about summary refs log tree commit diff
path: root/R2R/r2r/pipes/ingestion
diff options
context:
space:
mode:
Diffstat (limited to 'R2R/r2r/pipes/ingestion')
-rwxr-xr-xR2R/r2r/pipes/ingestion/__init__.py0
-rwxr-xr-xR2R/r2r/pipes/ingestion/embedding_pipe.py218
-rwxr-xr-xR2R/r2r/pipes/ingestion/kg_extraction_pipe.py226
-rwxr-xr-xR2R/r2r/pipes/ingestion/kg_storage_pipe.py133
-rwxr-xr-xR2R/r2r/pipes/ingestion/parsing_pipe.py211
-rwxr-xr-xR2R/r2r/pipes/ingestion/vector_storage_pipe.py128
6 files changed, 916 insertions, 0 deletions
diff --git a/R2R/r2r/pipes/ingestion/__init__.py b/R2R/r2r/pipes/ingestion/__init__.py
new file mode 100755
index 00000000..e69de29b
--- /dev/null
+++ b/R2R/r2r/pipes/ingestion/__init__.py
diff --git a/R2R/r2r/pipes/ingestion/embedding_pipe.py b/R2R/r2r/pipes/ingestion/embedding_pipe.py
new file mode 100755
index 00000000..971ccc9d
--- /dev/null
+++ b/R2R/r2r/pipes/ingestion/embedding_pipe.py
@@ -0,0 +1,218 @@
+import asyncio
+import copy
+import logging
+import uuid
+from typing import Any, AsyncGenerator, Optional, Union
+
+from r2r.base import (
+    AsyncState,
+    EmbeddingProvider,
+    Extraction,
+    Fragment,
+    FragmentType,
+    KVLoggingSingleton,
+    PipeType,
+    R2RDocumentProcessingError,
+    TextSplitter,
+    Vector,
+    VectorEntry,
+    generate_id_from_label,
+)
+from r2r.base.pipes.base_pipe import AsyncPipe
+
+logger = logging.getLogger(__name__)
+
+
+class EmbeddingPipe(AsyncPipe):
+    """
+    Embeds and stores documents using a specified embedding model and database.
+    """
+
+    class Input(AsyncPipe.Input):
+        message: AsyncGenerator[
+            Union[Extraction, R2RDocumentProcessingError], None
+        ]
+
+    def __init__(
+        self,
+        embedding_provider: EmbeddingProvider,
+        text_splitter: TextSplitter,
+        embedding_batch_size: int = 1,
+        id_prefix: str = "demo",
+        pipe_logger: Optional[KVLoggingSingleton] = None,
+        type: PipeType = PipeType.INGESTOR,
+        config: Optional[AsyncPipe.PipeConfig] = None,
+        *args,
+        **kwargs,
+    ):
+        """
+        Initializes the embedding pipe with necessary components and configurations.
+        """
+        super().__init__(
+            pipe_logger=pipe_logger,
+            type=type,
+            config=config
+            or AsyncPipe.PipeConfig(name="default_embedding_pipe"),
+        )
+        self.embedding_provider = embedding_provider
+        self.text_splitter = text_splitter
+        self.embedding_batch_size = embedding_batch_size
+        self.id_prefix = id_prefix
+        self.pipe_run_info = None
+
+    async def fragment(
+        self, extraction: Extraction, run_id: uuid.UUID
+    ) -> AsyncGenerator[Fragment, None]:
+        """
+        Splits text into manageable chunks for embedding.
+        """
+        if not isinstance(extraction, Extraction):
+            raise ValueError(
+                f"Expected an Extraction, but received {type(extraction)}."
+            )
+        if not isinstance(extraction.data, str):
+            raise ValueError(
+                f"Expected a string, but received {type(extraction.data)}."
