aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/core/tests/test_simd.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/core/tests/test_simd.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/core/tests/test_simd.py1333
1 files changed, 1333 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/tests/test_simd.py b/.venv/lib/python3.12/site-packages/numpy/core/tests/test_simd.py
new file mode 100644
index 00000000..92b56744
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/tests/test_simd.py
@@ -0,0 +1,1333 @@
+# NOTE: Please avoid the use of numpy.testing since NPYV intrinsics
+# may be involved in their functionality.
+import pytest, math, re
+import itertools
+import operator
+from numpy.core._simd import targets, clear_floatstatus, get_floatstatus
+from numpy.core._multiarray_umath import __cpu_baseline__
+
+def check_floatstatus(divbyzero=False, overflow=False,
+ underflow=False, invalid=False,
+ all=False):
+ #define NPY_FPE_DIVIDEBYZERO 1
+ #define NPY_FPE_OVERFLOW 2
+ #define NPY_FPE_UNDERFLOW 4
+ #define NPY_FPE_INVALID 8
+ err = get_floatstatus()
+ ret = (all or divbyzero) and (err & 1) != 0
+ ret |= (all or overflow) and (err & 2) != 0
+ ret |= (all or underflow) and (err & 4) != 0
+ ret |= (all or invalid) and (err & 8) != 0
+ return ret
+
+class _Test_Utility:
+ # submodule of the desired SIMD extension, e.g. targets["AVX512F"]
+ npyv = None
+ # the current data type suffix e.g. 's8'
+ sfx = None
+ # target name can be 'baseline' or one or more of CPU features
+ target_name = None
+
+ def __getattr__(self, attr):
+ """
+ To call NPV intrinsics without the attribute 'npyv' and
+ auto suffixing intrinsics according to class attribute 'sfx'
+ """
+ return getattr(self.npyv, attr + "_" + self.sfx)
+
+ def _x2(self, intrin_name):
+ return getattr(self.npyv, f"{intrin_name}_{self.sfx}x2")
+
+ def _data(self, start=None, count=None, reverse=False):
+ """
+ Create list of consecutive numbers according to number of vector's lanes.
+ """
+ if start is None:
+ start = 1
+ if count is None:
+ count = self.nlanes
+ rng = range(start, start + count)
+ if reverse:
+ rng = reversed(rng)
+ if self._is_fp():
+ return [x / 1.0 for x in rng]
+ return list(rng)
+
+ def _is_unsigned(self):
+ return self.sfx[0] == 'u'
+
+ def _is_signed(self):
+ return self.sfx[0] == 's'
+
+ def _is_fp(self):
+ return self.sfx[0] == 'f'
+
+ def _scalar_size(self):
+ return int(self.sfx[1:])
+
+ def _int_clip(self, seq):
+ if self._is_fp():
+ return seq
+ max_int = self._int_max()
+ min_int = self._int_min()
+ return [min(max(v, min_int), max_int) for v in seq]
+
+ def _int_max(self):
+ if self._is_fp():
+ return None
+ max_u = self._to_unsigned(self.setall(-1))[0]
+ if self._is_signed():
+ return max_u // 2
+ return max_u
+
+ def _int_min(self):
+ if self._is_fp():
+ return None
+ if self._is_unsigned():
+ return 0
+ return -(self._int_max() + 1)
+
+ def _true_mask(self):
+ max_unsig = getattr(self.npyv, "setall_u" + self.sfx[1:])(-1)
+ return max_unsig[0]
+
+ def _to_unsigned(self, vector):
+ if isinstance(vector, (list, tuple)):
+ return getattr(self.npyv, "load_u" + self.sfx[1:])(vector)
+ else:
+ sfx = vector.__name__.replace("npyv_", "")
+ if sfx[0] == "b":
+ cvt_intrin = "cvt_u{0}_b{0}"
+ else:
+ cvt_intrin = "reinterpret_u{0}_{1}"
+ return getattr(self.npyv, cvt_intrin.format(sfx[1:], sfx))(vector)
+
+ def _pinfinity(self):
+ return float("inf")
+
+ def _ninfinity(self):
+ return -float("inf")
+
+ def _nan(self):
+ return float("nan")
+
+ def _cpu_features(self):
+ target = self.target_name
+ if target == "baseline":
+ target = __cpu_baseline__
+ else:
+ target = target.split('__') # multi-target separator
+ return ' '.join(target)
+
+class _SIMD_BOOL(_Test_Utility):
+ """
+ To test all boolean vector types at once
+ """
+ def _nlanes(self):
+ return getattr(self.npyv, "nlanes_u" + self.sfx[1:])
+
+ def _data(self, start=None, count=None, reverse=False):
+ true_mask = self._true_mask()
+ rng = range(self._nlanes())
+ if reverse:
+ rng = reversed(rng)
+ return [true_mask if x % 2 else 0 for x in rng]
+
+ def _load_b(self, data):
+ len_str = self.sfx[1:]
+ load = getattr(self.npyv, "load_u" + len_str)
+ cvt = getattr(self.npyv, f"cvt_b{len_str}_u{len_str}")
+ return cvt(load(data))
+
+ def test_operators_logical(self):
+ """
+ Logical operations for boolean types.
