aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/pydantic/v1/main.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/pydantic/v1/main.py')
-rw-r--r--.venv/lib/python3.12/site-packages/pydantic/v1/main.py1107
1 files changed, 1107 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/pydantic/v1/main.py b/.venv/lib/python3.12/site-packages/pydantic/v1/main.py
new file mode 100644
index 00000000..68af6f55
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/pydantic/v1/main.py
@@ -0,0 +1,1107 @@
+import warnings
+from abc import ABCMeta
+from copy import deepcopy
+from enum import Enum
+from functools import partial
+from pathlib import Path
+from types import FunctionType, prepare_class, resolve_bases
+from typing import (
+ TYPE_CHECKING,
+ AbstractSet,
+ Any,
+ Callable,
+ ClassVar,
+ Dict,
+ List,
+ Mapping,
+ Optional,
+ Tuple,
+ Type,
+ TypeVar,
+ Union,
+ cast,
+ no_type_check,
+ overload,
+)
+
+from typing_extensions import dataclass_transform
+
+from pydantic.v1.class_validators import ValidatorGroup, extract_root_validators, extract_validators, inherit_validators
+from pydantic.v1.config import BaseConfig, Extra, inherit_config, prepare_config
+from pydantic.v1.error_wrappers import ErrorWrapper, ValidationError
+from pydantic.v1.errors import ConfigError, DictError, ExtraError, MissingError
+from pydantic.v1.fields import (
+ MAPPING_LIKE_SHAPES,
+ Field,
+ ModelField,
+ ModelPrivateAttr,
+ PrivateAttr,
+ Undefined,
+ is_finalvar_with_default_val,
+)
+from pydantic.v1.json import custom_pydantic_encoder, pydantic_encoder
+from pydantic.v1.parse import Protocol, load_file, load_str_bytes
+from pydantic.v1.schema import default_ref_template, model_schema
+from pydantic.v1.types import PyObject, StrBytes
+from pydantic.v1.typing import (
+ AnyCallable,
+ get_args,
+ get_origin,
+ is_classvar,
+ is_namedtuple,
+ is_union,
+ resolve_annotations,
+ update_model_forward_refs,
+)
+from pydantic.v1.utils import (
+ DUNDER_ATTRIBUTES,
+ ROOT_KEY,
+ ClassAttribute,
+ GetterDict,
+ Representation,
+ ValueItems,
+ generate_model_signature,
+ is_valid_field,
+ is_valid_private_name,
+ lenient_issubclass,
+ sequence_like,
+ smart_deepcopy,
+ unique_list,
+ validate_field_name,
+)
+
+if TYPE_CHECKING:
+ from inspect import Signature
+
+ from pydantic.v1.class_validators import ValidatorListDict
+ from pydantic.v1.types import ModelOrDc
+ from pydantic.v1.typing import (
+ AbstractSetIntStr,
+ AnyClassMethod,
+ CallableGenerator,
+ DictAny,
+ DictStrAny,
+ MappingIntStrAny,
+ ReprArgs,
+ SetStr,
+ TupleGenerator,
+ )
+
+ Model = TypeVar('Model', bound='BaseModel')
+
+__all__ = 'BaseModel', 'create_model', 'validate_model'
+
+_T = TypeVar('_T')
+
+
+def validate_custom_root_type(fields: Dict[str, ModelField]) -> None:
+ if len(fields) > 1:
+ raise ValueError(f'{ROOT_KEY} cannot be mixed with other fields')
+
+
+def generate_hash_function(frozen: bool) -> Optional[Callable[[Any], int]]:
+ def hash_function(self_: Any) -> int:
+ return hash(self_.__class__) + hash(tuple(self_.__dict__.values()))
+
+ return hash_function if frozen else None
+
+
+# If a field is of type `Callable`, its default value should be a function and cannot to ignored.
+ANNOTATED_FIELD_UNTOUCHED_TYPES: Tuple[Any, ...] = (property, type, classmethod, staticmethod)
+# When creating a `BaseModel` instance, we bypass all the methods, properties... added to the model
+UNTOUCHED_TYPES: Tuple[Any, ...] = (FunctionType,) + ANNOTATED_FIELD_UNTOUCHED_TYPES
+# Note `ModelMetaclass` refers to `BaseModel`, but is also used to *create* `BaseModel`, so we need to add this extra
+# (somewhat hacky) boolean to keep track of whether we've created the `BaseModel` class yet, and therefore whether it's
+# safe to refer to it. If it *hasn't* been created, we assume that the `__new__` call we're in the middle of is for
+# the `BaseModel` class, since that's defined immediately after the metaclass.
