aboutsummaryrefslogtreecommitdiff
path: root/R2R/r2r/pipelines
diff options
context:
space:
mode:
Diffstat (limited to 'R2R/r2r/pipelines')
-rwxr-xr-xR2R/r2r/pipelines/__init__.py11
-rwxr-xr-xR2R/r2r/pipelines/eval_pipeline.py37
-rwxr-xr-xR2R/r2r/pipelines/ingestion_pipeline.py144
-rwxr-xr-xR2R/r2r/pipelines/rag_pipeline.py115
-rwxr-xr-xR2R/r2r/pipelines/search_pipeline.py140
5 files changed, 447 insertions, 0 deletions
diff --git a/R2R/r2r/pipelines/__init__.py b/R2R/r2r/pipelines/__init__.py
new file mode 100755
index 00000000..ebe3a0c3
--- /dev/null
+++ b/R2R/r2r/pipelines/__init__.py
@@ -0,0 +1,11 @@
+from .eval_pipeline import EvalPipeline
+from .ingestion_pipeline import IngestionPipeline
+from .rag_pipeline import RAGPipeline
+from .search_pipeline import SearchPipeline
+
+__all__ = [
+ "IngestionPipeline",
+ "SearchPipeline",
+ "RAGPipeline",
+ "EvalPipeline",
+]
diff --git a/R2R/r2r/pipelines/eval_pipeline.py b/R2R/r2r/pipelines/eval_pipeline.py
new file mode 100755
index 00000000..60aa50d4
--- /dev/null
+++ b/R2R/r2r/pipelines/eval_pipeline.py
@@ -0,0 +1,37 @@
+import logging
+from typing import Any, Optional
+
+from r2r.base.logging.run_manager import RunManager
+from r2r.base.pipeline.base_pipeline import AsyncPipeline
+from r2r.base.pipes.base_pipe import AsyncPipe, AsyncState
+
+logger = logging.getLogger(__name__)
+
+
+class EvalPipeline(AsyncPipeline):
+ """A pipeline for evaluation."""
+
+ pipeline_type: str = "eval"
+
+ async def run(
+ self,
+ input: Any,
+ state: Optional[AsyncState] = None,
+ stream: bool = False,
+ run_manager: Optional[RunManager] = None,
+ *args: Any,
+ **kwargs: Any,
+ ):
+ return await super().run(
+ input, state, stream, run_manager, *args, **kwargs
+ )
+
+ def add_pipe(
+ self,
+ pipe: AsyncPipe,
+ add_upstream_outputs: Optional[list[dict[str, str]]] = None,
+ *args,
+ **kwargs,
+ ) -> None:
+ logger.debug(f"Adding pipe {pipe.config.name} to the EvalPipeline")
+ return super().add_pipe(pipe, add_upstream_outputs, *args, **kwargs)
diff --git a/R2R/r2r/pipelines/ingestion_pipeline.py b/R2R/r2r/pipelines/ingestion_pipeline.py
new file mode 100755
index 00000000..df1263f9
--- /dev/null
+++ b/R2R/r2r/pipelines/ingestion_pipeline.py
@@ -0,0 +1,144 @@
+import asyncio
+import logging
+from asyncio import Queue
+from typing import Any, Optional
+
+from r2r.base.logging.kv_logger import KVLoggingSingleton
+from r2r.base.logging.run_manager import RunManager, manage_run
+from r2r.base.pipeline.base_pipeline import AsyncPipeline, dequeue_requests
+from r2r.base.pipes.base_pipe import AsyncPipe, AsyncState
+
+logger = logging.getLogger(__name__)
+
+
+class IngestionPipeline(AsyncPipeline):
+ """A pipeline for ingestion."""
