aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/random/_generator.pyi
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/numpy/random/_generator.pyi
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/random/_generator.pyi')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/random/_generator.pyi681
1 files changed, 681 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_generator.pyi b/.venv/lib/python3.12/site-packages/numpy/random/_generator.pyi
new file mode 100644
index 00000000..e1cdefb1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/random/_generator.pyi
@@ -0,0 +1,681 @@
+from collections.abc import Callable
+from typing import Any, Union, overload, TypeVar, Literal
+
+from numpy import (
+ bool_,
+ dtype,
+ float32,
+ float64,
+ int8,
+ int16,
+ int32,
+ int64,
+ int_,
+ ndarray,
+ uint,
+ uint8,
+ uint16,
+ uint32,
+ uint64,
+)
+from numpy.random import BitGenerator, SeedSequence
+from numpy._typing import (
+ ArrayLike,
+ _ArrayLikeFloat_co,
+ _ArrayLikeInt_co,
+ _DoubleCodes,
+ _DTypeLikeBool,
+ _DTypeLikeInt,
+ _DTypeLikeUInt,
+ _Float32Codes,
+ _Float64Codes,
+ _FloatLike_co,
+ _Int8Codes,
+ _Int16Codes,
+ _Int32Codes,
+ _Int64Codes,
+ _IntCodes,
+ _ShapeLike,
+ _SingleCodes,
+ _SupportsDType,
+ _UInt8Codes,
+ _UInt16Codes,
+ _UInt32Codes,
+ _UInt64Codes,
+ _UIntCodes,
+)
+
+_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
+
+_DTypeLikeFloat32 = Union[
+ dtype[float32],
+ _SupportsDType[dtype[float32]],
+ type[float32],
+ _Float32Codes,
+ _SingleCodes,
+]
+
+_DTypeLikeFloat64 = Union[
+ dtype[float64],
+ _SupportsDType[dtype[float64]],
+ type[float],
+ type[float64],
+ _Float64Codes,
+ _DoubleCodes,
+]
+
+class Generator:
+ def __init__(self, bit_generator: BitGenerator) -> None: ...
+ def __repr__(self) -> str: ...
+ def __str__(self) -> str: ...
+ def __getstate__(self) -> dict[str, Any]: ...
+ def __setstate__(self, state: dict[str, Any]) -> None: ...
+ def __reduce__(self) -> tuple[Callable[[str], Generator], tuple[str], dict[str, Any]]: ...
+ @property
+ def bit_generator(self) -> BitGenerator: ...
+ def spawn(self, n_children: int) -> list[Generator]: ...
+ def bytes(self, length: int) -> bytes: ...
+ @overload
+ def standard_normal( # type: ignore[misc]
+ self,
+ size: None = ...,
+ dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
+ out: None = ...,
+ ) -> float: ...
+ @overload
+ def standard_normal( # type: ignore[misc]
+ self,
+ size: _ShapeLike = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def standard_normal( # type: ignore[misc]
+ self,
+ *,
+ out: ndarray[Any, dtype[float64]] = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def standard_normal( # type: ignore[misc]
+ self,
+ size: _ShapeLike = ...,
+ dtype: _DTypeLikeFloat32 = ...,
+ out: None | ndarray[Any, dtype[float32]] = ...,
+ ) -> ndarray[Any, dtype[float32]]: ...
+ @overload
+ def standard_normal( # type: ignore[misc]
+ self,
+ size: _ShapeLike = ...,
+ dtype: _DTypeLikeFloat64 = ...,
+ out: None | ndarray[Any, dtype[float64]] = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def permutation(self, x: int, axis: int = ...) -> ndarray[Any, dtype[int64]]: ...
+ @overload
+ def permutation(self, x: ArrayLike, axis: int = ...) -> ndarray[Any, Any]: ...
+ @overload
+ def standard_exponential( # type: ignore[misc]
+ self,
+ size: None = ...,
+ dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
+ method: Literal["zig", "inv"] = ...,
+ out: None = ...,
+ ) -> float: ...
