aboutsummaryrefslogtreecommitdiff
path: root/R2R/r2r/pipes/ingestion
diff options
context:
space:
mode:
Diffstat (limited to 'R2R/r2r/pipes/ingestion')
-rwxr-xr-xR2R/r2r/pipes/ingestion/__init__.py0
-rwxr-xr-xR2R/r2r/pipes/ingestion/embedding_pipe.py218
-rwxr-xr-xR2R/r2r/pipes/ingestion/kg_extraction_pipe.py226
-rwxr-xr-xR2R/r2r/pipes/ingestion/kg_storage_pipe.py133
-rwxr-xr-xR2R/r2r/pipes/ingestion/parsing_pipe.py211
-rwxr-xr-xR2R/r2r/pipes/ingestion/vector_storage_pipe.py128
6 files changed, 916 insertions, 0 deletions
diff --git a/R2R/r2r/pipes/ingestion/__init__.py b/R2R/r2r/pipes/ingestion/__init__.py
new file mode 100755
index 00000000..e69de29b
--- /dev/null
+++ b/R2R/r2r/pipes/ingestion/__init__.py
diff --git a/R2R/r2r/pipes/ingestion/embedding_pipe.py b/R2R/r2r/pipes/ingestion/embedding_pipe.py
new file mode 100755
index 00000000..971ccc9d
--- /dev/null
+++ b/R2R/r2r/pipes/ingestion/embedding_pipe.py
@@ -0,0 +1,218 @@
+import asyncio
+import copy
+import logging
+import uuid
+from typing import Any, AsyncGenerator, Optional, Union
+
+from r2r.base import (
+ AsyncState,
+ EmbeddingProvider,
+ Extraction,
+ Fragment,
+ FragmentType,
+ KVLoggingSingleton,
+ PipeType,
+ R2RDocumentProcessingError,
+ TextSplitter,
+ Vector,
+ VectorEntry,
+ generate_id_from_label,
+)
+from r2r.base.pipes.base_pipe import AsyncPipe
+
+logger = logging.getLogger(__name__)
+
+
+class EmbeddingPipe(AsyncPipe):
+ """
+ Embeds and stores documents using a specified embedding model and database.
+ """
+
+ class Input(AsyncPipe.Input):
+ message: AsyncGenerator[
+ Union[Extraction, R2RDocumentProcessingError], None
+ ]
+
+ def __init__(
+ self,
+ embedding_provider: EmbeddingProvider,
+ text_splitter: TextSplitter,
+ embedding_batch_size: int = 1,
+ id_prefix: str = "demo",
+ pipe_logger: Optional[KVLoggingSingleton] = None,
+ type: PipeType = PipeType.INGESTOR,
+ config: Optional[AsyncPipe.PipeConfig] = None,
+ *args,
+ **kwargs,
+ ):
+ """
+ Initializes the embedding pipe with necessary components and configurations.
+ """
+ super().__init__(
+ pipe_logger=pipe_logger,
+ type=type,
+ config=config
+ or AsyncPipe.PipeConfig(name="default_embedding_pipe"),
+ )
+ self.embedding_provider = embedding_provider
+ self.text_splitter = text_splitter
+ self.embedding_batch_size = embedding_batch_size
+ self.id_prefix = id_prefix
+ self.pipe_run_info = None
+
+ async def fragment(
+ self, extraction: Extraction, run_id: uuid.UUID
+ ) -> AsyncGenerator[Fragment, None]:
+ """
+ Splits text into manageable chunks for embedding.
+ """
+ if not isinstance(extraction, Extraction):
+ raise ValueError(
+ f"Expected an Extraction, but received {type(extraction)}."
+ )
+ if not isinstance(extraction.data, str):
+ raise ValueError(
+ f"Expected a string, but received {type(extraction.data)}."