+_is_base_model_class_defined = False
+
+
+@dataclass_transform(kw_only_default=True, field_specifiers=(Field,))
+class ModelMetaclass(ABCMeta):
+ @no_type_check # noqa C901
+ def __new__(mcs, name, bases, namespace, **kwargs): # noqa C901
+ fields: Dict[str, ModelField] = {}
+ config = BaseConfig
+ validators: 'ValidatorListDict' = {}
+
+ pre_root_validators, post_root_validators = [], []
+ private_attributes: Dict[str, ModelPrivateAttr] = {}
+ base_private_attributes: Dict[str, ModelPrivateAttr] = {}
+ slots: SetStr = namespace.get('__slots__', ())
+ slots = {slots} if isinstance(slots, str) else set(slots)
+ class_vars: SetStr = set()
+ hash_func: Optional[Callable[[Any], int]] = None
+
+ for base in reversed(bases):
+ if _is_base_model_class_defined and issubclass(base, BaseModel) and base != BaseModel:
+ fields.update(smart_deepcopy(base.__fields__))
+ config = inherit_config(base.__config__, config)
+ validators = inherit_validators(base.__validators__, validators)
+ pre_root_validators += base.__pre_root_validators__
+ post_root_validators += base.__post_root_validators__
+ base_private_attributes.update(base.__private_attributes__)
+ class_vars.update(base.__class_vars__)
+ hash_func = base.__hash__
+
+ resolve_forward_refs = kwargs.pop('__resolve_forward_refs__', True)
+ allowed_config_kwargs: SetStr = {
+ key
+ for key in dir(config)
+ if not (key.startswith('__') and key.endswith('__')) # skip dunder methods and attributes
+ }
+ config_kwargs = {key: kwargs.pop(key) for key in kwargs.keys() & allowed_config_kwargs}
+ config_from_namespace = namespace.get('Config')
+ if config_kwargs and config_from_namespace:
+ raise TypeError('Specifying config in two places is ambiguous, use either Config attribute or class kwargs')
+ config = inherit_config(config_from_namespace, config, **config_kwargs)
+
+ validators = inherit_validators(extract_validators(namespace), validators)
+ vg = ValidatorGroup(validators)
+
+ for f in fields.values():
+ f.set_config(config)
+ extra_validators = vg.get_validators(f.name)
+ if extra_validators:
+ f.class_validators.update(extra_validators)
+ # re-run prepare to add extra validators
+ f.populate_validators()
+
+ prepare_config(config, name)
+
+ untouched_types = ANNOTATED_FIELD_UNTOUCHED_TYPES
+
+ def is_untouched(v: Any) -> bool:
+ return isinstance(v, untouched_types) or v.__class__.__name__ == 'cython_function_or_method'
+
+ if (namespace.get('__module__'), namespace.get('__qualname__')) != ('pydantic.main', 'BaseModel'):
+ annotations = resolve_annotations(namespace.get('__annotations__', {}), namespace.get('__module__', None))
+ # annotation only fields need to come first in fields
+ for ann_name, ann_type in annotations.items():
+ if is_classvar(ann_type):
+ class_vars.add(ann_name)
+ elif is_finalvar_with_default_val(ann_type, namespace.get(ann_name, Undefined)):
+ class_vars.add(ann_name)
+ elif is_valid_field(ann_name):
+ validate_field_name(bases, ann_name)
+ value = namespace.get(ann_name, Undefined)
+ allowed_types = get_args(ann_type) if is_union(get_origin(ann_type)) else (ann_type,)
+ if (
+ is_untouched(value)
+ and ann_type != PyObject
+ and not any(
+ lenient_issubclass(get_origin(allowed_type), Type) for allowed_type in allowed_types
+ )
+ ):
+ continue
+ fields[ann_name] = ModelField.infer(
+ name=ann_name,
+ value=value,
+ annotation=ann_type,
+ class_validators=vg.get_validators(ann_name),
+ config=config,
+ )
+ elif ann_name not in namespace and config.underscore_attrs_are_private:
+ private_attributes[ann_name] = PrivateAttr()
+
+ untouched_types = UNTOUCHED_TYPES + config.keep_untouched
+ for var_name, value in namespace.items():
+ can_be_changed = var_name not in class_vars and not is_untouched(value)
+ if isinstance(value, ModelPrivateAttr):
+ if not is_valid_private_name(var_name):
+ raise NameError(
+ f'Private attributes "{var_name}" must not be a valid field name; '
+ f'Use sunder or dunder names, e. g. "_{var_name}" or "__{var_name}__"'
+ )
+ private_attributes[var_name] = value
+ elif config.underscore_attrs_are_private and is_valid_private_name(var_name) and can_be_changed:
+ private_attributes[var_name] = PrivateAttr(default=value)
+ elif is_valid_field(var_name) and var_name not in annotations and can_be_changed:
+ validate_field_name(bases, var_name)