+            )
+        text_chunks = [
+            ele.page_content
+            for ele in self.text_splitter.create_documents([extraction.data])
+        ]
+        for iteration, chunk in enumerate(text_chunks):
+            fragment = Fragment(
+                id=generate_id_from_label(f"{extraction.id}-{iteration}"),
+                type=FragmentType.TEXT,
+                data=chunk,
+                metadata=copy.deepcopy(extraction.metadata),
+                extraction_id=extraction.id,
+                document_id=extraction.document_id,
+            )
+            yield fragment
+            iteration += 1
+
+    async def transform_fragments(
+        self, fragments: list[Fragment], metadatas: list[dict]
+    ) -> AsyncGenerator[Fragment, None]:
+        """
+        Transforms text chunks based on their metadata, e.g., adding prefixes.
+        """
+        async for fragment, metadata in zip(fragments, metadatas):
+            if "chunk_prefix" in metadata:
+                prefix = metadata.pop("chunk_prefix")
+                fragment.data = f"{prefix}\n{fragment.data}"
+            yield fragment
+
+    async def embed(self, fragments: list[Fragment]) -> list[float]:
+        return await self.embedding_provider.async_get_embeddings(
+            [fragment.data for fragment in fragments],
+            EmbeddingProvider.PipeStage.BASE,
+        )
+
+    async def _process_batch(
+        self, fragment_batch: list[Fragment]
+    ) -> list[VectorEntry]:
+        """
+        Embeds a batch of fragments and yields vector entries.
+        """
+        vectors = await self.embed(fragment_batch)
+        return [
+            VectorEntry(
+                id=fragment.id,
+                vector=Vector(data=raw_vector),
+                metadata={
+                    "document_id": fragment.document_id,
+                    "extraction_id": fragment.extraction_id,
+                    "text": fragment.data,
+                    **fragment.metadata,
+                },
+            )
+            for raw_vector, fragment in zip(vectors, fragment_batch)
+        ]
+
+    async def _process_and_enqueue_batch(
+        self, fragment_batch: list[Fragment], vector_entry_queue: asyncio.Queue
+    ):
+        try:
+            batch_result = await self._process_batch(fragment_batch)
+            for vector_entry in batch_result:
+                await vector_entry_queue.put(vector_entry)
+        except Exception as e:
+            logger.error(f"Error processing batch: {e}")
+            await vector_entry_queue.put(
+                R2RDocumentProcessingError(
+                    error_message=str(e),
+                    document_id=fragment_batch[0].document_id,
+                )
+            )
+        finally:
+            await vector_entry_queue.put(None)  # Signal completion
+
+    async def _run_logic(
+        self,
+        input: Input,
+        state: AsyncState,
+        run_id: uuid.UUID,
+        *args: Any,
+        **kwargs: Any,
+    ) -> AsyncGenerator[Union[R2RDocumentProcessingError, VectorEntry], None]:
+        """
+        Executes the embedding pipe: chunking, transforming, embedding, and storing documents.
+        """
+        vector_entry_queue = asyncio.Queue()
+        fragment_batch = []
+        active_tasks = 0
+
+        fragment_info = {}
+        async for extraction in input.message:
+            if isinstance(extraction, R2RDocumentProcessingError):
+                yield extraction
+                continue
+
+            async for fragment in self.fragment(extraction, run_id):
+                if extraction.document_id in fragment_info:
+                    fragment_info[extraction.document_id] += 1
+                else:
+                    fragment_info[extraction.document_id] = 0  # Start with 0
+                fragment.metadata["chunk_order"] = fragment_info[
+                    extraction.document_id
+                ]
+
+                version = fragment.metadata.get("version", "v0")
+
+                # Ensure fragment ID is set correctly
+                if not fragment.id:
+                    fragment.id = generate_id_from_label(
+                        f"{extraction.id}-{fragment_info[extraction.document_id]}-{version}"
+                    )
+
+                fragment_batch.append(fragment)
+                if len(fragment_batch) >= self.embedding_batch_size:
+                    asyncio.create_task(
