diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/openai/_utils')
9 files changed, 1288 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/openai/_utils/__init__.py b/.venv/lib/python3.12/site-packages/openai/_utils/__init__.py new file mode 100644 index 00000000..bd01c088 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_utils/__init__.py @@ -0,0 +1,60 @@ +from ._logs import SensitiveHeadersFilter as SensitiveHeadersFilter +from ._sync import asyncify as asyncify +from ._proxy import LazyProxy as LazyProxy +from ._utils import ( + flatten as flatten, + is_dict as is_dict, + is_list as is_list, + is_given as is_given, + is_tuple as is_tuple, + json_safe as json_safe, + lru_cache as lru_cache, + is_mapping as is_mapping, + is_tuple_t as is_tuple_t, + parse_date as parse_date, + is_iterable as is_iterable, + is_sequence as is_sequence, + coerce_float as coerce_float, + is_mapping_t as is_mapping_t, + removeprefix as removeprefix, + removesuffix as removesuffix, + extract_files as extract_files, + is_sequence_t as is_sequence_t, + required_args as required_args, + coerce_boolean as coerce_boolean, + coerce_integer as coerce_integer, + file_from_path as file_from_path, + parse_datetime as parse_datetime, + is_azure_client as is_azure_client, + strip_not_given as strip_not_given, + deepcopy_minimal as deepcopy_minimal, + get_async_library as get_async_library, + maybe_coerce_float as maybe_coerce_float, + get_required_header as get_required_header, + maybe_coerce_boolean as maybe_coerce_boolean, + maybe_coerce_integer as maybe_coerce_integer, + is_async_azure_client as is_async_azure_client, +) +from ._typing import ( + is_list_type as is_list_type, + is_union_type as is_union_type, + extract_type_arg as extract_type_arg, + is_iterable_type as is_iterable_type, + is_required_type as is_required_type, + is_annotated_type as is_annotated_type, + is_type_alias_type as is_type_alias_type, + strip_annotated_type as strip_annotated_type, + extract_type_var_from_base as extract_type_var_from_base, +) +from ._streams import consume_sync_iterator as consume_sync_iterator, consume_async_iterator as consume_async_iterator +from ._transform import ( + PropertyInfo as PropertyInfo, + transform as transform, + async_transform as async_transform, + maybe_transform as maybe_transform, + async_maybe_transform as async_maybe_transform, +) +from ._reflection import ( + function_has_argument as function_has_argument, + assert_signatures_in_sync as assert_signatures_in_sync, +) diff --git a/.venv/lib/python3.12/site-packages/openai/_utils/_logs.py b/.venv/lib/python3.12/site-packages/openai/_utils/_logs.py new file mode 100644 index 00000000..37694693 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_utils/_logs.py @@ -0,0 +1,42 @@ +import os +import logging +from typing_extensions import override + +from ._utils import is_dict + +logger: logging.Logger = logging.getLogger("openai") +httpx_logger: logging.Logger = logging.getLogger("httpx") + + +SENSITIVE_HEADERS = {"api-key", "authorization"} + + +def _basic_config() -> None: + # e.g. [2023-10-05 14:12:26 - openai._base_client:818 - DEBUG] HTTP Request: POST http://127.0.0.1:4010/foo/bar "200 OK" + logging.basicConfig( + format="[%(asctime)s - %(name)s:%(lineno)d - %(levelname)s] %(message)s", + datefmt="%Y-%m-%d %H:%M:%S", + ) + + +def setup_logging() -> None: + env = os.environ.get("OPENAI_LOG") + if env == "debug": + _basic_config() + logger.setLevel(logging.DEBUG) + httpx_logger.setLevel(logging.DEBUG) + elif env == "info": + _basic_config() + logger.setLevel(logging.INFO) + httpx_logger.setLevel(logging.INFO) + + +class SensitiveHeadersFilter(logging.Filter): + @override + def filter(self, record: logging.LogRecord) -> bool: + if is_dict(record.args) and "headers" in record.args and is_dict(record.args["headers"]): + headers = record.args["headers"] = {**record.args["headers"]} + for header in headers: + if str(header).lower() in SENSITIVE_HEADERS: + headers[header] = "<redacted>" + return True diff --git a/.venv/lib/python3.12/site-packages/openai/_utils/_proxy.py b/.venv/lib/python3.12/site-packages/openai/_utils/_proxy.py new file mode 100644 index 00000000..ffd883e9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_utils/_proxy.py @@ -0,0 +1,62 @@ +from __future__ import annotations + +from abc import ABC, abstractmethod +from typing import Generic, TypeVar, Iterable, cast +from typing_extensions import override + +T = TypeVar("T") + + +class LazyProxy(Generic[T], ABC): + """Implements data methods to pretend that an instance is another instance. + + This includes forwarding attribute access and other methods. + """ + + # Note: we have to special case proxies that themselves return proxies + # to support using a proxy as a catch-all for any random access, e.g. `proxy.foo.bar.baz` + + def __getattr__(self, attr: str) -> object: + proxied = self.__get_proxied__() + if isinstance(proxied, LazyProxy): + return proxied # pyright: ignore + return getattr(proxied, attr) + + @override + def __repr__(self) -> str: + proxied = self.