about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/numpy/random/_generator.pyi
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/random/_generator.pyi')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/random/_generator.pyi681
1 files changed, 681 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_generator.pyi b/.venv/lib/python3.12/site-packages/numpy/random/_generator.pyi
new file mode 100644
index 00000000..e1cdefb1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/random/_generator.pyi
@@ -0,0 +1,681 @@
+from collections.abc import Callable
+from typing import Any, Union, overload, TypeVar, Literal
+
+from numpy import (
+    bool_,
+    dtype,
+    float32,
+    float64,
+    int8,
+    int16,
+    int32,
+    int64,
+    int_,
+    ndarray,
+    uint,
+    uint8,
+    uint16,
+    uint32,
+    uint64,
+)
+from numpy.random import BitGenerator, SeedSequence
+from numpy._typing import (
+    ArrayLike,
+    _ArrayLikeFloat_co,
+    _ArrayLikeInt_co,
+    _DoubleCodes,
+    _DTypeLikeBool,
+    _DTypeLikeInt,
+    _DTypeLikeUInt,
+    _Float32Codes,
+    _Float64Codes,
+    _FloatLike_co,
+    _Int8Codes,
+    _Int16Codes,
+    _Int32Codes,
+    _Int64Codes,
+    _IntCodes,
+    _ShapeLike,
+    _SingleCodes,
+    _SupportsDType,
+    _UInt8Codes,
+    _UInt16Codes,
+    _UInt32Codes,
+    _UInt64Codes,
+    _UIntCodes,
+)
+
+_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
+
+_DTypeLikeFloat32 = Union[
+    dtype[float32],
+    _SupportsDType[dtype[float32]],
+    type[float32],
+    _Float32Codes,
+    _SingleCodes,
+]
+
+_DTypeLikeFloat64 = Union[
+    dtype[float64],
+    _SupportsDType[dtype[float64]],
+    type[float],
+    type[float64],
+    _Float64Codes,
+    _DoubleCodes,
+]
+
+class Generator:
+    def __init__(self, bit_generator: BitGenerator) -> None: ...
+    def __repr__(self) -> str: ...
+    def __str__(self) -> str: ...
+    def __getstate__(self) -> dict[str, Any]: ...
+    def __setstate__(self, state: dict[str, Any]) -> None: ...
+    def __reduce__(self) -> tuple[Callable[[str], Generator], tuple[str], dict[str, Any]]: ...
+    @property
+    def bit_generator(self) -> BitGenerator: ...
+    def spawn(self, n_children: int) -> list[Generator]: ...
+    def bytes(self, length: int) -> bytes: ...
+    @overload
+    def standard_normal(  # type: ignore[misc]
+        self,
+        size: None = ...,
+        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
+        out: None = ...,
+    ) -> float: ...
+    @overload
+    def standard_normal(  # type: ignore[misc]
+        self,
+        size: _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def standard_normal(  # type: ignore[misc]
+        self,
+        *,
+        out: ndarray[Any, dtype[float64]] = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def standard_normal(  # type: ignore[misc]
+        self,
+        size: _ShapeLike = ...,
+        dtype: _DTypeLikeFloat32 = ...,
+        out: None | ndarray[Any, dtype[float32]] = ...,
+    ) -> ndarray[Any, dtype[float32]]: ...
+    @overload
+    def standard_normal(  # type: ignore[misc]
+        self,
+        size: _ShapeLike = ...,
+        dtype: _DTypeLikeFloat64 = ...,
+        out: None | ndarray[Any, dtype[float64]] = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def permutation(self, x: int, axis: int = ...) -> ndarray[Any, dtype[int64]]: ...
+    @overload
+    def permutation(self, x: ArrayLike, axis: int = ...) -> ndarray[Any, Any]: ...
+    @overload
+    def standard_exponential(  # type: ignore[misc]
+        self,
+        size: None = ...,
+        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
+        method: Literal["zig", "inv"] = ...,
+        out: None = ...,
+    ) -> float: ...
+    @overload
+    def standard_exponential(
+        self,
+        size: _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def standard_exponential(
+        self,
+        *,
+        out: ndarray[Any, dtype[float64]] = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def standard_exponential(
+        self,
+        size: _ShapeLike = ...,
+        *,
+        method: Literal["zig", "inv"] = ...,
+        out: None | ndarray[Any, dtype[float64]] = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def standard_exponential(
+        self,
+        size: _ShapeLike = ...,
+        dtype: _DTypeLikeFloat32 = ...,
+        method: Literal["zig", "inv"] = ...,
+        out: None | ndarray[Any, dtype[float32]] = ...,
+    ) -> ndarray[Any, dtype[float32]]: ...