+                        self._process_and_enqueue_batch(
+                            fragment_batch.copy(), vector_entry_queue
+                        )
+                    )
+                    active_tasks += 1
+                    fragment_batch.clear()
+
+        logger.debug(
+            f"Fragmented the input document ids into counts as shown: {fragment_info}"
+        )
+
+        if fragment_batch:
+            asyncio.create_task(
+                self._process_and_enqueue_batch(
+                    fragment_batch.copy(), vector_entry_queue
+                )
+            )
+            active_tasks += 1
+
+        while active_tasks > 0:
+            vector_entry = await vector_entry_queue.get()
+            if vector_entry is None:  # Check for termination signal
+                active_tasks -= 1
+            elif isinstance(vector_entry, Exception):
+                yield vector_entry  # Propagate the exception
+                active_tasks -= 1
+            else:
+                yield vector_entry
diff --git a/R2R/r2r/pipes/ingestion/kg_extraction_pipe.py b/R2R/r2r/pipes/ingestion/kg_extraction_pipe.py
new file mode 100755
index 00000000..13025e39
--- /dev/null
+++ b/R2R/r2r/pipes/ingestion/kg_extraction_pipe.py
@@ -0,0 +1,226 @@
+import asyncio
+import copy
+import json
+import logging
+import uuid
+from typing import Any, AsyncGenerator, Optional
+
+from r2r.base import (
+    AsyncState,
+    Extraction,
+    Fragment,
+    FragmentType,
+    KGExtraction,
+    KGProvider,
+    KVLoggingSingleton,
+    LLMProvider,
+    PipeType,
+    PromptProvider,
+    TextSplitter,
+    extract_entities,
+    extract_triples,
+    generate_id_from_label,
+)
+from r2r.base.pipes.base_pipe import AsyncPipe
+
+logger = logging.getLogger(__name__)
+
+
+class ClientError(Exception):
+    """Base class for client connection errors."""
+
+    pass
+
+
+class KGExtractionPipe(AsyncPipe):
+    """
+    Embeds and stores documents using a specified embedding model and database.
+    """
+
+    def __init__(
+        self,
+        kg_provider: KGProvider,
+        llm_provider: LLMProvider,
+        prompt_provider: PromptProvider,
+        text_splitter: TextSplitter,
+        kg_batch_size: int = 1,
+        id_prefix: str = "demo",
+        pipe_logger: Optional[KVLoggingSingleton] = None,
+        type: PipeType = PipeType.INGESTOR,
+        config: Optional[AsyncPipe.PipeConfig] = None,
+        *args,
+        **kwargs,
+    ):
+        """
+        Initializes the embedding pipe with necessary components and configurations.
+        """
+        super().__init__(
+            pipe_logger=pipe_logger,
+            type=type,
+            config=config
+            or AsyncPipe.PipeConfig(name="default_embedding_pipe"),
+        )
+
+        self.kg_provider = kg_provider
+        self.prompt_provider = prompt_provider
+        self.llm_provider = llm_provider
+        self.text_splitter = text_splitter
+        self.kg_batch_size = kg_batch_size
+        self.id_prefix = id_prefix
+        self.pipe_run_info = None
+
+    async def fragment(
+        self, extraction: Extraction, run_id: uuid.UUID
+    ) -> AsyncGenerator[Fragment, None]:
+        """
+        Splits text into manageable chunks for embedding.
+        """
+        if not isinstance(extraction, Extraction):
+            raise ValueError(
+                f"Expected an Extraction, but received {type(extraction)}."
+            )
+        if not isinstance(extraction.data, str):
+            raise ValueError(
+                f"Expected a string, but received {type(extraction.data)}."
+            )
+        text_chunks = [
+            ele.page_content
+            for ele in self.text_splitter.create_documents([extraction.data])
+        ]
+        for iteration, chunk in enumerate(text_chunks):
+            fragment = Fragment(
+                id=generate_id_from_label(f"{extraction.id}-{iteration}"),
+                type=FragmentType.TEXT,
+                data=chunk,
+                metadata=copy.deepcopy(extraction.metadata),
+                extraction_id=extraction.id,
+                document_id=extraction.document_id,
+            )
+            yield fragment
+
+    async def transform_fragments(
+        self, fragments: list[Fragment]
+    ) -> AsyncGenerator[Fragment, None]:
+        """
+        Transforms text chunks based on their metadata, e.g., adding prefixes.
