diff options
author | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
---|---|---|
committer | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
commit | 4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch) | |
tree | ee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/pydantic/v1/main.py | |
parent | cc961e04ba734dd72309fb548a2f97d67d578813 (diff) | |
download | gn-ai-master.tar.gz |
Diffstat (limited to '.venv/lib/python3.12/site-packages/pydantic/v1/main.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/pydantic/v1/main.py | 1107 |
1 files changed, 1107 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/pydantic/v1/main.py b/.venv/lib/python3.12/site-packages/pydantic/v1/main.py new file mode 100644 index 00000000..68af6f55 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/pydantic/v1/main.py @@ -0,0 +1,1107 @@ +import warnings +from abc import ABCMeta +from copy import deepcopy +from enum import Enum +from functools import partial +from pathlib import Path +from types import FunctionType, prepare_class, resolve_bases +from typing import ( + TYPE_CHECKING, + AbstractSet, + Any, + Callable, + ClassVar, + Dict, + List, + Mapping, + Optional, + Tuple, + Type, + TypeVar, + Union, + cast, + no_type_check, + overload, +) + +from typing_extensions import dataclass_transform + +from pydantic.v1.class_validators import ValidatorGroup, extract_root_validators, extract_validators, inherit_validators +from pydantic.v1.config import BaseConfig, Extra, inherit_config, prepare_config +from pydantic.v1.error_wrappers import ErrorWrapper, ValidationError +from pydantic.v1.errors import ConfigError, DictError, ExtraError, MissingError +from pydantic.v1.fields import ( + MAPPING_LIKE_SHAPES, + Field, + ModelField, + ModelPrivateAttr, + PrivateAttr, + Undefined, + is_finalvar_with_default_val, +) +from pydantic.v1.json import custom_pydantic_encoder, pydantic_encoder +from pydantic.v1.parse import Protocol, load_file, load_str_bytes +from pydantic.v1.schema import default_ref_template, model_schema +from pydantic.v1.types import PyObject, StrBytes +from pydantic.v1.typing import ( + AnyCallable, + get_args, + get_origin, + is_classvar, + is_namedtuple, + is_union, + resolve_annotations, + update_model_forward_refs, +) +from pydantic.v1.utils import ( + DUNDER_ATTRIBUTES, + ROOT_KEY, + ClassAttribute, + GetterDict, + Representation, + ValueItems, + generate_model_signature, + is_valid_field, + is_valid_private_name, + lenient_issubclass, + sequence_like, + smart_deepcopy, + unique_list, + validate_field_name, +) + +if TYPE_CHECKING: + from inspect import Signature + + from pydantic.v1.class_validators import ValidatorListDict + from pydantic.v1.types import ModelOrDc + from pydantic.v1.typing import ( + AbstractSetIntStr, + AnyClassMethod, + CallableGenerator, + DictAny, + DictStrAny, + MappingIntStrAny, + ReprArgs, + SetStr, + TupleGenerator, + ) + + Model = TypeVar('Model', bound='BaseModel') + +__all__ = 'BaseModel', 'create_model', 'validate_model' + +_T = TypeVar('_T') + + +def validate_custom_root_type(fields: Dict[str, ModelField]) -> None: + if len(fields) > 1: + raise ValueError(f'{ROOT_KEY} cannot be mixed with other fields') + + +def generate_hash_function(frozen: bool) -> Optional[Callable[[Any], int]]: + def hash_function(self_: Any) -> int: + return hash(self_.__class__) + hash(tuple(self_.__dict__.values())) + + return hash_function if frozen else None + + +# If a field is of type `Callable`, its default value should be a function and cannot to ignored. +ANNOTATED_FIELD_UNTOUCHED_TYPES: Tuple[Any, ...] = (property, type, classmethod, staticmethod) +# When creating a `BaseModel` instance, we bypass all the methods, properties... added to the model +UNTOUCHED_TYPES: Tuple[Any, ...] = (FunctionType,) + ANNOTATED_FIELD_UNTOUCHED_TYPES +# Note `ModelMetaclass` refers to `BaseModel`, but is also used to *create* `BaseModel`, so we need to add this extra +# (somewhat hacky) boolean to keep track of whether we've created the `BaseModel` class yet, and therefore whether it's +# safe to refer to it. If it *hasn't* been created, we assume that the `__new__` call we're in the middle of is for +# the `BaseModel` class, since that's defined immediately after the metaclass. +_is_base_model_class_defined = False + + +@dataclass_transform(kw_only_default=True, field_specifiers=(Field,)) +class ModelMetaclass(ABCMeta): + @no_type_check # noqa C901 + def __new__(mcs, name, bases, namespace, **kwargs): # noqa C901 + fields: Dict[str, ModelField] = {} + config = BaseConfig + validators: 'ValidatorListDict' = {} + + pre_root_validators, post_root_validators = [], [] + private_attributes: Dict[str, ModelPrivateAttr] = {} + base_private_attributes: Dict[str, ModelPrivateAttr] = {} + slots: SetStr = namespace.get('__slots__', ()) + slots = {slots} if isinstance(slots, str) else set(slots) + class_vars: SetStr = set() + hash_func: Optional[Callable[[Any], int]] = None + + for base in reversed(bases): + if _is_base_model_class_defined and issubclass(base, BaseModel) and base != BaseModel: + fields.update(smart_deepcopy(base.