aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/tokenizers/implementations
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/tokenizers/implementations')
-rw-r--r--.venv/lib/python3.12/site-packages/tokenizers/implementations/__init__.py6
-rw-r--r--.venv/lib/python3.12/site-packages/tokenizers/implementations/base_tokenizer.py418
-rw-r--r--.venv/lib/python3.12/site-packages/tokenizers/implementations/bert_wordpiece.py151
-rw-r--r--.venv/lib/python3.12/site-packages/tokenizers/implementations/byte_level_bpe.py122
-rw-r--r--.venv/lib/python3.12/site-packages/tokenizers/implementations/char_level_bpe.py150
-rw-r--r--.venv/lib/python3.12/site-packages/tokenizers/implementations/sentencepiece_bpe.py103
-rw-r--r--.venv/lib/python3.12/site-packages/tokenizers/implementations/sentencepiece_unigram.py196
7 files changed, 1146 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/tokenizers/implementations/__init__.py b/.venv/lib/python3.12/site-packages/tokenizers/implementations/__init__.py
new file mode 100644
index 00000000..7e775892
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/tokenizers/implementations/__init__.py
@@ -0,0 +1,6 @@
+from .base_tokenizer import BaseTokenizer
+from .bert_wordpiece import BertWordPieceTokenizer
+from .byte_level_bpe import ByteLevelBPETokenizer
+from .char_level_bpe import CharBPETokenizer
+from .sentencepiece_bpe import SentencePieceBPETokenizer
+from .sentencepiece_unigram import SentencePieceUnigramTokenizer
diff --git a/.venv/lib/python3.12/site-packages/tokenizers/implementations/base_tokenizer.py b/.venv/lib/python3.12/site-packages/tokenizers/implementations/base_tokenizer.py
new file mode 100644
index 00000000..4528dceb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/tokenizers/implementations/base_tokenizer.py
@@ -0,0 +1,418 @@
+from typing import Dict, List, Optional, Tuple, Union
+
+from tokenizers import AddedToken, EncodeInput, Encoding, InputSequence, Tokenizer
+from tokenizers.decoders import Decoder
+from tokenizers.models import Model
+from tokenizers.normalizers import Normalizer
+from tokenizers.pre_tokenizers import PreTokenizer
+from tokenizers.processors import PostProcessor
+
+
+Offsets = Tuple[int, int]
+
+
+class BaseTokenizer:
+ def __init__(self, tokenizer: Tokenizer, parameters=None):
+ self._tokenizer = tokenizer
+ self._parameters = parameters if parameters is not None else {}
+
+ def __repr__(self):
+ return "Tokenizer(vocabulary_size={}, {})".format(
+ self._tokenizer.get_vocab_size(),
+ ", ".join(k + "=" + str(v) for k, v in self._parameters.items()),
+ )
+
+ def num_special_tokens_to_add(self, is_pair: bool) -> int:
+ """
+ Return the number of special tokens that would be added for single/pair sentences.
+ :param is_pair: Boolean indicating if the input would be a single sentence or a pair
+ :return:
+ """
+ return self._tokenizer.num_special_tokens_to_add(is_pair)
+
+ def get_vocab(self, with_added_tokens: bool = True) -> Dict[str, int]:
+ """Returns the vocabulary
+
+ Args:
+ with_added_tokens: boolean:
+ Whether to include the added tokens in the vocabulary
+
+ Returns:
+ The vocabulary
+ """
+ return self._tokenizer.get_vocab(with_added_tokens=with_added_tokens)
+
+ def get_added_tokens_decoder(self) -> Dict[int, AddedToken]:
+ """Returns the added reverse vocabulary
+
+ Returns:
+ The added vocabulary mapping ints to AddedTokens
+ """
+ return self._tokenizer.get_added_tokens_decoder()
+
+ def get_vocab_size(self, with_added_tokens: bool = True) -> int:
+ """Return the size of vocabulary, with or without added tokens.
+
+ Args:
+ with_added_tokens: (`optional`) bool:
+ Whether to count in added special tokens or not
+
+ Returns:
+ Size of vocabulary
+ """
+ return self._tokenizer.get_vocab_size(with_added_tokens=with_added_tokens)
+
+ def enable_padding(
+ self,
+ direction: Optional[str] = "right",
+ pad_to_multiple_of: Optional[int] = None,
+ pad_id: Optional[int] = 0,
+ pad_type_id: Optional[int] = 0,
+ pad_token: Optional[str] = "[PAD]",
+ length: Optional[int] = None,
+ ):
+ """Change the padding strategy
+
+ Args:
+ direction: (`optional`) str:
+ Can be one of: `right` or `left`
+
+ pad_to_multiple_of: (`optional`) unsigned int:
+ If specified, the padding length should always snap to the next multiple of
+ the given value. For example if we were going to pad with a length of 250 but
+ `pad_to_multiple_of=8` then we will pad to 256.