+        """
+        async for fragment in fragments:
+            if "chunk_prefix" in fragment.metadata:
+                prefix = fragment.metadata.pop("chunk_prefix")
+                fragment.data = f"{prefix}\n{fragment.data}"
+            yield fragment
+
+    async def extract_kg(
+        self,
+        fragment: Fragment,
+        retries: int = 3,
+        delay: int = 2,
+    ) -> KGExtraction:
+        """
+        Extracts NER triples from a list of fragments with retries.
+        """
+        task_prompt = self.prompt_provider.get_prompt(
+            self.kg_provider.config.kg_extraction_prompt,
+            inputs={"input": fragment.data},
+        )
+        messages = self.prompt_provider._get_message_payload(
+            self.prompt_provider.get_prompt("default_system"), task_prompt
+        )
+        for attempt in range(retries):
+            try:
+                response = await self.llm_provider.aget_completion(
+                    messages, self.kg_provider.config.kg_extraction_config
+                )
+
+                kg_extraction = response.choices[0].message.content
+
+                # Parsing JSON from the response
+                kg_json = (
+                    json.loads(
+                        kg_extraction.split("```json")[1].split("```")[0]
+                    )
+                    if """```json""" in kg_extraction
+                    else json.loads(kg_extraction)
+                )
+                llm_payload = kg_json.get("entities_and_triples", {})
+
+                # Extract triples with detailed logging
+                entities = extract_entities(llm_payload)
+                triples = extract_triples(llm_payload, entities)
+
+                # Create KG extraction object
+                return KGExtraction(entities=entities, triples=triples)
+            except (
+                ClientError,
+                json.JSONDecodeError,
+                KeyError,
+                IndexError,
+            ) as e:
+                logger.error(f"Error in extract_kg: {e}")
+                if attempt < retries - 1:
+                    await asyncio.sleep(delay)
+                else:
+                    logger.error(f"Failed after retries with {e}")
+                    # raise e  # Ensure the exception is raised after the final attempt
+
+        return KGExtraction(entities={}, triples=[])
+
+    async def _process_batch(
+        self,
+        fragment_batch: list[Fragment],
+    ) -> list[KGExtraction]:
+        """
+        Embeds a batch of fragments and yields vector entries.
+        """
+        tasks = [
+            asyncio.create_task(self.extract_kg(fragment))
+            for fragment in fragment_batch
+        ]
+        return await asyncio.gather(*tasks)
+
+    async def _run_logic(
+        self,
+        input: AsyncPipe.Input,
+        state: AsyncState,
+        run_id: uuid.UUID,
+        *args: Any,
+        **kwargs: Any,
+    ) -> AsyncGenerator[KGExtraction, None]:
+        """
+        Executes the embedding pipe: chunking, transforming, embedding, and storing documents.
+        """
+        batch_tasks = []
+        fragment_batch = []
+
+        fragment_info = {}
+        async for extraction in input.message:
+            async for fragment in self.transform_fragments(
+                self.fragment(extraction, run_id)
+            ):
+                if extraction.document_id in fragment_info:
+                    fragment_info[extraction.document_id] += 1
+                else:
+                    fragment_info[extraction.document_id] = 1
+                extraction.metadata["chunk_order"] = fragment_info[
+                    extraction.document_id
+                ]
+                fragment_batch.append(fragment)
+                if len(fragment_batch) >= self.kg_batch_size:
+                    # Here, ensure `_process_batch` is scheduled as a coroutine, not called directly
+                    batch_tasks.append(
+                        self._process_batch(fragment_batch.copy())
+                    )  # pass a copy if necessary
+                    fragment_batch.clear()  # Clear the batch for new fragments
+
+        logger.debug(
+            f"Fragmented the input document ids into counts as shown: {fragment_info}"
+        )
+