+ @overload
+ def standard_exponential(
+ self,
+ size: _ShapeLike = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def standard_exponential(
+ self,
+ *,
+ out: ndarray[Any, dtype[float64]] = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def standard_exponential(
+ self,
+ size: _ShapeLike = ...,
+ *,
+ method: Literal["zig", "inv"] = ...,
+ out: None | ndarray[Any, dtype[float64]] = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def standard_exponential(
+ self,
+ size: _ShapeLike = ...,
+ dtype: _DTypeLikeFloat32 = ...,
+ method: Literal["zig", "inv"] = ...,
+ out: None | ndarray[Any, dtype[float32]] = ...,
+ ) -> ndarray[Any, dtype[float32]]: ...
+ @overload
+ def standard_exponential(
+ self,
+ size: _ShapeLike = ...,
+ dtype: _DTypeLikeFloat64 = ...,
+ method: Literal["zig", "inv"] = ...,
+ out: None | ndarray[Any, dtype[float64]] = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def random( # type: ignore[misc]
+ self,
+ size: None = ...,
+ dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
+ out: None = ...,
+ ) -> float: ...
+ @overload
+ def random(
+ self,
+ *,
+ out: ndarray[Any, dtype[float64]] = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def random(
+ self,
+ size: _ShapeLike = ...,
+ *,
+ out: None | ndarray[Any, dtype[float64]] = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def random(
+ self,
+ size: _ShapeLike = ...,
+ dtype: _DTypeLikeFloat32 = ...,
+ out: None | ndarray[Any, dtype[float32]] = ...,
+ ) -> ndarray[Any, dtype[float32]]: ...
+ @overload
+ def random(
+ self,
+ size: _ShapeLike = ...,
+ dtype: _DTypeLikeFloat64 = ...,
+ out: None | ndarray[Any, dtype[float64]] = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def beta(
+ self,
+ a: _FloatLike_co,
+ b: _FloatLike_co,
+ size: None = ...,
+ ) -> float: ... # type: ignore[misc]
+ @overload
+ def beta(
+ self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def exponential(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc]
+ @overload
+ def exponential(
+ self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def integers( # type: ignore[misc]
+ self,
+ low: int,
+ high: None | int = ...,
+ ) -> int: ...
+ @overload
+ def integers( # type: ignore[misc]
+ self,
+ low: int,
+ high: None | int = ...,
+ size: None = ...,
+ dtype: _DTypeLikeBool = ...,
+ endpoint: bool = ...,
+ ) -> bool: ...
+ @overload
+ def integers( # type: ignore[misc]
+ self,
+ low: int,
+ high: None | int = ...,
+ size: None = ...,
+ dtype: _DTypeLikeInt | _DTypeLikeUInt = ...,
+ endpoint: bool = ...,
+ ) -> int: ...
+ @overload
+ def integers( # type: ignore[misc]
+ self,
+ low: _ArrayLikeInt_co,
+ high: None | _ArrayLikeInt_co = ...,
+ size: None | _ShapeLike = ...,
+ ) -> ndarray[Any, dtype[int64]]: ...
+ @overload
+ def integers( # type: ignore[misc]
+ self,
+ low: _ArrayLikeInt_co,
+ high: None | _ArrayLikeInt_co = ...,
+ size: None | _ShapeLike = ...,
+ dtype: _DTypeLikeBool = ...,
+ endpoint: bool = ...,
+ ) -> ndarray[Any, dtype[bool_]]: ...
+ @overload
+ def integers( # type: ignore[misc]
+ self,
+ low: _ArrayLikeInt_co,
+ high: None | _ArrayLikeInt_co = ...,
+ size: None | _ShapeLike = ...,
+ dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ...,
+ endpoint: bool = ...,
+ ) -> ndarray[Any, dtype[int8]]: ...
+ @overload
+ def integers( # type: ignore[misc]
+ self,
+ low: _ArrayLikeInt_co,
+ high: None | _ArrayLikeInt_co = ...,
+ size: None | _ShapeLike = ...,
+ dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ...,
+ endpoint: bool = ...,
+ ) -> ndarray[Any, dtype[int16]]: ...