+
+ pipeline_type: str = "ingestion"
+
+ def __init__(
+ self,
+ pipe_logger: Optional[KVLoggingSingleton] = None,
+ run_manager: Optional[RunManager] = None,
+ ):
+ super().__init__(pipe_logger, run_manager)
+ self.parsing_pipe = None
+ self.embedding_pipeline = None
+ self.kg_pipeline = None
+
+ async def run(
+ self,
+ input: Any,
+ state: Optional[AsyncState] = None,
+ stream: bool = False,
+ run_manager: Optional[RunManager] = None,
+ log_run_info: bool = True,
+ *args: Any,
+ **kwargs: Any,
+ ) -> None:
+ self.state = state or AsyncState()
+ async with manage_run(run_manager, self.pipeline_type):
+ if log_run_info:
+ await run_manager.log_run_info(
+ key="pipeline_type",
+ value=self.pipeline_type,
+ is_info_log=True,
+ )
+ if self.parsing_pipe is None:
+ raise ValueError(
+ "parsing_pipeline must be set before running the ingestion pipeline"
+ )
+ if self.embedding_pipeline is None and self.kg_pipeline is None:
+ raise ValueError(
+ "At least one of embedding_pipeline or kg_pipeline must be set before running the ingestion pipeline"
+ )
+ # Use queues to duplicate the documents for each pipeline
+ embedding_queue = Queue()
+ kg_queue = Queue()
+
+ async def enqueue_documents():
+ async for document in await self.parsing_pipe.run(
+ self.parsing_pipe.Input(message=input),
+ state,
+ run_manager,
+ *args,
+ **kwargs,
+ ):
+ if self.embedding_pipeline:
+ await embedding_queue.put(document)
+ if self.kg_pipeline:
+ await kg_queue.put(document)
+ await embedding_queue.put(None)
+ await kg_queue.put(None)
+
+ # Start the document enqueuing process
+ enqueue_task = asyncio.create_task(enqueue_documents())
+
+ # Start the embedding and KG pipelines in parallel
+ if self.embedding_pipeline:
+ embedding_task = asyncio.create_task(
+ self.embedding_pipeline.run(
+ dequeue_requests(embedding_queue),
+ state,
+ stream,
+ run_manager,
+ log_run_info=False, # Do not log run info since we have already done so
+ *args,
+ **kwargs,
+ )
+ )
+
+ if self.kg_pipeline:
+ kg_task = asyncio.create_task(
+ self.kg_pipeline.run(
+ dequeue_requests(kg_queue),
+ state,
+ stream,
+ run_manager,
+ log_run_info=False, # Do not log run info since we have already done so
+ *args,
+ **kwargs,
+ )
+ )
+
+ # Wait for the enqueueing task to complete
+ await enqueue_task
+
+ results = {}
+ # Wait for the embedding and KG tasks to complete
+ if self.embedding_pipeline:
+ results["embedding_pipeline_output"] = await embedding_task
+ if self.kg_pipeline:
+ results["kg_pipeline_output"] = await kg_task
+ return results
+
+ def add_pipe(
+ self,
+ pipe: AsyncPipe,
+ add_upstream_outputs: Optional[list[dict[str, str]]] = None,
+ parsing_pipe: bool = False,
+ kg_pipe: bool = False,
+ embedding_pipe: bool = False,
+ *args,
+ **kwargs,
+ ) -> None:
+ logger.debug(
+ f"Adding pipe {pipe.config.name} to the IngestionPipeline"
+ )
+
+ if parsing_pipe:
+ self.parsing_pipe = pipe
+ elif kg_pipe:
+ if not self.kg_pipeline:
+ self.kg_pipeline = AsyncPipeline()
+ self.kg_pipeline.add_pipe(
+ pipe, add_upstream_outputs, *args, **kwargs
+ )
+ elif embedding_pipe:
+ if not self.embedding_pipeline:
+ self.embedding_pipeline = AsyncPipeline()
+ self.embedding_pipeline.add_pipe(
+ pipe, add_upstream_outputs, *args, **kwargs
+ )
+ else:
+ raise ValueError("Pipe must be a parsing, embedding, or KG pipe")
diff --git a/R2R/r2r/pipelines/rag_pipeline.py b/R2R/r2r/pipelines/rag_pipeline.py
new file mode 100755
index 00000000..b257ccaa
--- /dev/null
+++ b/R2R/r2r/pipelines/rag_pipeline.py
@@ -0,0 +1,115 @@
+import asyncio
+import logging
+from typing import Any, Optional
+
+from ..base.abstractions.llm import GenerationConfig
+from ..base.abstractions.search import KGSearchSettings, VectorSearchSettings
+from ..base.logging.kv_logger import KVLoggingSingleton
+from ..base.logging.run_manager import RunManager, manage_run
+from ..base.pipeline.base_pipeline import AsyncPipeline
+from ..base.pipes.base_pipe import AsyncPipe, AsyncState
+from ..base.utils import to_async_generator
+
+logger = logging.getLogger(__name__)
+
+
+class RAGPipeline(AsyncPipeline):
+ """A pipeline for RAG."""