+        if fragment_batch:  # Process any remaining fragments
+            batch_tasks.append(self._process_batch(fragment_batch.copy()))
+
+        # Process tasks as they complete
+        for task in asyncio.as_completed(batch_tasks):
+            batch_result = await task  # Wait for the next task to complete
+            for kg_extraction in batch_result:
+                yield kg_extraction
diff --git a/R2R/r2r/pipes/ingestion/kg_storage_pipe.py b/R2R/r2r/pipes/ingestion/kg_storage_pipe.py
new file mode 100755
index 00000000..9ac63479
--- /dev/null
+++ b/R2R/r2r/pipes/ingestion/kg_storage_pipe.py
@@ -0,0 +1,133 @@
+import asyncio
+import logging
+import uuid
+from typing import Any, AsyncGenerator, Optional
+
+from r2r.base import (
+    AsyncState,
+    EmbeddingProvider,
+    KGExtraction,
+    KGProvider,
+    KVLoggingSingleton,
+    PipeType,
+)
+from r2r.base.abstractions.llama_abstractions import EntityNode, Relation
+from r2r.base.pipes.base_pipe import AsyncPipe
+
+logger = logging.getLogger(__name__)
+
+
+class KGStoragePipe(AsyncPipe):
+    class Input(AsyncPipe.Input):
+        message: AsyncGenerator[KGExtraction, None]
+
+    def __init__(
+        self,
+        kg_provider: KGProvider,
+        embedding_provider: Optional[EmbeddingProvider] = None,
+        storage_batch_size: int = 1,
+        pipe_logger: Optional[KVLoggingSingleton] = None,
+        type: PipeType = PipeType.INGESTOR,
+        config: Optional[AsyncPipe.PipeConfig] = None,
+        *args,
+        **kwargs,
+    ):
+        """
+        Initializes the async knowledge graph storage pipe with necessary components and configurations.
+        """
+        logger.info(
+            f"Initializing an `KGStoragePipe` to store knowledge graph extractions in a graph database."
+        )
+
+        super().__init__(
+            pipe_logger=pipe_logger,
+            type=type,
+            config=config,
+            *args,
+            **kwargs,
+        )
+        self.kg_provider = kg_provider
+        self.embedding_provider = embedding_provider
+        self.storage_batch_size = storage_batch_size
+
+    async def store(
+        self,
+        kg_extractions: list[KGExtraction],
+    ) -> None:
+        """
+        Stores a batch of knowledge graph extractions in the graph database.
+        """
+        try:
+            nodes = []
+            relations = []
+            for extraction in kg_extractions:
+                for entity in extraction.entities.values():
+                    embedding = None
+                    if self.embedding_provider:
+                        embedding = self.embedding_provider.get_embedding(
+                            "Entity:\n{entity.value}\nLabel:\n{entity.category}\nSubcategory:\n{entity.subcategory}"
+                        )
+                    nodes.append(
+                        EntityNode(
+                            name=entity.value,
+                            label=entity.category,
+                            embedding=embedding,
+                            properties=(
+                                {"subcategory": entity.subcategory}
+                                if entity.subcategory
+                                else {}
+                            ),
+                        )
+                    )
+                for triple in extraction.triples:
+                    relations.append(
+                        Relation(
+                            source_id=triple.subject,
+                            target_id=triple.object,
+                            label=triple.predicate,
+                        )
+                    )
+            self.kg_provider.upsert_nodes(nodes)
+            self.kg_provider.upsert_relations(relations)
+        except Exception as e:
+            error_message = f"Failed to store knowledge graph extractions in the database: {e}"
+            logger.error(error_message)
+            raise ValueError(error_message)
+
+    async def _run_logic(
+        self,
+        input: Input,
+        state: AsyncState,
+        run_id: uuid.UUID,
+        *args: Any,
+        **kwargs: Any,
+    ) -> AsyncGenerator[None, None]:
+        """
+        Executes the async knowledge graph storage pipe: storing knowledge graph extractions in the graph database.