+ @overload
+ def integers( # type: ignore[misc]
+ self,
+ low: _ArrayLikeInt_co,
+ high: None | _ArrayLikeInt_co = ...,
+ size: None | _ShapeLike = ...,
+ dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ...,
+ endpoint: bool = ...,
+ ) -> ndarray[Any, dtype[int32]]: ...
+ @overload
+ def integers( # type: ignore[misc]
+ self,
+ low: _ArrayLikeInt_co,
+ high: None | _ArrayLikeInt_co = ...,
+ size: None | _ShapeLike = ...,
+ dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ...,
+ endpoint: bool = ...,
+ ) -> ndarray[Any, dtype[int64]]: ...
+ @overload
+ def integers( # type: ignore[misc]
+ self,
+ low: _ArrayLikeInt_co,
+ high: None | _ArrayLikeInt_co = ...,
+ size: None | _ShapeLike = ...,
+ dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ...,
+ endpoint: bool = ...,
+ ) -> ndarray[Any, dtype[uint8]]: ...
+ @overload
+ def integers( # type: ignore[misc]
+ self,
+ low: _ArrayLikeInt_co,
+ high: None | _ArrayLikeInt_co = ...,
+ size: None | _ShapeLike = ...,
+ dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ...,
+ endpoint: bool = ...,
+ ) -> ndarray[Any, dtype[uint16]]: ...
+ @overload
+ def integers( # type: ignore[misc]
+ self,
+ low: _ArrayLikeInt_co,
+ high: None | _ArrayLikeInt_co = ...,
+ size: None | _ShapeLike = ...,
+ dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ...,
+ endpoint: bool = ...,
+ ) -> ndarray[Any, dtype[uint32]]: ...
+ @overload
+ def integers( # type: ignore[misc]
+ self,
+ low: _ArrayLikeInt_co,
+ high: None | _ArrayLikeInt_co = ...,
+ size: None | _ShapeLike = ...,
+ dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ...,
+ endpoint: bool = ...,
+ ) -> ndarray[Any, dtype[uint64]]: ...
+ @overload
+ def integers( # type: ignore[misc]
+ self,
+ low: _ArrayLikeInt_co,
+ high: None | _ArrayLikeInt_co = ...,
+ size: None | _ShapeLike = ...,
+ dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ...,
+ endpoint: bool = ...,
+ ) -> ndarray[Any, dtype[int_]]: ...
+ @overload
+ def integers( # type: ignore[misc]
+ self,
+ low: _ArrayLikeInt_co,
+ high: None | _ArrayLikeInt_co = ...,
+ size: None | _ShapeLike = ...,
+ dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ...,
+ endpoint: bool = ...,
+ ) -> ndarray[Any, dtype[uint]]: ...
+ # TODO: Use a TypeVar _T here to get away from Any output? Should be int->ndarray[Any,dtype[int64]], ArrayLike[_T] -> _T | ndarray[Any,Any]
+ @overload
+ def choice(
+ self,
+ a: int,
+ size: None = ...,
+ replace: bool = ...,
+ p: None | _ArrayLikeFloat_co = ...,
+ axis: int = ...,
+ shuffle: bool = ...,
+ ) -> int: ...
+ @overload
+ def choice(
+ self,
+ a: int,
+ size: _ShapeLike = ...,
+ replace: bool = ...,
+ p: None | _ArrayLikeFloat_co = ...,
+ axis: int = ...,
+ shuffle: bool = ...,
+ ) -> ndarray[Any, dtype[int64]]: ...
+ @overload
+ def choice(
+ self,
+ a: ArrayLike,
+ size: None = ...,
+ replace: bool = ...,
+ p: None | _ArrayLikeFloat_co = ...,
+ axis: int = ...,
+ shuffle: bool = ...,
+ ) -> Any: ...
+ @overload
+ def choice(
+ self,
+ a: ArrayLike,
+ size: _ShapeLike = ...,
+ replace: bool = ...,
+ p: None | _ArrayLikeFloat_co = ...,
+ axis: int = ...,
+ shuffle: bool = ...,
+ ) -> ndarray[Any, Any]: ...