+ inferred = ModelField.infer(
+ name=var_name,
+ value=value,
+ annotation=annotations.get(var_name, Undefined),
+ class_validators=vg.get_validators(var_name),
+ config=config,
+ )
+ if var_name in fields:
+ if lenient_issubclass(inferred.type_, fields[var_name].type_):
+ inferred.type_ = fields[var_name].type_
+ else:
+ raise TypeError(
+ f'The type of {name}.{var_name} differs from the new default value; '
+ f'if you wish to change the type of this field, please use a type annotation'
+ )
+ fields[var_name] = inferred
+
+ _custom_root_type = ROOT_KEY in fields
+ if _custom_root_type:
+ validate_custom_root_type(fields)
+ vg.check_for_unused()
+ if config.json_encoders:
+ json_encoder = partial(custom_pydantic_encoder, config.json_encoders)
+ else:
+ json_encoder = pydantic_encoder
+ pre_rv_new, post_rv_new = extract_root_validators(namespace)
+
+ if hash_func is None:
+ hash_func = generate_hash_function(config.frozen)
+
+ exclude_from_namespace = fields | private_attributes.keys() | {'__slots__'}
+ new_namespace = {
+ '__config__': config,
+ '__fields__': fields,
+ '__exclude_fields__': {
+ name: field.field_info.exclude for name, field in fields.items() if field.field_info.exclude is not None
+ }
+ or None,
+ '__include_fields__': {
+ name: field.field_info.include for name, field in fields.items() if field.field_info.include is not None
+ }
+ or None,
+ '__validators__': vg.validators,
+ '__pre_root_validators__': unique_list(
+ pre_root_validators + pre_rv_new,
+ name_factory=lambda v: v.__name__,
+ ),
+ '__post_root_validators__': unique_list(
+ post_root_validators + post_rv_new,
+ name_factory=lambda skip_on_failure_and_v: skip_on_failure_and_v[1].__name__,
+ ),
+ '__schema_cache__': {},
+ '__json_encoder__': staticmethod(json_encoder),
+ '__custom_root_type__': _custom_root_type,
+ '__private_attributes__': {**base_private_attributes, **private_attributes},
+ '__slots__': slots | private_attributes.keys(),
+ '__hash__': hash_func,
+ '__class_vars__': class_vars,
+ **{n: v for n, v in namespace.items() if n not in exclude_from_namespace},
+ }
+
+ cls = super().__new__(mcs, name, bases, new_namespace, **kwargs)
+ # set __signature__ attr only for model class, but not for its instances
+ cls.__signature__ = ClassAttribute('__signature__', generate_model_signature(cls.__init__, fields, config))
+ if resolve_forward_refs:
+ cls.__try_update_forward_refs__()
+
+ # preserve `__set_name__` protocol defined in https://peps.python.org/pep-0487
+ # for attributes not in `new_namespace` (e.g. private attributes)
+ for name, obj in namespace.items():
+ if name not in new_namespace:
+ set_name = getattr(obj, '__set_name__', None)
+ if callable(set_name):
+ set_name(cls, name)
+
+ return cls
+
+ def __instancecheck__(self, instance: Any) -> bool:
+ """
+ Avoid calling ABC _abc_subclasscheck unless we're pretty sure.
+
+ See #3829 and python/cpython#92810
+ """
+ return hasattr(instance, '__post_root_validators__') and super().__instancecheck__(instance)
+
+
+object_setattr = object.__setattr__
+
+
+class BaseModel(Representation, metaclass=ModelMetaclass):
+ if TYPE_CHECKING:
+ # populated by the metaclass, defined here to help IDEs only
+ __fields__: ClassVar[Dict[str, ModelField]] = {}
+ __include_fields__: ClassVar[Optional[Mapping[str, Any]]] = None
+ __exclude_fields__: ClassVar[Optional[Mapping[str, Any]]] = None
+ __validators__: ClassVar[Dict[str, AnyCallable]] = {}
+ __pre_root_validators__: ClassVar[List[AnyCallable]]
+ __post_root_validators__: ClassVar[List[Tuple[bool, AnyCallable]]]
+ __config__: ClassVar[Type[BaseConfig]] = BaseConfig
+ __json_encoder__: ClassVar[Callable[[Any], Any]] = lambda x: x
+ __schema_cache__: ClassVar['DictAny'] = {}
+ __custom_root_type__: ClassVar[bool] = False
+ __signature__: ClassVar['Signature']
+ __private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]]
+ __class_vars__: ClassVar[SetStr]
+ __fields_set__: ClassVar[SetStr] = set()
+
+ Config = BaseConfig
+ __slots__ = ('__dict__', '__fields_set__')
+ __doc__ = '' # Null out the Representation docstring
+
+ def __init__(__pydantic_self__, **data: Any) -> None:
+ """
+ Create a new model by parsing and validating input data from keyword arguments.
+
+ Raises ValidationError if the input data cannot be parsed to form a valid model.
