diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/testing/_private')
4 files changed, 3159 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/_private/__init__.py b/.venv/lib/python3.12/site-packages/numpy/testing/_private/__init__.py new file mode 100644 index 00000000..e69de29b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/testing/_private/__init__.py diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/_private/extbuild.py b/.venv/lib/python3.12/site-packages/numpy/testing/_private/extbuild.py new file mode 100644 index 00000000..541f5511 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/testing/_private/extbuild.py @@ -0,0 +1,248 @@ +""" +Build a c-extension module on-the-fly in tests. +See build_and_import_extensions for usage hints + +""" + +import os +import pathlib +import subprocess +import sys +import sysconfig +import textwrap + +__all__ = ['build_and_import_extension', 'compile_extension_module'] + + +def build_and_import_extension( + modname, functions, *, prologue="", build_dir=None, + include_dirs=[], more_init=""): + """ + Build and imports a c-extension module `modname` from a list of function + fragments `functions`. + + + Parameters + ---------- + functions : list of fragments + Each fragment is a sequence of func_name, calling convention, snippet. + prologue : string + Code to precede the rest, usually extra ``#include`` or ``#define`` + macros. + build_dir : pathlib.Path + Where to build the module, usually a temporary directory + include_dirs : list + Extra directories to find include files when compiling + more_init : string + Code to appear in the module PyMODINIT_FUNC + + Returns + ------- + out: module + The module will have been loaded and is ready for use + + Examples + -------- + >>> functions = [("test_bytes", "METH_O", \"\"\" + if ( !PyBytesCheck(args)) { + Py_RETURN_FALSE; + } + Py_RETURN_TRUE; + \"\"\")] + >>> mod = build_and_import_extension("testme", functions) + >>> assert not mod.test_bytes(u'abc') + >>> assert mod.test_bytes(b'abc') + """ + body = prologue + _make_methods(functions, modname) + init = """PyObject *mod = PyModule_Create(&moduledef); + """ + if not build_dir: + build_dir = pathlib.Path('.') + if more_init: + init += """#define INITERROR return NULL + """ + init += more_init + init += "\nreturn mod;" + source_string = _make_source(modname, init, body) + try: + mod_so = compile_extension_module( + modname, build_dir, include_dirs, source_string) + except Exception as e: + # shorten the exception chain + raise RuntimeError(f"could not compile in {build_dir}:") from e + import importlib.util + spec = importlib.util.spec_from_file_location(modname, mod_so) + foo = importlib.util.module_from_spec(spec) + spec.loader.exec_module(foo) + return foo + + +def compile_extension_module( + name, builddir, include_dirs, + source_string, libraries=[], library_dirs=[]): + """ + Build an extension module and return the filename of the resulting + native code file. + + Parameters + ---------- + name : string + name of the module, possibly including dots if it is a module inside a + package. + builddir : pathlib.Path + Where to build the module, usually a temporary directory + include_dirs : list + Extra directories to find include files when compiling + libraries : list + Libraries to link into the extension module + library_dirs: list + Where to find the libraries, ``-L`` passed to the linker + """ + modname = name.split('.')[-1] + dirname = builddir / name + dirname.mkdir(exist_ok=True) + cfile = _convert_str_to_file(source_string, dirname) + include_dirs = include_dirs + [sysconfig.get_config_var('INCLUDEPY')] + + return _c_compile( + cfile, outputfilename=dirname / modname, + include_dirs=include_dirs, libraries=[], library_dirs=[], + ) + + +def _convert_str_to_file(source, dirname): + """Helper function to create a file ``source.c`` in `dirname` that contains + the string in `source`. Returns the file name + """ + filename = dirname / 'source.c' + with filename.open('w') as f: + f.write(str(source)) + return filename + + +def _make_methods(functions, modname): + """ Turns the name, signature, code in functions into complete functions + and lists them in a methods_table. Then turns the methods_table into a + ``PyMethodDef`` structure and returns the resulting code fragment ready + for compilation + """ + methods_table = [] + codes = [] + for funcname, flags, code in functions: + cfuncname = "%s_%s" % (modname, funcname) + if 'METH_KEYWORDS' in flags: + signature = '(PyObject *self, PyObject *args, PyObject *kwargs)' + else: + signature = '(PyObject *self, PyObject *args)' + methods_table.append( + "{\"%s\", (PyCFunction)%s, %s}," % (funcname, cfuncname, flags)) + func_code = """ + static PyObject* {cfuncname}{signature} + {{ + {code} + }} + """.format(cfuncname=cfuncname, signature=signature, code=code) + codes.append(func_code) + + body = "\n".join(codes) + """ + static PyMethodDef methods[] = { + %(methods)s + { NULL } + }; + static struct PyModuleDef moduledef = { + PyModuleDef_HEAD_INIT, + "%(modname)s", /* m_name */ + NULL, /* m_doc */ + -1, /* m_size */ + methods, /* m_methods */ + }; + """ % dict(methods='\n'.join(methods_table), modname=modname) + return body + + +def _make_source(name, init, body): + """ Combines the code fragments into source code ready to be compiled + """ + code = """ + #include <Python.h> + + %(body)s + + PyMODINIT_FUNC + PyInit_%(name)s(void) { + %(init)s + } + """ % dict( + name=name, init=init, body=body, + ) + return code + + +def _c_compile(cfile, outputfilename, include_dirs=[], libraries=[], + library_dirs=[]): + if sys.platform == 'win32': + compile_extra = ["/we4013"] + link_extra = ["/LIBPATH:" + os.path.join(sys.base_prefix, 'libs')] + elif sys.platform.startswith('linux'): + compile_extra = [ + "-O0", "-g", "-Werror=implicit-function-declaration", "-fPIC"] + link_extra = [] + else: + compile_extra = link_extra = [] + pass + if sys.platform == 'win32': + link_extra = link_extra + ['/DEBUG'] # generate .pdb file + if sys.platform == 'darwin': + # support Fink & Darwinports + for s in ('/sw/', '/opt/local/'): + if (s + 'include' not in include_dirs + and os.path.exists(s + 'include')): + include_dirs.append(s + 'include') + if s + 'lib' not in library_dirs and os.path.exists(s + 'lib'): + library_dirs.append(s + 'lib') + + outputfilename = outputfilename.with_suffix(get_so_suffix()) + build( + cfile, outputfilename, + compile_extra, link_extra, + include_dirs, libraries, library_dirs) + return outputfilename + + +def build(cfile, outputfilename, compile_extra, link_extra, + include_dirs, libraries, library_dirs): + "use meson to build" + + build_dir = cfile.parent / "build" + os.makedirs(build_dir, exist_ok=True) + so_name = outputfilename.parts[-1] + with open(cfile.parent / "meson.build", "wt") as fid: + includes = ['-I' + d for d in include_dirs] + link_dirs = ['-L' + d for d in library_dirs] + fid.write(textwrap.dedent(f"""\ + project('foo', 'c') + shared_module('{so_name}', '{cfile.parts[-1]}', + c_args: {includes} + {compile_extra}, + link_args: {link_dirs} + {link_extra}, + link_with: {libraries}, + name_prefix: '', + name_suffix: 'dummy', + ) + """)) + if sys.platform == "win32": + subprocess.check_call(["meson", "setup", + "--buildtype=release", + "--vsenv", ".."], + cwd=build_dir, + ) + else: + subprocess.check_call(["meson", "setup", "--vsenv", ".."], + cwd=build_dir + ) + subprocess.check_call(["meson", "compile"], cwd=build_dir) + os.rename(str(build_dir / so_name) + ".dummy", cfile.parent / so_name) + +def get_so_suffix(): + ret = sysconfig.get_config_var('EXT_SUFFIX') + assert ret + return ret diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/_private/utils.py b/.venv/lib/python3.12/site-packages/numpy/testing/_private/utils.py new file mode 100644 index 00000000..28dd656c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/testing/_private/utils.py @@ -0,0 +1,2509 @@ +""" +Utility function to facilitate testing. + +""" +import os +import sys +import platform +import re +import gc +import operator +import warnings +from functools import partial, wraps +import shutil +import contextlib +from tempfile import mkdtemp, mkstemp +from unittest.case import SkipTest +from warnings import WarningMessage +import pprint +import sysconfig + +import numpy as np +from numpy.core import ( + intp, float32, empty, arange, array_repr, ndarray, isnat, array) +from numpy import isfinite, isnan, isinf +import numpy.linalg._umath_linalg + +from io import StringIO + +__all__ = [ + 'assert_equal', 'assert_almost_equal', 'assert_approx_equal', + 'assert_array_equal', 'assert_array_less', 'assert_string_equal', + 'assert_array_almost_equal', 'assert_raises', 'build_err_msg', + 'decorate_methods', 'jiffies', 'memusage', 'print_assert_equal', + 'rundocs', 'runstring', 'verbose', 'measure', + 'assert_', 'assert_array_almost_equal_nulp', 'assert_raises_regex', + 'assert_array_max_ulp', 'assert_warns', 'assert_no_warnings', + 'assert_allclose', 'IgnoreException', 'clear_and_catch_warnings', + 'SkipTest', 'KnownFailureException', 'temppath', 'tempdir', 'IS_PYPY', + 'HAS_REFCOUNT', "IS_WASM", 'suppress_warnings', 'assert_array_compare', + 'assert_no_gc_cycles', 'break_cycles', 'HAS_LAPACK64', 'IS_PYSTON', + '_OLD_PROMOTION', 'IS_MUSL', '_SUPPORTS_SVE' + ] + + +class KnownFailureException(Exception): + '''Raise this exception to mark a test as a known failing test.''' + pass + + +KnownFailureTest = KnownFailureException # backwards compat +verbose = 0 + +IS_WASM = platform.machine() in ["wasm32", "wasm64"] +IS_PYPY = sys.implementation.name == 'pypy' +IS_PYSTON = hasattr(sys, "pyston_version_info") +HAS_REFCOUNT = getattr(sys, 'getrefcount', None) is not None and not IS_PYSTON +HAS_LAPACK64 = numpy.linalg._umath_linalg._ilp64 + +_OLD_PROMOTION = lambda: np._get_promotion_state() == 'legacy' + +IS_MUSL = False +# alternate way is +# from packaging.tags import sys_tags +# _tags = list(sys_tags()) +# if 'musllinux' in _tags[0].platform: +_v = sysconfig.get_config_var('HOST_GNU_TYPE') or '' +if 'musl' in _v: + IS_MUSL = True + + +def assert_(val, msg=''): + """ + Assert that works in release mode. + Accepts callable msg to allow deferring evaluation until failure. + + The Python built-in ``assert`` does not work when executing code in + optimized mode (the ``-O`` flag) - no byte-code is generated for it. + + For documentation on usage, refer to the Python documentation. + + """ + __tracebackhide__ = True # Hide traceback for py.test + if not val: + try: + smsg = msg() + except TypeError: + smsg = msg + raise AssertionError(smsg) + + +if os.name == 'nt': + # Code "stolen" from enthought/debug/memusage.py + def GetPerformanceAttributes(object, counter, instance=None, + inum=-1, format=None, machine=None): + # NOTE: Many counters require 2 samples to give accurate results, + # including "% Processor Time" (as by definition, at any instant, a + # thread's CPU usage is either 0 or 100). To read counters like this, + # you should copy this function, but keep the counter open, and call + # CollectQueryData() each time you need to know. + # See http://msdn.microsoft.com/library/en-us/dnperfmo/html/perfmonpt2.asp (dead link) + # My older explanation for this was that the "AddCounter" process + # forced the CPU to 100%, but the above makes more sense :) + import