__get_proxied__() + if isinstance(proxied, LazyProxy): + return proxied.__class__.__name__ + return repr(self.__get_proxied__()) + + @override + def __str__(self) -> str: + proxied = self.__get_proxied__() + if isinstance(proxied, LazyProxy): + return proxied.__class__.__name__ + return str(proxied) + + @override + def __dir__(self) -> Iterable[str]: + proxied = self.__get_proxied__() + if isinstance(proxied, LazyProxy): + return [] + return proxied.__dir__() + + @property # type: ignore + @override + def __class__(self) -> type: # pyright: ignore + proxied = self.__get_proxied__() + if issubclass(type(proxied), LazyProxy): + return type(proxied) + return proxied.__class__ + + def __get_proxied__(self) -> T: + return self.__load__() + + def __as_proxied__(self) -> T: + """Helper method that returns the current proxy, typed as the loaded object""" + return cast(T, self) + + @abstractmethod + def __load__(self) -> T: ... diff --git a/.venv/lib/python3.12/site-packages/openai/_utils/_reflection.py b/.venv/lib/python3.12/site-packages/openai/_utils/_reflection.py new file mode 100644 index 00000000..bdaca29e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_utils/_reflection.py @@ -0,0 +1,45 @@ +from __future__ import annotations + +import inspect +from typing import Any, Callable + + +def function_has_argument(func: Callable[..., Any], arg_name: str) -> bool: + """Returns whether or not the given function has a specific parameter""" + sig = inspect.signature(func) + return arg_name in sig.parameters + + +def assert_signatures_in_sync( + source_func: Callable[..., Any], + check_func: Callable[..., Any], + *, + exclude_params: set[str] = set(), + description: str = "", +) -> None: + """Ensure that the signature of the second function matches the first.""" + + check_sig = inspect.signature(check_func) + source_sig = inspect.signature(source_func) + + errors: list[str] = [] + + for name, source_param in source_sig.parameters.items(): + if name in exclude_params: + continue + + custom_param = check_sig.parameters.get(name) + if not custom_param: + errors.append(f"the `{name}` param is missing") + continue + + if custom_param.annotation != source_param.annotation: + errors.append( + f"types for the `{name}` param are do not match; source={repr(source_param.annotation)} checking={repr(custom_param.annotation)}" + ) + continue + + if errors: + raise AssertionError( + f"{len(errors)} errors encountered when comparing signatures{description}:\n\n" + "\n\n".join(errors) + ) diff --git a/.venv/lib/python3.12/site-packages/openai/_utils/_streams.py b/.venv/lib/python3.12/site-packages/openai/_utils/_streams.py new file mode 100644 index 00000000..f4a0208f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_utils/_streams.py @@ -0,0 +1,12 @@ +from typing import Any +from typing_extensions import Iterator, AsyncIterator + + +def consume_sync_iterator(iterator: Iterator[Any]) -> None: + for _ in iterator: + ... + + +async def consume_async_iterator(iterator: AsyncIterator[Any]) -> None: + async for _ in iterator: + ... diff --git a/.venv/lib/python3.12/site-packages/openai/_utils/_sync.py b/.venv/lib/python3.12/site-packages/openai/_utils/_sync.py new file mode 100644 index 00000000..ad7ec71b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_utils/_sync.py @@ -0,0 +1,86 @@ +from __future__ import annotations + +import sys +import asyncio +import functools +import contextvars +from typing import Any, TypeVar, Callable, Awaitable +from typing_extensions import ParamSpec + +import anyio +import sniffio +import anyio.to_thread + +T_Retval = TypeVar("T_Retval") +T_ParamSpec = ParamSpec("T_ParamSpec") + + +if sys.version_info >= (3, 9): + _asyncio_to_thread = asyncio.to_thread +else: + # backport of https://docs.python.org/3/library/asyncio-task.html#asyncio.to_thread + # for Python 3.8 support + async def _asyncio_to_thread( + func: Callable[T_ParamSpec, T_Retval], /, *args: T_ParamSpec.args, **kwargs: T_ParamSpec.kwargs + ) -> Any: + """Asynchronously run function *func* in a separate thread. + + Any *args and **kwargs supplied for this function are directly passed + to *func*. Also, the current :class:`contextvars.Context` is propagated, + allowing context variables from the main thread to be accessed in the + separate thread. + + Returns a coroutine that can be awaited to get the eventual result of *func*. + """ + loop = asyncio.events.get_running_loop() + ctx = contextvars.copy_context() + func_call = functools.partial(ctx.run, func, *args, **kwargs) + return await loop.run_in_executor(None, func_call) + + +async def to_thread( + func: Callable[T_ParamSpec, T_Retval], /, *args: T_ParamSpec.args, **kwargs: T_ParamSpec.kwargs +) -> T_Retval: + if sniffio.current_async_library() == "asyncio": + return await _asyncio_to_thread(func, *args, **kwargs) + + return await anyio.to_thread.run_sync( + functools.partial(func, *args, **kwargs), + ) + + +# inspired by `asyncer`, https://github.com/tiangolo/asyncer +def