+    @overload
+    def standard_exponential(
+        self,
+        size: _ShapeLike = ...,
+        dtype: _DTypeLikeFloat64 = ...,
+        method: Literal["zig", "inv"] = ...,
+        out: None | ndarray[Any, dtype[float64]] = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def random(  # type: ignore[misc]
+        self,
+        size: None = ...,
+        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
+        out: None = ...,
+    ) -> float: ...
+    @overload
+    def random(
+        self,
+        *,
+        out: ndarray[Any, dtype[float64]] = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def random(
+        self,
+        size: _ShapeLike = ...,
+        *,
+        out: None | ndarray[Any, dtype[float64]] = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def random(
+        self,
+        size: _ShapeLike = ...,
+        dtype: _DTypeLikeFloat32 = ...,
+        out: None | ndarray[Any, dtype[float32]] = ...,
+    ) -> ndarray[Any, dtype[float32]]: ...
+    @overload
+    def random(
+        self,
+        size: _ShapeLike = ...,
+        dtype: _DTypeLikeFloat64 = ...,
+        out: None | ndarray[Any, dtype[float64]] = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def beta(
+        self,
+        a: _FloatLike_co,
+        b: _FloatLike_co,
+        size: None = ...,
+    ) -> float: ...  # type: ignore[misc]
+    @overload
+    def beta(
+        self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def exponential(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def exponential(
+        self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def integers(  # type: ignore[misc]
+        self,
+        low: int,
+        high: None | int = ...,
+    ) -> int: ...
+    @overload
+    def integers(  # type: ignore[misc]
+        self,
+        low: int,
+        high: None | int = ...,
+        size: None = ...,
+        dtype: _DTypeLikeBool = ...,
+        endpoint: bool = ...,
+    ) -> bool: ...
+    @overload
+    def integers(  # type: ignore[misc]
+        self,
+        low: int,
+        high: None | int = ...,
+        size: None = ...,
+        dtype: _DTypeLikeInt | _DTypeLikeUInt = ...,
+        endpoint: bool = ...,
+    ) -> int: ...
+    @overload
+    def integers(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[int64]]: ...
+    @overload
+    def integers(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: _DTypeLikeBool = ...,
+        endpoint: bool = ...,
+    ) -> ndarray[Any, dtype[bool_]]: ...
+    @overload
+    def integers(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ...,
+        endpoint: bool = ...,
+    ) -> ndarray[Any, dtype[int8]]: ...
+    @overload
+    def integers(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ...,
+        endpoint: bool = ...,
+    ) -> ndarray[Any, dtype[int16]]: ...
+    @overload
+    def integers(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ...,
+        endpoint: bool = ...,
+    ) -> ndarray[Any, dtype[int32]]: ...
+    @overload
+    def integers(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ...,
+        endpoint: bool = ...,
+    ) -> ndarray[Any, dtype[int64]]: ...
+    @overload
+    def integers(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ...,
+        endpoint: bool = ...,
+    ) -> ndarray[Any, dtype[uint8]]: ...
+    @overload
+    def integers(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ...,
+        endpoint: bool = ...,
+    ) -> ndarray[Any, dtype[uint16]]: ...
+    @overload
+    def integers(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ...,
+        endpoint: bool = ...,
+    ) -> ndarray[Any, dtype[uint32]]: ...
+    @overload
+    def integers(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ...,
+        endpoint: bool = ...,
+    ) -> ndarray[Any, dtype[uint64]]: ...
+    @overload
+    def integers(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ...,
+        endpoint: bool = ...,
+    ) -> ndarray[Any, dtype[int_]]: ...
+    @overload
+    def integers(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ...,
+        endpoint: bool = ...,
+    ) -> ndarray[Any, dtype[uint]]: ...
+    # TODO: Use a TypeVar _T here to get away from Any output?  Should be int->ndarray[Any,dtype[int64]], ArrayLike[_T] -> _T | ndarray[Any,Any]
+    @overload
+    def choice(
+        self,
+        a: int,
+        size: None = ...,
+        replace: bool = ...,
+        p: None | _ArrayLikeFloat_co = ...,
+        axis: int = ...,
+        shuffle: bool = ...,
+    ) -> int: ...