+ """
+ # Uses something other than `self` the first arg to allow "self" as a settable attribute
+ values, fields_set, validation_error = validate_model(__pydantic_self__.__class__, data)
+ if validation_error:
+ raise validation_error
+ try:
+ object_setattr(__pydantic_self__, '__dict__', values)
+ except TypeError as e:
+ raise TypeError(
+ 'Model values must be a dict; you may not have returned a dictionary from a root validator'
+ ) from e
+ object_setattr(__pydantic_self__, '__fields_set__', fields_set)
+ __pydantic_self__._init_private_attributes()
+
+ @no_type_check
+ def __setattr__(self, name, value): # noqa: C901 (ignore complexity)
+ if name in self.__private_attributes__ or name in DUNDER_ATTRIBUTES:
+ return object_setattr(self, name, value)
+
+ if self.__config__.extra is not Extra.allow and name not in self.__fields__:
+ raise ValueError(f'"{self.__class__.__name__}" object has no field "{name}"')
+ elif not self.__config__.allow_mutation or self.__config__.frozen:
+ raise TypeError(f'"{self.__class__.__name__}" is immutable and does not support item assignment')
+ elif name in self.__fields__ and self.__fields__[name].final:
+ raise TypeError(
+ f'"{self.__class__.__name__}" object "{name}" field is final and does not support reassignment'
+ )
+ elif self.__config__.validate_assignment:
+ new_values = {**self.__dict__, name: value}
+
+ for validator in self.__pre_root_validators__:
+ try:
+ new_values = validator(self.__class__, new_values)
+ except (ValueError, TypeError, AssertionError) as exc:
+ raise ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], self.__class__)
+
+ known_field = self.__fields__.get(name, None)
+ if known_field:
+ # We want to
+ # - make sure validators are called without the current value for this field inside `values`
+ # - keep other values (e.g. submodels) untouched (using `BaseModel.dict()` will change them into dicts)
+ # - keep the order of the fields
+ if not known_field.field_info.allow_mutation:
+ raise TypeError(f'"{known_field.name}" has allow_mutation set to False and cannot be assigned')
+ dict_without_original_value = {k: v for k, v in self.__dict__.items() if k != name}
+ value, error_ = known_field.validate(value, dict_without_original_value, loc=name, cls=self.__class__)
+ if error_:
+ raise ValidationError([error_], self.__class__)
+ else:
+ new_values[name] = value
+
+ errors = []
+ for skip_on_failure, validator in self.__post_root_validators__:
+ if skip_on_failure and errors:
+ continue
+ try:
+ new_values = validator(self.__class__, new_values)
+ except (ValueError, TypeError, AssertionError) as exc:
+ errors.append(ErrorWrapper(exc, loc=ROOT_KEY))
+ if errors:
+ raise ValidationError(errors, self.__class__)
+
+ # update the whole __dict__ as other values than just `value`
+ # may be changed (e.g. with `root_validator`)
+ object_setattr(self, '__dict__', new_values)
+ else:
+ self.__dict__[name] = value
+
+ self.__fields_set__.add(name)
+
+ def __getstate__(self) -> 'DictAny':
+ private_attrs = ((k, getattr(self, k, Undefined)) for k in self.__private_attributes__)
+ return {
+ '__dict__': self.__dict__,
+ '__fields_set__': self.__fields_set__,
+ '__private_attribute_values__': {k: v for k, v in private_attrs if v is not Undefined},
+ }
+
+ def __setstate__(self, state: 'DictAny') -> None:
+ object_setattr(self, '__dict__', state['__dict__'])
+ object_setattr(self, '__fields_set__', state['__fields_set__'])
+ for name, value in state.get('__private_attribute_values__', {}).items():
+ object_setattr(self, name, value)
+
+ def _init_private_attributes(self) -> None:
+ for name, private_attr in self.__private_attributes__.items():
+ default = private_attr.get_default()
+ if default is not Undefined:
+ object_setattr(self, name, default)
+
+ def dict(
+ self,
+ *,
+ include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
+ exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
+ by_alias: bool = False,
+ skip_defaults: Optional[bool] = None,
+ exclude_unset: bool = False,
+ exclude_defaults: bool = False,
+ exclude_none: bool = False,
+ ) -> 'DictStrAny':
+ """
+ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
+
+ """
+ if skip_defaults is not None:
+ warnings.warn(
+ f'{self.__class__.__name__}.dict(): "skip_defaults" is deprecated and replaced by "exclude_unset"',
+ DeprecationWarning,
+ )
+ exclude_unset = skip_defaults
+
+ return dict(
+ self._iter(
+ to_dict=True,
+ by_alias=by_alias,
+ include=include,
+ exclude=exclude,
+ exclude_unset=exclude_unset,
+ exclude_defaults=exclude_defaults,
+ exclude_none=exclude_none,
+ )
+ )
+
+ def json(
+ self,
+ *,
+ include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
+ exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
+ by_alias: bool = False,
+ skip_defaults: Optional[bool] = None,
+ exclude_unset: bool = False,
+ exclude_defaults: bool = False,
+ exclude_none: bool = False,
+ encoder: Optional[Callable[[Any], Any]] = None,
+ models_as_dict: bool = True,
+ **dumps_kwargs: Any,
+ ) -> str:
+ """
+ Generate a JSON representation of the model, `include` and `exclude` arguments as per `dict()`.
+
+ `encoder` is an optional function to supply as `default` to json.dumps(), other arguments as per `json.dumps()`.
+ """
+ if skip_defaults is not None:
+ warnings.warn(
+ f'{self.__class__.__name__}.json(): "skip_defaults" is deprecated and replaced by "exclude_unset"',
+ DeprecationWarning,
+ )
+ exclude_unset = skip_defaults
+ encoder = cast(Callable[[Any], Any], encoder or self.__json_encoder__)
+
+ # We don't directly call `self.dict()`, which does exactly this with `to_dict=True`
+ # because we want to be able to keep raw `BaseModel` instances and not as `dict`.
+ # This allows users to write custom JSON encoders for given `BaseModel` classes.