__fields__)) + config = inherit_config(base.__config__, config) + validators = inherit_validators(base.__validators__, validators) + pre_root_validators += base.__pre_root_validators__ + post_root_validators += base.__post_root_validators__ + base_private_attributes.update(base.__private_attributes__) + class_vars.update(base.__class_vars__) + hash_func = base.__hash__ + + resolve_forward_refs = kwargs.pop('__resolve_forward_refs__', True) + allowed_config_kwargs: SetStr = { + key + for key in dir(config) + if not (key.startswith('__') and key.endswith('__')) # skip dunder methods and attributes + } + config_kwargs = {key: kwargs.pop(key) for key in kwargs.keys() & allowed_config_kwargs} + config_from_namespace = namespace.get('Config') + if config_kwargs and config_from_namespace: + raise TypeError('Specifying config in two places is ambiguous, use either Config attribute or class kwargs') + config = inherit_config(config_from_namespace, config, **config_kwargs) + + validators = inherit_validators(extract_validators(namespace), validators) + vg = ValidatorGroup(validators) + + for f in fields.values(): + f.set_config(config) + extra_validators = vg.get_validators(f.name) + if extra_validators: + f.class_validators.update(extra_validators) + # re-run prepare to add extra validators + f.populate_validators() + + prepare_config(config, name) + + untouched_types = ANNOTATED_FIELD_UNTOUCHED_TYPES + + def is_untouched(v: Any) -> bool: + return isinstance(v, untouched_types) or v.__class__.__name__ == 'cython_function_or_method' + + if (namespace.get('__module__'), namespace.get('__qualname__')) != ('pydantic.main', 'BaseModel'): + annotations = resolve_annotations(namespace.get('__annotations__', {}), namespace.get('__module__', None)) + # annotation only fields need to come first in fields + for ann_name, ann_type in annotations.items(): + if is_classvar(ann_type): + class_vars.add(ann_name) + elif is_finalvar_with_default_val(ann_type, namespace.get(ann_name, Undefined)): + class_vars.add(ann_name) + elif is_valid_field(ann_name): + validate_field_name(bases, ann_name) + value = namespace.get(ann_name, Undefined) + allowed_types = get_args(ann_type) if is_union(get_origin(ann_type)) else (ann_type,) + if ( + is_untouched(value) + and ann_type != PyObject + and not any( + lenient_issubclass(get_origin(allowed_type), Type) for allowed_type in allowed_types + ) + ): + continue + fields[ann_name] = ModelField.infer( + name=ann_name, + value=value, + annotation=ann_type, + class_validators=vg.get_validators(ann_name), + config=config, + ) + elif ann_name not in namespace and config.underscore_attrs_are_private: + private_attributes[ann_name] = PrivateAttr() + + untouched_types = UNTOUCHED_TYPES + config.keep_untouched + for var_name, value in namespace.items(): + can_be_changed = var_name not in class_vars and not is_untouched(value) + if isinstance(value, ModelPrivateAttr): + if not is_valid_private_name(var_name): + raise NameError( + f'Private attributes "{var_name}" must not be a valid field name; ' + f'Use sunder or dunder names, e. g. "_{var_name}" or "__{var_name}__"' + ) + private_attributes[var_name] = value + elif config.underscore_attrs_are_private and is_valid_private_name(var_name) and can_be_changed: + private_attributes[var_name] = PrivateAttr(default=value) + elif is_valid_field(var_name) and var_name not in annotations and can_be_changed: + validate_field_name(bases, var_name) + inferred = ModelField.infer( + name=var_name, + value=value, + annotation=annotations.get(var_name, Undefined), + class_validators=vg.get_validators(var_name), + config=config, + ) + if var_name in fields: + if lenient_issubclass(inferred.type_, fields[var_name].type_): + inferred.type_ = fields[var_name].type_ + else: + raise TypeError( + f'The type of {name}.