+
+ pad_id: (`optional`) unsigned int:
+ The indice to be used when padding
+
+ pad_type_id: (`optional`) unsigned int:
+ The type indice to be used when padding
+
+ pad_token: (`optional`) str:
+ The pad token to be used when padding
+
+ length: (`optional`) unsigned int:
+ If specified, the length at which to pad. If not specified
+ we pad using the size of the longest sequence in a batch
+ """
+ return self._tokenizer.enable_padding(
+ direction=direction,
+ pad_to_multiple_of=pad_to_multiple_of,
+ pad_id=pad_id,
+ pad_type_id=pad_type_id,
+ pad_token=pad_token,
+ length=length,
+ )
+
+ def no_padding(self):
+ """Disable padding"""
+ return self._tokenizer.no_padding()
+
+ @property
+ def padding(self) -> Optional[dict]:
+ """Get the current padding parameters
+
+ Returns:
+ None if padding is disabled, a dict with the currently set parameters
+ if the padding is enabled.
+ """
+ return self._tokenizer.padding
+
+ def enable_truncation(self, max_length: int, stride: Optional[int] = 0, strategy: Optional[str] = "longest_first"):
+ """Change the truncation options
+
+ Args:
+ max_length: unsigned int:
+ The maximum length at which to truncate
+
+ stride: (`optional`) unsigned int:
+ The length of the previous first sequence to be included
+ in the overflowing sequence
+
+ strategy: (`optional`) str:
+ Can be one of `longest_first`, `only_first` or `only_second`
+ """
+ return self._tokenizer.enable_truncation(max_length, stride=stride, strategy=strategy)
+
+ def no_truncation(self):
+ """Disable truncation"""
+ return self._tokenizer.no_truncation()
+
+ @property
+ def truncation(self) -> Optional[dict]:
+ """Get the current truncation parameters
+
+ Returns:
+ None if truncation is disabled, a dict with the current truncation parameters if
+ truncation is enabled
+ """
+ return self._tokenizer.truncation
+
+ def add_tokens(self, tokens: List[Union[str, AddedToken]]) -> int:
+ """Add the given tokens to the vocabulary
+
+ Args:
+ tokens: List[Union[str, AddedToken]]:
+ A list of tokens to add to the vocabulary. Each token can either be
+ a string, or an instance of AddedToken
+
+ Returns:
+ The number of tokens that were added to the vocabulary
+ """
+ return self._tokenizer.add_tokens(tokens)
+
+ def add_special_tokens(self, special_tokens: List[Union[str, AddedToken]]) -> int:
+ """Add the given special tokens to the vocabulary, and treat them as special tokens.
+
+ The special tokens will never be processed by the model, and will be
+ removed while decoding.
+
+ Args:
+ tokens: List[Union[str, AddedToken]]:
+ A list of special tokens to add to the vocabulary. Each token can either be
+ a string, or an instance of AddedToken
+
+ Returns:
+ The number of tokens that were added to the vocabulary
+ """
+ return self._tokenizer.add_special_tokens(special_tokens)
+
+ def normalize(self, sequence: str) -> str:
+ """Normalize the given sequence
+
+ Args:
+ sequence: str:
+ The sequence to normalize
+
+ Returns:
+ The normalized string
+ """
+ return self._tokenizer.normalize(sequence)
+
+ def encode(
+ self,
+ sequence: InputSequence,
+ pair: Optional[InputSequence] = None,
+ is_pretokenized: bool = False,
+ add_special_tokens: bool = True,
+ ) -> Encoding:
+ """Encode the given sequence and pair. This method can process raw text sequences as well
+ as already pre-tokenized sequences.
+
+ Args:
+ sequence: InputSequence:
+ The sequence we want to encode. This sequence can be either raw text or
+ pre-tokenized, according to the `is_pretokenized` argument:
+
+ - If `is_pretokenized=False`: `InputSequence` is expected to be `str`
+ - If `is_pretokenized=True`: `InputSequence` is expected to be
+ `Union[List[str], Tuple[str]]`
+
+ is_pretokenized: bool:
+ Whether the input is already pre-tokenized.
+
+ add_special_tokens: bool:
+ Whether to add the special tokens while encoding.
+
+ Returns:
+ An Encoding
+ """
+ if sequence is None:
+ raise ValueError("encode: `sequence` can't be `None`")
+
+ return self._tokenizer.encode(sequence, pair, is_pretokenized, add_special_tokens)
+
+ def encode_batch(
+ self,
+ inputs: List[EncodeInput],
+ is_pretokenized: bool = False,
+ add_special_tokens: bool = True,
+ ) -> List[Encoding]:
+ """Encode the given inputs. This method accept both raw text sequences as well as already
+ pre-tokenized sequences.
+
+ Args:
+ inputs: List[EncodeInput]:
+ A list of single sequences or pair sequences to encode. Each `EncodeInput` is
+ expected to be of the following form:
+ `Union[InputSequence, Tuple[InputSequence, InputSequence]]`
+
+ Each `InputSequence` can either be raw text or pre-tokenized,
+ according to the `is_pretokenized` argument:
+
+ - If `is_pretokenized=False`: `InputSequence` is expected to be `str`
+ - If `is_pretokenized=True`: `InputSequence` is expected to be
+ `Union[List[str], Tuple[str]]`
+
+ is_pretokenized: bool:
+ Whether the input is already pre-tokenized.
+
+ add_special_tokens: bool:
+ Whether to add the special tokens while encoding.