+
+ pipeline_type: str = "rag"
+
+ def __init__(
+ self,
+ pipe_logger: Optional[KVLoggingSingleton] = None,
+ run_manager: Optional[RunManager] = None,
+ ):
+ super().__init__(pipe_logger, run_manager)
+ self._search_pipeline = None
+ self._rag_pipeline = None
+
+ async def run(
+ self,
+ input: Any,
+ state: Optional[AsyncState] = None,
+ run_manager: Optional[RunManager] = None,
+ log_run_info=True,
+ vector_search_settings: VectorSearchSettings = VectorSearchSettings(),
+ kg_search_settings: KGSearchSettings = KGSearchSettings(),
+ rag_generation_config: GenerationConfig = GenerationConfig(),
+ *args: Any,
+ **kwargs: Any,
+ ):
+ self.state = state or AsyncState()
+ async with manage_run(run_manager, self.pipeline_type):
+ if log_run_info:
+ await run_manager.log_run_info(
+ key="pipeline_type",
+ value=self.pipeline_type,
+ is_info_log=True,
+ )
+
+ if not self._search_pipeline:
+ raise ValueError(
+ "_search_pipeline must be set before running the RAG pipeline"
+ )
+
+ async def multi_query_generator(input):
+ tasks = []
+ async for query in input:
+ task = asyncio.create_task(
+ self._search_pipeline.run(
+ to_async_generator([query]),
+ state=state,
+ stream=False, # do not stream the search results
+ run_manager=run_manager,
+ log_run_info=False, # do not log the run info as it is already logged above
+ vector_search_settings=vector_search_settings,
+ kg_search_settings=kg_search_settings,
+ *args,
+ **kwargs,
+ )
+ )
+ tasks.append((query, task))
+
+ for query, task in tasks:
+ yield (query, await task)
+
+ rag_results = await self._rag_pipeline.run(
+ input=multi_query_generator(input),
+ state=state,
+ stream=rag_generation_config.stream,
+ run_manager=run_manager,
+ log_run_info=False,
+ rag_generation_config=rag_generation_config,
+ *args,
+ **kwargs,
+ )
+ return rag_results
+
+ def add_pipe(
+ self,
+ pipe: AsyncPipe,
+ add_upstream_outputs: Optional[list[dict[str, str]]] = None,
+ rag_pipe: bool = True,
+ *args,
+ **kwargs,
+ ) -> None:
+ logger.debug(f"Adding pipe {pipe.config.name} to the RAGPipeline")
+ if not rag_pipe:
+ raise ValueError(
+ "Only pipes that are part of the RAG pipeline can be added to the RAG pipeline"
+ )
+ if not self._rag_pipeline:
+ self._rag_pipeline = AsyncPipeline()
+ self._rag_pipeline.add_pipe(
+ pipe, add_upstream_outputs, *args, **kwargs
+ )
+
+ def set_search_pipeline(
+ self,
+ _search_pipeline: AsyncPipeline,
+ *args,
+ **kwargs,
+ ) -> None:
+ logger.debug(f"Setting search pipeline for the RAGPipeline")
+ self._search_pipeline = _search_pipeline
diff --git a/R2R/r2r/pipelines/search_pipeline.py b/R2R/r2r/pipelines/search_pipeline.py
new file mode 100755
index 00000000..25e0c7bb
--- /dev/null
+++ b/R2R/r2r/pipelines/search_pipeline.py
@@ -0,0 +1,140 @@
+import asyncio
+import logging
+from asyncio import Queue
+from typing import Any, Optional
+
+from ..base.abstractions.search import (
+ AggregateSearchResult,
+ KGSearchSettings,
+ VectorSearchSettings,
+)
+from ..base.logging.kv_logger import KVLoggingSingleton
+from ..base.logging.run_manager import RunManager, manage_run
+from ..base.pipeline.base_pipeline import AsyncPipeline, dequeue_requests
+from ..base.pipes.base_pipe import AsyncPipe, AsyncState
+
+logger = logging.getLogger(__name__)
+
+
+class SearchPipeline(AsyncPipeline):
+ """A pipeline for search."""