+        """
+        batch_tasks = []
+        kg_batch = []
+
+        async for kg_extraction in input.message:
+            kg_batch.append(kg_extraction)
+            if len(kg_batch) >= self.storage_batch_size:
+                # Schedule the storage task
+                batch_tasks.append(
+                    asyncio.create_task(
+                        self.store(kg_batch.copy()),
+                        name=f"kg-store-{self.config.name}",
+                    )
+                )
+                kg_batch.clear()
+
+        if kg_batch:  # Process any remaining extractions
+            batch_tasks.append(
+                asyncio.create_task(
+                    self.store(kg_batch.copy()),
+                    name=f"kg-store-{self.config.name}",
+                )
+            )
+
+        # Wait for all storage tasks to complete
+        await asyncio.gather(*batch_tasks)
+        yield None
diff --git a/R2R/r2r/pipes/ingestion/parsing_pipe.py b/R2R/r2r/pipes/ingestion/parsing_pipe.py
new file mode 100755
index 00000000..f3c81ca0
--- /dev/null
+++ b/R2R/r2r/pipes/ingestion/parsing_pipe.py
@@ -0,0 +1,211 @@
+"""
+This module contains the `DocumentParsingPipe` class, which is responsible for parsing incoming documents into plaintext.
+"""
+
+import asyncio
+import logging
+import time
+import uuid
+from typing import AsyncGenerator, Optional, Union
+
+from r2r.base import (
+    AsyncParser,
+    AsyncState,
+    Document,
+    DocumentType,
+    Extraction,
+    ExtractionType,
+    KVLoggingSingleton,
+    PipeType,
+    generate_id_from_label,
+)
+from r2r.base.abstractions.exception import R2RDocumentProcessingError
+from r2r.base.pipes.base_pipe import AsyncPipe
+from r2r.parsers.media.audio_parser import AudioParser
+from r2r.parsers.media.docx_parser import DOCXParser
+from r2r.parsers.media.img_parser import ImageParser
+from r2r.parsers.media.movie_parser import MovieParser
+from r2r.parsers.media.pdf_parser import PDFParser
+from r2r.parsers.media.ppt_parser import PPTParser
+from r2r.parsers.structured.csv_parser import CSVParser
+from r2r.parsers.structured.json_parser import JSONParser
+from r2r.parsers.structured.xlsx_parser import XLSXParser
+from r2r.parsers.text.html_parser import HTMLParser
+from r2r.parsers.text.md_parser import MDParser
+from r2r.parsers.text.text_parser import TextParser
+
+logger = logging.getLogger(__name__)
+
+
+class ParsingPipe(AsyncPipe):
+    """
+    Processes incoming documents into plaintext based on their data type.
+    Supports TXT, JSON, HTML, and PDF formats.
+    """
+
+    class Input(AsyncPipe.Input):
+        message: AsyncGenerator[Document, None]
+
+    AVAILABLE_PARSERS = {
+        DocumentType.CSV: CSVParser,
+        DocumentType.DOCX: DOCXParser,
+        DocumentType.HTML: HTMLParser,
+        DocumentType.JSON: JSONParser,
+        DocumentType.MD: MDParser,
+        DocumentType.PDF: PDFParser,
+        DocumentType.PPTX: PPTParser,
+        DocumentType.TXT: TextParser,
+        DocumentType.XLSX: XLSXParser,
+        DocumentType.GIF: ImageParser,
+        DocumentType.JPEG: ImageParser,
+        DocumentType.JPG: ImageParser,
+        DocumentType.PNG: ImageParser,
+        DocumentType.SVG: ImageParser,
+        DocumentType.MP3: AudioParser,
+        DocumentType.MP4: MovieParser,
+    }
+
+    IMAGE_TYPES = {
+        DocumentType.GIF,
+        DocumentType.JPG,
+        DocumentType.JPEG,
+        DocumentType.PNG,
+        DocumentType.SVG,
+    }
+
+    def __init__(
+        self,
+        excluded_parsers: list[DocumentType],
+        override_parsers: Optional[dict[DocumentType, AsyncParser]] = None,
+        pipe_logger: Optional[KVLoggingSingleton] = None,
+        type: PipeType = PipeType.INGESTOR,
+        config: Optional[AsyncPipe.PipeConfig] = None,
+        *args,
+        **kwargs,
+    ):
+        super().__init__(
+            pipe_logger=pipe_logger,
+            type=type,
+            config=config
+            or AsyncPipe.PipeConfig(name="default_document_parsing_pipe"),
+            *args,
+            **kwargs,
+        )
+
+        self.parsers = {}
+
+        if not override_parsers:
+            override_parsers = {}
+
+        # Apply overrides if specified
+        for doc_type, parser in override_parsers.items():
+            self.parsers[doc_type] = parser
+
+        for doc_type, parser_info in self.AVAILABLE_PARSERS.items():
+            if (
+                doc_type not in excluded_parsers
+                and doc_type not in self.parsers
+            ):
+                self.parsers[doc_type] = parser_info()
+
+    @property
+    def supported_types(self) -> list[str]:
+        """
+        Lists the data types supported by the pipe.