+
+ Returns:
+ A list of Encoding
+ """
+
+ if inputs is None:
+ raise ValueError("encode_batch: `inputs` can't be `None`")
+
+ return self._tokenizer.encode_batch(inputs, is_pretokenized, add_special_tokens)
+
+ def decode(self, ids: List[int], skip_special_tokens: Optional[bool] = True) -> str:
+ """Decode the given list of ids to a string sequence
+
+ Args:
+ ids: List[unsigned int]:
+ A list of ids to be decoded
+
+ skip_special_tokens: (`optional`) boolean:
+ Whether to remove all the special tokens from the output string
+
+ Returns:
+ The decoded string
+ """
+ if ids is None:
+ raise ValueError("None input is not valid. Should be a list of integers.")
+
+ return self._tokenizer.decode(ids, skip_special_tokens=skip_special_tokens)
+
+ def decode_batch(self, sequences: List[List[int]], skip_special_tokens: Optional[bool] = True) -> str:
+ """Decode the list of sequences to a list of string sequences
+
+ Args:
+ sequences: List[List[unsigned int]]:
+ A list of sequence of ids to be decoded
+
+ skip_special_tokens: (`optional`) boolean:
+ Whether to remove all the special tokens from the output strings
+
+ Returns:
+ A list of decoded strings
+ """
+ if sequences is None:
+ raise ValueError("None input is not valid. Should be list of list of integers.")
+
+ return self._tokenizer.decode_batch(sequences, skip_special_tokens=skip_special_tokens)
+
+ def token_to_id(self, token: str) -> Optional[int]:
+ """Convert the given token to its corresponding id
+
+ Args:
+ token: str:
+ The token to convert
+
+ Returns:
+ The corresponding id if it exists, None otherwise
+ """
+ return self._tokenizer.token_to_id(token)
+
+ def id_to_token(self, id: int) -> Optional[str]:
+ """Convert the given token id to its corresponding string
+
+ Args:
+ token: id:
+ The token id to convert
+
+ Returns:
+ The corresponding string if it exists, None otherwise
+ """
+ return self._tokenizer.id_to_token(id)
+
+ def save_model(self, directory: str, prefix: Optional[str] = None):
+ """Save the current model to the given directory
+
+ Args:
+ directory: str:
+ A path to the destination directory
+
+ prefix: (Optional) str:
+ An optional prefix, used to prefix each file name
+ """
+ return self._tokenizer.model.save(directory, prefix=prefix)
+
+ def save(self, path: str, pretty: bool = True):
+ """Save the current Tokenizer at the given path
+
+ Args:
+ path: str:
+ A path to the destination Tokenizer file
+ """
+ return self._tokenizer.save(path, pretty)
+
+ def to_str(self, pretty: bool = False):
+ """Get a serialized JSON version of the Tokenizer as a str
+
+ Args:
+ pretty: bool:
+ Whether the JSON string should be prettified
+
+ Returns:
+ str
+ """
+ return self._tokenizer.to_str(pretty)
+
+ def post_process(
+ self, encoding: Encoding, pair: Optional[Encoding] = None, add_special_tokens: bool = True
+ ) -> Encoding:
+ """Apply all the post-processing steps to the given encodings.
+
+ The various steps are:
+ 1. Truncate according to global params (provided to `enable_truncation`)
+ 2. Apply the PostProcessor
+ 3. Pad according to global params. (provided to `enable_padding`)
+
+ Args:
+ encoding: Encoding:
+ The main Encoding to post process
+
+ pair: Optional[Encoding]:
+ An optional pair Encoding
+
+ add_special_tokens: bool:
+ Whether to add special tokens
+
+ Returns:
+ The resulting Encoding
+ """
+ return self._tokenizer.post_process(encoding, pair, add_special_tokens)
+
+ @property
+ def model(self) -> Model:
+ return self._tokenizer.model
+
+ @model.setter
+ def model(self, model: Model):
+ self._tokenizer.model = model
+
+ @property
+ def normalizer(self) -> Normalizer:
+ return self._tokenizer.normalizer
+
+ @normalizer.setter
+ def normalizer(self, normalizer: Normalizer):
+ self._tokenizer.normalizer = normalizer
+
+ @property
+ def pre_tokenizer(self) -> PreTokenizer:
+ return self._tokenizer.pre_tokenizer
+
+ @pre_tokenizer.setter
+ def pre_tokenizer(self, pre_tokenizer: PreTokenizer):
+ self._tokenizer.pre_tokenizer = pre_tokenizer
+
+ @property
+ def post_processor(self) -> PostProcessor:
+ return self._tokenizer.post_processor
+
+ @post_processor.setter
+ def post_processor(self, post_processor: PostProcessor):
+ self._tokenizer.post_processor = post_processor
+
+ @property
+ def decoder(self) -> Decoder:
+ return self._tokenizer.decoder
+
+ @decoder.setter
+ def decoder(self, decoder: Decoder):
+ self._tokenizer.decoder = decoder
diff --git a/.venv/lib/python3.12/site-packages/tokenizers/implementations/bert_wordpiece.py b/.venv/lib/python3.12/site-packages/tokenizers/implementations/bert_wordpiece.py
new file mode 100644
index 00000000..1f34e3ca
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/tokenizers/implementations/bert_wordpiece.py
@@ -0,0 +1,151 @@
+from typing import Dict, Iterator, List, Optional, Union