+ Test intrinsics:
+ npyv_xor_##SFX, npyv_and_##SFX, npyv_or_##SFX, npyv_not_##SFX,
+ npyv_andc_b8, npvy_orc_b8, nvpy_xnor_b8
+ """
+ data_a = self._data()
+ data_b = self._data(reverse=True)
+ vdata_a = self._load_b(data_a)
+ vdata_b = self._load_b(data_b)
+
+ data_and = [a & b for a, b in zip(data_a, data_b)]
+ vand = getattr(self, "and")(vdata_a, vdata_b)
+ assert vand == data_and
+
+ data_or = [a | b for a, b in zip(data_a, data_b)]
+ vor = getattr(self, "or")(vdata_a, vdata_b)
+ assert vor == data_or
+
+ data_xor = [a ^ b for a, b in zip(data_a, data_b)]
+ vxor = getattr(self, "xor")(vdata_a, vdata_b)
+ assert vxor == data_xor
+
+ vnot = getattr(self, "not")(vdata_a)
+ assert vnot == data_b
+
+ # among the boolean types, andc, orc and xnor only support b8
+ if self.sfx not in ("b8"):
+ return
+
+ data_andc = [(a & ~b) & 0xFF for a, b in zip(data_a, data_b)]
+ vandc = getattr(self, "andc")(vdata_a, vdata_b)
+ assert data_andc == vandc
+
+ data_orc = [(a | ~b) & 0xFF for a, b in zip(data_a, data_b)]
+ vorc = getattr(self, "orc")(vdata_a, vdata_b)
+ assert data_orc == vorc
+
+ data_xnor = [~(a ^ b) & 0xFF for a, b in zip(data_a, data_b)]
+ vxnor = getattr(self, "xnor")(vdata_a, vdata_b)
+ assert data_xnor == vxnor
+
+ def test_tobits(self):
+ data2bits = lambda data: sum([int(x != 0) << i for i, x in enumerate(data, 0)])
+ for data in (self._data(), self._data(reverse=True)):
+ vdata = self._load_b(data)
+ data_bits = data2bits(data)
+ tobits = self.tobits(vdata)
+ bin_tobits = bin(tobits)
+ assert bin_tobits == bin(data_bits)
+
+ def test_pack(self):
+ """
+ Pack multiple vectors into one
+ Test intrinsics:
+ npyv_pack_b8_b16
+ npyv_pack_b8_b32
+ npyv_pack_b8_b64
+ """
+ if self.sfx not in ("b16", "b32", "b64"):
+ return
+ # create the vectors
+ data = self._data()
+ rdata = self._data(reverse=True)
+ vdata = self._load_b(data)
+ vrdata = self._load_b(rdata)
+ pack_simd = getattr(self.npyv, f"pack_b8_{self.sfx}")
+ # for scalar execution, concatenate the elements of the multiple lists
+ # into a single list (spack) and then iterate over the elements of
+ # the created list applying a mask to capture the first byte of them.
+ if self.sfx == "b16":
+ spack = [(i & 0xFF) for i in (list(rdata) + list(data))]
+ vpack = pack_simd(vrdata, vdata)
+ elif self.sfx == "b32":
+ spack = [(i & 0xFF) for i in (2*list(rdata) + 2*list(data))]
+ vpack = pack_simd(vrdata, vrdata, vdata, vdata)
+ elif self.sfx == "b64":
+ spack = [(i & 0xFF) for i in (4*list(rdata) + 4*list(data))]
+ vpack = pack_simd(vrdata, vrdata, vrdata, vrdata,
+ vdata, vdata, vdata, vdata)
+ assert vpack == spack
+
+ @pytest.mark.parametrize("intrin", ["any", "all"])
+ @pytest.mark.parametrize("data", (
+ [-1, 0],
+ [0, -1],
+ [-1],
+ [0]
+ ))
+ def test_operators_crosstest(self, intrin, data):
+ """
+ Test intrinsics:
+ npyv_any_##SFX
+ npyv_all_##SFX
+ """
+ data_a = self._load_b(data * self._nlanes())
+ func = eval(intrin)
+ intrin = getattr(self, intrin)
+ desired = func(data_a)
+ simd = intrin(data_a)
+ assert not not simd == desired
+
+class _SIMD_INT(_Test_Utility):
+ """
+ To test all integer vector types at once
+ """
+ def test_operators_shift(self):
+ if self.sfx in ("u8", "s8"):
+ return
+
+ data_a = self._data(self._int_max() - self.nlanes)
+ data_b = self._data(self._int_min(), reverse=True)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+
+ for count in range(self._scalar_size()):
+ # load to cast
+ data_shl_a = self.load([a << count for a in data_a])
+ # left shift
+ shl = self.shl(vdata_a, count)
+ assert shl == data_shl_a
+ # load to cast
+ data_shr_a = self.load([a >> count for a in data_a])
+ # right shift
+ shr = self.shr(vdata_a, count)
+ assert shr == data_shr_a
+
+ # shift by zero or max or out-range immediate constant is not applicable and illogical
+ for count in range(1, self._scalar_size()):
+ # load to cast
+ data_shl_a = self.load([a << count for a in data_a])
+ # left shift by an immediate constant
+ shli = self.shli(vdata_a, count)
+ assert shli == data_shl_a
+ # load to cast
+ data_shr_a = self.load([a >> count for a in data_a])
+ # right shift by an immediate constant
+ shri = self.shri(vdata_a, count)
+ assert shri == data_shr_a
+
+ def test_arithmetic_subadd_saturated(self):
+ if self.sfx in ("u32", "s32", "u64", "s64"):
+ return
+
+ data_a = self._data(self._int_max() - self.nlanes)
+ data_b = self._data(self._int_min(), reverse=True)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+
+ data_adds = self._int_clip([a + b for a, b in zip(data_a, data_b)])
+ adds = self.adds(vdata_a, vdata_b)
+ assert adds == data_adds
+
+ data_subs = self._int_clip([a - b for a, b in zip(data_a, data_b)])
+ subs = self.subs(vdata_a, vdata_b)
+ assert subs == data_subs
+
+ def test_math_max_min(self):
+ data_a = self._data()
+ data_b = self._data(self.nlanes)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+
+ data_max = [max(a, b) for a, b in zip(data_a, data_b)]
+ simd_max = self.max(vdata_a, vdata_b)
+ assert simd_max == data_max
+
+ data_min = [min(a, b) for a, b in zip(data_a, data_b)]
+ simd_min = self.min(vdata_a, vdata_b)
+ assert simd_min == data_min
+
+ @pytest.mark.parametrize("start", [-100, -10000, 0, 100, 10000])
+ def test_reduce_max_min(self, start):
+ """
+ Test intrinsics:
+ npyv_reduce_max_##sfx
+ npyv_reduce_min_##sfx
+ """
+ vdata_a = self.load(self._data(start))
+ assert self.reduce_max(vdata_a) == max(vdata_a)
+ assert self.reduce_min(vdata_a) == min(vdata_a)
+
+
+class _SIMD_FP32(_Test_Utility):
+ """
+ To only test single precision
+ """
+ def test_conversions(self):
+ """
+ Round to nearest even integer, assume CPU control register is set to rounding.
+ Test intrinsics:
+ npyv_round_s32_##SFX
+ """
+ features = self._cpu_features()
+ if not self.npyv.simd_f64 and re.match(r".*(NEON|ASIMD)", features):
+ # very costly to emulate nearest even on Armv7
+ # instead we round halves to up. e.g. 0.5 -> 1, -0.5 -> -1
+ _round = lambda v: int(v + (0.5 if v >= 0 else -0.5))
+ else:
+ _round = round
+ vdata_a = self.load(self._data())
+ vdata_a = self.sub(vdata_a, self.setall(0.5))
+ data_round = [_round(x) for x in vdata_a]
+ vround = self.round_s32(vdata_a)
+ assert vround == data_round
+
+class _SIMD_FP64(_Test_Utility):
+ """
+ To only test double precision
+ """
+ def test_conversions(self):
+ """
+ Round to nearest even integer, assume CPU control register is set to rounding.