{var_name} differs from the new default value; ' + f'if you wish to change the type of this field, please use a type annotation' + ) + fields[var_name] = inferred + + _custom_root_type = ROOT_KEY in fields + if _custom_root_type: + validate_custom_root_type(fields) + vg.check_for_unused() + if config.json_encoders: + json_encoder = partial(custom_pydantic_encoder, config.json_encoders) + else: + json_encoder = pydantic_encoder + pre_rv_new, post_rv_new = extract_root_validators(namespace) + + if hash_func is None: + hash_func = generate_hash_function(config.frozen) + + exclude_from_namespace = fields | private_attributes.keys() | {'__slots__'} + new_namespace = { + '__config__': config, + '__fields__': fields, + '__exclude_fields__': { + name: field.field_info.exclude for name, field in fields.items() if field.field_info.exclude is not None + } + or None, + '__include_fields__': { + name: field.field_info.include for name, field in fields.items() if field.field_info.include is not None + } + or None, + '__validators__': vg.validators, + '__pre_root_validators__': unique_list( + pre_root_validators + pre_rv_new, + name_factory=lambda v: v.__name__, + ), + '__post_root_validators__': unique_list( + post_root_validators + post_rv_new, + name_factory=lambda skip_on_failure_and_v: skip_on_failure_and_v[1].__name__, + ), + '__schema_cache__': {}, + '__json_encoder__': staticmethod(json_encoder), + '__custom_root_type__': _custom_root_type, + '__private_attributes__': {**base_private_attributes, **private_attributes}, + '__slots__': slots | private_attributes.keys(), + '__hash__': hash_func, + '__class_vars__': class_vars, + **{n: v for n, v in namespace.items() if n not in exclude_from_namespace}, + } + + cls = super().__new__(mcs, name, bases, new_namespace, **kwargs) + # set __signature__ attr only for model class, but not for its instances + cls.__signature__ = ClassAttribute('__signature__', generate_model_signature(cls.__init__, fields, config)) + if resolve_forward_refs: + cls.__try_update_forward_refs__() + + # preserve `__set_name__` protocol defined in https://peps.python.org/pep-0487 + # for attributes not in `new_namespace` (e.g. private attributes) + for name, obj in namespace.items(): + if name not in new_namespace: + set_name = getattr(obj, '__set_name__', None) + if callable(set_name): + set_name(cls, name) + + return cls + + def __instancecheck__(self, instance: Any) -> bool: + """ + Avoid calling ABC _abc_subclasscheck unless we're pretty sure. + + See #3829 and python/cpython#92810 + """ + return hasattr(instance, '__post_root_validators__') and super().__instancecheck__(instance) + + +object_setattr = object.__setattr__ + + +class BaseModel(Representation, metaclass=ModelMetaclass): + if TYPE_CHECKING: + # populated by the metaclass, defined here to help IDEs only + __fields__: ClassVar[Dict[str, ModelField]] = {} + __include_fields__: ClassVar[Optional[Mapping[str, Any]]] = None + __exclude_fields__: ClassVar[Optional[Mapping[str, Any]]] = None + __validators__: ClassVar[Dict[str, AnyCallable]] = {} + __pre_root_validators__: ClassVar[List[AnyCallable]] + __post_root_validators__: ClassVar[List[Tuple[bool, AnyCallable]]] + __config__: ClassVar[Type[BaseConfig]] = BaseConfig + __json_encoder__: ClassVar[Callable[[Any], Any]] = lambda x: x + __schema_cache__: ClassVar['DictAny'] = {} + __custom_root_type__: ClassVar[bool] = False + __signature__: ClassVar['Signature'] + __private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] + __class_vars__: ClassVar[SetStr] + __fields_set__: ClassVar[SetStr] = set() + + Config = BaseConfig + __slots__ = ('__dict__', '__fields_set__') + __doc__ = '' # Null out the Representation docstring + + def __init__(__pydantic_self__, **data: Any) -> None: + """ + Create a new model by parsing and validating input data from keyword arguments. + + Raises ValidationError if the input data cannot be parsed to form a valid model. + """ + # Uses something other than `self` the first arg to allow "self" as a settable attribute + values, fields_set, validation_error = validate_model(__pydantic_self__.__class__, data) + if validation_error: + raise validation_error + try: + object_setattr(__pydantic_self__, '__dict__', values) + except TypeError as e: + raise TypeError( + 'Model values must be a dict; you may not have returned a dictionary from a root validator' + ) from e + object_setattr(__pydantic_self__, '__fields_set__', fields_set) + __pydantic_self__._init_private_attributes() + + @no_type_check + def __setattr__(self, name, value): # noqa: C901 (ignore complexity) + if name in self.__private_attributes__ or name in DUNDER_ATTRIBUTES: + return object_setattr(self, name, value) + + if self.__config__.extra is not Extra.allow and name not in self.__fields__: + raise ValueError(f'"{self.__class__.__name__}" object has no field "{name}"') + elif not self.__config__.allow_mutation or self.__config__.frozen: + raise TypeError(f'"{self.__class__.__name__}" is immutable and does not support item assignment') + elif name in self.__fields__ and self.__fields__[name].final: + raise TypeError( + f'"{self.__class__.