+
+from tokenizers import AddedToken, Tokenizer, decoders, trainers
+from tokenizers.models import WordPiece
+from tokenizers.normalizers import BertNormalizer
+from tokenizers.pre_tokenizers import BertPreTokenizer
+from tokenizers.processors import BertProcessing
+
+from .base_tokenizer import BaseTokenizer
+
+
+class BertWordPieceTokenizer(BaseTokenizer):
+ """Bert WordPiece Tokenizer"""
+
+ def __init__(
+ self,
+ vocab: Optional[Union[str, Dict[str, int]]] = None,
+ unk_token: Union[str, AddedToken] = "[UNK]",
+ sep_token: Union[str, AddedToken] = "[SEP]",
+ cls_token: Union[str, AddedToken] = "[CLS]",
+ pad_token: Union[str, AddedToken] = "[PAD]",
+ mask_token: Union[str, AddedToken] = "[MASK]",
+ clean_text: bool = True,
+ handle_chinese_chars: bool = True,
+ strip_accents: Optional[bool] = None,
+ lowercase: bool = True,
+ wordpieces_prefix: str = "##",
+ ):
+ if vocab is not None:
+ tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(unk_token)))
+ else:
+ tokenizer = Tokenizer(WordPiece(unk_token=str(unk_token)))
+
+ # Let the tokenizer know about special tokens if they are part of the vocab
+ if tokenizer.token_to_id(str(unk_token)) is not None:
+ tokenizer.add_special_tokens([str(unk_token)])
+ if tokenizer.token_to_id(str(sep_token)) is not None:
+ tokenizer.add_special_tokens([str(sep_token)])
+ if tokenizer.token_to_id(str(cls_token)) is not None:
+ tokenizer.add_special_tokens([str(cls_token)])
+ if tokenizer.token_to_id(str(pad_token)) is not None:
+ tokenizer.add_special_tokens([str(pad_token)])
+ if tokenizer.token_to_id(str(mask_token)) is not None:
+ tokenizer.add_special_tokens([str(mask_token)])
+
+ tokenizer.normalizer = BertNormalizer(
+ clean_text=clean_text,
+ handle_chinese_chars=handle_chinese_chars,
+ strip_accents=strip_accents,
+ lowercase=lowercase,
+ )
+ tokenizer.pre_tokenizer = BertPreTokenizer()
+
+ if vocab is not None:
+ sep_token_id = tokenizer.token_to_id(str(sep_token))
+ if sep_token_id is None:
+ raise TypeError("sep_token not found in the vocabulary")
+ cls_token_id = tokenizer.token_to_id(str(cls_token))
+ if cls_token_id is None:
+ raise TypeError("cls_token not found in the vocabulary")
+
+ tokenizer.post_processor = BertProcessing((str(sep_token), sep_token_id), (str(cls_token), cls_token_id))
+ tokenizer.decoder = decoders.WordPiece(prefix=wordpieces_prefix)
+
+ parameters = {
+ "model": "BertWordPiece",
+ "unk_token": unk_token,
+ "sep_token": sep_token,
+ "cls_token": cls_token,
+ "pad_token": pad_token,
+ "mask_token": mask_token,
+ "clean_text": clean_text,
+ "handle_chinese_chars": handle_chinese_chars,
+ "strip_accents": strip_accents,
+ "lowercase": lowercase,
+ "wordpieces_prefix": wordpieces_prefix,
+ }
+
+ super().__init__(tokenizer, parameters)
+
+ @staticmethod
+ def from_file(vocab: str, **kwargs):
+ vocab = WordPiece.read_file(vocab)
+ return BertWordPieceTokenizer(vocab, **kwargs)
+
+ def train(
+ self,
+ files: Union[str, List[str]],
+ vocab_size: int = 30000,
+ min_frequency: int = 2,
+ limit_alphabet: int = 1000,
+ initial_alphabet: List[str] = [],
+ special_tokens: List[Union[str, AddedToken]] = [
+ "[PAD]",
+ "[UNK]",
+ "[CLS]",
+ "[SEP]",
+ "[MASK]",
+ ],
+ show_progress: bool = True,
+ wordpieces_prefix: str = "##",
+ ):
+ """Train the model using the given files"""
+
+ trainer = trainers.WordPieceTrainer(
+ vocab_size=vocab_size,
+ min_frequency=min_frequency,
+ limit_alphabet=limit_alphabet,
+ initial_alphabet=initial_alphabet,
+ special_tokens=special_tokens,
+ show_progress=show_progress,
+ continuing_subword_prefix=wordpieces_prefix,
+ )
+ if isinstance(files, str):
+ files = [files]
+ self._tokenizer.train(files, trainer=trainer)
+
+ def train_from_iterator(
+ self,
+ iterator: Union[Iterator[str], Iterator[Iterator[str]]],
+ vocab_size: int = 30000,
+ min_frequency: int = 2,
+ limit_alphabet: int = 1000,
+ initial_alphabet: List[str] = [],
+ special_tokens: List[Union[str, AddedToken]] = [
+ "[PAD]",
+ "[UNK]",
+ "[CLS]",
+ "[SEP]",
+ "[MASK]",
+ ],
+ show_progress: bool = True,
+ wordpieces_prefix: str = "##",
+ length: Optional[int] = None,
+ ):
+ """Train the model using the given iterator"""
+
+ trainer = trainers.WordPieceTrainer(
+ vocab_size=vocab_size,
+ min_frequency=min_frequency,
+ limit_alphabet=limit_alphabet,
+ initial_alphabet=initial_alphabet,
+ special_tokens=special_tokens,
+ show_progress=show_progress,
+ continuing_subword_prefix=wordpieces_prefix,
+ )
+ self._tokenizer.train_from_iterator(
+ iterator,
+ trainer=trainer,
+ length=length,
+ )
diff --git a/.venv/lib/python3.12/site-packages/tokenizers/implementations/byte_level_bpe.py b/.venv/lib/python3.12/site-packages/tokenizers/implementations/byte_level_bpe.py
new file mode 100644
index 00000000..c7e3dbc4