+ Test intrinsics:
+ npyv_round_s32_##SFX
+ """
+ vdata_a = self.load(self._data())
+ vdata_a = self.sub(vdata_a, self.setall(0.5))
+ vdata_b = self.mul(vdata_a, self.setall(-1.5))
+ data_round = [round(x) for x in list(vdata_a) + list(vdata_b)]
+ vround = self.round_s32(vdata_a, vdata_b)
+ assert vround == data_round
+
+class _SIMD_FP(_Test_Utility):
+ """
+ To test all float vector types at once
+ """
+ def test_arithmetic_fused(self):
+ vdata_a, vdata_b, vdata_c = [self.load(self._data())]*3
+ vdata_cx2 = self.add(vdata_c, vdata_c)
+ # multiply and add, a*b + c
+ data_fma = self.load([a * b + c for a, b, c in zip(vdata_a, vdata_b, vdata_c)])
+ fma = self.muladd(vdata_a, vdata_b, vdata_c)
+ assert fma == data_fma
+ # multiply and subtract, a*b - c
+ fms = self.mulsub(vdata_a, vdata_b, vdata_c)
+ data_fms = self.sub(data_fma, vdata_cx2)
+ assert fms == data_fms
+ # negate multiply and add, -(a*b) + c
+ nfma = self.nmuladd(vdata_a, vdata_b, vdata_c)
+ data_nfma = self.sub(vdata_cx2, data_fma)
+ assert nfma == data_nfma
+ # negate multiply and subtract, -(a*b) - c
+ nfms = self.nmulsub(vdata_a, vdata_b, vdata_c)
+ data_nfms = self.mul(data_fma, self.setall(-1))
+ assert nfms == data_nfms
+ # multiply, add for odd elements and subtract even elements.
+ # (a * b) -+ c
+ fmas = list(self.muladdsub(vdata_a, vdata_b, vdata_c))
+ assert fmas[0::2] == list(data_fms)[0::2]
+ assert fmas[1::2] == list(data_fma)[1::2]
+
+ def test_abs(self):
+ pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
+ data = self._data()
+ vdata = self.load(self._data())
+
+ abs_cases = ((-0, 0), (ninf, pinf), (pinf, pinf), (nan, nan))
+ for case, desired in abs_cases:
+ data_abs = [desired]*self.nlanes
+ vabs = self.abs(self.setall(case))
+ assert vabs == pytest.approx(data_abs, nan_ok=True)
+
+ vabs = self.abs(self.mul(vdata, self.setall(-1)))
+ assert vabs == data
+
+ def test_sqrt(self):
+ pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
+ data = self._data()
+ vdata = self.load(self._data())
+
+ sqrt_cases = ((-0.0, -0.0), (0.0, 0.0), (-1.0, nan), (ninf, nan), (pinf, pinf))
+ for case, desired in sqrt_cases:
+ data_sqrt = [desired]*self.nlanes
+ sqrt = self.sqrt(self.setall(case))
+ assert sqrt == pytest.approx(data_sqrt, nan_ok=True)
+
+ data_sqrt = self.load([math.sqrt(x) for x in data]) # load to truncate precision
+ sqrt = self.sqrt(vdata)
+ assert sqrt == data_sqrt
+
+ def test_square(self):
+ pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
+ data = self._data()
+ vdata = self.load(self._data())
+ # square
+ square_cases = ((nan, nan), (pinf, pinf), (ninf, pinf))
+ for case, desired in square_cases:
+ data_square = [desired]*self.nlanes
+ square = self.square(self.setall(case))
+ assert square == pytest.approx(data_square, nan_ok=True)
+
+ data_square = [x*x for x in data]
+ square = self.square(vdata)
+ assert square == data_square
+
+ @pytest.mark.parametrize("intrin, func", [("ceil", math.ceil),
+ ("trunc", math.trunc), ("floor", math.floor), ("rint", round)])
+ def test_rounding(self, intrin, func):
+ """
+ Test intrinsics:
+ npyv_rint_##SFX
+ npyv_ceil_##SFX
+ npyv_trunc_##SFX
+ npyv_floor##SFX
+ """
+ intrin_name = intrin
+ intrin = getattr(self, intrin)
+ pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
+ # special cases
+ round_cases = ((nan, nan), (pinf, pinf), (ninf, ninf))
+ for case, desired in round_cases:
+ data_round = [desired]*self.nlanes
+ _round = intrin(self.setall(case))
+ assert _round == pytest.approx(data_round, nan_ok=True)
+
+ for x in range(0, 2**20, 256**2):
+ for w in (-1.05, -1.10, -1.15, 1.05, 1.10, 1.15):
+ data = self.load([(x+a)*w for a in range(self.nlanes)])
+ data_round = [func(x) for x in data]
+ _round = intrin(data)
+ assert _round == data_round
+
+ # test large numbers
+ for i in (
+ 1.1529215045988576e+18, 4.6116860183954304e+18,
+ 5.902958103546122e+20, 2.3611832414184488e+21
+ ):
+ x = self.setall(i)
+ y = intrin(x)
+ data_round = [func(n) for n in x]
+ assert y == data_round
+
+ # signed zero
+ if intrin_name == "floor":
+ data_szero = (-0.0,)
+ else:
+ data_szero = (-0.0, -0.25, -0.30, -0.45, -0.5)
+
+ for w in data_szero:
+ _round = self._to_unsigned(intrin(self.setall(w)))
+ data_round = self._to_unsigned(self.setall(-0.0))
+ assert _round == data_round
+
+ @pytest.mark.parametrize("intrin", [
+ "max", "maxp", "maxn", "min", "minp", "minn"
+ ])
+ def test_max_min(self, intrin):
+ """
+ Test intrinsics:
+ npyv_max_##sfx
+ npyv_maxp_##sfx
+ npyv_maxn_##sfx
+ npyv_min_##sfx
+ npyv_minp_##sfx
+ npyv_minn_##sfx
+ npyv_reduce_max_##sfx
+ npyv_reduce_maxp_##sfx
+ npyv_reduce_maxn_##sfx
+ npyv_reduce_min_##sfx
+ npyv_reduce_minp_##sfx
+ npyv_reduce_minn_##sfx
+ """
+ pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
+ chk_nan = {"xp": 1, "np": 1, "nn": 2, "xn": 2}.get(intrin[-2:], 0)
+ func = eval(intrin[:3])
+ reduce_intrin = getattr(self, "reduce_" + intrin)
+ intrin = getattr(self, intrin)
+ hf_nlanes = self.nlanes//2
+
+ cases = (
+ ([0.0, -0.0], [-0.0, 0.0]),
+ ([10, -10], [10, -10]),
+ ([pinf, 10], [10, ninf]),