+ )
+ text_chunks = [
+ ele.page_content
+ for ele in self.text_splitter.create_documents([extraction.data])
+ ]
+ for iteration, chunk in enumerate(text_chunks):
+ fragment = Fragment(
+ id=generate_id_from_label(f"{extraction.id}-{iteration}"),
+ type=FragmentType.TEXT,
+ data=chunk,
+ metadata=copy.deepcopy(extraction.metadata),
+ extraction_id=extraction.id,
+ document_id=extraction.document_id,
+ )
+ yield fragment
+ iteration += 1
+
+ async def transform_fragments(
+ self, fragments: list[Fragment], metadatas: list[dict]
+ ) -> AsyncGenerator[Fragment, None]:
+ """
+ Transforms text chunks based on their metadata, e.g., adding prefixes.
+ """
+ async for fragment, metadata in zip(fragments, metadatas):
+ if "chunk_prefix" in metadata:
+ prefix = metadata.pop("chunk_prefix")
+ fragment.data = f"{prefix}\n{fragment.data}"
+ yield fragment
+
+ async def embed(self, fragments: list[Fragment]) -> list[float]:
+ return await self.embedding_provider.async_get_embeddings(
+ [fragment.data for fragment in fragments],
+ EmbeddingProvider.PipeStage.BASE,
+ )
+
+ async def _process_batch(
+ self, fragment_batch: list[Fragment]
+ ) -> list[VectorEntry]:
+ """
+ Embeds a batch of fragments and yields vector entries.
+ """
+ vectors = await self.embed(fragment_batch)
+ return [
+ VectorEntry(
+ id=fragment.id,
+ vector=Vector(data=raw_vector),
+ metadata={
+ "document_id": fragment.document_id,
+ "extraction_id": fragment.extraction_id,
+ "text": fragment.data,
+ **fragment.metadata,
+ },
+ )
+ for raw_vector, fragment in zip(vectors, fragment_batch)
+ ]
+
+ async def _process_and_enqueue_batch(
+ self, fragment_batch: list[Fragment], vector_entry_queue: asyncio.Queue
+ ):
+ try:
+ batch_result = await self._process_batch(fragment_batch)
+ for vector_entry in batch_result:
+ await vector_entry_queue.put(vector_entry)
+ except Exception as e:
+ logger.error(f"Error processing batch: {e}")
+ await vector_entry_queue.put(
+ R2RDocumentProcessingError(
+ error_message=str(e),
+ document_id=fragment_batch[0].document_id,
+ )
+ )
+ finally:
+ await vector_entry_queue.put(None) # Signal completion
+
+ async def _run_logic(
+ self,
+ input: Input,
+ state: AsyncState,
+ run_id: uuid.UUID,
+ *args: Any,
+ **kwargs: Any,
+ ) -> AsyncGenerator[Union[R2RDocumentProcessingError, VectorEntry], None]:
+ """
+ Executes the embedding pipe: chunking, transforming, embedding, and storing documents.
+ """
+ vector_entry_queue = asyncio.Queue()
+ fragment_batch = []
+ active_tasks = 0
+
+ fragment_info = {}
+ async for extraction in input.message:
+ if isinstance(extraction, R2RDocumentProcessingError):
+ yield extraction
+ continue
+
+ async for fragment in self.fragment(extraction, run_id):
+ if extraction.document_id in fragment_info:
+ fragment_info[extraction.document_id] += 1
+ else:
+ fragment_info[extraction.document_id] = 0 # Start with 0
+ fragment.metadata["chunk_order"] = fragment_info[
+ extraction.document_id
+ ]
+
+ version = fragment.metadata.get("version", "v0")
+
+ # Ensure fragment ID is set correctly
+ if not fragment.id:
+ fragment.id = generate_id_from_label(
+ f"{extraction.id}-{fragment_info[extraction.document_id]}-{version}"
+ )
+
+ fragment_batch.append(fragment)
+ if len(fragment_batch) >= self.embedding_batch_size:
+ asyncio.create_task(
+ self._process_and_enqueue_batch(
+ fragment_batch.copy(), vector_entry_queue
+ )
+ )