__name__}" object "{name}" field is final and does not support reassignment' + ) + elif self.__config__.validate_assignment: + new_values = {**self.__dict__, name: value} + + for validator in self.__pre_root_validators__: + try: + new_values = validator(self.__class__, new_values) + except (ValueError, TypeError, AssertionError) as exc: + raise ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], self.__class__) + + known_field = self.__fields__.get(name, None) + if known_field: + # We want to + # - make sure validators are called without the current value for this field inside `values` + # - keep other values (e.g. submodels) untouched (using `BaseModel.dict()` will change them into dicts) + # - keep the order of the fields + if not known_field.field_info.allow_mutation: + raise TypeError(f'"{known_field.name}" has allow_mutation set to False and cannot be assigned') + dict_without_original_value = {k: v for k, v in self.__dict__.items() if k != name} + value, error_ = known_field.validate(value, dict_without_original_value, loc=name, cls=self.__class__) + if error_: + raise ValidationError([error_], self.__class__) + else: + new_values[name] = value + + errors = [] + for skip_on_failure, validator in self.__post_root_validators__: + if skip_on_failure and errors: + continue + try: + new_values = validator(self.__class__, new_values) + except (ValueError, TypeError, AssertionError) as exc: + errors.append(ErrorWrapper(exc, loc=ROOT_KEY)) + if errors: + raise ValidationError(errors, self.__class__) + + # update the whole __dict__ as other values than just `value` + # may be changed (e.g. with `root_validator`) + object_setattr(self, '__dict__', new_values) + else: + self.__dict__[name] = value + + self.__fields_set__.add(name) + + def __getstate__(self) -> 'DictAny': + private_attrs = ((k, getattr(self, k, Undefined)) for k in self.__private_attributes__) + return { + '__dict__': self.__dict__, + '__fields_set__': self.__fields_set__, + '__private_attribute_values__': {k: v for k, v in private_attrs if v is not Undefined}, + } + + def __setstate__(self, state: 'DictAny') -> None: + object_setattr(self, '__dict__', state['__dict__']) + object_setattr(self, '__fields_set__', state['__fields_set__']) + for name, value in state.get('__private_attribute_values__', {}).items(): + object_setattr(self, name, value) + + def _init_private_attributes(self) -> None: + for name, private_attr in self.__private_attributes__.items(): + default = private_attr.get_default() + if default is not Undefined: + object_setattr(self, name, default) + + def dict( + self, + *, + include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, + exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, + by_alias: bool = False, + skip_defaults: Optional[bool] = None, + exclude_unset: bool = False, + exclude_defaults: bool = False, + exclude_none: bool = False, + ) -> 'DictStrAny': + """ + Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. + + """ + if skip_defaults is not None: + warnings.warn( + f'{self.__class__.__name__}.dict(): "skip_defaults" is deprecated and replaced by "exclude_unset"', + DeprecationWarning, + ) + exclude_unset = skip_defaults + + return dict( + self._iter( + to_dict=True, + by_alias=by_alias, + include=include, + exclude=exclude, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + exclude_none=exclude_none, + ) + ) + + def json( + self, + *, + include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, + exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, + by_alias: bool = False, + skip_defaults: Optional[bool] = None, + exclude_unset: bool = False, + exclude_defaults: bool = False, + exclude_none: bool = False, + encoder: Optional[Callable[[Any], Any]] = None, + models_as_dict: bool = True, + **dumps_kwargs: Any, + ) -> str: + """ + Generate a JSON representation of the model, `include` and `exclude` arguments as per `dict()`. + + `encoder` is an optional function to supply as `default` to json.dumps(), other arguments as per `json.dumps()`. + """ + if skip_defaults is not None: + warnings.warn( + f'{self.__class__.__name__}.json(): "skip_defaults" is deprecated and replaced by "exclude_unset"', + DeprecationWarning, + ) + exclude_unset = skip_defaults + encoder = cast(Callable[[Any], Any], encoder or self.__json_encoder__) + + # We don't directly call `self.dict()`, which does exactly this with `to_dict=True` + # because we want to be able to keep raw `BaseModel` instances and not as `dict`. + # This allows users to write custom JSON encoders for given `BaseModel` classes. + data = dict( + self._iter( + to_dict=models_as_dict, + by_alias=by_alias, + include=include, + exclude=exclude, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + exclude_none=exclude_none, + ) + ) + if self.