aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/tokenizers/implementations/sentencepiece_unigram.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/tokenizers/implementations/sentencepiece_unigram.py')
-rw-r--r--.venv/lib/python3.12/site-packages/tokenizers/implementations/sentencepiece_unigram.py196
1 files changed, 196 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/tokenizers/implementations/sentencepiece_unigram.py b/.venv/lib/python3.12/site-packages/tokenizers/implementations/sentencepiece_unigram.py
new file mode 100644
index 00000000..1237e85e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/tokenizers/implementations/sentencepiece_unigram.py
@@ -0,0 +1,196 @@
+import json
+import os
+from typing import Iterator, List, Optional, Union, Tuple
+
+from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
+from tokenizers.models import Unigram
+
+from .base_tokenizer import BaseTokenizer
+
+
+class SentencePieceUnigramTokenizer(BaseTokenizer):
+ """SentencePiece Unigram Tokenizer
+
+ Represents the Unigram algorithm, with the pretokenization used by SentencePiece
+ """
+
+ def __init__(
+ self,
+ vocab: Optional[List[Tuple[str, float]]] = None,
+ replacement: str = "▁",
+ add_prefix_space: bool = True,
+ ):
+ if vocab is not None:
+ # Let Unigram(..) fail if only one of them is None
+ tokenizer = Tokenizer(Unigram(vocab))
+ else:
+ tokenizer = Tokenizer(Unigram())
+
+ tokenizer.normalizer = normalizers.Sequence(
+ [normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}"), " ")]
+ )
+ prepend_scheme = "always" if add_prefix_space else "never"
+ tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
+ tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
+
+ parameters = {
+ "model": "SentencePieceUnigram",
+ "replacement": replacement,
+ "add_prefix_space": add_prefix_space,
+ }
+
+ super().__init__(tokenizer, parameters)
+
+ def train(
+ self,
+ files: Union[str, List[str]],
+ vocab_size: int = 8000,
+ show_progress: bool = True,
+ special_tokens: Optional[List[Union[str, AddedToken]]] = None,
+ initial_alphabet: Optional[List[str]] = None,
+ unk_token: Optional[str] = None,
+ ):
+ """
+ Train the model using the given files
+
+ Args:
+ files (:obj:`List[str]`):
+ A list of path to the files that we should use for training
+ vocab_size (:obj:`int`):
+ The size of the final vocabulary, including all tokens and alphabet.
+ show_progress (:obj:`bool`):
+ Whether to show progress bars while training.
+ special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`):
+ A list of special tokens the model should know of.
+ initial_alphabet (:obj:`List[str]`, `optional`):
+ A list of characters to include in the initial alphabet, even
+ if not seen in the training dataset.
+ If the strings contain more than one character, only the first one
+ is kept.
+ unk_token (:obj:`str`, `optional`):
+ The unknown token to be used by the model.
+ """
+
+ if special_tokens is None:
+ special_tokens = []
+
+ if initial_alphabet is None:
+ initial_alphabet = []
+
+ trainer = trainers.UnigramTrainer(
+ vocab_size=vocab_size,
+ special_tokens=special_tokens,
+ show_progress=show_progress,
+ initial_alphabet=initial_alphabet,
+ unk_token=unk_token,
+ )
+
+ if isinstance(files, str):
+ files = [files]
+ self._tokenizer.train(files, trainer=trainer)
+
+ def train_from_iterator(
+ self,
+ iterator: Union[Iterator[str], Iterator[Iterator[str]]],
+ vocab_size: int = 8000,
+ show_progress: bool = True,
+ special_tokens: Optional[List[Union[str, AddedToken]]] = None,
+ initial_alphabet: Optional[List[str]] = None,
+ unk_token: Optional[str] = None,
+ length: Optional[int] = None,
+ ):
+ """
+ Train the model using the given iterator
+
+ Args:
+ iterator (:obj:`Union[Iterator[str], Iterator[Iterator[str]]]`):
+ Any iterator over strings or list of strings
+ vocab_size (:obj:`int`):
+ The size of the final vocabulary, including all tokens and alphabet.
+ show_progress (:obj:`bool`):
+ Whether to show progress bars while training.
+ special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`):
+ A list of special tokens the model should know of.
+ initial_alphabet (:obj:`List[str]`, `optional`):
+ A list of characters to include in the initial alphabet, even
+ if not seen in the training dataset.
+ If the strings contain more than one character, only the first one
+ is kept.
+ unk_token (:obj:`str`, `optional`):
+ The unknown token to be used by the model.
+ length (:obj:`int`, `optional`):
+ The total number of sequences in the iterator. This is used to
+ provide meaningful progress tracking
+ """
+
+ if special_tokens is None:
+ special_tokens = []
+
+ if initial_alphabet is None:
+ initial_alphabet = []
+
+ trainer = trainers.UnigramTrainer(
+ vocab_size=vocab_size,
+ special_tokens=special_tokens,
+ show_progress=show_progress,
+ initial_alphabet=initial_alphabet,
+ unk_token=unk_token,
+ )
+
+ self._tokenizer.train_from_iterator(
+ iterator,
+ trainer=trainer,
+ length=length,
+ )
+
+ @staticmethod
+ def from_spm(filename: str):
+ try:
+ import sys
+
+ sys.path.append(".")
+
+ import sentencepiece_model_pb2 as model
+ except Exception:
+ raise Exception(
+ "You don't seem to have the required protobuf file, in order to use this function you need to run `pip install protobuf` and `wget https://raw.githubusercontent.com/google/sentencepiece/master/python/src/sentencepiece/sentencepiece_model_pb2.py` for us to be able to read the intrinsics of your spm_file. `pip install sentencepiece` is not required."
+ )
+
+ m = model.ModelProto()
+ m.ParseFromString(open(filename, "rb").read())
+
+ precompiled_charsmap = m.normalizer_spec.precompiled_charsmap
+ vocab = [(piece.piece, piece.score) for piece in m.pieces]
+ unk_id = m.trainer_spec.unk_id
+ model_type = m.trainer_spec.model_type
+ byte_fallback = m.trainer_spec.byte_fallback
+ if model_type != 1:
+ raise Exception(
+ "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
+ )
+
+ replacement = "▁"
+ add_prefix_space = True
+
+ tokenizer = Tokenizer(Unigram(vocab, unk_id, byte_fallback))
+
+ if precompiled_charsmap:
+ tokenizer.normalizer = normalizers.Sequence(
+ [
+ normalizers.Precompiled(precompiled_charsmap),
+ normalizers.Replace(Regex(" {2,}"), " "),
+ ]
+ )
+ else:
+ tokenizer.normalizer = normalizers.Sequence([normalizers.Replace(Regex(" {2,}"), " ")])
+ prepend_scheme = "always" if add_prefix_space else "never"
+ tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
+ tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
+
+ parameters = {
+ "model": "SentencePieceUnigram",
+ }
+
+ obj = BaseTokenizer.__new__(SentencePieceUnigramTokenizer, tokenizer, parameters)
+ BaseTokenizer.__init__(obj, tokenizer, parameters)
+ return obj