+ active_tasks += 1
+ fragment_batch.clear()
+
+ logger.debug(
+ f"Fragmented the input document ids into counts as shown: {fragment_info}"
+ )
+
+ if fragment_batch:
+ asyncio.create_task(
+ self._process_and_enqueue_batch(
+ fragment_batch.copy(), vector_entry_queue
+ )
+ )
+ active_tasks += 1
+
+ while active_tasks > 0:
+ vector_entry = await vector_entry_queue.get()
+ if vector_entry is None: # Check for termination signal
+ active_tasks -= 1
+ elif isinstance(vector_entry, Exception):
+ yield vector_entry # Propagate the exception
+ active_tasks -= 1
+ else:
+ yield vector_entry
diff --git a/R2R/r2r/pipes/ingestion/kg_extraction_pipe.py b/R2R/r2r/pipes/ingestion/kg_extraction_pipe.py
new file mode 100755
index 00000000..13025e39
--- /dev/null
+++ b/R2R/r2r/pipes/ingestion/kg_extraction_pipe.py
@@ -0,0 +1,226 @@
+import asyncio
+import copy
+import json
+import logging
+import uuid
+from typing import Any, AsyncGenerator, Optional
+
+from r2r.base import (
+ AsyncState,
+ Extraction,
+ Fragment,
+ FragmentType,
+ KGExtraction,
+ KGProvider,
+ KVLoggingSingleton,
+ LLMProvider,
+ PipeType,
+ PromptProvider,
+ TextSplitter,
+ extract_entities,
+ extract_triples,
+ generate_id_from_label,
+)
+from r2r.base.pipes.base_pipe import AsyncPipe
+
+logger = logging.getLogger(__name__)
+
+
+class ClientError(Exception):
+ """Base class for client connection errors."""
+
+ pass
+
+
+class KGExtractionPipe(AsyncPipe):
+ """
+ Embeds and stores documents using a specified embedding model and database.
+ """
+
+ def __init__(
+ self,
+ kg_provider: KGProvider,
+ llm_provider: LLMProvider,
+ prompt_provider: PromptProvider,
+ text_splitter: TextSplitter,
+ kg_batch_size: int = 1,
+ id_prefix: str = "demo",
+ pipe_logger: Optional[KVLoggingSingleton] = None,
+ type: PipeType = PipeType.INGESTOR,
+ config: Optional[AsyncPipe.PipeConfig] = None,
+ *args,
+ **kwargs,
+ ):
+ """
+ Initializes the embedding pipe with necessary components and configurations.
+ """
+ super().__init__(
+ pipe_logger=pipe_logger,
+ type=type,
+ config=config
+ or AsyncPipe.PipeConfig(name="default_embedding_pipe"),
+ )
+
+ self.kg_provider = kg_provider
+ self.prompt_provider = prompt_provider
+ self.llm_provider = llm_provider
+ self.text_splitter = text_splitter
+ self.kg_batch_size = kg_batch_size
+ self.id_prefix = id_prefix
+ self.pipe_run_info = None
+
+ async def fragment(
+ self, extraction: Extraction, run_id: uuid.UUID
+ ) -> AsyncGenerator[Fragment, None]:
+ """
+ Splits text into manageable chunks for embedding.
+ """
+ if not isinstance(extraction, Extraction):
+ raise ValueError(
+ f"Expected an Extraction, but received {type(extraction)}."
+ )
+ if not isinstance(extraction.data, str):
+ raise ValueError(
+ f"Expected a string, but received {type(extraction.data)}."
+ )
+ text_chunks = [
+ ele.page_content
+ for ele in self.text_splitter.create_documents([extraction.data])
+ ]
+ for iteration, chunk in enumerate(text_chunks):
+ fragment = Fragment(
+ id=generate_id_from_label(f"{extraction.id}-{iteration}"),
+ type=FragmentType.TEXT,
+ data=chunk,
+ metadata=copy.deepcopy(extraction.metadata),
+ extraction_id=extraction.id,
+ document_id=extraction.document_id,
+ )
+ yield fragment
+
+ async def transform_fragments(
+ self, fragments: list[Fragment]
+ ) -> AsyncGenerator[Fragment, None]:
+ """
+ Transforms text chunks based on their metadata, e.g., adding prefixes.