+    @overload
+    def choice(
+        self,
+        a: int,
+        size: _ShapeLike = ...,
+        replace: bool = ...,
+        p: None | _ArrayLikeFloat_co = ...,
+        axis: int = ...,
+        shuffle: bool = ...,
+    ) -> ndarray[Any, dtype[int64]]: ...
+    @overload
+    def choice(
+        self,
+        a: ArrayLike,
+        size: None = ...,
+        replace: bool = ...,
+        p: None | _ArrayLikeFloat_co = ...,
+        axis: int = ...,
+        shuffle: bool = ...,
+    ) -> Any: ...
+    @overload
+    def choice(
+        self,
+        a: ArrayLike,
+        size: _ShapeLike = ...,
+        replace: bool = ...,
+        p: None | _ArrayLikeFloat_co = ...,
+        axis: int = ...,
+        shuffle: bool = ...,
+    ) -> ndarray[Any, Any]: ...
+    @overload
+    def uniform(
+        self,
+        low: _FloatLike_co = ...,
+        high: _FloatLike_co = ...,
+        size: None = ...,
+    ) -> float: ...  # type: ignore[misc]
+    @overload
+    def uniform(
+        self,
+        low: _ArrayLikeFloat_co = ...,
+        high: _ArrayLikeFloat_co = ...,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def normal(
+        self,
+        loc: _FloatLike_co = ...,
+        scale: _FloatLike_co = ...,
+        size: None = ...,
+    ) -> float: ...  # type: ignore[misc]
+    @overload
+    def normal(
+        self,
+        loc: _ArrayLikeFloat_co = ...,
+        scale: _ArrayLikeFloat_co = ...,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def standard_gamma(  # type: ignore[misc]
+        self,
+        shape: _FloatLike_co,
+        size: None = ...,
+        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
+        out: None = ...,
+    ) -> float: ...
+    @overload
+    def standard_gamma(
+        self,
+        shape: _ArrayLikeFloat_co,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def standard_gamma(
+        self,
+        shape: _ArrayLikeFloat_co,
+        *,
+        out: ndarray[Any, dtype[float64]] = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def standard_gamma(
+        self,
+        shape: _ArrayLikeFloat_co,
+        size: None | _ShapeLike = ...,
+        dtype: _DTypeLikeFloat32 = ...,
+        out: None | ndarray[Any, dtype[float32]] = ...,
+    ) -> ndarray[Any, dtype[float32]]: ...
+    @overload
+    def standard_gamma(
+        self,
+        shape: _ArrayLikeFloat_co,
+        size: None | _ShapeLike = ...,
+        dtype: _DTypeLikeFloat64 = ...,
+        out: None | ndarray[Any, dtype[float64]] = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def gamma(self, shape: _FloatLike_co, scale: _FloatLike_co = ..., size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def gamma(
+        self,
+        shape: _ArrayLikeFloat_co,
+        scale: _ArrayLikeFloat_co = ...,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def f(self, dfnum: _FloatLike_co, dfden: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def f(
+        self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def noncentral_f(self, dfnum: _FloatLike_co, dfden: _FloatLike_co, nonc: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def noncentral_f(
+        self,
+        dfnum: _ArrayLikeFloat_co,
+        dfden: _ArrayLikeFloat_co,
+        nonc: _ArrayLikeFloat_co,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def chisquare(self, df: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def chisquare(
+        self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def noncentral_chisquare(self, df: _FloatLike_co, nonc: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def noncentral_chisquare(
+        self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def standard_t(self, df: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def standard_t(
+        self, df: _ArrayLikeFloat_co, size: None = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def standard_t(
+        self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def vonmises(self, mu: _FloatLike_co, kappa: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def vonmises(
+        self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def pareto(self, a: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def pareto(
+        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def weibull(self, a: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def weibull(
+        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def power(self, a: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def power(
+        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def standard_cauchy(self, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def laplace(
+        self,
+        loc: _FloatLike_co = ...,
+        scale: _FloatLike_co = ...,
+        size: None = ...,
+    ) -> float: ...  # type: ignore[misc]
+    @overload
