aboutsummaryrefslogtreecommitdiff
path: root/R2R/r2r/pipes/ingestion/embedding_pipe.py
blob: 971ccc9dfbf1ba1558a344b08d21539520e13b91 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import asyncio
import copy
import logging
import uuid
from typing import Any, AsyncGenerator, Optional, Union

from r2r.base import (
    AsyncState,
    EmbeddingProvider,
    Extraction,
    Fragment,
    FragmentType,
    KVLoggingSingleton,
    PipeType,
    R2RDocumentProcessingError,
    TextSplitter,
    Vector,
    VectorEntry,
    generate_id_from_label,
)
from r2r.base.pipes.base_pipe import AsyncPipe

logger = logging.getLogger(__name__)


class EmbeddingPipe(AsyncPipe):
    """
    Embeds and stores documents using a specified embedding model and database.
    """

    class Input(AsyncPipe.Input):
        message: AsyncGenerator[
            Union[Extraction, R2RDocumentProcessingError], None
        ]

    def __init__(
        self,
        embedding_provider: EmbeddingProvider,
        text_splitter: TextSplitter,
        embedding_batch_size: int = 1,
        id_prefix: str = "demo",
        pipe_logger: Optional[KVLoggingSingleton] = None,
        type: PipeType = PipeType.INGESTOR,
        config: Optional[AsyncPipe.PipeConfig] = None,
        *args,
        **kwargs,
    ):
        """
        Initializes the embedding pipe with necessary components and configurations.
        """
        super().__init__(
            pipe_logger=pipe_logger,
            type=type,
            config=config
            or AsyncPipe.PipeConfig(name="default_embedding_pipe"),
        )
        self.embedding_provider = embedding_provider
        self.text_splitter = text_splitter
        self.embedding_batch_size = embedding_batch_size
        self.id_prefix = id_prefix
        self.pipe_run_info = None

    async def fragment(
        self, extraction: Extraction, run_id: uuid.UUID
    ) -> AsyncGenerator[Fragment, None]:
        """
        Splits text into manageable chunks for embedding.
        """
        if not isinstance(extraction, Extraction):
            raise ValueError(
                f"Expected an Extraction, but received {type(extraction)}."
            )
        if not isinstance(extraction.data, str):
            raise ValueError(
                f"Expected a string, but received {type(extraction.data)}."
            )
        text_chunks = [
            ele.page_content
            for ele in self.text_splitter.create_documents([extraction.data])
        ]
        for iteration, chunk in enumerate(text_chunks):
            fragment = Fragment(
                id=generate_id_from_label(f"{extraction.id}-{iteration}"),
                type=FragmentType.TEXT,
                data=chunk,
                metadata=copy.deepcopy(extraction.metadata),
                extraction_id=extraction.id,
                document_id=extraction.document_id,
            )
            yield fragment
            iteration += 1

    async def transform_fragments(
        self, fragments: list[Fragment], metadatas: list[dict]
    ) -> AsyncGenerator[Fragment, None]:
        """
        Transforms text chunks based on their metadata, e.g., adding prefixes.
        """
        async for fragment, metadata in zip(fragments, metadatas):
            if "chunk_prefix" in metadata:
                prefix = metadata.pop("chunk_prefix")
                fragment.data = f"{prefix}\n{fragment.data}"
            yield fragment

    async def embed(self, fragments: list[Fragment]) -> list[float]:
        return await self.embedding_provider.async_get_embeddings(
            [fragment.data for fragment in fragments],
            EmbeddingProvider.PipeStage.BASE,
        )

    async def _process_batch(
        self, fragment_batch: list[Fragment]
    ) -> list[VectorEntry]:
        """
        Embeds a batch of fragments and yields vector entries.
        """
        vectors = await self.embed(fragment_batch)
        return [
            VectorEntry(
                id=fragment.id,
                vector=Vector(data=raw_vector),
                metadata={
                    "document_id": fragment.document_id,
                    "extraction_id": fragment.extraction_id,
                    "text": fragment.data,
                    **fragment.metadata,
                },
            )
            for raw_vector, fragment in zip(vectors, fragment_batch)
        ]

    async def _process_and_enqueue_batch(
        self, fragment_batch: list[Fragment], vector_entry_queue: asyncio.Queue
    ):
        try:
            batch_result = await self._process_batch(fragment_batch)
            for vector_entry in batch_result:
                await vector_entry_queue.put(vector_entry)
        except Exception as e:
            logger.error(f"Error processing batch: {e}")
            await vector_entry_queue.put(
                R2RDocumentProcessingError(
                    error_message=str(e),
                    document_id=fragment_batch[0].document_id,
                )
            )
        finally:
            await vector_entry_queue.put(None)  # Signal completion

    async def _run_logic(
        self,
        input: Input,
        state: AsyncState,
        run_id: uuid.UUID,
        *args: Any,
        **kwargs: Any,
    ) -> AsyncGenerator[Union[R2RDocumentProcessingError, VectorEntry], None]:
        """
        Executes the embedding pipe: chunking, transforming, embedding, and storing documents.
        """
        vector_entry_queue = asyncio.Queue()
        fragment_batch = []
        active_tasks = 0

        fragment_info = {}
        async for extraction in input.message:
            if isinstance(extraction, R2RDocumentProcessingError):
                yield extraction
                continue

            async for fragment in self.fragment(extraction, run_id):
                if extraction.document_id in fragment_info:
                    fragment_info[extraction.document_id] += 1
                else:
                    fragment_info[extraction.document_id] = 0  # Start with 0
                fragment.metadata["chunk_order"] = fragment_info[
                    extraction.document_id
                ]

                version = fragment.metadata.get("version", "v0")

                # Ensure fragment ID is set correctly
                if not fragment.id:
                    fragment.id = generate_id_from_label(
                        f"{extraction.id}-{fragment_info[extraction.document_id]}-{version}"
                    )

                fragment_batch.append(fragment)
                if len(fragment_batch) >= self.embedding_batch_size:
                    asyncio.create_task(
                        self._process_and_enqueue_batch(
                            fragment_batch.copy(), vector_entry_queue
                        )
                    )
                    active_tasks += 1
                    fragment_batch.clear()

        logger.debug(
            f"Fragmented the input document ids into counts as shown: {fragment_info}"
        )

        if fragment_batch:
            asyncio.create_task(
                self._process_and_enqueue_batch(
                    fragment_batch.copy(), vector_entry_queue
                )
            )
            active_tasks += 1

        while active_tasks > 0:
            vector_entry = await vector_entry_queue.get()
            if vector_entry is None:  # Check for termination signal
                active_tasks -= 1
            elif isinstance(vector_entry, Exception):
                yield vector_entry  # Propagate the exception
                active_tasks -= 1
            else:
                yield vector_entry