aboutsummaryrefslogtreecommitdiff
path: root/R2R/r2r/pipelines/search_pipeline.py
diff options
context:
space:
mode:
Diffstat (limited to 'R2R/r2r/pipelines/search_pipeline.py')
-rwxr-xr-xR2R/r2r/pipelines/search_pipeline.py140
1 files changed, 140 insertions, 0 deletions
diff --git a/R2R/r2r/pipelines/search_pipeline.py b/R2R/r2r/pipelines/search_pipeline.py
new file mode 100755
index 00000000..25e0c7bb
--- /dev/null
+++ b/R2R/r2r/pipelines/search_pipeline.py
@@ -0,0 +1,140 @@
+import asyncio
+import logging
+from asyncio import Queue
+from typing import Any, Optional
+
+from ..base.abstractions.search import (
+ AggregateSearchResult,
+ KGSearchSettings,
+ VectorSearchSettings,
+)
+from ..base.logging.kv_logger import KVLoggingSingleton
+from ..base.logging.run_manager import RunManager, manage_run
+from ..base.pipeline.base_pipeline import AsyncPipeline, dequeue_requests
+from ..base.pipes.base_pipe import AsyncPipe, AsyncState
+
+logger = logging.getLogger(__name__)
+
+
+class SearchPipeline(AsyncPipeline):
+ """A pipeline for search."""
+
+ pipeline_type: str = "search"
+
+ def __init__(
+ self,
+ pipe_logger: Optional[KVLoggingSingleton] = None,
+ run_manager: Optional[RunManager] = None,
+ ):
+ super().__init__(pipe_logger, run_manager)
+ self._parsing_pipe = None
+ self._vector_search_pipeline = None
+ self._kg_search_pipeline = None
+
+ async def run(
+ self,
+ input: Any,
+ state: Optional[AsyncState] = None,
+ stream: bool = False,
+ run_manager: Optional[RunManager] = None,
+ log_run_info: bool = True,
+ vector_search_settings: VectorSearchSettings = VectorSearchSettings(),
+ kg_search_settings: KGSearchSettings = KGSearchSettings(),
+ *args: Any,
+ **kwargs: Any,
+ ):
+ self.state = state or AsyncState()
+ do_vector_search = (
+ self._vector_search_pipeline is not None
+ and vector_search_settings.use_vector_search
+ )
+ do_kg = (
+ self._kg_search_pipeline is not None
+ and kg_search_settings.use_kg_search
+ )
+ async with manage_run(run_manager, self.pipeline_type):
+ if log_run_info:
+ await run_manager.log_run_info(
+ key="pipeline_type",
+ value=self.pipeline_type,
+ is_info_log=True,
+ )
+
+ vector_search_queue = Queue()
+ kg_queue = Queue()
+
+ async def enqueue_requests():
+ async for message in input:
+ if do_vector_search:
+ await vector_search_queue.put(message)
+ if do_kg:
+ await kg_queue.put(message)
+
+ await vector_search_queue.put(None)
+ await kg_queue.put(None)
+
+ # Start the document enqueuing process
+ enqueue_task = asyncio.create_task(enqueue_requests())
+
+ # Start the embedding and KG pipelines in parallel
+ if do_vector_search:
+ vector_search_task = asyncio.create_task(
+ self._vector_search_pipeline.run(
+ dequeue_requests(vector_search_queue),
+ state,
+ stream,
+ run_manager,
+ log_run_info=False,
+ vector_search_settings=vector_search_settings,
+ )
+ )
+
+ if do_kg:
+ kg_task = asyncio.create_task(
+ self._kg_search_pipeline.run(
+ dequeue_requests(kg_queue),
+ state,
+ stream,
+ run_manager,
+ log_run_info=False,
+ kg_search_settings=kg_search_settings,
+ )
+ )
+
+ await enqueue_task
+
+ vector_search_results = (
+ await vector_search_task if do_vector_search else None
+ )
+ kg_results = await kg_task if do_kg else None
+
+ return AggregateSearchResult(
+ vector_search_results=vector_search_results,
+ kg_search_results=kg_results,
+ )
+
+ def add_pipe(
+ self,
+ pipe: AsyncPipe,
+ add_upstream_outputs: Optional[list[dict[str, str]]] = None,
+ kg_pipe: bool = False,
+ vector_search_pipe: bool = False,
+ *args,
+ **kwargs,
+ ) -> None:
+ logger.debug(f"Adding pipe {pipe.config.name} to the SearchPipeline")
+
+ if kg_pipe:
+ if not self._kg_search_pipeline:
+ self._kg_search_pipeline = AsyncPipeline()
+ self._kg_search_pipeline.add_pipe(
+ pipe, add_upstream_outputs, *args, **kwargs
+ )
+ elif vector_search_pipe:
+ if not self._vector_search_pipeline:
+ self._vector_search_pipeline = AsyncPipeline()
+ self._vector_search_pipeline.add_pipe(
+ pipe, add_upstream_outputs, *args, **kwargs
+ )
+ else:
+ raise ValueError("Pipe must be a vector search or KG pipe")