+ ([10, pinf], [ninf, 10]),
+ ([10, -10], [10, -10]),
+ ([-10, 10], [-10, 10])
+ )
+ for op1, op2 in cases:
+ vdata_a = self.load(op1*hf_nlanes)
+ vdata_b = self.load(op2*hf_nlanes)
+ data = func(vdata_a, vdata_b)
+ simd = intrin(vdata_a, vdata_b)
+ assert simd == data
+ data = func(vdata_a)
+ simd = reduce_intrin(vdata_a)
+ assert simd == data
+
+ if not chk_nan:
+ return
+ if chk_nan == 1:
+ test_nan = lambda a, b: (
+ b if math.isnan(a) else a if math.isnan(b) else b
+ )
+ else:
+ test_nan = lambda a, b: (
+ nan if math.isnan(a) or math.isnan(b) else b
+ )
+ cases = (
+ (nan, 10),
+ (10, nan),
+ (nan, pinf),
+ (pinf, nan),
+ (nan, nan)
+ )
+ for op1, op2 in cases:
+ vdata_ab = self.load([op1, op2]*hf_nlanes)
+ data = test_nan(op1, op2)
+ simd = reduce_intrin(vdata_ab)
+ assert simd == pytest.approx(data, nan_ok=True)
+ vdata_a = self.setall(op1)
+ vdata_b = self.setall(op2)
+ data = [data] * self.nlanes
+ simd = intrin(vdata_a, vdata_b)
+ assert simd == pytest.approx(data, nan_ok=True)
+
+ def test_reciprocal(self):
+ pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
+ data = self._data()
+ vdata = self.load(self._data())
+
+ recip_cases = ((nan, nan), (pinf, 0.0), (ninf, -0.0), (0.0, pinf), (-0.0, ninf))
+ for case, desired in recip_cases:
+ data_recip = [desired]*self.nlanes
+ recip = self.recip(self.setall(case))
+ assert recip == pytest.approx(data_recip, nan_ok=True)
+
+ data_recip = self.load([1/x for x in data]) # load to truncate precision
+ recip = self.recip(vdata)
+ assert recip == data_recip
+
+ def test_special_cases(self):
+ """
+ Compare Not NaN. Test intrinsics:
+ npyv_notnan_##SFX
+ """
+ nnan = self.notnan(self.setall(self._nan()))
+ assert nnan == [0]*self.nlanes
+
+ @pytest.mark.parametrize("intrin_name", [
+ "rint", "trunc", "ceil", "floor"
+ ])
+ def test_unary_invalid_fpexception(self, intrin_name):
+ intrin = getattr(self, intrin_name)
+ for d in [float("nan"), float("inf"), -float("inf")]:
+ v = self.setall(d)
+ clear_floatstatus()
+ intrin(v)
+ assert check_floatstatus(invalid=True) == False
+
+ @pytest.mark.parametrize('py_comp,np_comp', [
+ (operator.lt, "cmplt"),
+ (operator.le, "cmple"),
+ (operator.gt, "cmpgt"),
+ (operator.ge, "cmpge"),
+ (operator.eq, "cmpeq"),
+ (operator.ne, "cmpneq")
+ ])
+ def test_comparison_with_nan(self, py_comp, np_comp):
+ pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
+ mask_true = self._true_mask()
+
+ def to_bool(vector):
+ return [lane == mask_true for lane in vector]
+
+ intrin = getattr(self, np_comp)
+ cmp_cases = ((0, nan), (nan, 0), (nan, nan), (pinf, nan),
+ (ninf, nan), (-0.0, +0.0))
+ for case_operand1, case_operand2 in cmp_cases:
+ data_a = [case_operand1]*self.nlanes
+ data_b = [case_operand2]*self.nlanes
+ vdata_a = self.setall(case_operand1)
+ vdata_b = self.setall(case_operand2)
+ vcmp = to_bool(intrin(vdata_a, vdata_b))
+ data_cmp = [py_comp(a, b) for a, b in zip(data_a, data_b)]
+ assert vcmp == data_cmp
+
+ @pytest.mark.parametrize("intrin", ["any", "all"])
+ @pytest.mark.parametrize("data", (
+ [float("nan"), 0],
+ [0, float("nan")],
+ [float("nan"), 1],
+ [1, float("nan")],
+ [float("nan"), float("nan")],
+ [0.0, -0.0],
+ [-0.0, 0.0],
+ [1.0, -0.0]
+ ))
+ def test_operators_crosstest(self, intrin, data):
+ """
+ Test intrinsics:
+ npyv_any_##SFX
+ npyv_all_##SFX
+ """
+ data_a = self.load(data * self.nlanes)
+ func = eval(intrin)
+ intrin = getattr(self, intrin)
+ desired = func(data_a)
+ simd = intrin(data_a)
+ assert not not simd == desired
+
+class _SIMD_ALL(_Test_Utility):
+ """
+ To test all vector types at once
+ """
+ def test_memory_load(self):
+ data = self._data()
+ # unaligned load
+ load_data = self.load(data)
+ assert load_data == data
+ # aligned load
+ loada_data = self.loada(data)
+ assert loada_data == data
+ # stream load
+ loads_data = self.loads(data)
+ assert loads_data == data
+ # load lower part
+ loadl = self.loadl(data)
+ loadl_half = list(loadl)[:self.nlanes//2]
+ data_half = data[:self.nlanes//2]
+ assert loadl_half == data_half
+ assert loadl != data # detect overflow
+
+ def test_memory_store(self):
+ data = self._data()
+ vdata = self.load(data)
+ # unaligned store
+ store = [0] * self.nlanes
+ self.store(store, vdata)
+ assert store == data
+ # aligned store
+ store_a = [0] * self.nlanes
+ self.storea(store_a, vdata)
+ assert store_a == data
+ # stream store
+ store_s = [0] * self.nlanes
+ self.stores(store_s, vdata)
+ assert store_s == data
+ # store lower part
+ store_l = [0] * self.nlanes
+ self.storel(store_l, vdata)
+ assert store_l[:self.nlanes//2] == data[:self.nlanes//2]
+ assert store_l != vdata # detect overflow
+ # store higher part
+ store_h = [0] * self.nlanes
+ self.storeh(store_h, vdata)
+ assert store_h[:self.nlanes//2] == data[self.nlanes//2:]
+ assert store_h != vdata # detect overflow
+
+ @pytest.mark.parametrize("intrin, elsizes, scale, fill", [
+ ("self.load_tillz, self.load_till", (32, 64), 1, [0xffff]),
+ ("self.load2_tillz, self.load2_till", (32, 64), 2, [0xffff, 0x7fff]),
+ ])
+ def test_memory_partial_load(self, intrin, elsizes, scale, fill):