+ @overload
+ def uniform(
+ self,
+ low: _FloatLike_co = ...,
+ high: _FloatLike_co = ...,
+ size: None = ...,
+ ) -> float: ... # type: ignore[misc]
+ @overload
+ def uniform(
+ self,
+ low: _ArrayLikeFloat_co = ...,
+ high: _ArrayLikeFloat_co = ...,
+ size: None | _ShapeLike = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def normal(
+ self,
+ loc: _FloatLike_co = ...,
+ scale: _FloatLike_co = ...,
+ size: None = ...,
+ ) -> float: ... # type: ignore[misc]
+ @overload
+ def normal(
+ self,
+ loc: _ArrayLikeFloat_co = ...,
+ scale: _ArrayLikeFloat_co = ...,
+ size: None | _ShapeLike = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def standard_gamma( # type: ignore[misc]
+ self,
+ shape: _FloatLike_co,
+ size: None = ...,
+ dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
+ out: None = ...,
+ ) -> float: ...
+ @overload
+ def standard_gamma(
+ self,
+ shape: _ArrayLikeFloat_co,
+ size: None | _ShapeLike = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def standard_gamma(
+ self,
+ shape: _ArrayLikeFloat_co,
+ *,
+ out: ndarray[Any, dtype[float64]] = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def standard_gamma(
+ self,
+ shape: _ArrayLikeFloat_co,
+ size: None | _ShapeLike = ...,
+ dtype: _DTypeLikeFloat32 = ...,
+ out: None | ndarray[Any, dtype[float32]] = ...,
+ ) -> ndarray[Any, dtype[float32]]: ...
+ @overload
+ def standard_gamma(
+ self,
+ shape: _ArrayLikeFloat_co,
+ size: None | _ShapeLike = ...,
+ dtype: _DTypeLikeFloat64 = ...,
+ out: None | ndarray[Any, dtype[float64]] = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def gamma(self, shape: _FloatLike_co, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc]
+ @overload
+ def gamma(
+ self,
+ shape: _ArrayLikeFloat_co,
+ scale: _ArrayLikeFloat_co = ...,
+ size: None | _ShapeLike = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def f(self, dfnum: _FloatLike_co, dfden: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
+ @overload
+ def f(
+ self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def noncentral_f(self, dfnum: _FloatLike_co, dfden: _FloatLike_co, nonc: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
+ @overload
+ def noncentral_f(
+ self,
+ dfnum: _ArrayLikeFloat_co,
+ dfden: _ArrayLikeFloat_co,
+ nonc: _ArrayLikeFloat_co,
+ size: None | _ShapeLike = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def chisquare(self, df: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
+ @overload
+ def chisquare(
+ self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def noncentral_chisquare(self, df: _FloatLike_co, nonc: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
+ @overload
+ def noncentral_chisquare(
+ self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def standard_t(self, df: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
+ @overload
+ def standard_t(
+ self, df: _ArrayLikeFloat_co, size: None = ...
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def standard_t(
+ self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def vonmises(self, mu: _FloatLike_co, kappa: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
+ @overload
+ def vonmises(
+ self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def pareto(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
+ @overload
+ def pareto(
+ self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def weibull(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
+ @overload
+ def weibull(
+ self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def power(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
+ @overload
+ def power(
+ self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc]
+ @overload
+ def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def laplace(
+ self,
+ loc: _FloatLike_co = ...,
+ scale: _FloatLike_co = ...,
+ size: None = ...,
+ ) -> float: ... # type: ignore[misc]
+ @overload
+ def laplace(
+ self,
+ loc: _ArrayLikeFloat_co = ...,
+ scale: _ArrayLikeFloat_co = ...,
+ size: None | _ShapeLike = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def gumbel(
+ self,
+ loc: _FloatLike_co = ...,
+ scale: _FloatLike_co = ...,
+ size: None = ...,
+ ) -> float: ... # type: ignore[misc]
+ @overload
+ def gumbel(