+ """
+ async for fragment in fragments:
+ if "chunk_prefix" in fragment.metadata:
+ prefix = fragment.metadata.pop("chunk_prefix")
+ fragment.data = f"{prefix}\n{fragment.data}"
+ yield fragment
+
+ async def extract_kg(
+ self,
+ fragment: Fragment,
+ retries: int = 3,
+ delay: int = 2,
+ ) -> KGExtraction:
+ """
+ Extracts NER triples from a list of fragments with retries.
+ """
+ task_prompt = self.prompt_provider.get_prompt(
+ self.kg_provider.config.kg_extraction_prompt,
+ inputs={"input": fragment.data},
+ )
+ messages = self.prompt_provider._get_message_payload(
+ self.prompt_provider.get_prompt("default_system"), task_prompt
+ )
+ for attempt in range(retries):
+ try:
+ response = await self.llm_provider.aget_completion(
+ messages, self.kg_provider.config.kg_extraction_config
+ )
+
+ kg_extraction = response.choices[0].message.content
+
+ # Parsing JSON from the response
+ kg_json = (
+ json.loads(
+ kg_extraction.split("```json")[1].split("```")[0]
+ )
+ if """```json""" in kg_extraction
+ else json.loads(kg_extraction)
+ )
+ llm_payload = kg_json.get("entities_and_triples", {})
+
+ # Extract triples with detailed logging
+ entities = extract_entities(llm_payload)
+ triples = extract_triples(llm_payload, entities)
+
+ # Create KG extraction object
+ return KGExtraction(entities=entities, triples=triples)
+ except (
+ ClientError,
+ json.JSONDecodeError,
+ KeyError,
+ IndexError,
+ ) as e:
+ logger.error(f"Error in extract_kg: {e}")
+ if attempt < retries - 1:
+ await asyncio.sleep(delay)
+ else:
+ logger.error(f"Failed after retries with {e}")
+ # raise e # Ensure the exception is raised after the final attempt
+
+ return KGExtraction(entities={}, triples=[])
+
+ async def _process_batch(
+ self,
+ fragment_batch: list[Fragment],
+ ) -> list[KGExtraction]:
+ """
+ Embeds a batch of fragments and yields vector entries.
+ """
+ tasks = [
+ asyncio.create_task(self.extract_kg(fragment))
+ for fragment in fragment_batch
+ ]
+ return await asyncio.gather(*tasks)
+
+ async def _run_logic(
+ self,
+ input: AsyncPipe.Input,
+ state: AsyncState,
+ run_id: uuid.UUID,
+ *args: Any,
+ **kwargs: Any,
+ ) -> AsyncGenerator[KGExtraction, None]:
+ """
+ Executes the embedding pipe: chunking, transforming, embedding, and storing documents.
+ """
+ batch_tasks = []
+ fragment_batch = []
+
+ fragment_info = {}
+ async for extraction in input.message:
+ async for fragment in self.transform_fragments(
+ self.fragment(extraction, run_id)
+ ):
+ if extraction.document_id in fragment_info:
+ fragment_info[extraction.document_id] += 1
+ else:
+ fragment_info[extraction.document_id] = 1
+ extraction.metadata["chunk_order"] = fragment_info[
+ extraction.document_id
+ ]
+ fragment_batch.append(fragment)
+ if len(fragment_batch) >= self.kg_batch_size:
+ # Here, ensure `_process_batch` is scheduled as a coroutine, not called directly
+ batch_tasks.append(
+ self._process_batch(fragment_batch.copy())
+ ) # pass a copy if necessary
+ fragment_batch.clear() # Clear the batch for new fragments
+
+ logger.debug(
+ f"Fragmented the input document ids into counts as shown: {fragment_info}"
+ )
+
+ if fragment_batch: # Process any remaining fragments