+
+ pipeline_type: str = "search"
+
+ def __init__(
+ self,
+ pipe_logger: Optional[KVLoggingSingleton] = None,
+ run_manager: Optional[RunManager] = None,
+ ):
+ super().__init__(pipe_logger, run_manager)
+ self._parsing_pipe = None
+ self._vector_search_pipeline = None
+ self._kg_search_pipeline = None
+
+ async def run(
+ self,
+ input: Any,
+ state: Optional[AsyncState] = None,
+ stream: bool = False,
+ run_manager: Optional[RunManager] = None,
+ log_run_info: bool = True,
+ vector_search_settings: VectorSearchSettings = VectorSearchSettings(),
+ kg_search_settings: KGSearchSettings = KGSearchSettings(),
+ *args: Any,
+ **kwargs: Any,
+ ):
+ self.state = state or AsyncState()
+ do_vector_search = (
+ self._vector_search_pipeline is not None
+ and vector_search_settings.use_vector_search
+ )
+ do_kg = (
+ self._kg_search_pipeline is not None
+ and kg_search_settings.use_kg_search
+ )
+ async with manage_run(run_manager, self.pipeline_type):
+ if log_run_info:
+ await run_manager.log_run_info(
+ key="pipeline_type",
+ value=self.pipeline_type,
+ is_info_log=True,
+ )
+
+ vector_search_queue = Queue()
+ kg_queue = Queue()
+
+ async def enqueue_requests():
+ async for message in input:
+ if do_vector_search:
+ await vector_search_queue.put(message)
+ if do_kg:
+ await kg_queue.put(message)
+
+ await vector_search_queue.put(None)
+ await kg_queue.put(None)
+
+ # Start the document enqueuing process
+ enqueue_task = asyncio.create_task(enqueue_requests())
+
+ # Start the embedding and KG pipelines in parallel
+ if do_vector_search:
+ vector_search_task = asyncio.create_task(
+ self._vector_search_pipeline.run(
+ dequeue_requests(vector_search_queue),
+ state,
+ stream,
+ run_manager,
+ log_run_info=False,
+ vector_search_settings=vector_search_settings,
+ )
+ )
+
+ if do_kg:
+ kg_task = asyncio.create_task(
+ self._kg_search_pipeline.run(
+ dequeue_requests(kg_queue),
+ state,
+ stream,
+ run_manager,
+ log_run_info=False,
+ kg_search_settings=kg_search_settings,
+ )
+ )
+
+ await enqueue_task
+
+ vector_search_results = (
+ await vector_search_task if do_vector_search else None
+ )
+ kg_results = await kg_task if do_kg else None
+
+ return AggregateSearchResult(
+ vector_search_results=vector_search_results,
+ kg_search_results=kg_results,
+ )
+
+ def add_pipe(
+ self,
+ pipe: AsyncPipe,
+ add_upstream_outputs: Optional[list[dict[str, str]]] = None,
+ kg_pipe: bool = False,
+ vector_search_pipe: bool = False,
+ *args,
+ **kwargs,
+ ) -> None:
+ logger.debug(f"Adding pipe {pipe.config.name} to the SearchPipeline")
+
+ if kg_pipe:
+ if not self._kg_search_pipeline:
+ self._kg_search_pipeline = AsyncPipeline()
+ self._kg_search_pipeline.add_pipe(
+ pipe, add_upstream_outputs, *args, **kwargs
+ )
+ elif vector_search_pipe:
+ if not self._vector_search_pipeline:
+ self._vector_search_pipeline = AsyncPipeline()
+ self._vector_search_pipeline.add_pipe(
+ pipe, add_upstream_outputs, *args, **kwargs
+ )
+ else:
+ raise ValueError("Pipe must be a vector search or KG pipe")