asyncify(function: Callable[T_ParamSpec, T_Retval]) -> Callable[T_ParamSpec, Awaitable[T_Retval]]: + """ + Take a blocking function and create an async one that receives the same + positional and keyword arguments. For python version 3.9 and above, it uses + asyncio.to_thread to run the function in a separate thread. For python version + 3.8, it uses locally defined copy of the asyncio.to_thread function which was + introduced in python 3.9. + + Usage: + + ```python + def blocking_func(arg1, arg2, kwarg1=None): + # blocking code + return result + + + result = asyncify(blocking_function)(arg1, arg2, kwarg1=value1) + ``` + + ## Arguments + + `function`: a blocking regular callable (e.g. a function) + + ## Return + + An async function that takes the same positional and keyword arguments as the + original one, that when called runs the same original function in a thread worker + and returns the result. + """ + + async def wrapper(*args: T_ParamSpec.args, **kwargs: T_ParamSpec.kwargs) -> T_Retval: + return await to_thread(function, *args, **kwargs) + + return wrapper diff --git a/.venv/lib/python3.12/site-packages/openai/_utils/_transform.py b/.venv/lib/python3.12/site-packages/openai/_utils/_transform.py new file mode 100644 index 00000000..18afd9d8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_utils/_transform.py @@ -0,0 +1,402 @@ +from __future__ import annotations + +import io +import base64 +import pathlib +from typing import Any, Mapping, TypeVar, cast +from datetime import date, datetime +from typing_extensions import Literal, get_args, override, get_type_hints + +import anyio +import pydantic + +from ._utils import ( + is_list, + is_mapping, + is_iterable, +) +from .._files import is_base64_file_input +from ._typing import ( + is_list_type, + is_union_type, + extract_type_arg, + is_iterable_type, + is_required_type, + is_annotated_type, + strip_annotated_type, +) +from .._compat import get_origin, model_dump, is_typeddict + +_T = TypeVar("_T") + + +# TODO: support for drilling globals() and locals() +# TODO: ensure works correctly with forward references in all cases + + +PropertyFormat = Literal["iso8601", "base64", "custom"] + + +class PropertyInfo: + """Metadata class to be used in Annotated types to provide information about a given type. + + For example: + + class MyParams(TypedDict): + account_holder_name: Annotated[str, PropertyInfo(alias='accountHolderName')] + + This means that {'account_holder_name': 'Robert'} will be transformed to {'accountHolderName': 'Robert'} before being sent to the API. + """ + + alias: str | None + format: PropertyFormat | None + format_template: str | None + discriminator: str | None + + def __init__( + self, + *, + alias: str | None = None, + format: PropertyFormat | None = None, + format_template: str | None = None, + discriminator: str | None = None, + ) -> None: + self.alias = alias + self.format = format + self.format_template = format_template + self.discriminator = discriminator + + @override + def __repr__(self) -> str: + return f"{self.__class__.__name__}(alias='{self.alias}', format={self.format}, format_template='{self.format_template}', discriminator='{self.discriminator}')" + + +def maybe_transform( + data: object, + expected_type: object, +) -> Any | None: + """Wrapper over `transform()` that allows `None` to be passed. + + See `transform()` for more details. + """ + if data is None: + return None + return transform(data, expected_type) + + +# Wrapper over _transform_recursive providing fake types +def transform( + data: _T, + expected_type: object, +) -> _T: + """Transform dictionaries based off of type information from the given type, for example: + + ```py + class Params(TypedDict, total=False): + card_id: Required[Annotated[str, PropertyInfo(alias="cardID")]] + + + transformed = transform({"card_id": "<my card ID>"}, Params) + # {'cardID': '<my card ID>'} + ``` + + Any keys / data that does not have type information given will be included as is. + + It should be noted that the transformations that this function does are not represented in the type system. + """ + transformed = _transform_recursive(data, annotation=cast(type, expected_type)) + return cast(_T, transformed) + + +def _get_annotated_type(type_: type) -> type | None: + """If the given type is an `Annotated` type then it is returned, if not `None` is returned. + + This also unwraps the type when applicable, e.g. `Required[Annotated[T, ...]]` + """ + if is_required_type(type_): + # Unwrap `Required[Annotated[T, ...]]` to `Annotated[T, ...]