win32pdh + if format is None: + format = win32pdh.PDH_FMT_LONG + path = win32pdh.MakeCounterPath( (machine, object, instance, None, + inum, counter)) + hq = win32pdh.OpenQuery() + try: + hc = win32pdh.AddCounter(hq, path) + try: + win32pdh.CollectQueryData(hq) + type, val = win32pdh.GetFormattedCounterValue(hc, format) + return val + finally: + win32pdh.RemoveCounter(hc) + finally: + win32pdh.CloseQuery(hq) + + def memusage(processName="python", instance=0): + # from win32pdhutil, part of the win32all package + import win32pdh + return GetPerformanceAttributes("Process", "Virtual Bytes", + processName, instance, + win32pdh.PDH_FMT_LONG, None) +elif sys.platform[:5] == 'linux': + + def memusage(_proc_pid_stat=f'/proc/{os.getpid()}/stat'): + """ + Return virtual memory size in bytes of the running python. + + """ + try: + with open(_proc_pid_stat) as f: + l = f.readline().split(' ') + return int(l[22]) + except Exception: + return +else: + def memusage(): + """ + Return memory usage of running python. [Not implemented] + + """ + raise NotImplementedError + + +if sys.platform[:5] == 'linux': + def jiffies(_proc_pid_stat=f'/proc/{os.getpid()}/stat', _load_time=[]): + """ + Return number of jiffies elapsed. + + Return number of jiffies (1/100ths of a second) that this + process has been scheduled in user mode. See man 5 proc. + + """ + import time + if not _load_time: + _load_time.append(time.time()) + try: + with open(_proc_pid_stat) as f: + l = f.readline().split(' ') + return int(l[13]) + except Exception: + return int(100*(time.time()-_load_time[0])) +else: + # os.getpid is not in all platforms available. + # Using time is safe but inaccurate, especially when process + # was suspended or sleeping. + def jiffies(_load_time=[]): + """ + Return number of jiffies elapsed. + + Return number of jiffies (1/100ths of a second) that this + process has been scheduled in user mode. See man 5 proc. + + """ + import time + if not _load_time: + _load_time.append(time.time()) + return int(100*(time.time()-_load_time[0])) + + +def build_err_msg(arrays, err_msg, header='Items are not equal:', + verbose=True, names=('ACTUAL', 'DESIRED'), precision=8): + msg = ['\n' + header] + if err_msg: + if err_msg.find('\n') == -1 and len(err_msg) < 79-len(header): + msg = [msg[0] + ' ' + err_msg] + else: + msg.append(err_msg) + if verbose: + for i, a in enumerate(arrays): + + if isinstance(a, ndarray): + # precision argument is only needed if the objects are ndarrays + r_func = partial(array_repr, precision=precision) + else: + r_func = repr + + try: + r = r_func(a) + except Exception as exc: + r = f'[repr failed for <{type(a).__name__}>: {exc}]' + if r.count('\n') > 3: + r = '\n'.join(r.splitlines()[:3]) + r += '...' + msg.append(f' {names[i]}: {r}') + return '\n'.join(msg) + + +def assert_equal(actual, desired, err_msg='', verbose=True): + """ + Raises an AssertionError if two objects are not equal. + + Given two objects (scalars, lists, tuples, dictionaries or numpy arrays), + check that all elements of these objects are equal. An exception is raised + at the first conflicting values. + + When one of `actual` and `desired` is a scalar and the other is array_like, + the function checks that each element of the array_like object is equal to + the scalar. + + This function handles NaN comparisons as if NaN was a "normal" number. + That is, AssertionError is not raised if both objects have NaNs in the same + positions. This is in contrast to the IEEE standard on NaNs, which says + that NaN compared to anything must return False. + + Parameters + ---------- + actual : array_like + The object to check. + desired : array_like + The expected object. + err_msg : str, optional + The error message to be printed in case of failure. + verbose : bool, optional + If True, the conflicting values are appended to the error message. + + Raises + ------ + AssertionError + If actual and desired are not equal. + + Examples + -------- + >>> np.testing.assert_equal([4,5], [4,6]) + Traceback (most recent call last): + ... + AssertionError: + Items are not equal: + item=1 + ACTUAL: 5 + DESIRED: 6 + + The following comparison does not raise an exception. There are NaNs + in the inputs, but they are in the same positions. + + >>> np.testing.assert_equal(np.array([1.0, 2.0, np.nan]), [1, 2, np.nan]) + + """ + __tracebackhide__ = True # Hide traceback for py.test + if isinstance(desired, dict): + if not isinstance(actual, dict): + raise AssertionError(repr(type(actual))) + assert_equal(len(actual), len(desired), err_msg, verbose) + for k, i in desired.items(): + if k not in actual: + raise AssertionError(repr(k)) + assert_equal(actual[k], desired[k], f'key={k!r}\n{err_msg}', + verbose) + return + if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)): + assert_equal(len(actual), len(desired), err_msg, verbose) + for k in range(len(desired)): + assert_equal(actual[k], desired[k], f'item={k!r}\n{err_msg}', + verbose) + return + from numpy.core import ndarray, isscalar, signbit + from numpy.lib import iscomplexobj, real, imag + if isinstance(actual, ndarray) or isinstance(desired, ndarray): + return assert_array_equal(actual, desired, err_msg, verbose) + msg = build_err_msg([actual, desired], err_msg, verbose=verbose) + + # Handle complex numbers: separate into real/imag to handle + # nan/inf/negative zero correctly + # XXX: catch ValueError for subclasses of ndarray where iscomplex fail + try: + usecomplex = iscomplexobj(actual) or iscomplexobj(desired) + except (ValueError, TypeError): + usecomplex = False + + if usecomplex: + if iscomplexobj(actual): + actualr = real(actual) + actuali = imag(actual) + else: + actualr = actual + actuali = 0 + if iscomplexobj(desired): + desiredr = real(desired) + desiredi = imag(desired) + else: + desiredr = desired + desiredi = 0 + try: + assert_equal(actualr, desiredr) + assert_equal(actuali, desiredi) + except AssertionError: + raise AssertionError(msg) + + # isscalar test to check cases such as [np.nan] != np.nan + if isscalar(desired) != isscalar(actual): + raise AssertionError(msg) + + try: + isdesnat = isnat(desired) + isactnat = isnat(actual) + dtypes_match = (np.asarray(desired).dtype.type == + np.asarray(actual).dtype.type) + if isdesnat and isactnat: + # If both are NaT (and have the same dtype -- datetime or + # timedelta) they are considered equal. + if dtypes_match: + return + else: + raise AssertionError(msg) + + except (TypeError, ValueError, NotImplementedError): + pass + + # Inf/nan/negative zero handling + try: + isdesnan = isnan(desired) + isactnan = isnan(actual) + if isdesnan and isactnan: + return # both nan, so equal + + # handle signed zero specially for floats + array_actual = np.asarray(actual) + array_desired = np.asarray(desired) + if (array_actual.dtype.char in 'Mm' or + array_desired.dtype.char in 'Mm'): + # version 1.18 + # until this version, isnan failed for datetime64 and timedelta64. + # Now it succeeds but comparison to scalar with a different type + # emits a DeprecationWarning. + # Avoid that by skipping the next check + raise NotImplementedError('cannot compare to a scalar ' + 'with a different type') + + if desired == 0 and actual == 0: + if not signbit(desired) == signbit(actual): + raise AssertionError(msg) + + except (TypeError, ValueError, NotImplementedError): + pass + + try: + # Explicitly use __eq__ for comparison, gh-2552 + if not (desired == actual): + raise AssertionError(msg) + + except (DeprecationWarning, FutureWarning) as e: + # this handles the case when the two types are not even comparable + if 'elementwise == comparison' in e.args[0]: + raise AssertionError(msg) + else: + raise + + +def print_assert_equal(test_string, actual, desired): + """ + Test if two objects are equal, and print an error message if test fails. + + The test is performed with ``actual == desired``. + + Parameters + ---------- + test_string : str + The message supplied to AssertionError. + actual : object + The object to test for equality against `desired`. + desired : object + The expected result. + + Examples + -------- + >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 1]) + >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 2]) + Traceback (most recent call last): + ... + AssertionError: Test XYZ of func xyz failed + ACTUAL: + [0, 1] + DESIRED: + [0, 2] + + """ + __tracebackhide__ = True # Hide traceback for py.test + import pprint + + if not (actual == desired): + msg = StringIO() + msg.write(test_string) + msg.write(' failed\nACTUAL: \n') + pprint.pprint(actual, msg) + msg.write('DESIRED: \n') + pprint.pprint(desired, msg) + raise AssertionError(msg.getvalue()) + + +@np._no_nep50_warning() +def assert_almost_equal(actual, desired, decimal=7, err_msg='', verbose=True): + """ + Raises an AssertionError if two items are not equal up to desired + precision. + + .. note:: It is recommended to use one of `assert_allclose`, + `assert_array_almost_equal_nulp` or `assert_array_max_ulp` + instead of this function for more consistent floating point + comparisons. + + The test verifies that the elements of `actual` and `desired` satisfy. + + ``abs(desired-actual) < float64(1.5 * 10**(-decimal))`` + + That is a looser test than originally documented, but agrees with what the + actual implementation in `assert_array_almost_equal` did up to rounding + vagaries. An exception is raised at conflicting values. For ndarrays this + delegates to assert_array_almost_equal + + Parameters + ---------- + actual : array_like + The object to check. + desired : array_like + The expected object. + decimal : int, optional + Desired precision, default is 7. + err_msg : str, optional + The error message to be printed in case of failure. + verbose : bool, optional + If True, the conflicting values are appended to the error message. + + Raises + ------ + AssertionError + If actual and desired are not equal up to specified precision. + + See Also + -------- + assert_allclose: Compare two array_like objects for equality with desired + relative and/or absolute precision. + assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal + + Examples + -------- + >>> from numpy.testing import assert_almost_equal + >>> assert_almost_equal(2.3333333333333, 2.33333334) + >>> assert_almost_equal(2.3333333333333, 2.33333334, decimal=10) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not almost equal to 10 decimals + ACTUAL: 2.3333333333333 + DESIRED: 2.33333334 + + >>> assert_almost_equal(np.array([1.0,2.3333333333333]), + ... np.array([1.0,2.33333334]), decimal=9) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not almost equal to 9 decimals + <BLANKLINE> + Mismatched elements: 1 / 2 (50%) + Max absolute difference: 6.66669964e-09 + Max relative difference: 2.85715698e-09 + x: array([1. , 2.333333333]) + y: array([1. , 2.33333334]) + + """ + __tracebackhide__ = True # Hide traceback for py.test + from numpy.core import ndarray + from numpy.lib import iscomplexobj, real, imag + + # Handle complex numbers: separate into real/imag to handle + # nan/inf/negative zero correctly + # XXX: catch ValueError for subclasses of ndarray where iscomplex fail + try: + usecomplex = iscomplexobj(actual) or iscomplexobj(desired) + except ValueError: + usecomplex = False + + def _build_err_msg(): + header = ('Arrays are not almost equal to %d decimals' % decimal) + return