+ if self._scalar_size() not in elsizes:
+ return
+ npyv_load_tillz, npyv_load_till = eval(intrin)
+ data = self._data()
+ lanes = list(range(1, self.nlanes + 1))
+ lanes += [self.nlanes**2, self.nlanes**4] # test out of range
+ for n in lanes:
+ load_till = npyv_load_till(data, n, *fill)
+ load_tillz = npyv_load_tillz(data, n)
+ n *= scale
+ data_till = data[:n] + fill * ((self.nlanes-n) // scale)
+ assert load_till == data_till
+ data_tillz = data[:n] + [0] * (self.nlanes-n)
+ assert load_tillz == data_tillz
+
+ @pytest.mark.parametrize("intrin, elsizes, scale", [
+ ("self.store_till", (32, 64), 1),
+ ("self.store2_till", (32, 64), 2),
+ ])
+ def test_memory_partial_store(self, intrin, elsizes, scale):
+ if self._scalar_size() not in elsizes:
+ return
+ npyv_store_till = eval(intrin)
+ data = self._data()
+ data_rev = self._data(reverse=True)
+ vdata = self.load(data)
+ lanes = list(range(1, self.nlanes + 1))
+ lanes += [self.nlanes**2, self.nlanes**4]
+ for n in lanes:
+ data_till = data_rev.copy()
+ data_till[:n*scale] = data[:n*scale]
+ store_till = self._data(reverse=True)
+ npyv_store_till(store_till, n, vdata)
+ assert store_till == data_till
+
+ @pytest.mark.parametrize("intrin, elsizes, scale", [
+ ("self.loadn", (32, 64), 1),
+ ("self.loadn2", (32, 64), 2),
+ ])
+ def test_memory_noncont_load(self, intrin, elsizes, scale):
+ if self._scalar_size() not in elsizes:
+ return
+ npyv_loadn = eval(intrin)
+ for stride in range(-64, 64):
+ if stride < 0:
+ data = self._data(stride, -stride*self.nlanes)
+ data_stride = list(itertools.chain(
+ *zip(*[data[-i::stride] for i in range(scale, 0, -1)])
+ ))
+ elif stride == 0:
+ data = self._data()
+ data_stride = data[0:scale] * (self.nlanes//scale)
+ else:
+ data = self._data(count=stride*self.nlanes)
+ data_stride = list(itertools.chain(
+ *zip(*[data[i::stride] for i in range(scale)]))
+ )
+ data_stride = self.load(data_stride) # cast unsigned
+ loadn = npyv_loadn(data, stride)
+ assert loadn == data_stride
+
+ @pytest.mark.parametrize("intrin, elsizes, scale, fill", [
+ ("self.loadn_tillz, self.loadn_till", (32, 64), 1, [0xffff]),
+ ("self.loadn2_tillz, self.loadn2_till", (32, 64), 2, [0xffff, 0x7fff]),
+ ])
+ def test_memory_noncont_partial_load(self, intrin, elsizes, scale, fill):
+ if self._scalar_size() not in elsizes:
+ return
+ npyv_loadn_tillz, npyv_loadn_till = eval(intrin)
+ lanes = list(range(1, self.nlanes + 1))
+ lanes += [self.nlanes**2, self.nlanes**4]
+ for stride in range(-64, 64):
+ if stride < 0:
+ data = self._data(stride, -stride*self.nlanes)
+ data_stride = list(itertools.chain(
+ *zip(*[data[-i::stride] for i in range(scale, 0, -1)])
+ ))
+ elif stride == 0:
+ data = self._data()
+ data_stride = data[0:scale] * (self.nlanes//scale)
+ else:
+ data = self._data(count=stride*self.nlanes)
+ data_stride = list(itertools.chain(
+ *zip(*[data[i::stride] for i in range(scale)])
+ ))
+ data_stride = list(self.load(data_stride)) # cast unsigned
+ for n in lanes:
+ nscale = n * scale
+ llanes = self.nlanes - nscale
+ data_stride_till = (
+ data_stride[:nscale] + fill * (llanes//scale)
+ )
+ loadn_till = npyv_loadn_till(data, stride, n, *fill)
+ assert loadn_till == data_stride_till
+ data_stride_tillz = data_stride[:nscale] + [0] * llanes
+ loadn_tillz = npyv_loadn_tillz(data, stride, n)
+ assert loadn_tillz == data_stride_tillz
+
+ @pytest.mark.parametrize("intrin, elsizes, scale", [
+ ("self.storen", (32, 64), 1),
+ ("self.storen2", (32, 64), 2),
+ ])
+ def test_memory_noncont_store(self, intrin, elsizes, scale):
+ if self._scalar_size() not in elsizes:
+ return
+ npyv_storen = eval(intrin)
+ data = self._data()
+ vdata = self.load(data)
+ hlanes = self.nlanes // scale
+ for stride in range(1, 64):
+ data_storen = [0xff] * stride * self.nlanes
+ for s in range(0, hlanes*stride, stride):
+ i = (s//stride)*scale
+ data_storen[s:s+scale] = data[i:i+scale]
+ storen = [0xff] * stride * self.nlanes
+ storen += [0x7f]*64
+ npyv_storen(storen, stride, vdata)
+ assert storen[:-64] == data_storen
+ assert storen[-64:] == [0x7f]*64 # detect overflow
+
+ for stride in range(-64, 0):
+ data_storen = [0xff] * -stride * self.nlanes
+ for s in range(0, hlanes*stride, stride):
+ i = (s//stride)*scale
+ data_storen[s-scale:s or None] = data[i:i+scale]
+ storen = [0x7f]*64
+ storen += [0xff] * -stride * self.nlanes
+ npyv_storen(storen, stride, vdata)
+ assert storen[64:] == data_storen
+ assert storen[:64] == [0x7f]*64 # detect overflow
+ # stride 0
+ data_storen = [0x7f] * self.nlanes
+ storen = data_storen.copy()
+ data_storen[0:scale] = data[-scale:]
+ npyv_storen(storen, 0, vdata)
+ assert storen == data_storen
+
+ @pytest.mark.parametrize("intrin, elsizes, scale", [
+ ("self.storen_till", (32, 64), 1),
+ ("self.storen2_till", (32, 64), 2),
+ ])
+ def test_memory_noncont_partial_store(self, intrin, elsizes, scale):
+ if self._scalar_size() not in elsizes:
+ return
+ npyv_storen_till = eval(intrin)
+ data = self._data()
+ vdata = self.load(data)
+ lanes = list(range(1, self.nlanes + 1))