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/tokenizers/implementations/byte_level_bpe.py
@@ -0,0 +1,122 @@
+from typing import Dict, Iterator, List, Optional, Tuple, Union
+
+from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, processors, trainers
+from tokenizers.models import BPE
+from tokenizers.normalizers import Lowercase, Sequence, unicode_normalizer_from_str
+
+from .base_tokenizer import BaseTokenizer
+
+
+class ByteLevelBPETokenizer(BaseTokenizer):
+ """ByteLevelBPETokenizer
+
+ Represents a Byte-level BPE as introduced by OpenAI with their GPT-2 model
+ """
+
+ def __init__(
+ self,
+ vocab: Optional[Union[str, Dict[str, int]]] = None,
+ merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None,
+ add_prefix_space: bool = False,
+ lowercase: bool = False,
+ dropout: Optional[float] = None,
+ unicode_normalizer: Optional[str] = None,
+ continuing_subword_prefix: Optional[str] = None,
+ end_of_word_suffix: Optional[str] = None,
+ trim_offsets: bool = False,
+ ):
+ if vocab is not None and merges is not None:
+ tokenizer = Tokenizer(
+ BPE(
+ vocab,
+ merges,
+ dropout=dropout,
+ continuing_subword_prefix=continuing_subword_prefix or "",
+ end_of_word_suffix=end_of_word_suffix or "",
+ )
+ )
+ else:
+ tokenizer = Tokenizer(BPE())
+
+ # Check for Unicode normalization first (before everything else)
+ normalizers = []
+
+ if unicode_normalizer:
+ normalizers += [unicode_normalizer_from_str(unicode_normalizer)]
+
+ if lowercase:
+ normalizers += [Lowercase()]
+
+ # Create the normalizer structure
+ if len(normalizers) > 0:
+ if len(normalizers) > 1:
+ tokenizer.normalizer = Sequence(normalizers)
+ else:
+ tokenizer.normalizer = normalizers[0]
+
+ tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=add_prefix_space)
+ tokenizer.decoder = decoders.ByteLevel()
+ tokenizer.post_processor = processors.ByteLevel(trim_offsets=trim_offsets)
+
+ parameters = {
+ "model": "ByteLevelBPE",
+ "add_prefix_space": add_prefix_space,
+ "lowercase": lowercase,
+ "dropout": dropout,
+ "unicode_normalizer": unicode_normalizer,
+ "continuing_subword_prefix": continuing_subword_prefix,
+ "end_of_word_suffix": end_of_word_suffix,
+ "trim_offsets": trim_offsets,
+ }
+
+ super().__init__(tokenizer, parameters)
+
+ @staticmethod
+ def from_file(vocab_filename: str, merges_filename: str, **kwargs):
+ vocab, merges = BPE.read_file(vocab_filename, merges_filename)
+ return ByteLevelBPETokenizer(vocab, merges, **kwargs)
+
+ def train(
+ self,
+ files: Union[str, List[str]],
+ vocab_size: int = 30000,
+ min_frequency: int = 2,
+ show_progress: bool = True,
+ special_tokens: List[Union[str, AddedToken]] = [],
+ ):
+ """Train the model using the given files"""
+
+ trainer = trainers.BpeTrainer(
+ vocab_size=vocab_size,
+ min_frequency=min_frequency,
+ show_progress=show_progress,
+ special_tokens=special_tokens,
+ initial_alphabet=pre_tokenizers.ByteLevel.alphabet(),
+ )
+ if isinstance(files, str):
+ files = [files]
+ self._tokenizer.train(files, trainer=trainer)
+
+ def train_from_iterator(
+ self,
+ iterator: Union[Iterator[str], Iterator[Iterator[str]]],
+ vocab_size: int = 30000,
+ min_frequency: int = 2,
+ show_progress: bool = True,
+ special_tokens: List[Union[str, AddedToken]] = [],
+ length: Optional[int] = None,
+ ):
+ """Train the model using the given iterator"""
+
+ trainer = trainers.BpeTrainer(
+ vocab_size=vocab_size,
+ min_frequency=min_frequency,
+ show_progress=show_progress,
+ special_tokens=special_tokens,
+ initial_alphabet=pre_tokenizers.ByteLevel.alphabet(),
+ )
+ self._tokenizer.train_from_iterator(
+ iterator,
+ trainer=trainer,
+ length=length,
+ )
diff --git a/.venv/lib/python3.12/site-packages/tokenizers/implementations/char_level_bpe.py b/.venv/lib/python3.12/site-packages/tokenizers/implementations/char_level_bpe.py
new file mode 100644
index 00000000..29ca5977
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/tokenizers/implementations/char_level_bpe.py
@@ -0,0 +1,150 @@
+from typing import Dict, Iterator, List, Optional, Tuple, Union
+
+from .. import AddedToken, Tokenizer, decoders, pre_tokenizers, trainers
+from ..models import BPE
+from ..normalizers import BertNormalizer, Lowercase, Sequence, unicode_normalizer_from_str
+from .base_tokenizer import BaseTokenizer
+
+
+class CharBPETokenizer(BaseTokenizer):
+ """Original BPE Tokenizer
+
+ Represents the BPE algorithm, as introduced by Rico Sennrich
+ (https://arxiv.org/abs/1508.07909)
+
+ The defaults settings corresponds to OpenAI GPT BPE tokenizers and differs from the original
+ Sennrich subword-nmt implementation by the following options that you can deactivate:
+ - adding a normalizer to clean up the text (deactivate with `bert_normalizer=False`) by:
+ * removing any control characters and replacing all whitespaces by the classic one.