build_err_msg([actual, desired], err_msg, verbose=verbose, + header=header) + + if usecomplex: + if iscomplexobj(actual): + actualr = real(actual) + actuali = imag(actual) + else: + actualr = actual + actuali = 0 + if iscomplexobj(desired): + desiredr = real(desired) + desiredi = imag(desired) + else: + desiredr = desired + desiredi = 0 + try: + assert_almost_equal(actualr, desiredr, decimal=decimal) + assert_almost_equal(actuali, desiredi, decimal=decimal) + except AssertionError: + raise AssertionError(_build_err_msg()) + + if isinstance(actual, (ndarray, tuple, list)) \ + or isinstance(desired, (ndarray, tuple, list)): + return assert_array_almost_equal(actual, desired, decimal, err_msg) + try: + # If one of desired/actual is not finite, handle it specially here: + # check that both are nan if any is a nan, and test for equality + # otherwise + if not (isfinite(desired) and isfinite(actual)): + if isnan(desired) or isnan(actual): + if not (isnan(desired) and isnan(actual)): + raise AssertionError(_build_err_msg()) + else: + if not desired == actual: + raise AssertionError(_build_err_msg()) + return + except (NotImplementedError, TypeError): + pass + if abs(desired - actual) >= np.float64(1.5 * 10.0**(-decimal)): + raise AssertionError(_build_err_msg()) + + +@np._no_nep50_warning() +def assert_approx_equal(actual, desired, significant=7, err_msg='', + verbose=True): + """ + Raises an AssertionError if two items are not equal up to significant + digits. + + .. note:: It is recommended to use one of `assert_allclose`, + `assert_array_almost_equal_nulp` or `assert_array_max_ulp` + instead of this function for more consistent floating point + comparisons. + + Given two numbers, check that they are approximately equal. + Approximately equal is defined as the number of significant digits + that agree. + + Parameters + ---------- + actual : scalar + The object to check. + desired : scalar + The expected object. + significant : int, optional + Desired precision, default is 7. + err_msg : str, optional + The error message to be printed in case of failure. + verbose : bool, optional + If True, the conflicting values are appended to the error message. + + Raises + ------ + AssertionError + If actual and desired are not equal up to specified precision. + + See Also + -------- + assert_allclose: Compare two array_like objects for equality with desired + relative and/or absolute precision. + assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal + + Examples + -------- + >>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20) + >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20, + ... significant=8) + >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20, + ... significant=8) + Traceback (most recent call last): + ... + AssertionError: + Items are not equal to 8 significant digits: + ACTUAL: 1.234567e-21 + DESIRED: 1.2345672e-21 + + the evaluated condition that raises the exception is + + >>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1) + True + + """ + __tracebackhide__ = True # Hide traceback for py.test + import numpy as np + + (actual, desired) = map(float, (actual, desired)) + if desired == actual: + return + # Normalized the numbers to be in range (-10.0,10.0) + # scale = float(pow(10,math.floor(math.log10(0.5*(abs(desired)+abs(actual)))))) + with np.errstate(invalid='ignore'): + scale = 0.5*(np.abs(desired) + np.abs(actual)) + scale = np.power(10, np.floor(np.log10(scale))) + try: + sc_desired = desired/scale + except ZeroDivisionError: + sc_desired = 0.0 + try: + sc_actual = actual/scale + except ZeroDivisionError: + sc_actual = 0.0 + msg = build_err_msg( + [actual, desired], err_msg, + header='Items are not equal to %d significant digits:' % significant, + verbose=verbose) + try: + # If one of desired/actual is not finite, handle it specially here: + # check that both are nan if any is a nan, and test for equality + # otherwise + if not (isfinite(desired) and isfinite(actual)): + if isnan(desired) or isnan(actual): + if not (isnan(desired) and isnan(actual)): + raise AssertionError(msg) + else: + if not desired == actual: + raise AssertionError(msg) + return + except (TypeError, NotImplementedError): + pass + if np.abs(sc_desired - sc_actual) >= np.power(10., -(significant-1)): + raise AssertionError(msg) + + +@np._no_nep50_warning() +def assert_array_compare(comparison, x, y, err_msg='', verbose=True, header='', + precision=6, equal_nan=True, equal_inf=True, + *, strict=False): + __tracebackhide__ = True # Hide traceback for py.test + from numpy.core import (array2string, isnan, inf, bool_, errstate, + all, max, object_) + + x = np.asanyarray(x) + y = np.asanyarray(y) + + # original array for output formatting + ox, oy = x, y + + def isnumber(x): + return x.dtype.char in '?bhilqpBHILQPefdgFDG' + + def istime(x): + return x.dtype.char in "Mm" + + def func_assert_same_pos(x, y, func=isnan, hasval='nan'): + """Handling nan/inf. + + Combine results of running func on x and y, checking that they are True + at the same locations. + + """ + __tracebackhide__ = True # Hide traceback for py.test + + x_id = func(x) + y_id = func(y) + # We include work-arounds here to handle three types of slightly + # pathological ndarray subclasses: + # (1) all() on `masked` array scalars can return masked arrays, so we + # use != True + # (2) __eq__ on some ndarray subclasses returns Python booleans + # instead of element-wise comparisons, so we cast to bool_() and + # use isinstance(..., bool) checks + # (3) subclasses with bare-bones __array_function__ implementations may + # not implement np.all(), so favor using the .all() method + # We are not committed to supporting such subclasses, but it's nice to + # support them if possible. + if bool_(x_id == y_id).all() != True: + msg = build_err_msg([x, y], + err_msg + '\nx and y %s location mismatch:' + % (hasval), verbose=verbose, header=header, + names=('x', 'y'), precision=precision) + raise AssertionError(msg) + # If there is a scalar, then here we know the array has the same + # flag as it everywhere, so we should return the scalar flag. + if isinstance(x_id, bool) or x_id.ndim == 0: + return bool_(x_id) + elif isinstance(y_id, bool) or y_id.ndim == 0: + return bool_(y_id) + else: + return y_id + + try: + if strict: + cond = x.shape == y.shape and x.dtype == y.dtype + else: + cond = (x.shape == () or y.shape == ()) or x.shape == y.shape + if not cond: + if x.shape != y.shape: + reason = f'\n(shapes {x.shape}, {y.shape} mismatch)' + else: + reason = f'\n(dtypes {x.dtype}, {y.dtype} mismatch)' + msg = build_err_msg([x, y], + err_msg + + reason, + verbose=verbose, header=header, + names=('x', 'y'), precision=precision) + raise AssertionError(msg) + + flagged = bool_(False) + if isnumber(x) and isnumber(y): + if equal_nan: + flagged = func_assert_same_pos(x, y, func=isnan, hasval='nan') + + if equal_inf: + flagged |= func_assert_same_pos(x, y, + func=lambda xy: xy == +inf, + hasval='+inf') + flagged |= func_assert_same_pos(x, y, + func=lambda xy: xy == -inf, + hasval='-inf') + + elif istime(x) and istime(y): + # If one is datetime64 and the other timedelta64 there is no point + if equal_nan and x.dtype.type == y.dtype.type: + flagged = func_assert_same_pos(x, y, func=isnat, hasval="NaT") + + if flagged.ndim > 0: + x, y = x[~flagged], y[~flagged] + # Only do the comparison if actual values are left + if x.size == 0: + return + elif flagged: + # no sense doing comparison if everything is flagged. + return + + val = comparison(x, y) + + if isinstance(val, bool): + cond = val + reduced = array([val]) + else: + reduced = val.ravel() + cond = reduced.all() + + # The below comparison is a hack to ensure that fully masked + # results, for which val.ravel().all() returns np.ma.masked, + # do not trigger a failure (np.ma.masked != True evaluates as + # np.ma.masked, which is falsy). + if cond != True: + n_mismatch = reduced.size - reduced.sum(dtype=intp) + n_elements = flagged.size if flagged.ndim != 0 else reduced.size + percent_mismatch = 100 * n_mismatch / n_elements + remarks = [ + 'Mismatched elements: {} / {} ({:.3g}%)'.format( + n_mismatch, n_elements, percent_mismatch)] + + with errstate(all='ignore'): + # ignore errors for non-numeric types + with contextlib.suppress(TypeError): + error = abs(x - y) + if np.issubdtype(x.dtype, np.unsignedinteger): + error2 = abs(y - x) + np.minimum(error, error2, out=error) + max_abs_error = max(error) + if getattr(error, 'dtype', object_) == object_: + remarks.append('Max absolute difference: ' + + str(max_abs_error)) + else: + remarks.append('Max absolute difference: ' + + array2string(max_abs_error)) + + # note: this definition of relative error matches that one + # used by assert_allclose (found in np.isclose) + # Filter values where the divisor would be zero + nonzero = bool_(y != 0) + if all(~nonzero): + max_rel_error = array(inf) + else: + max_rel_error = max(error[nonzero] / abs(y[nonzero])) + if getattr(error, 'dtype', object_) == object_: + remarks.append('Max relative difference: ' + + str(max_rel_error)) + else: + remarks.append('Max relative difference: ' + + array2string(max_rel_error)) + + err_msg += '\n' + '\n'.join(remarks) + msg = build_err_msg([ox, oy], err_msg, + verbose=verbose, header=header, + names=('x', 'y'), precision=precision) + raise AssertionError(msg) + except ValueError: + import traceback + efmt = traceback.format_exc() + header = f'error during assertion:\n\n{efmt}\n\n{header}' + + msg = build_err_msg([x, y], err_msg, verbose=verbose, header=header, + names=('x', 'y'), precision=precision) + raise ValueError(msg) + + +def assert_array_equal(x, y, err_msg='', verbose=True, *, strict=False): + """ + Raises an AssertionError if two array_like objects are not equal. + + Given two array_like objects, check that the shape is equal and all + elements of these objects are equal (but see the Notes for the special + handling of a scalar). An exception is raised at shape mismatch or + conflicting values. In contrast to the standard usage in numpy, NaNs + are compared like numbers, no assertion is raised if both objects have + NaNs in the same positions. + + The usual caution for verifying equality with floating point numbers is + advised. + + Parameters + ---------- + x : array_like + The actual object to check. + y : array_like + The desired, expected object. + err_msg : str, optional + The error message to be printed in case of failure. + verbose : bool, optional + If True, the conflicting values are appended to the error message. + strict : bool, optional + If True, raise an AssertionError when either the shape or the data + type of the array_like objects does not match. The special + handling for scalars mentioned in the Notes section is disabled. + + .. versionadded:: 1.24.0 + + Raises + ------ + AssertionError + If actual and desired objects are not equal. + + See Also + -------- + assert_allclose: Compare two array_like objects for equality with desired + relative and/or absolute precision. + assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal + + Notes + ----- + When one of `x` and `y` is a scalar and the other is array_like, the + function checks that each element of the array_like object is equal to + the scalar. This behaviour can be disabled with the `strict` parameter. + + Examples + -------- + The first assert does not