied but {method} index was specified."
)
if method == IndexMethod.auto:
if self.client._supports_hnsw():
method = IndexMethod.hnsw
else:
method = IndexMethod.ivfflat
if method == IndexMethod.hnsw and not self.client._supports_hnsw():
raise ArgError(
"HNSW Unavailable. Upgrade your pgvector installation to > 0.5.0 to enable HNSW support"
)
ops = INDEX_MEASURE_TO_OPS.get(measure)
if ops is None:
raise ArgError("Unknown index measure")
unique_string = str(uuid.uuid4()).replace("-", "_")[0:7]
with self.client.Session() as sess:
with sess.begin():
if self.index is not None:
if replace:
sess.execute(text(f'drop index vecs."{self.index}";'))
self._index = None
else:
raise ArgError(
"replace is set to False but an index exists"
)
if method == IndexMethod.ivfflat:
if not index_arguments:
n_records: int = sess.execute(func.count(self.table.c.id)).scalar() # type: ignore
n_lists = (
int(max(n_records / 1000, 30))
if n_records < 1_000_000
else int(math.sqrt(n_records))
)
else:
# The following mypy error is ignored because mypy
# complains that `index_arguments` is typed as a union
# of IndexArgsIVFFlat and IndexArgsHNSW types,
# which both don't necessarily contain the `n_lists`
# parameter, however we have validated that the
# correct type is being used above.
n_lists = index_arguments.n_lists # type: ignore
sess.execute(
text(
f"""
create index ix_{ops}_ivfflat_nl{n_lists}_{unique_string}
on vecs."{self.table.name}"
using ivfflat (vec {ops}) with (lists={n_lists})
"""
)
)
if method == IndexMethod.hnsw:
if not index_arguments:
index_arguments = IndexArgsHNSW()
# See above for explanation of why the following lines
# are ignored
m = index_arguments.m # type: ignore
ef_construction = index_arguments.ef_construction # type: ignore
sess.execute(
text(
f"""
create index ix_{ops}_hnsw_m{m}_efc{ef_construction}_{unique_string}
on vecs."{self.table.name}"
using hnsw (vec {ops}) WITH (m={m}, ef_construction={ef_construction});
"""
)
)
return None
def build_filters(json_col: Column, filters: Dict):
"""
Builds filters for SQL query based on provided dictionary.
Args:
json_col (Column): The column in the database table.
filters (Dict): The dictionary specifying filter conditions.
Raises:
FilterError: If filter conditions are not correctly formatted.
Returns:
The filter clause for the SQL query.
"""
if not isinstance(filters, dict):
raise FilterError("filters must be a dict")
filter_clauses = []
for key, value in filters.items():
if not isinstance(key, str):
raise FilterError("*filters* keys must be strings")
if isinstance(value, dict):
if len(value) > 1:
raise FilterError("only one operator permitted per key")
for operator, clause in value.items():
if operator not in (
"$eq",
"$ne",
"$lt",
"$lte",
"$gt",
"$gte",
"$in",
):
raise FilterError("unknown operator")
if operator == "$eq" and not hasattr(clause, "__len__"):
contains_value = cast({key: clause}, postgresql.JSONB)
filter_clauses.append(json_col.op("@>")(contains_value))
elif operator == "$in":
if not isinstance(clause, list):
raise FilterError(
"argument to $in filter must be a list"
)
for elem in clause:
if not isinstance(elem, (int, str, float)):
raise FilterError(
"argument to $in filter must be a list of scalars"
)
contains_value = [
cast(elem, postgresql.JSONB) for elem in clause
]
filter_clauses.append(
json_col.op("->")(key).in_(contains_value)
)
else:
matches_value = cast(clause, postgresql.JSONB)
if operator == "$eq":
filter_clauses.append(
json_col.op("->")(key) == matches_value
)
elif operator == "$ne":
filter_clauses.append(
json_col.op("->")(key) != matches_value
)
elif operator == "$lt":
filter_clauses.append(
json_col.op("->")(key) < matches_value
)
elif operator == "$lte":
filter_clauses.append(
json_col.op("->")(key) <= matches_value
)
elif operator == "$gt":
filter_clauses.append(
json_col.op("->")(key) > matches_value
)
elif operator == "$gte":
filter_clauses.append(
json_col.op("->")(key) >= matches_value
)
else:
raise Unreachable()
else:
raise FilterError("Filter value must be a dict with an operator")
if len(filter_clauses) == 1:
return filter_clauses[0]
else:
return and_(*filter_clauses)
def build_table(name: str, meta: MetaData, dimension: int) -> Table:
"""
PRIVATE
Builds a SQLAlchemy model underpinning a `vecs.Collection`.
Args:
name (str): The name of the table.
meta (MetaData): MetaData instance associated with the SQL database.
dimension: The dimension of the vectors in the collection.
Returns:
Table: The constructed SQL table.
"""
return Table(
name,
meta,
Column("id", String, primary_key=True),
Column("vec", Vector(dimension), nullable=False),
Column(
"metadata",
postgresql.JSONB,
server_default=text("'{}'::jsonb"),
nullable=False,
),
extend_existing=True,
)
|