+ batch_tasks.append(self._process_batch(fragment_batch.copy()))
+
+ # Process tasks as they complete
+ for task in asyncio.as_completed(batch_tasks):
+ batch_result = await task # Wait for the next task to complete
+ for kg_extraction in batch_result:
+ yield kg_extraction
diff --git a/R2R/r2r/pipes/ingestion/kg_storage_pipe.py b/R2R/r2r/pipes/ingestion/kg_storage_pipe.py
new file mode 100755
index 00000000..9ac63479
--- /dev/null
+++ b/R2R/r2r/pipes/ingestion/kg_storage_pipe.py
@@ -0,0 +1,133 @@
+import asyncio
+import logging
+import uuid
+from typing import Any, AsyncGenerator, Optional
+
+from r2r.base import (
+ AsyncState,
+ EmbeddingProvider,
+ KGExtraction,
+ KGProvider,
+ KVLoggingSingleton,
+ PipeType,
+)
+from r2r.base.abstractions.llama_abstractions import EntityNode, Relation
+from r2r.base.pipes.base_pipe import AsyncPipe
+
+logger = logging.getLogger(__name__)
+
+
+class KGStoragePipe(AsyncPipe):
+ class Input(AsyncPipe.Input):
+ message: AsyncGenerator[KGExtraction, None]
+
+ def __init__(
+ self,
+ kg_provider: KGProvider,
+ embedding_provider: Optional[EmbeddingProvider] = None,
+ storage_batch_size: int = 1,
+ pipe_logger: Optional[KVLoggingSingleton] = None,
+ type: PipeType = PipeType.INGESTOR,
+ config: Optional[AsyncPipe.PipeConfig] = None,
+ *args,
+ **kwargs,
+ ):
+ """
+ Initializes the async knowledge graph storage pipe with necessary components and configurations.
+ """
+ logger.info(
+ f"Initializing an `KGStoragePipe` to store knowledge graph extractions in a graph database."
+ )
+
+ super().__init__(
+ pipe_logger=pipe_logger,
+ type=type,
+ config=config,
+ *args,
+ **kwargs,
+ )
+ self.kg_provider = kg_provider
+ self.embedding_provider = embedding_provider
+ self.storage_batch_size = storage_batch_size
+
+ async def store(
+ self,
+ kg_extractions: list[KGExtraction],
+ ) -> None:
+ """
+ Stores a batch of knowledge graph extractions in the graph database.
+ """
+ try:
+ nodes = []
+ relations = []
+ for extraction in kg_extractions:
+ for entity in extraction.entities.values():
+ embedding = None
+ if self.embedding_provider:
+ embedding = self.embedding_provider.get_embedding(
+ "Entity:\n{entity.value}\nLabel:\n{entity.category}\nSubcategory:\n{entity.subcategory}"
+ )
+ nodes.append(
+ EntityNode(
+ name=entity.value,
+ label=entity.category,
+ embedding=embedding,
+ properties=(
+ {"subcategory": entity.subcategory}
+ if entity.subcategory
+ else {}
+ ),
+ )
+ )
+ for triple in extraction.triples:
+ relations.append(
+ Relation(
+ source_id=triple.subject,
+ target_id=triple.object,
+ label=triple.predicate,
+ )
+ )
+ self.kg_provider.upsert_nodes(nodes)
+ self.kg_provider.upsert_relations(relations)
+ except Exception as e:
+ error_message = f"Failed to store knowledge graph extractions in the database: {e}"
+ logger.error(error_message)
+ raise ValueError(error_message)
+
+ async def _run_logic(
+ self,
+ input: Input,
+ state: AsyncState,
+ run_id: uuid.UUID,
+ *args: Any,
+ **kwargs: Any,
+ ) -> AsyncGenerator[None, None]:
+ """
+ Executes the async knowledge graph storage pipe: storing knowledge graph extractions in the graph database.