raise an exception: + + >>> np.testing.assert_array_equal([1.0,2.33333,np.nan], + ... [np.exp(0),2.33333, np.nan]) + + Assert fails with numerical imprecision with floats: + + >>> np.testing.assert_array_equal([1.0,np.pi,np.nan], + ... [1, np.sqrt(np.pi)**2, np.nan]) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not equal + <BLANKLINE> + Mismatched elements: 1 / 3 (33.3%) + Max absolute difference: 4.4408921e-16 + Max relative difference: 1.41357986e-16 + x: array([1. , 3.141593, nan]) + y: array([1. , 3.141593, nan]) + + Use `assert_allclose` or one of the nulp (number of floating point values) + functions for these cases instead: + + >>> np.testing.assert_allclose([1.0,np.pi,np.nan], + ... [1, np.sqrt(np.pi)**2, np.nan], + ... rtol=1e-10, atol=0) + + As mentioned in the Notes section, `assert_array_equal` has special + handling for scalars. Here the test checks that each value in `x` is 3: + + >>> x = np.full((2, 5), fill_value=3) + >>> np.testing.assert_array_equal(x, 3) + + Use `strict` to raise an AssertionError when comparing a scalar with an + array: + + >>> np.testing.assert_array_equal(x, 3, strict=True) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not equal + <BLANKLINE> + (shapes (2, 5), () mismatch) + x: array([[3, 3, 3, 3, 3], + [3, 3, 3, 3, 3]]) + y: array(3) + + The `strict` parameter also ensures that the array data types match: + + >>> x = np.array([2, 2, 2]) + >>> y = np.array([2., 2., 2.], dtype=np.float32) + >>> np.testing.assert_array_equal(x, y, strict=True) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not equal + <BLANKLINE> + (dtypes int64, float32 mismatch) + x: array([2, 2, 2]) + y: array([2., 2., 2.], dtype=float32) + """ + __tracebackhide__ = True # Hide traceback for py.test + assert_array_compare(operator.__eq__, x, y, err_msg=err_msg, + verbose=verbose, header='Arrays are not equal', + strict=strict) + + +@np._no_nep50_warning() +def assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True): + """ + Raises an AssertionError if two objects are not equal up to desired + precision. + + .. note:: It is recommended to use one of `assert_allclose`, + `assert_array_almost_equal_nulp` or `assert_array_max_ulp` + instead of this function for more consistent floating point + comparisons. + + The test verifies identical shapes and that the elements of ``actual`` and + ``desired`` satisfy. + + ``abs(desired-actual) < 1.5 * 10**(-decimal)`` + + That is a looser test than originally documented, but agrees with what the + actual implementation did up to rounding vagaries. An exception is raised + at shape mismatch or conflicting values. In contrast to the standard usage + in numpy, NaNs are compared like numbers, no assertion is raised if both + objects have NaNs in the same positions. + + Parameters + ---------- + x : array_like + The actual object to check. + y : array_like + The desired, expected object. + decimal : int, optional + Desired precision, default is 6. + err_msg : str, optional + The error message to be printed in case of failure. + verbose : bool, optional + If True, the conflicting values are appended to the error message. + + Raises + ------ + AssertionError + If actual and desired are not equal up to specified precision. + + See Also + -------- + assert_allclose: Compare two array_like objects for equality with desired + relative and/or absolute precision. + assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal + + Examples + -------- + the first assert does not raise an exception + + >>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan], + ... [1.0,2.333,np.nan]) + + >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan], + ... [1.0,2.33339,np.nan], decimal=5) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not almost equal to 5 decimals + <BLANKLINE> + Mismatched elements: 1 / 3 (33.3%) + Max absolute difference: 6.e-05 + Max relative difference: 2.57136612e-05 + x: array([1. , 2.33333, nan]) + y: array([1. , 2.33339, nan]) + + >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan], + ... [1.0,2.33333, 5], decimal=5) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not almost equal to 5 decimals + <BLANKLINE> + x and y nan location mismatch: + x: array([1. , 2.33333, nan]) + y: array([1. , 2.33333, 5. ]) + + """ + __tracebackhide__ = True # Hide traceback for py.test + from numpy.core import number, float_, result_type + from numpy.core.numerictypes import issubdtype + from numpy.core.fromnumeric import any as npany + + def compare(x, y): + try: + if npany(isinf(x)) or npany(isinf(y)): + xinfid = isinf(x) + yinfid = isinf(y) + if not (xinfid == yinfid).all(): + return False + # if one item, x and y is +- inf + if x.size == y.size == 1: + return x == y + x = x[~xinfid] + y = y[~yinfid] + except (TypeError, NotImplementedError): + pass + + # make sure y is an inexact type to avoid abs(MIN_INT); will cause + # casting of x later. + dtype = result_type(y, 1.) + y = np.asanyarray(y, dtype) + z = abs(x - y) + + if not issubdtype(z.dtype, number): + z = z.astype(float_) # handle object arrays + + return z < 1.5 * 10.0**(-decimal) + + assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, + header=('Arrays are not almost equal to %d decimals' % decimal), + precision=decimal) + + +def assert_array_less(x, y, err_msg='', verbose=True): + """ + Raises an AssertionError if two array_like objects are not ordered by less + than. + + Given two array_like objects, check that the shape is equal and all + elements of the first object are strictly smaller than those of the + second object. An exception is raised at shape mismatch or incorrectly + ordered values. Shape mismatch does not raise if an object has zero + dimension. In contrast to the standard usage in numpy, NaNs are + compared, no assertion is raised if both objects have NaNs in the same + positions. + + Parameters + ---------- + x : array_like + The smaller object to check. + y : array_like + The larger object to compare. + err_msg : string + The error message to be printed in case of failure. + verbose : bool + If True, the conflicting values are appended to the error message. + + Raises + ------ + AssertionError + If x is not strictly smaller than y, element-wise. + + See Also + -------- + assert_array_equal: tests objects for equality + assert_array_almost_equal: test objects for equality up to precision + + Examples + -------- + >>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1.1, 2.0, np.nan]) + >>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1, 2.0, np.nan]) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not less-ordered + <BLANKLINE> + Mismatched elements: 1 / 3 (33.3%) + Max absolute difference: 1. + Max relative difference: 0.5 + x: array([ 1., 1., nan]) + y: array([ 1., 2., nan]) + + >>> np.testing.assert_array_less([1.0, 4.0], 3) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not less-ordered + <BLANKLINE> + Mismatched elements: 1 / 2 (50%) + Max absolute difference: 2. + Max relative difference: 0.66666667 + x: array([1., 4.]) + y: array(3) + + >>> np.testing.assert_array_less([1.0, 2.0, 3.0], [4]) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not less-ordered + <BLANKLINE> + (shapes (3,), (1,) mismatch) + x: array([1., 2., 3.]) + y: array([4]) + + """ + __tracebackhide__ = True # Hide traceback for py.test + assert_array_compare(operator.__lt__, x, y, err_msg=err_msg, + verbose=verbose, + header='Arrays are not less-ordered', + equal_inf=False) + + +def runstring(astr, dict): + exec(astr, dict) + + +def assert_string_equal(actual, desired): + """ + Test if two strings are equal. + + If the given strings are equal, `assert_string_equal` does nothing. + If they are not equal, an AssertionError is raised, and the diff + between the strings is shown. + + Parameters + ---------- + actual : str + The string to test for equality against the expected string. + desired : str + The expected string. + + Examples + -------- + >>> np.testing.assert_string_equal('abc', 'abc') + >>> np.testing.assert_string_equal('abc', 'abcd') + Traceback (most recent call last): + File "<stdin>", line 1, in <module> + ... + AssertionError: Differences in strings: + - abc+ abcd? + + + """ + # delay import of difflib to reduce startup time + __tracebackhide__ = True # Hide traceback for py.test + import difflib + + if not isinstance(actual, str): + raise AssertionError(repr(type(actual))) + if not isinstance(desired, str): + raise AssertionError(repr(type(desired))) + if desired == actual: + return + + diff = list(difflib.Differ().compare(actual.splitlines(True), + desired.splitlines(True))) + diff_list = [] + while diff: + d1 = diff.pop(0) + if d1.startswith(' '): + continue + if d1.startswith('- '): + l = [d1] + d2 = diff.pop(0) + if d2.startswith('? '): + l.append(d2) + d2 = diff.pop(0) + if not d2.startswith('+ '): + raise AssertionError(repr(d2)) + l.append(d2) + if diff: + d3 = diff.pop(0) + if d3.startswith('? '): + l.append(d3) + else: + diff.insert(0, d3) + if d2[2:] == d1[2:]: + continue + diff_list.extend(l) + continue + raise AssertionError(repr(d1)) + if not diff_list: + return + msg = f"Differences in strings:\n{''.join(diff_list).rstrip()}" + if actual != desired: + raise AssertionError(msg) + + +def rundocs(filename=None, raise_on_error=True): + """ + Run doctests found in the given file. + + By default `rundocs` raises an AssertionError on failure. + + Parameters + ---------- + filename : str + The path to the file for which the doctests are run. + raise_on_error : bool + Whether to raise an AssertionError when a doctest fails. Default is + True. + + Notes + ----- + The doctests can be run by the user/developer by adding the ``doctests`` + argument to the ``test()`` call. For example, to run all tests (including + doctests) for `numpy.lib`: + + >>> np.lib.test(doctests=True) # doctest: +SKIP + """ + from numpy.distutils.misc_util import exec_mod_from_location + import doctest + if filename is None: + f = sys._getframe(1) + filename = f.f_globals['__file__'] + name = os.path.splitext(os.path.basename(filename))[0] + m = exec_mod_from_location(name, filename) + + tests = doctest.DocTestFinder().find(m) + runner = doctest.DocTestRunner(verbose=False) + + msg = [] + if raise_on_error: + out = lambda s: msg.append(s) + else: + out = None + + for test in tests: + runner.run(test, out=out) + + if runner.failures > 0 and raise_on_error: + raise AssertionError("Some doctests failed:\n%s" % "\n".join(msg)) + + +def check_support_sve(): + """ + gh-22982 + """ + + import subprocess + cmd = 'lscpu' + try: + output = subprocess.run(cmd, capture_output=True, text=True) + return 'sve' in output.stdout + except OSError: + return False + + +_SUPPORTS_SVE = check_support_sve() + +# +# assert_raises and assert_raises_regex are taken from unittest. +# +import unittest + + +class _Dummy(unittest.TestCase): + def nop(self): + pass + + +_d = _Dummy('nop') + + +def assert_raises(*args, **kwargs): + """ + assert_raises(exception_class, callable, *args, **kwargs) + assert_raises(exception_class) + + Fail unless an exception of class exception_class is thrown + by callable when invoked with arguments args and keyword + arguments kwargs. If a different type of exception is + thrown, it will not be caught, and the test case will be + deemed to have suffered an error, exactly as for an + unexpected exception. + + Alternatively, `assert_raises` can be used as a context manager: + + >>> from numpy.testing import assert_raises + >>> with assert_raises(ZeroDivisionError): + ... 