` + type_ = get_args(type_)[0] + + if is_annotated_type(type_): + return type_ + + return None + + +def _maybe_transform_key(key: str, type_: type) -> str: + """Transform the given `data` based on the annotations provided in `type_`. + + Note: this function only looks at `Annotated` types that contain `PropertInfo` metadata. + """ + annotated_type = _get_annotated_type(type_) + if annotated_type is None: + # no `Annotated` definition for this type, no transformation needed + return key + + # ignore the first argument as it is the actual type + annotations = get_args(annotated_type)[1:] + for annotation in annotations: + if isinstance(annotation, PropertyInfo) and annotation.alias is not None: + return annotation.alias + + return key + + +def _transform_recursive( + data: object, + *, + annotation: type, + inner_type: type | None = None, +) -> object: + """Transform the given data against the expected type. + + Args: + annotation: The direct type annotation given to the particular piece of data. + This may or may not be wrapped in metadata types, e.g. `Required[T]`, `Annotated[T, ...]` etc + + inner_type: If applicable, this is the "inside" type. This is useful in certain cases where the outside type + is a container type such as `List[T]`. In that case `inner_type` should be set to `T` so that each entry in + the list can be transformed using the metadata from the container type. + + Defaults to the same value as the `annotation` argument. + """ + if inner_type is None: + inner_type = annotation + + stripped_type = strip_annotated_type(inner_type) + origin = get_origin(stripped_type) or stripped_type + if is_typeddict(stripped_type) and is_mapping(data): + return _transform_typeddict(data, stripped_type) + + if origin == dict and is_mapping(data): + items_type = get_args(stripped_type)[1] + return {key: _transform_recursive(value, annotation=items_type) for key, value in data.items()} + + if ( + # List[T] + (is_list_type(stripped_type) and is_list(data)) + # Iterable[T] + or (is_iterable_type(stripped_type) and is_iterable(data) and not isinstance(data, str)) + ): + # dicts are technically iterable, but it is an iterable on the keys of the dict and is not usually + # intended as an iterable, so we don't transform it. + if isinstance(data, dict): + return cast(object, data) + + inner_type = extract_type_arg(stripped_type, 0) + return [_transform_recursive(d, annotation=annotation, inner_type=inner_type) for d in data] + + if is_union_type(stripped_type): + # For union types we run the transformation against all subtypes to ensure that everything is transformed. + # + # TODO: there may be edge cases where the same normalized field name will transform to two different names + # in different subtypes. + for subtype in get_args(stripped_type): + data = _transform_recursive(data, annotation=annotation, inner_type=subtype) + return data + + if isinstance(data, pydantic.BaseModel): + return model_dump(data, exclude_unset=True, mode="json") + + annotated_type = _get_annotated_type(annotation) + if annotated_type is None: + return data + + # ignore the first argument as it is the actual type + annotations = get_args(annotated_type)[1:] + for annotation in annotations: + if isinstance(annotation, PropertyInfo) and annotation.format is not None: + return _format_data(data, annotation.format, annotation.format_template) + + return data + + +def _format_data(data: object, format_: PropertyFormat, format_template: str | None) -> object: + if isinstance(data, (date, datetime)): + if format_ == "iso8601": + return data.isoformat() + + if format_ == "custom" and format_template is not None: + return data.strftime(format_template) + + if format_ == "base64" and is_base64_file_input(data): + binary: str | bytes | None = None + + if isinstance(data, pathlib.Path): + binary = data.read_bytes() + elif isinstance(data, io.IOBase): + binary = data.read() + + if isinstance(binary, str): # type: ignore[unreachable] + binary = binary.encode() + + if not isinstance(binary, bytes): + raise RuntimeError(f"Could not read bytes from {data}; Received {type(binary)}") + + return base64.b64encode(binary).decode("ascii") + + return data + + +def _transform_typeddict( + data: Mapping[str, object], + expected_type: type, +) -> Mapping[str, object]: + result: dict[str, object] = {} + annotations = get_type_hints(expected_type, include_extras=True) + for key, value in data.items(): + type_ = annotations.get(key) + if type_ is None: + # we do not have a type annotation for this field, leave it as is + result[key] = value + else: + result[_maybe_transform_key(key, type_)] = _transform_recursive(value, annotation=type_) + return result + + +async def async_maybe_transform( + data: object, + expected_type: object, +) -> Any | None: + """Wrapper over `async_transform()` that allows `None` to be passed. + + See `async_transform()` for more details. + """ + if data is None: + return None + return await async_transform(data, expected_type) + + +async def async_transform( + data: _T, + expected_type: object, +) -> _T: + """Transform dictionaries based off of type information from the given type, for example: + + ```py + class Params(TypedDict, total=False): + card_id: Required[Annotated[str, PropertyInfo(alias="cardID")]] + + + transformed = transform({"card_id": "<my card ID>"}, Params) + # {'cardID': '<my card ID>'} + ``` + + Any keys / data that does not have type information given will be included as is. + + It should be noted that the transformations that this function does are not represented in the type system. + """ + transformed = await _async_transform_recursive(data, annotation=cast(type, expected_type)) + return cast(_T, transformed) + + +async def _async_transform_recursive( + data: object, + *, + annotation: type, + inner_type: type | None = None, +) -> object: + """Transform the given data against the expected type. + + Args: + annotation: The direct type annotation given to the particular piece of data. + This may or may not be wrapped in metadata types, e.g. `Required[T]`, `Annotated[T, ...]