+        """
+        return [entry_type for entry_type in DocumentType]
+
+    async def _parse(
+        self,
+        document: Document,
+        run_id: uuid.UUID,
+        version: str,
+    ) -> AsyncGenerator[Union[R2RDocumentProcessingError, Extraction], None]:
+        if document.type not in self.parsers:
+            yield R2RDocumentProcessingError(
+                document_id=document.id,
+                error_message=f"Parser for {document.type} not found in `ParsingPipe`.",
+            )
+            return
+        parser = self.parsers[document.type]
+        texts = parser.ingest(document.data)
+        extraction_type = ExtractionType.TXT
+        t0 = time.time()
+        if document.type in self.IMAGE_TYPES:
+            extraction_type = ExtractionType.IMG
+            document.metadata["image_type"] = document.type.value
+            # SAVE IMAGE DATA
+            # try:
+            #     import base64
+            #     sanitized_data = base64.b64encode(document.data).decode('utf-8')
+            # except Exception as e:
+            #     sanitized_data = document.data
+
+            # document.metadata["image_data"] = sanitized_data
+        elif document.type == DocumentType.MP4:
+            extraction_type = ExtractionType.MOV
+            document.metadata["audio_type"] = document.type.value
+
+        iteration = 0
+        async for text in texts:
+            extraction_id = generate_id_from_label(
+                f"{document.id}-{iteration}-{version}"
+            )
+            document.metadata["version"] = version
+            extraction = Extraction(
+                id=extraction_id,
+                data=text,
+                metadata=document.metadata,
+                document_id=document.id,
+                type=extraction_type,
+            )
+            yield extraction
+            # TODO - Add settings to enable extraction logging
+            # extraction_dict = extraction.dict()
+            # await self.enqueue_log(
+            #     run_id=run_id,
+            #     key="extraction",
+            #     value=json.dumps(
+            #         {
+            #             "data": extraction_dict["data"],
+            #             "document_id": str(extraction_dict["document_id"]),
+            #             "extraction_id": str(extraction_dict["id"]),
+            #         }
+            #     ),
+            # )
+            iteration += 1
+        logger.debug(
+            f"Parsed document with id={document.id}, title={document.metadata.get('title', None)}, user_id={document.metadata.get('user_id', None)}, metadata={document.metadata} into {iteration} extractions in t={time.time() - t0:.2f} seconds."