__custom_root_type__: + data = data[ROOT_KEY] + return self.__config__.json_dumps(data, default=encoder, **dumps_kwargs) + + @classmethod + def _enforce_dict_if_root(cls, obj: Any) -> Any: + if cls.__custom_root_type__ and ( + not (isinstance(obj, dict) and obj.keys() == {ROOT_KEY}) + and not (isinstance(obj, BaseModel) and obj.__fields__.keys() == {ROOT_KEY}) + or cls.__fields__[ROOT_KEY].shape in MAPPING_LIKE_SHAPES + ): + return {ROOT_KEY: obj} + else: + return obj + + @classmethod + def parse_obj(cls: Type['Model'], obj: Any) -> 'Model': + obj = cls._enforce_dict_if_root(obj) + if not isinstance(obj, dict): + try: + obj = dict(obj) + except (TypeError, ValueError) as e: + exc = TypeError(f'{cls.__name__} expected dict not {obj.__class__.__name__}') + raise ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], cls) from e + return cls(**obj) + + @classmethod + def parse_raw( + cls: Type['Model'], + b: StrBytes, + *, + content_type: str = None, + encoding: str = 'utf8', + proto: Protocol = None, + allow_pickle: bool = False, + ) -> 'Model': + try: + obj = load_str_bytes( + b, + proto=proto, + content_type=content_type, + encoding=encoding, + allow_pickle=allow_pickle, + json_loads=cls.__config__.json_loads, + ) + except (ValueError, TypeError, UnicodeDecodeError) as e: + raise ValidationError([ErrorWrapper(e, loc=ROOT_KEY)], cls) + return cls.parse_obj(obj) + + @classmethod + def parse_file( + cls: Type['Model'], + path: Union[str, Path], + *, + content_type: str = None, + encoding: str = 'utf8', + proto: Protocol = None, + allow_pickle: bool = False, + ) -> 'Model': + obj = load_file( + path, + proto=proto, + content_type=content_type, + encoding=encoding, + allow_pickle=allow_pickle, + json_loads=cls.__config__.json_loads, + ) + return cls.parse_obj(obj) + + @classmethod + def from_orm(cls: Type['Model'], obj: Any) -> 'Model': + if not cls.__config__.orm_mode: + raise ConfigError('You must have the config attribute orm_mode=True to use from_orm') + obj = {ROOT_KEY: obj} if cls.__custom_root_type__ else cls._decompose_class(obj) + m = cls.__new__(cls) + values, fields_set, validation_error = validate_model(cls, obj) + if validation_error: + raise validation_error + object_setattr(m, '__dict__', values) + object_setattr(m, '__fields_set__', fields_set) + m._init_private_attributes() + return m + + @classmethod + def construct(cls: Type['Model'], _fields_set: Optional['SetStr'] = None, **values: Any) -> 'Model': + """ + Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. + Default values are respected, but no other validation is performed. + Behaves as if `Config.extra = 'allow'` was set since it adds all passed values + """ + m = cls.__new__(cls) + fields_values: Dict[str, Any] = {} + for name, field in cls.__fields__.items(): + if field.alt_alias and field.alias in values: + fields_values[name] = values[field.alias] + elif name in values: + fields_values[name] = values[name] + elif not field.required: + fields_values[name] = field.get_default() + fields_values.update(values) + object_setattr(m, '__dict__', fields_values) + if _fields_set is None: + _fields_set = set(values.keys()) + object_setattr(m, '__fields_set__', _fields_set) + m._init_private_attributes() + return m + + def _copy_and_set_values(self: 'Model', values: 'DictStrAny', fields_set: 'SetStr', *, deep: bool) -> 'Model': + if deep: + # chances of having empty dict here are quite low for using smart_deepcopy + values = deepcopy(values) + + cls = self.__class__ + m = cls.__new__(cls) + object_setattr(m, '__dict__', values) + object_setattr(m, '__fields_set__', fields_set) + for name in self.__private_attributes__: + value = getattr(self, name, Undefined) + if value is not Undefined: + if deep: + value = deepcopy(value) + object_setattr(m, name, value) + + return m + + def copy( + self: 'Model', + *, + include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, + exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, + update: Optional['DictStrAny'] = None, + deep: bool = False, + ) -> 'Model': + """ + Duplicate a model, optionally choose which fields to include, exclude and change. + + :param include: fields to include in new model + :param exclude: fields to exclude from new model, as with values this takes precedence over include + :param update: values to change/add in the new model. Note: the data is not validated before creating + the new model: you should trust this data + :param deep: set to `True` to make a deep copy of the model + :return: new model instance + """ + + values = dict( + self._iter(to_dict=False, by_alias=False, include=include, exclude=exclude, exclude_unset=False), + **(update or {}), + ) + + # new `__fields_set__` can have unset optional fields with a set value in `update` kwarg + if update: + fields_set = self.