` etc + + inner_type: If applicable, this is the "inside" type. This is useful in certain cases where the outside type + is a container type such as `List[T]`. In that case `inner_type` should be set to `T` so that each entry in + the list can be transformed using the metadata from the container type. + + Defaults to the same value as the `annotation` argument. + """ + if inner_type is None: + inner_type = annotation + + stripped_type = strip_annotated_type(inner_type) + origin = get_origin(stripped_type) or stripped_type + if is_typeddict(stripped_type) and is_mapping(data): + return await _async_transform_typeddict(data, stripped_type) + + if origin == dict and is_mapping(data): + items_type = get_args(stripped_type)[1] + return {key: _transform_recursive(value, annotation=items_type) for key, value in data.items()} + + if ( + # List[T] + (is_list_type(stripped_type) and is_list(data)) + # Iterable[T] + or (is_iterable_type(stripped_type) and is_iterable(data) and not isinstance(data, str)) + ): + # dicts are technically iterable, but it is an iterable on the keys of the dict and is not usually + # intended as an iterable, so we don't transform it. + if isinstance(data, dict): + return cast(object, data) + + inner_type = extract_type_arg(stripped_type, 0) + return [await _async_transform_recursive(d, annotation=annotation, inner_type=inner_type) for d in data] + + if is_union_type(stripped_type): + # For union types we run the transformation against all subtypes to ensure that everything is transformed. + # + # TODO: there may be edge cases where the same normalized field name will transform to two different names + # in different subtypes. + for subtype in get_args(stripped_type): + data = await _async_transform_recursive(data, annotation=annotation, inner_type=subtype) + return data + + if isinstance(data, pydantic.BaseModel): + return model_dump(data, exclude_unset=True, mode="json") + + annotated_type = _get_annotated_type(annotation) + if annotated_type is None: + return data + + # ignore the first argument as it is the actual type + annotations = get_args(annotated_type)[1:] + for annotation in annotations: + if isinstance(annotation, PropertyInfo) and annotation.format is not None: + return await _async_format_data(data, annotation.format, annotation.format_template) + + return data + + +async def _async_format_data(data: object, format_: PropertyFormat, format_template: str | None) -> object: + if isinstance(data, (date, datetime)): + if format_ == "iso8601": + return data.isoformat() + + if format_ == "custom" and format_template is not None: + return data.strftime(format_template) + + if format_ == "base64" and is_base64_file_input(data): + binary: str | bytes | None = None + + if isinstance(data, pathlib.Path): + binary = await anyio.Path(data).read_bytes() + elif isinstance(data, io.IOBase): + binary = data.read() + + if isinstance(binary, str): # type: ignore[unreachable] + binary = binary.encode() + + if not isinstance(binary, bytes): + raise RuntimeError(f"Could not read bytes from {data}; Received {type(binary)}") + + return base64.b64encode(binary).decode("ascii") + + return data + + +async def _async_transform_typeddict( + data: Mapping[str, object], + expected_type: type, +) -> Mapping[str, object]: + result: dict[str, object] = {} + annotations = get_type_hints(expected_type, include_extras=True) + for key, value in data.items(): + type_ = annotations.get(key) + if type_ is None: + # we do not have a type annotation for this field, leave it as is + result[key] = value + else: + result[_maybe_transform_key(key, type_)] = await _async_transform_recursive(value, annotation=type_) + return result diff --git a/.venv/lib/python3.12/site-packages/openai/_utils/_typing.py b/.venv/lib/python3.12/site-packages/openai/_utils/_typing.py new file mode 100644 index 00000000..278749b1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_utils/_typing.py @@ -0,0 +1,149 @@ +from __future__ import annotations + +import sys +import typing +import typing_extensions +from typing import Any, TypeVar, Iterable, cast +from collections import abc as _c_abc +from typing_extensions import ( + TypeIs, + Required, + Annotated, + get_args, + get_origin, +) + +from .._types import InheritsGeneric +from .._compat import is_union as _is_union + + +def is_annotated_type(typ: type) -> bool: + return get_origin(typ) == Annotated + + +def is_list_type(typ: type) -> bool: + return (get_origin(typ) or