+ """
+ batch_tasks = []
+ kg_batch = []
+
+ async for kg_extraction in input.message:
+ kg_batch.append(kg_extraction)
+ if len(kg_batch) >= self.storage_batch_size:
+ # Schedule the storage task
+ batch_tasks.append(
+ asyncio.create_task(
+ self.store(kg_batch.copy()),
+ name=f"kg-store-{self.config.name}",
+ )
+ )
+ kg_batch.clear()
+
+ if kg_batch: # Process any remaining extractions
+ batch_tasks.append(
+ asyncio.create_task(
+ self.store(kg_batch.copy()),
+ name=f"kg-store-{self.config.name}",
+ )
+ )
+
+ # Wait for all storage tasks to complete
+ await asyncio.gather(*batch_tasks)
+ yield None
diff --git a/R2R/r2r/pipes/ingestion/parsing_pipe.py b/R2R/r2r/pipes/ingestion/parsing_pipe.py
new file mode 100755
index 00000000..f3c81ca0
--- /dev/null
+++ b/R2R/r2r/pipes/ingestion/parsing_pipe.py
@@ -0,0 +1,211 @@
+"""
+This module contains the `DocumentParsingPipe` class, which is responsible for parsing incoming documents into plaintext.
+"""
+
+import asyncio
+import logging
+import time
+import uuid
+from typing import AsyncGenerator, Optional, Union
+
+from r2r.base import (
+ AsyncParser,
+ AsyncState,
+ Document,
+ DocumentType,
+ Extraction,
+ ExtractionType,
+ KVLoggingSingleton,
+ PipeType,
+ generate_id_from_label,
+)
+from r2r.base.abstractions.exception import R2RDocumentProcessingError
+from r2r.base.pipes.base_pipe import AsyncPipe
+from r2r.parsers.media.audio_parser import AudioParser
+from r2r.parsers.media.docx_parser import DOCXParser
+from r2r.parsers.media.img_parser import ImageParser
+from r2r.parsers.media.movie_parser import MovieParser
+from r2r.parsers.media.pdf_parser import PDFParser
+from r2r.parsers.media.ppt_parser import PPTParser
+from r2r.parsers.structured.csv_parser import CSVParser
+from r2r.parsers.structured.json_parser import JSONParser
+from r2r.parsers.structured.xlsx_parser import XLSXParser
+from r2r.parsers.text.html_parser import HTMLParser
+from r2r.parsers.text.md_parser import MDParser
+from r2r.parsers.text.text_parser import TextParser
+
+logger = logging.getLogger(__name__)
+
+
+class ParsingPipe(AsyncPipe):
+ """
+ Processes incoming documents into plaintext based on their data type.
+ Supports TXT, JSON, HTML, and PDF formats.
+ """
+
+ class Input(AsyncPipe.Input):
+ message: AsyncGenerator[Document, None]
+
+ AVAILABLE_PARSERS = {
+ DocumentType.CSV: CSVParser,
+ DocumentType.DOCX: DOCXParser,
+ DocumentType.HTML: HTMLParser,
+ DocumentType.JSON: JSONParser,
+ DocumentType.MD: MDParser,
+ DocumentType.PDF: PDFParser,
+ DocumentType.PPTX: PPTParser,
+ DocumentType.TXT: TextParser,
+ DocumentType.XLSX: XLSXParser,
+ DocumentType.GIF: ImageParser,
+ DocumentType.JPEG: ImageParser,
+ DocumentType.JPG: ImageParser,
+ DocumentType.PNG: ImageParser,
+ DocumentType.SVG: ImageParser,
+ DocumentType.MP3: AudioParser,
+ DocumentType.MP4: MovieParser,
+ }
+
+ IMAGE_TYPES = {
+ DocumentType.GIF,
+ DocumentType.JPG,
+ DocumentType.JPEG,
+ DocumentType.PNG,
+ DocumentType.SVG,
+ }
+
+ def __init__(
+ self,
+ excluded_parsers: list[DocumentType],
+ override_parsers: Optional[dict[DocumentType, AsyncParser]] = None,
+ pipe_logger: Optional[KVLoggingSingleton] = None,
+ type: PipeType = PipeType.INGESTOR,
+ config: Optional[AsyncPipe.PipeConfig] = None,
+ *args,
+ **kwargs,
+ ):
+ super().__init__(
+ pipe_logger=pipe_logger,
+ type=type,
+ config=config
+ or AsyncPipe.PipeConfig(name="default_document_parsing_pipe"),
+ *args,
+ **kwargs,
+ )
+
+ self.parsers = {}
+
+ if not override_parsers:
+ override_parsers = {}
+
+ # Apply overrides if specified
+ for doc_type, parser in override_parsers.items():
+ self.parsers[doc_type] = parser
+
+ for doc_type, parser_info in self.AVAILABLE_PARSERS.items():
+ if (
+ doc_type not in excluded_parsers
+ and doc_type not in self.parsers
+ ):
+ self.parsers[doc_type] = parser_info()
+
+ @property
+ def supported_types(self) -> list[str]:
+ """
+ Lists the data types supported by the pipe.