+        )
+
+    async def _run_logic(
+        self,
+        input: Input,
+        state: AsyncState,
+        run_id: uuid.UUID,
+        versions: Optional[list[str]] = None,
+        *args,
+        **kwargs,
+    ) -> AsyncGenerator[Extraction, None]:
+        parse_tasks = []
+
+        iteration = 0
+        async for document in input.message:
+            version = versions[iteration] if versions else "v0"
+            iteration += 1
+            parse_tasks.append(
+                self._handle_parse_task(document, version, run_id)
+            )
+
+        # Await all tasks and yield results concurrently
+        for parse_task in asyncio.as_completed(parse_tasks):
+            for extraction in await parse_task:
+                yield extraction
+
+    async def _handle_parse_task(
+        self, document: Document, version: str, run_id: uuid.UUID
+    ) -> AsyncGenerator[Extraction, None]:
+        extractions = []
+        async for extraction in self._parse(document, run_id, version):
+            extractions.append(extraction)
+        return extractions
diff --git a/R2R/r2r/pipes/ingestion/vector_storage_pipe.py b/R2R/r2r/pipes/ingestion/vector_storage_pipe.py
new file mode 100755
index 00000000..9564fd22
--- /dev/null
+++ b/R2R/r2r/pipes/ingestion/vector_storage_pipe.py
@@ -0,0 +1,128 @@
+import asyncio
+import logging
+import uuid
+from typing import Any, AsyncGenerator, Optional, Tuple, Union
+
+from r2r.base import (
+    AsyncState,
+    KVLoggingSingleton,
+    PipeType,
+    VectorDBProvider,
+    VectorEntry,
+)
+from r2r.base.pipes.base_pipe import AsyncPipe
+
+from ...base.abstractions.exception import R2RDocumentProcessingError
+
+logger = logging.getLogger(__name__)
+
+
+class VectorStoragePipe(AsyncPipe):
+    class Input(AsyncPipe.Input):
+        message: AsyncGenerator[
+            Union[R2RDocumentProcessingError, VectorEntry], None
+        ]
+        do_upsert: bool = True
+
+    def __init__(
+        self,
+        vector_db_provider: VectorDBProvider,
+        storage_batch_size: int = 128,
+        pipe_logger: Optional[KVLoggingSingleton] = None,
+        type: PipeType = PipeType.INGESTOR,
+        config: Optional[AsyncPipe.PipeConfig] = None,
+        *args,
+        **kwargs,
+    ):
+        """
+        Initializes the async vector storage pipe with necessary components and configurations.
+        """
+        super().__init__(
+            pipe_logger=pipe_logger,
+            type=type,
+            config=config,
+            *args,
+            **kwargs,
+        )
+        self.vector_db_provider = vector_db_provider
+        self.storage_batch_size = storage_batch_size
+
+    async def store(
+        self,
+        vector_entries: list[VectorEntry],
+        do_upsert: bool = True,
+    ) -> None:
+        """
+        Stores a batch of vector entries in the database.
+        """
+
+        try:
+            if do_upsert:
+                self.vector_db_provider.upsert_entries(vector_entries)
+            else:
+                self.vector_db_provider.copy_entries(vector_entries)
+        except Exception as e:
+            error_message = (
+                f"Failed to store vector entries in the database: {e}"
+            )
+            logger.error(error_message)
+            raise ValueError(error_message)
+
+    async def _run_logic(
+        self,
+        input: Input,
+        state: AsyncState,
+        run_id: uuid.UUID,
+        *args: Any,
+        **kwargs: Any,
+    ) -> AsyncGenerator[
+        Tuple[uuid.UUID, Union[str, R2RDocumentProcessingError]], None
+    ]:
+        """
+        Executes the async vector storage pipe: storing embeddings in the vector database.
+        """
+        batch_tasks = []
+        vector_batch = []
+        document_counts = {}
+        i = 0
+        async for msg in input.message:
+            i += 1
+            if isinstance(msg, R2RDocumentProcessingError):
+                yield (msg.document_id, msg)
+                continue
+
+            document_id = msg.metadata.get("document_id", None)
+            if not document_id:
+                raise ValueError("Document ID not found in the metadata.")
+            if document_id not in document_counts:
+                document_counts[document_id] = 1
+            else:
+                document_counts[document_id] += 1
+
+            vector_batch.append(msg)
+            if len(vector_batch) >= self.storage_batch_size:
+                # Schedule the storage task
+                batch_tasks.append(
+                    asyncio.create_task(
+                        self.store(vector_batch.copy(), input.do_upsert),
+                        name=f"vector-store-{self.config.name}",
+                    )
+                )
+                vector_batch.clear()
+
+        if vector_batch:  # Process any remaining vectors
+            batch_tasks.append(
+                asyncio.create_task(
+                    self.store(vector_batch.copy(), input.do_upsert),
+                    name=f"vector-store-{self.config.name}",
+                )
+            )
+
+        # Wait for all storage tasks to complete
+        await asyncio.gather(*batch_tasks)
+
+        for document_id, count in document_counts.items():
+            yield (
+                document_id,
+                f"Processed {count} vectors for document {document_id}.",
+            )