+ * handle chinese chars by putting spaces around them.
+ * strip all accents.
+ - spitting on punctuation in addition to whitespaces (deactivate it with
+ `split_on_whitespace_only=True`)
+ """
+
+ def __init__(
+ self,
+ vocab: Optional[Union[str, Dict[str, int]]] = None,
+ merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None,
+ unk_token: Union[str, AddedToken] = "<unk>",
+ suffix: str = "</w>",
+ dropout: Optional[float] = None,
+ lowercase: bool = False,
+ unicode_normalizer: Optional[str] = None,
+ bert_normalizer: bool = True,
+ split_on_whitespace_only: bool = False,
+ ):
+ if vocab is not None and merges is not None:
+ tokenizer = Tokenizer(
+ BPE(
+ vocab,
+ merges,
+ dropout=dropout,
+ unk_token=str(unk_token),
+ end_of_word_suffix=suffix,
+ )
+ )
+ else:
+ tokenizer = Tokenizer(BPE(unk_token=str(unk_token), dropout=dropout, end_of_word_suffix=suffix))
+
+ if tokenizer.token_to_id(str(unk_token)) is not None:
+ tokenizer.add_special_tokens([str(unk_token)])
+
+ # Check for Unicode normalization first (before everything else)
+ normalizers = []
+
+ if unicode_normalizer:
+ normalizers += [unicode_normalizer_from_str(unicode_normalizer)]
+
+ if bert_normalizer:
+ normalizers += [BertNormalizer(lowercase=False)]
+
+ if lowercase:
+ normalizers += [Lowercase()]
+
+ # Create the normalizer structure
+ if len(normalizers) > 0:
+ if len(normalizers) > 1:
+ tokenizer.normalizer = Sequence(normalizers)
+ else:
+ tokenizer.normalizer = normalizers[0]
+
+ if split_on_whitespace_only:
+ tokenizer.pre_tokenizer = pre_tokenizers.WhitespaceSplit()
+ else:
+ tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
+
+ tokenizer.decoder = decoders.BPEDecoder(suffix=suffix)
+
+ parameters = {
+ "model": "BPE",
+ "unk_token": unk_token,
+ "suffix": suffix,
+ "dropout": dropout,
+ "lowercase": lowercase,
+ "unicode_normalizer": unicode_normalizer,
+ "bert_normalizer": bert_normalizer,
+ "split_on_whitespace_only": split_on_whitespace_only,
+ }
+
+ super().__init__(tokenizer, parameters)
+
+ @staticmethod
+ def from_file(vocab_filename: str, merges_filename: str, **kwargs):
+ vocab, merges = BPE.read_file(vocab_filename, merges_filename)
+ return CharBPETokenizer(vocab, merges, **kwargs)
+
+ def train(
+ self,
+ files: Union[str, List[str]],
+ vocab_size: int = 30000,
+ min_frequency: int = 2,
+ special_tokens: List[Union[str, AddedToken]] = ["<unk>"],
+ limit_alphabet: int = 1000,
+ initial_alphabet: List[str] = [],
+ suffix: Optional[str] = "</w>",
+ show_progress: bool = True,
+ ):
+ """Train the model using the given files"""
+
+ trainer = trainers.BpeTrainer(
+ vocab_size=vocab_size,
+ min_frequency=min_frequency,
+ special_tokens=special_tokens,
+ limit_alphabet=limit_alphabet,
+ initial_alphabet=initial_alphabet,
+ end_of_word_suffix=suffix,
+ show_progress=show_progress,
+ )
+ if isinstance(files, str):
+ files = [files]
+ self._tokenizer.train(files, trainer=trainer)
+
+ def train_from_iterator(
+ self,
+ iterator: Union[Iterator[str], Iterator[Iterator[str]]],
+ vocab_size: int = 30000,
+ min_frequency: int = 2,
+ special_tokens: List[Union[str, AddedToken]] = ["<unk>"],
+ limit_alphabet: int = 1000,
+ initial_alphabet: List[str] = [],
+ suffix: Optional[str] = "</w>",
+ show_progress: bool = True,
+ length: Optional[int] = None,
+ ):
+ """Train the model using the given iterator"""
+
+ trainer = trainers.BpeTrainer(
+ vocab_size=vocab_size,
+ min_frequency=min_frequency,
+ special_tokens=special_tokens,
+ limit_alphabet=limit_alphabet,
+ initial_alphabet=initial_alphabet,
+ end_of_word_suffix=suffix,
+ show_progress=show_progress,
+ )
+ self._tokenizer.train_from_iterator(
+ iterator,
+ trainer=trainer,
+ length=length,
+ )
diff --git a/.venv/lib/python3.12/site-packages/tokenizers/implementations/sentencepiece_bpe.py b/.venv/lib/python3.12/site-packages/tokenizers/implementations/sentencepiece_bpe.py
new file mode 100644
index 00000000..cd550b41
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/tokenizers/implementations/sentencepiece_bpe.py
@@ -0,0 +1,103 @@
+from typing import Dict, Iterator, List, Optional, Tuple, Union
+
+from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, trainers
+from tokenizers.models import BPE
+from tokenizers.normalizers import NFKC
+
+from .base_tokenizer import BaseTokenizer
+
+
+class SentencePieceBPETokenizer(BaseTokenizer):
+ """SentencePiece BPE Tokenizer
+
+ Represents the BPE algorithm, with the pretokenization used by SentencePiece
+ """
+
+ def __init__(
+ self,
+ vocab: Optional[Union[str, Dict[str, int]]] = None,
+ merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None,