__fields_set__ | update.keys() + else: + fields_set = set(self.__fields_set__) + + return self._copy_and_set_values(values, fields_set, deep=deep) + + @classmethod + def schema(cls, by_alias: bool = True, ref_template: str = default_ref_template) -> 'DictStrAny': + cached = cls.__schema_cache__.get((by_alias, ref_template)) + if cached is not None: + return cached + s = model_schema(cls, by_alias=by_alias, ref_template=ref_template) + cls.__schema_cache__[(by_alias, ref_template)] = s + return s + + @classmethod + def schema_json( + cls, *, by_alias: bool = True, ref_template: str = default_ref_template, **dumps_kwargs: Any + ) -> str: + from pydantic.v1.json import pydantic_encoder + + return cls.__config__.json_dumps( + cls.schema(by_alias=by_alias, ref_template=ref_template), default=pydantic_encoder, **dumps_kwargs + ) + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield cls.validate + + @classmethod + def validate(cls: Type['Model'], value: Any) -> 'Model': + if isinstance(value, cls): + copy_on_model_validation = cls.__config__.copy_on_model_validation + # whether to deep or shallow copy the model on validation, None means do not copy + deep_copy: Optional[bool] = None + if copy_on_model_validation not in {'deep', 'shallow', 'none'}: + # Warn about deprecated behavior + warnings.warn( + "`copy_on_model_validation` should be a string: 'deep', 'shallow' or 'none'", DeprecationWarning + ) + if copy_on_model_validation: + deep_copy = False + + if copy_on_model_validation == 'shallow': + # shallow copy + deep_copy = False + elif copy_on_model_validation == 'deep': + # deep copy + deep_copy = True + + if deep_copy is None: + return value + else: + return value._copy_and_set_values(value.__dict__, value.__fields_set__, deep=deep_copy) + + value = cls._enforce_dict_if_root(value) + + if isinstance(value, dict): + return cls(**value) + elif cls.__config__.orm_mode: + return cls.from_orm(value) + else: + try: + value_as_dict = dict(value) + except (TypeError, ValueError) as e: + raise DictError() from e + return cls(**value_as_dict) + + @classmethod + def _decompose_class(cls: Type['Model'], obj: Any) -> GetterDict: + if isinstance(obj, GetterDict): + return obj + return cls.__config__.getter_dict(obj) + + @classmethod + @no_type_check + def _get_value( + cls, + v: Any, + to_dict: bool, + by_alias: bool, + include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']], + exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']], + exclude_unset: bool, + exclude_defaults: bool, + exclude_none: bool, + ) -> Any: + if isinstance(v, BaseModel): + if to_dict: + v_dict = v.dict( + by_alias=by_alias, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + include=include, + exclude=exclude, + exclude_none=exclude_none, + ) + if ROOT_KEY in v_dict: + return v_dict[ROOT_KEY] + return v_dict + else: + return v.copy(include=include, exclude=exclude) + + value_exclude = ValueItems(v, exclude) if exclude else None + value_include = ValueItems(v, include) if include else None + + if isinstance(v, dict): + return { + k_: cls._get_value( + v_, + to_dict=to_dict, + by_alias=by_alias, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + include=value_include and value_include.for_element(k_), + exclude=value_exclude and value_exclude.for_element(k_), + exclude_none=exclude_none, + ) + for k_, v_ in v.items() + if (not value_exclude or not value_exclude.is_excluded(k_)) + and (not value_include or value_include.is_included(k_)) + } + + elif sequence_like(v): + seq_args = ( + cls._get_value( + v_, + to_dict=to_dict, + by_alias=by_alias, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + include=value_include and value_include.for_element(i), + exclude=value_exclude and value_exclude.for_element(i), + exclude_none=exclude_none, + ) + for i, v_ in enumerate(v) + if (not value_exclude or not value_exclude.is_excluded(i)) + and (not value_include or value_include.is_included(i)) + ) + + return v.__class__(*seq_args) if is_namedtuple(v.__class__) else v.__class__(seq_args) + + elif isinstance(v, Enum) and getattr(cls.Config, 'use_enum_values', False): + return v.value + + else: + return v + + @classmethod + def __try_update_forward_refs__(cls, **localns: Any) -> None: + """ + Same as update_forward_refs but will not raise exception + when forward references are not defined. + """ + update_model_forward_refs(cls, cls.__fields__.values(), cls.