+ data = dict(
+ self._iter(
+ to_dict=models_as_dict,
+ by_alias=by_alias,
+ include=include,
+ exclude=exclude,
+ exclude_unset=exclude_unset,
+ exclude_defaults=exclude_defaults,
+ exclude_none=exclude_none,
+ )
+ )
+ if self.__custom_root_type__:
+ data = data[ROOT_KEY]
+ return self.__config__.json_dumps(data, default=encoder, **dumps_kwargs)
+
+ @classmethod
+ def _enforce_dict_if_root(cls, obj: Any) -> Any:
+ if cls.__custom_root_type__ and (
+ not (isinstance(obj, dict) and obj.keys() == {ROOT_KEY})
+ and not (isinstance(obj, BaseModel) and obj.__fields__.keys() == {ROOT_KEY})
+ or cls.__fields__[ROOT_KEY].shape in MAPPING_LIKE_SHAPES
+ ):
+ return {ROOT_KEY: obj}
+ else:
+ return obj
+
+ @classmethod
+ def parse_obj(cls: Type['Model'], obj: Any) -> 'Model':
+ obj = cls._enforce_dict_if_root(obj)
+ if not isinstance(obj, dict):
+ try:
+ obj = dict(obj)
+ except (TypeError, ValueError) as e:
+ exc = TypeError(f'{cls.__name__} expected dict not {obj.__class__.__name__}')
+ raise ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], cls) from e
+ return cls(**obj)
+
+ @classmethod
+ def parse_raw(
+ cls: Type['Model'],
+ b: StrBytes,
+ *,
+ content_type: str = None,
+ encoding: str = 'utf8',
+ proto: Protocol = None,
+ allow_pickle: bool = False,
+ ) -> 'Model':
+ try:
+ obj = load_str_bytes(
+ b,
+ proto=proto,
+ content_type=content_type,
+ encoding=encoding,
+ allow_pickle=allow_pickle,
+ json_loads=cls.__config__.json_loads,
+ )
+ except (ValueError, TypeError, UnicodeDecodeError) as e:
+ raise ValidationError([ErrorWrapper(e, loc=ROOT_KEY)], cls)
+ return cls.parse_obj(obj)
+
+ @classmethod
+ def parse_file(
+ cls: Type['Model'],
+ path: Union[str, Path],
+ *,
+ content_type: str = None,
+ encoding: str = 'utf8',
+ proto: Protocol = None,
+ allow_pickle: bool = False,
+ ) -> 'Model':
+ obj = load_file(
+ path,
+ proto=proto,
+ content_type=content_type,
+ encoding=encoding,
+ allow_pickle=allow_pickle,
+ json_loads=cls.__config__.json_loads,
+ )
+ return cls.parse_obj(obj)
+
+ @classmethod
+ def from_orm(cls: Type['Model'], obj: Any) -> 'Model':
+ if not cls.__config__.orm_mode:
+ raise ConfigError('You must have the config attribute orm_mode=True to use from_orm')
+ obj = {ROOT_KEY: obj} if cls.__custom_root_type__ else cls._decompose_class(obj)
+ m = cls.__new__(cls)
+ values, fields_set, validation_error = validate_model(cls, obj)
+ if validation_error:
+ raise validation_error
+ object_setattr(m, '__dict__', values)
+ object_setattr(m, '__fields_set__', fields_set)
+ m._init_private_attributes()
+ return m
+
+ @classmethod
+ def construct(cls: Type['Model'], _fields_set: Optional['SetStr'] = None, **values: Any) -> 'Model':
+ """
+ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
+ Default values are respected, but no other validation is performed.
+ Behaves as if `Config.extra = 'allow'` was set since it adds all passed values
+ """
+ m = cls.__new__(cls)
+ fields_values: Dict[str, Any] = {}
+ for name, field in cls.__fields__.items():
+ if field.alt_alias and field.alias in values:
+ fields_values[name] = values[field.alias]
+ elif name in values:
+ fields_values[name] = values[name]
+ elif not field.required:
+ fields_values[name] = field.get_default()
+ fields_values.update(values)
+ object_setattr(m, '__dict__', fields_values)
+ if _fields_set is None:
+ _fields_set = set(values.keys())
+ object_setattr(m, '__fields_set__', _fields_set)
+ m._init_private_attributes()
+ return m
+
+ def _copy_and_set_values(self: 'Model', values: 'DictStrAny', fields_set: 'SetStr', *, deep: bool) -> 'Model':
+ if deep:
+ # chances of having empty dict here are quite low for using smart_deepcopy
+ values = deepcopy(values)
+
+ cls = self.__class__
+ m = cls.__new__(cls)
+ object_setattr(m, '__dict__', values)
+ object_setattr(m, '__fields_set__', fields_set)
+ for name in self.__private_attributes__:
+ value = getattr(self, name, Undefined)
+ if value is not Undefined:
+ if deep:
+ value = deepcopy(value)
+ object_setattr(m, name, value)
+
+ return m
+
+ def copy(
+ self: 'Model',
+ *,
+ include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
+ exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
+ update: Optional['DictStrAny'] = None,
+ deep: bool = False,
+ ) -> 'Model':
+ """
+ Duplicate a model, optionally choose which fields to include, exclude and change.