+ """
+ return [entry_type for entry_type in DocumentType]
+
+ async def _parse(
+ self,
+ document: Document,
+ run_id: uuid.UUID,
+ version: str,
+ ) -> AsyncGenerator[Union[R2RDocumentProcessingError, Extraction], None]:
+ if document.type not in self.parsers:
+ yield R2RDocumentProcessingError(
+ document_id=document.id,
+ error_message=f"Parser for {document.type} not found in `ParsingPipe`.",
+ )
+ return
+ parser = self.parsers[document.type]
+ texts = parser.ingest(document.data)
+ extraction_type = ExtractionType.TXT
+ t0 = time.time()
+ if document.type in self.IMAGE_TYPES:
+ extraction_type = ExtractionType.IMG
+ document.metadata["image_type"] = document.type.value
+ # SAVE IMAGE DATA
+ # try:
+ # import base64
+ # sanitized_data = base64.b64encode(document.data).decode('utf-8')
+ # except Exception as e:
+ # sanitized_data = document.data
+
+ # document.metadata["image_data"] = sanitized_data
+ elif document.type == DocumentType.MP4:
+ extraction_type = ExtractionType.MOV
+ document.metadata["audio_type"] = document.type.value
+
+ iteration = 0
+ async for text in texts:
+ extraction_id = generate_id_from_label(
+ f"{document.id}-{iteration}-{version}"
+ )
+ document.metadata["version"] = version
+ extraction = Extraction(
+ id=extraction_id,
+ data=text,
+ metadata=document.metadata,
+ document_id=document.id,
+ type=extraction_type,
+ )
+ yield extraction
+ # TODO - Add settings to enable extraction logging
+ # extraction_dict = extraction.dict()
+ # await self.enqueue_log(
+ # run_id=run_id,
+ # key="extraction",
+ # value=json.dumps(
+ # {
+ # "data": extraction_dict["data"],
+ # "document_id": str(extraction_dict["document_id"]),
+ # "extraction_id": str(extraction_dict["id"]),
+ # }
+ # ),
+ # )
+ iteration += 1
+ logger.debug(
+ f"Parsed document with id={document.id}, title={document.metadata.get('title', None)}, user_id={document.metadata.get('user_id', None)}, metadata={document.metadata} into {iteration} extractions in t={time.time() - t0:.2f} seconds."