+    def laplace(
+        self,
+        loc: _ArrayLikeFloat_co = ...,
+        scale: _ArrayLikeFloat_co = ...,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def gumbel(
+        self,
+        loc: _FloatLike_co = ...,
+        scale: _FloatLike_co = ...,
+        size: None = ...,
+    ) -> float: ...  # type: ignore[misc]
+    @overload
+    def gumbel(
+        self,
+        loc: _ArrayLikeFloat_co = ...,
+        scale: _ArrayLikeFloat_co = ...,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def logistic(
+        self,
+        loc: _FloatLike_co = ...,
+        scale: _FloatLike_co = ...,
+        size: None = ...,
+    ) -> float: ...  # type: ignore[misc]
+    @overload
+    def logistic(
+        self,
+        loc: _ArrayLikeFloat_co = ...,
+        scale: _ArrayLikeFloat_co = ...,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def lognormal(
+        self,
+        mean: _FloatLike_co = ...,
+        sigma: _FloatLike_co = ...,
+        size: None = ...,
+    ) -> float: ...  # type: ignore[misc]
+    @overload
+    def lognormal(
+        self,
+        mean: _ArrayLikeFloat_co = ...,
+        sigma: _ArrayLikeFloat_co = ...,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def rayleigh(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def rayleigh(
+        self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def wald(self, mean: _FloatLike_co, scale: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def wald(
+        self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def triangular(
+        self,
+        left: _FloatLike_co,
+        mode: _FloatLike_co,
+        right: _FloatLike_co,
+        size: None = ...,
+    ) -> float: ...  # type: ignore[misc]
+    @overload
+    def triangular(
+        self,
+        left: _ArrayLikeFloat_co,
+        mode: _ArrayLikeFloat_co,
+        right: _ArrayLikeFloat_co,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def binomial(self, n: int, p: _FloatLike_co, size: None = ...) -> int: ...  # type: ignore[misc]
+    @overload
+    def binomial(
+        self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[int64]]: ...
+    @overload
+    def negative_binomial(self, n: _FloatLike_co, p: _FloatLike_co, size: None = ...) -> int: ...  # type: ignore[misc]
+    @overload
+    def negative_binomial(
+        self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[int64]]: ...
+    @overload
+    def poisson(self, lam: _FloatLike_co = ..., size: None = ...) -> int: ...  # type: ignore[misc]
+    @overload
+    def poisson(
+        self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[int64]]: ...
+    @overload
+    def zipf(self, a: _FloatLike_co, size: None = ...) -> int: ...  # type: ignore[misc]
+    @overload
+    def zipf(
+        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[int64]]: ...
+    @overload
+    def geometric(self, p: _FloatLike_co, size: None = ...) -> int: ...  # type: ignore[misc]
+    @overload
+    def geometric(
+        self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[int64]]: ...
+    @overload
+    def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ...  # type: ignore[misc]
+    @overload
+    def hypergeometric(
+        self,
+        ngood: _ArrayLikeInt_co,
+        nbad: _ArrayLikeInt_co,
+        nsample: _ArrayLikeInt_co,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[int64]]: ...
+    @overload
+    def logseries(self, p: _FloatLike_co, size: None = ...) -> int: ...  # type: ignore[misc]
+    @overload
+    def logseries(
+        self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[int64]]: ...
+    def multivariate_normal(
+        self,
+        mean: _ArrayLikeFloat_co,
+        cov: _ArrayLikeFloat_co,
+        size: None | _ShapeLike = ...,
+        check_valid: Literal["warn", "raise", "ignore"] = ...,
+        tol: float = ...,
+        *,
+        method: Literal["svd", "eigh", "cholesky"] = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    def multinomial(
+        self, n: _ArrayLikeInt_co,
+            pvals: _ArrayLikeFloat_co,
+            size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[int64]]: ...
+    def multivariate_hypergeometric(
+        self,
+        colors: _ArrayLikeInt_co,
+        nsample: int,
+        size: None | _ShapeLike = ...,
+        method: Literal["marginals", "count"] = ...,
+    ) -> ndarray[Any, dtype[int64]]: ...
+    def dirichlet(
+        self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    def permuted(
+        self, x: ArrayLike, *, axis: None | int = ..., out: None | ndarray[Any, Any] = ...
+    ) -> ndarray[Any, Any]: ...
+    def shuffle(self, x: ArrayLike, axis: int = ...) -> None: ...
+
+def default_rng(
+    seed: None | _ArrayLikeInt_co | SeedSequence | BitGenerator | Generator = ...
+) -> Generator: ...