1 / 0 + + is equivalent to + + >>> def div(x, y): + ... return x / y + >>> assert_raises(ZeroDivisionError, div, 1, 0) + + """ + __tracebackhide__ = True # Hide traceback for py.test + return _d.assertRaises(*args, **kwargs) + + +def assert_raises_regex(exception_class, expected_regexp, *args, **kwargs): + """ + assert_raises_regex(exception_class, expected_regexp, callable, *args, + **kwargs) + assert_raises_regex(exception_class, expected_regexp) + + Fail unless an exception of class exception_class and with message that + matches expected_regexp is thrown by callable when invoked with arguments + args and keyword arguments kwargs. + + Alternatively, can be used as a context manager like `assert_raises`. + + Notes + ----- + .. versionadded:: 1.9.0 + + """ + __tracebackhide__ = True # Hide traceback for py.test + return _d.assertRaisesRegex(exception_class, expected_regexp, *args, **kwargs) + + +def decorate_methods(cls, decorator, testmatch=None): + """ + Apply a decorator to all methods in a class matching a regular expression. + + The given decorator is applied to all public methods of `cls` that are + matched by the regular expression `testmatch` + (``testmatch.search(methodname)``). Methods that are private, i.e. start + with an underscore, are ignored. + + Parameters + ---------- + cls : class + Class whose methods to decorate. + decorator : function + Decorator to apply to methods + testmatch : compiled regexp or str, optional + The regular expression. Default value is None, in which case the + nose default (``re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)``) + is used. + If `testmatch` is a string, it is compiled to a regular expression + first. + + """ + if testmatch is None: + testmatch = re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep) + else: + testmatch = re.compile(testmatch) + cls_attr = cls.__dict__ + + # delayed import to reduce startup time + from inspect import isfunction + + methods = [_m for _m in cls_attr.values() if isfunction(_m)] + for function in methods: + try: + if hasattr(function, 'compat_func_name'): + funcname = function.compat_func_name + else: + funcname = function.__name__ + except AttributeError: + # not a function + continue + if testmatch.search(funcname) and not funcname.startswith('_'): + setattr(cls, funcname, decorator(function)) + return + + +def measure(code_str, times=1, label=None): + """ + Return elapsed time for executing code in the namespace of the caller. + + The supplied code string is compiled with the Python builtin ``compile``. + The precision of the timing is 10 milli-seconds. If the code will execute + fast on this timescale, it can be executed many times to get reasonable + timing accuracy. + + Parameters + ---------- + code_str : str + The code to be timed. + times : int, optional + The number of times the code is executed. Default is 1. The code is + only compiled once. + label : str, optional + A label to identify `code_str` with. This is passed into ``compile`` + as the second argument (for run-time error messages). + + Returns + ------- + elapsed : float + Total elapsed time in seconds for executing `code_str` `times` times. + + Examples + -------- + >>> times = 10 + >>> etime = np.testing.measure('for i in range(1000): np.sqrt(i**2)', times=times) + >>> print("Time for a single execution : ", etime / times, "s") # doctest: +SKIP + Time for a single execution : 0.005 s + + """ + frame = sys._getframe(1) + locs, globs = frame.f_locals, frame.f_globals + + code = compile(code_str, f'Test name: {label} ', 'exec') + i = 0 + elapsed = jiffies() + while i < times: + i += 1 + exec(code, globs, locs) + elapsed = jiffies() - elapsed + return 0.01*elapsed + + +def _assert_valid_refcount(op): + """ + Check that ufuncs don't mishandle refcount of object `1`. + Used in a few regression tests. + """ + if not HAS_REFCOUNT: + return True + + import gc + import numpy as np + + b = np.arange(100*100).reshape(100, 100) + c = b + i = 1 + + gc.disable() + try: + rc = sys.getrefcount(i) + for j in range(15): + d = op(b, c) + assert_(sys.getrefcount(i) >= rc) + finally: + gc.enable() + del d # for pyflakes + + +def assert_allclose(actual, desired, rtol=1e-7, atol=0, equal_nan=True, + err_msg='', verbose=True): + """ + Raises an AssertionError if two objects are not equal up to desired + tolerance. + + Given two array_like objects, check that their shapes and all elements + are equal (but see the Notes for the special handling of a scalar). An + exception is raised if the shapes mismatch or any values conflict. In + contrast to the standard usage in numpy, NaNs are compared like numbers, + no assertion is raised if both objects have NaNs in the same positions. + + The test is equivalent to ``allclose(actual, desired, rtol, atol)`` (note + that ``allclose`` has different default values). It compares the difference + between `actual` and `desired` to ``atol + rtol * abs(desired)``. + + .. versionadded:: 1.5.0 + + Parameters + ---------- + actual : array_like + Array obtained. + desired : array_like + Array desired. + rtol : float, optional + Relative tolerance. + atol : float, optional + Absolute tolerance. + equal_nan : bool, optional. + If True, NaNs will compare equal. + err_msg : str, optional + The error message to be printed in case of failure. + verbose : bool, optional + If True, the conflicting values are appended to the error message. + + Raises + ------ + AssertionError + If actual and desired are not equal up to specified precision. + + See Also + -------- + assert_array_almost_equal_nulp, assert_array_max_ulp + + Notes + ----- + When one of `actual` and `desired` is a scalar and the other is + array_like, the function checks that each element of the array_like + object is equal to the scalar. + + Examples + -------- + >>> x = [1e-5, 1e-3, 1e-1] + >>> y = np.arccos(np.cos(x)) + >>> np.testing.assert_allclose(x, y, rtol=1e-5, atol=0) + + """ + __tracebackhide__ = True # Hide traceback for py.test + import numpy as np + + def compare(x, y): + return np.core.numeric.isclose(x, y, rtol=rtol, atol=atol, + equal_nan=equal_nan) + + actual, desired = np.asanyarray(actual), np.asanyarray(desired) + header = f'Not equal to tolerance rtol={rtol:g}, atol={atol:g}' + assert_array_compare(compare, actual, desired, err_msg=str(err_msg), + verbose=verbose, header=header, equal_nan=equal_nan) + + +def assert_array_almost_equal_nulp(x, y, nulp=1): + """ + Compare two arrays relatively to their spacing. + + This is a relatively robust method to compare two arrays whose amplitude + is variable. + + Parameters + ---------- + x, y : array_like + Input arrays. + nulp : int, optional + The maximum number of unit in the last place for tolerance (see Notes). + Default is 1. + + Returns + ------- + None + + Raises + ------ + AssertionError + If the spacing between `x` and `y` for one or more elements is larger + than `nulp`. + + See Also + -------- + assert_array_max_ulp : Check that all items of arrays differ in at most + N Units in the Last Place. + spacing : Return the distance between x and the nearest adjacent number. + + Notes + ----- + An assertion is raised if the following condition is not met:: + + abs(x - y) <= nulp * spacing(maximum(abs(x), abs(y))) + + Examples + -------- + >>> x = np.array([1., 1e-10, 1e-20]) + >>> eps = np.finfo(x.dtype).eps + >>> np.testing.assert_array_almost_equal_nulp(x, x*eps/2 + x) + + >>> np.testing.assert_array_almost_equal_nulp(x, x*eps + x) + Traceback (most recent call last): + ... + AssertionError: X and Y are not equal to 1 ULP (max is 2) + + """ + __tracebackhide__ = True # Hide traceback for py.test + import numpy as np + ax = np.abs(x) + ay = np.abs(y) + ref = nulp * np.spacing(np.where(ax > ay, ax, ay)) + if not np.all(np.abs(x-y) <= ref): + if np.iscomplexobj(x) or np.iscomplexobj(y): + msg = "X and Y are not equal to %d ULP" % nulp + else: + max_nulp = np.max(nulp_diff(x, y)) + msg = "X and Y are not equal to %d ULP (max is %g)" % (nulp, max_nulp) + raise AssertionError(msg) + + +def assert_array_max_ulp(a, b, maxulp=1, dtype=None): + """ + Check that all items of arrays differ in at most N Units in the Last Place. + + Parameters + ---------- + a, b : array_like + Input arrays to be compared. + maxulp : int, optional + The maximum number of units in the last place that elements of `a` and + `b` can differ. Default is 1. + dtype : dtype, optional + Data-type to convert `a` and `b` to if given. Default is None. + + Returns + ------- + ret : ndarray + Array containing number of representable floating point numbers between + items in `a` and `b`. + + Raises + ------ + AssertionError + If one or more elements differ by more than `maxulp`. + + Notes + ----- + For computing the ULP difference, this API does not differentiate between + various representations of NAN (ULP difference between 0x7fc00000 and 0xffc00000 + is zero). + + See Also + -------- + assert_array_almost_equal_nulp : Compare two arrays relatively to their + spacing. + + Examples + -------- + >>> a = np.linspace(0., 1., 100) + >>> res = np.testing.assert_array_max_ulp(a, np.arcsin(np.sin(a))) + + """ + __tracebackhide__ = True # Hide traceback for py.test + import numpy as np + ret = nulp_diff(a, b, dtype) + if not np.all(ret <= maxulp): + raise AssertionError("Arrays are not almost equal up to %g " + "ULP (max difference is %g ULP)" % + (maxulp, np.max(ret))) + return ret + + +def nulp_diff(x, y, dtype=None): + """For each item in x and y, return the number of representable floating + points between them. + + Parameters + ---------- + x : array_like + first input array + y : array_like + second input array + dtype : dtype, optional + Data-type to convert `x` and `y` to if given. Default is None. + + Returns + ------- + nulp : array_like + number of representable floating point numbers between each item in x + and y. + + Notes + ----- + For computing the ULP difference, this API does not differentiate between + various representations of NAN (ULP difference between 0x7fc00000 and 0xffc00000 + is zero). + + Examples + -------- + # By definition, epsilon is the smallest number such as 1 + eps != 1, so + # there should be exactly one ULP between 1 and 1 + eps + >>> nulp_diff(1, 1 + np.finfo(x.dtype).eps) + 1.0 + """ + import numpy as np + if dtype: + x = np.asarray(x, dtype=dtype) + y = np.asarray(y, dtype=dtype) + else: + x = np.asarray(x) + y = np.asarray(y) + + t = np.common_type(x, y) + if np.iscomplexobj(x) or np.iscomplexobj(y): + raise NotImplementedError("_nulp not implemented for complex array") + + x = np.array([x], dtype=t) + y = np.array([y], dtype=t) + + x[np.isnan(x)] = np.nan + y[np.isnan(y)] = np.nan + + if not x.shape == y.shape: + raise ValueError("x and y do not have the same shape: %s - %s" % + (x.shape, y.shape)) + + def _diff(rx, ry, vdt): + diff = np.asarray(rx-ry, dtype=vdt) + return np.abs(diff) + + rx = integer_repr(x) + ry = integer_repr(y) + return _diff(rx, ry, t) + + +def _integer_repr(x, vdt, comp): + # Reinterpret binary representation of the float as sign-magnitude: + # take into account two-complement representation + # See also + # https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ + rx = x.view(vdt) + if not (rx.size == 1): + rx[rx < 0] = comp - rx[rx < 0] + else: + if rx < 0: + rx = comp - rx + + return rx + + +def integer_repr(x): + """Return the signed-magnitude interpretation of the binary representation + of x.""" + import numpy as np + if x.dtype == np.float16: + return _integer_repr(x, np.int16, np.int16(-2**15)) + elif x.dtype == np.float32: + return _integer_repr(x, np.int32, np.int32(-2**31)) + elif x.dtype == np.float64: + return _integer_repr(x, np.int64, np.int64(-2**63)) + else: + raise ValueError(f'Unsupported dtype {x.dtype}') + + +@contextlib.contextmanager +def _assert_warns_context(warning_class, name=None): + __tracebackhide__ = True # Hide traceback for py.test + with suppress_warnings() as sup: + l = sup.record(warning_class) + yield + if not len(l) > 0: + name_str = f' when calling {name}' if name is not None else '' + raise AssertionError("No warning raised" + name_str) + + +def assert_warns(warning_class, *args, **kwargs): + """ + Fail unless the given callable throws the specified warning. + + A warning of class warning_class should be thrown by the callable when + invoked with arguments args and keyword arguments kwargs. + If a different type of warning is thrown, it will not be caught. + + If called with all arguments other than the warning class omitted, may be + used as a context manager: + + with assert_warns(SomeWarning): + do_something() + + The ability to be used as a context manager is new in NumPy v1.11.0. + + .. versionadded:: 1.4.0 + + Parameters + ---------- + warning_class : class + The class defining the warning that `func` is expected to throw. + func : callable, optional + Callable to test + *args : Arguments + Arguments for `func`. + **kwargs : Kwargs + Keyword arguments for `func`. + + Returns + ------- + The value returned by `func`. + + Examples + -------- + >>> import warnings + >>> def deprecated_func(num): + ... warnings.warn("Please upgrade", DeprecationWarning) + ... return num*num + >>> with np.testing.assert_warns(DeprecationWarning): + ... assert deprecated_func(4) == 16 + >>> # or passing a func + >>> ret = np.testing.assert_warns(DeprecationWarning, deprecated_func, 4) + >>> assert ret == 16 + """ + if not args: + return _assert_warns_context(warning_class) + + func = args[0] + args = args[1:] + with _assert_warns_context(warning_class, name=func.__name__): + return func(*args, **kwargs) + + +@contextlib.contextmanager +def _assert_no_warnings_context(name=None): + __tracebackhide__ = True # Hide traceback for py.test + with warnings.catch_warnings(record=True) as l: + warnings.simplefilter('always') + yield + if len(l) > 0: + name_str = f' when calling {name}' if name is not None else '' + raise AssertionError(f'Got warnings{name_str}: {l}') + + +def assert_no_warnings(*args, **kwargs): + """ + Fail if the given callable produces any warnings. + + If called with all arguments omitted, may be used as a context manager: + + with assert_no_warnings(): + do_something() + + The ability to be used as a context manager is new in NumPy v1.11.0. + + .. versionadded:: 1.7.0 + + Parameters + ---------- + func : callable + The callable to test. + \\*args : Arguments + Arguments passed to `func`. + \\*\\*kwargs : Kwargs + Keyword arguments passed to `func`. + + Returns + ------- + The value returned by `func`. + + """ + if not args: + return _assert_no_warnings_context() + + func = args[0] + args = args[1:] + with _assert_no_warnings_context(name=func.__name__): + return func(*args, **kwargs) + + +def _gen_alignment_data(dtype=float32, type='binary', max_size=24): + """ + generator producing data with different alignment and offsets + to test simd vectorization + + Parameters + ---------- + dtype : dtype + data type to produce + type : string + 'unary': create data for unary operations, creates one input + and output array + 'binary': create data for unary operations, creates two input + and output array + max_size : integer + maximum size of data to produce + + Returns + ------- + if type is 'unary' yields one output, one input array and a message + containing information on the data + if type is 'binary' yields one output array, two input array and a message + containing information on the data + + """ + ufmt = 'unary offset=(%d, %d), size=%d, dtype=%r, %s' + bfmt = 'binary offset=(%d, %d, %d), size=%d, dtype=%r, %s' + for o in range(3): + for s in range(o + 2, max(o + 3, max_size)): + if type == 'unary': + inp = lambda: arange(s, dtype=dtype)[o:] + out = empty((s,), dtype=dtype)[o:] + yield out, inp(), ufmt % (o, o, s, dtype, 'out of place') + d = inp() + yield d, d, ufmt % (o, o, s, dtype, 'in place') + yield out[1:], inp()[:-1], ufmt % \ + (o + 1, o, s - 1, dtype, 'out of place') + yield out[:-1], inp()[1:], ufmt % \ + (o, o + 1, s - 1, dtype, 'out of place') + yield inp()[:-1], inp()[1:], ufmt % \ + (o, o + 1, s - 1, dtype, 'aliased') + yield inp()[1:], inp()[:-1], ufmt % \ + (o + 1, o, s - 1, dtype, 'aliased') + if type == 'binary': + inp1 = lambda: arange(s, dtype=dtype)[o:] + inp2 = lambda: arange(s, dtype=dtype)[o:] + out = empty((s,), dtype=dtype)[o:] + yield out, inp1(), inp2(), bfmt % \ + (o, o, o, s, dtype, 'out of place') + d = inp1() + yield d, d, inp2(), bfmt % \ + (o, o, o, s, dtype, 'in place1') + d = inp2() + yield d, inp1(), d, bfmt % \ + (o, o, o, s, dtype, 'in place2') + yield out[1:], inp1()[:-1], inp2()[:-1], bfmt % \ + (o + 1, o, o, s - 1, dtype, 'out of place') + yield out[:-1], inp1()[1:], inp2()[:-1], bfmt % \ + (o, o + 1, o, s - 1, dtype, 'out of place') + yield out[:-1], inp1()[:-1], inp2()[1:], bfmt % \ + (o, o, o + 1, s - 1, dtype, 'out of place') + yield inp1()[1:], inp1()[:-1], inp2()[:-1], bfmt % \ + (o + 1, o, o, s - 1, dtype, 'aliased') + yield inp1()[:-1], inp1()[1:], inp2()[:-1], bfmt % \ + (o, o + 1, o, s - 1, dtype, 'aliased') + yield inp1()[:-1], inp1()[:-1], inp2()[1:], bfmt % \ + (o, o, o + 1, s - 1, dtype, 'aliased') + + +class IgnoreException(Exception): + "Ignoring this exception due to disabled feature" + pass + + +@contextlib.contextmanager +def tempdir(*args, **kwargs): + """Context manager to provide a temporary test folder. + + All arguments are passed as this to the underlying tempfile.mkdtemp + function. + + """ + tmpdir = mkdtemp(*args, **kwargs) + try: + yield tmpdir + finally: + shutil.rmtree(tmpdir) + + +@contextlib.contextmanager +def temppath(*args, **kwargs): + """Context manager for temporary files. + + Context manager that returns the path to a closed temporary file. Its + parameters are the same as for tempfile.mkstemp and are passed directly + to that function. The underlying file is removed when the context is + exited, so it should be closed at that time. + + Windows does not allow a temporary file to be opened if it is already + open, so the underlying file must be closed after opening before it + can be opened again. + + """ + fd, path = mkstemp(*args, **kwargs) + os.close(fd) + try: + yield path + finally: + os.remove(path) + + +class clear_and_catch_warnings(warnings.catch_warnings): + """ Context manager that resets warning registry for catching warnings + + Warnings can be slippery, because, whenever a warning is triggered, Python + adds a ``__warningregistry__`` member to the *calling* module. This makes + it impossible to retrigger the warning in this module, whatever you put in + the warnings filters. This context manager accepts a sequence of `modules` + as a keyword argument to its constructor and: + + * stores and removes any ``__warningregistry__`` entries in given `modules` + on entry; + * resets ``__warningregistry__`` to its previous state on exit. + + This makes it possible to trigger any warning afresh inside the context + manager without disturbing the state of warnings outside. + + For compatibility with Python 3.0, please consider all arguments to be + keyword-only. + + Parameters + ---------- + record : bool, optional + Specifies whether warnings should be captured by a custom + implementation of ``warnings.showwarning()`` and be appended to a list + returned by the context manager. Otherwise None is returned by the + context manager. The objects appended to the list are arguments whose + attributes mirror the arguments to ``showwarning()``. + modules : sequence, optional + Sequence of modules for which to reset warnings registry on entry and + restore on exit. To work correctly, all 'ignore' filters should + filter by one of these modules. + + Examples + -------- + >>> import warnings + >>> with np.testing.clear_and_catch_warnings( + ... modules=[np.core.fromnumeric]): + ... warnings.simplefilter('always') + ... warnings.filterwarnings('ignore', module='np.core.fromnumeric') + ... # do something that raises a warning but ignore those in + ... # np.core.fromnumeric + """ + class_modules = () + + def __init__(self, record=False, modules=()): + self.modules = set(modules).union(self.class_modules) + self._warnreg_copies = {} + super().__init__(record=record) + + def __enter__(self): + for mod in self.modules: + if hasattr(mod, '__warningregistry__'): + mod_reg = mod.__warningregistry__ + self._warnreg_copies[mod] = mod_reg.copy() + mod_reg.clear() + return super().__enter__() + + def __exit__(self, *exc_info): + super().__exit__(*exc_info) + for mod in self.modules: + if hasattr(mod, '__warningregistry__'): + mod.__warningregistry__.clear() + if mod in self._warnreg_copies: + mod.__warningregistry__.update(self._warnreg_copies[mod]) + + +class suppress_warnings: + """ + Context manager and decorator doing much the same as + ``warnings.catch_warnings``. + + However, it also provides a filter mechanism to work around + https://bugs.python.org/issue4180. + + This bug causes Python before 3.4 to not reliably show warnings again + after they have been ignored once (even within catch_warnings). It + means that no "ignore" filter can be used easily, since following + tests might need to see the warning. Additionally it allows easier + specificity for testing warnings and can be nested. + + Parameters + ---------- + forwarding_rule : str, optional + One of "always", "once", "module", or "location". Analogous to + the usual warnings module filter mode, it is useful to reduce + noise mostly on the outmost level. Unsuppressed and unrecorded + warnings will be forwarded based on this rule. Defaults to "always". + "location" is equivalent to the warnings "default", match by exact + location the warning warning originated from. + + Notes + ----- + Filters added inside the context manager will be discarded again + when leaving it. Upon entering all filters defined outside a + context will be applied automatically. + + When a recording filter is added, matching warnings are stored in the + ``log`` attribute as well as in the list returned by ``record``. + + If filters are added and the ``module`` keyword is given, the + warning registry of this module will additionally be cleared when + applying it, entering the context, or exiting it. This could cause + warnings to appear a second time after leaving the context if they + were configured to be printed once (default) and were already + printed before the context was entered. + + Nesting this context manager will work as expected when the + forwarding rule is "always" (default). Unfiltered and unrecorded + warnings will be passed out and be matched