+ lanes += [self.nlanes**2, self.nlanes**4]
+ hlanes = self.nlanes // scale
+ for stride in range(1, 64):
+ for n in lanes:
+ data_till = [0xff] * stride * self.nlanes
+ tdata = data[:n*scale] + [0xff] * (self.nlanes-n*scale)
+ for s in range(0, hlanes*stride, stride)[:n]:
+ i = (s//stride)*scale
+ data_till[s:s+scale] = tdata[i:i+scale]
+ storen_till = [0xff] * stride * self.nlanes
+ storen_till += [0x7f]*64
+ npyv_storen_till(storen_till, stride, n, vdata)
+ assert storen_till[:-64] == data_till
+ assert storen_till[-64:] == [0x7f]*64 # detect overflow
+
+ for stride in range(-64, 0):
+ for n in lanes:
+ data_till = [0xff] * -stride * self.nlanes
+ tdata = data[:n*scale] + [0xff] * (self.nlanes-n*scale)
+ for s in range(0, hlanes*stride, stride)[:n]:
+ i = (s//stride)*scale
+ data_till[s-scale:s or None] = tdata[i:i+scale]
+ storen_till = [0x7f]*64
+ storen_till += [0xff] * -stride * self.nlanes
+ npyv_storen_till(storen_till, stride, n, vdata)
+ assert storen_till[64:] == data_till
+ assert storen_till[:64] == [0x7f]*64 # detect overflow
+
+ # stride 0
+ for n in lanes:
+ data_till = [0x7f] * self.nlanes
+ storen_till = data_till.copy()
+ data_till[0:scale] = data[:n*scale][-scale:]
+ npyv_storen_till(storen_till, 0, n, vdata)
+ assert storen_till == data_till
+
+ @pytest.mark.parametrize("intrin, table_size, elsize", [
+ ("self.lut32", 32, 32),
+ ("self.lut16", 16, 64)
+ ])
+ def test_lut(self, intrin, table_size, elsize):
+ """
+ Test lookup table intrinsics:
+ npyv_lut32_##sfx
+ npyv_lut16_##sfx
+ """
+ if elsize != self._scalar_size():
+ return
+ intrin = eval(intrin)
+ idx_itrin = getattr(self.npyv, f"setall_u{elsize}")
+ table = range(0, table_size)
+ for i in table:
+ broadi = self.setall(i)
+ idx = idx_itrin(i)
+ lut = intrin(table, idx)
+ assert lut == broadi
+
+ def test_misc(self):
+ broadcast_zero = self.zero()
+ assert broadcast_zero == [0] * self.nlanes
+ for i in range(1, 10):
+ broadcasti = self.setall(i)
+ assert broadcasti == [i] * self.nlanes
+
+ data_a, data_b = self._data(), self._data(reverse=True)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+
+ # py level of npyv_set_* don't support ignoring the extra specified lanes or
+ # fill non-specified lanes with zero.
+ vset = self.set(*data_a)
+ assert vset == data_a
+ # py level of npyv_setf_* don't support ignoring the extra specified lanes or
+ # fill non-specified lanes with the specified scalar.
+ vsetf = self.setf(10, *data_a)
+ assert vsetf == data_a
+
+ # We're testing the sanity of _simd's type-vector,
+ # reinterpret* intrinsics itself are tested via compiler
+ # during the build of _simd module
+ sfxes = ["u8", "s8", "u16", "s16", "u32", "s32", "u64", "s64"]
+ if self.npyv.simd_f64:
+ sfxes.append("f64")
+ if self.npyv.simd_f32:
+ sfxes.append("f32")
+ for sfx in sfxes:
+ vec_name = getattr(self, "reinterpret_" + sfx)(vdata_a).__name__
+ assert vec_name == "npyv_" + sfx
+
+ # select & mask operations
+ select_a = self.select(self.cmpeq(self.zero(), self.zero()), vdata_a, vdata_b)
+ assert select_a == data_a
+ select_b = self.select(self.cmpneq(self.zero(), self.zero()), vdata_a, vdata_b)
+ assert select_b == data_b
+
+ # test extract elements
+ assert self.extract0(vdata_b) == vdata_b[0]
+
+ # cleanup intrinsic is only used with AVX for
+ # zeroing registers to avoid the AVX-SSE transition penalty,
+ # so nothing to test here
+ self.npyv.cleanup()
+
+ def test_reorder(self):
+ data_a, data_b = self._data(), self._data(reverse=True)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+ # lower half part
+ data_a_lo = data_a[:self.nlanes//2]
+ data_b_lo = data_b[:self.nlanes//2]
+ # higher half part
+ data_a_hi = data_a[self.nlanes//2:]
+ data_b_hi = data_b[self.nlanes//2:]
+ # combine two lower parts
+ combinel = self.combinel(vdata_a, vdata_b)
+ assert combinel == data_a_lo + data_b_lo
+ # combine two higher parts
+ combineh = self.combineh(vdata_a, vdata_b)
+ assert combineh == data_a_hi + data_b_hi
+ # combine x2
+ combine = self.combine(vdata_a, vdata_b)
+ assert combine == (data_a_lo + data_b_lo, data_a_hi + data_b_hi)
+
+ # zip(interleave)
+ data_zipl = self.load([
+ v for p in zip(data_a_lo, data_b_lo) for v in p
+ ])
+ data_ziph = self.load([
+ v for p in zip(data_a_hi, data_b_hi) for v in p
+ ])
+ vzip = self.zip(vdata_a, vdata_b)
+ assert vzip == (data_zipl, data_ziph)
+ vzip = [0]*self.nlanes*2
+ self._x2("store")(vzip, (vdata_a, vdata_b))
+ assert vzip == list(data_zipl) + list(data_ziph)
+
+ # unzip(deinterleave)
+ unzip = self.unzip(data_zipl, data_ziph)
+ assert unzip == (data_a, data_b)
+ unzip = self._x2("load")(list(data_zipl) + list(data_ziph))
+ assert unzip == (data_a, data_b)
+
+ def test_reorder_rev64(self):
+ # Reverse elements of each 64-bit lane
+ ssize = self._scalar_size()
+ if ssize == 64:
+ return
+ data_rev64 = [
+ y for x in range(0, self.nlanes, 64//ssize)
+ for y in reversed(range(x, x + 64//ssize))
+ ]
+ rev64 = self.rev64(self.load(range(self.nlanes)))
+ assert rev64 == data_rev64
+
+ def test_reorder_permi128(self):
+ """
+ Test permuting elements for each 128-bit lane.