+ unk_token: Union[str, AddedToken] = "<unk>",
+ replacement: str = "▁",
+ add_prefix_space: bool = True,
+ dropout: Optional[float] = None,
+ fuse_unk: Optional[bool] = False,
+ ):
+ if vocab is not None and merges is not None:
+ tokenizer = Tokenizer(BPE(vocab, merges, dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk))
+ else:
+ tokenizer = Tokenizer(BPE(dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk))
+
+ if tokenizer.token_to_id(str(unk_token)) is not None:
+ tokenizer.add_special_tokens([str(unk_token)])
+
+ tokenizer.normalizer = NFKC()
+ prepend_scheme = "always" if add_prefix_space else "never"
+ tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
+ tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
+
+ parameters = {
+ "model": "SentencePieceBPE",
+ "unk_token": unk_token,
+ "replacement": replacement,
+ "add_prefix_space": add_prefix_space,
+ "dropout": dropout,
+ }
+
+ super().__init__(tokenizer, parameters)
+
+ @staticmethod
+ def from_file(vocab_filename: str, merges_filename: str, **kwargs):
+ vocab, merges = BPE.read_file(vocab_filename, merges_filename)
+ return SentencePieceBPETokenizer(vocab, merges, **kwargs)
+
+ def train(
+ self,
+ files: Union[str, List[str]],
+ vocab_size: int = 30000,
+ min_frequency: int = 2,
+ special_tokens: List[Union[str, AddedToken]] = ["<unk>"],
+ limit_alphabet: int = 1000,
+ initial_alphabet: List[str] = [],
+ show_progress: bool = True,
+ ):
+ """Train the model using the given files"""
+
+ trainer = trainers.BpeTrainer(
+ vocab_size=vocab_size,
+ min_frequency=min_frequency,
+ special_tokens=special_tokens,
+ limit_alphabet=limit_alphabet,
+ initial_alphabet=initial_alphabet,
+ show_progress=show_progress,
+ )
+ if isinstance(files, str):
+ files = [files]
+ self._tokenizer.train(files, trainer=trainer)
+
+ def train_from_iterator(
+ self,
+ iterator: Union[Iterator[str], Iterator[Iterator[str]]],
+ vocab_size: int = 30000,
+ min_frequency: int = 2,
+ special_tokens: List[Union[str, AddedToken]] = ["<unk>"],
+ limit_alphabet: int = 1000,
+ initial_alphabet: List[str] = [],
+ show_progress: bool = True,
+ length: Optional[int] = None,
+ ):
+ """Train the model using the given iterator"""
+
+ trainer = trainers.BpeTrainer(
+ vocab_size=vocab_size,
+ min_frequency=min_frequency,
+ special_tokens=special_tokens,
+ limit_alphabet=limit_alphabet,
+ initial_alphabet=initial_alphabet,
+ show_progress=show_progress,
+ )
+ self._tokenizer.train_from_iterator(
+ iterator,
+ trainer=trainer,
+ length=length,
+ )
diff --git a/.venv/lib/python3.12/site-packages/tokenizers/implementations/sentencepiece_unigram.py b/.venv/lib/python3.12/site-packages/tokenizers/implementations/sentencepiece_unigram.py
new file mode 100644
index 00000000..1237e85e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/tokenizers/implementations/sentencepiece_unigram.py
@@ -0,0 +1,196 @@
+import json
+import os
+from typing import Iterator, List, Optional, Union, Tuple
+
+from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
+from tokenizers.models import Unigram
+
+from .base_tokenizer import BaseTokenizer
+
+
+class SentencePieceUnigramTokenizer(BaseTokenizer):
+ """SentencePiece Unigram Tokenizer
+
+ Represents the Unigram algorithm, with the pretokenization used by SentencePiece
+ """
+
+ def __init__(
+ self,
+ vocab: Optional[List[Tuple[str, float]]] = None,
+ replacement: str = "▁",
+ add_prefix_space: bool = True,
+ ):
+ if vocab is not None:
+ # Let Unigram(..) fail if only one of them is None
+ tokenizer = Tokenizer(Unigram(vocab))
+ else:
+ tokenizer = Tokenizer(Unigram())
+
+ tokenizer.normalizer = normalizers.Sequence(
+ [normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}"), " ")]
+ )
+ prepend_scheme = "always" if add_prefix_space else "never"
+ tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
+ tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
+
+ parameters = {
+ "model": "SentencePieceUnigram",
+ "replacement": replacement,
+ "add_prefix_space": add_prefix_space,
+ }
+
+ super().__init__(tokenizer, parameters)
+
+ def train(
+ self,
+ files: Union[str, List[str]],
+ vocab_size: int = 8000,
+ show_progress: bool = True,
+ special_tokens: Optional[List[Union[str, AddedToken]]] = None,
+ initial_alphabet: Optional[List[str]] = None,
+ unk_token: Optional[str] = None,
+ ):
+ """
+ Train the model using the given files
+
+ Args:
+ files (:obj:`List[str]`):
+ A list of path to the files that we should use for training
+ vocab_size (:obj:`int`):
+ The size of the final vocabulary, including all tokens and alphabet.