+
+ :param include: fields to include in new model
+ :param exclude: fields to exclude from new model, as with values this takes precedence over include
+ :param update: values to change/add in the new model. Note: the data is not validated before creating
+ the new model: you should trust this data
+ :param deep: set to `True` to make a deep copy of the model
+ :return: new model instance
+ """
+
+ values = dict(
+ self._iter(to_dict=False, by_alias=False, include=include, exclude=exclude, exclude_unset=False),
+ **(update or {}),
+ )
+
+ # new `__fields_set__` can have unset optional fields with a set value in `update` kwarg
+ if update:
+ fields_set = self.__fields_set__ | update.keys()
+ else:
+ fields_set = set(self.__fields_set__)
+
+ return self._copy_and_set_values(values, fields_set, deep=deep)
+
+ @classmethod
+ def schema(cls, by_alias: bool = True, ref_template: str = default_ref_template) -> 'DictStrAny':
+ cached = cls.__schema_cache__.get((by_alias, ref_template))
+ if cached is not None:
+ return cached
+ s = model_schema(cls, by_alias=by_alias, ref_template=ref_template)
+ cls.__schema_cache__[(by_alias, ref_template)] = s
+ return s
+
+ @classmethod
+ def schema_json(
+ cls, *, by_alias: bool = True, ref_template: str = default_ref_template, **dumps_kwargs: Any
+ ) -> str:
+ from pydantic.v1.json import pydantic_encoder
+
+ return cls.__config__.json_dumps(
+ cls.schema(by_alias=by_alias, ref_template=ref_template), default=pydantic_encoder, **dumps_kwargs
+ )
+
+ @classmethod
+ def __get_validators__(cls) -> 'CallableGenerator':
+ yield cls.validate
+
+ @classmethod
+ def validate(cls: Type['Model'], value: Any) -> 'Model':
+ if isinstance(value, cls):
+ copy_on_model_validation = cls.__config__.copy_on_model_validation
+ # whether to deep or shallow copy the model on validation, None means do not copy
+ deep_copy: Optional[bool] = None
+ if copy_on_model_validation not in {'deep', 'shallow', 'none'}:
+ # Warn about deprecated behavior
+ warnings.warn(
+ "`copy_on_model_validation` should be a string: 'deep', 'shallow' or 'none'", DeprecationWarning
+ )
+ if copy_on_model_validation:
+ deep_copy = False
+
+ if copy_on_model_validation == 'shallow':
+ # shallow copy
+ deep_copy = False
+ elif copy_on_model_validation == 'deep':
+ # deep copy
+ deep_copy = True
+
+ if deep_copy is None:
+ return value
+ else:
+ return value._copy_and_set_values(value.__dict__, value.__fields_set__, deep=deep_copy)
+
+ value = cls._enforce_dict_if_root(value)
+
+ if isinstance(value, dict):
+ return cls(**value)
+ elif cls.__config__.orm_mode:
+ return cls.from_orm(value)
+ else:
+ try:
+ value_as_dict = dict(value)
+ except (TypeError, ValueError) as e:
+ raise DictError() from e
+ return cls(**value_as_dict)
+
+ @classmethod
+ def _decompose_class(cls: Type['Model'], obj: Any) -> GetterDict:
+ if isinstance(obj, GetterDict):
+ return obj
+ return cls.__config__.getter_dict(obj)
+
+ @classmethod
+ @no_type_check
+ def _get_value(
+ cls,
+ v: Any,
+ to_dict: bool,
+ by_alias: bool,
+ include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']],
+ exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']],
+ exclude_unset: bool,
+ exclude_defaults: bool,
+ exclude_none: bool,
+ ) -> Any:
+ if isinstance(v, BaseModel):
+ if to_dict:
+ v_dict = v.dict(
+ by_alias=by_alias,
+ exclude_unset=exclude_unset,
+ exclude_defaults=exclude_defaults,
+ include=include,
+ exclude=exclude,
+ exclude_none=exclude_none,
+ )
+ if ROOT_KEY in v_dict:
+ return v_dict[ROOT_KEY]
+ return v_dict
+ else:
+ return v.copy(include=include, exclude=exclude)
+
+ value_exclude = ValueItems(v, exclude) if exclude else None
+ value_include = ValueItems(v, include) if include else None
+
+ if isinstance(v, dict):
+ return {
+ k_: cls._get_value(
+ v_,
+ to_dict=to_dict,
+ by_alias=by_alias,
+ exclude_unset=exclude_unset,
+ exclude_defaults=exclude_defaults,
+ include=value_include and value_include.for_element(k_),
+ exclude=value_exclude and value_exclude.for_element(k_),
+ exclude_none=exclude_none,
+ )
+ for k_, v_ in v.items()
+ if (not value_exclude or not value_exclude.is_excluded(k_))
+ and (not value_include or value_include.is_included(k_))
+ }
+
+ elif sequence_like(v):
+ seq_args = (
+ cls._get_value(
+ v_,
+ to_dict=to_dict,
+ by_alias=by_alias,
+ exclude_unset=exclude_unset,
+ exclude_defaults=exclude_defaults,
+ include=value_include and value_include.for_element(i),
+ exclude=value_exclude and value_exclude.for_element(i),
+ exclude_none=exclude_none,
+ )
+ for i, v_ in enumerate(v)
+ if (not value_exclude or not value_exclude.is_excluded(i))
+ and (not value_include or value_include.is_included(i))
+ )
+
+ return v.__class__(*seq_args) if is_namedtuple(v.__class__) else v.__class__(seq_args)
+
+ elif isinstance(v, Enum) and getattr(cls.Config, 'use_enum_values', False):
+ return v.value
+
+ else:
+ return v
+
+ @classmethod
+ def __try_update_forward_refs__(cls, **localns: Any) -> None:
+ """
+ Same as update_forward_refs but will not raise exception
+ when forward references are not defined.
+ """
+ update_model_forward_refs(cls, cls.__fields__.values(), cls.__config__.json_encoders, localns, (NameError,))
+
+ @classmethod
+ def update_forward_refs(cls, **localns: Any) -> None:
+ """
+ Try to update ForwardRefs on fields based on this Model, globalns and localns.