+ npyv_permi128_##sfx
+ """
+ ssize = self._scalar_size()
+ if ssize < 32:
+ return
+ data = self.load(self._data())
+ permn = 128//ssize
+ permd = permn-1
+ nlane128 = self.nlanes//permn
+ shfl = [0, 1] if ssize == 64 else [0, 2, 4, 6]
+ for i in range(permn):
+ indices = [(i >> shf) & permd for shf in shfl]
+ vperm = self.permi128(data, *indices)
+ data_vperm = [
+ data[j + (e & -permn)]
+ for e, j in enumerate(indices*nlane128)
+ ]
+ assert vperm == data_vperm
+
+ @pytest.mark.parametrize('func, intrin', [
+ (operator.lt, "cmplt"),
+ (operator.le, "cmple"),
+ (operator.gt, "cmpgt"),
+ (operator.ge, "cmpge"),
+ (operator.eq, "cmpeq")
+ ])
+ def test_operators_comparison(self, func, intrin):
+ if self._is_fp():
+ data_a = self._data()
+ else:
+ data_a = self._data(self._int_max() - self.nlanes)
+ data_b = self._data(self._int_min(), reverse=True)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+ intrin = getattr(self, intrin)
+
+ mask_true = self._true_mask()
+ def to_bool(vector):
+ return [lane == mask_true for lane in vector]
+
+ data_cmp = [func(a, b) for a, b in zip(data_a, data_b)]
+ cmp = to_bool(intrin(vdata_a, vdata_b))
+ assert cmp == data_cmp
+
+ def test_operators_logical(self):
+ if self._is_fp():
+ data_a = self._data()
+ else:
+ data_a = self._data(self._int_max() - self.nlanes)
+ data_b = self._data(self._int_min(), reverse=True)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+
+ if self._is_fp():
+ data_cast_a = self._to_unsigned(vdata_a)
+ data_cast_b = self._to_unsigned(vdata_b)
+ cast, cast_data = self._to_unsigned, self._to_unsigned
+ else:
+ data_cast_a, data_cast_b = data_a, data_b
+ cast, cast_data = lambda a: a, self.load
+
+ data_xor = cast_data([a ^ b for a, b in zip(data_cast_a, data_cast_b)])
+ vxor = cast(self.xor(vdata_a, vdata_b))
+ assert vxor == data_xor
+
+ data_or = cast_data([a | b for a, b in zip(data_cast_a, data_cast_b)])
+ vor = cast(getattr(self, "or")(vdata_a, vdata_b))
+ assert vor == data_or
+
+ data_and = cast_data([a & b for a, b in zip(data_cast_a, data_cast_b)])
+ vand = cast(getattr(self, "and")(vdata_a, vdata_b))
+ assert vand == data_and
+
+ data_not = cast_data([~a for a in data_cast_a])
+ vnot = cast(getattr(self, "not")(vdata_a))
+ assert vnot == data_not
+
+ if self.sfx not in ("u8"):
+ return
+ data_andc = [a & ~b for a, b in zip(data_cast_a, data_cast_b)]
+ vandc = cast(getattr(self, "andc")(vdata_a, vdata_b))
+ assert vandc == data_andc
+
+ @pytest.mark.parametrize("intrin", ["any", "all"])
+ @pytest.mark.parametrize("data", (
+ [1, 2, 3, 4],
+ [-1, -2, -3, -4],
+ [0, 1, 2, 3, 4],
+ [0x7f, 0x7fff, 0x7fffffff, 0x7fffffffffffffff],
+ [0, -1, -2, -3, 4],
+ [0],
+ [1],
+ [-1]
+ ))
+ def test_operators_crosstest(self, intrin, data):
+ """
+ Test intrinsics:
+ npyv_any_##SFX
+ npyv_all_##SFX
+ """
+ data_a = self.load(data * self.nlanes)
+ func = eval(intrin)
+ intrin = getattr(self, intrin)
+ desired = func(data_a)
+ simd = intrin(data_a)
+ assert not not simd == desired
+
+ def test_conversion_boolean(self):
+ bsfx = "b" + self.sfx[1:]
+ to_boolean = getattr(self.npyv, "cvt_%s_%s" % (bsfx, self.sfx))
+ from_boolean = getattr(self.npyv, "cvt_%s_%s" % (self.sfx, bsfx))
+
+ false_vb = to_boolean(self.setall(0))
+ true_vb = self.cmpeq(self.setall(0), self.setall(0))
+ assert false_vb != true_vb
+
+ false_vsfx = from_boolean(false_vb)
+ true_vsfx = from_boolean(true_vb)
+ assert false_vsfx != true_vsfx
+
+ def test_conversion_expand(self):
+ """
+ Test expand intrinsics:
+ npyv_expand_u16_u8
+ npyv_expand_u32_u16
+ """
+ if self.sfx not in ("u8", "u16"):
+ return
+ totype = self.sfx[0]+str(int(self.sfx[1:])*2)
+ expand = getattr(self.npyv, f"expand_{totype}_{self.sfx}")
+ # close enough from the edge to detect any deviation
+ data = self._data(self._int_max() - self.nlanes)
+ vdata = self.load(data)
+ edata = expand(vdata)
+ # lower half part
+ data_lo = data[:self.nlanes//2]
+ # higher half part
+ data_hi = data[self.nlanes//2:]
+ assert edata == (data_lo, data_hi)
+
+ def test_arithmetic_subadd(self):
+ if self._is_fp():
+ data_a = self._data()
+ else:
+ data_a = self._data(self._int_max() - self.nlanes)
+ data_b = self._data(self._int_min(), reverse=True)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+
+ # non-saturated
+ data_add = self.load([a + b for a, b in zip(data_a, data_b)]) # load to cast
+ add = self.add(vdata_a, vdata_b)
+ assert add == data_add
+ data_sub = self.load([a - b for a, b in zip(data_a, data_b)])
+ sub = self.sub(vdata_a, vdata_b)
+ assert sub == data_sub
+
+ def test_arithmetic_mul(self):
+ if self.sfx in ("u64", "s64"):
+ return
+
+ if self._is_fp():
+ data_a = self._data()
+ else:
+ data_a = self._data(self._int_max() - self.nlanes)
+ data_b = self._data(self._int_min(), reverse=True)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+
+ data_mul = self.load([a * b for a, b in zip(data_a, data_b)])
+ mul = self.mul(vdata_a, vdata_b)
+ assert mul == data_mul
+
+ def test_arithmetic_div(self):
+ if not self._is_fp():
+ return
+
+ data_a, data_b = self._data(), self._data(reverse=True)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+
+ # load to truncate f64 to precision of f32
+ data_div = self.load([a / b for a, b in zip(data_a, data_b)])
+ div = self.div(vdata_a, vdata_b)
+ assert div == data_div
+
+ def test_arithmetic_intdiv(self):
+ """
+ Test integer division intrinsics:
+ npyv_divisor_##sfx
+ npyv_divc_##sfx
+ """
+ if self._is_fp():
+ return
+
+ int_min = self._int_min()
+ def trunc_div(a, d):
+ """
+ Divide towards zero works with large integers > 2^53,
+ and wrap around overflow similar to what C does.