+ show_progress (:obj:`bool`):
+ Whether to show progress bars while training.
+ special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`):
+ A list of special tokens the model should know of.
+ initial_alphabet (:obj:`List[str]`, `optional`):
+ A list of characters to include in the initial alphabet, even
+ if not seen in the training dataset.
+ If the strings contain more than one character, only the first one
+ is kept.
+ unk_token (:obj:`str`, `optional`):
+ The unknown token to be used by the model.
+ """
+
+ if special_tokens is None:
+ special_tokens = []
+
+ if initial_alphabet is None:
+ initial_alphabet = []
+
+ trainer = trainers.UnigramTrainer(
+ vocab_size=vocab_size,
+ special_tokens=special_tokens,
+ show_progress=show_progress,
+ initial_alphabet=initial_alphabet,
+ unk_token=unk_token,
+ )
+
+ if isinstance(files, str):
+ files = [files]
+ self._tokenizer.train(files, trainer=trainer)
+
+ def train_from_iterator(
+ self,
+ iterator: Union[Iterator[str], Iterator[Iterator[str]]],
+ vocab_size: int = 8000,
+ show_progress: bool = True,
+ special_tokens: Optional[List[Union[str, AddedToken]]] = None,
+ initial_alphabet: Optional[List[str]] = None,
+ unk_token: Optional[str] = None,
+ length: Optional[int] = None,
+ ):
+ """
+ Train the model using the given iterator
+
+ Args:
+ iterator (:obj:`Union[Iterator[str], Iterator[Iterator[str]]]`):
+ Any iterator over strings or list of strings
+ vocab_size (:obj:`int`):
+ The size of the final vocabulary, including all tokens and alphabet.
+ show_progress (:obj:`bool`):
+ Whether to show progress bars while training.
+ special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`):
+ A list of special tokens the model should know of.
+ initial_alphabet (:obj:`List[str]`, `optional`):
+ A list of characters to include in the initial alphabet, even
+ if not seen in the training dataset.
+ If the strings contain more than one character, only the first one
+ is kept.
+ unk_token (:obj:`str`, `optional`):
+ The unknown token to be used by the model.
+ length (:obj:`int`, `optional`):
+ The total number of sequences in the iterator. This is used to
+ provide meaningful progress tracking
+ """
+
+ if special_tokens is None:
+ special_tokens = []
+
+ if initial_alphabet is None:
+ initial_alphabet = []
+
+ trainer = trainers.UnigramTrainer(
+ vocab_size=vocab_size,
+ special_tokens=special_tokens,
+ show_progress=show_progress,
+ initial_alphabet=initial_alphabet,
+ unk_token=unk_token,
+ )
+
+ self._tokenizer.train_from_iterator(
+ iterator,
+ trainer=trainer,
+ length=length,
+ )
+
+ @staticmethod
+ def from_spm(filename: str):
+ try:
+ import sys
+
+ sys.path.append(".")
+
+ import sentencepiece_model_pb2 as model
+ except Exception:
+ raise Exception(
+ "You don't seem to have the required protobuf file, in order to use this function you need to run `pip install protobuf` and `wget https://raw.githubusercontent.com/google/sentencepiece/master/python/src/sentencepiece/sentencepiece_model_pb2.py` for us to be able to read the intrinsics of your spm_file. `pip install sentencepiece` is not required."
+ )
+
+ m = model.ModelProto()
+ m.ParseFromString(open(filename, "rb").read())
+
+ precompiled_charsmap = m.normalizer_spec.precompiled_charsmap
+ vocab = [(piece.piece, piece.score) for piece in m.pieces]
+ unk_id = m.trainer_spec.unk_id
+ model_type = m.trainer_spec.model_type
+ byte_fallback = m.trainer_spec.byte_fallback
+ if model_type != 1:
+ raise Exception(
+ "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
+ )
+
+ replacement = "▁"
+ add_prefix_space = True
+
+ tokenizer = Tokenizer(Unigram(vocab, unk_id, byte_fallback))
+
+ if precompiled_charsmap:
+ tokenizer.normalizer = normalizers.Sequence(
+ [
+ normalizers.Precompiled(precompiled_charsmap),
+ normalizers.Replace(Regex(" {2,}"), " "),
+ ]
+ )
+ else:
+ tokenizer.normalizer = normalizers.Sequence([normalizers.Replace(Regex(" {2,}"), " ")])
+ prepend_scheme = "always" if add_prefix_space else "never"
+ tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
+ tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
+
+ parameters = {
+ "model": "SentencePieceUnigram",
+ }
+
+ obj = BaseTokenizer.__new__(SentencePieceUnigramTokenizer, tokenizer, parameters)
+ BaseTokenizer.__init__(obj, tokenizer, parameters)
+ return obj