+ self,
+ loc: _ArrayLikeFloat_co = ...,
+ scale: _ArrayLikeFloat_co = ...,
+ size: None | _ShapeLike = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def logistic(
+ self,
+ loc: _FloatLike_co = ...,
+ scale: _FloatLike_co = ...,
+ size: None = ...,
+ ) -> float: ... # type: ignore[misc]
+ @overload
+ def logistic(
+ self,
+ loc: _ArrayLikeFloat_co = ...,
+ scale: _ArrayLikeFloat_co = ...,
+ size: None | _ShapeLike = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def lognormal(
+ self,
+ mean: _FloatLike_co = ...,
+ sigma: _FloatLike_co = ...,
+ size: None = ...,
+ ) -> float: ... # type: ignore[misc]
+ @overload
+ def lognormal(
+ self,
+ mean: _ArrayLikeFloat_co = ...,
+ sigma: _ArrayLikeFloat_co = ...,
+ size: None | _ShapeLike = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def rayleigh(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc]
+ @overload
+ def rayleigh(
+ self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def wald(self, mean: _FloatLike_co, scale: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
+ @overload
+ def wald(
+ self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def triangular(
+ self,
+ left: _FloatLike_co,
+ mode: _FloatLike_co,
+ right: _FloatLike_co,
+ size: None = ...,
+ ) -> float: ... # type: ignore[misc]
+ @overload
+ def triangular(
+ self,
+ left: _ArrayLikeFloat_co,
+ mode: _ArrayLikeFloat_co,
+ right: _ArrayLikeFloat_co,
+ size: None | _ShapeLike = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ @overload
+ def binomial(self, n: int, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
+ @overload
+ def binomial(
+ self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+ ) -> ndarray[Any, dtype[int64]]: ...
+ @overload
+ def negative_binomial(self, n: _FloatLike_co, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
+ @overload
+ def negative_binomial(
+ self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+ ) -> ndarray[Any, dtype[int64]]: ...
+ @overload
+ def poisson(self, lam: _FloatLike_co = ..., size: None = ...) -> int: ... # type: ignore[misc]
+ @overload
+ def poisson(
+ self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
+ ) -> ndarray[Any, dtype[int64]]: ...
+ @overload
+ def zipf(self, a: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
+ @overload
+ def zipf(
+ self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+ ) -> ndarray[Any, dtype[int64]]: ...
+ @overload
+ def geometric(self, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
+ @overload
+ def geometric(
+ self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+ ) -> ndarray[Any, dtype[int64]]: ...
+ @overload
+ def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ... # type: ignore[misc]
+ @overload
+ def hypergeometric(
+ self,
+ ngood: _ArrayLikeInt_co,
+ nbad: _ArrayLikeInt_co,
+ nsample: _ArrayLikeInt_co,
+ size: None | _ShapeLike = ...,
+ ) -> ndarray[Any, dtype[int64]]: ...
+ @overload
+ def logseries(self, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
+ @overload
+ def logseries(
+ self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+ ) -> ndarray[Any, dtype[int64]]: ...
+ def multivariate_normal(
+ self,
+ mean: _ArrayLikeFloat_co,
+ cov: _ArrayLikeFloat_co,
+ size: None | _ShapeLike = ...,
+ check_valid: Literal["warn", "raise", "ignore"] = ...,
+ tol: float = ...,
+ *,
+ method: Literal["svd", "eigh", "cholesky"] = ...,
+ ) -> ndarray[Any, dtype[float64]]: ...
+ def multinomial(
+ self, n: _ArrayLikeInt_co,
+ pvals: _ArrayLikeFloat_co,
+ size: None | _ShapeLike = ...
+ ) -> ndarray[Any, dtype[int64]]: ...
+ def multivariate_hypergeometric(
+ self,
+ colors: _ArrayLikeInt_co,
+ nsample: int,
+ size: None | _ShapeLike = ...,
+ method: Literal["marginals", "count"] = ...,
+ ) -> ndarray[Any, dtype[int64]]: ...
+ def dirichlet(
+ self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+ ) -> ndarray[Any, dtype[float64]]: ...
+ def permuted(
+ self, x: ArrayLike, *, axis: None | int = ..., out: None | ndarray[Any, Any] = ...
+ ) -> ndarray[Any, Any]: ...
+ def shuffle(self, x: ArrayLike, axis: int = ...) -> None: ...
+
+def default_rng(
+ seed: None | _ArrayLikeInt_co | SeedSequence | BitGenerator | Generator = ...
+) -> Generator: ...