+ """
+ update_model_forward_refs(cls, cls.__fields__.values(), cls.__config__.json_encoders, localns)
+
+ def __iter__(self) -> 'TupleGenerator':
+ """
+ so `dict(model)` works
+ """
+ yield from self.__dict__.items()
+
+ def _iter(
+ self,
+ to_dict: bool = False,
+ by_alias: bool = False,
+ include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
+ exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
+ exclude_unset: bool = False,
+ exclude_defaults: bool = False,
+ exclude_none: bool = False,
+ ) -> 'TupleGenerator':
+ # Merge field set excludes with explicit exclude parameter with explicit overriding field set options.
+ # The extra "is not None" guards are not logically necessary but optimizes performance for the simple case.
+ if exclude is not None or self.__exclude_fields__ is not None:
+ exclude = ValueItems.merge(self.__exclude_fields__, exclude)
+
+ if include is not None or self.__include_fields__ is not None:
+ include = ValueItems.merge(self.__include_fields__, include, intersect=True)
+
+ allowed_keys = self._calculate_keys(
+ include=include, exclude=exclude, exclude_unset=exclude_unset # type: ignore
+ )
+ if allowed_keys is None and not (to_dict or by_alias or exclude_unset or exclude_defaults or exclude_none):
+ # huge boost for plain _iter()
+ yield from self.__dict__.items()
+ return
+
+ value_exclude = ValueItems(self, exclude) if exclude is not None else None
+ value_include = ValueItems(self, include) if include is not None else None
+
+ for field_key, v in self.__dict__.items():
+ if (allowed_keys is not None and field_key not in allowed_keys) or (exclude_none and v is None):
+ continue
+
+ if exclude_defaults:
+ model_field = self.__fields__.get(field_key)
+ if not getattr(model_field, 'required', True) and getattr(model_field, 'default', _missing) == v:
+ continue
+
+ if by_alias and field_key in self.__fields__:
+ dict_key = self.__fields__[field_key].alias
+ else:
+ dict_key = field_key
+
+ if to_dict or value_include or value_exclude:
+ v = self._get_value(
+ v,
+ to_dict=to_dict,
+ by_alias=by_alias,
+ include=value_include and value_include.for_element(field_key),
+ exclude=value_exclude and value_exclude.for_element(field_key),
+ exclude_unset=exclude_unset,
+ exclude_defaults=exclude_defaults,
+ exclude_none=exclude_none,
+ )
+ yield dict_key, v
+
+ def _calculate_keys(
+ self,
+ include: Optional['MappingIntStrAny'],
+ exclude: Optional['MappingIntStrAny'],
+ exclude_unset: bool,
+ update: Optional['DictStrAny'] = None,
+ ) -> Optional[AbstractSet[str]]:
+ if include is None and exclude is None and exclude_unset is False:
+ return None
+
+ keys: AbstractSet[str]
+ if exclude_unset:
+ keys = self.__fields_set__.copy()
+ else:
+ keys = self.__dict__.keys()
+
+ if include is not None:
+ keys &= include.keys()
+
+ if update:
+ keys -= update.keys()
+
+ if exclude:
+ keys -= {k for k, v in exclude.items() if ValueItems.is_true(v)}
+
+ return keys
+
+ def __eq__(self, other: Any) -> bool:
+ if isinstance(other, BaseModel):
+ return self.dict() == other.dict()
+ else:
+ return self.dict() == other
+
+ def __repr_args__(self) -> 'ReprArgs':
+ return [
+ (k, v)
+ for k, v in self.__dict__.items()
+ if k not in DUNDER_ATTRIBUTES and (k not in self.__fields__ or self.__fields__[k].field_info.repr)
+ ]
+
+
+_is_base_model_class_defined = True
+
+
+@overload
+def create_model(
+ __model_name: str,
+ *,
+ __config__: Optional[Type[BaseConfig]] = None,
+ __base__: None = None,
+ __module__: str = __name__,
+ __validators__: Dict[str, 'AnyClassMethod'] = None,
+ __cls_kwargs__: Dict[str, Any] = None,
+ **field_definitions: Any,
+) -> Type['BaseModel']:
+ ...
+
+
+@overload
+def create_model(
+ __model_name: str,
+ *,
+ __config__: Optional[Type[BaseConfig]] = None,
+ __base__: Union[Type['Model'], Tuple[Type['Model'], ...]],
+ __module__: str = __name__,
+ __validators__: Dict[str, 'AnyClassMethod'] = None,
+ __cls_kwargs__: Dict[str, Any] = None,
+ **field_definitions: Any,
+) -> Type['Model']:
+ ...
+
+
+def create_model(
+ __model_name: str,
+ *,
+ __config__: Optional[Type[BaseConfig]] = None,
+ __base__: Union[None, Type['Model'], Tuple[Type['Model'], ...]] = None,
+ __module__: str = __name__,
+ __validators__: Dict[str, 'AnyClassMethod'] = None,
+ __cls_kwargs__: Dict[str, Any] = None,
+ __slots__: Optional[Tuple[str, ...]] = None,
+ **field_definitions: Any,
+) -> Type['Model']:
+ """
+ Dynamically create a model.