by the outer level. + On the outmost level they will be printed (or caught by another + warnings context). The forwarding rule argument can modify this + behaviour. + + Like ``catch_warnings`` this context manager is not threadsafe. + + Examples + -------- + + With a context manager:: + + with np.testing.suppress_warnings() as sup: + sup.filter(DeprecationWarning, "Some text") + sup.filter(module=np.ma.core) + log = sup.record(FutureWarning, "Does this occur?") + command_giving_warnings() + # The FutureWarning was given once, the filtered warnings were + # ignored. All other warnings abide outside settings (may be + # printed/error) + assert_(len(log) == 1) + assert_(len(sup.log) == 1) # also stored in log attribute + + Or as a decorator:: + + sup = np.testing.suppress_warnings() + sup.filter(module=np.ma.core) # module must match exactly + @sup + def some_function(): + # do something which causes a warning in np.ma.core + pass + """ + def __init__(self, forwarding_rule="always"): + self._entered = False + + # Suppressions are either instance or defined inside one with block: + self._suppressions = [] + + if forwarding_rule not in {"always", "module", "once", "location"}: + raise ValueError("unsupported forwarding rule.") + self._forwarding_rule = forwarding_rule + + def _clear_registries(self): + if hasattr(warnings, "_filters_mutated"): + # clearing the registry should not be necessary on new pythons, + # instead the filters should be mutated. + warnings._filters_mutated() + return + # Simply clear the registry, this should normally be harmless, + # note that on new pythons it would be invalidated anyway. + for module in self._tmp_modules: + if hasattr(module, "__warningregistry__"): + module.__warningregistry__.clear() + + def _filter(self, category=Warning, message="", module=None, record=False): + if record: + record = [] # The log where to store warnings + else: + record = None + if self._entered: + if module is None: + warnings.filterwarnings( + "always", category=category, message=message) + else: + module_regex = module.__name__.replace('.', r'\.') + '$' + warnings.filterwarnings( + "always", category=category, message=message, + module=module_regex) + self._tmp_modules.add(module) + self._clear_registries() + + self._tmp_suppressions.append( + (category, message, re.compile(message, re.I), module, record)) + else: + self._suppressions.append( + (category, message, re.compile(message, re.I), module, record)) + + return record + + def filter(self, category=Warning, message="", module=None): + """ + Add a new suppressing filter or apply it if the state is entered. + + Parameters + ---------- + category : class, optional + Warning class to filter + message : string, optional + Regular expression matching the warning message. + module : module, optional + Module to filter for. Note that the module (and its file) + must match exactly and cannot be a submodule. This may make + it unreliable for external modules. + + Notes + ----- + When added within a context, filters are only added inside + the context and will be forgotten when the context is exited. + """ + self._filter(category=category, message=message, module=module, + record=False) + + def record(self, category=Warning, message="", module=None): + """ + Append a new recording filter or apply it if the state is entered. + + All warnings matching will be appended to the ``log`` attribute. + + Parameters + ---------- + category : class, optional + Warning class to filter + message : string, optional + Regular expression matching the warning message. + module : module, optional + Module to filter for. Note that the module (and its file) + must match exactly and cannot be a submodule. This may make + it unreliable for external modules. + + Returns + ------- + log : list + A list which will be filled with all matched warnings. + + Notes + ----- + When added within a context, filters are only added inside + the context and will be forgotten when the context is exited. + """ + return self._filter(category=category, message=message, module=module, + record=True) + + def __enter__(self): + if self._entered: + raise RuntimeError("cannot enter suppress_warnings twice.") + + self._orig_show = warnings.showwarning + self._filters = warnings.filters + warnings.filters = self._filters[:] + + self._entered = True + self._tmp_suppressions = [] + self._tmp_modules = set() + self._forwarded = set() + + self.log = [] # reset global log (no need to keep same list) + + for cat, mess, _, mod, log in self._suppressions: + if log is not None: + del log[:] # clear the log + if mod is None: + warnings.filterwarnings( + "always", category=cat, message=mess) + else: + module_regex = mod.__name__.replace('.', r'\.') + '$' + warnings.filterwarnings( + "always", category=cat, message=mess, + module=module_regex) + self._tmp_modules.add(mod) + warnings.showwarning = self._showwarning + self._clear_registries() + + return self + + def __exit__(self, *exc_info): + warnings.showwarning = self._orig_show + warnings.filters = self._filters + self._clear_registries() + self._entered = False + del self._orig_show + del self._filters + + def _showwarning(self, message, category, filename, lineno, + *args, use_warnmsg=None, **kwargs): + for cat, _, pattern, mod, rec in ( + self._suppressions + self._tmp_suppressions)[::-1]: + if (issubclass(category, cat) and + pattern.match(message.args[0]) is not None): + if mod is None: + # Message and category match, either recorded or ignored + if rec is not None: + msg = WarningMessage(message, category, filename, + lineno, **kwargs) + self.log.append(msg) + rec.append(msg) + return + # Use startswith, because warnings strips the c or o from + # .pyc/.pyo files. + elif mod.__file__.startswith(filename): + # The message and module (filename) match + if rec is not None: + msg = WarningMessage(message, category, filename, + lineno, **kwargs) + self.log.append(msg) + rec.append(msg) + return + + # There is no filter in place, so pass to the outside handler + # unless we should only pass it once + if self._forwarding_rule == "always": + if use_warnmsg is None: + self._orig_show(message, category, filename, lineno, + *args, **kwargs) + else: + self._orig_showmsg(use_warnmsg) + return + + if self._forwarding_rule == "once": + signature = (message.args, category) + elif self._forwarding_rule == "module": + signature = (message.args, category, filename) + elif self._forwarding_rule == "location": + signature = (message.args, category, filename, lineno) + + if signature in self._forwarded: + return + self._forwarded.add(signature) + if use_warnmsg is None: + self._orig_show(message, category, filename, lineno, *args, + **kwargs) + else: + self._orig_showmsg(use_warnmsg) + + def __call__(self, func): + """ + Function decorator to apply certain suppressions to a whole + function. + """ + @wraps(func) + def new_func(*args, **kwargs): + with self: + return func(*args, **kwargs) + + return new_func + + +@contextlib.contextmanager +def _assert_no_gc_cycles_context(name=None): + __tracebackhide__ = True # Hide traceback for py.test + + # not meaningful to test if there is no refcounting + if not HAS_REFCOUNT: + yield + return + + assert_(gc.isenabled()) + gc.disable() + gc_debug = gc.get_debug() + try: + for i in range(100): + if gc.collect() == 0: + break + else: + raise RuntimeError( + "Unable to fully collect garbage - perhaps a __del__ method " + "is creating more reference cycles?") + + gc.set_debug(gc.DEBUG_SAVEALL) + yield + # gc.collect returns the number of unreachable objects in cycles that + # were found -- we are checking that no cycles were created in the context + n_objects_in_cycles = gc.collect() + objects_in_cycles = gc.garbage[:] + finally: + del gc.garbage[:] + gc.set_debug(gc_debug) + gc.enable() + + if n_objects_in_cycles: + name_str = f' when calling {name}' if name is not None else '' + raise AssertionError( + "Reference cycles were found{}: {} objects were collected, " + "of which {} are shown below:{}" + .format( + name_str, + n_objects_in_cycles, + len(objects_in_cycles), + ''.join( + "\n {} object with id={}:\n {}".format( + type(o).__name__, + id(o), + pprint.pformat(o).replace('\n', '\n ') + ) for o in objects_in_cycles + ) + ) + ) + + +def assert_no_gc_cycles(*args, **kwargs): + """ + Fail if the given callable produces any reference cycles. + + If called with all arguments omitted, may be used as a context manager: + + with assert_no_gc_cycles(): + do_something() + + .. versionadded:: 1.15.0 + + Parameters + ---------- + func : callable + The callable to test. + \\*args : Arguments + Arguments passed to `func`. + \\*\\*kwargs : Kwargs + Keyword arguments passed to `func`. + + Returns + ------- + Nothing. The result is deliberately discarded to ensure that all cycles + are found. + + """ + if not args: + return _assert_no_gc_cycles_context() + + func = args[0] + args = args[1:] + with _assert_no_gc_cycles_context(name=func.__name__): + func(*args, **kwargs) + + +def break_cycles(): + """ + Break reference cycles by calling gc.collect + Objects can call other objects' methods (for instance, another object's + __del__) inside their own __del__. On PyPy, the interpreter only runs + between calls to gc.collect, so multiple calls are needed to completely + release all cycles. + """ + + gc.collect() + if IS_PYPY: + # a few more, just to make sure all the finalizers are called + gc.collect() + gc.collect() + gc.collect() + gc.collect() + + +def requires_memory(free_bytes): + """Decorator to skip a test if not enough memory is available""" + import pytest + + def decorator(func): + @wraps(func) + def wrapper(*a, **kw): + msg = check_free_memory(free_bytes) + if msg is not None: + pytest.skip(msg) + + try: + return func(*a, **kw) + except MemoryError: + # Probably ran out of memory regardless: don't regard as failure + pytest.xfail("MemoryError raised") + + return wrapper + + return decorator + + +def check_free_memory(free_bytes): + """ + Check whether `free_bytes` amount of memory is currently free. + Returns: None if enough memory available, otherwise error message + """ + env_var = 'NPY_AVAILABLE_MEM' + env_value = os.environ.get(env_var) + if env_value is not None: + try: + mem_free = _parse_size(env_value) + except ValueError as exc: + raise ValueError(f'Invalid environment variable {env_var}: {exc}') + + msg = (f'{free_bytes/1e9} GB memory required, but environment variable ' + f'NPY_AVAILABLE_MEM={env_value} set') + else: + mem_free = _get_mem_available() + + if mem_free is None: + msg = ("Could not determine available memory; set NPY_AVAILABLE_MEM " + "environment variable (e.g. NPY_AVAILABLE_MEM=16GB) to run " + "the test.") + mem_free = -1 + else: + msg = f'{free_bytes/1e9} GB memory required, but {mem_free/1e9} GB available' + + return msg if mem_free < free_bytes else None + + +def _parse_size(size_str): + """Convert memory size strings ('12 GB' etc.) to float""" + suffixes = {'': 1, 'b': 1, + 'k': 1000, 'm': 1000**2, 'g': 1000**3, 't': 1000**4, + 'kb': 1000, 'mb': 1000**2, 'gb': 1000**3, 'tb': 1000**4, + 'kib': 1024, 'mib': 1024**2, 'gib': 1024**3, 'tib': 1024**4} + + size_re = re.compile(r'^\s*(\d+|\d+\.