typ) == list + + +def is_iterable_type(typ: type) -> bool: + """If the given type is `typing.Iterable[T]`""" + origin = get_origin(typ) or typ + return origin == Iterable or origin == _c_abc.Iterable + + +def is_union_type(typ: type) -> bool: + return _is_union(get_origin(typ)) + + +def is_required_type(typ: type) -> bool: + return get_origin(typ) == Required + + +def is_typevar(typ: type) -> bool: + # type ignore is required because type checkers + # think this expression will always return False + return type(typ) == TypeVar # type: ignore + + +_TYPE_ALIAS_TYPES: tuple[type[typing_extensions.TypeAliasType], ...] = (typing_extensions.TypeAliasType,) +if sys.version_info >= (3, 12): + _TYPE_ALIAS_TYPES = (*_TYPE_ALIAS_TYPES, typing.TypeAliasType) + + +def is_type_alias_type(tp: Any, /) -> TypeIs[typing_extensions.TypeAliasType]: + """Return whether the provided argument is an instance of `TypeAliasType`. + + ```python + type Int = int + is_type_alias_type(Int) + # > True + Str = TypeAliasType("Str", str) + is_type_alias_type(Str) + # > True + ``` + """ + return isinstance(tp, _TYPE_ALIAS_TYPES) + + +# Extracts T from Annotated[T, ...] or from Required[Annotated[T, ...]] +def strip_annotated_type(typ: type) -> type: + if is_required_type(typ) or is_annotated_type(typ): + return strip_annotated_type(cast(type, get_args(typ)[0])) + + return typ + + +def extract_type_arg(typ: type, index: int) -> type: + args = get_args(typ) + try: + return cast(type, args[index]) + except IndexError as err: + raise RuntimeError(f"Expected type {typ} to have a type argument at index {index} but it did not") from err + + +def extract_type_var_from_base( + typ: type, + *, + generic_bases: tuple[type, ...], + index: int, + failure_message: str | None = None, +) -> type: + """Given a type like `Foo[T]`, returns the generic type variable `T`. + + This also handles the case where a concrete subclass is given, e.g. + ```py + class MyResponse(Foo[bytes]): + ... + + extract_type_var(MyResponse, bases=(Foo,), index=0) -> bytes + ``` + + And where a generic subclass is given: + ```py + _T = TypeVar('_T') + class MyResponse(Foo[_T]): + ... + + extract_type_var(MyResponse[bytes], bases=(Foo,), index=0) -> bytes + ``` + """ + cls = cast(object, get_origin(typ) or typ) + if cls in generic_bases: + # we're given the class directly + return extract_type_arg(typ, index) + + # if a subclass is given + # --- + # this is needed as __orig_bases__ is not present in the typeshed stubs + # because it is intended to be for internal use only, however there does + # not seem to be a way to resolve generic TypeVars for inherited subclasses + # without using it. + if isinstance(cls, InheritsGeneric): + target_base_class: Any | None = None + for base in cls.__orig_bases__: + if base.__origin__ in generic_bases: + target_base_class = base + break + + if target_base_class is None: + raise RuntimeError( + "Could not find the generic base class;\n" + "This should never happen;\n" + f"Does {cls} inherit from one of {generic_bases} ?" + ) + + extracted = extract_type_arg(target_base_class, index) + if is_typevar(extracted): + # If the extracted type argument is itself a type variable + # then that means the subclass itself is generic, so we have + # to resolve the type argument from the class itself, not + # the base class. + # + # Note: if there is more than 1 type argument, the subclass could + # change the ordering of the type arguments, this is not currently + # supported. + return extract_type_arg(typ, index) + + return extracted + + raise RuntimeError(failure_message or f"Could not resolve inner type variable at index {index} for {typ}") diff --git a/.venv/lib/python3.12/site-packages/openai/_utils/_utils.py b/.venv/lib/python3.12/site-packages/openai/_utils/_utils.py new file mode 100644 index 00000000..d6734e6b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/openai/_utils/_utils.py @@ -0,0 +1,430 @@ +from __future__ import annotations + +import os +import re +import inspect +import functools +from typing import ( + TYPE_CHECKING, + Any, + Tuple, + Mapping, + TypeVar, + Callable, + Iterable, + Sequence, + cast, + overload, +) +from pathlib import Path +from datetime import date, datetime +from typing_extensions import TypeGuard + +import sniffio + +from .._types import NotGiven, FileTypes, NotGivenOr, HeadersLike +from .._compat import parse_date as parse_date, parse_datetime as parse_datetime + +_T = TypeVar("_T") +_TupleT = TypeVar("_TupleT", bound=Tuple[object, ...]) +_MappingT = TypeVar("_MappingT", bound=Mapping[str, object]) +_SequenceT = TypeVar("_SequenceT", bound=Sequence[object]) +CallableT = TypeVar("CallableT", bound=Callable[..., Any]) + +if TYPE_CHECKING: + from ..lib.azure import AzureOpenAI, AsyncAzureOpenAI + + +def flatten(t: Iterable[Iterable[_T]]) -> list[_T]: + return [item for sublist in t for item in sublist] + + +def extract_files( + # TODO: this needs to take Dict but variance issues..... + # create protocol type ? + query: Mapping[str, object], + *, + paths: Sequence[Sequence[str]], +) -> list[tuple[str, FileTypes]]: + """Recursively extract files from the given dictionary based on specified paths. + + A path may look like this ['foo', 'files', '<array>', 'data']. + + Note: this mutates the given dictionary. + """ + files: list[tuple[str, FileTypes]] = [] + for path in paths: + files.extend(_extract_items(query, path, index=0, flattened_key=None)) + return files + + +def _extract_items( + obj: object, + path: Sequence[str], + *, + index: int, + flattened_key: str | None, +) -> list[tuple[str, FileTypes]]: + try: + key = path[index] + except IndexError: + if isinstance(obj, NotGiven): + # no value was provided - we can safely ignore + return [] + + # cyclical import + from .._files import assert_is_file_content + + # We have exhausted the path, return the entry we found. + assert_is_file_content(obj, key=flattened_key) + assert flattened_key is not None + return [(flattened_key, cast(FileTypes, obj))] + + index += 1 + if is_dict(obj): + try: + # We are at the last entry in the path so we must remove the field + if (len(path)) == index: + item = obj.pop(key) + else: + item = obj[key] + except KeyError: + # Key was not present in the dictionary, this is not indicative of an error + # as the given path may not point to a required field. We also do not want + # to enforce required fields as the API may differ from the spec in some cases. + return [] + if flattened_key is None: + flattened_key = key + else: + flattened_key += f"[{key}]" + return _extract_items( + item, + path, + index=index, + flattened_key=flattened_key, + ) + elif is_list(obj): + if key != "<array>": + return [] + + return flatten( + [ + _extract_items( + item, + path, + index=index, + flattened_key=flattened_key + "[]" if flattened_key is not None else "[]", + ) + for item in obj + ] + ) + + # Something unexpected was passed, just ignore it. + return [] + + +def is_given(obj: NotGivenOr[_T]) -> TypeGuard[_T]: + return not isinstance(obj, NotGiven) + + +# Type safe methods for narrowing types with TypeVars. +# The default narrowing for isinstance(obj, dict) is dict[unknown, unknown], +# however this cause Pyright to rightfully report errors. As we know we don't +# care about the contained types we can safely use `object` in it's place. +# +# There are two separate functions defined, `is_*` and `is_*_t` for different use cases. +# `is_*` is for when you're dealing with an unknown input +# `is_*_t` is for when you're narrowing a known union type to a specific subset + + +def is_tuple(obj: object) -> TypeGuard[tuple[object, ...]]: + return isinstance(obj, tuple) + + +def is_tuple_t(obj: _TupleT | object) -> TypeGuard[_TupleT]: + return isinstance(obj, tuple) + + +def is_sequence(obj: object) -> TypeGuard[Sequence[object]]: + return isinstance(obj, Sequence) + + +def is_sequence_t(obj: _SequenceT | object) -> TypeGuard[_SequenceT]: + return isinstance(obj, Sequence) + + +def is_mapping(obj: object) -> TypeGuard[Mapping[str, object]]: + return isinstance(obj, Mapping) + + +def is_mapping_t(obj: _MappingT | object) -> TypeGuard[_MappingT]: + return isinstance(obj, Mapping) + + +def is_dict(obj: object) -> TypeGuard[dict[object, object]]: + return isinstance(obj, dict) + + +def is_list(obj: object) -> TypeGuard[list[object]]: + return isinstance(obj, list) + + +def is_iterable(obj: object) -> TypeGuard[Iterable[object]]: + return isinstance(obj, Iterable) + + +def deepcopy_minimal(item: _T) -> _T: + """Minimal reimplementation of copy.deepcopy() that will only copy certain object types: + + - mappings, e.g. `dict` + - list + + This is done for performance reasons. + """ + if is_mapping(item): + return cast(_T, {k: deepcopy_minimal(v) for k, v in item.items()}) + if is_list(item): + return cast(_T, [deepcopy_minimal(entry) for entry in item]) + return item + + +# copied from https://github.com/Rapptz/RoboDanny +def human_join(seq: Sequence[str], *, delim: str = ", ", final: str = "or") -> str: + size = len(seq) + if size == 0: + return "" + + if size == 1: + return seq[0] + + if size == 2: + return f"{seq[0]} {final} {seq[1]}" + + return delim.join(seq[:-1]) + f" {final} {seq[-1]}" + + +def quote(string: str) -> str: + """Add single quotation marks around the given string. Does *not* do any escaping.""" + return f"'{string}'" + + +def required_args(*variants: Sequence[str]) -> Callable[[CallableT], CallableT]: + """Decorator to enforce a given set of arguments or variants of arguments are passed to the decorated function. + + Useful for enforcing runtime validation of overloaded functions. + + Example usage: + ```py + @overload + def foo(*, a: str) -> str: ... + + + @overload + def foo(*, b: bool) -> str: ... + + + # This enforces the same constraints that a static type checker would + # i.e. that either a or b must be passed to the function + @required_args(["a"], ["b"]) + def foo(*, a: str | None = None, b: bool | None = None) -> str: ... + ``` + """ + + def inner(func: CallableT) -> CallableT: + params = inspect.signature(func).parameters + positional = [ + name + for name, param in params.items() + if param.kind + in { + param.POSITIONAL_ONLY, + param.POSITIONAL_OR_KEYWORD, + } + ] + + @functools.wraps(func) + def wrapper(*args: object, **kwargs: object) -> object: + given_params: set[str] = set() + for i, _ in enumerate(args): + try: + given_params.add(positional[i]) + except IndexError: + raise TypeError( + f"{func.