+ :param __model_name: name of the created model
+ :param __config__: config class to use for the new model
+ :param __base__: base class for the new model to inherit from
+ :param __module__: module of the created model
+ :param __validators__: a dict of method names and @validator class methods
+ :param __cls_kwargs__: a dict for class creation
+ :param __slots__: Deprecated, `__slots__` should not be passed to `create_model`
+ :param field_definitions: fields of the model (or extra fields if a base is supplied)
+ in the format `<name>=(<type>, <default default>)` or `<name>=<default value>, e.g.
+ `foobar=(str, ...)` or `foobar=123`, or, for complex use-cases, in the format
+ `<name>=<Field>` or `<name>=(<type>, <FieldInfo>)`, e.g.
+ `foo=Field(datetime, default_factory=datetime.utcnow, alias='bar')` or
+ `foo=(str, FieldInfo(title='Foo'))`
+ """
+ if __slots__ is not None:
+ # __slots__ will be ignored from here on
+ warnings.warn('__slots__ should not be passed to create_model', RuntimeWarning)
+
+ if __base__ is not None:
+ if __config__ is not None:
+ raise ConfigError('to avoid confusion __config__ and __base__ cannot be used together')
+ if not isinstance(__base__, tuple):
+ __base__ = (__base__,)
+ else:
+ __base__ = (cast(Type['Model'], BaseModel),)
+
+ __cls_kwargs__ = __cls_kwargs__ or {}
+
+ fields = {}
+ annotations = {}
+
+ for f_name, f_def in field_definitions.items():
+ if not is_valid_field(f_name):
+ warnings.warn(f'fields may not start with an underscore, ignoring "{f_name}"', RuntimeWarning)
+ if isinstance(f_def, tuple):
+ try:
+ f_annotation, f_value = f_def
+ except ValueError as e:
+ raise ConfigError(
+ 'field definitions should either be a tuple of (<type>, <default>) or just a '
+ 'default value, unfortunately this means tuples as '
+ 'default values are not allowed'
+ ) from e
+ else:
+ f_annotation, f_value = None, f_def
+
+ if f_annotation:
+ annotations[f_name] = f_annotation
+ fields[f_name] = f_value
+
+ namespace: 'DictStrAny' = {'__annotations__': annotations, '__module__': __module__}
+ if __validators__:
+ namespace.update(__validators__)
+ namespace.update(fields)
+ if __config__:
+ namespace['Config'] = inherit_config(__config__, BaseConfig)
+ resolved_bases = resolve_bases(__base__)
+ meta, ns, kwds = prepare_class(__model_name, resolved_bases, kwds=__cls_kwargs__)
+ if resolved_bases is not __base__:
+ ns['__orig_bases__'] = __base__
+ namespace.update(ns)
+ return meta(__model_name, resolved_bases, namespace, **kwds)
+
+
+_missing = object()
+
+
+def validate_model( # noqa: C901 (ignore complexity)
+ model: Type[BaseModel], input_data: 'DictStrAny', cls: 'ModelOrDc' = None
+) -> Tuple['DictStrAny', 'SetStr', Optional[ValidationError]]:
+ """
+ validate data against a model.
+ """
+ values = {}
+ errors = []
+ # input_data names, possibly alias
+ names_used = set()
+ # field names, never aliases
+ fields_set = set()
+ config = model.__config__
+ check_extra = config.extra is not Extra.ignore
+ cls_ = cls or model
+
+ for validator in model.__pre_root_validators__:
+ try:
+ input_data = validator(cls_, input_data)
+ except (ValueError, TypeError, AssertionError) as exc:
+ return {}, set(), ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], cls_)
+
+ for name, field in model.__fields__.items():
+ value = input_data.get(field.alias, _missing)
+ using_name = False
+ if value is _missing and config.allow_population_by_field_name and field.alt_alias:
+ value = input_data.get(field.name, _missing)
+ using_name = True
+
+ if value is _missing:
+ if field.required:
+ errors.append(ErrorWrapper(MissingError(), loc=field.alias))
+ continue
+
+ value = field.get_default()
+
+ if not config.validate_all and not field.validate_always:
+ values[name] = value
+ continue
+ else:
+ fields_set.add(name)
+ if check_extra:
+ names_used.add(field.name if using_name else field.alias)
+
+ v_, errors_ = field.validate(value, values, loc=field.alias, cls=cls_)
+ if isinstance(errors_, ErrorWrapper):
+ errors.append(errors_)
+ elif isinstance(errors_, list):
+ errors.extend(errors_)
+ else:
+ values[name] = v_
+
+ if check_extra:
+ if isinstance(input_data, GetterDict):
+ extra = input_data.extra_keys() - names_used
+ else:
+ extra = input_data.keys() - names_used
+ if extra:
+ fields_set |= extra
+ if config.extra is Extra.allow:
+ for f in extra:
+ values[f] = input_data[f]
+ else:
+ for f in sorted(extra):
+ errors.append(ErrorWrapper(ExtraError(), loc=f))
+
+ for skip_on_failure, validator in model.__post_root_validators__:
+ if skip_on_failure and errors:
+ continue
+ try:
+ values = validator(cls_, values)
+ except (ValueError, TypeError, AssertionError) as exc:
+ errors.append(ErrorWrapper(exc, loc=ROOT_KEY))
+
+ if errors:
+ return values, fields_set, ValidationError(errors, cls_)
+ else:
+ return values, fields_set, None