\d+)\s*({0})\s*$'.format( + '|'.join(suffixes.keys())), re.I) + + m = size_re.match(size_str.lower()) + if not m or m.group(2) not in suffixes: + raise ValueError(f'value {size_str!r} not a valid size') + return int(float(m.group(1)) * suffixes[m.group(2)]) + + +def _get_mem_available(): + """Return available memory in bytes, or None if unknown.""" + try: + import psutil + return psutil.virtual_memory().available + except (ImportError, AttributeError): + pass + + if sys.platform.startswith('linux'): + info = {} + with open('/proc/meminfo') as f: + for line in f: + p = line.split() + info[p[0].strip(':').lower()] = int(p[1]) * 1024 + + if 'memavailable' in info: + # Linux >= 3.14 + return info['memavailable'] + else: + return info['memfree'] + info['cached'] + + return None + + +def _no_tracing(func): + """ + Decorator to temporarily turn off tracing for the duration of a test. + Needed in tests that check refcounting, otherwise the tracing itself + influences the refcounts + """ + if not hasattr(sys, 'gettrace'): + return func + else: + @wraps(func) + def wrapper(*args, **kwargs): + original_trace = sys.gettrace() + try: + sys.settrace(None) + return func(*args, **kwargs) + finally: + sys.settrace(original_trace) + return wrapper + + +def _get_glibc_version(): + try: + ver = os.confstr('CS_GNU_LIBC_VERSION').rsplit(' ')[1] + except Exception: + ver = '0.0' + + return ver + + +_glibcver = _get_glibc_version() +_glibc_older_than = lambda x: (_glibcver != '0.0' and _glibcver < x) + diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/_private/utils.pyi b/.venv/lib/python3.12/site-packages/numpy/testing/_private/utils.pyi new file mode 100644 index 00000000..6baefd83 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/testing/_private/utils.pyi @@ -0,0 +1,402 @@ +import os +import sys +import ast +import types +import warnings +import unittest +import contextlib +from re import Pattern +from collections.abc import Callable, Iterable, Sequence +from typing import ( + Literal as L, + Any, + AnyStr, + ClassVar, + NoReturn, + overload, + type_check_only, + TypeVar, + Union, + Final, + SupportsIndex, +) +if sys.version_info >= (3, 10): + from typing import ParamSpec +else: + from typing_extensions import ParamSpec + +from numpy import generic, dtype, number, object_, bool_, _FloatValue +from numpy._typing import ( + NDArray, + ArrayLike, + DTypeLike, + _ArrayLikeNumber_co, + _ArrayLikeObject_co, + _ArrayLikeTD64_co, + _ArrayLikeDT64_co, +) + +from unittest.case import ( + SkipTest as SkipTest, +) + +_P = ParamSpec("_P") +_T = TypeVar("_T") +_ET = TypeVar("_ET", bound=BaseException) +_FT = TypeVar("_FT", bound=Callable[..., Any]) + +# Must return a bool or an ndarray/generic type +# that is supported by `np.logical_and.reduce` +_ComparisonFunc = Callable[ + [NDArray[Any], NDArray[Any]], + Union[ + bool, + bool_, + number[Any], + NDArray[Union[bool_, number[Any], object_]], + ], +] + +__all__: list[str] + +class KnownFailureException(Exception): ... +class IgnoreException(Exception): ... + +class clear_and_catch_warnings(warnings.catch_warnings): + class_modules: ClassVar[tuple[types.ModuleType, ...]] + modules: set[types.ModuleType] + @overload + def __new__( + cls, + record: L[False] = ..., + modules: Iterable[types.ModuleType] = ..., + ) -> _clear_and_catch_warnings_without_records: ... + @overload + def __new__( + cls, + record: L[True], + modules: Iterable[types.ModuleType] = ..., + ) -> _clear_and_catch_warnings_with_records: ... + @overload + def __new__( + cls, + record: bool, + modules: Iterable[types.ModuleType] = ..., + ) -> clear_and_catch_warnings: ... + def __enter__(self) -> None | list[warnings.WarningMessage]: ... + def __exit__( + self, + __exc_type: None | type[BaseException] = ..., + __exc_val: None | BaseException = ..., + __exc_tb: None | types.TracebackType = ..., + ) -> None: ... + +# Type-check only `clear_and_catch_warnings` subclasses for both values of the +# `record` parameter. Copied from the stdlib `warnings` stubs. + +@type_check_only +class _clear_and_catch_warnings_with_records(clear_and_catch_warnings): + def __enter__(self) -> list[warnings.WarningMessage]: ... + +@type_check_only +class _clear_and_catch_warnings_without_records(clear_and_catch_warnings): + def __enter__(self) -> None: ... + +class suppress_warnings: + log: list[warnings.WarningMessage] + def __init__( + self, + forwarding_rule: L["always", "module", "once", "location"] = ..., + ) -> None: ... + def filter( + self, + category: type[Warning] = ..., + message: str = ..., + module: None | types.ModuleType = ..., + ) -> None: ... + def record( + self, + category: type[Warning] = ..., + message: str = ..., + module: None | types.ModuleType = ..., + ) -> list[warnings.WarningMessage]: ... + def __enter__(self: _T) -> _T: ... + def __exit__( + self, + __exc_type: None | type[BaseException] = ..., + __exc_val: None | BaseException = ..., + __exc_tb: None | types.TracebackType = ..., + ) -> None: ... + def __call__(self, func: _FT) -> _FT: ... + +verbose: int +IS_PYPY: Final[bool] +IS_PYSTON: Final[bool] +HAS_REFCOUNT: Final[bool] +HAS_LAPACK64: Final[bool] + +def assert_(val: object, msg: str | Callable[[], str] = ...) -> None: ... + +# Contrary to runtime we can't do `os.name` checks while type checking, +# only `sys.platform` checks +if sys.platform == "win32" or sys.platform == "cygwin": + def memusage(processName: str = ..., instance: int = ...) -> int: ... +elif sys.platform == "linux": + def memusage(_proc_pid_stat: str | bytes | os.PathLike[Any] = ...) -> None | int: ... +else: + def memusage() -> NoReturn: ... + +if sys.platform == "linux": + def jiffies( + _proc_pid_stat: str | bytes | os.PathLike[Any] = ..., + _load_time: list[float] = ..., + ) -> int: ... +else: + def jiffies(_load_time: list[float] = ...) -> int: ... + +def build_err_msg( + arrays: Iterable[object], + err_msg: str, + header: str = ..., + verbose: bool = ..., + names: Sequence[str] = ..., + precision: None | SupportsIndex = ..., +) -> str: ... + +def assert_equal( + actual: object, + desired: object, + err_msg: str = ..., + verbose: bool = ..., +) -> None: ... + +def print_assert_equal( + test_string: str, + actual: object, + desired: object, +) -> None: ... + +def assert_almost_equal( + actual: _ArrayLikeNumber_co | _ArrayLikeObject_co, + desired: _ArrayLikeNumber_co | _ArrayLikeObject_co, + decimal: int = ..., + err_msg: str = ..., + verbose: bool = ..., +) -> None: ... + +# Anything that can be coerced into `builtins.float` +def assert_approx_equal( + actual: _FloatValue, + desired: _FloatValue, + significant: int = ..., + err_msg: str = ..., + verbose: bool = ..., +) -> None: ... + +def assert_array_compare( + comparison: _ComparisonFunc, + x: ArrayLike, + y: ArrayLike, + err_msg: str = ..., + verbose: bool = ..., + header: str = ..., + precision: SupportsIndex = ..., + equal_nan: bool = ..., + equal_inf: bool = ..., + *, + strict: bool = ... +) -> None: ... + +def assert_array_equal( + x: ArrayLike, + y: ArrayLike, + err_msg: str = ..., + verbose: bool = ..., + *, + strict: bool = ... +) -> None: ... + +def assert_array_almost_equal( + x: _ArrayLikeNumber_co | _ArrayLikeObject_co, + y: _ArrayLikeNumber_co | _ArrayLikeObject_co, + decimal: float = ..., + err_msg: str = ..., + verbose: bool = ..., +) -> None: ... + +@overload +def assert_array_less( + x: _ArrayLikeNumber_co | _ArrayLikeObject_co, + y: _ArrayLikeNumber_co | _ArrayLikeObject_co, + err_msg: str = ..., + verbose: bool = ..., +) -> None: ... +@overload +def assert_array_less( + x: _ArrayLikeTD64_co, + y: _ArrayLikeTD64_co, + err_msg: str = ..., + verbose: bool = ..., +) -> None: ... +@overload +def assert_array_less( + x: _ArrayLikeDT64_co, + y: _ArrayLikeDT64_co, + err_msg: str = ..., + verbose: bool = ..., +) -> None: ... + +def runstring( + astr: str | bytes | types.CodeType, + dict: None | dict[str, Any], +) -> Any: ... + +def assert_string_equal(actual: str, desired: str) -> None: ... + +def rundocs( + filename: None | str | os.PathLike[str] = ..., + raise_on_error: bool = ..., +) -> None: ... + +def raises(*args: type[BaseException]) -> Callable[[_FT], _FT]: ... + +@overload +def assert_raises( # type: ignore + expected_exception: type[BaseException] | tuple[type[BaseException], ...], + callable: Callable[_P, Any], + /, + *args: _P.args, + **kwargs: _P.kwargs, +) -> None: ... +@overload +def assert_raises( + expected_exception: type[_ET] | tuple[type[_ET], ...], + *, + msg: None | str = ..., +) -> unittest.case._AssertRaisesContext[_ET]: ... + +@overload +def assert_raises_regex( + expected_exception: type[BaseException] | tuple[type[BaseException], ...], + expected_regex: str | bytes | Pattern[Any], + callable: Callable[_P, Any], + /, + *args: _P.args, + **kwargs: _P.kwargs, +) -> None: ... +@overload +def assert_raises_regex( + expected_exception: type[_ET] | tuple[type[_ET], ...], + expected_regex: str | bytes | Pattern[Any], + *, + msg: None | str = ..., +) -> unittest.case._AssertRaisesContext[_ET]: ... + +def decorate_methods( + cls: type[Any], + decorator: Callable[[Callable[..., Any]], Any], + testmatch: None | str | bytes | Pattern[Any] = ..., +) -> None: ... + +def measure( + code_str: str | bytes | ast.mod | ast.AST, + times: int = ..., + label: None | str = ..., +) -> float: ... + +@overload +def assert_allclose( + actual: _ArrayLikeNumber_co | _ArrayLikeObject_co, + desired: _ArrayLikeNumber_co | _ArrayLikeObject_co, + rtol: float = ..., + atol: float = ..., + equal_nan: bool = ..., + err_msg: str = ..., + verbose: bool = ..., +) -> None: ... +@overload +def assert_allclose( + actual: _ArrayLikeTD64_co, + desired: _ArrayLikeTD64_co, + rtol: float = ..., + atol: float = ..., + equal_nan: bool = ..., + err_msg: str = ..., + verbose: bool = ..., +) -> None: ... + +def assert_array_almost_equal_nulp( + x: _ArrayLikeNumber_co, + y: _ArrayLikeNumber_co, + nulp: float = ..., +) -> None: ... + +def assert_array_max_ulp( + a: _ArrayLikeNumber_co, + b: _ArrayLikeNumber_co, + maxulp: float = ..., + dtype: DTypeLike = ..., +) -> NDArray[Any]: ... + +@overload +def assert_warns( + warning_class: type[Warning], +) -> contextlib._GeneratorContextManager[None]: ... +@overload +def assert_warns( + warning_class: type[Warning], + func: Callable[_P, _T], + /, + *args: _P.args, + **kwargs: _P.kwargs, +) -> _T: ... + +@overload +def assert_no_warnings() -> contextlib._GeneratorContextManager[None]: ... +@overload +def assert_no_warnings( + func: Callable[_P, _T], + /, + *args: _P.args, + **kwargs: _P.kwargs, +) -> _T: ... + +@overload +def tempdir( + suffix: None = ..., + prefix: None = ..., + dir: None = ..., +) -> contextlib._GeneratorContextManager[str]: ... +@overload +def tempdir( + suffix: None | AnyStr = ..., + prefix: None | AnyStr = ..., + dir: None | AnyStr | os.PathLike[AnyStr] = ..., +) -> contextlib._GeneratorContextManager[AnyStr]: ... + +@overload +def temppath( + suffix: None = ..., + prefix: None = ..., + dir: None = ..., + text: bool = ..., +) -> contextlib._GeneratorContextManager[str]: ... +@overload +def temppath( + suffix: None | AnyStr = ..., + prefix: None | AnyStr = ..., + dir: None | AnyStr | os.PathLike[AnyStr] = ..., + text: bool = ..., +) -> contextlib._GeneratorContextManager[AnyStr]: ... + +@overload +def assert_no_gc_cycles() -> contextlib._GeneratorContextManager[None]: ... +@overload +def assert_no_gc_cycles( + func: Callable[_P, Any], + /, + *args: _P.args, + **kwargs: _P.kwargs, +) -> None: ... + +def break_cycles() -> None: ... |