__name__}() takes {len(positional)} argument(s) but {len(args)} were given" + ) from None + + for key in kwargs.keys(): + given_params.add(key) + + for variant in variants: + matches = all((param in given_params for param in variant)) + if matches: + break + else: # no break + if len(variants) > 1: + variations = human_join( + ["(" + human_join([quote(arg) for arg in variant], final="and") + ")" for variant in variants] + ) + msg = f"Missing required arguments; Expected either {variations} arguments to be given" + else: + assert len(variants) > 0 + + # TODO: this error message is not deterministic + missing = list(set(variants[0]) - given_params) + if len(missing) > 1: + msg = f"Missing required arguments: {human_join([quote(arg) for arg in missing])}" + else: + msg = f"Missing required argument: {quote(missing[0])}" + raise TypeError(msg) + return func(*args, **kwargs) + + return wrapper # type: ignore + + return inner + + +_K = TypeVar("_K") +_V = TypeVar("_V") + + +@overload +def strip_not_given(obj: None) -> None: ... + + +@overload +def strip_not_given(obj: Mapping[_K, _V | NotGiven]) -> dict[_K, _V]: ... + + +@overload +def strip_not_given(obj: object) -> object: ... + + +def strip_not_given(obj: object | None) -> object: + """Remove all top-level keys where their values are instances of `NotGiven`""" + if obj is None: + return None + + if not is_mapping(obj): + return obj + + return {key: value for key, value in obj.items() if not isinstance(value, NotGiven)} + + +def coerce_integer(val: str) -> int: + return int(val, base=10) + + +def coerce_float(val: str) -> float: + return float(val) + + +def coerce_boolean(val: str) -> bool: + return val == "true" or val == "1" or val == "on" + + +def maybe_coerce_integer(val: str | None) -> int | None: + if val is None: + return None + return coerce_integer(val) + + +def maybe_coerce_float(val: str | None) -> float | None: + if val is None: + return None + return coerce_float(val) + + +def maybe_coerce_boolean(val: str | None) -> bool | None: + if val is None: + return None + return coerce_boolean(val) + + +def removeprefix(string: str, prefix: str) -> str: + """Remove a prefix from a string. + + Backport of `str.removeprefix` for Python < 3.9 + """ + if string.startswith(prefix): + return string[len(prefix) :] + return string + + +def removesuffix(string: str, suffix: str) -> str: + """Remove a suffix from a string. + + Backport of `str.removesuffix` for Python < 3.9 + """ + if string.endswith(suffix): + return string[: -len(suffix)] + return string + + +def file_from_path(path: str) -> FileTypes: + contents = Path(path).read_bytes() + file_name = os.path.basename(path) + return (file_name, contents) + + +def get_required_header(headers: HeadersLike, header: str) -> str: + lower_header = header.lower() + if is_mapping_t(headers): + # mypy doesn't understand the type narrowing here + for k, v in headers.items(): # type: ignore + if k.lower() == lower_header and isinstance(v, str): + return v + + # to deal with the case where the header looks like Stainless-Event-Id + intercaps_header = re.sub(r"([^\w])(\w)", lambda pat: pat.group(1) + pat.group(2).upper(), header.capitalize()) + + for normalized_header in [header, lower_header, header.upper(), intercaps_header]: + value = headers.get(normalized_header) + if value: + return value + + raise ValueError(f"Could not find {header} header") + + +def get_async_library() -> str: + try: + return sniffio.current_async_library() + except Exception: + return "false" + + +def lru_cache(*, maxsize: int | None = 128) -> Callable[[CallableT], CallableT]: + """A version of functools.lru_cache that retains the type signature + for the wrapped function arguments. + """ + wrapper = functools.lru_cache( # noqa: TID251 + maxsize=maxsize, + ) + return cast(Any, wrapper) # type: ignore[no-any-return] + + +def json_safe(data: object) -> object: + """Translates a mapping / sequence recursively in the same fashion + as `pydantic` v2's `model_dump(mode="json")`. + """ + if is_mapping(data): + return {json_safe(key): json_safe(value) for key, value in data.items()} + + if is_iterable(data) and not isinstance(data, (str, bytes, bytearray)): + return [json_safe(item) for item in data] + + if isinstance(data, (datetime, date)): + return data.isoformat() + + return data + + +def is_azure_client(client: object) -> TypeGuard[AzureOpenAI]: + from ..lib.azure import AzureOpenAI + + return isinstance(client, AzureOpenAI) + + +def is_async_azure_client(client: object) -> TypeGuard[AsyncAzureOpenAI]: + from ..lib.azure import AsyncAzureOpenAI + + return isinstance(client, AsyncAzureOpenAI) |