__config__.json_encoders, localns, (NameError,)) + + @classmethod + def update_forward_refs(cls, **localns: Any) -> None: + """ + Try to update ForwardRefs on fields based on this Model, globalns and localns. + """ + update_model_forward_refs(cls, cls.__fields__.values(), cls.__config__.json_encoders, localns) + + def __iter__(self) -> 'TupleGenerator': + """ + so `dict(model)` works + """ + yield from self.__dict__.items() + + def _iter( + self, + to_dict: bool = False, + by_alias: bool = False, + include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, + exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, + exclude_unset: bool = False, + exclude_defaults: bool = False, + exclude_none: bool = False, + ) -> 'TupleGenerator': + # Merge field set excludes with explicit exclude parameter with explicit overriding field set options. + # The extra "is not None" guards are not logically necessary but optimizes performance for the simple case. + if exclude is not None or self.__exclude_fields__ is not None: + exclude = ValueItems.merge(self.__exclude_fields__, exclude) + + if include is not None or self.__include_fields__ is not None: + include = ValueItems.merge(self.__include_fields__, include, intersect=True) + + allowed_keys = self._calculate_keys( + include=include, exclude=exclude, exclude_unset=exclude_unset # type: ignore + ) + if allowed_keys is None and not (to_dict or by_alias or exclude_unset or exclude_defaults or exclude_none): + # huge boost for plain _iter() + yield from self.__dict__.items() + return + + value_exclude = ValueItems(self, exclude) if exclude is not None else None + value_include = ValueItems(self, include) if include is not None else None + + for field_key, v in self.__dict__.items(): + if (allowed_keys is not None and field_key not in allowed_keys) or (exclude_none and v is None): + continue + + if exclude_defaults: + model_field = self.__fields__.get(field_key) + if not getattr(model_field, 'required', True) and getattr(model_field, 'default', _missing) == v: + continue + + if by_alias and field_key in self.__fields__: + dict_key = self.__fields__[field_key].alias + else: + dict_key = field_key + + if to_dict or value_include or value_exclude: + v = self._get_value( + v, + to_dict=to_dict, + by_alias=by_alias, + include=value_include and value_include.for_element(field_key), + exclude=value_exclude and value_exclude.for_element(field_key), + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + exclude_none=exclude_none, + ) + yield dict_key, v + + def _calculate_keys( + self, + include: Optional['MappingIntStrAny'], + exclude: Optional['MappingIntStrAny'], + exclude_unset: bool, + update: Optional['DictStrAny'] = None, + ) -> Optional[AbstractSet[str]]: + if include is None and exclude is None and exclude_unset is False: + return None + + keys: AbstractSet[str] + if exclude_unset: + keys = self.__fields_set__.copy() + else: + keys = self.__dict__.keys() + + if include is not None: + keys &= include.keys() + + if update: + keys -= update.keys() + + if exclude: + keys -= {k for k, v in exclude.items() if ValueItems.is_true(v)} + + return keys + + def __eq__(self, other: Any) -> bool: + if isinstance(other, BaseModel): + return self.dict() == other.dict() + else: + return self.dict() == other + + def __repr_args__(self) -> 'ReprArgs': + return [ + (k, v) + for k, v in self.__dict__.items() + if k not in DUNDER_ATTRIBUTES and (k not in self.__fields__ or self.__fields__[k].field_info.repr) + ] + + +_is_base_model_class_defined = True + + +@overload +def create_model( + __model_name: str, + *, + __config__: Optional[Type[BaseConfig]] = None, + __base__: None = None, + __module__: str = __name__, + __validators__: Dict[str, 'AnyClassMethod'] = None, + __cls_kwargs__: Dict[str, Any] = None, + **field_definitions: Any, +) -> Type['BaseModel']: + ... + + +@overload +def create_model( + __model_name: str, + *, + __config__: Optional[Type[BaseConfig]] = None, + __base__: Union[Type['Model'], Tuple[Type['Model'], ...]], + __module__: str = __name__, + __validators__: Dict[str, 'AnyClassMethod'] = None, + __cls_kwargs__: Dict[str, Any] = None, + **field_definitions: Any, +) -> Type['Model']: + ... + + +def create_model( + __model_name: str, + *, + __config__: Optional[Type[BaseConfig]] = None, + __base__: Union[None, Type['Model'], Tuple[Type['Model'], ...]] = None, + __module__: str = __name__, + __validators__: Dict[str, 'AnyClassMethod'] = None, + __cls_kwargs__: Dict[str, Any] = None, + __slots__: Optional[Tuple[str, ...]] = None, + **field_definitions: Any, +) -> Type['Model']: + """ + Dynamically create a model. + :param __model_name: name of the created model + :param __config__: config class to use for the new model + :param __base__: base class for the new model to inherit from + :param __module__: module of the created model + :param __validators__: a dict of method names and @validator class methods + :param __cls_kwargs__: a dict for class creation + :param __slots__: Deprecated, `__slots__` should not be passed to `create_model` + :param field_definitions: fields of the model (or extra fields if a base is supplied) + in the format `<name>=(<type>, <default default>)` or `<name>=<default value>, e.g. + `foobar=(str, ...)