+ )
+
+ async def _run_logic(
+ self,
+ input: Input,
+ state: AsyncState,
+ run_id: uuid.UUID,
+ versions: Optional[list[str]] = None,
+ *args,
+ **kwargs,
+ ) -> AsyncGenerator[Extraction, None]:
+ parse_tasks = []
+
+ iteration = 0
+ async for document in input.message:
+ version = versions[iteration] if versions else "v0"
+ iteration += 1
+ parse_tasks.append(
+ self._handle_parse_task(document, version, run_id)
+ )
+
+ # Await all tasks and yield results concurrently
+ for parse_task in asyncio.as_completed(parse_tasks):
+ for extraction in await parse_task:
+ yield extraction
+
+ async def _handle_parse_task(
+ self, document: Document, version: str, run_id: uuid.UUID
+ ) -> AsyncGenerator[Extraction, None]:
+ extractions = []
+ async for extraction in self._parse(document, run_id, version):
+ extractions.append(extraction)
+ return extractions
diff --git a/R2R/r2r/pipes/ingestion/vector_storage_pipe.py b/R2R/r2r/pipes/ingestion/vector_storage_pipe.py
new file mode 100755
index 00000000..9564fd22
--- /dev/null
+++ b/R2R/r2r/pipes/ingestion/vector_storage_pipe.py
@@ -0,0 +1,128 @@
+import asyncio
+import logging
+import uuid
+from typing import Any, AsyncGenerator, Optional, Tuple, Union
+
+from r2r.base import (
+ AsyncState,
+ KVLoggingSingleton,
+ PipeType,
+ VectorDBProvider,
+ VectorEntry,
+)
+from r2r.base.pipes.base_pipe import AsyncPipe
+
+from ...base.abstractions.exception import R2RDocumentProcessingError
+
+logger = logging.getLogger(__name__)
+
+
+class VectorStoragePipe(AsyncPipe):
+ class Input(AsyncPipe.Input):
+ message: AsyncGenerator[
+ Union[R2RDocumentProcessingError, VectorEntry], None
+ ]
+ do_upsert: bool = True
+
+ def __init__(
+ self,
+ vector_db_provider: VectorDBProvider,
+ storage_batch_size: int = 128,
+ pipe_logger: Optional[KVLoggingSingleton] = None,
+ type: PipeType = PipeType.INGESTOR,
+ config: Optional[AsyncPipe.PipeConfig] = None,
+ *args,
+ **kwargs,
+ ):
+ """
+ Initializes the async vector storage pipe with necessary components and configurations.
+ """
+ super().__init__(
+ pipe_logger=pipe_logger,
+ type=type,
+ config=config,
+ *args,
+ **kwargs,
+ )
+ self.vector_db_provider = vector_db_provider
+ self.storage_batch_size = storage_batch_size
+
+ async def store(
+ self,
+ vector_entries: list[VectorEntry],
+ do_upsert: bool = True,
+ ) -> None:
+ """
+ Stores a batch of vector entries in the database.
+ """
+
+ try:
+ if do_upsert:
+ self.vector_db_provider.upsert_entries(vector_entries)
+ else:
+ self.vector_db_provider.copy_entries(vector_entries)
+ except Exception as e:
+ error_message = (
+ f"Failed to store vector entries in the database: {e}"
+ )
+ logger.error(error_message)
+ raise ValueError(error_message)
+
+ async def _run_logic(
+ self,
+ input: Input,
+ state: AsyncState,
+ run_id: uuid.UUID,
+ *args: Any,
+ **kwargs: Any,
+ ) -> AsyncGenerator[
+ Tuple[uuid.UUID, Union[str, R2RDocumentProcessingError]], None
+ ]:
+ """
+ Executes the async vector storage pipe: storing embeddings in the vector database.
+ """
+ batch_tasks = []
+ vector_batch = []
+ document_counts = {}
+ i = 0
+ async for msg in input.message:
+ i += 1
+ if isinstance(msg, R2RDocumentProcessingError):
+ yield (msg.document_id, msg)
+ continue
+
+ document_id = msg.metadata.get("document_id", None)
+ if not document_id:
+ raise ValueError("Document ID not found in the metadata.")
+ if document_id not in document_counts:
+ document_counts[document_id] = 1
+ else:
+ document_counts[document_id] += 1
+
+ vector_batch.append(msg)
+ if len(vector_batch) >= self.storage_batch_size:
+ # Schedule the storage task
+ batch_tasks.append(
+ asyncio.create_task(
+ self.store(vector_batch.copy(), input.do_upsert),
+ name=f"vector-store-{self.config.name}",
+ )
+ )
+ vector_batch.clear()
+
+ if vector_batch: # Process any remaining vectors
+ batch_tasks.append(
+ asyncio.create_task(
+ self.store(vector_batch.copy(), input.do_upsert),
+ name=f"vector-store-{self.config.name}",
+ )
+ )
+
+ # Wait for all storage tasks to complete
+ await asyncio.gather(*batch_tasks)
+
+ for document_id, count in document_counts.items():
+ yield (
+ document_id,
+ f"Processed {count} vectors for document {document_id}.",
+ )