+ """
+ if d == -1 and a == int_min:
+ return a
+ sign_a, sign_d = a < 0, d < 0
+ if a == 0 or sign_a == sign_d:
+ return a // d
+ return (a + sign_d - sign_a) // d + 1
+
+ data = [1, -int_min] # to test overflow
+ data += range(0, 2**8, 2**5)
+ data += range(0, 2**8, 2**5-1)
+ bsize = self._scalar_size()
+ if bsize > 8:
+ data += range(2**8, 2**16, 2**13)
+ data += range(2**8, 2**16, 2**13-1)
+ if bsize > 16:
+ data += range(2**16, 2**32, 2**29)
+ data += range(2**16, 2**32, 2**29-1)
+ if bsize > 32:
+ data += range(2**32, 2**64, 2**61)
+ data += range(2**32, 2**64, 2**61-1)
+ # negate
+ data += [-x for x in data]
+ for dividend, divisor in itertools.product(data, data):
+ divisor = self.setall(divisor)[0] # cast
+ if divisor == 0:
+ continue
+ dividend = self.load(self._data(dividend))
+ data_divc = [trunc_div(a, divisor) for a in dividend]
+ divisor_parms = self.divisor(divisor)
+ divc = self.divc(dividend, divisor_parms)
+ assert divc == data_divc
+
+ def test_arithmetic_reduce_sum(self):
+ """
+ Test reduce sum intrinsics:
+ npyv_sum_##sfx
+ """
+ if self.sfx not in ("u32", "u64", "f32", "f64"):
+ return
+ # reduce sum
+ data = self._data()
+ vdata = self.load(data)
+
+ data_sum = sum(data)
+ vsum = self.sum(vdata)
+ assert vsum == data_sum
+
+ def test_arithmetic_reduce_sumup(self):
+ """
+ Test extend reduce sum intrinsics:
+ npyv_sumup_##sfx
+ """
+ if self.sfx not in ("u8", "u16"):
+ return
+ rdata = (0, self.nlanes, self._int_min(), self._int_max()-self.nlanes)
+ for r in rdata:
+ data = self._data(r)
+ vdata = self.load(data)
+ data_sum = sum(data)
+ vsum = self.sumup(vdata)
+ assert vsum == data_sum
+
+ def test_mask_conditional(self):
+ """
+ Conditional addition and subtraction for all supported data types.
+ Test intrinsics:
+ npyv_ifadd_##SFX, npyv_ifsub_##SFX
+ """
+ vdata_a = self.load(self._data())
+ vdata_b = self.load(self._data(reverse=True))
+ true_mask = self.cmpeq(self.zero(), self.zero())
+ false_mask = self.cmpneq(self.zero(), self.zero())
+
+ data_sub = self.sub(vdata_b, vdata_a)
+ ifsub = self.ifsub(true_mask, vdata_b, vdata_a, vdata_b)
+ assert ifsub == data_sub
+ ifsub = self.ifsub(false_mask, vdata_a, vdata_b, vdata_b)
+ assert ifsub == vdata_b
+
+ data_add = self.add(vdata_b, vdata_a)
+ ifadd = self.ifadd(true_mask, vdata_b, vdata_a, vdata_b)
+ assert ifadd == data_add
+ ifadd = self.ifadd(false_mask, vdata_a, vdata_b, vdata_b)
+ assert ifadd == vdata_b
+
+ if not self._is_fp():
+ return
+ data_div = self.div(vdata_b, vdata_a)
+ ifdiv = self.ifdiv(true_mask, vdata_b, vdata_a, vdata_b)
+ assert ifdiv == data_div
+ ifdivz = self.ifdivz(true_mask, vdata_b, vdata_a)
+ assert ifdivz == data_div
+ ifdiv = self.ifdiv(false_mask, vdata_a, vdata_b, vdata_b)
+ assert ifdiv == vdata_b
+ ifdivz = self.ifdivz(false_mask, vdata_a, vdata_b)
+ assert ifdivz == self.zero()
+
+bool_sfx = ("b8", "b16", "b32", "b64")
+int_sfx = ("u8", "s8", "u16", "s16", "u32", "s32", "u64", "s64")
+fp_sfx = ("f32", "f64")
+all_sfx = int_sfx + fp_sfx
+tests_registry = {
+ bool_sfx: _SIMD_BOOL,
+ int_sfx : _SIMD_INT,
+ fp_sfx : _SIMD_FP,
+ ("f32",): _SIMD_FP32,
+ ("f64",): _SIMD_FP64,
+ all_sfx : _SIMD_ALL
+}
+for target_name, npyv in targets.items():
+ simd_width = npyv.simd if npyv else ''
+ pretty_name = target_name.split('__') # multi-target separator
+ if len(pretty_name) > 1:
+ # multi-target
+ pretty_name = f"({' '.join(pretty_name)})"
+ else:
+ pretty_name = pretty_name[0]
+
+ skip = ""
+ skip_sfx = dict()
+ if not npyv:
+ skip = f"target '{pretty_name}' isn't supported by current machine"
+ elif not npyv.simd:
+ skip = f"target '{pretty_name}' isn't supported by NPYV"
+ else:
+ if not npyv.simd_f32:
+ skip_sfx["f32"] = f"target '{pretty_name}' "\
+ "doesn't support single-precision"
+ if not npyv.simd_f64:
+ skip_sfx["f64"] = f"target '{pretty_name}' doesn't"\
+ "support double-precision"
+
+ for sfxes, cls in tests_registry.items():
+ for sfx in sfxes:
+ skip_m = skip_sfx.get(sfx, skip)
+ inhr = (cls,)
+ attr = dict(npyv=targets[target_name], sfx=sfx, target_name=target_name)
+ tcls = type(f"Test{cls.__name__}_{simd_width}_{target_name}_{sfx}", inhr, attr)
+ if skip_m:
+ pytest.mark.skip(reason=skip_m)(tcls)
+ globals()[tcls.__name__] = tcls