` or `foobar=123`, or, for complex use-cases, in the format + `<name>=<Field>` or `<name>=(<type>, <FieldInfo>)`, e.g. + `foo=Field(datetime, default_factory=datetime.utcnow, alias='bar')` or + `foo=(str, FieldInfo(title='Foo'))` + """ + if __slots__ is not None: + # __slots__ will be ignored from here on + warnings.warn('__slots__ should not be passed to create_model', RuntimeWarning) + + if __base__ is not None: + if __config__ is not None: + raise ConfigError('to avoid confusion __config__ and __base__ cannot be used together') + if not isinstance(__base__, tuple): + __base__ = (__base__,) + else: + __base__ = (cast(Type['Model'], BaseModel),) + + __cls_kwargs__ = __cls_kwargs__ or {} + + fields = {} + annotations = {} + + for f_name, f_def in field_definitions.items(): + if not is_valid_field(f_name): + warnings.warn(f'fields may not start with an underscore, ignoring "{f_name}"', RuntimeWarning) + if isinstance(f_def, tuple): + try: + f_annotation, f_value = f_def + except ValueError as e: + raise ConfigError( + 'field definitions should either be a tuple of (<type>, <default>) or just a ' + 'default value, unfortunately this means tuples as ' + 'default values are not allowed' + ) from e + else: + f_annotation, f_value = None, f_def + + if f_annotation: + annotations[f_name] = f_annotation + fields[f_name] = f_value + + namespace: 'DictStrAny' = {'__annotations__': annotations, '__module__': __module__} + if __validators__: + namespace.update(__validators__) + namespace.update(fields) + if __config__: + namespace['Config'] = inherit_config(__config__, BaseConfig) + resolved_bases = resolve_bases(__base__) + meta, ns, kwds = prepare_class(__model_name, resolved_bases, kwds=__cls_kwargs__) + if resolved_bases is not __base__: + ns['__orig_bases__'] = __base__ + namespace.update(ns) + return meta(__model_name, resolved_bases, namespace, **kwds) + + +_missing = object() + + +def validate_model( # noqa: C901 (ignore complexity) + model: Type[BaseModel], input_data: 'DictStrAny', cls: 'ModelOrDc' = None +) -> Tuple['DictStrAny', 'SetStr', Optional[ValidationError]]: + """ + validate data against a model. + """ + values = {} + errors = [] + # input_data names, possibly alias + names_used = set() + # field names, never aliases + fields_set = set() + config = model.__config__ + check_extra = config.extra is not Extra.ignore + cls_ = cls or model + + for validator in model.__pre_root_validators__: + try: + input_data = validator(cls_, input_data) + except (ValueError, TypeError, AssertionError) as exc: + return {}, set(), ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], cls_) + + for name, field in model.__fields__.items(): + value = input_data.get(field.alias, _missing) + using_name = False + if value is _missing and config.allow_population_by_field_name and field.alt_alias: + value = input_data.get(field.name, _missing) + using_name = True + + if value is _missing: + if field.required: + errors.append(ErrorWrapper(MissingError(), loc=field.alias)) + continue + + value = field.get_default() + + if not config.validate_all and not field.validate_always: + values[name] = value + continue + else: + fields_set.add(name) + if check_extra: + names_used.add(field.name if using_name else field.alias) + + v_, errors_ = field.validate(value, values, loc=field.alias, cls=cls_) + if isinstance(errors_, ErrorWrapper): + errors.append(errors_) + elif isinstance(errors_, list): + errors.extend(errors_) + else: + values[name] = v_ + + if check_extra: + if isinstance(input_data, GetterDict): + extra = input_data.extra_keys() - names_used + else: + extra = input_data.keys() - names_used + if extra: + fields_set |= extra + if config.extra is Extra.allow: + for f in extra: + values[f] = input_data[f] + else: + for f in sorted(extra): + errors.append(ErrorWrapper(ExtraError(), loc=f)) + + for skip_on_failure, validator in model.__post_root_validators__: + if skip_on_failure and errors: + continue + try: + values = validator(cls_, values) + except (ValueError, TypeError, AssertionError) as exc: + errors.append(ErrorWrapper(exc, loc=ROOT_KEY)) + + if errors: + return values, fields_set, ValidationError(errors, cls_) + else: + return values, fields_set, None |